Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PF_INET protocol family socket handler.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Florian La Roche, <flla@stud.uni-sb.de>
12 * Alan Cox, <A.Cox@swansea.ac.uk>
13 *
14 * Changes (see also sock.c)
15 *
16 * piggy,
17 * Karl Knutson : Socket protocol table
18 * A.N.Kuznetsov : Socket death error in accept().
19 * John Richardson : Fix non blocking error in connect()
20 * so sockets that fail to connect
21 * don't return -EINPROGRESS.
22 * Alan Cox : Asynchronous I/O support
23 * Alan Cox : Keep correct socket pointer on sock
24 * structures
25 * when accept() ed
26 * Alan Cox : Semantics of SO_LINGER aren't state
27 * moved to close when you look carefully.
28 * With this fixed and the accept bug fixed
29 * some RPC stuff seems happier.
30 * Niibe Yutaka : 4.4BSD style write async I/O
31 * Alan Cox,
32 * Tony Gale : Fixed reuse semantics.
33 * Alan Cox : bind() shouldn't abort existing but dead
34 * sockets. Stops FTP netin:.. I hope.
35 * Alan Cox : bind() works correctly for RAW sockets.
36 * Note that FreeBSD at least was broken
37 * in this respect so be careful with
38 * compatibility tests...
39 * Alan Cox : routing cache support
40 * Alan Cox : memzero the socket structure for
41 * compactness.
42 * Matt Day : nonblock connect error handler
43 * Alan Cox : Allow large numbers of pending sockets
44 * (eg for big web sites), but only if
45 * specifically application requested.
46 * Alan Cox : New buffering throughout IP. Used
47 * dumbly.
48 * Alan Cox : New buffering now used smartly.
49 * Alan Cox : BSD rather than common sense
50 * interpretation of listen.
51 * Germano Caronni : Assorted small races.
52 * Alan Cox : sendmsg/recvmsg basic support.
53 * Alan Cox : Only sendmsg/recvmsg now supported.
54 * Alan Cox : Locked down bind (see security list).
55 * Alan Cox : Loosened bind a little.
56 * Mike McLagan : ADD/DEL DLCI Ioctls
57 * Willy Konynenberg : Transparent proxying support.
58 * David S. Miller : New socket lookup architecture.
59 * Some other random speedups.
60 * Cyrus Durgin : Cleaned up file for kmod hacks.
61 * Andi Kleen : Fix inet_stream_connect TCP race.
62 */
63
64#define pr_fmt(fmt) "IPv4: " fmt
65
66#include <linux/err.h>
67#include <linux/errno.h>
68#include <linux/types.h>
69#include <linux/socket.h>
70#include <linux/in.h>
71#include <linux/kernel.h>
72#include <linux/kmod.h>
73#include <linux/sched.h>
74#include <linux/timer.h>
75#include <linux/string.h>
76#include <linux/sockios.h>
77#include <linux/net.h>
78#include <linux/capability.h>
79#include <linux/fcntl.h>
80#include <linux/mm.h>
81#include <linux/interrupt.h>
82#include <linux/stat.h>
83#include <linux/init.h>
84#include <linux/poll.h>
85#include <linux/netfilter_ipv4.h>
86#include <linux/random.h>
87#include <linux/slab.h>
88
89#include <linux/uaccess.h>
90
91#include <linux/inet.h>
92#include <linux/igmp.h>
93#include <linux/inetdevice.h>
94#include <linux/netdevice.h>
95#include <net/checksum.h>
96#include <net/ip.h>
97#include <net/protocol.h>
98#include <net/arp.h>
99#include <net/route.h>
100#include <net/ip_fib.h>
101#include <net/inet_connection_sock.h>
102#include <net/tcp.h>
103#include <net/udp.h>
104#include <net/udplite.h>
105#include <net/ping.h>
106#include <linux/skbuff.h>
107#include <net/sock.h>
108#include <net/raw.h>
109#include <net/icmp.h>
110#include <net/inet_common.h>
111#include <net/ip_tunnels.h>
112#include <net/xfrm.h>
113#include <net/net_namespace.h>
114#include <net/secure_seq.h>
115#ifdef CONFIG_IP_MROUTE
116#include <linux/mroute.h>
117#endif
118#include <net/l3mdev.h>
119
120#include <trace/events/sock.h>
121
122/* The inetsw table contains everything that inet_create needs to
123 * build a new socket.
124 */
125static struct list_head inetsw[SOCK_MAX];
126static DEFINE_SPINLOCK(inetsw_lock);
127
128/* New destruction routine */
129
130void inet_sock_destruct(struct sock *sk)
131{
132 struct inet_sock *inet = inet_sk(sk);
133
134 __skb_queue_purge(&sk->sk_receive_queue);
135 if (sk->sk_rx_skb_cache) {
136 __kfree_skb(sk->sk_rx_skb_cache);
137 sk->sk_rx_skb_cache = NULL;
138 }
139 __skb_queue_purge(&sk->sk_error_queue);
140
141 sk_mem_reclaim(sk);
142
143 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
144 pr_err("Attempt to release TCP socket in state %d %p\n",
145 sk->sk_state, sk);
146 return;
147 }
148 if (!sock_flag(sk, SOCK_DEAD)) {
149 pr_err("Attempt to release alive inet socket %p\n", sk);
150 return;
151 }
152
153 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
154 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
155 WARN_ON(sk->sk_wmem_queued);
156 WARN_ON(sk->sk_forward_alloc);
157
158 kfree(rcu_dereference_protected(inet->inet_opt, 1));
159 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
160 dst_release(sk->sk_rx_dst);
161 sk_refcnt_debug_dec(sk);
162}
163EXPORT_SYMBOL(inet_sock_destruct);
164
165/*
166 * The routines beyond this point handle the behaviour of an AF_INET
167 * socket object. Mostly it punts to the subprotocols of IP to do
168 * the work.
169 */
170
171/*
172 * Automatically bind an unbound socket.
173 */
174
175static int inet_autobind(struct sock *sk)
176{
177 struct inet_sock *inet;
178 /* We may need to bind the socket. */
179 lock_sock(sk);
180 inet = inet_sk(sk);
181 if (!inet->inet_num) {
182 if (sk->sk_prot->get_port(sk, 0)) {
183 release_sock(sk);
184 return -EAGAIN;
185 }
186 inet->inet_sport = htons(inet->inet_num);
187 }
188 release_sock(sk);
189 return 0;
190}
191
192/*
193 * Move a socket into listening state.
194 */
195int inet_listen(struct socket *sock, int backlog)
196{
197 struct sock *sk = sock->sk;
198 unsigned char old_state;
199 int err, tcp_fastopen;
200
201 lock_sock(sk);
202
203 err = -EINVAL;
204 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
205 goto out;
206
207 old_state = sk->sk_state;
208 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
209 goto out;
210
211 sk->sk_max_ack_backlog = backlog;
212 /* Really, if the socket is already in listen state
213 * we can only allow the backlog to be adjusted.
214 */
215 if (old_state != TCP_LISTEN) {
216 /* Enable TFO w/o requiring TCP_FASTOPEN socket option.
217 * Note that only TCP sockets (SOCK_STREAM) will reach here.
218 * Also fastopen backlog may already been set via the option
219 * because the socket was in TCP_LISTEN state previously but
220 * was shutdown() rather than close().
221 */
222 tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
223 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
224 (tcp_fastopen & TFO_SERVER_ENABLE) &&
225 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
226 fastopen_queue_tune(sk, backlog);
227 tcp_fastopen_init_key_once(sock_net(sk));
228 }
229
230 err = inet_csk_listen_start(sk, backlog);
231 if (err)
232 goto out;
233 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
234 }
235 err = 0;
236
237out:
238 release_sock(sk);
239 return err;
240}
241EXPORT_SYMBOL(inet_listen);
242
243/*
244 * Create an inet socket.
245 */
246
247static int inet_create(struct net *net, struct socket *sock, int protocol,
248 int kern)
249{
250 struct sock *sk;
251 struct inet_protosw *answer;
252 struct inet_sock *inet;
253 struct proto *answer_prot;
254 unsigned char answer_flags;
255 int try_loading_module = 0;
256 int err;
257
258 if (protocol < 0 || protocol >= IPPROTO_MAX)
259 return -EINVAL;
260
261 sock->state = SS_UNCONNECTED;
262
263 /* Look for the requested type/protocol pair. */
264lookup_protocol:
265 err = -ESOCKTNOSUPPORT;
266 rcu_read_lock();
267 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
268
269 err = 0;
270 /* Check the non-wild match. */
271 if (protocol == answer->protocol) {
272 if (protocol != IPPROTO_IP)
273 break;
274 } else {
275 /* Check for the two wild cases. */
276 if (IPPROTO_IP == protocol) {
277 protocol = answer->protocol;
278 break;
279 }
280 if (IPPROTO_IP == answer->protocol)
281 break;
282 }
283 err = -EPROTONOSUPPORT;
284 }
285
286 if (unlikely(err)) {
287 if (try_loading_module < 2) {
288 rcu_read_unlock();
289 /*
290 * Be more specific, e.g. net-pf-2-proto-132-type-1
291 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
292 */
293 if (++try_loading_module == 1)
294 request_module("net-pf-%d-proto-%d-type-%d",
295 PF_INET, protocol, sock->type);
296 /*
297 * Fall back to generic, e.g. net-pf-2-proto-132
298 * (net-pf-PF_INET-proto-IPPROTO_SCTP)
299 */
300 else
301 request_module("net-pf-%d-proto-%d",
302 PF_INET, protocol);
303 goto lookup_protocol;
304 } else
305 goto out_rcu_unlock;
306 }
307
308 err = -EPERM;
309 if (sock->type == SOCK_RAW && !kern &&
310 !ns_capable(net->user_ns, CAP_NET_RAW))
311 goto out_rcu_unlock;
312
313 sock->ops = answer->ops;
314 answer_prot = answer->prot;
315 answer_flags = answer->flags;
316 rcu_read_unlock();
317
318 WARN_ON(!answer_prot->slab);
319
320 err = -ENOBUFS;
321 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
322 if (!sk)
323 goto out;
324
325 err = 0;
326 if (INET_PROTOSW_REUSE & answer_flags)
327 sk->sk_reuse = SK_CAN_REUSE;
328
329 inet = inet_sk(sk);
330 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
331
332 inet->nodefrag = 0;
333
334 if (SOCK_RAW == sock->type) {
335 inet->inet_num = protocol;
336 if (IPPROTO_RAW == protocol)
337 inet->hdrincl = 1;
338 }
339
340 if (net->ipv4.sysctl_ip_no_pmtu_disc)
341 inet->pmtudisc = IP_PMTUDISC_DONT;
342 else
343 inet->pmtudisc = IP_PMTUDISC_WANT;
344
345 inet->inet_id = 0;
346
347 sock_init_data(sock, sk);
348
349 sk->sk_destruct = inet_sock_destruct;
350 sk->sk_protocol = protocol;
351 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
352
353 inet->uc_ttl = -1;
354 inet->mc_loop = 1;
355 inet->mc_ttl = 1;
356 inet->mc_all = 1;
357 inet->mc_index = 0;
358 inet->mc_list = NULL;
359 inet->rcv_tos = 0;
360
361 sk_refcnt_debug_inc(sk);
362
363 if (inet->inet_num) {
364 /* It assumes that any protocol which allows
365 * the user to assign a number at socket
366 * creation time automatically
367 * shares.
368 */
369 inet->inet_sport = htons(inet->inet_num);
370 /* Add to protocol hash chains. */
371 err = sk->sk_prot->hash(sk);
372 if (err) {
373 sk_common_release(sk);
374 goto out;
375 }
376 }
377
378 if (sk->sk_prot->init) {
379 err = sk->sk_prot->init(sk);
380 if (err) {
381 sk_common_release(sk);
382 goto out;
383 }
384 }
385
386 if (!kern) {
387 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
388 if (err) {
389 sk_common_release(sk);
390 goto out;
391 }
392 }
393out:
394 return err;
395out_rcu_unlock:
396 rcu_read_unlock();
397 goto out;
398}
399
400
401/*
402 * The peer socket should always be NULL (or else). When we call this
403 * function we are destroying the object and from then on nobody
404 * should refer to it.
405 */
406int inet_release(struct socket *sock)
407{
408 struct sock *sk = sock->sk;
409
410 if (sk) {
411 long timeout;
412
413 /* Applications forget to leave groups before exiting */
414 ip_mc_drop_socket(sk);
415
416 /* If linger is set, we don't return until the close
417 * is complete. Otherwise we return immediately. The
418 * actually closing is done the same either way.
419 *
420 * If the close is due to the process exiting, we never
421 * linger..
422 */
423 timeout = 0;
424 if (sock_flag(sk, SOCK_LINGER) &&
425 !(current->flags & PF_EXITING))
426 timeout = sk->sk_lingertime;
427 sk->sk_prot->close(sk, timeout);
428 sock->sk = NULL;
429 }
430 return 0;
431}
432EXPORT_SYMBOL(inet_release);
433
434int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
435{
436 struct sock *sk = sock->sk;
437 int err;
438
439 /* If the socket has its own bind function then use it. (RAW) */
440 if (sk->sk_prot->bind) {
441 return sk->sk_prot->bind(sk, uaddr, addr_len);
442 }
443 if (addr_len < sizeof(struct sockaddr_in))
444 return -EINVAL;
445
446 /* BPF prog is run before any checks are done so that if the prog
447 * changes context in a wrong way it will be caught.
448 */
449 err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr);
450 if (err)
451 return err;
452
453 return __inet_bind(sk, uaddr, addr_len, false, true);
454}
455EXPORT_SYMBOL(inet_bind);
456
457int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
458 bool force_bind_address_no_port, bool with_lock)
459{
460 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
461 struct inet_sock *inet = inet_sk(sk);
462 struct net *net = sock_net(sk);
463 unsigned short snum;
464 int chk_addr_ret;
465 u32 tb_id = RT_TABLE_LOCAL;
466 int err;
467
468 if (addr->sin_family != AF_INET) {
469 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
470 * only if s_addr is INADDR_ANY.
471 */
472 err = -EAFNOSUPPORT;
473 if (addr->sin_family != AF_UNSPEC ||
474 addr->sin_addr.s_addr != htonl(INADDR_ANY))
475 goto out;
476 }
477
478 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
479 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
480
481 /* Not specified by any standard per-se, however it breaks too
482 * many applications when removed. It is unfortunate since
483 * allowing applications to make a non-local bind solves
484 * several problems with systems using dynamic addressing.
485 * (ie. your servers still start up even if your ISDN link
486 * is temporarily down)
487 */
488 err = -EADDRNOTAVAIL;
489 if (!inet_can_nonlocal_bind(net, inet) &&
490 addr->sin_addr.s_addr != htonl(INADDR_ANY) &&
491 chk_addr_ret != RTN_LOCAL &&
492 chk_addr_ret != RTN_MULTICAST &&
493 chk_addr_ret != RTN_BROADCAST)
494 goto out;
495
496 snum = ntohs(addr->sin_port);
497 err = -EACCES;
498 if (snum && snum < inet_prot_sock(net) &&
499 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
500 goto out;
501
502 /* We keep a pair of addresses. rcv_saddr is the one
503 * used by hash lookups, and saddr is used for transmit.
504 *
505 * In the BSD API these are the same except where it
506 * would be illegal to use them (multicast/broadcast) in
507 * which case the sending device address is used.
