Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10#include <linux/mm.h>
11#include <linux/gfp.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/init.h>
16#include <linux/pagemap.h>
17#include <linux/backing-dev.h>
18#include <linux/blkdev.h>
19#include <linux/pagevec.h>
20#include <linux/migrate.h>
21#include <linux/vmalloc.h>
22#include <linux/swap_slots.h>
23#include <linux/huge_mm.h>
24
25#include <asm/pgtable.h>
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
30 */
31static const struct address_space_operations swap_aops = {
32 .writepage = swap_writepage,
33 .set_page_dirty = swap_set_page_dirty,
34#ifdef CONFIG_MIGRATION
35 .migratepage = migrate_page,
36#endif
37};
38
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41static bool enable_vma_readahead __read_mostly = true;
42
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60
61#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
62#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
69} swap_cache_info;
70
71unsigned long total_swapcache_pages(void)
72{
73 unsigned int i, j, nr;
74 unsigned long ret = 0;
75 struct address_space *spaces;
76 struct swap_info_struct *si;
77
78 for (i = 0; i < MAX_SWAPFILES; i++) {
79 swp_entry_t entry = swp_entry(i, 1);
80
81 /* Avoid get_swap_device() to warn for bad swap entry */
82 if (!swp_swap_info(entry))
83 continue;
84 /* Prevent swapoff to free swapper_spaces */
85 si = get_swap_device(entry);
86 if (!si)
87 continue;
88 nr = nr_swapper_spaces[i];
89 spaces = swapper_spaces[i];
90 for (j = 0; j < nr; j++)
91 ret += spaces[j].nrpages;
92 put_swap_device(si);
93 }
94 return ret;
95}
96
97static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98
99void show_swap_cache_info(void)
100{
101 printk("%lu pages in swap cache\n", total_swapcache_pages());
102 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
103 swap_cache_info.add_total, swap_cache_info.del_total,
104 swap_cache_info.find_success, swap_cache_info.find_total);
105 printk("Free swap = %ldkB\n",
106 get_nr_swap_pages() << (PAGE_SHIFT - 10));
107 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
108}
109
110/*
111 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
112 * but sets SwapCache flag and private instead of mapping and index.
113 */
114int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
115{
116 struct address_space *address_space = swap_address_space(entry);
117 pgoff_t idx = swp_offset(entry);
118 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
119 unsigned long i, nr = compound_nr(page);
120
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(PageSwapCache(page), page);
123 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
124
125 page_ref_add(page, nr);
126 SetPageSwapCache(page);
127
128 do {
129 xas_lock_irq(&xas);
130 xas_create_range(&xas);
131 if (xas_error(&xas))
132 goto unlock;
133 for (i = 0; i < nr; i++) {
134 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
135 set_page_private(page + i, entry.val + i);
136 xas_store(&xas, page);
137 xas_next(&xas);
138 }
139 address_space->nrpages += nr;
140 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
141 ADD_CACHE_INFO(add_total, nr);
142unlock:
143 xas_unlock_irq(&xas);
144 } while (xas_nomem(&xas, gfp));
145
146 if (!xas_error(&xas))
147 return 0;
148
149 ClearPageSwapCache(page);
150 page_ref_sub(page, nr);
151 return xas_error(&xas);
152}
153
154/*
155 * This must be called only on pages that have
156 * been verified to be in the swap cache.
157 */
158void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
159{
160 struct address_space *address_space = swap_address_space(entry);
161 int i, nr = hpage_nr_pages(page);
162 pgoff_t idx = swp_offset(entry);
163 XA_STATE(xas, &address_space->i_pages, idx);
164
165 VM_BUG_ON_PAGE(!PageLocked(page), page);
166 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
167 VM_BUG_ON_PAGE(PageWriteback(page), page);
168
169 for (i = 0; i < nr; i++) {
170 void *entry = xas_store(&xas, NULL);
171 VM_BUG_ON_PAGE(entry != page, entry);
172 set_page_private(page + i, 0);
173 xas_next(&xas);
174 }
175 ClearPageSwapCache(page);
176 address_space->nrpages -= nr;
177 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
178 ADD_CACHE_INFO(del_total, nr);
179}
180
181/**
182 * add_to_swap - allocate swap space for a page
183 * @page: page we want to move to swap
184 *
185 * Allocate swap space for the page and add the page to the
186 * swap cache. Caller needs to hold the page lock.
187 */
188int add_to_swap(struct page *page)
189{
190 swp_entry_t entry;
191 int err;
192
193 VM_BUG_ON_PAGE(!PageLocked(page), page);
194 VM_BUG_ON_PAGE(!PageUptodate(page), page);
195
196 entry = get_swap_page(page);
197 if (!entry.val)
198 return 0;
199
200 /*
201 * XArray node allocations from PF_MEMALLOC contexts could
202 * completely exhaust the page allocator. __GFP_NOMEMALLOC
203 * stops emergency reserves from being allocated.
204 *
205 * TODO: this could cause a theoretical memory reclaim
206 * deadlock in the swap out path.
207 */
208 /*
209 * Add it to the swap cache.
210 */
211 err = add_to_swap_cache(page, entry,
212 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
213 if (err)
214 /*
215 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
216 * clear SWAP_HAS_CACHE flag.
217 */
218 goto fail;
219 /*
220 * Normally the page will be dirtied in unmap because its pte should be
221 * dirty. A special case is MADV_FREE page. The page'e pte could have
222 * dirty bit cleared but the page's SwapBacked bit is still set because
223 * clearing the dirty bit and SwapBacked bit has no lock protected. For
224 * such page, unmap will not set dirty bit for it, so page reclaim will
225 * not write the page out. This can cause data corruption when the page
226 * is swap in later. Always setting the dirty bit for the page solves
227 * the problem.
228 */
229 set_page_dirty(page);
230
231 return 1;
232
233fail:
234 put_swap_page(page, entry);
235 return 0;
236}
237
238/*
239 * This must be called only on pages that have
240 * been verified to be in the swap cache and locked.
241 * It will never put the page into the free list,
242 * the caller has a reference on the page.
243 */
244void delete_from_swap_cache(struct page *page)
245{
246 swp_entry_t entry = { .val = page_private(page) };
247 struct address_space *address_space = swap_address_space(entry);
248
249 xa_lock_irq(&address_space->i_pages);
250 __delete_from_swap_cache(page, entry);
251 xa_unlock_irq(&address_space->i_pages);
252
253 put_swap_page(page, entry);
254 page_ref_sub(page, hpage_nr_pages(page));
255}
256
257/*
258 * If we are the only user, then try to free up the swap cache.
