Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
 
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
 
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70#include <linux/psi.h>
  71
  72#include <asm/sections.h>
  73#include <asm/tlbflush.h>
  74#include <asm/div64.h>
  75#include "internal.h"
  76#include "shuffle.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  79static DEFINE_MUTEX(pcp_batch_high_lock);
  80#define MIN_PERCPU_PAGELIST_FRACTION	(8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  83DEFINE_PER_CPU(int, numa_node);
  84EXPORT_PER_CPU_SYMBOL(numa_node);
  85#endif
  86
  87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  88
  89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  90/*
  91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  94 * defined in <linux/topology.h>.
  95 */
  96DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  98int _node_numa_mem_[MAX_NUMNODES];
  99#endif
 100
 101/* work_structs for global per-cpu drains */
 102struct pcpu_drain {
 103	struct zone *zone;
 104	struct work_struct work;
 105};
 106DEFINE_MUTEX(pcpu_drain_mutex);
 107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 108
 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 110volatile unsigned long latent_entropy __latent_entropy;
 111EXPORT_SYMBOL(latent_entropy);
 112#endif
 113
 114/*
 115 * Array of node states.
 116 */
 117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 118	[N_POSSIBLE] = NODE_MASK_ALL,
 119	[N_ONLINE] = { { [0] = 1UL } },
 120#ifndef CONFIG_NUMA
 121	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 122#ifdef CONFIG_HIGHMEM
 123	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 124#endif
 125	[N_MEMORY] = { { [0] = 1UL } },
 126	[N_CPU] = { { [0] = 1UL } },
 127#endif	/* NUMA */
 128};
 129EXPORT_SYMBOL(node_states);
 130
 131atomic_long_t _totalram_pages __read_mostly;
 132EXPORT_SYMBOL(_totalram_pages);
 133unsigned long totalreserve_pages __read_mostly;
 134unsigned long totalcma_pages __read_mostly;
 135
 136int percpu_pagelist_fraction;
 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
 139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
 140#else
 141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
 142#endif
 143EXPORT_SYMBOL(init_on_alloc);
 144
 145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
 146DEFINE_STATIC_KEY_TRUE(init_on_free);
 147#else
 148DEFINE_STATIC_KEY_FALSE(init_on_free);
 149#endif
 150EXPORT_SYMBOL(init_on_free);
 151
 152static int __init early_init_on_alloc(char *buf)
 153{
 154	int ret;
 155	bool bool_result;
 156
 157	if (!buf)
 158		return -EINVAL;
 159	ret = kstrtobool(buf, &bool_result);
 160	if (bool_result && page_poisoning_enabled())
 161		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
 162	if (bool_result)
 163		static_branch_enable(&init_on_alloc);
 164	else
 165		static_branch_disable(&init_on_alloc);
 166	return ret;
 167}
 168early_param("init_on_alloc", early_init_on_alloc);
 169
 170static int __init early_init_on_free(char *buf)
 171{
 172	int ret;
 173	bool bool_result;
 174
 175	if (!buf)
 176		return -EINVAL;
 177	ret = kstrtobool(buf, &bool_result);
 178	if (bool_result && page_poisoning_enabled())
 179		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
 180	if (bool_result)
 181		static_branch_enable(&init_on_free);
 182	else
 183		static_branch_disable(&init_on_free);
 184	return ret;
 185}
 186early_param("init_on_free", early_init_on_free);
 187
 188/*
 189 * A cached value of the page's pageblock's migratetype, used when the page is
 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 192 * Also the migratetype set in the page does not necessarily match the pcplist
 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 194 * other index - this ensures that it will be put on the correct CMA freelist.
 195 */
 196static inline int get_pcppage_migratetype(struct page *page)
 197{
 198	return page->index;
 199}
 200
 201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 202{
 203	page->index = migratetype;
 204}
 205
 206#ifdef CONFIG_PM_SLEEP
 207/*
 208 * The following functions are used by the suspend/hibernate code to temporarily
 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 210 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 211 * they should always be called with system_transition_mutex held
 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 214 * with that modification).
 215 */
 216
 217static gfp_t saved_gfp_mask;
 218
 219void pm_restore_gfp_mask(void)
 220{
 221	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 222	if (saved_gfp_mask) {
 223		gfp_allowed_mask = saved_gfp_mask;
 224		saved_gfp_mask = 0;
 225	}
 226}
 227
 228void pm_restrict_gfp_mask(void)
 229{
 230	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 231	WARN_ON(saved_gfp_mask);
 232	saved_gfp_mask = gfp_allowed_mask;
 233	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 234}
 235
 236bool pm_suspended_storage(void)
 237{
 238	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 239		return false;
 240	return true;
 241}
 242#endif /* CONFIG_PM_SLEEP */
 243
 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 245unsigned int pageblock_order __read_mostly;
 246#endif
 247
 248static void __free_pages_ok(struct page *page, unsigned int order);
 
 249
 250/*
 251 * results with 256, 32 in the lowmem_reserve sysctl:
 252 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 253 *	1G machine -> (16M dma, 784M normal, 224M high)
 254 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 255 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 256 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 257 *
 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 259 * don't need any ZONE_NORMAL reservation
 260 */
 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 262#ifdef CONFIG_ZONE_DMA
 263	[ZONE_DMA] = 256,
 264#endif
 265#ifdef CONFIG_ZONE_DMA32
 266	[ZONE_DMA32] = 256,
 267#endif
 268	[ZONE_NORMAL] = 32,
 269#ifdef CONFIG_HIGHMEM
 270	[ZONE_HIGHMEM] = 0,
 271#endif
 272	[ZONE_MOVABLE] = 0,
 273};
 274
 275static char * const zone_names[MAX_NR_ZONES] = {
 276#ifdef CONFIG_ZONE_DMA
 277	 "DMA",
 278#endif
 279#ifdef CONFIG_ZONE_DMA32
 280	 "DMA32",
 281#endif
 282	 "Normal",
 283#ifdef CONFIG_HIGHMEM
 284	 "HighMem",
 285#endif
 286	 "Movable",
 287#ifdef CONFIG_ZONE_DEVICE
 288	 "Device",
 289#endif
 290};
 291
 292const char * const migratetype_names[MIGRATE_TYPES] = {
 293	"Unmovable",
 294	"Movable",
 295	"Reclaimable",
 296	"HighAtomic",
 297#ifdef CONFIG_CMA
 298	"CMA",
 299#endif
 300#ifdef CONFIG_MEMORY_ISOLATION
 301	"Isolate",
 302#endif
 303};
 304
 305compound_page_dtor * const compound_page_dtors[] = {
 306	NULL,
 307	free_compound_page,
 308#ifdef CONFIG_HUGETLB_PAGE
 309	free_huge_page,
 310#endif
 311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 312	free_transhuge_page,
 313#endif
 314};
 315
 316int min_free_kbytes = 1024;
 317int user_min_free_kbytes = -1;
 318#ifdef CONFIG_DISCONTIGMEM
 319/*
 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 321 * are not on separate NUMA nodes. Functionally this works but with
 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 323 * quite small. By default, do not boost watermarks on discontigmem as in
 324 * many cases very high-order allocations like THP are likely to be
 325 * unsupported and the premature reclaim offsets the advantage of long-term
 326 * fragmentation avoidance.
 327 */
 328int watermark_boost_factor __read_mostly;
 329#else
 330int watermark_boost_factor __read_mostly = 15000;
 331#endif
 332int watermark_scale_factor = 10;
 333
 334static unsigned long nr_kernel_pages __initdata;
 335static unsigned long nr_all_pages __initdata;
 336static unsigned long dma_reserve __initdata;
 337
 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 341static unsigned long required_kernelcore __initdata;
 342static unsigned long required_kernelcore_percent __initdata;
 343static unsigned long required_movablecore __initdata;
 344static unsigned long required_movablecore_percent __initdata;
 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 346static bool mirrored_kernelcore __meminitdata;
 347
 348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 349int movable_zone;
 350EXPORT_SYMBOL(movable_zone);
 351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 352
 353#if MAX_NUMNODES > 1
 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 355unsigned int nr_online_nodes __read_mostly = 1;
 356EXPORT_SYMBOL(nr_node_ids);
 357EXPORT_SYMBOL(nr_online_nodes);
 358#endif
 359
 
 
 
 
 
 
 360int page_group_by_mobility_disabled __read_mostly;
 361
 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 363/*
 364 * During boot we initialize deferred pages on-demand, as needed, but once
 365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 366 * and we can permanently disable that path.
 367 */
 368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 369
 370/*
 371 * Calling kasan_free_pages() only after deferred memory initialization
 372 * has completed. Poisoning pages during deferred memory init will greatly
 373 * lengthen the process and cause problem in large memory systems as the
 374 * deferred pages initialization is done with interrupt disabled.
 375 *
 376 * Assuming that there will be no reference to those newly initialized
 377 * pages before they are ever allocated, this should have no effect on
 378 * KASAN memory tracking as the poison will be properly inserted at page
 379 * allocation time. The only corner case is when pages are allocated by
 380 * on-demand allocation and then freed again before the deferred pages
 381 * initialization is done, but this is not likely to happen.
 382 */
 383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
 384{
 385	if (!static_branch_unlikely(&deferred_pages))
 386		kasan_free_pages(page, order);
 387}
 388
 389/* Returns true if the struct page for the pfn is uninitialised */
 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 391{
 392	int nid = early_pfn_to_nid(pfn);
 393
 394	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 395		return true;
 396
 397	return false;
 398}
 399
 400/*
 401 * Returns true when the remaining initialisation should be deferred until
 402 * later in the boot cycle when it can be parallelised.
 
