Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Syncookies implementation for the Linux kernel
  4 *
  5 *  Copyright (C) 1997 Andi Kleen
  6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
  7 */
  8
  9#include <linux/tcp.h>
 10#include <linux/slab.h>
 11#include <linux/random.h>
 12#include <linux/siphash.h>
 13#include <linux/kernel.h>
 14#include <linux/export.h>
 15#include <net/secure_seq.h>
 16#include <net/tcp.h>
 17#include <net/route.h>
 18
 19static siphash_key_t syncookie_secret[2] __read_mostly;
 20
 21#define COOKIEBITS 24	/* Upper bits store count */
 22#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 23
 24/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
 25 * stores TCP options:
 26 *
 27 * MSB                               LSB
 28 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
 29 * |  Timestamp | ECN | SACK | WScale  |
 30 *
 31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
 32 * any) to figure out which TCP options we should use for the rebuilt
 33 * connection.
 34 *
 35 * A WScale setting of '0xf' (which is an invalid scaling value)
 36 * means that original syn did not include the TCP window scaling option.
 37 */
 38#define TS_OPT_WSCALE_MASK	0xf
 39#define TS_OPT_SACK		BIT(4)
 40#define TS_OPT_ECN		BIT(5)
 41/* There is no TS_OPT_TIMESTAMP:
 42 * if ACK contains timestamp option, we already know it was
 43 * requested/supported by the syn/synack exchange.
 44 */
 45#define TSBITS	6
 46#define TSMASK	(((__u32)1 << TSBITS) - 1)
 47
 48static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 49		       u32 count, int c)
 50{
 51	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 52	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
 53			    (__force u32)sport << 16 | (__force u32)dport,
 54			    count, &syncookie_secret[c]);
 55}
 56
 
 
 
 
 
 
 
 
 57
 58/*
 59 * when syncookies are in effect and tcp timestamps are enabled we encode
 60 * tcp options in the lower bits of the timestamp value that will be
 61 * sent in the syn-ack.
 62 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 63 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 64 */
 65u64 cookie_init_timestamp(struct request_sock *req)
 66{
 67	struct inet_request_sock *ireq;
 68	u32 ts, ts_now = tcp_time_stamp_raw();
 69	u32 options = 0;
 70
 71	ireq = inet_rsk(req);
 72
 73	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
 74	if (ireq->sack_ok)
 75		options |= TS_OPT_SACK;
 76	if (ireq->ecn_ok)
 77		options |= TS_OPT_ECN;
 78
 79	ts = ts_now & ~TSMASK;
 80	ts |= options;
 81	if (ts > ts_now) {
 82		ts >>= TSBITS;
 83		ts--;
 84		ts <<= TSBITS;
 85		ts |= options;
 86	}
 87	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
 88}
 89
 90
 91static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 92				   __be16 dport, __u32 sseq, __u32 data)
 93{
 94	/*
 95	 * Compute the secure sequence number.
 96	 * The output should be:
 97	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
 98	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
 99	 * Where sseq is their sequence number and count increases every
100	 * minute by 1.
101	 * As an extra hack, we add a small "data" value that encodes the
102	 * MSS into the second hash value.
103	 */
104	u32 count = tcp_cookie_time();
105	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106		sseq + (count << COOKIEBITS) +
107		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108		 & COOKIEMASK));
109}
110
111/*
112 * This retrieves the small "data" value from the syncookie.
113 * If the syncookie is bad, the data returned will be out of
114 * range.  This must be checked by the caller.
115 *
116 * The count value used to generate the cookie must be less than
117 * MAX_SYNCOOKIE_AGE minutes in the past.
118 * The return value (__u32)-1 if this test fails.
119 */
120static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121				  __be16 sport, __be16 dport, __u32 sseq)
122{
123	u32 diff, count = tcp_cookie_time();
124
125	/* Strip away the layers from the cookie */
126	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127
128	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
130	if (diff >= MAX_SYNCOOKIE_AGE)
131		return (__u32)-1;
132
133	return (cookie -
134		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135		& COOKIEMASK;	/* Leaving the data behind */
136}
137
138/*
139 * MSS Values are chosen based on the 2011 paper
140 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141 * Values ..
142 *  .. lower than 536 are rare (< 0.2%)
143 *  .. between 537 and 1299 account for less than < 1.5% of observed values
144 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145 *  .. exceeding 1460 are very rare (< 0.04%)
146 *
147 *  1460 is the single most frequently announced mss value (30 to 46% depending
148 *  on monitor location).  Table must be sorted.
149 */
150static __u16 const msstab[] = {
151	536,
152	1300,
153	1440,	/* 1440, 1452: PPPoE */
154	1460,
155};
156
157/*
158 * Generate a syncookie.  mssp points to the mss, which is returned
159 * rounded down to the value encoded in the cookie.
160 */
161u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162			      u16 *mssp)
163{
164	int mssind;
165	const __u16 mss = *mssp;
166
167	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168		if (mss >= msstab[mssind])
169			break;
170	*mssp = msstab[mssind];
171
172	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173				     th->source, th->dest, ntohl(th->seq),
174				     mssind);
175}
176EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177
178__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
179{
180	const struct iphdr *iph = ip_hdr(skb);
181	const struct tcphdr *th = tcp_hdr(skb);
182
183	return __cookie_v4_init_sequence(iph, th, mssp);
184}
185
186/*
187 * Check if a ack sequence number is a valid syncookie.
188 * Return the decoded mss if it is, or 0 if not.
189 */
190int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
191		      u32 cookie)
192{
 