259 *
260 * Its ok to check for PageSwapCache without the page lock
261 * here because we are going to recheck again inside
262 * try_to_free_swap() _with_ the lock.
263 * - Marcelo
264 */
265static inline void free_swap_cache(struct page *page)
266{
267 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
268 try_to_free_swap(page);
269 unlock_page(page);
270 }
271}
272
273/*
274 * Perform a free_page(), also freeing any swap cache associated with
275 * this page if it is the last user of the page.
276 */
277void free_page_and_swap_cache(struct page *page)
278{
279 free_swap_cache(page);
280 if (!is_huge_zero_page(page))
281 put_page(page);
282}
283
284/*
285 * Passed an array of pages, drop them all from swapcache and then release
286 * them. They are removed from the LRU and freed if this is their last use.
287 */
288void free_pages_and_swap_cache(struct page **pages, int nr)
289{
290 struct page **pagep = pages;
291 int i;
292
293 lru_add_drain();
294 for (i = 0; i < nr; i++)
295 free_swap_cache(pagep[i]);
296 release_pages(pagep, nr);
297}
298
299static inline bool swap_use_vma_readahead(void)
300{
301 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
302}
303
304/*
305 * Lookup a swap entry in the swap cache. A found page will be returned
306 * unlocked and with its refcount incremented - we rely on the kernel
307 * lock getting page table operations atomic even if we drop the page
308 * lock before returning.
309 */
310struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
311 unsigned long addr)
312{
313 struct page *page;
314 struct swap_info_struct *si;
315
316 si = get_swap_device(entry);
317 if (!si)
318 return NULL;
319 page = find_get_page(swap_address_space(entry), swp_offset(entry));
320 put_swap_device(si);
321
322 INC_CACHE_INFO(find_total);
323 if (page) {
324 bool vma_ra = swap_use_vma_readahead();
325 bool readahead;
326
327 INC_CACHE_INFO(find_success);
328 /*
329 * At the moment, we don't support PG_readahead for anon THP
330 * so let's bail out rather than confusing the readahead stat.
331 */
332 if (unlikely(PageTransCompound(page)))
333 return page;
334
335 readahead = TestClearPageReadahead(page);
336 if (vma && vma_ra) {
337 unsigned long ra_val;
338 int win, hits;
339
340 ra_val = GET_SWAP_RA_VAL(vma);
341 win = SWAP_RA_WIN(ra_val);
342 hits = SWAP_RA_HITS(ra_val);
343 if (readahead)
344 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
345 atomic_long_set(&vma->swap_readahead_info,
346 SWAP_RA_VAL(addr, win, hits));
347 }
348
349 if (readahead) {
350 count_vm_event(SWAP_RA_HIT);
351 if (!vma || !vma_ra)
352 atomic_inc(&swapin_readahead_hits);
353 }
354 }
355
356 return page;
357}
358
359struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
360 struct vm_area_struct *vma, unsigned long addr,
361 bool *new_page_allocated)
362{
363 struct page *found_page = NULL, *new_page = NULL;
364 struct swap_info_struct *si;
365 int err;
366 *new_page_allocated = false;
367
368 do {
369 /*
370 * First check the swap cache. Since this is normally
371 * called after lookup_swap_cache() failed, re-calling
372 * that would confuse statistics.
373 */
374 si = get_swap_device(entry);
375 if (!si)
376 break;
377 found_page = find_get_page(swap_address_space(entry),
378 swp_offset(entry));
379 put_swap_device(si);
380 if (found_page)
381 break;
382
383 /*
384 * Just skip read ahead for unused swap slot.
385 * During swap_off when swap_slot_cache is disabled,
386 * we have to handle the race between putting
387 * swap entry in swap cache and marking swap slot
388 * as SWAP_HAS_CACHE. That's done in later part of code or
389 * else swap_off will be aborted if we return NULL.
390 */
391 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
392 break;
393
394 /*
395 * Get a new page to read into from swap.
396 */
397 if (!new_page) {
398 new_page = alloc_page_vma(gfp_mask, vma, addr);
399 if (!new_page)
400 break; /* Out of memory */
401 }
402
403 /*
404 * Swap entry may have been freed since our caller observed it.
405 */
406 err = swapcache_prepare(entry);
407 if (err == -EEXIST) {
408 /*
409 * We might race against get_swap_page() and stumble
410 * across a SWAP_HAS_CACHE swap_map entry whose page
411 * has not been brought into the swapcache yet.
412 */
413 cond_resched();
414 continue;
415 } else if (err) /* swp entry is obsolete ? */
416 break;
417
418 /* May fail (-ENOMEM) if XArray node allocation failed. */
419 __SetPageLocked(new_page);
420 __SetPageSwapBacked(new_page);
421 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
422 if (likely(!err)) {
423 /* Initiate read into locked page */
424 SetPageWorkingset(new_page);
425 lru_cache_add_anon(new_page);
426 *new_page_allocated = true;
427 return new_page;
428 }
429 __ClearPageLocked(new_page);
430 /*
431 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
432 * clear SWAP_HAS_CACHE flag.
433 */
434 put_swap_page(new_page, entry);
435 } while (err != -ENOMEM);
436
437 if (new_page)
438 put_page(new_page);
439 return found_page;
440}
441
442/*
443 * Locate a page of swap in physical memory, reserving swap cache space
444 * and reading the disk if it is not already cached.
445 * A failure return means that either the page allocation failed or that
446 * the swap entry is no longer in use.
447 */
448struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
449 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
450{
451 bool page_was_allocated;
452 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
453 vma, addr, &page_was_allocated);
454
455 if (page_was_allocated)
456 swap_readpage(retpage, do_poll);
457
458 return retpage;
459}
460
461static unsigned int __swapin_nr_pages(unsigned long prev_offset,
462 unsigned long offset,
463 int hits,
464 int max_pages,
465 int prev_win)
466{
467 unsigned int pages, last_ra;
468
469 /*
470 * This heuristic has been found to work well on both sequential and
471 * random loads, swapping to hard disk or to SSD: please don't ask
472 * what the "+ 2" means, it just happens to work well, that's all.
473 */
474 pages = hits + 2;
475 if (pages == 2) {
476 /*
477 * We can have no readahead hits to judge by: but must not get
478 * stuck here forever, so check for an adjacent offset instead
479 * (and don't even bother to check whether swap type is same).