 
 403 */
 404static bool __meminit
 405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 406{
 407	static unsigned long prev_end_pfn, nr_initialised;
 408
 409	/*
 410	 * prev_end_pfn static that contains the end of previous zone
 411	 * No need to protect because called very early in boot before smp_init.
 412	 */
 413	if (prev_end_pfn != end_pfn) {
 414		prev_end_pfn = end_pfn;
 415		nr_initialised = 0;
 416	}
 417
 418	/* Always populate low zones for address-constrained allocations */
 419	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 420		return false;
 421
 422	/*
 423	 * We start only with one section of pages, more pages are added as
 424	 * needed until the rest of deferred pages are initialized.
 425	 */
 426	nr_initialised++;
 427	if ((nr_initialised > PAGES_PER_SECTION) &&
 428	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 429		NODE_DATA(nid)->first_deferred_pfn = pfn;
 430		return true;
 431	}
 432	return false;
 433}
 434#else
 435#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
 436
 437static inline bool early_page_uninitialised(unsigned long pfn)
 438{
 439	return false;
 440}
 441
 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 443{
 444	return false;
 445}
 446#endif
 447
 448/* Return a pointer to the bitmap storing bits affecting a block of pages */
 449static inline unsigned long *get_pageblock_bitmap(struct page *page,
 450							unsigned long pfn)
 451{
 452#ifdef CONFIG_SPARSEMEM
 453	return section_to_usemap(__pfn_to_section(pfn));
 454#else
 455	return page_zone(page)->pageblock_flags;
 456#endif /* CONFIG_SPARSEMEM */
 457}
 458
 459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 460{
 461#ifdef CONFIG_SPARSEMEM
 462	pfn &= (PAGES_PER_SECTION-1);
 463	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 464#else
 465	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 466	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 467#endif /* CONFIG_SPARSEMEM */
 
 468}
 469
 470/**
 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 472 * @page: The page within the block of interest
 473 * @pfn: The target page frame number
 474 * @end_bitidx: The last bit of interest to retrieve
 475 * @mask: mask of bits that the caller is interested in
 476 *
 477 * Return: pageblock_bits flags
 478 */
 479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 480					unsigned long pfn,
 481					unsigned long end_bitidx,
 482					unsigned long mask)
 483{
 484	unsigned long *bitmap;
 485	unsigned long bitidx, word_bitidx;
 486	unsigned long word;
 487
 488	bitmap = get_pageblock_bitmap(page, pfn);
 489	bitidx = pfn_to_bitidx(page, pfn);
 490	word_bitidx = bitidx / BITS_PER_LONG;
 491	bitidx &= (BITS_PER_LONG-1);
 492
 493	word = bitmap[word_bitidx];
 494	bitidx += end_bitidx;
 495	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 496}
 497
 498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 499					unsigned long end_bitidx,
 500					unsigned long mask)
 501{
 502	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 503}
 504
 505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 
 506{
 507	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 508}
 509
 510/**
 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 512 * @page: The page within the block of interest
 513 * @flags: The flags to set
 514 * @pfn: The target page frame number
 515 * @end_bitidx: The last bit of interest
 516 * @mask: mask of bits that the caller is interested in
 517 */
 518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 519					unsigned long pfn,
 520					unsigned long end_bitidx,
 521					unsigned long mask)
 522{
 523	unsigned long *bitmap;
 524	unsigned long bitidx, word_bitidx;
 525	unsigned long old_word, word;
 526
 527	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 528	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 529
 530	bitmap = get_pageblock_bitmap(page, pfn);
 531	bitidx = pfn_to_bitidx(page, pfn);
 532	word_bitidx = bitidx / BITS_PER_LONG;
 533	bitidx &= (BITS_PER_LONG-1);
 534
 535	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 536
 537	bitidx += end_bitidx;
 538	mask <<= (BITS_PER_LONG - bitidx - 1);
 539	flags <<= (BITS_PER_LONG - bitidx - 1);
 540
 541	word = READ_ONCE(bitmap[word_bitidx]);
 542	for (;;) {
 543		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 544		if (word == old_word)
 545			break;
 546		word = old_word;
 547	}
 548}
 549
 550void set_pageblock_migratetype(struct page *page, int migratetype)
 551{
 552	if (unlikely(page_group_by_mobility_disabled &&
 553		     migratetype < MIGRATE_PCPTYPES))
 554		migratetype = MIGRATE_UNMOVABLE;
 555
 556	set_pageblock_flags_group(page, (unsigned long)migratetype,
 557					PB_migrate, PB_migrate_end);
 558}
 559
 560#ifdef CONFIG_DEBUG_VM
 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 562{
 563	int ret = 0;
 564	unsigned seq;
 565	unsigned long pfn = page_to_pfn(page);
 566	unsigned long sp, start_pfn;
 567
 568	do {
 569		seq = zone_span_seqbegin(zone);
 570		start_pfn = zone->zone_start_pfn;
 571		sp = zone->spanned_pages;
 572		if (!zone_spans_pfn(zone, pfn))
 573			ret = 1;
 574	} while (zone_span_seqretry(zone, seq));
 575
 576	if (ret)
 577		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 578			pfn, zone_to_nid(zone), zone->name,
 579			start_pfn, start_pfn + sp);
 580
 581	return ret;
 582}
 583
 584static int page_is_consistent(struct zone *zone, struct page *page)
 585{
 586	if (!pfn_valid_within(page_to_pfn(page)))
 587		return 0;
 588	if (zone != page_zone(page))
 589		return 0;
 590
 591	return 1;
 592}
 593/*
 594 * Temporary debugging check for pages not lying within a given zone.
 595 */
 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 597{
 598	if (page_outside_zone_boundaries(zone, page))
 599		return 1;
 600	if (!page_is_consistent(zone, page))
 601		return 1;
 602
 603	return 0;
 604}
 605#else
 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 607{
 608	return 0;
 609}
 610#endif
 611
 612static void bad_page(struct page *page, const char *reason,
 613		unsigned long bad_flags)
 614{
 615	static unsigned long resume;
 616	static unsigned long nr_shown;
 617	static unsigned long nr_unshown;
 618
 619	/*
 620	 * Allow a burst of 60 reports, then keep quiet for that minute;
 621	 * or allow a steady drip of one report per second.
 622	 */
 623	if (nr_shown == 60) {
 624		if (time_before(jiffies, resume)) {
 625			nr_unshown++;
 626			goto out;
 627		}
 628		if (nr_unshown) {
 629			pr_alert(
 630			      "BUG: Bad page state: %lu messages suppressed\n",
 631				nr_unshown);
 632			nr_unshown = 0;
 633		}
 634		nr_shown = 0;
 635	}
 636	if (nr_shown++ == 0)
 637		resume = jiffies + 60 * HZ;
 638
 639	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 640		current->comm, page_to_pfn(page));
 641	__dump_page(page, reason);
 642	bad_flags &= page->flags;
 643	if (bad_flags)
 644		pr_alert("bad because of flags: %#lx(%pGp)\n",
 645						bad_flags, &bad_flags);
 646	dump_page_owner(page);
 647
 648	print_modules();
 649	dump_stack();
 650out:
 651	/* Leave bad fields for debug, except PageBuddy could make trouble */
 652	page_mapcount_reset(page); /* remove PageBuddy */
 653	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 654}
 655
 656/*
 657 * Higher-order pages are called "compound pages".  They are structured thusly:
 658 *
 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 660 *
 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 663 *
 664 * The first tail page's ->compound_dtor holds the offset in array of compound
 665 * page destructors. See compound_page_dtors.
 666 *
 667 * The first tail page's ->compound_order holds the order of allocation.
 668 * This usage means that zero-order pages may not be compound.
 669 */
 670
 671void free_compound_page(struct page *page)
 672{
 673	mem_cgroup_uncharge(page);
 674	__free_pages_ok(page, compound_order(page));
 675}
 676
 677void prep_compound_page(struct page *page, unsigned int order)
 678{
 679	int i;
 680	int nr_pages = 1 << order;
 681
 682	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 683	set_compound_order(page, order);
 684	__SetPageHead(page);
 685	for (i = 1; i < nr_pages; i++) {
 686		struct page *p = page + i;
 687		set_page_count(p, 0);
 688		p->mapping = TAIL_MAPPING;
 689		set_compound_head(p, page);
 690	}
 691	atomic_set(compound_mapcount_ptr(page), -1);
 692}
 693
 694#ifdef CONFIG_DEBUG_PAGEALLOC
 695unsigned int _debug_guardpage_minorder;
 696
 697#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
 698DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
 699#else
 700DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 701#endif
 702EXPORT_SYMBOL(_debug_pagealloc_enabled);
 703
 704DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 
 705
 706static int __init early_debug_pagealloc(char *buf)
 707{
 708	bool enable = false;
 709
 710	if (kstrtobool(buf, &enable))
 711		return -EINVAL;
 712
 713	if (enable)
 714		static_branch_enable(&_debug_pagealloc_enabled);
 