508 */
509 if (with_lock)
510 lock_sock(sk);
511
512 /* Check these errors (active socket, double bind). */
513 err = -EINVAL;
514 if (sk->sk_state != TCP_CLOSE || inet->inet_num)
515 goto out_release_sock;
516
517 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
518 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
519 inet->inet_saddr = 0; /* Use device */
520
521 /* Make sure we are allowed to bind here. */
522 if (snum || !(inet->bind_address_no_port ||
523 force_bind_address_no_port)) {
524 if (sk->sk_prot->get_port(sk, snum)) {
525 inet->inet_saddr = inet->inet_rcv_saddr = 0;
526 err = -EADDRINUSE;
527 goto out_release_sock;
528 }
529 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
530 if (err) {
531 inet->inet_saddr = inet->inet_rcv_saddr = 0;
532 goto out_release_sock;
533 }
534 }
535
536 if (inet->inet_rcv_saddr)
537 sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
538 if (snum)
539 sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
540 inet->inet_sport = htons(inet->inet_num);
541 inet->inet_daddr = 0;
542 inet->inet_dport = 0;
543 sk_dst_reset(sk);
544 err = 0;
545out_release_sock:
546 if (with_lock)
547 release_sock(sk);
548out:
549 return err;
550}
551
552int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
553 int addr_len, int flags)
554{
555 struct sock *sk = sock->sk;
556 int err;
557
558 if (addr_len < sizeof(uaddr->sa_family))
559 return -EINVAL;
560 if (uaddr->sa_family == AF_UNSPEC)
561 return sk->sk_prot->disconnect(sk, flags);
562
563 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
564 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
565 if (err)
566 return err;
567 }
568
569 if (!inet_sk(sk)->inet_num && inet_autobind(sk))
570 return -EAGAIN;
571 return sk->sk_prot->connect(sk, uaddr, addr_len);
572}
573EXPORT_SYMBOL(inet_dgram_connect);
574
575static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
576{
577 DEFINE_WAIT_FUNC(wait, woken_wake_function);
578
579 add_wait_queue(sk_sleep(sk), &wait);
580 sk->sk_write_pending += writebias;
581
582 /* Basic assumption: if someone sets sk->sk_err, he _must_
583 * change state of the socket from TCP_SYN_*.
584 * Connect() does not allow to get error notifications
585 * without closing the socket.
586 */
587 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
588 release_sock(sk);
589 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
590 lock_sock(sk);
591 if (signal_pending(current) || !timeo)
592 break;
593 }
594 remove_wait_queue(sk_sleep(sk), &wait);
595 sk->sk_write_pending -= writebias;
596 return timeo;
597}
598
599/*
600 * Connect to a remote host. There is regrettably still a little
601 * TCP 'magic' in here.
602 */
603int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
604 int addr_len, int flags, int is_sendmsg)
605{
606 struct sock *sk = sock->sk;
607 int err;
608 long timeo;
609
610 /*
611 * uaddr can be NULL and addr_len can be 0 if:
612 * sk is a TCP fastopen active socket and
613 * TCP_FASTOPEN_CONNECT sockopt is set and
614 * we already have a valid cookie for this socket.
615 * In this case, user can call write() after connect().
616 * write() will invoke tcp_sendmsg_fastopen() which calls
617 * __inet_stream_connect().
618 */
619 if (uaddr) {
620 if (addr_len < sizeof(uaddr->sa_family))
621 return -EINVAL;
622
623 if (uaddr->sa_family == AF_UNSPEC) {
624 err = sk->sk_prot->disconnect(sk, flags);
625 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
626 goto out;
627 }
628 }
629
630 switch (sock->state) {
631 default:
632 err = -EINVAL;
633 goto out;
634 case SS_CONNECTED:
635 err = -EISCONN;
636 goto out;
637 case SS_CONNECTING:
638 if (inet_sk(sk)->defer_connect)
639 err = is_sendmsg ? -EINPROGRESS : -EISCONN;
640 else
641 err = -EALREADY;
642 /* Fall out of switch with err, set for this state */
643 break;
644 case SS_UNCONNECTED:
645 err = -EISCONN;
646 if (sk->sk_state != TCP_CLOSE)
647 goto out;
648
649 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
650 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
651 if (err)
652 goto out;
653 }
654
655 err = sk->sk_prot->connect(sk, uaddr, addr_len);
656 if (err < 0)
657 goto out;
658
659 sock->state = SS_CONNECTING;
660
661 if (!err && inet_sk(sk)->defer_connect)
662 goto out;
663
664 /* Just entered SS_CONNECTING state; the only
665 * difference is that return value in non-blocking
666 * case is EINPROGRESS, rather than EALREADY.
667 */
668 err = -EINPROGRESS;
669 break;
670 }
671
672 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
673
674 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
675 int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
676 tcp_sk(sk)->fastopen_req &&
677 tcp_sk(sk)->fastopen_req->data ? 1 : 0;
678
679 /* Error code is set above */
680 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
681 goto out;
682
683 err = sock_intr_errno(timeo);
684 if (signal_pending(current))
685 goto out;
686 }
687
688 /* Connection was closed by RST, timeout, ICMP error
689 * or another process disconnected us.
690 */
691 if (sk->sk_state == TCP_CLOSE)
692 goto sock_error;
693
694 /* sk->sk_err may be not zero now, if RECVERR was ordered by user
695 * and error was received after socket entered established state.
696 * Hence, it is handled normally after connect() return successfully.
697 */
698
699 sock->state = SS_CONNECTED;
700 err = 0;
701out:
702 return err;
703
704sock_error:
705 err = sock_error(sk) ? : -ECONNABORTED;
706 sock->state = SS_UNCONNECTED;
707 if (sk->sk_prot->disconnect(sk, flags))
708 sock->state = SS_DISCONNECTING;
709 goto out;
710}
711EXPORT_SYMBOL(__inet_stream_connect);
712
713int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
714 int addr_len, int flags)
715{
716 int err;
717
718 lock_sock(sock->sk);
719 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
720 release_sock(sock->sk);
721 return err;
722}
723EXPORT_SYMBOL(inet_stream_connect);
724
725/*
726 * Accept a pending connection. The TCP layer now gives BSD semantics.
727 */
728
729int inet_accept(struct socket *sock, struct socket *newsock, int flags,
730 bool kern)
731{
732 struct sock *sk1 = sock->sk;
733 int err = -EINVAL;
734 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern);
735
736 if (!sk2)
737 goto do_err;
738
739 lock_sock(sk2);
740
741 sock_rps_record_flow(sk2);
742 WARN_ON(!((1 << sk2->sk_state) &
743 (TCPF_ESTABLISHED | TCPF_SYN_RECV |
744 TCPF_CLOSE_WAIT | TCPF_CLOSE)));
745
746 sock_graft(sk2, newsock);
747
748 newsock->state = SS_CONNECTED;
749 err = 0;
750 release_sock(sk2);
751do_err:
752 return err;
753}
754EXPORT_SYMBOL(inet_accept);
755
756
757/*
758 * This does both peername and sockname.
759 */
760int inet_getname(struct socket *sock, struct sockaddr *uaddr,
761 int peer)
762{
763 struct sock *sk = sock->sk;
764 struct inet_sock *inet = inet_sk(sk);
765 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
766
767 sin->sin_family = AF_INET;
768 if (peer) {
769 if (!inet->inet_dport ||
770 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
771 peer == 1))
772 return -ENOTCONN;
773 sin->sin_port = inet->inet_dport;
774 sin->sin_addr.s_addr = inet->inet_daddr;
775 } else {
776 __be32 addr = inet->inet_rcv_saddr;
777 if (!addr)
778 addr = inet->inet_saddr;
779 sin->sin_port = inet->inet_sport;
780 sin->sin_addr.s_addr = addr;
781 }
782 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
783 return sizeof(*sin);
784}
785EXPORT_SYMBOL(inet_getname);
786
787int inet_send_prepare(struct sock *sk)
788{
789 sock_rps_record_flow(sk);
790
791 /* We may need to bind the socket. */
792 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind &&
793 inet_autobind(sk))
794 return -EAGAIN;
795
796 return 0;
797}
798EXPORT_SYMBOL_GPL(inet_send_prepare);
799
800int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
801{
802 struct sock *sk = sock->sk;
803
804 if (unlikely(inet_send_prepare(sk)))
805 return -EAGAIN;
806
807 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
808 sk, msg, size);
809}
810EXPORT_SYMBOL(inet_sendmsg);
811
812ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
813 size_t size, int flags)
814{
815 struct sock *sk = sock->sk;
816
817 if (unlikely(inet_send_prepare(sk)))
818 return -EAGAIN;
819
820 if (sk->sk_prot->sendpage)
821 return sk->sk_prot->sendpage(sk, page, offset, size, flags);
822 return sock_no_sendpage(sock, page, offset, size, flags);
823}
824EXPORT_SYMBOL(inet_sendpage);
825
826INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
827 size_t, int, int, int *));
828int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
829 int flags)
830{
831 struct sock *sk = sock->sk;
832 int addr_len = 0;
833 int err;
834
835 if (likely(!(flags & MSG_ERRQUEUE)))
836 sock_rps_record_flow(sk);
837
838 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
839 sk, msg, size, flags & MSG_DONTWAIT,
840 flags & ~MSG_DONTWAIT, &addr_len);
841 if (err >= 0)
842 msg->msg_namelen = addr_len;
843 return err;
844}
845EXPORT_SYMBOL(inet_recvmsg);
846
847int inet_shutdown(struct socket *sock, int how)
848{
849 struct sock *sk = sock->sk;
850 int err = 0;
851
852 /* This should really check to make sure
853 * the socket is a TCP socket. (WHY AC...)
854 */
855 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
856 1->2 bit 2 snds.
857 2->3 */
858 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
859 return -EINVAL;
860
861 lock_sock(sk);
862 if (sock->state == SS_CONNECTING) {
863 if ((1 << sk->sk_state) &
864 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
865 sock->state = SS_DISCONNECTING;
866 else
867 sock->state = SS_CONNECTED;
868 }
869
870 switch (sk->sk_state) {
871 case TCP_CLOSE:
872 err = -ENOTCONN;
873 /* Hack to wake up other listeners, who can poll for
874 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
875 /* fall through */
876 default:
877 sk->sk_shutdown |= how;
878 if (sk->sk_prot->shutdown)
879 sk->sk_prot->shutdown(sk, how);
880 break;
881
882 /* Remaining two branches are temporary solution for missing
883 * close() in multithreaded environment. It is _not_ a good idea,
884 * but we have no choice until close() is repaired at VFS level.
885 */
886 case TCP_LISTEN:
887 if (!(how & RCV_SHUTDOWN))
888 break;
889 /* fall through */
890 case TCP_SYN_SENT:
891 err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
892 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
893 break;
894 }
895
896 /* Wake up anyone sleeping in poll. */
897 sk->sk_state_change(sk);
898 release_sock(sk);
899 return err;
900}
901EXPORT_SYMBOL(inet_shutdown);
902
903/*
904 * ioctl() calls you can issue on an INET socket. Most of these are
905 * device configuration and stuff and very rarely used. Some ioctls
906 * pass on to the socket itself.
907 *
908 * NOTE: I like the idea of a module for the config stuff. ie ifconfig
909 * loads the devconfigure module does its configuring and unloads it.
910 * There's a good 20K of config code hanging around the kernel.
911 */
912
913int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
914{
915 struct sock *sk = sock->sk;
916 int err = 0;
917 struct net *net = sock_net(sk);
918 void __user *p = (void __user *)arg;
919 struct ifreq ifr;
920 struct rtentry rt;
921
922 switch (cmd) {
923 case SIOCADDRT:
924 case SIOCDELRT:
925 if (copy_from_user(&rt, p, sizeof(struct rtentry)))
926 return -EFAULT;
927 err = ip_rt_ioctl(net, cmd, &rt);
928 break;
929 case SIOCRTMSG:
930 err = -EINVAL;
931 break;
932 case SIOCDARP:
933 case SIOCGARP:
934 case SIOCSARP:
935 err = arp_ioctl(net, cmd, (void __user *)arg);
936 break;
937 case SIOCGIFADDR:
938 case SIOCGIFBRDADDR:
939 case SIOCGIFNETMASK:
940 case SIOCGIFDSTADDR:
941 case SIOCGIFPFLAGS:
942 if (copy_from_user(&ifr, p, sizeof(struct ifreq)))
943 return -EFAULT;
944 err = devinet_ioctl(net, cmd, &ifr);
945 if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq)))
946 err = -EFAULT;
947 break;
948
949 case SIOCSIFADDR:
950 case SIOCSIFBRDADDR:
951 case SIOCSIFNETMASK:
952 case SIOCSIFDSTADDR:
953 case SIOCSIFPFLAGS:
954 case SIOCSIFFLAGS:
955 if (copy_from_user(&ifr, p, sizeof(struct ifreq)))
956 return -EFAULT;
957 err = devinet_ioctl(net, cmd, &ifr);
958 break;
959 default:
960 if (sk->sk_prot->ioctl)
961 err = sk->sk_prot->ioctl(sk, cmd, arg);
962 else
963 err = -ENOIOCTLCMD;
964 break;
965 }
966 return err;
967}
968EXPORT_SYMBOL(inet_ioctl);
969
970#ifdef CONFIG_COMPAT
971static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
972{
973 struct sock *sk = sock->sk;
974 int err = -ENOIOCTLCMD;
975
976 if (sk->sk_prot->compat_ioctl)
977 err = sk->sk_prot->compat_ioctl(sk, cmd, arg);
978
979 return err;
980}
981#endif
982
983const struct proto_ops inet_stream_ops = {
984 .family = PF_INET,
985 .owner = THIS_MODULE,
986 .release = inet_release,
987 .bind = inet_bind,
988 .connect = inet_stream_connect,
989 .socketpair = sock_no_socketpair,
990 .accept = inet_accept,
991 .getname = inet_getname,
992 .poll = tcp_poll,
993 .ioctl = inet_ioctl,
994 .gettstamp = sock_gettstamp,
995 .listen = inet_listen,
996 .shutdown = inet_shutdown,
997 .setsockopt = sock_common_setsockopt,
998 .getsockopt = sock_common_getsockopt,
999 .sendmsg = inet_sendmsg,
1000 .recvmsg = inet_recvmsg,
1001#ifdef CONFIG_MMU
1002 .mmap = tcp_mmap,
1003#endif
1004 .sendpage = inet_sendpage,
1005 .splice_read = tcp_splice_read,
1006 .read_sock = tcp_read_sock,
1007 .sendmsg_locked = tcp_sendmsg_locked,
1008 .sendpage_locked = tcp_sendpage_locked,
1009 .peek_len = tcp_peek_len,
1010#ifdef CONFIG_COMPAT
1011 .compat_setsockopt = compat_sock_common_setsockopt,
1012 .compat_getsockopt = compat_sock_common_getsockopt,
1013 .compat_ioctl = inet_compat_ioctl,
1014#endif
1015 .set_rcvlowat = tcp_set_rcvlowat,
1016};
1017EXPORT_SYMBOL(inet_stream_ops);
1018
1019const struct proto_ops inet_dgram_ops = {
1020 .family = PF_INET,
1021 .owner = THIS_MODULE,
1022 .release = inet_release,
1023 .bind = inet_bind,
1024 .connect = inet_dgram_connect,
1025 .socketpair = sock_no_socketpair,
1026 .accept = sock_no_accept,
1027 .getname = inet_getname,
1028 .poll = udp_poll,
1029 .ioctl = inet_ioctl,
1030 .gettstamp = sock_gettstamp,
1031 .listen = sock_no_listen,
1032 .shutdown = inet_shutdown,
1033 .setsockopt = sock_common_setsockopt,
1034 .getsockopt = sock_common_getsockopt,
1035 .sendmsg = inet_sendmsg,
1036 .recvmsg = inet_recvmsg,
1037 .mmap = sock_no_mmap,
1038 .sendpage = inet_sendpage,
1039 .set_peek_off = sk_set_peek_off,
1040#ifdef CONFIG_COMPAT
1041 .compat_setsockopt = compat_sock_common_setsockopt,
1042 .compat_getsockopt = compat_sock_common_getsockopt,
1043 .compat_ioctl = inet_compat_ioctl,
1044#endif
1045};
1046EXPORT_SYMBOL(inet_dgram_ops);
1047
1048/*
1049 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
1050 * udp_poll
1051 */
1052static const struct proto_ops inet_sockraw_ops = {
1053 .family = PF_INET,
1054 .owner = THIS_MODULE,
1055 .release = inet_release,
1056 .bind = inet_bind,
1057 .connect = inet_dgram_connect,
1058 .socketpair = sock_no_socketpair,
1059 .accept = sock_no_accept,
1060 .getname = inet_getname,
1061 .poll = datagram_poll,
1062 .ioctl = inet_ioctl,
1063 .gettstamp = sock_gettstamp,
1064 .listen = sock_no_listen,
1065 .shutdown = inet_shutdown,
1066 .setsockopt = sock_common_setsockopt,
1067 .getsockopt = sock_common_getsockopt,
1068 .sendmsg = inet_sendmsg,
1069 .recvmsg = inet_recvmsg,
1070 .mmap = sock_no_mmap,
1071 .sendpage = inet_sendpage,
1072#ifdef CONFIG_COMPAT
1073 .compat_setsockopt = compat_sock_common_setsockopt,
1074 .compat_getsockopt = compat_sock_common_getsockopt,
1075 .compat_ioctl = inet_compat_ioctl,
1076#endif
1077};
1078
1079static const struct net_proto_family inet_family_ops = {
1080 .family = PF_INET,
1081 .create = inet_create,
1082 .owner = THIS_MODULE,
1083};
1084
1085/* Upon startup we insert all the elements in inetsw_array[] into
1086 * the linked list inetsw.