480 */
481 if (offset != prev_offset + 1 && offset != prev_offset - 1)
482 pages = 1;
483 } else {
484 unsigned int roundup = 4;
485 while (roundup < pages)
486 roundup <<= 1;
487 pages = roundup;
488 }
489
490 if (pages > max_pages)
491 pages = max_pages;
492
493 /* Don't shrink readahead too fast */
494 last_ra = prev_win / 2;
495 if (pages < last_ra)
496 pages = last_ra;
497
498 return pages;
499}
500
501static unsigned long swapin_nr_pages(unsigned long offset)
502{
503 static unsigned long prev_offset;
504 unsigned int hits, pages, max_pages;
505 static atomic_t last_readahead_pages;
506
507 max_pages = 1 << READ_ONCE(page_cluster);
508 if (max_pages <= 1)
509 return 1;
510
511 hits = atomic_xchg(&swapin_readahead_hits, 0);
512 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
513 atomic_read(&last_readahead_pages));
514 if (!hits)
515 prev_offset = offset;
516 atomic_set(&last_readahead_pages, pages);
517
518 return pages;
519}
520
521/**
522 * swap_cluster_readahead - swap in pages in hope we need them soon
523 * @entry: swap entry of this memory
524 * @gfp_mask: memory allocation flags
525 * @vmf: fault information
526 *
527 * Returns the struct page for entry and addr, after queueing swapin.
528 *
529 * Primitive swap readahead code. We simply read an aligned block of
530 * (1 << page_cluster) entries in the swap area. This method is chosen
531 * because it doesn't cost us any seek time. We also make sure to queue
532 * the 'original' request together with the readahead ones...
533 *
534 * This has been extended to use the NUMA policies from the mm triggering
535 * the readahead.
536 *
537 * Caller must hold read mmap_sem if vmf->vma is not NULL.
538 */
539struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
540 struct vm_fault *vmf)
541{
542 struct page *page;
543 unsigned long entry_offset = swp_offset(entry);
544 unsigned long offset = entry_offset;
545 unsigned long start_offset, end_offset;
546 unsigned long mask;
547 struct swap_info_struct *si = swp_swap_info(entry);
548 struct blk_plug plug;
549 bool do_poll = true, page_allocated;
550 struct vm_area_struct *vma = vmf->vma;
551 unsigned long addr = vmf->address;
552
553 mask = swapin_nr_pages(offset) - 1;
554 if (!mask)
555 goto skip;
556
557 /* Test swap type to make sure the dereference is safe */
558 if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
559 struct inode *inode = si->swap_file->f_mapping->host;
560 if (inode_read_congested(inode))
561 goto skip;
562 }
563
564 do_poll = false;
565 /* Read a page_cluster sized and aligned cluster around offset. */
566 start_offset = offset & ~mask;
567 end_offset = offset | mask;
568 if (!start_offset) /* First page is swap header. */
569 start_offset++;
570 if (end_offset >= si->max)
571 end_offset = si->max - 1;
572
573 blk_start_plug(&plug);
574 for (offset = start_offset; offset <= end_offset ; offset++) {
575 /* Ok, do the async read-ahead now */
576 page = __read_swap_cache_async(
577 swp_entry(swp_type(entry), offset),
578 gfp_mask, vma, addr, &page_allocated);
579 if (!page)
580 continue;
581 if (page_allocated) {
582 swap_readpage(page, false);
583 if (offset != entry_offset) {
584 SetPageReadahead(page);
585 count_vm_event(SWAP_RA);
586 }
587 }
588 put_page(page);
589 }
590 blk_finish_plug(&plug);
591
592 lru_add_drain(); /* Push any new pages onto the LRU now */
593skip:
594 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
595}
596
597int init_swap_address_space(unsigned int type, unsigned long nr_pages)
598{
599 struct address_space *spaces, *space;
600 unsigned int i, nr;
601
602 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
603 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
604 if (!spaces)
605 return -ENOMEM;
606 for (i = 0; i < nr; i++) {
607 space = spaces + i;
608 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
609 atomic_set(&space->i_mmap_writable, 0);
610 space->a_ops = &swap_aops;
611 /* swap cache doesn't use writeback related tags */
612 mapping_set_no_writeback_tags(space);
613 }
614 nr_swapper_spaces[type] = nr;
615 swapper_spaces[type] = spaces;
616
617 return 0;
618}
619
620void exit_swap_address_space(unsigned int type)
621{
622 kvfree(swapper_spaces[type]);
623 nr_swapper_spaces[type] = 0;
624 swapper_spaces[type] = NULL;
625}
626
627static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
628 unsigned long faddr,
629 unsigned long lpfn,
630 unsigned long rpfn,
631 unsigned long *start,
632 unsigned long *end)
633{
634 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
635 PFN_DOWN(faddr & PMD_MASK));
636 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
637 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
638}
639
640static void swap_ra_info(struct vm_fault *vmf,
641 struct vma_swap_readahead *ra_info)
642{
643 struct vm_area_struct *vma = vmf->vma;
644 unsigned long ra_val;
645 swp_entry_t entry;
646 unsigned long faddr, pfn, fpfn;
647 unsigned long start, end;
648 pte_t *pte, *orig_pte;
649 unsigned int max_win, hits, prev_win, win, left;
650#ifndef CONFIG_64BIT
651 pte_t *tpte;
652#endif
653
654 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
655 SWAP_RA_ORDER_CEILING);
656 if (max_win == 1) {
657 ra_info->win = 1;
658 return;
659 }
660
661 faddr = vmf->address;
662 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
663 entry = pte_to_swp_entry(*pte);
664 if ((unlikely(non_swap_entry(entry)))) {
665 pte_unmap(orig_pte);
666 return;
667 }
668
669 fpfn = PFN_DOWN(faddr);
670 ra_val = GET_SWAP_RA_VAL(vma);
671 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
672 prev_win = SWAP_RA_WIN(ra_val);
673 hits = SWAP_RA_HITS(ra_val);
674 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
675 max_win, prev_win);
676 atomic_long_set(&vma->swap_readahead_info,
677 SWAP_RA_VAL(faddr, win, 0));
678
679 if (win == 1) {
680 pte_unmap(orig_pte);
681 return;
682 }
683
684 /* Copy the PTEs because the page table may be unmapped */
685 if (fpfn == pfn + 1)
686 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
687 else if (pfn == fpfn + 1)
688 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
689 &start, &end);
690 else {
691 left = (win - 1) / 2;
692 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
693 &start, &end);
694 }
695 ra_info->nr_pte = end - start;
696 ra_info->offset = fpfn - start;
697 pte -= ra_info->offset;
698#ifdef CONFIG_64BIT
699 ra_info->ptes = pte;
700#else
701 tpte = ra_info->ptes;
702 for (pfn = start; pfn != end; pfn++)
703 *tpte++ = *pte++;
704#endif
705 pte_unmap(orig_pte);
706}
707
708/**
709 * swap_vma_readahead - swap in pages in hope we need them soon
710 * @entry: swap entry of this memory
711 * @gfp_mask: memory allocation flags
712 * @vmf: fault information
713 *
714 * Returns the struct page for entry and addr, after queueing swapin.