193	__u32 seq = ntohl(th->seq) - 1;
194	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
195					    th->source, th->dest, seq);
 
 
196
197	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
198}
199EXPORT_SYMBOL_GPL(__cookie_v4_check);
200
201struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
202				 struct request_sock *req,
203				 struct dst_entry *dst, u32 tsoff)
204{
205	struct inet_connection_sock *icsk = inet_csk(sk);
206	struct sock *child;
207	bool own_req;
208
209	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
210						 NULL, &own_req);
211	if (child) {
212		refcount_set(&req->rsk_refcnt, 1);
213		tcp_sk(child)->tsoffset = tsoff;
214		sock_rps_save_rxhash(child, skb);
 
 
 
 
 
 
215		if (inet_csk_reqsk_queue_add(sk, req, child))
216			return child;
217
218		bh_unlock_sock(child);
219		sock_put(child);
220	}
221	__reqsk_free(req);
222
223	return NULL;
224}
225EXPORT_SYMBOL(tcp_get_cookie_sock);
226
227/*
228 * when syncookies are in effect and tcp timestamps are enabled we stored
229 * additional tcp options in the timestamp.
230 * This extracts these options from the timestamp echo.
231 *
232 * return false if we decode a tcp option that is disabled
233 * on the host.
234 */
235bool cookie_timestamp_decode(const struct net *net,
236			     struct tcp_options_received *tcp_opt)
237{
238	/* echoed timestamp, lowest bits contain options */
239	u32 options = tcp_opt->rcv_tsecr;
240
241	if (!tcp_opt->saw_tstamp)  {
242		tcp_clear_options(tcp_opt);
243		return true;
244	}
245
246	if (!net->ipv4.sysctl_tcp_timestamps)
247		return false;
248
249	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
250
251	if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack)
252		return false;
253
254	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
255		return true; /* no window scaling */
256
257	tcp_opt->wscale_ok = 1;
258	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
259
260	return net->ipv4.sysctl_tcp_window_scaling != 0;
261}
262EXPORT_SYMBOL(cookie_timestamp_decode);
263
264bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
265		   const struct net *net, const struct dst_entry *dst)
266{
267	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
 
 
268
269	if (!ecn_ok)
270		return false;
271
272	if (net->ipv4.sysctl_tcp_ecn)
273		return true;
 
 
274
275	return dst_feature(dst, RTAX_FEATURE_ECN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276}
277EXPORT_SYMBOL(cookie_ecn_ok);
278
279/* On input, sk is a listener.
280 * Output is listener if incoming packet would not create a child
281 *           NULL if memory could not be allocated.
282 */
283struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
284{
285	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
286	struct tcp_options_received tcp_opt;
287	struct inet_request_sock *ireq;
288	struct tcp_request_sock *treq;
289	struct tcp_sock *tp = tcp_sk(sk);
290	const struct tcphdr *th = tcp_hdr(skb);
291	__u32 cookie = ntohl(th->ack_seq) - 1;
292	struct sock *ret = sk;
293	struct request_sock *req;
294	int mss;
295	struct rtable *rt;
296	__u8 rcv_wscale;
297	struct flowi4 fl4;
298	u32 tsoff = 0;
299
300	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
301		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303	if (tcp_synq_no_recent_overflow(sk))
304		goto out;
305
306	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
307	if (mss == 0) {
308		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
309		goto out;
310	}
311
312	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
313
314	/* check for timestamp cookie support */
315	memset(&tcp_opt, 0, sizeof(tcp_opt));
316	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
317
318	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
319		tsoff = secure_tcp_ts_off(sock_net(sk),
320					  ip_hdr(skb)->daddr,
321					  ip_hdr(skb)->saddr);
322		tcp_opt.rcv_tsecr -= tsoff;
323	}
324
325	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
326		goto out;
327
328	ret = NULL;
329	req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
330	if (!req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331		goto out;
332
 