1087 */
1088static struct inet_protosw inetsw_array[] =
1089{
1090 {
1091 .type = SOCK_STREAM,
1092 .protocol = IPPROTO_TCP,
1093 .prot = &tcp_prot,
1094 .ops = &inet_stream_ops,
1095 .flags = INET_PROTOSW_PERMANENT |
1096 INET_PROTOSW_ICSK,
1097 },
1098
1099 {
1100 .type = SOCK_DGRAM,
1101 .protocol = IPPROTO_UDP,
1102 .prot = &udp_prot,
1103 .ops = &inet_dgram_ops,
1104 .flags = INET_PROTOSW_PERMANENT,
1105 },
1106
1107 {
1108 .type = SOCK_DGRAM,
1109 .protocol = IPPROTO_ICMP,
1110 .prot = &ping_prot,
1111 .ops = &inet_sockraw_ops,
1112 .flags = INET_PROTOSW_REUSE,
1113 },
1114
1115 {
1116 .type = SOCK_RAW,
1117 .protocol = IPPROTO_IP, /* wild card */
1118 .prot = &raw_prot,
1119 .ops = &inet_sockraw_ops,
1120 .flags = INET_PROTOSW_REUSE,
1121 }
1122};
1123
1124#define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
1125
1126void inet_register_protosw(struct inet_protosw *p)
1127{
1128 struct list_head *lh;
1129 struct inet_protosw *answer;
1130 int protocol = p->protocol;
1131 struct list_head *last_perm;
1132
1133 spin_lock_bh(&inetsw_lock);
1134
1135 if (p->type >= SOCK_MAX)
1136 goto out_illegal;
1137
1138 /* If we are trying to override a permanent protocol, bail. */
1139 last_perm = &inetsw[p->type];
1140 list_for_each(lh, &inetsw[p->type]) {
1141 answer = list_entry(lh, struct inet_protosw, list);
1142 /* Check only the non-wild match. */
1143 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
1144 break;
1145 if (protocol == answer->protocol)
1146 goto out_permanent;
1147 last_perm = lh;
1148 }
1149
1150 /* Add the new entry after the last permanent entry if any, so that
1151 * the new entry does not override a permanent entry when matched with
1152 * a wild-card protocol. But it is allowed to override any existing
1153 * non-permanent entry. This means that when we remove this entry, the
1154 * system automatically returns to the old behavior.
1155 */
1156 list_add_rcu(&p->list, last_perm);
1157out:
1158 spin_unlock_bh(&inetsw_lock);
1159
1160 return;
1161
1162out_permanent:
1163 pr_err("Attempt to override permanent protocol %d\n", protocol);
1164 goto out;
1165
1166out_illegal:
1167 pr_err("Ignoring attempt to register invalid socket type %d\n",
1168 p->type);
1169 goto out;
1170}
1171EXPORT_SYMBOL(inet_register_protosw);
1172
1173void inet_unregister_protosw(struct inet_protosw *p)
1174{
1175 if (INET_PROTOSW_PERMANENT & p->flags) {
1176 pr_err("Attempt to unregister permanent protocol %d\n",
1177 p->protocol);
1178 } else {
1179 spin_lock_bh(&inetsw_lock);
1180 list_del_rcu(&p->list);
1181 spin_unlock_bh(&inetsw_lock);
1182
1183 synchronize_net();
1184 }
1185}
1186EXPORT_SYMBOL(inet_unregister_protosw);
1187
1188static int inet_sk_reselect_saddr(struct sock *sk)
1189{
1190 struct inet_sock *inet = inet_sk(sk);
1191 __be32 old_saddr = inet->inet_saddr;
1192 __be32 daddr = inet->inet_daddr;
1193 struct flowi4 *fl4;
1194 struct rtable *rt;
1195 __be32 new_saddr;
1196 struct ip_options_rcu *inet_opt;
1197
1198 inet_opt = rcu_dereference_protected(inet->inet_opt,
1199 lockdep_sock_is_held(sk));
1200 if (inet_opt && inet_opt->opt.srr)
1201 daddr = inet_opt->opt.faddr;
1202
1203 /* Query new route. */
1204 fl4 = &inet->cork.fl.u.ip4;
1205 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk),
1206 sk->sk_bound_dev_if, sk->sk_protocol,
1207 inet->inet_sport, inet->inet_dport, sk);
1208 if (IS_ERR(rt))
1209 return PTR_ERR(rt);
1210
1211 sk_setup_caps(sk, &rt->dst);
1212
1213 new_saddr = fl4->saddr;
1214
1215 if (new_saddr == old_saddr)
1216 return 0;
1217
1218 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) {
1219 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
1220 __func__, &old_saddr, &new_saddr);
1221 }
1222
1223 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr;
1224
1225 /*
1226 * XXX The only one ugly spot where we need to
1227 * XXX really change the sockets identity after
1228 * XXX it has entered the hashes. -DaveM
1229 *
1230 * Besides that, it does not check for connection
1231 * uniqueness. Wait for troubles.
1232 */
1233 return __sk_prot_rehash(sk);
1234}
1235
1236int inet_sk_rebuild_header(struct sock *sk)
1237{
1238 struct inet_sock *inet = inet_sk(sk);
1239 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
1240 __be32 daddr;
1241 struct ip_options_rcu *inet_opt;
1242 struct flowi4 *fl4;
1243 int err;
1244
1245 /* Route is OK, nothing to do. */
1246 if (rt)
1247 return 0;
1248
1249 /* Reroute. */
1250 rcu_read_lock();
1251 inet_opt = rcu_dereference(inet->inet_opt);
1252 daddr = inet->inet_daddr;
1253 if (inet_opt && inet_opt->opt.srr)
1254 daddr = inet_opt->opt.faddr;
1255 rcu_read_unlock();
1256 fl4 = &inet->cork.fl.u.ip4;
1257 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
1258 inet->inet_dport, inet->inet_sport,
1259 sk->sk_protocol, RT_CONN_FLAGS(sk),
1260 sk->sk_bound_dev_if);
1261 if (!IS_ERR(rt)) {
1262 err = 0;
1263 sk_setup_caps(sk, &rt->dst);
1264 } else {
1265 err = PTR_ERR(rt);
1266
1267 /* Routing failed... */
1268 sk->sk_route_caps = 0;
1269 /*
1270 * Other protocols have to map its equivalent state to TCP_SYN_SENT.
1271 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
1272 */
1273 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr ||
1274 sk->sk_state != TCP_SYN_SENT ||
1275 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
1276 (err = inet_sk_reselect_saddr(sk)) != 0)
1277 sk->sk_err_soft = -err;
1278 }
1279
1280 return err;
1281}
1282EXPORT_SYMBOL(inet_sk_rebuild_header);
1283
1284void inet_sk_set_state(struct sock *sk, int state)
1285{
1286 trace_inet_sock_set_state(sk, sk->sk_state, state);
1287 sk->sk_state = state;
1288}
1289EXPORT_SYMBOL(inet_sk_set_state);
1290
1291void inet_sk_state_store(struct sock *sk, int newstate)
1292{
1293 trace_inet_sock_set_state(sk, sk->sk_state, newstate);
1294 smp_store_release(&sk->sk_state, newstate);
1295}
1296
1297struct sk_buff *inet_gso_segment(struct sk_buff *skb,
1298 netdev_features_t features)
1299{
1300 bool udpfrag = false, fixedid = false, gso_partial, encap;
1301 struct sk_buff *segs = ERR_PTR(-EINVAL);
1302 const struct net_offload *ops;
1303 unsigned int offset = 0;
1304 struct iphdr *iph;
1305 int proto, tot_len;
1306 int nhoff;
1307 int ihl;
1308 int id;
1309
1310 skb_reset_network_header(skb);
1311 nhoff = skb_network_header(skb) - skb_mac_header(skb);
1312 if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
1313 goto out;
1314
1315 iph = ip_hdr(skb);
1316 ihl = iph->ihl * 4;
1317 if (ihl < sizeof(*iph))
1318 goto out;
1319
1320 id = ntohs(iph->id);
1321 proto = iph->protocol;
1322
1323 /* Warning: after this point, iph might be no longer valid */
1324 if (unlikely(!pskb_may_pull(skb, ihl)))
1325 goto out;
1326 __skb_pull(skb, ihl);
1327
1328 encap = SKB_GSO_CB(skb)->encap_level > 0;
1329 if (encap)
1330 features &= skb->dev->hw_enc_features;
1331 SKB_GSO_CB(skb)->encap_level += ihl;
1332
1333 skb_reset_transport_header(skb);
1334
1335 segs = ERR_PTR(-EPROTONOSUPPORT);
1336
1337 if (!skb->encapsulation || encap) {
1338 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
1339 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
1340
1341 /* fixed ID is invalid if DF bit is not set */
1342 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
1343 goto out;
1344 }
1345
1346 ops = rcu_dereference(inet_offloads[proto]);
1347 if (likely(ops && ops->callbacks.gso_segment))
1348 segs = ops->callbacks.gso_segment(skb, features);
1349
1350 if (IS_ERR_OR_NULL(segs))
1351 goto out;
1352
1353 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
1354
1355 skb = segs;
1356 do {
1357 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
1358 if (udpfrag) {
1359 iph->frag_off = htons(offset >> 3);
1360 if (skb->next)
1361 iph->frag_off |= htons(IP_MF);
1362 offset += skb->len - nhoff - ihl;
1363 tot_len = skb->len - nhoff;
1364 } else if (skb_is_gso(skb)) {
1365 if (!fixedid) {
1366 iph->id = htons(id);
1367 id += skb_shinfo(skb)->gso_segs;
1368 }
1369
1370 if (gso_partial)
1371 tot_len = skb_shinfo(skb)->gso_size +
1372 SKB_GSO_CB(skb)->data_offset +
1373 skb->head - (unsigned char *)iph;
1374 else
1375 tot_len = skb->len - nhoff;
1376 } else {
1377 if (!fixedid)
1378 iph->id = htons(id++);
1379 tot_len = skb->len - nhoff;
1380 }
1381 iph->tot_len = htons(tot_len);
1382 ip_send_check(iph);
1383 if (encap)
1384 skb_reset_inner_headers(skb);
1385 skb->network_header = (u8 *)iph - skb->head;
1386 skb_reset_mac_len(skb);
1387 } while ((skb = skb->next));
1388
1389out:
1390 return segs;
1391}
1392EXPORT_SYMBOL(inet_gso_segment);
1393
1394static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
1395 netdev_features_t features)
1396{
1397 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
1398 return ERR_PTR(-EINVAL);
1399
1400 return inet_gso_segment(skb, features);
1401}
1402
1403INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *,
1404 struct sk_buff *));
1405INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *,
1406 struct sk_buff *));
1407struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
1408{
1409 const struct net_offload *ops;
1410 struct sk_buff *pp = NULL;
1411 const struct iphdr *iph;
1412 struct sk_buff *p;
1413 unsigned int hlen;
1414 unsigned int off;
1415 unsigned int id;
1416 int flush = 1;
1417 int proto;
1418
1419 off = skb_gro_offset(skb);
1420 hlen = off + sizeof(*iph);
1421 iph = skb_gro_header_fast(skb, off);
1422 if (skb_gro_header_hard(skb, hlen)) {
1423 iph = skb_gro_header_slow(skb, hlen, off);
1424 if (unlikely(!iph))
1425 goto out;
1426 }
1427
1428 proto = iph->protocol;
1429
1430 rcu_read_lock();
1431 ops = rcu_dereference(inet_offloads[proto]);
1432 if (!ops || !ops->callbacks.gro_receive)
1433 goto out_unlock;
1434
1435 if (*(u8 *)iph != 0x45)
1436 goto out_unlock;
1437
1438 if (ip_is_fragment(iph))
1439 goto out_unlock;
1440
1441 if (unlikely(ip_fast_csum((u8 *)iph, 5)))
1442 goto out_unlock;
1443
1444 id = ntohl(*(__be32 *)&iph->id);
1445 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
1446 id >>= 16;
1447
1448 list_for_each_entry(p, head, list) {
1449 struct iphdr *iph2;
1450 u16 flush_id;
1451
1452 if (!NAPI_GRO_CB(p)->same_flow)
1453 continue;
1454
1455 iph2 = (struct iphdr *)(p->data + off);
1456 /* The above works because, with the exception of the top
1457 * (inner most) layer, we only aggregate pkts with the same
1458 * hdr length so all the hdrs we'll need to verify will start
1459 * at the same offset.
1460 */
1461 if ((iph->protocol ^ iph2->protocol) |
1462 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
1463 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
1464 NAPI_GRO_CB(p)->same_flow = 0;
1465 continue;
1466 }
1467
1468 /* All fields must match except length and checksum. */
1469 NAPI_GRO_CB(p)->flush |=
1470 (iph->ttl ^ iph2->ttl) |
1471 (iph->tos ^ iph2->tos) |
1472 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
1473
1474 NAPI_GRO_CB(p)->flush |= flush;
1475
1476 /* We need to store of the IP ID check to be included later
1477 * when we can verify that this packet does in fact belong
1478 * to a given flow.
1479 */
1480 flush_id = (u16)(id - ntohs(iph2->id));
1481
1482 /* This bit of code makes it much easier for us to identify
1483 * the cases where we are doing atomic vs non-atomic IP ID
1484 * checks. Specifically an atomic check can return IP ID
1485 * values 0 - 0xFFFF, while a non-atomic check can only
1486 * return 0 or 0xFFFF.
1487 */
1488 if (!NAPI_GRO_CB(p)->is_atomic ||
1489 !(iph->frag_off & htons(IP_DF))) {
1490 flush_id ^= NAPI_GRO_CB(p)->count;
1491 flush_id = flush_id ? 0xFFFF : 0;
1492 }
1493
1494 /* If the previous IP ID value was based on an atomic
1495 * datagram we can overwrite the value and ignore it.
1496 */
1497 if (NAPI_GRO_CB(skb)->is_atomic)
1498 NAPI_GRO_CB(p)->flush_id = flush_id;
1499 else
1500 NAPI_GRO_CB(p)->flush_id |= flush_id;
1501 }
1502
1503 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
1504 NAPI_GRO_CB(skb)->flush |= flush;
1505 skb_set_network_header(skb, off);
1506 /* The above will be needed by the transport layer if there is one
1507 * immediately following this IP hdr.
1508 */
1509
1510 /* Note : No need to call skb_gro_postpull_rcsum() here,
1511 * as we already checked checksum over ipv4 header was 0
1512 */
1513 skb_gro_pull(skb, sizeof(*iph));
1514 skb_set_transport_header(skb, skb_gro_offset(skb));
1515
1516 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
1517 ops->callbacks.gro_receive, head, skb);
1518
1519out_unlock:
1520 rcu_read_unlock();
1521
1522out:
1523 skb_gro_flush_final(skb, pp, flush);
1524
1525 return pp;
1526}
1527EXPORT_SYMBOL(inet_gro_receive);
1528
1529static struct sk_buff *ipip_gro_receive(struct list_head *head,
1530 struct sk_buff *skb)
1531{
1532 if (NAPI_GRO_CB(skb)->encap_mark) {
1533 NAPI_GRO_CB(skb)->flush = 1;
1534 return NULL;
1535 }
1536
1537 NAPI_GRO_CB(skb)->encap_mark = 1;
1538
1539 return inet_gro_receive(head, skb);
1540}
1541
1542#define SECONDS_PER_DAY 86400
1543
1544/* inet_current_timestamp - Return IP network timestamp
1545 *
1546 * Return milliseconds since midnight in network byte order.