715 *
716 * Primitive swap readahead code. We simply read in a few pages whoes
717 * virtual addresses are around the fault address in the same vma.
718 *
719 * Caller must hold read mmap_sem if vmf->vma is not NULL.
720 *
721 */
722static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
723 struct vm_fault *vmf)
724{
725 struct blk_plug plug;
726 struct vm_area_struct *vma = vmf->vma;
727 struct page *page;
728 pte_t *pte, pentry;
729 swp_entry_t entry;
730 unsigned int i;
731 bool page_allocated;
732 struct vma_swap_readahead ra_info = {0,};
733
734 swap_ra_info(vmf, &ra_info);
735 if (ra_info.win == 1)
736 goto skip;
737
738 blk_start_plug(&plug);
739 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
740 i++, pte++) {
741 pentry = *pte;
742 if (pte_none(pentry))
743 continue;
744 if (pte_present(pentry))
745 continue;
746 entry = pte_to_swp_entry(pentry);
747 if (unlikely(non_swap_entry(entry)))
748 continue;
749 page = __read_swap_cache_async(entry, gfp_mask, vma,
750 vmf->address, &page_allocated);
751 if (!page)
752 continue;
753 if (page_allocated) {
754 swap_readpage(page, false);
755 if (i != ra_info.offset) {
756 SetPageReadahead(page);
757 count_vm_event(SWAP_RA);
758 }
759 }
760 put_page(page);
761 }
762 blk_finish_plug(&plug);
763 lru_add_drain();
764skip:
765 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
766 ra_info.win == 1);
767}
768
769/**
770 * swapin_readahead - swap in pages in hope we need them soon
771 * @entry: swap entry of this memory
772 * @gfp_mask: memory allocation flags
773 * @vmf: fault information
774 *
775 * Returns the struct page for entry and addr, after queueing swapin.
776 *
777 * It's a main entry function for swap readahead. By the configuration,
778 * it will read ahead blocks by cluster-based(ie, physical disk based)
779 * or vma-based(ie, virtual address based on faulty address) readahead.
780 */
781struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
782 struct vm_fault *vmf)
783{
784 return swap_use_vma_readahead() ?
785 swap_vma_readahead(entry, gfp_mask, vmf) :
786 swap_cluster_readahead(entry, gfp_mask, vmf);
787}
788
789#ifdef CONFIG_SYSFS
790static ssize_t vma_ra_enabled_show(struct kobject *kobj,
791 struct kobj_attribute *attr, char *buf)
792{
793 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
794}
795static ssize_t vma_ra_enabled_store(struct kobject *kobj,
796 struct kobj_attribute *attr,
797 const char *buf, size_t count)
798{
799 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
800 enable_vma_readahead = true;
801 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
802 enable_vma_readahead = false;
803 else
804 return -EINVAL;
805
806 return count;
807}
808static struct kobj_attribute vma_ra_enabled_attr =
809 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
810 vma_ra_enabled_store);
811
812static struct attribute *swap_attrs[] = {
813 &vma_ra_enabled_attr.attr,
814 NULL,
815};
816
817static struct attribute_group swap_attr_group = {
818 .attrs = swap_attrs,
819};
820
821static int __init swap_init_sysfs(void)
822{
823 int err;
824 struct kobject *swap_kobj;
825
826 swap_kobj = kobject_create_and_add("swap", mm_kobj);
827 if (!swap_kobj) {
828 pr_err("failed to create swap kobject\n");
829 return -ENOMEM;
830 }
831 err = sysfs_create_group(swap_kobj, &swap_attr_group);
832 if (err) {
833 pr_err("failed to register swap group\n");
834 goto delete_obj;
835 }
836 return 0;
837
838delete_obj:
839 kobject_put(swap_kobj);
840 return err;
841}
842subsys_initcall(swap_init_sysfs);
843#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10#include <linux/mm.h>
11#include <linux/gfp.h>
12#include <linux/kernel_stat.h>
13#include <linux/mempolicy.h>
14#include <linux/swap.h>
15#include <linux/swapops.h>
16#include <linux/init.h>
17#include <linux/pagemap.h>
18#include <linux/backing-dev.h>
19#include <linux/blkdev.h>
20#include <linux/migrate.h>
21#include <linux/vmalloc.h>
22#include <linux/swap_slots.h>
23#include <linux/huge_mm.h>
24#include <linux/shmem_fs.h>
25#include "internal.h"
26#include "swap.h"
27
28/*
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_page_list.
31 */
32static const struct address_space_operations swap_aops = {
33 .writepage = swap_writepage,
34 .dirty_folio = noop_dirty_folio,
35#ifdef CONFIG_MIGRATION
36 .migrate_folio = migrate_folio,
37#endif
38};
39
40struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42static bool enable_vma_readahead __read_mostly = true;
43
44#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48
49#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52
53#define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
57
58/* Initial readahead hits is 4 to start up with a small window */
59#define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61
62static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63
64void show_swap_cache_info(void)
65{
66 printk("%lu pages in swap cache\n", total_swapcache_pages());
67 printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
68 printk("Total swap = %lukB\n", K(total_swap_pages));
69}
70
71void *get_shadow_from_swap_cache(swp_entry_t entry)
72{
73 struct address_space *address_space = swap_address_space(entry);
74 pgoff_t idx = swp_offset(entry);
75 struct page *page;
76
77 page = xa_load(&address_space->i_pages, idx);
78 if (xa_is_value(page))
79 return page;
80 return NULL;
81}
82
83/*
84 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
85 * but sets SwapCache flag and private instead of mapping and index.