 
 
 
 
 
333	ireq = inet_rsk(req);
334	treq = tcp_rsk(req);
335	treq->rcv_isn		= ntohl(th->seq) - 1;
336	treq->snt_isn		= cookie;
337	treq->ts_off		= 0;
338	treq->txhash		= net_tx_rndhash();
339	req->mss		= mss;
340	ireq->ir_num		= ntohs(th->dest);
341	ireq->ir_rmt_port	= th->source;
342	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
343	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
344	ireq->ir_mark		= inet_request_mark(sk, skb);
345	ireq->snd_wscale	= tcp_opt.snd_wscale;
346	ireq->sack_ok		= tcp_opt.sack_ok;
347	ireq->wscale_ok		= tcp_opt.wscale_ok;
348	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
349	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
350	treq->snt_synack	= 0;
351	treq->tfo_listener	= false;
352	if (IS_ENABLED(CONFIG_SMC))
353		ireq->smc_ok = 0;
354
355	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
356
357	/* We throwed the options of the initial SYN away, so we hope
358	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
359	 */
360	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
361
362	if (security_inet_conn_request(sk, skb, req)) {
363		reqsk_free(req);
364		goto out;
365	}
366
367	req->num_retrans = 0;
368
369	/*
370	 * We need to lookup the route here to get at the correct
371	 * window size. We should better make sure that the window size
372	 * hasn't changed since we received the original syn, but I see
373	 * no easy way to do this.
374	 */
375	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
376			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
377			   inet_sk_flowi_flags(sk),
378			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
379			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
380	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
381	rt = ip_route_output_key(sock_net(sk), &fl4);
382	if (IS_ERR(rt)) {
383		reqsk_free(req);
384		goto out;
385	}
386
387	/* Try to redo what tcp_v4_send_synack did. */
388	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
 
 
 
 
 
389
390	tcp_select_initial_window(sk, tcp_full_space(sk), req->mss,
391				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
392				  ireq->wscale_ok, &rcv_wscale,
393				  dst_metric(&rt->dst, RTAX_INITRWND));
394
395	ireq->rcv_wscale  = rcv_wscale;
396	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
397
398	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
399	/* ip_queue_xmit() depends on our flow being setup
400	 * Normal sockets get it right from inet_csk_route_child_sock()
401	 */
402	if (ret)
403		inet_sk(ret)->cork.fl.u.ip4 = fl4;
404out:	return ret;
 
 
 
 
 
405}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Syncookies implementation for the Linux kernel
  4 *
  5 *  Copyright (C) 1997 Andi Kleen
  6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
  7 */
  8
  9#include <linux/tcp.h>
 
 
 10#include <linux/siphash.h>
 11#include <linux/kernel.h>
 12#include <linux/export.h>
 13#include <net/secure_seq.h>
 14#include <net/tcp.h>
 15#include <net/route.h>
 16
 17static siphash_aligned_key_t syncookie_secret[2];
 18
 19#define COOKIEBITS 24	/* Upper bits store count */
 20#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 21
 22/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
 23 * stores TCP options:
 24 *
 25 * MSB                               LSB
 26 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
 27 * |  Timestamp | ECN | SACK | WScale  |
 28 *
 29 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
 30 * any) to figure out which TCP options we should use for the rebuilt
 31 * connection.
 32 *
 33 * A WScale setting of '0xf' (which is an invalid scaling value)
 34 * means that original syn did not include the TCP window scaling option.
 35 */
 36#define TS_OPT_WSCALE_MASK	0xf
 37#define TS_OPT_SACK		BIT(4)
 38#define TS_OPT_ECN		BIT(5)
 39/* There is no TS_OPT_TIMESTAMP:
 40 * if ACK contains timestamp option, we already know it was
 41 * requested/supported by the syn/synack exchange.
 42 */
 43#define TSBITS	6
 