1547 */
1548__be32 inet_current_timestamp(void)
1549{
1550 u32 secs;
1551 u32 msecs;
1552 struct timespec64 ts;
1553
1554 ktime_get_real_ts64(&ts);
1555
1556 /* Get secs since midnight. */
1557 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
1558 /* Convert to msecs. */
1559 msecs = secs * MSEC_PER_SEC;
1560 /* Convert nsec to msec. */
1561 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
1562
1563 /* Convert to network byte order. */
1564 return htonl(msecs);
1565}
1566EXPORT_SYMBOL(inet_current_timestamp);
1567
1568int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
1569{
1570 if (sk->sk_family == AF_INET)
1571 return ip_recv_error(sk, msg, len, addr_len);
1572#if IS_ENABLED(CONFIG_IPV6)
1573 if (sk->sk_family == AF_INET6)
1574 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
1575#endif
1576 return -EINVAL;
1577}
1578
1579INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *, int));
1580INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int));
1581int inet_gro_complete(struct sk_buff *skb, int nhoff)
1582{
1583 __be16 newlen = htons(skb->len - nhoff);
1584 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
1585 const struct net_offload *ops;
1586 int proto = iph->protocol;
1587 int err = -ENOSYS;
1588
1589 if (skb->encapsulation) {
1590 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
1591 skb_set_inner_network_header(skb, nhoff);
1592 }
1593
1594 csum_replace2(&iph->check, iph->tot_len, newlen);
1595 iph->tot_len = newlen;
1596
1597 rcu_read_lock();
1598 ops = rcu_dereference(inet_offloads[proto]);
1599 if (WARN_ON(!ops || !ops->callbacks.gro_complete))
1600 goto out_unlock;
1601
1602 /* Only need to add sizeof(*iph) to get to the next hdr below
1603 * because any hdr with option will have been flushed in
1604 * inet_gro_receive().
1605 */
1606 err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
1607 tcp4_gro_complete, udp4_gro_complete,
1608 skb, nhoff + sizeof(*iph));
1609
1610out_unlock:
1611 rcu_read_unlock();
1612
1613 return err;
1614}
1615EXPORT_SYMBOL(inet_gro_complete);
1616
1617static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
1618{
1619 skb->encapsulation = 1;
1620 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
1621 return inet_gro_complete(skb, nhoff);
1622}
1623
1624int inet_ctl_sock_create(struct sock **sk, unsigned short family,
1625 unsigned short type, unsigned char protocol,
1626 struct net *net)
1627{
1628 struct socket *sock;
1629 int rc = sock_create_kern(net, family, type, protocol, &sock);
1630
1631 if (rc == 0) {
1632 *sk = sock->sk;
1633 (*sk)->sk_allocation = GFP_ATOMIC;
1634 /*
1635 * Unhash it so that IP input processing does not even see it,
1636 * we do not wish this socket to see incoming packets.
1637 */
1638 (*sk)->sk_prot->unhash(*sk);
1639 }
1640 return rc;
1641}
1642EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
1643
1644u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt)
1645{
1646 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt);
1647}
1648EXPORT_SYMBOL_GPL(snmp_get_cpu_field);
1649
1650unsigned long snmp_fold_field(void __percpu *mib, int offt)
1651{
1652 unsigned long res = 0;
1653 int i;
1654
1655 for_each_possible_cpu(i)
1656 res += snmp_get_cpu_field(mib, i, offt);
1657 return res;
1658}
1659EXPORT_SYMBOL_GPL(snmp_fold_field);
1660
1661#if BITS_PER_LONG==32
1662
1663u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
1664 size_t syncp_offset)
1665{
1666 void *bhptr;
1667 struct u64_stats_sync *syncp;
1668 u64 v;
1669 unsigned int start;
1670
1671 bhptr = per_cpu_ptr(mib, cpu);
1672 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
1673 do {
1674 start = u64_stats_fetch_begin_irq(syncp);
1675 v = *(((u64 *)bhptr) + offt);
1676 } while (u64_stats_fetch_retry_irq(syncp, start));
1677
1678 return v;
1679}
1680EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
1681
1682u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
1683{
1684 u64 res = 0;
1685 int cpu;
1686
1687 for_each_possible_cpu(cpu) {
1688 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
1689 }
1690 return res;
1691}
1692EXPORT_SYMBOL_GPL(snmp_fold_field64);
1693#endif
1694
1695#ifdef CONFIG_IP_MULTICAST
1696static const struct net_protocol igmp_protocol = {
1697 .handler = igmp_rcv,
1698 .netns_ok = 1,
1699};
1700#endif
1701
1702/* thinking of making this const? Don't.
1703 * early_demux can change based on sysctl.
1704 */
1705static struct net_protocol tcp_protocol = {
1706 .early_demux = tcp_v4_early_demux,
1707 .early_demux_handler = tcp_v4_early_demux,
1708 .handler = tcp_v4_rcv,
1709 .err_handler = tcp_v4_err,
1710 .no_policy = 1,
1711 .netns_ok = 1,
1712 .icmp_strict_tag_validation = 1,
1713};
1714
1715/* thinking of making this const? Don't.
1716 * early_demux can change based on sysctl.
1717 */
1718static struct net_protocol udp_protocol = {
1719 .early_demux = udp_v4_early_demux,
1720 .early_demux_handler = udp_v4_early_demux,
1721 .handler = udp_rcv,
1722 .err_handler = udp_err,
1723 .no_policy = 1,
1724 .netns_ok = 1,
1725};
1726
1727static const struct net_protocol icmp_protocol = {
1728 .handler = icmp_rcv,
1729 .err_handler = icmp_err,
1730 .no_policy = 1,
1731 .netns_ok = 1,
1732};
1733
1734static __net_init int ipv4_mib_init_net(struct net *net)
1735{
1736 int i;
1737
1738 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
1739 if (!net->mib.tcp_statistics)
1740 goto err_tcp_mib;
1741 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
1742 if (!net->mib.ip_statistics)
1743 goto err_ip_mib;
1744
1745 for_each_possible_cpu(i) {
1746 struct ipstats_mib *af_inet_stats;
1747 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
1748 u64_stats_init(&af_inet_stats->syncp);
1749 }
1750
1751 net->mib.net_statistics = alloc_percpu(struct linux_mib);
1752 if (!net->mib.net_statistics)
1753 goto err_net_mib;
1754 net->mib.udp_statistics = alloc_percpu(struct udp_mib);
1755 if (!net->mib.udp_statistics)
1756 goto err_udp_mib;
1757 net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
1758 if (!net->mib.udplite_statistics)
1759 goto err_udplite_mib;
1760 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
1761 if (!net->mib.icmp_statistics)
1762 goto err_icmp_mib;
1763 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
1764 GFP_KERNEL);
1765 if (!net->mib.icmpmsg_statistics)
1766 goto err_icmpmsg_mib;
1767
1768 tcp_mib_init(net);
1769 return 0;
1770
1771err_icmpmsg_mib:
1772 free_percpu(net->mib.icmp_statistics);
1773err_icmp_mib:
1774 free_percpu(net->mib.udplite_statistics);
1775err_udplite_mib:
1776 free_percpu(net->mib.udp_statistics);
1777err_udp_mib:
1778 free_percpu(net->mib.net_statistics);
1779err_net_mib:
1780 free_percpu(net->mib.ip_statistics);
1781err_ip_mib:
1782 free_percpu(net->mib.tcp_statistics);
1783err_tcp_mib:
1784 return -ENOMEM;
1785}
1786
1787static __net_exit void ipv4_mib_exit_net(struct net *net)
1788{
1789 kfree(net->mib.icmpmsg_statistics);
1790 free_percpu(net->mib.icmp_statistics);
1791 free_percpu(net->mib.udplite_statistics);
1792 free_percpu(net->mib.udp_statistics);
1793 free_percpu(net->mib.net_statistics);
1794 free_percpu(net->mib.ip_statistics);
1795 free_percpu(net->mib.tcp_statistics);
1796}
1797
1798static __net_initdata struct pernet_operations ipv4_mib_ops = {
1799 .init = ipv4_mib_init_net,
1800 .exit = ipv4_mib_exit_net,
1801};
1802
1803static int __init init_ipv4_mibs(void)
1804{
1805 return register_pernet_subsys(&ipv4_mib_ops);
1806}
1807
1808static __net_init int inet_init_net(struct net *net)
1809{
1810 /*
1811 * Set defaults for local port range
1812 */
1813 seqlock_init(&net->ipv4.ip_local_ports.lock);
1814 net->ipv4.ip_local_ports.range[0] = 32768;
1815 net->ipv4.ip_local_ports.range[1] = 60999;
1816
1817 seqlock_init(&net->ipv4.ping_group_range.lock);
1818 /*
1819 * Sane defaults - nobody may create ping sockets.
1820 * Boot scripts should set this to distro-specific group.
1821 */
1822 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
1823 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
1824
1825 /* Default values for sysctl-controlled parameters.
1826 * We set them here, in case sysctl is not compiled.
1827 */
1828 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
1829 net->ipv4.sysctl_ip_fwd_update_priority = 1;
1830 net->ipv4.sysctl_ip_dynaddr = 0;
1831 net->ipv4.sysctl_ip_early_demux = 1;
1832 net->ipv4.sysctl_udp_early_demux = 1;
1833 net->ipv4.sysctl_tcp_early_demux = 1;
1834#ifdef CONFIG_SYSCTL
1835 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
1836#endif
1837
1838 /* Some igmp sysctl, whose values are always used */
1839 net->ipv4.sysctl_igmp_max_memberships = 20;
1840 net->ipv4.sysctl_igmp_max_msf = 10;
1841 /* IGMP reports for link-local multicast groups are enabled by default */
1842 net->ipv4.sysctl_igmp_llm_reports = 1;
1843 net->ipv4.sysctl_igmp_qrv = 2;
1844
1845 return 0;
1846}
1847
1848static __net_initdata struct pernet_operations af_inet_ops = {
1849 .init = inet_init_net,
1850};
1851
1852static int __init init_inet_pernet_ops(void)
1853{
1854 return register_pernet_subsys(&af_inet_ops);
1855}
1856
1857static int ipv4_proc_init(void);
1858
1859/*
1860 * IP protocol layer initialiser
1861 */
1862
1863static struct packet_offload ip_packet_offload __read_mostly = {
1864 .type = cpu_to_be16(ETH_P_IP),
1865 .callbacks = {
1866 .gso_segment = inet_gso_segment,
1867 .gro_receive = inet_gro_receive,
1868 .gro_complete = inet_gro_complete,
1869 },
1870};
1871
1872static const struct net_offload ipip_offload = {
1873 .callbacks = {
1874 .gso_segment = ipip_gso_segment,
1875 .gro_receive = ipip_gro_receive,
1876 .gro_complete = ipip_gro_complete,
1877 },
1878};
1879
1880static int __init ipip_offload_init(void)
1881{
1882 return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
1883}
1884
1885static int __init ipv4_offload_init(void)
1886{
1887 /*
1888 * Add offloads
1889 */
1890 if (udpv4_offload_init() < 0)
1891 pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
1892 if (tcpv4_offload_init() < 0)
1893 pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
1894 if (ipip_offload_init() < 0)
1895 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
1896
1897 dev_add_offload(&ip_packet_offload);
1898 return 0;
1899}
1900
1901fs_initcall(ipv4_offload_init);
1902
1903static struct packet_type ip_packet_type __read_mostly = {
1904 .type = cpu_to_be16(ETH_P_IP),
1905 .func = ip_rcv,
1906 .list_func = ip_list_rcv,
1907};
1908
1909static int __init inet_init(void)
1910{
1911 struct inet_protosw *q;
1912 struct list_head *r;
1913 int rc = -EINVAL;
1914
1915 sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
1916
1917 rc = proto_register(&tcp_prot, 1);
1918 if (rc)
1919 goto out;
1920
1921 rc = proto_register(&udp_prot, 1);
1922 if (rc)
1923 goto out_unregister_tcp_proto;
1924
1925 rc = proto_register(&raw_prot, 1);
1926 if (rc)
1927 goto out_unregister_udp_proto;
1928
1929 rc = proto_register(&ping_prot, 1);
1930 if (rc)
1931 goto out_unregister_raw_proto;
1932
1933 /*
1934 * Tell SOCKET that we are alive...
1935 */
1936
1937 (void)sock_register(&inet_family_ops);
1938
1939#ifdef CONFIG_SYSCTL
1940 ip_static_sysctl_init();
1941#endif
1942
1943 /*
1944 * Add all the base protocols.
1945 */
1946
1947 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
1948 pr_crit("%s: Cannot add ICMP protocol\n", __func__);
1949 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
1950 pr_crit("%s: Cannot add UDP protocol\n", __func__);
1951 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
1952 pr_crit("%s: Cannot add TCP protocol\n", __func__);
1953#ifdef CONFIG_IP_MULTICAST
1954 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
1955 pr_crit("%s: Cannot add IGMP protocol\n", __func__);
1956#endif
1957
1958 /* Register the socket-side information for inet_create. */
1959 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
1960 INIT_LIST_HEAD(r);
1961
1962 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
1963 inet_register_protosw(q);
1964
1965 /*
1966 * Set the ARP module up
1967 */
1968
1969 arp_init();
1970
1971 /*
1972 * Set the IP module up
1973 */
1974
1975 ip_init();
1976
1977 /* Setup TCP slab cache for open requests. */
1978 tcp_init();
1979
1980 /* Setup UDP memory threshold */
1981 udp_init();
1982
1983 /* Add UDP-Lite (RFC 3828) */
1984 udplite4_register();
1985
1986 raw_init();
1987
1988 ping_init();
1989
1990 /*
1991 * Set the ICMP layer up
1992 */
1993
1994 if (icmp_init() < 0)
1995 panic("Failed to create the ICMP control socket.\n");
1996
1997 /*
1998 * Initialise the multicast router
1999 */
2000#if defined(CONFIG_IP_MROUTE)
2001 if (ip_mr_init())
2002 pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
2003#endif
2004
2005 if (init_inet_pernet_ops())
2006 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
2007 /*
2008 * Initialise per-cpu ipv4 mibs
2009 */
2010
2011 if (init_ipv4_mibs())
2012 pr_crit("%s: Cannot init ipv4 mibs\n", __func__);
2013
2014 ipv4_proc_init();
2015
2016 ipfrag_init();
2017
2018 dev_add_pack(&ip_packet_type);
2019
2020 ip_tunnel_core_init();
2021
2022 rc = 0;
2023out:
2024 return rc;
2025out_unregister_raw_proto:
2026 proto_unregister(&raw_prot);
2027out_unregister_udp_proto:
2028 proto_unregister(&udp_prot);
2029out_unregister_tcp_proto:
2030 proto_unregister(&tcp_prot);
2031 goto out;
2032}
2033
2034fs_initcall(inet_init);
2035
2036/* ------------------------------------------------------------------------ */
2037
2038#ifdef CONFIG_PROC_FS
2039static int __init ipv4_proc_init(void)
2040{
2041 int rc = 0;
2042
2043 if (raw_proc_init())
2044 goto out_raw;
2045 if (tcp4_proc_init())
2046 goto out_tcp;
2047 if (udp4_proc_init())
2048 goto out_udp;
2049 if (ping_proc_init())
2050 goto out_ping;
2051 if (ip_misc_proc_init())
2052 goto out_misc;
2053out:
2054 return rc;
2055out_misc:
2056 ping_proc_exit();
2057out_ping:
2058 udp4_proc_exit();
2059out_udp:
2060 tcp4_proc_exit();
2061out_tcp:
2062 raw_proc_exit();
2063out_raw:
2064 rc = -ENOMEM;
2065 goto out;
2066}
2067
2068#else /* CONFIG_PROC_FS */
2069static int __init ipv4_proc_init(void)
2070{
2071 return 0;
2072}
2073#endif /* CONFIG_PROC_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PF_INET protocol family socket handler.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Florian La Roche, <flla@stud.uni-sb.de>
12 * Alan Cox, <A.Cox@swansea.ac.uk>
13 *
14 * Changes (see also sock.c)
15 *
16 * piggy,
17 * Karl Knutson : Socket protocol table
18 * A.N.Kuznetsov : Socket death error in accept().
19 * John Richardson : Fix non blocking error in connect()
20 * so sockets that fail to connect
21 * don't return -EINPROGRESS.