86 */
87int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
88 gfp_t gfp, void **shadowp)
89{
90 struct address_space *address_space = swap_address_space(entry);
91 pgoff_t idx = swp_offset(entry);
92 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
93 unsigned long i, nr = folio_nr_pages(folio);
94 void *old;
95
96 xas_set_update(&xas, workingset_update_node);
97
98 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
99 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
100 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
101
102 folio_ref_add(folio, nr);
103 folio_set_swapcache(folio);
104 folio->swap = entry;
105
106 do {
107 xas_lock_irq(&xas);
108 xas_create_range(&xas);
109 if (xas_error(&xas))
110 goto unlock;
111 for (i = 0; i < nr; i++) {
112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 if (shadowp) {
114 old = xas_load(&xas);
115 if (xa_is_value(old))
116 *shadowp = old;
117 }
118 xas_store(&xas, folio);
119 xas_next(&xas);
120 }
121 address_space->nrpages += nr;
122 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
123 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
124unlock:
125 xas_unlock_irq(&xas);
126 } while (xas_nomem(&xas, gfp));
127
128 if (!xas_error(&xas))
129 return 0;
130
131 folio_clear_swapcache(folio);
132 folio_ref_sub(folio, nr);
133 return xas_error(&xas);
134}
135
136/*
137 * This must be called only on folios that have
138 * been verified to be in the swap cache.
139 */
140void __delete_from_swap_cache(struct folio *folio,
141 swp_entry_t entry, void *shadow)
142{
143 struct address_space *address_space = swap_address_space(entry);
144 int i;
145 long nr = folio_nr_pages(folio);
146 pgoff_t idx = swp_offset(entry);
147 XA_STATE(xas, &address_space->i_pages, idx);
148
149 xas_set_update(&xas, workingset_update_node);
150
151 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
152 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
153 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
154
155 for (i = 0; i < nr; i++) {
156 void *entry = xas_store(&xas, shadow);
157 VM_BUG_ON_PAGE(entry != folio, entry);
158 xas_next(&xas);
159 }
160 folio->swap.val = 0;
161 folio_clear_swapcache(folio);
162 address_space->nrpages -= nr;
163 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
164 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
165}
166
167/**
168 * add_to_swap - allocate swap space for a folio
169 * @folio: folio we want to move to swap
170 *
171 * Allocate swap space for the folio and add the folio to the
172 * swap cache.
173 *
174 * Context: Caller needs to hold the folio lock.
175 * Return: Whether the folio was added to the swap cache.
176 */
177bool add_to_swap(struct folio *folio)
178{
179 swp_entry_t entry;
180 int err;
181
182 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
183 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
184
185 entry = folio_alloc_swap(folio);
186 if (!entry.val)
187 return false;
188
189 /*
190 * XArray node allocations from PF_MEMALLOC contexts could
191 * completely exhaust the page allocator. __GFP_NOMEMALLOC
192 * stops emergency reserves from being allocated.
193 *
194 * TODO: this could cause a theoretical memory reclaim
195 * deadlock in the swap out path.
196 */
197 /*
198 * Add it to the swap cache.
199 */
200 err = add_to_swap_cache(folio, entry,
201 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
202 if (err)
203 /*
204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 * clear SWAP_HAS_CACHE flag.
206 */
207 goto fail;
208 /*
209 * Normally the folio will be dirtied in unmap because its
210 * pte should be dirty. A special case is MADV_FREE page. The
211 * page's pte could have dirty bit cleared but the folio's
212 * SwapBacked flag is still set because clearing the dirty bit
213 * and SwapBacked flag has no lock protected. For such folio,
214 * unmap will not set dirty bit for it, so folio reclaim will
215 * not write the folio out. This can cause data corruption when
216 * the folio is swapped in later. Always setting the dirty flag
217 * for the folio solves the problem.
218 */
219 folio_mark_dirty(folio);
220
221 return true;
222
223fail:
224 put_swap_folio(folio, entry);
225 return false;
226}
227
228/*
229 * This must be called only on folios that have
230 * been verified to be in the swap cache and locked.
231 * It will never put the folio into the free list,
232 * the caller has a reference on the folio.
233 */
234void delete_from_swap_cache(struct folio *folio)
235{
236 swp_entry_t entry = folio->swap;
237 struct address_space *address_space = swap_address_space(entry);
238
239 xa_lock_irq(&address_space->i_pages);
240 __delete_from_swap_cache(folio, entry, NULL);
241 xa_unlock_irq(&address_space->i_pages);
242
243 put_swap_folio(folio, entry);
244 folio_ref_sub(folio, folio_nr_pages(folio));
245}
246
247void clear_shadow_from_swap_cache(int type, unsigned long begin,
248 unsigned long end)
249{
250 unsigned long curr = begin;
251 void *old;
252
253 for (;;) {
254 swp_entry_t entry = swp_entry(type, curr);
255 struct address_space *address_space = swap_address_space(entry);
256 XA_STATE(xas, &address_space->i_pages, curr);
257
258 xas_set_update(&xas, workingset_update_node);
259
260 xa_lock_irq(&address_space->i_pages);
261 xas_for_each(&xas, old, end) {
262 if (!xa_is_value(old))
263 continue;
264 xas_store(&xas, NULL);
265 }
266 xa_unlock_irq(&address_space->i_pages);
267
268 /* search the next swapcache until we meet end */
269 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
270 curr++;
271 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
272 if (curr > end)
273 break;
274 }
275}
276
277/*
278 * If we are the only user, then try to free up the swap cache.
279 *
280 * Its ok to check the swapcache flag without the folio lock
281 * here because we are going to recheck again inside
282 * folio_free_swap() _with_ the lock.
283 * - Marcelo
284 */
285void free_swap_cache(struct page *page)
286{
287 struct folio *folio = page_folio(page);
288
289 if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
290 folio_trylock(folio)) {
291 folio_free_swap(folio);
292 folio_unlock(folio);
293 }
294}
295
296/*
297 * Perform a free_page(), also freeing any swap cache associated with
298 * this page if it is the last user of the page.
299 */
300void free_page_and_swap_cache(struct page *page)
301{
302 free_swap_cache(page);
303 if (!is_huge_zero_page(page))
304 put_page(page);
305}
306
307/*
308 * Passed an array of pages, drop them all from swapcache and then release
309 * them. They are removed from the LRU and freed if this is their last use.