 
 
 
 715
 716	return 0;
 717}
 718early_param("debug_pagealloc", early_debug_pagealloc);
 719
 720static void init_debug_guardpage(void)
 721{
 722	if (!debug_pagealloc_enabled())
 723		return;
 724
 725	if (!debug_guardpage_minorder())
 726		return;
 727
 728	static_branch_enable(&_debug_guardpage_enabled);
 729}
 730
 731static int __init debug_guardpage_minorder_setup(char *buf)
 732{
 733	unsigned long res;
 734
 735	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 736		pr_err("Bad debug_guardpage_minorder value\n");
 737		return 0;
 738	}
 739	_debug_guardpage_minorder = res;
 740	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 741	return 0;
 742}
 743early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 744
 745static inline bool set_page_guard(struct zone *zone, struct page *page,
 746				unsigned int order, int migratetype)
 747{
 748	if (!debug_guardpage_enabled())
 749		return false;
 
 
 
 
 
 
 750
 751	if (order >= debug_guardpage_minorder())
 752		return false;
 
 
 753
 754	__SetPageGuard(page);
 755	INIT_LIST_HEAD(&page->lru);
 756	set_page_private(page, order);
 757	/* Guard pages are not available for any usage */
 758	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 759
 760	return true;
 761}
 762
 763static inline void clear_page_guard(struct zone *zone, struct page *page,
 764				unsigned int order, int migratetype)
 765{
 766	if (!debug_guardpage_enabled())
 
 767		return;
 
 768
 769	__ClearPageGuard(page);
 
 770
 771	set_page_private(page, 0);
 772	if (!is_migrate_isolate(migratetype))
 773		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 774}
 775#else
 776static inline bool set_page_guard(struct zone *zone, struct page *page,
 777			unsigned int order, int migratetype) { return false; }
 778static inline void clear_page_guard(struct zone *zone, struct page *page,
 779				unsigned int order, int migratetype) {}
 780#endif
 781
 782static inline void set_page_order(struct page *page, unsigned int order)
 783{
 784	set_page_private(page, order);
 785	__SetPageBuddy(page);
 786}
 787
 788/*
 789 * This function checks whether a page is free && is the buddy
 790 * we can coalesce a page and its buddy if
 791 * (a) the buddy is not in a hole (check before calling!) &&
 792 * (b) the buddy is in the buddy system &&
 793 * (c) a page and its buddy have the same order &&
 794 * (d) a page and its buddy are in the same zone.
 795 *
 796 * For recording whether a page is in the buddy system, we set PageBuddy.
 797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 798 *
 799 * For recording page's order, we use page_private(page).
 800 */
 801static inline int page_is_buddy(struct page *page, struct page *buddy,
 802							unsigned int order)
 803{
 804	if (page_is_guard(buddy) && page_order(buddy) == order) {
 805		if (page_zone_id(page) != page_zone_id(buddy))
 806			return 0;
 807
 808		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 809
 810		return 1;
 811	}
 812
 813	if (PageBuddy(buddy) && page_order(buddy) == order) {
 814		/*
 815		 * zone check is done late to avoid uselessly
 816		 * calculating zone/node ids for pages that could
 817		 * never merge.
 818		 */
 819		if (page_zone_id(page) != page_zone_id(buddy))
 820			return 0;
 821
 822		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 823
 824		return 1;
 825	}
 826	return 0;
 827}
 828
 829#ifdef CONFIG_COMPACTION
 830static inline struct capture_control *task_capc(struct zone *zone)
 831{
 832	struct capture_control *capc = current->capture_control;
 833
 834	return capc &&
 835		!(current->flags & PF_KTHREAD) &&
 836		!capc->page &&
 837		capc->cc->zone == zone &&
 838		capc->cc->direct_compaction ? capc : NULL;
 839}
 840
 841static inline bool
 842compaction_capture(struct capture_control *capc, struct page *page,
 843		   int order, int migratetype)
 844{
 845	if (!capc || order != capc->cc->order)
 846		return false;
 847
 848	/* Do not accidentally pollute CMA or isolated regions*/
 849	if (is_migrate_cma(migratetype) ||
 850	    is_migrate_isolate(migratetype))
 851		return false;
 852
 853	/*
 854	 * Do not let lower order allocations polluate a movable pageblock.
 855	 * This might let an unmovable request use a reclaimable pageblock
 856	 * and vice-versa but no more than normal fallback logic which can
 857	 * have trouble finding a high-order free page.
 858	 */
 859	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 860		return false;
 861
 862	capc->page = page;
 863	return true;
 864}
 865
 866#else
 867static inline struct capture_control *task_capc(struct zone *zone)
 868{
 869	return NULL;
 870}
 871
 872static inline bool
 873compaction_capture(struct capture_control *capc, struct page *page,
 874		   int order, int migratetype)
 875{
 876	return false;
 877}
 878#endif /* CONFIG_COMPACTION */
 879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880/*
 881 * Freeing function for a buddy system allocator.
 882 *
 883 * The concept of a buddy system is to maintain direct-mapped table
 884 * (containing bit values) for memory blocks of various "orders".
 885 * The bottom level table contains the map for the smallest allocatable
 886 * units of memory (here, pages), and each level above it describes
 887 * pairs of units from the levels below, hence, "buddies".
 888 * At a high level, all that happens here is marking the table entry
 889 * at the bottom level available, and propagating the changes upward
 890 * as necessary, plus some accounting needed to play nicely with other
 891 * parts of the VM system.
 892 * At each level, we keep a list of pages, which are heads of continuous
 893 * free pages of length of (1 << order) and marked with PageBuddy.
 894 * Page's order is recorded in page_private(page) field.
 895 * So when we are allocating or freeing one, we can derive the state of the
 896 * other.  That is, if we allocate a small block, and both were
 897 * free, the remainder of the region must be split into blocks.
 898 * If a block is freed, and its buddy is also free, then this
 899 * triggers coalescing into a block of larger size.
 900 *
 901 * -- nyc
 902 */
 903
 904static inline void __free_one_page(struct page *page,
 905		unsigned long pfn,
 906		struct zone *zone, unsigned int order,
 907		int migratetype)
 908{
 