22 * Alan Cox : Asynchronous I/O support
23 * Alan Cox : Keep correct socket pointer on sock
24 * structures
25 * when accept() ed
26 * Alan Cox : Semantics of SO_LINGER aren't state
27 * moved to close when you look carefully.
28 * With this fixed and the accept bug fixed
29 * some RPC stuff seems happier.
30 * Niibe Yutaka : 4.4BSD style write async I/O
31 * Alan Cox,
32 * Tony Gale : Fixed reuse semantics.
33 * Alan Cox : bind() shouldn't abort existing but dead
34 * sockets. Stops FTP netin:.. I hope.
35 * Alan Cox : bind() works correctly for RAW sockets.
36 * Note that FreeBSD at least was broken
37 * in this respect so be careful with
38 * compatibility tests...
39 * Alan Cox : routing cache support
40 * Alan Cox : memzero the socket structure for
41 * compactness.
42 * Matt Day : nonblock connect error handler
43 * Alan Cox : Allow large numbers of pending sockets
44 * (eg for big web sites), but only if
45 * specifically application requested.
46 * Alan Cox : New buffering throughout IP. Used
47 * dumbly.
48 * Alan Cox : New buffering now used smartly.
49 * Alan Cox : BSD rather than common sense
50 * interpretation of listen.
51 * Germano Caronni : Assorted small races.
52 * Alan Cox : sendmsg/recvmsg basic support.
53 * Alan Cox : Only sendmsg/recvmsg now supported.
54 * Alan Cox : Locked down bind (see security list).
55 * Alan Cox : Loosened bind a little.
56 * Mike McLagan : ADD/DEL DLCI Ioctls
57 * Willy Konynenberg : Transparent proxying support.
58 * David S. Miller : New socket lookup architecture.
59 * Some other random speedups.
60 * Cyrus Durgin : Cleaned up file for kmod hacks.
61 * Andi Kleen : Fix inet_stream_connect TCP race.
62 */
63
64#define pr_fmt(fmt) "IPv4: " fmt
65
66#include <linux/err.h>
67#include <linux/errno.h>
68#include <linux/types.h>
69#include <linux/socket.h>
70#include <linux/in.h>
71#include <linux/kernel.h>
72#include <linux/kmod.h>
73#include <linux/sched.h>
74#include <linux/timer.h>
75#include <linux/string.h>
76#include <linux/sockios.h>
77#include <linux/net.h>
78#include <linux/capability.h>
79#include <linux/fcntl.h>
80#include <linux/mm.h>
81#include <linux/interrupt.h>
82#include <linux/stat.h>
83#include <linux/init.h>
84#include <linux/poll.h>
85#include <linux/netfilter_ipv4.h>
86#include <linux/random.h>
87#include <linux/slab.h>
88
89#include <linux/uaccess.h>
90
91#include <linux/inet.h>
92#include <linux/igmp.h>
93#include <linux/inetdevice.h>
94#include <linux/netdevice.h>
95#include <net/checksum.h>
96#include <net/ip.h>
97#include <net/protocol.h>
98#include <net/arp.h>
99#include <net/route.h>
100#include <net/ip_fib.h>
101#include <net/inet_connection_sock.h>
102#include <net/gro.h>
103#include <net/gso.h>
104#include <net/tcp.h>
105#include <net/udp.h>
106#include <net/udplite.h>
107#include <net/ping.h>
108#include <linux/skbuff.h>
109#include <net/sock.h>
110#include <net/raw.h>
111#include <net/icmp.h>
112#include <net/inet_common.h>
113#include <net/ip_tunnels.h>
114#include <net/xfrm.h>
115#include <net/net_namespace.h>
116#include <net/secure_seq.h>
117#ifdef CONFIG_IP_MROUTE
118#include <linux/mroute.h>
119#endif
120#include <net/l3mdev.h>
121#include <net/compat.h>
122
123#include <trace/events/sock.h>
124
125/* The inetsw table contains everything that inet_create needs to
126 * build a new socket.
127 */
128static struct list_head inetsw[SOCK_MAX];
129static DEFINE_SPINLOCK(inetsw_lock);
130
131/* New destruction routine */
132
133void inet_sock_destruct(struct sock *sk)
134{
135 struct inet_sock *inet = inet_sk(sk);
136
137 __skb_queue_purge(&sk->sk_receive_queue);
138 __skb_queue_purge(&sk->sk_error_queue);
139
140 sk_mem_reclaim_final(sk);
141
142 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
143 pr_err("Attempt to release TCP socket in state %d %p\n",
144 sk->sk_state, sk);
145 return;
146 }
147 if (!sock_flag(sk, SOCK_DEAD)) {
148 pr_err("Attempt to release alive inet socket %p\n", sk);
149 return;
150 }
151
152 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc));
153 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc));
154 WARN_ON_ONCE(sk->sk_wmem_queued);
155 WARN_ON_ONCE(sk_forward_alloc_get(sk));
156
157 kfree(rcu_dereference_protected(inet->inet_opt, 1));
158 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
159 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1));
160}
161EXPORT_SYMBOL(inet_sock_destruct);
162
163/*
164 * The routines beyond this point handle the behaviour of an AF_INET
165 * socket object. Mostly it punts to the subprotocols of IP to do
166 * the work.
167 */
168
169/*
170 * Automatically bind an unbound socket.
171 */
172
173static int inet_autobind(struct sock *sk)
174{
175 struct inet_sock *inet;
176 /* We may need to bind the socket. */
177 lock_sock(sk);
178 inet = inet_sk(sk);
179 if (!inet->inet_num) {
180 if (sk->sk_prot->get_port(sk, 0)) {
181 release_sock(sk);
182 return -EAGAIN;
183 }
184 inet->inet_sport = htons(inet->inet_num);
185 }
186 release_sock(sk);
187 return 0;
188}
189
190int __inet_listen_sk(struct sock *sk, int backlog)
191{
192 unsigned char old_state = sk->sk_state;
193 int err, tcp_fastopen;
194
195 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
196 return -EINVAL;
197
198 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
199 /* Really, if the socket is already in listen state
200 * we can only allow the backlog to be adjusted.
201 */
202 if (old_state != TCP_LISTEN) {
203 /* Enable TFO w/o requiring TCP_FASTOPEN socket option.
204 * Note that only TCP sockets (SOCK_STREAM) will reach here.
205 * Also fastopen backlog may already been set via the option
206 * because the socket was in TCP_LISTEN state previously but
207 * was shutdown() rather than close().
208 */
209 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
210 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
211 (tcp_fastopen & TFO_SERVER_ENABLE) &&
212 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
213 fastopen_queue_tune(sk, backlog);
214 tcp_fastopen_init_key_once(sock_net(sk));
215 }
216
217 err = inet_csk_listen_start(sk);
218 if (err)
219 return err;
220
221 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
222 }
223 return 0;
224}
225
226/*
227 * Move a socket into listening state.
228 */
229int inet_listen(struct socket *sock, int backlog)
230{
231 struct sock *sk = sock->sk;
232 int err = -EINVAL;
233
234 lock_sock(sk);
235
236 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
237 goto out;
238
239 err = __inet_listen_sk(sk, backlog);
240
241out:
242 release_sock(sk);
243 return err;
244}
245EXPORT_SYMBOL(inet_listen);
246
247/*
248 * Create an inet socket.
249 */
250
251static int inet_create(struct net *net, struct socket *sock, int protocol,
252 int kern)
253{
254 struct sock *sk;
255 struct inet_protosw *answer;
256 struct inet_sock *inet;
257 struct proto *answer_prot;
258 unsigned char answer_flags;
259 int try_loading_module = 0;
260 int err;
261
262 if (protocol < 0 || protocol >= IPPROTO_MAX)
263 return -EINVAL;
264
265 sock->state = SS_UNCONNECTED;
266
267 /* Look for the requested type/protocol pair. */
268lookup_protocol:
269 err = -ESOCKTNOSUPPORT;
270 rcu_read_lock();
271 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
272
273 err = 0;
274 /* Check the non-wild match. */
275 if (protocol == answer->protocol) {
276 if (protocol != IPPROTO_IP)
277 break;
278 } else {
279 /* Check for the two wild cases. */
280 if (IPPROTO_IP == protocol) {
281 protocol = answer->protocol;
282 break;
283 }
284 if (IPPROTO_IP == answer->protocol)
285 break;
286 }
287 err = -EPROTONOSUPPORT;
288 }
289
290 if (unlikely(err)) {
291 if (try_loading_module < 2) {
292 rcu_read_unlock();
293 /*
294 * Be more specific, e.g. net-pf-2-proto-132-type-1
295 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
296 */
297 if (++try_loading_module == 1)
298 request_module("net-pf-%d-proto-%d-type-%d",
299 PF_INET, protocol, sock->type);
300 /*
301 * Fall back to generic, e.g. net-pf-2-proto-132
302 * (net-pf-PF_INET-proto-IPPROTO_SCTP)
303 */
304 else
305 request_module("net-pf-%d-proto-%d",
306 PF_INET, protocol);
307 goto lookup_protocol;
308 } else
309 goto out_rcu_unlock;
310 }
311
312 err = -EPERM;
313 if (sock->type == SOCK_RAW && !kern &&
314 !ns_capable(net->user_ns, CAP_NET_RAW))
315 goto out_rcu_unlock;
316
317 sock->ops = answer->ops;
318 answer_prot = answer->prot;
319 answer_flags = answer->flags;
320 rcu_read_unlock();
321
322 WARN_ON(!answer_prot->slab);
323
324 err = -ENOMEM;
325 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
326 if (!sk)
327 goto out;
328
329 err = 0;
330 if (INET_PROTOSW_REUSE & answer_flags)
331 sk->sk_reuse = SK_CAN_REUSE;
332
333 if (INET_PROTOSW_ICSK & answer_flags)
334 inet_init_csk_locks(sk);
335
336 inet = inet_sk(sk);
337 inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags);
338
339 inet_clear_bit(NODEFRAG, sk);
340
341 if (SOCK_RAW == sock->type) {
342 inet->inet_num = protocol;
343 if (IPPROTO_RAW == protocol)
344 inet_set_bit(HDRINCL, sk);
345 }
346
347 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc))
348 inet->pmtudisc = IP_PMTUDISC_DONT;
349 else
350 inet->pmtudisc = IP_PMTUDISC_WANT;
351
352 atomic_set(&inet->inet_id, 0);
353
354 sock_init_data(sock, sk);
355
356 sk->sk_destruct = inet_sock_destruct;
357 sk->sk_protocol = protocol;
358 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
359 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash);
360
361 inet->uc_ttl = -1;
362 inet_set_bit(MC_LOOP, sk);
363 inet->mc_ttl = 1;
364 inet_set_bit(MC_ALL, sk);
365 inet->mc_index = 0;
366 inet->mc_list = NULL;
367 inet->rcv_tos = 0;
368
369 if (inet->inet_num) {
370 /* It assumes that any protocol which allows
371 * the user to assign a number at socket
372 * creation time automatically
373 * shares.
374 */
375 inet->inet_sport = htons(inet->inet_num);
376 /* Add to protocol hash chains. */
377 err = sk->sk_prot->hash(sk);
378 if (err) {
379 sk_common_release(sk);
380 goto out;
381 }
382 }
383
384 if (sk->sk_prot->init) {
385 err = sk->sk_prot->init(sk);
386 if (err) {
387 sk_common_release(sk);
388 goto out;
389 }
390 }
391
392 if (!kern) {
393 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
394 if (err) {
395 sk_common_release(sk);
396 goto out;
397 }
398 }
399out:
400 return err;
401out_rcu_unlock:
402 rcu_read_unlock();
403 goto out;
404}
405
406
407/*
408 * The peer socket should always be NULL (or else). When we call this
409 * function we are destroying the object and from then on nobody
410 * should refer to it.
411 */
412int inet_release(struct socket *sock)
413{
414 struct sock *sk = sock->sk;
415
416 if (sk) {
417 long timeout;
418
419 if (!sk->sk_kern_sock)
420 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk);
421
422 /* Applications forget to leave groups before exiting */
423 ip_mc_drop_socket(sk);
424
425 /* If linger is set, we don't return until the close
426 * is complete. Otherwise we return immediately. The
427 * actually closing is done the same either way.
428 *
429 * If the close is due to the process exiting, we never
430 * linger..
431 */
432 timeout = 0;
433 if (sock_flag(sk, SOCK_LINGER) &&
434 !(current->flags & PF_EXITING))
435 timeout = sk->sk_lingertime;
436 sk->sk_prot->close(sk, timeout);
437 sock->sk = NULL;
438 }
439 return 0;
440}
441EXPORT_SYMBOL(inet_release);
442
443int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len)
444{
445 u32 flags = BIND_WITH_LOCK;
446 int err;
447
448 /* If the socket has its own bind function then use it. (RAW) */
449 if (sk->sk_prot->bind) {
450 return sk->sk_prot->bind(sk, uaddr, addr_len);
451 }
452 if (addr_len < sizeof(struct sockaddr_in))
453 return -EINVAL;
454
455 /* BPF prog is run before any checks are done so that if the prog
456 * changes context in a wrong way it will be caught.
457 */
458 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, &addr_len,
459 CGROUP_INET4_BIND, &flags);
460 if (err)
461 return err;
462
463 return __inet_bind(sk, uaddr, addr_len, flags);
464}
465
466int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
467{
468 return inet_bind_sk(sock->sk, uaddr, addr_len);
469}
470EXPORT_SYMBOL(inet_bind);
471
472int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
473 u32 flags)
474{
475 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
476 struct inet_sock *inet = inet_sk(sk);
477 struct net *net = sock_net(sk);
478 unsigned short snum;
479 int chk_addr_ret;
480 u32 tb_id = RT_TABLE_LOCAL;
481 int err;
482
483 if (addr->sin_family != AF_INET) {
484 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
485 * only if s_addr is INADDR_ANY.
486 */
487 err = -EAFNOSUPPORT;
488 if (addr->sin_family != AF_UNSPEC ||
489 addr->sin_addr.s_addr != htonl(INADDR_ANY))
490 goto out;
491 }
492
493 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
494 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
495
496 /* Not specified by any standard per-se, however it breaks too
497 * many applications when removed. It is unfortunate since
498 * allowing applications to make a non-local bind solves
499 * several problems with systems using dynamic addressing.
500 * (ie. your servers still start up even if your ISDN link
501 * is temporarily down)
502 */
503 err = -EADDRNOTAVAIL;
504 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr,
505 chk_addr_ret))
506 goto out;
507
508 snum = ntohs(addr->sin_port);
509 err = -EACCES;
510 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) &&
511 snum && inet_port_requires_bind_service(net, snum) &&
512 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
513 goto out;
514
515 /* We keep a pair of addresses. rcv_saddr is the one
516 * used by hash lookups, and saddr is used for transmit.
517 *
518 * In the BSD API these are the same except where it
519 * would be illegal to use them (multicast/broadcast) in
520 * which case the sending device address is used.
521 */
522 if (flags & BIND_WITH_LOCK)
523 lock_sock(sk);
524
525 /* Check these errors (active socket, double bind). */
526 err = -EINVAL;
527 if (sk->sk_state != TCP_CLOSE || inet->inet_num)
528 goto out_release_sock;
529
530 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
531 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
532 inet->inet_saddr = 0; /* Use device */
533
534 /* Make sure we are allowed to bind here. */
535 if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) ||
536 (flags & BIND_FORCE_ADDRESS_NO_PORT))) {
537 err = sk->sk_prot->get_port(sk, snum);
538 if (err) {
539 inet->inet_saddr = inet->inet_rcv_saddr = 0;
540 goto out_release_sock;
541 }
542 if (!(flags & BIND_FROM_BPF)) {
543 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
544 if (err) {
545 inet->inet_saddr = inet->inet_rcv_saddr = 0;
546 if (sk->sk_prot->put_port)
547 sk->sk_prot->put_port(sk);
548 goto out_release_sock;
549 }
550 }
551 }
552
553 if (inet->inet_rcv_saddr)
554 sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
555 if (snum)
556 sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
557 inet->inet_sport = htons(inet->inet_num);
558 inet->inet_daddr = 0;
559 inet->inet_dport = 0;
560 sk_dst_reset(sk);
561 err = 0;
562out_release_sock:
563 if (flags & BIND_WITH_LOCK)
564 release_sock(sk);
565out:
566 return err;
567}
568
569int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
570 int addr_len, int flags)
571{
572 struct sock *sk = sock->sk;
573 const struct proto *prot;
574 int err;
575
576 if (addr_len < sizeof(uaddr->sa_family))
577 return -EINVAL;
578
579 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
580 prot = READ_ONCE(sk->sk_prot);
581
582 if (uaddr->sa_family == AF_UNSPEC)
583 return prot->disconnect(sk, flags);
584
585 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
586 err = prot->pre_connect(sk, uaddr, addr_len);
587 if (err)
588 return err;
589 }
590
591 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk))
592 return -EAGAIN;
593 return prot->connect(sk, uaddr, addr_len);
594}
595EXPORT_SYMBOL(inet_dgram_connect);
596
597static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
598{
599 DEFINE_WAIT_FUNC(wait, woken_wake_function);
600
601 add_wait_queue(sk_sleep(sk), &wait);
602 sk->sk_write_pending += writebias;
603
604 /* Basic assumption: if someone sets sk->sk_err, he _must_
605 * change state of the socket from TCP_SYN_*.