 44
 45static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 46		       u32 count, int c)
 47{
 48	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 49	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
 50			    (__force u32)sport << 16 | (__force u32)dport,
 51			    count, &syncookie_secret[c]);
 52}
 53
 54/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
 55static u64 tcp_ns_to_ts(bool usec_ts, u64 val)
 56{
 57	if (usec_ts)
 58		return div_u64(val, NSEC_PER_USEC);
 59
 60	return div_u64(val, NSEC_PER_MSEC);
 61}
 62
 63/*
 64 * when syncookies are in effect and tcp timestamps are enabled we encode
 65 * tcp options in the lower bits of the timestamp value that will be
 66 * sent in the syn-ack.
 67 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 68 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 69 */
 70u64 cookie_init_timestamp(struct request_sock *req, u64 now)
 71{
 72	const struct inet_request_sock *ireq = inet_rsk(req);
 73	u64 ts, ts_now = tcp_ns_to_ts(false, now);
 74	u32 options = 0;
 75
 
 
 76	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
 77	if (ireq->sack_ok)
 78		options |= TS_OPT_SACK;
 79	if (ireq->ecn_ok)
 80		options |= TS_OPT_ECN;
 81
 82	ts = (ts_now >> TSBITS) << TSBITS;
 83	ts |= options;
 84	if (ts > ts_now)
 85		ts -= (1UL << TSBITS);
 86
 87	if (tcp_rsk(req)->req_usec_ts)
 88		return ts * NSEC_PER_USEC;
 89	return ts * NSEC_PER_MSEC;
 
 90}
 91
 92
 93static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 94				   __be16 dport, __u32 sseq, __u32 data)
 95{
 96	/*
 97	 * Compute the secure sequence number.
 98	 * The output should be:
 99	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
100	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
101	 * Where sseq is their sequence number and count increases every
102	 * minute by 1.
103	 * As an extra hack, we add a small "data" value that encodes the
104	 * MSS into the second hash value.
105	 */
106	u32 count = tcp_cookie_time();
107	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
108		sseq + (count << COOKIEBITS) +
109		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
110		 & COOKIEMASK));
111}
112
113/*
114 * This retrieves the small "data" value from the syncookie.
115 * If the syncookie is bad, the data returned will be out of
116 * range.  This must be checked by the caller.
117 *
118 * The count value used to generate the cookie must be less than
119 * MAX_SYNCOOKIE_AGE minutes in the past.
120 * The return value (__u32)-1 if this test fails.
121 */
122static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
123				  __be16 sport, __be16 dport, __u32 sseq)
124{
125	u32 diff, count = tcp_cookie_time();
126
127	/* Strip away the layers from the cookie */
128	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
129
130	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
131	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
132	if (diff >= MAX_SYNCOOKIE_AGE)
133		return (__u32)-1;
134
135	return (cookie -
136		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
137		& COOKIEMASK;	/* Leaving the data behind */
138}
139
140/*
141 * MSS Values are chosen based on the 2011 paper
142 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
143 * Values ..
144 *  .. lower than 536 are rare (< 0.2%)
145 *  .. between 537 and 1299 account for less than < 1.5% of observed values
146 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
147 *  .. exceeding 1460 are very rare (< 0.04%)
148 *
149 *  1460 is the single most frequently announced mss value (30 to 46% depending
150 *  on monitor location).  Table must be sorted.
151 */
152static __u16 const msstab[] = {
153	536,
154	1300,
155	1440,	/* 1440, 1452: PPPoE */
156	1460,
157};
158
159/*
160 * Generate a syncookie.  mssp points to the mss, which is returned
161 * rounded down to the value encoded in the cookie.
162 */
163u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
164			      u16 *mssp)
165{
166	int mssind;
167	const __u16 mss = *mssp;
168
169	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
170		if (mss >= msstab[mssind])
171			break;
172	*mssp = msstab[mssind];
173
174	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
175				     th->source, th->dest, ntohl(th->seq),
176				     mssind);
177}
178EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
179
180__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
181{
182	const struct iphdr *iph = ip_hdr(skb);
183	const struct tcphdr *th = tcp_hdr(skb);
184
185	return __cookie_v4_init_sequence(iph, th, mssp);
186}
187
188/*
189 * Check if a ack sequence number is a valid syncookie.
190 * Return the decoded mss if it is, or 0 if not.
191 */
192int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th)
 