 
 909	unsigned long combined_pfn;
 910	unsigned long uninitialized_var(buddy_pfn);
 911	struct page *buddy;
 912	unsigned int max_order;
 913	struct capture_control *capc = task_capc(zone);
 914
 915	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 916
 917	VM_BUG_ON(!zone_is_initialized(zone));
 918	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 919
 920	VM_BUG_ON(migratetype == -1);
 921	if (likely(!is_migrate_isolate(migratetype)))
 922		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 923
 924	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 925	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 926
 927continue_merging:
 928	while (order < max_order - 1) {
 929		if (compaction_capture(capc, page, order, migratetype)) {
 930			__mod_zone_freepage_state(zone, -(1 << order),
 931								migratetype);
 932			return;
 933		}
 934		buddy_pfn = __find_buddy_pfn(pfn, order);
 935		buddy = page + (buddy_pfn - pfn);
 936
 937		if (!pfn_valid_within(buddy_pfn))
 938			goto done_merging;
 939		if (!page_is_buddy(page, buddy, order))
 940			goto done_merging;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941		/*
 942		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 943		 * merge with it and move up one order.
 944		 */
 945		if (page_is_guard(buddy))
 946			clear_page_guard(zone, buddy, order, migratetype);
 947		else
 948			del_page_from_free_area(buddy, &zone->free_area[order]);
 949		combined_pfn = buddy_pfn & pfn;
 950		page = page + (combined_pfn - pfn);
 951		pfn = combined_pfn;
 952		order++;
 953	}
 954	if (max_order < MAX_ORDER) {
 955		/* If we are here, it means order is >= pageblock_order.
 956		 * We want to prevent merge between freepages on isolate
 957		 * pageblock and normal pageblock. Without this, pageblock
 958		 * isolation could cause incorrect freepage or CMA accounting.
 959		 *
 960		 * We don't want to hit this code for the more frequent
 961		 * low-order merging.
 962		 */
 963		if (unlikely(has_isolate_pageblock(zone))) {
 964			int buddy_mt;
 965
 966			buddy_pfn = __find_buddy_pfn(pfn, order);
 967			buddy = page + (buddy_pfn - pfn);
 968			buddy_mt = get_pageblock_migratetype(buddy);
 969
 970			if (migratetype != buddy_mt
 971					&& (is_migrate_isolate(migratetype) ||
 972						is_migrate_isolate(buddy_mt)))
 973				goto done_merging;
 974		}
 975		max_order++;
 976		goto continue_merging;
 977	}
 978
 979done_merging:
 980	set_page_order(page, order);
 981
 982	/*
 983	 * If this is not the largest possible page, check if the buddy
 984	 * of the next-highest order is free. If it is, it's possible
 985	 * that pages are being freed that will coalesce soon. In case,
 986	 * that is happening, add the free page to the tail of the list
 987	 * so it's less likely to be used soon and more likely to be merged
 988	 * as a higher order page
 989	 */
 990	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
 991			&& !is_shuffle_order(order)) {
 992		struct page *higher_page, *higher_buddy;
 993		combined_pfn = buddy_pfn & pfn;
 994		higher_page = page + (combined_pfn - pfn);
 995		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 996		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 997		if (pfn_valid_within(buddy_pfn) &&
 998		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 999			add_to_free_area_tail(page, &zone->free_area[order],
1000					      migratetype);
1001			return;
1002		}
1003	}
1004
1005	if (is_shuffle_order(order))
1006		add_to_free_area_random(page, &zone->free_area[order],
1007				migratetype);
1008	else
1009		add_to_free_area(page, &zone->free_area[order], migratetype);
1010
 
 
 
1011}
1012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013/*
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1017 */
1018static inline bool page_expected_state(struct page *page,
1019					unsigned long check_flags)
1020{
1021	if (unlikely(atomic_read(&page->_mapcount) != -1))
1022		return false;
1023
1024	if (unlikely((unsigned long)page->mapping |
1025			page_ref_count(page) |
1026#ifdef CONFIG_MEMCG
1027			(unsigned long)page->mem_cgroup |
 
 
 
1028#endif
1029			(page->flags & check_flags)))
1030		return false;
1031
1032	return true;
1033}
1034
1035static void free_pages_check_bad(struct page *page)
1036{
1037	const char *bad_reason;
1038	unsigned long bad_flags;
1039
1040	bad_reason = NULL;
1041	bad_flags = 0;
1042
1043	if (unlikely(atomic_read(&page->_mapcount) != -1))
1044		bad_reason = "nonzero mapcount";
1045	if (unlikely(page->mapping != NULL))
1046		bad_reason = "non-NULL mapping";
1047	if (unlikely(page_ref_count(page) != 0))
1048		bad_reason = "nonzero _refcount";
1049	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 
 
1052	}
1053#ifdef CONFIG_MEMCG
1054	if (unlikely(page->mem_cgroup))
1055		bad_reason = "page still charged to cgroup";
1056#endif
1057	bad_page(page, bad_reason, bad_flags);
 
 
 
 
1058}
1059
1060static inline int free_pages_check(struct page *page)
 
 
 
 
 
 
1061{
1062	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063		return 0;
1064
1065	/* Something has gone sideways, find it */
1066	free_pages_check_bad(page);
1067	return 1;
1068}
1069
1070static int free_tail_pages_check(struct page *head_page, struct page *page)
1071{
 
 
 
 
 
 
1072	int ret = 1;
1073
1074	/*
1075	 * We rely page->lru.next never has bit 0 set, unless the page
1076	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077	 */
1078	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079
1080	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081		ret = 0;
1082		goto out;
1083	}
1084	switch (page - head_page) {
1085	case 1:
1086		/* the first tail page: ->mapping may be compound_mapcount() */
1087		if (unlikely(compound_mapcount(page))) {
1088			bad_page(page, "nonzero compound_mapcount", 0);
 
 
 
 
 
 
 
 
1089			goto out;
1090		}
1091		break;
1092	case 2:
1093		/*
1094		 * the second tail page: ->mapping is
1095		 * deferred_list.next -- ignore value.
1096		 */
1097		break;
1098	default:
1099		if (page->mapping != TAIL_MAPPING) {
1100			bad_page(page, "corrupted mapping in tail page", 0);
1101			goto out;
1102		}
1103		break;
1104	}
1105	if (unlikely(!PageTail(page))) {
1106		bad_page(page, "PageTail not set", 0);
1107		goto out;
1108	}
1109	if (unlikely(compound_head(page) != head_page)) {
1110		bad_page(page, "compound_head not consistent", 0);
1111		goto out;
1112	}
1113	ret = 0;
1114out:
1115	page->mapping = NULL;
1116	clear_compound_head(page);
1117	return ret;
1118}
1119
1120static void kernel_init_free_pages(struct page *page, int numpages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121{
1122	int i;
1123
 
 
1124	for (i = 0; i < numpages; i++)
1125		clear_highpage(page + i);
 
1126}
1127
1128static __always_inline bool free_pages_prepare(struct page *page,
1129					unsigned int order, bool check_free)
1130{
1131	int bad = 0;
 
 
 
1132
1133	VM_BUG_ON_PAGE(PageTail(page), page);
1134
1135	trace_mm_page_free(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137	/*
1138	 * Check tail pages before head page information is cleared to
1139	 * avoid checking PageCompound for order-0 pages.
1140	 */
1141	if (unlikely(order)) {
1142		bool compound = PageCompound(page);
1143		int i;
1144
1145		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1146
1147		if (compound)
1148			ClearPageDoubleMap(page);
1149		for (i = 1; i < (1 << order); i++) {
1150			if (compound)
1151				bad += free_tail_pages_check(page, page + i);
1152			if (unlikely(free_pages_check(page + i))) {
1153				bad++;
1154				continue;
 
 
1155			}
1156			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157		}
1158	}
1159	if (PageMappingFlags(page))
1160		page->mapping = NULL;
1161	if (memcg_kmem_enabled() && PageKmemcg(page))
1162		__memcg_kmem_uncharge(page, order);
1163	if (check_free)
1164		bad += free_pages_check(page);
1165	if (bad)
1166		return false;
1167
1168	page_cpupid_reset_last(page);
1169	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170	reset_page_owner(page, order);
 
1171
1172	if (!PageHighMem(page)) {
1173		debug_check_no_locks_freed(page_address(page),
1174					   PAGE_SIZE << order);
1175		debug_check_no_obj_freed(page_address(page),
1176					   PAGE_SIZE << order);
1177	}
1178	if (want_init_on_free())
1179		kernel_init_free_pages(page, 1 << order);
1180
1181	kernel_poison_pages(page, 1 << order, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182	/*
1183	 * arch_free_page() can make the page's contents inaccessible.  s390
1184	 * does this.  So nothing which can access the page's contents should
1185	 * happen after this.
1186	 */
1187	arch_free_page(page, order);
1188
1189	if (debug_pagealloc_enabled())
1190		kernel_map_pages(page, 1 << order, 0);
1191
1192	kasan_free_nondeferred_pages(page, order);
1193
1194	return true;
1195}
1196
1197#ifdef CONFIG_DEBUG_VM
1198/*
1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201 * moved from pcp lists to free lists.
1202 */
1203static bool free_pcp_prepare(struct page *page)
1204{
1205	return free_pages_prepare(page, 0, true);
1206}
1207
1208static bool bulkfree_pcp_prepare(struct page *page)
1209{
1210	if (debug_pagealloc_enabled())
1211		return free_pages_check(page);
1212	else
1213		return false;
1214}
1215#else
1216/*
1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218 * moving from pcp lists to free list in order to reduce overhead. With
1219 * debug_pagealloc enabled, they are checked also immediately when being freed
1220 * to the pcp lists.
1221 */
1222static bool free_pcp_prepare(struct page *page)
1223{
1224	if (debug_pagealloc_enabled())
1225		return free_pages_prepare(page, 0, true);
1226	else
1227		return free_pages_prepare(page, 0, false);
1228}
1229
1230static bool bulkfree_pcp_prepare(struct page *page)
1231{
1232	return free_pages_check(page);
1233}
1234#endif /* CONFIG_DEBUG_VM */
1235
1236static inline void prefetch_buddy(struct page *page)
1237{
1238	unsigned long pfn = page_to_pfn(page);
1239	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240	struct page *buddy = page + (buddy_pfn - pfn);
1241
1242	prefetch(buddy);
1243}
1244
1245/*
1246 * Frees a number of pages from the PCP lists
1247 * Assumes all pages on list are in same zone, and of same order.
1248 * count is the number of pages to free.
1249 *
1250 * If the zone was previously in an "all pages pinned" state then look to
1251 * see if this freeing clears that state.
1252 *
1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254 * pinned" detection logic.
1255 */
1256static void free_pcppages_bulk(struct zone *zone, int count,
1257					struct per_cpu_pages *pcp)
 