606 * Connect() does not allow to get error notifications
607 * without closing the socket.
608 */
609 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
610 release_sock(sk);
611 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
612 lock_sock(sk);
613 if (signal_pending(current) || !timeo)
614 break;
615 }
616 remove_wait_queue(sk_sleep(sk), &wait);
617 sk->sk_write_pending -= writebias;
618 return timeo;
619}
620
621/*
622 * Connect to a remote host. There is regrettably still a little
623 * TCP 'magic' in here.
624 */
625int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
626 int addr_len, int flags, int is_sendmsg)
627{
628 struct sock *sk = sock->sk;
629 int err;
630 long timeo;
631
632 /*
633 * uaddr can be NULL and addr_len can be 0 if:
634 * sk is a TCP fastopen active socket and
635 * TCP_FASTOPEN_CONNECT sockopt is set and
636 * we already have a valid cookie for this socket.
637 * In this case, user can call write() after connect().
638 * write() will invoke tcp_sendmsg_fastopen() which calls
639 * __inet_stream_connect().
640 */
641 if (uaddr) {
642 if (addr_len < sizeof(uaddr->sa_family))
643 return -EINVAL;
644
645 if (uaddr->sa_family == AF_UNSPEC) {
646 sk->sk_disconnects++;
647 err = sk->sk_prot->disconnect(sk, flags);
648 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
649 goto out;
650 }
651 }
652
653 switch (sock->state) {
654 default:
655 err = -EINVAL;
656 goto out;
657 case SS_CONNECTED:
658 err = -EISCONN;
659 goto out;
660 case SS_CONNECTING:
661 if (inet_test_bit(DEFER_CONNECT, sk))
662 err = is_sendmsg ? -EINPROGRESS : -EISCONN;
663 else
664 err = -EALREADY;
665 /* Fall out of switch with err, set for this state */
666 break;
667 case SS_UNCONNECTED:
668 err = -EISCONN;
669 if (sk->sk_state != TCP_CLOSE)
670 goto out;
671
672 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
673 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
674 if (err)
675 goto out;
676 }
677
678 err = sk->sk_prot->connect(sk, uaddr, addr_len);
679 if (err < 0)
680 goto out;
681
682 sock->state = SS_CONNECTING;
683
684 if (!err && inet_test_bit(DEFER_CONNECT, sk))
685 goto out;
686
687 /* Just entered SS_CONNECTING state; the only
688 * difference is that return value in non-blocking
689 * case is EINPROGRESS, rather than EALREADY.
690 */
691 err = -EINPROGRESS;
692 break;
693 }
694
695 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
696
697 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
698 int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
699 tcp_sk(sk)->fastopen_req &&
700 tcp_sk(sk)->fastopen_req->data ? 1 : 0;
701 int dis = sk->sk_disconnects;
702
703 /* Error code is set above */
704 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
705 goto out;
706
707 err = sock_intr_errno(timeo);
708 if (signal_pending(current))
709 goto out;
710
711 if (dis != sk->sk_disconnects) {
712 err = -EPIPE;
713 goto out;
714 }
715 }
716
717 /* Connection was closed by RST, timeout, ICMP error
718 * or another process disconnected us.
719 */
720 if (sk->sk_state == TCP_CLOSE)
721 goto sock_error;
722
723 /* sk->sk_err may be not zero now, if RECVERR was ordered by user
724 * and error was received after socket entered established state.
725 * Hence, it is handled normally after connect() return successfully.
726 */
727
728 sock->state = SS_CONNECTED;
729 err = 0;
730out:
731 return err;
732
733sock_error:
734 err = sock_error(sk) ? : -ECONNABORTED;
735 sock->state = SS_UNCONNECTED;
736 sk->sk_disconnects++;
737 if (sk->sk_prot->disconnect(sk, flags))
738 sock->state = SS_DISCONNECTING;
739 goto out;
740}
741EXPORT_SYMBOL(__inet_stream_connect);
742
743int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
744 int addr_len, int flags)
745{
746 int err;
747
748 lock_sock(sock->sk);
749 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
750 release_sock(sock->sk);
751 return err;
752}
753EXPORT_SYMBOL(inet_stream_connect);
754
755void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk)
756{
757 sock_rps_record_flow(newsk);
758 WARN_ON(!((1 << newsk->sk_state) &
759 (TCPF_ESTABLISHED | TCPF_SYN_RECV |
760 TCPF_CLOSE_WAIT | TCPF_CLOSE)));
761
762 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags))
763 set_bit(SOCK_SUPPORT_ZC, &newsock->flags);
764 sock_graft(newsk, newsock);
765
766 newsock->state = SS_CONNECTED;
767}
768
769/*
770 * Accept a pending connection. The TCP layer now gives BSD semantics.
771 */
772
773int inet_accept(struct socket *sock, struct socket *newsock, int flags,
774 bool kern)
775{
776 struct sock *sk1 = sock->sk, *sk2;
777 int err = -EINVAL;
778
779 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
780 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern);
781 if (!sk2)
782 return err;
783
784 lock_sock(sk2);
785 __inet_accept(sock, newsock, sk2);
786 release_sock(sk2);
787 return 0;
788}
789EXPORT_SYMBOL(inet_accept);
790
791/*
792 * This does both peername and sockname.
793 */
794int inet_getname(struct socket *sock, struct sockaddr *uaddr,
795 int peer)
796{
797 struct sock *sk = sock->sk;
798 struct inet_sock *inet = inet_sk(sk);
799 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
800 int sin_addr_len = sizeof(*sin);
801
802 sin->sin_family = AF_INET;
803 lock_sock(sk);
804 if (peer) {
805 if (!inet->inet_dport ||
806 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
807 peer == 1)) {
808 release_sock(sk);
809 return -ENOTCONN;
810 }
811 sin->sin_port = inet->inet_dport;
812 sin->sin_addr.s_addr = inet->inet_daddr;
813 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len,
814 CGROUP_INET4_GETPEERNAME);
815 } else {
816 __be32 addr = inet->inet_rcv_saddr;
817 if (!addr)
818 addr = inet->inet_saddr;
819 sin->sin_port = inet->inet_sport;
820 sin->sin_addr.s_addr = addr;
821 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len,
822 CGROUP_INET4_GETSOCKNAME);
823 }
824 release_sock(sk);
825 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
826 return sin_addr_len;
827}
828EXPORT_SYMBOL(inet_getname);
829
830int inet_send_prepare(struct sock *sk)
831{
832 sock_rps_record_flow(sk);
833
834 /* We may need to bind the socket. */
835 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind &&
836 inet_autobind(sk))
837 return -EAGAIN;
838
839 return 0;
840}
841EXPORT_SYMBOL_GPL(inet_send_prepare);
842
843int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
844{
845 struct sock *sk = sock->sk;
846
847 if (unlikely(inet_send_prepare(sk)))
848 return -EAGAIN;
849
850 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
851 sk, msg, size);
852}
853EXPORT_SYMBOL(inet_sendmsg);
854
855void inet_splice_eof(struct socket *sock)
856{
857 const struct proto *prot;
858 struct sock *sk = sock->sk;
859
860 if (unlikely(inet_send_prepare(sk)))
861 return;
862
863 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
864 prot = READ_ONCE(sk->sk_prot);
865 if (prot->splice_eof)
866 prot->splice_eof(sock);
867}
868EXPORT_SYMBOL_GPL(inet_splice_eof);
869
870INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
871 size_t, int, int *));
872int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
873 int flags)
874{
875 struct sock *sk = sock->sk;
876 int addr_len = 0;
877 int err;
878
879 if (likely(!(flags & MSG_ERRQUEUE)))
880 sock_rps_record_flow(sk);
881
882 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
883 sk, msg, size, flags, &addr_len);
884 if (err >= 0)
885 msg->msg_namelen = addr_len;
886 return err;
887}
888EXPORT_SYMBOL(inet_recvmsg);
889
890int inet_shutdown(struct socket *sock, int how)
891{
892 struct sock *sk = sock->sk;
893 int err = 0;
894
895 /* This should really check to make sure
896 * the socket is a TCP socket. (WHY AC...)
897 */
898 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
899 1->2 bit 2 snds.
900 2->3 */
901 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
902 return -EINVAL;
903
904 lock_sock(sk);
905 if (sock->state == SS_CONNECTING) {
906 if ((1 << sk->sk_state) &
907 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
908 sock->state = SS_DISCONNECTING;
909 else
910 sock->state = SS_CONNECTED;
911 }
912
913 switch (sk->sk_state) {
914 case TCP_CLOSE:
915 err = -ENOTCONN;
916 /* Hack to wake up other listeners, who can poll for
917 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
918 fallthrough;
919 default:
920 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how);
921 if (sk->sk_prot->shutdown)
922 sk->sk_prot->shutdown(sk, how);
923 break;
924
925 /* Remaining two branches are temporary solution for missing
926 * close() in multithreaded environment. It is _not_ a good idea,
927 * but we have no choice until close() is repaired at VFS level.
928 */
929 case TCP_LISTEN:
930 if (!(how & RCV_SHUTDOWN))
931 break;
932 fallthrough;
933 case TCP_SYN_SENT:
934 err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
935 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
936 break;
937 }
938
939 /* Wake up anyone sleeping in poll. */
940 sk->sk_state_change(sk);
941 release_sock(sk);
942 return err;
943}
944EXPORT_SYMBOL(inet_shutdown);
945
946/*
947 * ioctl() calls you can issue on an INET socket. Most of these are
948 * device configuration and stuff and very rarely used. Some ioctls
949 * pass on to the socket itself.
950 *
951 * NOTE: I like the idea of a module for the config stuff. ie ifconfig
952 * loads the devconfigure module does its configuring and unloads it.
953 * There's a good 20K of config code hanging around the kernel.
954 */
955
956int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
957{
958 struct sock *sk = sock->sk;
959 int err = 0;
960 struct net *net = sock_net(sk);
961 void __user *p = (void __user *)arg;
962 struct ifreq ifr;
963 struct rtentry rt;
964
965 switch (cmd) {
966 case SIOCADDRT:
967 case SIOCDELRT:
968 if (copy_from_user(&rt, p, sizeof(struct rtentry)))
969 return -EFAULT;
970 err = ip_rt_ioctl(net, cmd, &rt);
971 break;
972 case SIOCRTMSG:
973 err = -EINVAL;
974 break;
975 case SIOCDARP:
976 case SIOCGARP:
977 case SIOCSARP:
978 err = arp_ioctl(net, cmd, (void __user *)arg);
979 break;
980 case SIOCGIFADDR:
981 case SIOCGIFBRDADDR:
982 case SIOCGIFNETMASK:
983 case SIOCGIFDSTADDR:
984 case SIOCGIFPFLAGS:
985 if (get_user_ifreq(&ifr, NULL, p))
986 return -EFAULT;
987 err = devinet_ioctl(net, cmd, &ifr);
988 if (!err && put_user_ifreq(&ifr, p))
989 err = -EFAULT;
990 break;
991
992 case SIOCSIFADDR:
993 case SIOCSIFBRDADDR:
994 case SIOCSIFNETMASK:
995 case SIOCSIFDSTADDR:
996 case SIOCSIFPFLAGS:
997 case SIOCSIFFLAGS:
998 if (get_user_ifreq(&ifr, NULL, p))
999 return -EFAULT;
1000 err = devinet_ioctl(net, cmd, &ifr);
1001 break;
1002 default:
1003 if (sk->sk_prot->ioctl)
1004 err = sk_ioctl(sk, cmd, (void __user *)arg);
1005 else
1006 err = -ENOIOCTLCMD;
1007 break;
1008 }
1009 return err;
1010}
1011EXPORT_SYMBOL(inet_ioctl);
1012
1013#ifdef CONFIG_COMPAT
1014static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd,
1015 struct compat_rtentry __user *ur)
1016{
1017 compat_uptr_t rtdev;
1018 struct rtentry rt;
1019
1020 if (copy_from_user(&rt.rt_dst, &ur->rt_dst,
1021 3 * sizeof(struct sockaddr)) ||
1022 get_user(rt.rt_flags, &ur->rt_flags) ||
1023 get_user(rt.rt_metric, &ur->rt_metric) ||
1024 get_user(rt.rt_mtu, &ur->rt_mtu) ||
1025 get_user(rt.rt_window, &ur->rt_window) ||
1026 get_user(rt.rt_irtt, &ur->rt_irtt) ||
1027 get_user(rtdev, &ur->rt_dev))
1028 return -EFAULT;
1029
1030 rt.rt_dev = compat_ptr(rtdev);
1031 return ip_rt_ioctl(sock_net(sk), cmd, &rt);
1032}
1033
1034static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1035{
1036 void __user *argp = compat_ptr(arg);
1037 struct sock *sk = sock->sk;
1038
1039 switch (cmd) {
1040 case SIOCADDRT:
1041 case SIOCDELRT:
1042 return inet_compat_routing_ioctl(sk, cmd, argp);
1043 default:
1044 if (!sk->sk_prot->compat_ioctl)
1045 return -ENOIOCTLCMD;
1046 return sk->sk_prot->compat_ioctl(sk, cmd, arg);
1047 }
1048}
1049#endif /* CONFIG_COMPAT */
1050
1051const struct proto_ops inet_stream_ops = {
1052 .family = PF_INET,
1053 .owner = THIS_MODULE,
1054 .release = inet_release,
1055 .bind = inet_bind,
1056 .connect = inet_stream_connect,
1057 .socketpair = sock_no_socketpair,
1058 .accept = inet_accept,
1059 .getname = inet_getname,
1060 .poll = tcp_poll,
1061 .ioctl = inet_ioctl,
1062 .gettstamp = sock_gettstamp,
1063 .listen = inet_listen,
1064 .shutdown = inet_shutdown,
1065 .setsockopt = sock_common_setsockopt,
1066 .getsockopt = sock_common_getsockopt,
1067 .sendmsg = inet_sendmsg,
1068 .recvmsg = inet_recvmsg,
1069#ifdef CONFIG_MMU
1070 .mmap = tcp_mmap,
1071#endif
1072 .splice_eof = inet_splice_eof,
1073 .splice_read = tcp_splice_read,
1074 .read_sock = tcp_read_sock,
1075 .read_skb = tcp_read_skb,
1076 .sendmsg_locked = tcp_sendmsg_locked,
1077 .peek_len = tcp_peek_len,
1078#ifdef CONFIG_COMPAT
1079 .compat_ioctl = inet_compat_ioctl,
1080#endif
1081 .set_rcvlowat = tcp_set_rcvlowat,
1082};
1083EXPORT_SYMBOL(inet_stream_ops);
1084
1085const struct proto_ops inet_dgram_ops = {
1086 .family = PF_INET,
1087 .owner = THIS_MODULE,
1088 .release = inet_release,
1089 .bind = inet_bind,
1090 .connect = inet_dgram_connect,
1091 .socketpair = sock_no_socketpair,
1092 .accept = sock_no_accept,
1093 .getname = inet_getname,
1094 .poll = udp_poll,
1095 .ioctl = inet_ioctl,
1096 .gettstamp = sock_gettstamp,
1097 .listen = sock_no_listen,
1098 .shutdown = inet_shutdown,
1099 .setsockopt = sock_common_setsockopt,
1100 .getsockopt = sock_common_getsockopt,
1101 .sendmsg = inet_sendmsg,
1102 .read_skb = udp_read_skb,
1103 .recvmsg = inet_recvmsg,
1104 .mmap = sock_no_mmap,
1105 .splice_eof = inet_splice_eof,
1106 .set_peek_off = sk_set_peek_off,
1107#ifdef CONFIG_COMPAT
1108 .compat_ioctl = inet_compat_ioctl,
1109#endif
1110};
1111EXPORT_SYMBOL(inet_dgram_ops);
1112
1113/*
1114 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
1115 * udp_poll
1116 */
1117static const struct proto_ops inet_sockraw_ops = {
1118 .family = PF_INET,
1119 .owner = THIS_MODULE,
1120 .release = inet_release,
1121 .bind = inet_bind,
1122 .connect = inet_dgram_connect,
1123 .socketpair = sock_no_socketpair,
1124 .accept = sock_no_accept,
1125 .getname = inet_getname,
1126 .poll = datagram_poll,
1127 .ioctl = inet_ioctl,
1128 .gettstamp = sock_gettstamp,
1129 .listen = sock_no_listen,
1130 .shutdown = inet_shutdown,
1131 .setsockopt = sock_common_setsockopt,
1132 .getsockopt = sock_common_getsockopt,
1133 .sendmsg = inet_sendmsg,
1134 .recvmsg = inet_recvmsg,
1135 .mmap = sock_no_mmap,
1136 .splice_eof = inet_splice_eof,
1137#ifdef CONFIG_COMPAT
1138 .compat_ioctl = inet_compat_ioctl,
1139#endif
1140};
1141
1142static const struct net_proto_family inet_family_ops = {
1143 .family = PF_INET,
1144 .create = inet_create,
1145 .owner = THIS_MODULE,
1146};
1147
1148/* Upon startup we insert all the elements in inetsw_array[] into
1149 * the linked list inetsw.