193{
194	__u32 cookie = ntohl(th->ack_seq) - 1;
195	__u32 seq = ntohl(th->seq) - 1;
196	__u32 mssind;
197
198	mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
199				      th->source, th->dest, seq);
200
201	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
202}
203EXPORT_SYMBOL_GPL(__cookie_v4_check);
204
205struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
206				 struct request_sock *req,
207				 struct dst_entry *dst)
208{
209	struct inet_connection_sock *icsk = inet_csk(sk);
210	struct sock *child;
211	bool own_req;
212
213	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
214						 NULL, &own_req);
215	if (child) {
216		refcount_set(&req->rsk_refcnt, 1);
 
217		sock_rps_save_rxhash(child, skb);
218
219		if (rsk_drop_req(req)) {
220			reqsk_put(req);
221			return child;
222		}
223
224		if (inet_csk_reqsk_queue_add(sk, req, child))
225			return child;
226
227		bh_unlock_sock(child);
228		sock_put(child);
229	}
230	__reqsk_free(req);
231
232	return NULL;
233}
234EXPORT_SYMBOL(tcp_get_cookie_sock);
235
236/*
237 * when syncookies are in effect and tcp timestamps are enabled we stored
238 * additional tcp options in the timestamp.
239 * This extracts these options from the timestamp echo.
240 *
241 * return false if we decode a tcp option that is disabled
242 * on the host.
243 */
244bool cookie_timestamp_decode(const struct net *net,
245			     struct tcp_options_received *tcp_opt)
246{
247	/* echoed timestamp, lowest bits contain options */
248	u32 options = tcp_opt->rcv_tsecr;
249
250	if (!tcp_opt->saw_tstamp)  {
251		tcp_clear_options(tcp_opt);
252		return true;
253	}
254
255	if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
256		return false;
257
258	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
259
260	if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
261		return false;
262
263	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
264		return true; /* no window scaling */
265
266	tcp_opt->wscale_ok = 1;
267	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
268
269	return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
270}
271EXPORT_SYMBOL(cookie_timestamp_decode);
272
273static int cookie_tcp_reqsk_init(struct sock *sk, struct sk_buff *skb,
274				 struct request_sock *req)
275{
276	struct inet_request_sock *ireq = inet_rsk(req);
277	struct tcp_request_sock *treq = tcp_rsk(req);
278	const struct tcphdr *th = tcp_hdr(skb);
279
280	req->num_retrans = 0;
 
281
282	ireq->ir_num = ntohs(th->dest);
283	ireq->ir_rmt_port = th->source;
284	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
285	ireq->ir_mark = inet_request_mark(sk, skb);
286
287	if (IS_ENABLED(CONFIG_SMC))
288		ireq->smc_ok = 0;
289
290	treq->snt_synack = 0;
291	treq->tfo_listener = false;
292	treq->txhash = net_tx_rndhash();
293	treq->rcv_isn = ntohl(th->seq) - 1;
294	treq->snt_isn = ntohl(th->ack_seq) - 1;
295	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
296	treq->req_usec_ts = false;
297
298#if IS_ENABLED(CONFIG_MPTCP)
299	treq->is_mptcp = sk_is_mptcp(sk);
300	if (treq->is_mptcp)
301		return mptcp_subflow_init_cookie_req(req, sk, skb);
302#endif
303
304	return 0;
305}
 
306
307struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
308					    struct sock *sk, struct sk_buff *skb,
309					    struct tcp_options_received *tcp_opt,
310					    int mss, u32 tsoff)
 
311{
 
 
312	struct inet_request_sock *ireq;
313	struct tcp_request_sock *treq;
 
 
 
 
314	struct request_sock *req;
 
 
 
 
 