310 */
311void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
312{
313 lru_add_drain();
314 for (int i = 0; i < nr; i++)
315 free_swap_cache(encoded_page_ptr(pages[i]));
316 release_pages(pages, nr);
317}
318
319static inline bool swap_use_vma_readahead(void)
320{
321 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
322}
323
324/*
325 * Lookup a swap entry in the swap cache. A found folio will be returned
326 * unlocked and with its refcount incremented - we rely on the kernel
327 * lock getting page table operations atomic even if we drop the folio
328 * lock before returning.
329 *
330 * Caller must lock the swap device or hold a reference to keep it valid.
331 */
332struct folio *swap_cache_get_folio(swp_entry_t entry,
333 struct vm_area_struct *vma, unsigned long addr)
334{
335 struct folio *folio;
336
337 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
338 if (!IS_ERR(folio)) {
339 bool vma_ra = swap_use_vma_readahead();
340 bool readahead;
341
342 /*
343 * At the moment, we don't support PG_readahead for anon THP
344 * so let's bail out rather than confusing the readahead stat.
345 */
346 if (unlikely(folio_test_large(folio)))
347 return folio;
348
349 readahead = folio_test_clear_readahead(folio);
350 if (vma && vma_ra) {
351 unsigned long ra_val;
352 int win, hits;
353
354 ra_val = GET_SWAP_RA_VAL(vma);
355 win = SWAP_RA_WIN(ra_val);
356 hits = SWAP_RA_HITS(ra_val);
357 if (readahead)
358 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
359 atomic_long_set(&vma->swap_readahead_info,
360 SWAP_RA_VAL(addr, win, hits));
361 }
362
363 if (readahead) {
364 count_vm_event(SWAP_RA_HIT);
365 if (!vma || !vma_ra)
366 atomic_inc(&swapin_readahead_hits);
367 }
368 } else {
369 folio = NULL;
370 }
371
372 return folio;
373}
374
375/**
376 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
377 * @mapping: The address_space to search.
378 * @index: The page cache index.
379 *
380 * This differs from filemap_get_folio() in that it will also look for the
381 * folio in the swap cache.
382 *
383 * Return: The found folio or %NULL.
384 */
385struct folio *filemap_get_incore_folio(struct address_space *mapping,
386 pgoff_t index)
387{
388 swp_entry_t swp;
389 struct swap_info_struct *si;
390 struct folio *folio = filemap_get_entry(mapping, index);
391
392 if (!folio)
393 return ERR_PTR(-ENOENT);
394 if (!xa_is_value(folio))
395 return folio;
396 if (!shmem_mapping(mapping))
397 return ERR_PTR(-ENOENT);
398
399 swp = radix_to_swp_entry(folio);
400 /* There might be swapin error entries in shmem mapping. */
401 if (non_swap_entry(swp))
402 return ERR_PTR(-ENOENT);
403 /* Prevent swapoff from happening to us */
404 si = get_swap_device(swp);
405 if (!si)
406 return ERR_PTR(-ENOENT);
407 index = swp_offset(swp);
408 folio = filemap_get_folio(swap_address_space(swp), index);
409 put_swap_device(si);
410 return folio;
411}
412
413struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
414 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
415 bool skip_if_exists)
416{
417 struct swap_info_struct *si;
418 struct folio *folio;
419 void *shadow = NULL;
420
421 *new_page_allocated = false;
422 si = get_swap_device(entry);
423 if (!si)
424 return NULL;
425
426 for (;;) {
427 int err;
428 /*
429 * First check the swap cache. Since this is normally
430 * called after swap_cache_get_folio() failed, re-calling
431 * that would confuse statistics.
432 */
433 folio = filemap_get_folio(swap_address_space(entry),
434 swp_offset(entry));
435 if (!IS_ERR(folio))
436 goto got_folio;
437
438 /*
439 * Just skip read ahead for unused swap slot.
440 * During swap_off when swap_slot_cache is disabled,
441 * we have to handle the race between putting
442 * swap entry in swap cache and marking swap slot
443 * as SWAP_HAS_CACHE. That's done in later part of code or
444 * else swap_off will be aborted if we return NULL.
445 */
446 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
447 goto fail_put_swap;
448
449 /*
450 * Get a new folio to read into from swap. Allocate it now,
451 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
452 * cause any racers to loop around until we add it to cache.
453 */
454 folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
455 mpol, ilx, numa_node_id());
456 if (!folio)
457 goto fail_put_swap;
458
459 /*
460 * Swap entry may have been freed since our caller observed it.
461 */
462 err = swapcache_prepare(entry);
463 if (!err)
464 break;
465
466 folio_put(folio);
467 if (err != -EEXIST)
468 goto fail_put_swap;
469
470 /*
471 * Protect against a recursive call to __read_swap_cache_async()
472 * on the same entry waiting forever here because SWAP_HAS_CACHE
473 * is set but the folio is not the swap cache yet. This can
474 * happen today if mem_cgroup_swapin_charge_folio() below
475 * triggers reclaim through zswap, which may call
476 * __read_swap_cache_async() in the writeback path.
477 */
478 if (skip_if_exists)
479 goto fail_put_swap;
480
481 /*
482 * We might race against __delete_from_swap_cache(), and
483 * stumble across a swap_map entry whose SWAP_HAS_CACHE
484 * has not yet been cleared. Or race against another
485 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
486 * in swap_map, but not yet added its folio to swap cache.
487 */
488 schedule_timeout_uninterruptible(1);
489 }
490
491 /*
492 * The swap entry is ours to swap in. Prepare the new folio.
493 */
494
495 __folio_set_locked(folio);
496 __folio_set_swapbacked(folio);
497
498 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
499 goto fail_unlock;
500
501 /* May fail (-ENOMEM) if XArray node allocation failed. */
502 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
503 goto fail_unlock;
504
505 mem_cgroup_swapin_uncharge_swap(entry);
506
507 if (shadow)
508 workingset_refault(folio, shadow);
509
510 /* Caller will initiate read into locked folio */
511 folio_add_lru(folio);
512 *new_page_allocated = true;
513got_folio:
514 put_swap_device(si);
515 return folio;
516
517fail_unlock:
518 put_swap_folio(folio, entry);
519 folio_unlock(folio);
520 folio_put(folio);
521fail_put_swap:
522 put_swap_device(si);
523 return NULL;
524}
525
526/*
527 * Locate a page of swap in physical memory, reserving swap cache space
528 * and reading the disk if it is not already cached.
529 * A failure return means that either the page allocation failed or that
530 * the swap entry is no longer in use.
531 *
532 * get/put_swap_device() aren't needed to call this function, because
533 * __read_swap_cache_async() call them and swap_read_folio() holds the
534 * swap cache folio lock.