1258{
1259	int migratetype = 0;
1260	int batch_free = 0;
1261	int prefetch_nr = 0;
1262	bool isolated_pageblocks;
1263	struct page *page, *tmp;
1264	LIST_HEAD(head);
 
 
 
 
 
 
 
 
1265
1266	while (count) {
 
 
 
1267		struct list_head *list;
 
1268
1269		/*
1270		 * Remove pages from lists in a round-robin fashion. A
1271		 * batch_free count is maintained that is incremented when an
1272		 * empty list is encountered.  This is so more pages are freed
1273		 * off fuller lists instead of spinning excessively around empty
1274		 * lists
1275		 */
1276		do {
1277			batch_free++;
1278			if (++migratetype == MIGRATE_PCPTYPES)
1279				migratetype = 0;
1280			list = &pcp->lists[migratetype];
1281		} while (list_empty(list));
1282
1283		/* This is the only non-empty list. Free them all. */
1284		if (batch_free == MIGRATE_PCPTYPES)
1285			batch_free = count;
1286
1287		do {
1288			page = list_last_entry(list, struct page, lru);
1289			/* must delete to avoid corrupting pcp list */
1290			list_del(&page->lru);
1291			pcp->count--;
1292
1293			if (bulkfree_pcp_prepare(page))
1294				continue;
1295
1296			list_add_tail(&page->lru, &head);
 
1297
1298			/*
1299			 * We are going to put the page back to the global
1300			 * pool, prefetch its buddy to speed up later access
1301			 * under zone->lock. It is believed the overhead of
1302			 * an additional test and calculating buddy_pfn here
1303			 * can be offset by reduced memory latency later. To
1304			 * avoid excessive prefetching due to large count, only
1305			 * prefetch buddy for the first pcp->batch nr of pages.
1306			 */
1307			if (prefetch_nr++ < pcp->batch)
1308				prefetch_buddy(page);
1309		} while (--count && --batch_free && !list_empty(list));
 
 
1310	}
1311
1312	spin_lock(&zone->lock);
1313	isolated_pageblocks = has_isolate_pageblock(zone);
1314
1315	/*
1316	 * Use safe version since after __free_one_page(),
1317	 * page->lru.next will not point to original list.
1318	 */
1319	list_for_each_entry_safe(page, tmp, &head, lru) {
1320		int mt = get_pcppage_migratetype(page);
1321		/* MIGRATE_ISOLATE page should not go to pcplists */
1322		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323		/* Pageblock could have been isolated meanwhile */
1324		if (unlikely(isolated_pageblocks))
1325			mt = get_pageblock_migratetype(page);
1326
1327		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328		trace_mm_page_pcpu_drain(page, 0, mt);
1329	}
1330	spin_unlock(&zone->lock);
1331}
1332
1333static void free_one_page(struct zone *zone,
1334				struct page *page, unsigned long pfn,
1335				unsigned int order,
1336				int migratetype)
1337{
1338	spin_lock(&zone->lock);
 
 
1339	if (unlikely(has_isolate_pageblock(zone) ||
1340		is_migrate_isolate(migratetype))) {
1341		migratetype = get_pfnblock_migratetype(page, pfn);
1342	}
1343	__free_one_page(page, pfn, zone, order, migratetype);
1344	spin_unlock(&zone->lock);
1345}
1346
1347static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348				unsigned long zone, int nid)
1349{
1350	mm_zero_struct_page(page);
1351	set_page_links(page, zone, nid, pfn);
1352	init_page_count(page);
1353	page_mapcount_reset(page);
1354	page_cpupid_reset_last(page);
1355	page_kasan_tag_reset(page);
1356
1357	INIT_LIST_HEAD(&page->lru);
1358#ifdef WANT_PAGE_VIRTUAL
1359	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360	if (!is_highmem_idx(zone))
1361		set_page_address(page, __va(pfn << PAGE_SHIFT));
1362#endif
1363}
1364
1365#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366static void __meminit init_reserved_page(unsigned long pfn)
1367{
1368	pg_data_t *pgdat;
1369	int nid, zid;
1370
1371	if (!early_page_uninitialised(pfn))
1372		return;
1373
1374	nid = early_pfn_to_nid(pfn);
1375	pgdat = NODE_DATA(nid);
1376
1377	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378		struct zone *zone = &pgdat->node_zones[zid];
1379
1380		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381			break;
1382	}
1383	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1384}
1385#else
1386static inline void init_reserved_page(unsigned long pfn)
1387{
1388}
1389#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390
1391/*
1392 * Initialised pages do not have PageReserved set. This function is
1393 * called for each range allocated by the bootmem allocator and
1394 * marks the pages PageReserved. The remaining valid pages are later
1395 * sent to the buddy page allocator.
1396 */
1397void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1398{
1399	unsigned long start_pfn = PFN_DOWN(start);
1400	unsigned long end_pfn = PFN_UP(end);
1401
1402	for (; start_pfn < end_pfn; start_pfn++) {
1403		if (pfn_valid(start_pfn)) {
1404			struct page *page = pfn_to_page(start_pfn);
1405
1406			init_reserved_page(start_pfn);
1407
1408			/* Avoid false-positive PageTail() */
1409			INIT_LIST_HEAD(&page->lru);
1410
1411			/*
1412			 * no need for atomic set_bit because the struct
1413			 * page is not visible yet so nobody should
1414			 * access it yet.
1415			 */
1416			__SetPageReserved(page);
1417		}
1418	}
1419}
1420
1421static void __free_pages_ok(struct page *page, unsigned int order)
 
1422{
1423	unsigned long flags;
1424	int migratetype;
1425	unsigned long pfn = page_to_pfn(page);
 
1426
1427	if (!free_pages_prepare(page, order, true))
1428		return;
1429
 
 
 
 
 
1430	migratetype = get_pfnblock_migratetype(page, pfn);
1431	local_irq_save(flags);
 
 
1432	__count_vm_events(PGFREE, 1 << order);
1433	free_one_page(page_zone(page), page, pfn, order, migratetype);
1434	local_irq_restore(flags);
1435}
1436
1437void __free_pages_core(struct page *page, unsigned int order)
1438{
1439	unsigned int nr_pages = 1 << order;
1440	struct page *p = page;
1441	unsigned int loop;
1442
 
 
 
 
 
1443	prefetchw(p);
1444	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445		prefetchw(p + 1);
1446		__ClearPageReserved(p);
1447		set_page_count(p, 0);
1448	}
1449	__ClearPageReserved(p);
1450	set_page_count(p, 0);
1451
1452	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453	set_page_refcounted(page);
1454	__free_pages(page, order);
1455}
1456
1457#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1459
1460static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1461
1462int __meminit early_pfn_to_nid(unsigned long pfn)
1463{
1464	static DEFINE_SPINLOCK(early_pfn_lock);
1465	int nid;
1466
1467	spin_lock(&early_pfn_lock);
1468	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469	if (nid < 0)
1470		nid = first_online_node;
1471	spin_unlock(&early_pfn_lock);
1472
1473	return nid;
1474}
1475#endif
1476
1477#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478/* Only safe to use early in boot when initialisation is single-threaded */
1479static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1480{
1481	int nid;
1482
1483	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484	if (nid >= 0 && nid != node)
1485		return false;
1486	return true;
1487}
1488
1489#else
1490static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491{
1492	return true;
1493}
1494#endif
1495
 
 
1496
1497void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498							unsigned int order)
1499{
1500	if (early_page_uninitialised(pfn))
1501		return;
1502	__free_pages_core(page, order);
1503}
1504
1505/*
1506 * Check that the whole (or subset of) a pageblock given by the interval of
1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508 * with the migration of free compaction scanner. The scanners then need to
1509 * use only pfn_valid_within() check for arches that allow holes within
1510 * pageblocks.
1511 *
1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1513 *
1514 * It's possible on some configurations to have a setup like node0 node1 node0
1515 * i.e. it's possible that all pages within a zones range of pages do not
1516 * belong to a single zone. We assume that a border between node0 and node1
1517 * can occur within a single pageblock, but not a node0 node1 node0
1518 * interleaving within a single pageblock. It is therefore sufficient to check
1519 * the first and last page of a pageblock and avoid checking each individual
1520 * page in a pageblock.
 