1150 */
1151static struct inet_protosw inetsw_array[] =
1152{
1153 {
1154 .type = SOCK_STREAM,
1155 .protocol = IPPROTO_TCP,
1156 .prot = &tcp_prot,
1157 .ops = &inet_stream_ops,
1158 .flags = INET_PROTOSW_PERMANENT |
1159 INET_PROTOSW_ICSK,
1160 },
1161
1162 {
1163 .type = SOCK_DGRAM,
1164 .protocol = IPPROTO_UDP,
1165 .prot = &udp_prot,
1166 .ops = &inet_dgram_ops,
1167 .flags = INET_PROTOSW_PERMANENT,
1168 },
1169
1170 {
1171 .type = SOCK_DGRAM,
1172 .protocol = IPPROTO_ICMP,
1173 .prot = &ping_prot,
1174 .ops = &inet_sockraw_ops,
1175 .flags = INET_PROTOSW_REUSE,
1176 },
1177
1178 {
1179 .type = SOCK_RAW,
1180 .protocol = IPPROTO_IP, /* wild card */
1181 .prot = &raw_prot,
1182 .ops = &inet_sockraw_ops,
1183 .flags = INET_PROTOSW_REUSE,
1184 }
1185};
1186
1187#define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
1188
1189void inet_register_protosw(struct inet_protosw *p)
1190{
1191 struct list_head *lh;
1192 struct inet_protosw *answer;
1193 int protocol = p->protocol;
1194 struct list_head *last_perm;
1195
1196 spin_lock_bh(&inetsw_lock);
1197
1198 if (p->type >= SOCK_MAX)
1199 goto out_illegal;
1200
1201 /* If we are trying to override a permanent protocol, bail. */
1202 last_perm = &inetsw[p->type];
1203 list_for_each(lh, &inetsw[p->type]) {
1204 answer = list_entry(lh, struct inet_protosw, list);
1205 /* Check only the non-wild match. */
1206 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
1207 break;
1208 if (protocol == answer->protocol)
1209 goto out_permanent;
1210 last_perm = lh;
1211 }
1212
1213 /* Add the new entry after the last permanent entry if any, so that
1214 * the new entry does not override a permanent entry when matched with
1215 * a wild-card protocol. But it is allowed to override any existing
1216 * non-permanent entry. This means that when we remove this entry, the
1217 * system automatically returns to the old behavior.
1218 */
1219 list_add_rcu(&p->list, last_perm);
1220out:
1221 spin_unlock_bh(&inetsw_lock);
1222
1223 return;
1224
1225out_permanent:
1226 pr_err("Attempt to override permanent protocol %d\n", protocol);
1227 goto out;
1228
1229out_illegal:
1230 pr_err("Ignoring attempt to register invalid socket type %d\n",
1231 p->type);
1232 goto out;
1233}
1234EXPORT_SYMBOL(inet_register_protosw);
1235
1236void inet_unregister_protosw(struct inet_protosw *p)
1237{
1238 if (INET_PROTOSW_PERMANENT & p->flags) {
1239 pr_err("Attempt to unregister permanent protocol %d\n",
1240 p->protocol);
1241 } else {
1242 spin_lock_bh(&inetsw_lock);
1243 list_del_rcu(&p->list);
1244 spin_unlock_bh(&inetsw_lock);
1245
1246 synchronize_net();
1247 }
1248}
1249EXPORT_SYMBOL(inet_unregister_protosw);
1250
1251static int inet_sk_reselect_saddr(struct sock *sk)
1252{
1253 struct inet_sock *inet = inet_sk(sk);
1254 __be32 old_saddr = inet->inet_saddr;
1255 __be32 daddr = inet->inet_daddr;
1256 struct flowi4 *fl4;
1257 struct rtable *rt;
1258 __be32 new_saddr;
1259 struct ip_options_rcu *inet_opt;
1260 int err;
1261
1262 inet_opt = rcu_dereference_protected(inet->inet_opt,
1263 lockdep_sock_is_held(sk));
1264 if (inet_opt && inet_opt->opt.srr)
1265 daddr = inet_opt->opt.faddr;
1266
1267 /* Query new route. */
1268 fl4 = &inet->cork.fl.u.ip4;
1269 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if,
1270 sk->sk_protocol, inet->inet_sport,
1271 inet->inet_dport, sk);
1272 if (IS_ERR(rt))
1273 return PTR_ERR(rt);
1274
1275 new_saddr = fl4->saddr;
1276
1277 if (new_saddr == old_saddr) {
1278 sk_setup_caps(sk, &rt->dst);
1279 return 0;
1280 }
1281
1282 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET);
1283 if (err) {
1284 ip_rt_put(rt);
1285 return err;
1286 }
1287
1288 sk_setup_caps(sk, &rt->dst);
1289
1290 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) {
1291 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
1292 __func__, &old_saddr, &new_saddr);
1293 }
1294
1295 /*
1296 * XXX The only one ugly spot where we need to
1297 * XXX really change the sockets identity after
1298 * XXX it has entered the hashes. -DaveM
1299 *
1300 * Besides that, it does not check for connection
1301 * uniqueness. Wait for troubles.
1302 */
1303 return __sk_prot_rehash(sk);
1304}
1305
1306int inet_sk_rebuild_header(struct sock *sk)
1307{
1308 struct inet_sock *inet = inet_sk(sk);
1309 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
1310 __be32 daddr;
1311 struct ip_options_rcu *inet_opt;
1312 struct flowi4 *fl4;
1313 int err;
1314
1315 /* Route is OK, nothing to do. */
1316 if (rt)
1317 return 0;
1318
1319 /* Reroute. */
1320 rcu_read_lock();
1321 inet_opt = rcu_dereference(inet->inet_opt);
1322 daddr = inet->inet_daddr;
1323 if (inet_opt && inet_opt->opt.srr)
1324 daddr = inet_opt->opt.faddr;
1325 rcu_read_unlock();
1326 fl4 = &inet->cork.fl.u.ip4;
1327 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
1328 inet->inet_dport, inet->inet_sport,
1329 sk->sk_protocol, RT_CONN_FLAGS(sk),
1330 sk->sk_bound_dev_if);
1331 if (!IS_ERR(rt)) {
1332 err = 0;
1333 sk_setup_caps(sk, &rt->dst);
1334 } else {
1335 err = PTR_ERR(rt);
1336
1337 /* Routing failed... */
1338 sk->sk_route_caps = 0;
1339 /*
1340 * Other protocols have to map its equivalent state to TCP_SYN_SENT.
1341 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
1342 */
1343 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) ||
1344 sk->sk_state != TCP_SYN_SENT ||
1345 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
1346 (err = inet_sk_reselect_saddr(sk)) != 0)
1347 WRITE_ONCE(sk->sk_err_soft, -err);
1348 }
1349
1350 return err;
1351}
1352EXPORT_SYMBOL(inet_sk_rebuild_header);
1353
1354void inet_sk_set_state(struct sock *sk, int state)
1355{
1356 trace_inet_sock_set_state(sk, sk->sk_state, state);
1357 sk->sk_state = state;
1358}
1359EXPORT_SYMBOL(inet_sk_set_state);
1360
1361void inet_sk_state_store(struct sock *sk, int newstate)
1362{
1363 trace_inet_sock_set_state(sk, sk->sk_state, newstate);
1364 smp_store_release(&sk->sk_state, newstate);
1365}
1366
1367struct sk_buff *inet_gso_segment(struct sk_buff *skb,
1368 netdev_features_t features)
1369{
1370 bool udpfrag = false, fixedid = false, gso_partial, encap;
1371 struct sk_buff *segs = ERR_PTR(-EINVAL);
1372 const struct net_offload *ops;
1373 unsigned int offset = 0;
1374 struct iphdr *iph;
1375 int proto, tot_len;
1376 int nhoff;
1377 int ihl;
1378 int id;
1379
1380 skb_reset_network_header(skb);
1381 nhoff = skb_network_header(skb) - skb_mac_header(skb);
1382 if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
1383 goto out;
1384
1385 iph = ip_hdr(skb);
1386 ihl = iph->ihl * 4;
1387 if (ihl < sizeof(*iph))
1388 goto out;
1389
1390 id = ntohs(iph->id);
1391 proto = iph->protocol;
1392
1393 /* Warning: after this point, iph might be no longer valid */
1394 if (unlikely(!pskb_may_pull(skb, ihl)))
1395 goto out;
1396 __skb_pull(skb, ihl);
1397
1398 encap = SKB_GSO_CB(skb)->encap_level > 0;
1399 if (encap)
1400 features &= skb->dev->hw_enc_features;
1401 SKB_GSO_CB(skb)->encap_level += ihl;
1402
1403 skb_reset_transport_header(skb);
1404
1405 segs = ERR_PTR(-EPROTONOSUPPORT);
1406
1407 if (!skb->encapsulation || encap) {
1408 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
1409 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
1410
1411 /* fixed ID is invalid if DF bit is not set */
1412 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
1413 goto out;
1414 }
1415
1416 ops = rcu_dereference(inet_offloads[proto]);
1417 if (likely(ops && ops->callbacks.gso_segment)) {
1418 segs = ops->callbacks.gso_segment(skb, features);
1419 if (!segs)
1420 skb->network_header = skb_mac_header(skb) + nhoff - skb->head;
1421 }
1422
1423 if (IS_ERR_OR_NULL(segs))
1424 goto out;
1425
1426 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
1427
1428 skb = segs;
1429 do {
1430 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
1431 if (udpfrag) {
1432 iph->frag_off = htons(offset >> 3);
1433 if (skb->next)
1434 iph->frag_off |= htons(IP_MF);
1435 offset += skb->len - nhoff - ihl;
1436 tot_len = skb->len - nhoff;
1437 } else if (skb_is_gso(skb)) {
1438 if (!fixedid) {
1439 iph->id = htons(id);
1440 id += skb_shinfo(skb)->gso_segs;
1441 }
1442
1443 if (gso_partial)
1444 tot_len = skb_shinfo(skb)->gso_size +
1445 SKB_GSO_CB(skb)->data_offset +
1446 skb->head - (unsigned char *)iph;
1447 else
1448 tot_len = skb->len - nhoff;
1449 } else {
1450 if (!fixedid)
1451 iph->id = htons(id++);
1452 tot_len = skb->len - nhoff;
1453 }
1454 iph->tot_len = htons(tot_len);
1455 ip_send_check(iph);
1456 if (encap)
1457 skb_reset_inner_headers(skb);
1458 skb->network_header = (u8 *)iph - skb->head;
1459 skb_reset_mac_len(skb);
1460 } while ((skb = skb->next));
1461
1462out:
1463 return segs;
1464}
1465
1466static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
1467 netdev_features_t features)
1468{
1469 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
1470 return ERR_PTR(-EINVAL);
1471
1472 return inet_gso_segment(skb, features);
1473}
1474
1475struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
1476{
1477 const struct net_offload *ops;
1478 struct sk_buff *pp = NULL;
1479 const struct iphdr *iph;
1480 struct sk_buff *p;
1481 unsigned int hlen;
1482 unsigned int off;
1483 unsigned int id;
1484 int flush = 1;
1485 int proto;
1486
1487 off = skb_gro_offset(skb);
1488 hlen = off + sizeof(*iph);
1489 iph = skb_gro_header(skb, hlen, off);
1490 if (unlikely(!iph))
1491 goto out;
1492
1493 proto = iph->protocol;
1494
1495 ops = rcu_dereference(inet_offloads[proto]);
1496 if (!ops || !ops->callbacks.gro_receive)
1497 goto out;
1498
1499 if (*(u8 *)iph != 0x45)
1500 goto out;
1501
1502 if (ip_is_fragment(iph))
1503 goto out;
1504
1505 if (unlikely(ip_fast_csum((u8 *)iph, 5)))
1506 goto out;
1507
1508 NAPI_GRO_CB(skb)->proto = proto;
1509 id = ntohl(*(__be32 *)&iph->id);
1510 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
1511 id >>= 16;
1512
1513 list_for_each_entry(p, head, list) {
1514 struct iphdr *iph2;
1515 u16 flush_id;
1516
1517 if (!NAPI_GRO_CB(p)->same_flow)
1518 continue;
1519
1520 iph2 = (struct iphdr *)(p->data + off);
1521 /* The above works because, with the exception of the top
1522 * (inner most) layer, we only aggregate pkts with the same
1523 * hdr length so all the hdrs we'll need to verify will start
1524 * at the same offset.
1525 */
1526 if ((iph->protocol ^ iph2->protocol) |
1527 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
1528 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
1529 NAPI_GRO_CB(p)->same_flow = 0;
1530 continue;
1531 }
1532
1533 /* All fields must match except length and checksum. */
1534 NAPI_GRO_CB(p)->flush |=
1535 (iph->ttl ^ iph2->ttl) |
1536 (iph->tos ^ iph2->tos) |
1537 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
1538
1539 NAPI_GRO_CB(p)->flush |= flush;
1540
1541 /* We need to store of the IP ID check to be included later
1542 * when we can verify that this packet does in fact belong
1543 * to a given flow.
1544 */
1545 flush_id = (u16)(id - ntohs(iph2->id));
1546
1547 /* This bit of code makes it much easier for us to identify
1548 * the cases where we are doing atomic vs non-atomic IP ID
1549 * checks. Specifically an atomic check can return IP ID
1550 * values 0 - 0xFFFF, while a non-atomic check can only
1551 * return 0 or 0xFFFF.
1552 */
1553 if (!NAPI_GRO_CB(p)->is_atomic ||
1554 !(iph->frag_off & htons(IP_DF))) {
1555 flush_id ^= NAPI_GRO_CB(p)->count;
1556 flush_id = flush_id ? 0xFFFF : 0;
1557 }
1558
1559 /* If the previous IP ID value was based on an atomic
1560 * datagram we can overwrite the value and ignore it.
1561 */
1562 if (NAPI_GRO_CB(skb)->is_atomic)
1563 NAPI_GRO_CB(p)->flush_id = flush_id;
1564 else
1565 NAPI_GRO_CB(p)->flush_id |= flush_id;
1566 }
1567
1568 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
1569 NAPI_GRO_CB(skb)->flush |= flush;
1570 skb_set_network_header(skb, off);
1571 /* The above will be needed by the transport layer if there is one
1572 * immediately following this IP hdr.