535 */
536struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
537 struct vm_area_struct *vma, unsigned long addr,
538 struct swap_iocb **plug)
539{
540 bool page_allocated;
541 struct mempolicy *mpol;
542 pgoff_t ilx;
543 struct folio *folio;
544
545 mpol = get_vma_policy(vma, addr, 0, &ilx);
546 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
547 &page_allocated, false);
548 mpol_cond_put(mpol);
549
550 if (page_allocated)
551 swap_read_folio(folio, false, plug);
552 return folio;
553}
554
555static unsigned int __swapin_nr_pages(unsigned long prev_offset,
556 unsigned long offset,
557 int hits,
558 int max_pages,
559 int prev_win)
560{
561 unsigned int pages, last_ra;
562
563 /*
564 * This heuristic has been found to work well on both sequential and
565 * random loads, swapping to hard disk or to SSD: please don't ask
566 * what the "+ 2" means, it just happens to work well, that's all.
567 */
568 pages = hits + 2;
569 if (pages == 2) {
570 /*
571 * We can have no readahead hits to judge by: but must not get
572 * stuck here forever, so check for an adjacent offset instead
573 * (and don't even bother to check whether swap type is same).
574 */
575 if (offset != prev_offset + 1 && offset != prev_offset - 1)
576 pages = 1;
577 } else {
578 unsigned int roundup = 4;
579 while (roundup < pages)
580 roundup <<= 1;
581 pages = roundup;
582 }
583
584 if (pages > max_pages)
585 pages = max_pages;
586
587 /* Don't shrink readahead too fast */
588 last_ra = prev_win / 2;
589 if (pages < last_ra)
590 pages = last_ra;
591
592 return pages;
593}
594
595static unsigned long swapin_nr_pages(unsigned long offset)
596{
597 static unsigned long prev_offset;
598 unsigned int hits, pages, max_pages;
599 static atomic_t last_readahead_pages;
600
601 max_pages = 1 << READ_ONCE(page_cluster);
602 if (max_pages <= 1)
603 return 1;
604
605 hits = atomic_xchg(&swapin_readahead_hits, 0);
606 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
607 max_pages,
608 atomic_read(&last_readahead_pages));
609 if (!hits)
610 WRITE_ONCE(prev_offset, offset);
611 atomic_set(&last_readahead_pages, pages);
612
613 return pages;
614}
615
616/**
617 * swap_cluster_readahead - swap in pages in hope we need them soon
618 * @entry: swap entry of this memory
619 * @gfp_mask: memory allocation flags
620 * @mpol: NUMA memory allocation policy to be applied
621 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
622 *
623 * Returns the struct folio for entry and addr, after queueing swapin.
624 *
625 * Primitive swap readahead code. We simply read an aligned block of
626 * (1 << page_cluster) entries in the swap area. This method is chosen
627 * because it doesn't cost us any seek time. We also make sure to queue
628 * the 'original' request together with the readahead ones...
629 *
630 * Note: it is intentional that the same NUMA policy and interleave index
631 * are used for every page of the readahead: neighbouring pages on swap
632 * are fairly likely to have been swapped out from the same node.
633 */
634struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
635 struct mempolicy *mpol, pgoff_t ilx)
636{
637 struct folio *folio;
638 unsigned long entry_offset = swp_offset(entry);
639 unsigned long offset = entry_offset;
640 unsigned long start_offset, end_offset;
641 unsigned long mask;
642 struct swap_info_struct *si = swp_swap_info(entry);
643 struct blk_plug plug;
644 struct swap_iocb *splug = NULL;
645 bool page_allocated;
646
647 mask = swapin_nr_pages(offset) - 1;
648 if (!mask)
649 goto skip;
650
651 /* Read a page_cluster sized and aligned cluster around offset. */
652 start_offset = offset & ~mask;
653 end_offset = offset | mask;
654 if (!start_offset) /* First page is swap header. */
655 start_offset++;
656 if (end_offset >= si->max)
657 end_offset = si->max - 1;
658
659 blk_start_plug(&plug);
660 for (offset = start_offset; offset <= end_offset ; offset++) {
661 /* Ok, do the async read-ahead now */
662 folio = __read_swap_cache_async(
663 swp_entry(swp_type(entry), offset),
664 gfp_mask, mpol, ilx, &page_allocated, false);
665 if (!folio)
666 continue;
667 if (page_allocated) {
668 swap_read_folio(folio, false, &splug);
669 if (offset != entry_offset) {
670 folio_set_readahead(folio);
671 count_vm_event(SWAP_RA);
672 }
673 }
674 folio_put(folio);
675 }
676 blk_finish_plug(&plug);
677 swap_read_unplug(splug);
678 lru_add_drain(); /* Push any new pages onto the LRU now */
679skip:
680 /* The page was likely read above, so no need for plugging here */
681 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
682 &page_allocated, false);
683 if (unlikely(page_allocated)) {
684 zswap_folio_swapin(folio);
685 swap_read_folio(folio, false, NULL);
686 }
687 return folio;
688}
689
690int init_swap_address_space(unsigned int type, unsigned long nr_pages)
691{
692 struct address_space *spaces, *space;
693 unsigned int i, nr;
694
695 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
696 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
697 if (!spaces)
698 return -ENOMEM;
699 for (i = 0; i < nr; i++) {
700 space = spaces + i;
701 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
702 atomic_set(&space->i_mmap_writable, 0);
703 space->a_ops = &swap_aops;
704 /* swap cache doesn't use writeback related tags */
705 mapping_set_no_writeback_tags(space);
706 }
707 nr_swapper_spaces[type] = nr;
708 swapper_spaces[type] = spaces;
709
710 return 0;
711}
712
713void exit_swap_address_space(unsigned int type)
714{
715 int i;
716 struct address_space *spaces = swapper_spaces[type];
717
718 for (i = 0; i < nr_swapper_spaces[type]; i++)
719 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
720 kvfree(spaces);
721 nr_swapper_spaces[type] = 0;
722 swapper_spaces[type] = NULL;
723}
724
725#define SWAP_RA_ORDER_CEILING 5
726
727struct vma_swap_readahead {
728 unsigned short win;
729 unsigned short offset;
730 unsigned short nr_pte;
731};
732
733static void swap_ra_info(struct vm_fault *vmf,
734 struct vma_swap_readahead *ra_info)
735{
736 struct vm_area_struct *vma = vmf->vma;
737 unsigned long ra_val;
738 unsigned long faddr, pfn, fpfn, lpfn, rpfn;
739 unsigned long start, end;
740 unsigned int max_win, hits, prev_win, win;
741
742 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
743 SWAP_RA_ORDER_CEILING);
744 if (max_win == 1) {
745 ra_info->win = 1;
746 return;
747 }
748
749 faddr = vmf->address;
750 fpfn = PFN_DOWN(faddr);
751 ra_val = GET_SWAP_RA_VAL(vma);
752 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
753 prev_win = SWAP_RA_WIN(ra_val);
754 hits = SWAP_RA_HITS(ra_val);
755 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
756 max_win, prev_win);
757 atomic_long_set(&vma->swap_readahead_info,
758 SWAP_RA_VAL(faddr, win, 0));
759 if (win == 1)
760 return;
761
762 if (fpfn == pfn + 1) {
763 lpfn = fpfn;
764 rpfn = fpfn + win;
765 } else if (pfn == fpfn + 1) {
766 lpfn = fpfn - win + 1;
767 rpfn = fpfn + 1;
768 } else {
769 unsigned int left = (win - 1) / 2;
770
771 lpfn = fpfn - left;
772 rpfn = fpfn + win - left;
773 }
774 start = max3(lpfn, PFN_DOWN(vma->vm_start),
775 PFN_DOWN(faddr & PMD_MASK));
776 end = min3(rpfn, PFN_DOWN(vma->vm_end),
777 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
778
779 ra_info->nr_pte = end - start;
780 ra_info->offset = fpfn - start;
781}
782
783/**
784 * swap_vma_readahead - swap in pages in hope we need them soon
785 * @targ_entry: swap entry of the targeted memory
786 * @gfp_mask: memory allocation flags
787 * @mpol: NUMA memory allocation policy to be applied
788 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
789 * @vmf: fault information
790 *
791 * Returns the struct folio for entry and addr, after queueing swapin.