 
 
 
 
 
 
 
 
1521 */
1522struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523				     unsigned long end_pfn, struct zone *zone)
1524{
1525	struct page *start_page;
1526	struct page *end_page;
1527
1528	/* end_pfn is one past the range we are checking */
1529	end_pfn--;
1530
1531	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532		return NULL;
1533
1534	start_page = pfn_to_online_page(start_pfn);
1535	if (!start_page)
1536		return NULL;
1537
1538	if (page_zone(start_page) != zone)
1539		return NULL;
1540
1541	end_page = pfn_to_page(end_pfn);
1542
1543	/* This gives a shorter code than deriving page_zone(end_page) */
1544	if (page_zone_id(start_page) != page_zone_id(end_page))
1545		return NULL;
1546
1547	return start_page;
1548}
1549
1550void set_zone_contiguous(struct zone *zone)
1551{
1552	unsigned long block_start_pfn = zone->zone_start_pfn;
1553	unsigned long block_end_pfn;
1554
1555	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556	for (; block_start_pfn < zone_end_pfn(zone);
1557			block_start_pfn = block_end_pfn,
1558			 block_end_pfn += pageblock_nr_pages) {
1559
1560		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1561
1562		if (!__pageblock_pfn_to_page(block_start_pfn,
1563					     block_end_pfn, zone))
1564			return;
1565	}
1566
1567	/* We confirm that there is no hole */
1568	zone->contiguous = true;
1569}
1570
1571void clear_zone_contiguous(struct zone *zone)
1572{
1573	zone->contiguous = false;
1574}
1575
1576#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577static void __init deferred_free_range(unsigned long pfn,
1578				       unsigned long nr_pages)
1579{
1580	struct page *page;
1581	unsigned long i;
1582
1583	if (!nr_pages)
1584		return;
1585
1586	page = pfn_to_page(pfn);
1587
1588	/* Free a large naturally-aligned chunk if possible */
1589	if (nr_pages == pageblock_nr_pages &&
1590	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1591		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592		__free_pages_core(page, pageblock_order);
1593		return;
1594	}
1595
1596	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599		__free_pages_core(page, 0);
1600	}
1601}
1602
1603/* Completion tracking for deferred_init_memmap() threads */
1604static atomic_t pgdat_init_n_undone __initdata;
1605static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606
1607static inline void __init pgdat_init_report_one_done(void)
1608{
1609	if (atomic_dec_and_test(&pgdat_init_n_undone))
1610		complete(&pgdat_init_all_done_comp);
1611}
1612
1613/*
1614 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 *
1616 * First we check if pfn is valid on architectures where it is possible to have
1617 * holes within pageblock_nr_pages. On systems where it is not possible, this
1618 * function is optimized out.
1619 *
1620 * Then, we check if a current large page is valid by only checking the validity
1621 * of the head pfn.
1622 */
1623static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624{
1625	if (!pfn_valid_within(pfn))
1626		return false;
1627	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628		return false;
1629	return true;
1630}
1631
1632/*
1633 * Free pages to buddy allocator. Try to free aligned pages in
1634 * pageblock_nr_pages sizes.
1635 */
1636static void __init deferred_free_pages(unsigned long pfn,
1637				       unsigned long end_pfn)
1638{
1639	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640	unsigned long nr_free = 0;
1641
1642	for (; pfn < end_pfn; pfn++) {
1643		if (!deferred_pfn_valid(pfn)) {
1644			deferred_free_range(pfn - nr_free, nr_free);
1645			nr_free = 0;
1646		} else if (!(pfn & nr_pgmask)) {
1647			deferred_free_range(pfn - nr_free, nr_free);
1648			nr_free = 1;
1649			touch_nmi_watchdog();
1650		} else {
1651			nr_free++;
1652		}
1653	}
1654	/* Free the last block of pages to allocator */
1655	deferred_free_range(pfn - nr_free, nr_free);
1656}
1657
1658/*
1659 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1660 * by performing it only once every pageblock_nr_pages.
1661 * Return number of pages initialized.
1662 */
1663static unsigned long  __init deferred_init_pages(struct zone *zone,
1664						 unsigned long pfn,
1665						 unsigned long end_pfn)
1666{
1667	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668	int nid = zone_to_nid(zone);
1669	unsigned long nr_pages = 0;
1670	int zid = zone_idx(zone);
1671	struct page *page = NULL;
1672
1673	for (; pfn < end_pfn; pfn++) {
1674		if (!deferred_pfn_valid(pfn)) {
1675			page = NULL;
1676			continue;
1677		} else if (!page || !(pfn & nr_pgmask)) {
1678			page = pfn_to_page(pfn);
1679			touch_nmi_watchdog();
1680		} else {
1681			page++;
1682		}
1683		__init_single_page(page, pfn, zid, nid);
1684		nr_pages++;
1685	}
1686	return (nr_pages);
1687}
1688
1689/*
1690 * This function is meant to pre-load the iterator for the zone init.
1691 * Specifically it walks through the ranges until we are caught up to the
1692 * first_init_pfn value and exits there. If we never encounter the value we
1693 * return false indicating there are no valid ranges left.
1694 */
1695static bool __init
1696deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697				    unsigned long *spfn, unsigned long *epfn,
1698				    unsigned long first_init_pfn)
1699{
1700	u64 j;
1701
1702	/*
1703	 * Start out by walking through the ranges in this zone that have
1704	 * already been initialized. We don't need to do anything with them
1705	 * so we just need to flush them out of the system.
1706	 */
1707	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708		if (*epfn <= first_init_pfn)
1709			continue;
1710		if (*spfn < first_init_pfn)
1711			*spfn = first_init_pfn;
1712		*i = j;
1713		return true;
1714	}
1715
1716	return false;
1717}
1718
1719/*
1720 * Initialize and free pages. We do it in two loops: first we initialize
1721 * struct page, then free to buddy allocator, because while we are
1722 * freeing pages we can access pages that are ahead (computing buddy
1723 * page in __free_one_page()).
1724 *
1725 * In order to try and keep some memory in the cache we have the loop
1726 * broken along max page order boundaries. This way we will not cause
1727 * any issues with the buddy page computation.
1728 */
1729static unsigned long __init
1730deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731		       unsigned long *end_pfn)
1732{
1733	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735	unsigned long nr_pages = 0;
1736	u64 j = *i;
1737
1738	/* First we loop through and initialize the page values */
1739	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740		unsigned long t;
1741
1742		if (mo_pfn <= *start_pfn)
1743			break;
1744
1745		t = min(mo_pfn, *end_pfn);
1746		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1747
1748		if (mo_pfn < *end_pfn) {
1749			*start_pfn = mo_pfn;
1750			break;
1751		}
1752	}
1753
1754	/* Reset values and now loop through freeing pages as needed */
1755	swap(j, *i);
1756
1757	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758		unsigned long t;
1759
1760		if (mo_pfn <= spfn)
1761			break;
1762
1763		t = min(mo_pfn, epfn);
1764		deferred_free_pages(spfn, t);
1765
1766		if (mo_pfn <= epfn)
1767			break;
1768	}
1769
1770	return nr_pages;
1771}
1772
1773/* Initialise remaining memory on a node */
1774static int __init deferred_init_memmap(void *data)
1775{
1776	pg_data_t *pgdat = data;
1777	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779	unsigned long first_init_pfn, flags;
1780	unsigned long start = jiffies;
1781	struct zone *zone;
1782	int zid;
1783	u64 i;
1784
1785	/* Bind memory initialisation thread to a local node if possible */
1786	if (!cpumask_empty(cpumask))
1787		set_cpus_allowed_ptr(current, cpumask);
1788
1789	pgdat_resize_lock(pgdat, &flags);
1790	first_init_pfn = pgdat->first_deferred_pfn;
1791	if (first_init_pfn == ULONG_MAX) {
1792		pgdat_resize_unlock(pgdat, &flags);
1793		pgdat_init_report_one_done();
1794		return 0;
1795	}
1796
1797	/* Sanity check boundaries */
1798	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800	pgdat->first_deferred_pfn = ULONG_MAX;
1801
1802	/* Only the highest zone is deferred so find it */
1803	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804		zone = pgdat->node_zones + zid;
1805		if (first_init_pfn < zone_end_pfn(zone))
1806			break;
1807	}
1808
1809	/* If the zone is empty somebody else may have cleared out the zone */
1810	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811						 first_init_pfn))
1812		goto zone_empty;
1813
1814	/*
1815	 * Initialize and free pages in MAX_ORDER sized increments so
1816	 * that we can avoid introducing any issues with the buddy
1817	 * allocator.
1818	 */
1819	while (spfn < epfn)
1820		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821zone_empty:
1822	pgdat_resize_unlock(pgdat, &flags);
1823
1824	/* Sanity check that the next zone really is unpopulated */
1825	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1826
1827	pr_info("node %d initialised, %lu pages in %ums\n",
1828		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1829
1830	pgdat_init_report_one_done();
1831	return 0;
1832}
1833
1834/*
1835 * If this zone has deferred pages, try to grow it by initializing enough
1836 * deferred pages to satisfy the allocation specified by order, rounded up to
1837 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1838 * of SECTION_SIZE bytes by initializing struct pages in increments of