1573 */
1574
1575 /* Note : No need to call skb_gro_postpull_rcsum() here,
1576 * as we already checked checksum over ipv4 header was 0
1577 */
1578 skb_gro_pull(skb, sizeof(*iph));
1579 skb_set_transport_header(skb, skb_gro_offset(skb));
1580
1581 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
1582 ops->callbacks.gro_receive, head, skb);
1583
1584out:
1585 skb_gro_flush_final(skb, pp, flush);
1586
1587 return pp;
1588}
1589
1590static struct sk_buff *ipip_gro_receive(struct list_head *head,
1591 struct sk_buff *skb)
1592{
1593 if (NAPI_GRO_CB(skb)->encap_mark) {
1594 NAPI_GRO_CB(skb)->flush = 1;
1595 return NULL;
1596 }
1597
1598 NAPI_GRO_CB(skb)->encap_mark = 1;
1599
1600 return inet_gro_receive(head, skb);
1601}
1602
1603#define SECONDS_PER_DAY 86400
1604
1605/* inet_current_timestamp - Return IP network timestamp
1606 *
1607 * Return milliseconds since midnight in network byte order.
1608 */
1609__be32 inet_current_timestamp(void)
1610{
1611 u32 secs;
1612 u32 msecs;
1613 struct timespec64 ts;
1614
1615 ktime_get_real_ts64(&ts);
1616
1617 /* Get secs since midnight. */
1618 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
1619 /* Convert to msecs. */
1620 msecs = secs * MSEC_PER_SEC;
1621 /* Convert nsec to msec. */
1622 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
1623
1624 /* Convert to network byte order. */
1625 return htonl(msecs);
1626}
1627EXPORT_SYMBOL(inet_current_timestamp);
1628
1629int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
1630{
1631 unsigned int family = READ_ONCE(sk->sk_family);
1632
1633 if (family == AF_INET)
1634 return ip_recv_error(sk, msg, len, addr_len);
1635#if IS_ENABLED(CONFIG_IPV6)
1636 if (family == AF_INET6)
1637 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
1638#endif
1639 return -EINVAL;
1640}
1641EXPORT_SYMBOL(inet_recv_error);
1642
1643int inet_gro_complete(struct sk_buff *skb, int nhoff)
1644{
1645 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
1646 const struct net_offload *ops;
1647 __be16 totlen = iph->tot_len;
1648 int proto = iph->protocol;
1649 int err = -ENOSYS;
1650
1651 if (skb->encapsulation) {
1652 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
1653 skb_set_inner_network_header(skb, nhoff);
1654 }
1655
1656 iph_set_totlen(iph, skb->len - nhoff);
1657 csum_replace2(&iph->check, totlen, iph->tot_len);
1658
1659 ops = rcu_dereference(inet_offloads[proto]);
1660 if (WARN_ON(!ops || !ops->callbacks.gro_complete))
1661 goto out;
1662
1663 /* Only need to add sizeof(*iph) to get to the next hdr below
1664 * because any hdr with option will have been flushed in
1665 * inet_gro_receive().
1666 */
1667 err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
1668 tcp4_gro_complete, udp4_gro_complete,
1669 skb, nhoff + sizeof(*iph));
1670
1671out:
1672 return err;
1673}
1674
1675static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
1676{
1677 skb->encapsulation = 1;
1678 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
1679 return inet_gro_complete(skb, nhoff);
1680}
1681
1682int inet_ctl_sock_create(struct sock **sk, unsigned short family,
1683 unsigned short type, unsigned char protocol,
1684 struct net *net)
1685{
1686 struct socket *sock;
1687 int rc = sock_create_kern(net, family, type, protocol, &sock);
1688
1689 if (rc == 0) {
1690 *sk = sock->sk;
1691 (*sk)->sk_allocation = GFP_ATOMIC;
1692 (*sk)->sk_use_task_frag = false;
1693 /*
1694 * Unhash it so that IP input processing does not even see it,
1695 * we do not wish this socket to see incoming packets.
1696 */
1697 (*sk)->sk_prot->unhash(*sk);
1698 }
1699 return rc;
1700}
1701EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
1702
1703unsigned long snmp_fold_field(void __percpu *mib, int offt)
1704{
1705 unsigned long res = 0;
1706 int i;
1707
1708 for_each_possible_cpu(i)
1709 res += snmp_get_cpu_field(mib, i, offt);
1710 return res;
1711}
1712EXPORT_SYMBOL_GPL(snmp_fold_field);
1713
1714#if BITS_PER_LONG==32
1715
1716u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
1717 size_t syncp_offset)
1718{
1719 void *bhptr;
1720 struct u64_stats_sync *syncp;
1721 u64 v;
1722 unsigned int start;
1723
1724 bhptr = per_cpu_ptr(mib, cpu);
1725 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
1726 do {
1727 start = u64_stats_fetch_begin(syncp);
1728 v = *(((u64 *)bhptr) + offt);
1729 } while (u64_stats_fetch_retry(syncp, start));
1730
1731 return v;
1732}
1733EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
1734
1735u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
1736{
1737 u64 res = 0;
1738 int cpu;
1739
1740 for_each_possible_cpu(cpu) {
1741 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
1742 }
1743 return res;
1744}
1745EXPORT_SYMBOL_GPL(snmp_fold_field64);
1746#endif
1747
1748#ifdef CONFIG_IP_MULTICAST
1749static const struct net_protocol igmp_protocol = {
1750 .handler = igmp_rcv,
1751};
1752#endif
1753
1754static const struct net_protocol tcp_protocol = {
1755 .handler = tcp_v4_rcv,
1756 .err_handler = tcp_v4_err,
1757 .no_policy = 1,
1758 .icmp_strict_tag_validation = 1,
1759};
1760
1761static const struct net_protocol udp_protocol = {
1762 .handler = udp_rcv,
1763 .err_handler = udp_err,
1764 .no_policy = 1,
1765};
1766
1767static const struct net_protocol icmp_protocol = {
1768 .handler = icmp_rcv,
1769 .err_handler = icmp_err,
1770 .no_policy = 1,
1771};
1772
1773static __net_init int ipv4_mib_init_net(struct net *net)
1774{
1775 int i;
1776
1777 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
1778 if (!net->mib.tcp_statistics)
1779 goto err_tcp_mib;
1780 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
1781 if (!net->mib.ip_statistics)
1782 goto err_ip_mib;
1783
1784 for_each_possible_cpu(i) {
1785 struct ipstats_mib *af_inet_stats;
1786 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
1787 u64_stats_init(&af_inet_stats->syncp);
1788 }
1789
1790 net->mib.net_statistics = alloc_percpu(struct linux_mib);
1791 if (!net->mib.net_statistics)
1792 goto err_net_mib;
1793 net->mib.udp_statistics = alloc_percpu(struct udp_mib);
1794 if (!net->mib.udp_statistics)
1795 goto err_udp_mib;
1796 net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
1797 if (!net->mib.udplite_statistics)
1798 goto err_udplite_mib;
1799 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
1800 if (!net->mib.icmp_statistics)
1801 goto err_icmp_mib;
1802 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
1803 GFP_KERNEL);
1804 if (!net->mib.icmpmsg_statistics)
1805 goto err_icmpmsg_mib;
1806
1807 tcp_mib_init(net);
1808 return 0;
1809
1810err_icmpmsg_mib:
1811 free_percpu(net->mib.icmp_statistics);
1812err_icmp_mib:
1813 free_percpu(net->mib.udplite_statistics);
1814err_udplite_mib:
1815 free_percpu(net->mib.udp_statistics);
1816err_udp_mib:
1817 free_percpu(net->mib.net_statistics);
1818err_net_mib:
1819 free_percpu(net->mib.ip_statistics);
1820err_ip_mib:
1821 free_percpu(net->mib.tcp_statistics);
1822err_tcp_mib:
1823 return -ENOMEM;
1824}
1825
1826static __net_exit void ipv4_mib_exit_net(struct net *net)
1827{
1828 kfree(net->mib.icmpmsg_statistics);
1829 free_percpu(net->mib.icmp_statistics);
1830 free_percpu(net->mib.udplite_statistics);
1831 free_percpu(net->mib.udp_statistics);
1832 free_percpu(net->mib.net_statistics);
1833 free_percpu(net->mib.ip_statistics);
1834 free_percpu(net->mib.tcp_statistics);
1835#ifdef CONFIG_MPTCP
1836 /* allocated on demand, see mptcp_init_sock() */
1837 free_percpu(net->mib.mptcp_statistics);
1838#endif
1839}
1840
1841static __net_initdata struct pernet_operations ipv4_mib_ops = {
1842 .init = ipv4_mib_init_net,
1843 .exit = ipv4_mib_exit_net,
1844};
1845
1846static int __init init_ipv4_mibs(void)
1847{
1848 return register_pernet_subsys(&ipv4_mib_ops);
1849}
1850
1851static __net_init int inet_init_net(struct net *net)
1852{
1853 /*
1854 * Set defaults for local port range
1855 */
1856 net->ipv4.ip_local_ports.range = 60999u << 16 | 32768u;
1857
1858 seqlock_init(&net->ipv4.ping_group_range.lock);
1859 /*
1860 * Sane defaults - nobody may create ping sockets.
1861 * Boot scripts should set this to distro-specific group.
1862 */
1863 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
1864 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
1865
1866 /* Default values for sysctl-controlled parameters.
1867 * We set them here, in case sysctl is not compiled.
1868 */
1869 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
1870 net->ipv4.sysctl_ip_fwd_update_priority = 1;
1871 net->ipv4.sysctl_ip_dynaddr = 0;
1872 net->ipv4.sysctl_ip_early_demux = 1;
1873 net->ipv4.sysctl_udp_early_demux = 1;
1874 net->ipv4.sysctl_tcp_early_demux = 1;
1875 net->ipv4.sysctl_nexthop_compat_mode = 1;
1876#ifdef CONFIG_SYSCTL
1877 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
1878#endif
1879
1880 /* Some igmp sysctl, whose values are always used */
1881 net->ipv4.sysctl_igmp_max_memberships = 20;
1882 net->ipv4.sysctl_igmp_max_msf = 10;
1883 /* IGMP reports for link-local multicast groups are enabled by default */
1884 net->ipv4.sysctl_igmp_llm_reports = 1;
1885 net->ipv4.sysctl_igmp_qrv = 2;
1886
1887 net->ipv4.sysctl_fib_notify_on_flag_change = 0;
1888
1889 return 0;
1890}
1891
1892static __net_initdata struct pernet_operations af_inet_ops = {
1893 .init = inet_init_net,
1894};
1895
1896static int __init init_inet_pernet_ops(void)
1897{
1898 return register_pernet_subsys(&af_inet_ops);
1899}
1900
1901static int ipv4_proc_init(void);
1902
1903/*
1904 * IP protocol layer initialiser
1905 */
1906
1907static struct packet_offload ip_packet_offload __read_mostly = {
1908 .type = cpu_to_be16(ETH_P_IP),
1909 .callbacks = {
1910 .gso_segment = inet_gso_segment,
1911 .gro_receive = inet_gro_receive,
1912 .gro_complete = inet_gro_complete,
1913 },
1914};
1915
1916static const struct net_offload ipip_offload = {
1917 .callbacks = {
1918 .gso_segment = ipip_gso_segment,
1919 .gro_receive = ipip_gro_receive,
1920 .gro_complete = ipip_gro_complete,
1921 },
1922};
1923
1924static int __init ipip_offload_init(void)
1925{
1926 return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
1927}
1928
1929static int __init ipv4_offload_init(void)
1930{
1931 /*
1932 * Add offloads
1933 */
1934 if (udpv4_offload_init() < 0)
1935 pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
1936 if (tcpv4_offload_init() < 0)
1937 pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
1938 if (ipip_offload_init() < 0)
1939 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
1940
1941 dev_add_offload(&ip_packet_offload);
1942 return 0;
1943}
1944
1945fs_initcall(ipv4_offload_init);
1946
1947static struct packet_type ip_packet_type __read_mostly = {
1948 .type = cpu_to_be16(ETH_P_IP),
1949 .func = ip_rcv,
1950 .list_func = ip_list_rcv,
1951};
1952
1953static int __init inet_init(void)
1954{
1955 struct inet_protosw *q;
1956 struct list_head *r;
1957 int rc;
1958
1959 sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
1960
1961 raw_hashinfo_init(&raw_v4_hashinfo);
1962
1963 rc = proto_register(&tcp_prot, 1);
1964 if (rc)
1965 goto out;
1966
1967 rc = proto_register(&udp_prot, 1);
1968 if (rc)
1969 goto out_unregister_tcp_proto;
1970
1971 rc = proto_register(&raw_prot, 1);
1972 if (rc)
1973 goto out_unregister_udp_proto;
1974
1975 rc = proto_register(&ping_prot, 1);
1976 if (rc)
1977 goto out_unregister_raw_proto;
1978
1979 /*
1980 * Tell SOCKET that we are alive...
1981 */
1982
1983 (void)sock_register(&inet_family_ops);
1984
1985#ifdef CONFIG_SYSCTL
1986 ip_static_sysctl_init();
1987#endif
1988
1989 /*
1990 * Add all the base protocols.
1991 */
1992
1993 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
1994 pr_crit("%s: Cannot add ICMP protocol\n", __func__);
1995 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
1996 pr_crit("%s: Cannot add UDP protocol\n", __func__);
1997 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
1998 pr_crit("%s: Cannot add TCP protocol\n", __func__);
1999#ifdef CONFIG_IP_MULTICAST
2000 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
2001 pr_crit("%s: Cannot add IGMP protocol\n", __func__);
2002#endif
2003
2004 /* Register the socket-side information for inet_create. */
2005 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
2006 INIT_LIST_HEAD(r);
2007
2008 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
2009 inet_register_protosw(q);
2010
2011 /*
2012 * Set the ARP module up
2013 */
2014
2015 arp_init();
2016
2017 /*
2018 * Set the IP module up
2019 */
2020
2021 ip_init();
2022
2023 /* Initialise per-cpu ipv4 mibs */
2024 if (init_ipv4_mibs())
2025 panic("%s: Cannot init ipv4 mibs\n", __func__);
2026
2027 /* Setup TCP slab cache for open requests. */
2028 tcp_init();
2029
2030 /* Setup UDP memory threshold */
2031 udp_init();
2032
2033 /* Add UDP-Lite (RFC 3828) */
2034 udplite4_register();
2035
2036 raw_init();
2037
2038 ping_init();
2039
2040 /*
2041 * Set the ICMP layer up
2042 */
2043
2044 if (icmp_init() < 0)
2045 panic("Failed to create the ICMP control socket.\n");
2046
2047 /*
2048 * Initialise the multicast router
2049 */
2050#if defined(CONFIG_IP_MROUTE)
2051 if (ip_mr_init())
2052 pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
2053#endif
2054
2055 if (init_inet_pernet_ops())
2056 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
2057
2058 ipv4_proc_init();
2059
2060 ipfrag_init();
2061
2062 dev_add_pack(&ip_packet_type);
2063
2064 ip_tunnel_core_init();
2065
2066 rc = 0;
2067out:
2068 return rc;
2069out_unregister_raw_proto:
2070 proto_unregister(&raw_prot);
2071out_unregister_udp_proto:
2072 proto_unregister(&udp_prot);
2073out_unregister_tcp_proto:
2074 proto_unregister(&tcp_prot);
2075 goto out;
2076}
2077
2078fs_initcall(inet_init);
2079
2080/* ------------------------------------------------------------------------ */
2081
2082#ifdef CONFIG_PROC_FS
2083static int __init ipv4_proc_init(void)
2084{
2085 int rc = 0;
2086
2087 if (raw_proc_init())
2088 goto out_raw;
2089 if (tcp4_proc_init())
2090 goto out_tcp;
2091 if (udp4_proc_init())
2092 goto out_udp;
2093 if (ping_proc_init())
2094 goto out_ping;
2095 if (ip_misc_proc_init())
2096 goto out_misc;
2097out:
2098 return rc;
2099out_misc:
2100 ping_proc_exit();
2101out_ping:
2102 udp4_proc_exit();
2103out_udp:
2104 tcp4_proc_exit();
2105out_tcp:
2106 raw_proc_exit();
2107out_raw:
2108 rc = -ENOMEM;
2109 goto out;
2110}
2111
2112#else /* CONFIG_PROC_FS */
2113static int __init ipv4_proc_init(void)
2114{
2115 return 0;
2116}
2117#endif /* CONFIG_PROC_FS */