315
316	if (sk_is_mptcp(sk))
317		req = mptcp_subflow_reqsk_alloc(ops, sk, false);
318	else
319		req = inet_reqsk_alloc(ops, sk, false);
320
321	if (!req)
322		return NULL;
323
324	if (cookie_tcp_reqsk_init(sk, skb, req)) {
325		reqsk_free(req);
326		return NULL;
327	}
328
329	ireq = inet_rsk(req);
330	treq = tcp_rsk(req);
331
332	req->mss = mss;
333	req->ts_recent = tcp_opt->saw_tstamp ? tcp_opt->rcv_tsval : 0;
334
335	ireq->snd_wscale = tcp_opt->snd_wscale;
336	ireq->tstamp_ok = tcp_opt->saw_tstamp;
337	ireq->sack_ok = tcp_opt->sack_ok;
338	ireq->wscale_ok = tcp_opt->wscale_ok;
339	ireq->ecn_ok = !!(tcp_opt->rcv_tsecr & TS_OPT_ECN);
340
341	treq->ts_off = tsoff;
342
343	return req;
344}
345EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
346
347static struct request_sock *cookie_tcp_check(struct net *net, struct sock *sk,
348					     struct sk_buff *skb)
349{
350	struct tcp_options_received tcp_opt;
351	u32 tsoff = 0;
352	int mss;
353
354	if (tcp_synq_no_recent_overflow(sk))
355		goto out;
356
357	mss = __cookie_v4_check(ip_hdr(skb), tcp_hdr(skb));
358	if (!mss) {
359		__NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESFAILED);
360		goto out;
361	}
362
363	__NET_INC_STATS(net, LINUX_MIB_SYNCOOKIESRECV);
364
365	/* check for timestamp cookie support */
366	memset(&tcp_opt, 0, sizeof(tcp_opt));
367	tcp_parse_options(net, skb, &tcp_opt, 0, NULL);
368
369	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
370		tsoff = secure_tcp_ts_off(net,
371					  ip_hdr(skb)->daddr,
372					  ip_hdr(skb)->saddr);
373		tcp_opt.rcv_tsecr -= tsoff;
374	}
375
376	if (!cookie_timestamp_decode(net, &tcp_opt))
377		goto out;
378
379	return cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, sk, skb,
380				      &tcp_opt, mss, tsoff);
381out:
382	return ERR_PTR(-EINVAL);
383}
384
385/* On input, sk is a listener.
386 * Output is listener if incoming packet would not create a child
387 *           NULL if memory could not be allocated.
388 */
389struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
390{
391	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
392	const struct tcphdr *th = tcp_hdr(skb);
393	struct tcp_sock *tp = tcp_sk(sk);
394	struct inet_request_sock *ireq;
395	struct net *net = sock_net(sk);
396	struct request_sock *req;
397	struct sock *ret = sk;
398	struct flowi4 fl4;
399	struct rtable *rt;
400	__u8 rcv_wscale;
401	int full_space;
402
403	if (!READ_ONCE(net->ipv4.sysctl_tcp_syncookies) ||
404	    !th->ack || th->rst)
405		goto out;
406
407	req = cookie_tcp_check(net, sk, skb);
408	if (IS_ERR(req))
409		goto out;
410	if (!req)
411		goto out_drop;
412
413	ireq = inet_rsk(req);
414
 
 
 
 
 
 
 
415	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
416	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
 
 
 
 
 
 
 
 
 
 
 
 
417
418	/* We throwed the options of the initial SYN away, so we hope
419	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
420	 */
421	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
422
423	if (security_inet_conn_request(sk, skb, req))
424		goto out_free;
 
 
425
426	tcp_ao_syncookie(sk, skb, req, AF_INET);
427
428	/*
429	 * We need to lookup the route here to get at the correct
430	 * window size. We should better make sure that the window size
431	 * hasn't changed since we received the original syn, but I see
432	 * no easy way to do this.
433	 */
434	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
435			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
436			   IPPROTO_TCP, inet_sk_flowi_flags(sk),
437			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
438			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
439	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
440	rt = ip_route_output_key(net, &fl4);
441	if (IS_ERR(rt))
442		goto out_free;
 
 
443
444	/* Try to redo what tcp_v4_send_synack did. */
445	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
446	/* limit the window selection if the user enforce a smaller rx buffer */
447	full_space = tcp_full_space(sk);
448	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
449	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
450		req->rsk_window_clamp = full_space;
451
452	tcp_select_initial_window(sk, full_space, req->mss,
453				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
454				  ireq->wscale_ok, &rcv_wscale,
455				  dst_metric(&rt->dst, RTAX_INITRWND));
456
457	ireq->rcv_wscale  = rcv_wscale;
458	ireq->ecn_ok &= cookie_ecn_ok(net, &rt->dst);
459
460	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
461	/* ip_queue_xmit() depends on our flow being setup
462	 * Normal sockets get it right from inet_csk_route_child_sock()
463	 */
464	if (ret)
465		inet_sk(ret)->cork.fl.u.ip4 = fl4;
466out:
467	return ret;
468out_free:
469	reqsk_free(req);
470out_drop:
471	return NULL;
472}