1839 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1840 *
1841 * Return true when zone was grown, otherwise return false. We return true even
1842 * when we grow less than requested, to let the caller decide if there are
1843 * enough pages to satisfy the allocation.
1844 *
1845 * Note: We use noinline because this function is needed only during boot, and
1846 * it is called from a __ref function _deferred_grow_zone. This way we are
1847 * making sure that it is not inlined into permanent text section.
1848 */
1849static noinline bool __init
1850deferred_grow_zone(struct zone *zone, unsigned int order)
1851{
1852	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853	pg_data_t *pgdat = zone->zone_pgdat;
1854	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855	unsigned long spfn, epfn, flags;
1856	unsigned long nr_pages = 0;
1857	u64 i;
1858
1859	/* Only the last zone may have deferred pages */
1860	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861		return false;
1862
1863	pgdat_resize_lock(pgdat, &flags);
1864
1865	/*
1866	 * If deferred pages have been initialized while we were waiting for
1867	 * the lock, return true, as the zone was grown.  The caller will retry
1868	 * this zone.  We won't return to this function since the caller also
1869	 * has this static branch.
1870	 */
1871	if (!static_branch_unlikely(&deferred_pages)) {
1872		pgdat_resize_unlock(pgdat, &flags);
1873		return true;
1874	}
1875
1876	/*
1877	 * If someone grew this zone while we were waiting for spinlock, return
1878	 * true, as there might be enough pages already.
1879	 */
1880	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881		pgdat_resize_unlock(pgdat, &flags);
1882		return true;
1883	}
1884
1885	/* If the zone is empty somebody else may have cleared out the zone */
1886	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887						 first_deferred_pfn)) {
1888		pgdat->first_deferred_pfn = ULONG_MAX;
1889		pgdat_resize_unlock(pgdat, &flags);
1890		/* Retry only once. */
1891		return first_deferred_pfn != ULONG_MAX;
1892	}
1893
1894	/*
1895	 * Initialize and free pages in MAX_ORDER sized increments so
1896	 * that we can avoid introducing any issues with the buddy
1897	 * allocator.
1898	 */
1899	while (spfn < epfn) {
1900		/* update our first deferred PFN for this section */
1901		first_deferred_pfn = spfn;
1902
1903		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904
1905		/* We should only stop along section boundaries */
1906		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907			continue;
1908
1909		/* If our quota has been met we can stop here */
1910		if (nr_pages >= nr_pages_needed)
1911			break;
1912	}
1913
1914	pgdat->first_deferred_pfn = spfn;
1915	pgdat_resize_unlock(pgdat, &flags);
1916
1917	return nr_pages > 0;
1918}
1919
1920/*
1921 * deferred_grow_zone() is __init, but it is called from
1922 * get_page_from_freelist() during early boot until deferred_pages permanently
1923 * disables this call. This is why we have refdata wrapper to avoid warning,
1924 * and to ensure that the function body gets unloaded.
1925 */
1926static bool __ref
1927_deferred_grow_zone(struct zone *zone, unsigned int order)
1928{
1929	return deferred_grow_zone(zone, order);
1930}
1931
1932#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1933
1934void __init page_alloc_init_late(void)
1935{
1936	struct zone *zone;
1937	int nid;
1938
1939#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940
1941	/* There will be num_node_state(N_MEMORY) threads */
1942	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943	for_each_node_state(nid, N_MEMORY) {
1944		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1945	}
1946
1947	/* Block until all are initialised */
1948	wait_for_completion(&pgdat_init_all_done_comp);
1949
1950	/*
1951	 * The number of managed pages has changed due to the initialisation
1952	 * so the pcpu batch and high limits needs to be updated or the limits
1953	 * will be artificially small.
1954	 */
1955	for_each_populated_zone(zone)
1956		zone_pcp_update(zone);
1957
1958	/*
1959	 * We initialized the rest of the deferred pages.  Permanently disable
1960	 * on-demand struct page initialization.
1961	 */
1962	static_branch_disable(&deferred_pages);
1963
1964	/* Reinit limits that are based on free pages after the kernel is up */
1965	files_maxfiles_init();
1966#endif
1967
1968	/* Discard memblock private memory */
1969	memblock_discard();
1970
1971	for_each_node_state(nid, N_MEMORY)
1972		shuffle_free_memory(NODE_DATA(nid));
1973
1974	for_each_populated_zone(zone)
1975		set_zone_contiguous(zone);
1976
1977#ifdef CONFIG_DEBUG_PAGEALLOC
1978	init_debug_guardpage();
1979#endif
1980}
1981
1982#ifdef CONFIG_CMA
1983/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1984void __init init_cma_reserved_pageblock(struct page *page)
1985{
1986	unsigned i = pageblock_nr_pages;
1987	struct page *p = page;
1988
1989	do {
1990		__ClearPageReserved(p);
1991		set_page_count(p, 0);
1992	} while (++p, --i);
1993
1994	set_pageblock_migratetype(page, MIGRATE_CMA);
1995
1996	if (pageblock_order >= MAX_ORDER) {
1997		i = pageblock_nr_pages;
1998		p = page;
1999		do {
2000			set_page_refcounted(p);
2001			__free_pages(p, MAX_ORDER - 1);
2002			p += MAX_ORDER_NR_PAGES;
2003		} while (i -= MAX_ORDER_NR_PAGES);
2004	} else {
2005		set_page_refcounted(page);
2006		__free_pages(page, pageblock_order);
2007	}
2008
2009	adjust_managed_page_count(page, pageblock_nr_pages);
2010}
2011#endif
2012
2013/*
2014 * The order of subdivision here is critical for the IO subsystem.
2015 * Please do not alter this order without good reasons and regression
2016 * testing. Specifically, as large blocks of memory are subdivided,
2017 * the order in which smaller blocks are delivered depends on the order
2018 * they're subdivided in this function. This is the primary factor
2019 * influencing the order in which pages are delivered to the IO
2020 * subsystem according to empirical testing, and this is also justified
2021 * by considering the behavior of a buddy system containing a single
2022 * large block of memory acted on by a series of small allocations.
2023 * This behavior is a critical factor in sglist merging's success.
2024 *
2025 * -- nyc
2026 */
2027static inline void expand(struct zone *zone, struct page *page,
2028	int low, int high, struct free_area *area,
2029	int migratetype)
2030{
2031	unsigned long size = 1 << high;
2032
2033	while (high > low) {
2034		area--;
2035		high--;
2036		size >>= 1;
2037		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2038
2039		/*
2040		 * Mark as guard pages (or page), that will allow to
2041		 * merge back to allocator when buddy will be freed.
2042		 * Corresponding page table entries will not be touched,
2043		 * pages will stay not present in virtual address space
2044		 */
2045		if (set_page_guard(zone, &page[size], high, migratetype))
2046			continue;
2047
2048		add_to_free_area(&page[size], area, migratetype);
2049		set_page_order(&page[size], high);
2050	}
2051}
2052
2053static void check_new_page_bad(struct page *page)
2054{
2055	const char *bad_reason = NULL;
2056	unsigned long bad_flags = 0;
2057
2058	if (unlikely(atomic_read(&page->_mapcount) != -1))
2059		bad_reason = "nonzero mapcount";
2060	if (unlikely(page->mapping != NULL))
2061		bad_reason = "non-NULL mapping";
2062	if (unlikely(page_ref_count(page) != 0))
2063		bad_reason = "nonzero _refcount";
2064	if (unlikely(page->flags & __PG_HWPOISON)) {
2065		bad_reason = "HWPoisoned (hardware-corrupted)";
2066		bad_flags = __PG_HWPOISON;
2067		/* Don't complain about hwpoisoned pages */
2068		page_mapcount_reset(page); /* remove PageBuddy */
2069		return;
2070	}
2071	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2072		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2073		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2074	}
2075#ifdef CONFIG_MEMCG
2076	if (unlikely(page->mem_cgroup))
2077		bad_reason = "page still charged to cgroup";
2078#endif
2079	bad_page(page, bad_reason, bad_flags);
2080}
2081
2082/*
2083 * This page is about to be returned from the page allocator
2084 */
2085static inline int check_new_page(struct page *page)
2086{
2087	if (likely(page_expected_state(page,
2088				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2089		return 0;
2090
2091	check_new_page_bad(page);
2092	return 1;
2093}
2094
2095static inline bool free_pages_prezeroed(void)
2096{
2097	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2098		page_poisoning_enabled()) || want_init_on_free();
2099}
2100
2101#ifdef CONFIG_DEBUG_VM
2102/*
2103 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2104 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2105 * also checked when pcp lists are refilled from the free lists.
2106 */
2107static inline bool check_pcp_refill(struct page *page)
2108{
2109	if (debug_pagealloc_enabled())
2110		return check_new_page(page);
2111	else
2112		return false;
2113}
2114
2115static inline bool check_new_pcp(struct page *page)
2116{
2117	return check_new_page(page);
2118}
2119#else
2120/*
2121 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2122 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2123 * enabled, they are also checked when being allocated from the pcp lists.
2124 */
2125static inline bool check_pcp_refill(struct page *page)
2126{
2127	return check_new_page(page);
2128}
2129static inline bool check_new_pcp(struct page *page)
 