792 *
793 * Primitive swap readahead code. We simply read in a few pages whose
794 * virtual addresses are around the fault address in the same vma.
795 *
796 * Caller must hold read mmap_lock if vmf->vma is not NULL.
797 *
798 */
799static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
800 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
801{
802 struct blk_plug plug;
803 struct swap_iocb *splug = NULL;
804 struct folio *folio;
805 pte_t *pte = NULL, pentry;
806 unsigned long addr;
807 swp_entry_t entry;
808 pgoff_t ilx;
809 unsigned int i;
810 bool page_allocated;
811 struct vma_swap_readahead ra_info = {
812 .win = 1,
813 };
814
815 swap_ra_info(vmf, &ra_info);
816 if (ra_info.win == 1)
817 goto skip;
818
819 addr = vmf->address - (ra_info.offset * PAGE_SIZE);
820 ilx = targ_ilx - ra_info.offset;
821
822 blk_start_plug(&plug);
823 for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
824 if (!pte++) {
825 pte = pte_offset_map(vmf->pmd, addr);
826 if (!pte)
827 break;
828 }
829 pentry = ptep_get_lockless(pte);
830 if (!is_swap_pte(pentry))
831 continue;
832 entry = pte_to_swp_entry(pentry);
833 if (unlikely(non_swap_entry(entry)))
834 continue;
835 pte_unmap(pte);
836 pte = NULL;
837 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
838 &page_allocated, false);
839 if (!folio)
840 continue;
841 if (page_allocated) {
842 swap_read_folio(folio, false, &splug);
843 if (i != ra_info.offset) {
844 folio_set_readahead(folio);
845 count_vm_event(SWAP_RA);
846 }
847 }
848 folio_put(folio);
849 }
850 if (pte)
851 pte_unmap(pte);
852 blk_finish_plug(&plug);
853 swap_read_unplug(splug);
854 lru_add_drain();
855skip:
856 /* The folio was likely read above, so no need for plugging here */
857 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
858 &page_allocated, false);
859 if (unlikely(page_allocated)) {
860 zswap_folio_swapin(folio);
861 swap_read_folio(folio, false, NULL);
862 }
863 return folio;
864}
865
866/**
867 * swapin_readahead - swap in pages in hope we need them soon
868 * @entry: swap entry of this memory
869 * @gfp_mask: memory allocation flags
870 * @vmf: fault information
871 *
872 * Returns the struct page for entry and addr, after queueing swapin.
873 *
874 * It's a main entry function for swap readahead. By the configuration,
875 * it will read ahead blocks by cluster-based(ie, physical disk based)
876 * or vma-based(ie, virtual address based on faulty address) readahead.
877 */
878struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
879 struct vm_fault *vmf)
880{
881 struct mempolicy *mpol;
882 pgoff_t ilx;
883 struct folio *folio;
884
885 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
886 folio = swap_use_vma_readahead() ?
887 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
888 swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
889 mpol_cond_put(mpol);
890
891 if (!folio)
892 return NULL;
893 return folio_file_page(folio, swp_offset(entry));
894}
895
896#ifdef CONFIG_SYSFS
897static ssize_t vma_ra_enabled_show(struct kobject *kobj,
898 struct kobj_attribute *attr, char *buf)
899{
900 return sysfs_emit(buf, "%s\n",
901 enable_vma_readahead ? "true" : "false");
902}
903static ssize_t vma_ra_enabled_store(struct kobject *kobj,
904 struct kobj_attribute *attr,
905 const char *buf, size_t count)
906{
907 ssize_t ret;
908
909 ret = kstrtobool(buf, &enable_vma_readahead);
910 if (ret)
911 return ret;
912
913 return count;
914}
915static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
916
917static struct attribute *swap_attrs[] = {
918 &vma_ra_enabled_attr.attr,
919 NULL,
920};
921
922static const struct attribute_group swap_attr_group = {
923 .attrs = swap_attrs,
924};
925
926static int __init swap_init_sysfs(void)
927{
928 int err;
929 struct kobject *swap_kobj;
930
931 swap_kobj = kobject_create_and_add("swap", mm_kobj);
932 if (!swap_kobj) {
933 pr_err("failed to create swap kobject\n");
934 return -ENOMEM;
935 }
936 err = sysfs_create_group(swap_kobj, &swap_attr_group);
937 if (err) {
938 pr_err("failed to register swap group\n");
939 goto delete_obj;
940 }
941 return 0;
942
943delete_obj:
944 kobject_put(swap_kobj);
945 return err;
946}
947subsys_initcall(swap_init_sysfs);
948#endif