2130{
2131	if (debug_pagealloc_enabled())
2132		return check_new_page(page);
2133	else
2134		return false;
 
 
 
 
 
 
 
 
 
 
2135}
2136#endif /* CONFIG_DEBUG_VM */
2137
2138static bool check_new_pages(struct page *page, unsigned int order)
2139{
2140	int i;
2141	for (i = 0; i < (1 << order); i++) {
2142		struct page *p = page + i;
2143
2144		if (unlikely(check_new_page(p)))
2145			return true;
2146	}
2147
2148	return false;
 
2149}
2150
2151inline void post_alloc_hook(struct page *page, unsigned int order,
2152				gfp_t gfp_flags)
2153{
 
 
 
 
 
2154	set_page_private(page, 0);
2155	set_page_refcounted(page);
2156
2157	arch_alloc_page(page, order);
2158	if (debug_pagealloc_enabled())
2159		kernel_map_pages(page, 1 << order, 1);
2160	kasan_alloc_pages(page, order);
2161	kernel_poison_pages(page, 1 << order, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162	set_page_owner(page, order, gfp_flags);
 
2163}
2164
2165static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2166							unsigned int alloc_flags)
2167{
2168	post_alloc_hook(page, order, gfp_flags);
2169
2170	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2171		kernel_init_free_pages(page, 1 << order);
2172
2173	if (order && (gfp_flags & __GFP_COMP))
2174		prep_compound_page(page, order);
2175
2176	/*
2177	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2178	 * allocate the page. The expectation is that the caller is taking
2179	 * steps that will free more memory. The caller should avoid the page
2180	 * being used for !PFMEMALLOC purposes.
2181	 */
2182	if (alloc_flags & ALLOC_NO_WATERMARKS)
2183		set_page_pfmemalloc(page);
2184	else
2185		clear_page_pfmemalloc(page);
2186}
2187
2188/*
2189 * Go through the free lists for the given migratetype and remove
2190 * the smallest available page from the freelists
2191 */
2192static __always_inline
2193struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2194						int migratetype)
2195{
2196	unsigned int current_order;
2197	struct free_area *area;
2198	struct page *page;
2199
2200	/* Find a page of the appropriate size in the preferred list */
2201	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2202		area = &(zone->free_area[current_order]);
2203		page = get_page_from_free_area(area, migratetype);
2204		if (!page)
2205			continue;
2206		del_page_from_free_area(page, area);
2207		expand(zone, page, order, current_order, area, migratetype);
2208		set_pcppage_migratetype(page, migratetype);
 
 
 
2209		return page;
2210	}
2211
2212	return NULL;
2213}
2214
2215
2216/*
2217 * This array describes the order lists are fallen back to when
2218 * the free lists for the desirable migrate type are depleted
 
 
2219 */
2220static int fallbacks[MIGRATE_TYPES][4] = {
2221	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2222	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2223	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2224#ifdef CONFIG_CMA
2225	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2226#endif
2227#ifdef CONFIG_MEMORY_ISOLATION
2228	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2229#endif
2230};
2231
2232#ifdef CONFIG_CMA
2233static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2234					unsigned int order)
2235{
2236	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2237}
2238#else
2239static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2240					unsigned int order) { return NULL; }
2241#endif
2242
2243/*
2244 * Move the free pages in a range to the free lists of the requested type.
2245 * Note that start_page and end_pages are not aligned on a pageblock
2246 * boundary. If alignment is required, use move_freepages_block()
2247 */
2248static int move_freepages(struct zone *zone,
2249			  struct page *start_page, struct page *end_page,
2250			  int migratetype, int *num_movable)
2251{
2252	struct page *page;
 
2253	unsigned int order;
2254	int pages_moved = 0;
2255
2256	for (page = start_page; page <= end_page;) {
2257		if (!pfn_valid_within(page_to_pfn(page))) {
2258			page++;
2259			continue;
2260		}
2261
2262		if (!PageBuddy(page)) {
2263			/*
2264			 * We assume that pages that could be isolated for
2265			 * migration are movable. But we don't actually try
2266			 * isolating, as that would be expensive.
2267			 */
2268			if (num_movable &&
2269					(PageLRU(page) || __PageMovable(page)))
2270				(*num_movable)++;
2271
2272			page++;
2273			continue;
2274		}
2275
2276		/* Make sure we are not inadvertently changing nodes */
2277		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2278		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2279
2280		order = page_order(page);
2281		move_to_free_area(page, &zone->free_area[order], migratetype);
2282		page += 1 << order;
2283		pages_moved += 1 << order;
2284	}
2285
2286	return pages_moved;
2287}
2288
2289int move_freepages_block(struct zone *zone, struct page *page,
2290				int migratetype, int *num_movable)
2291{
2292	unsigned long start_pfn, end_pfn;
2293	struct page *start_page, *end_page;
2294
2295	if (num_movable)
2296		*num_movable = 0;
2297
2298	start_pfn = page_to_pfn(page);
2299	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2300	start_page = pfn_to_page(start_pfn);
2301	end_page = start_page + pageblock_nr_pages - 1;
2302	end_pfn = start_pfn + pageblock_nr_pages - 1;
2303
2304	/* Do not cross zone boundaries */
2305	if (!zone_spans_pfn(zone, start_pfn))
2306		start_page = page;
2307	if (!zone_spans_pfn(zone, end_pfn))
2308		return 0;
2309
2310	return move_freepages(zone, start_page, end_page, migratetype,
2311								num_movable);
2312}
2313
2314static void change_pageblock_range(struct page *pageblock_page,
2315					int start_order, int migratetype)
2316{
2317	int nr_pageblocks = 1 << (start_order - pageblock_order);
2318
2319	while (nr_pageblocks--) {
2320		set_pageblock_migratetype(pageblock_page, migratetype);
2321		pageblock_page += pageblock_nr_pages;
2322	}
2323}
2324
2325/*
2326 * When we are falling back to another migratetype during allocation, try to
2327 * steal extra free pages from the same pageblocks to satisfy further
2328 * allocations, instead of polluting multiple pageblocks.
2329 *
2330 * If we are stealing a relatively large buddy page, it is likely there will
2331 * be more free pages in the pageblock, so try to steal them all. For
2332 * reclaimable and unmovable allocations, we steal regardless of page size,
2333 * as fragmentation caused by those allocations polluting movable pageblocks
2334 * is worse than movable allocations stealing from unmovable and reclaimable
2335 * pageblocks.
2336 */
2337static bool can_steal_fallback(unsigned int order, int start_mt)
2338{
2339	/*
2340	 * Leaving this order check is intended, although there is
2341	 * relaxed order check in next check. The reason is that
2342	 * we can actually steal whole pageblock if this condition met,
2343	 * but, below check doesn't guarantee it and that is just heuristic
2344	 * so could be changed anytime.
2345	 */
2346	if (order >= pageblock_order)
2347		return true;
2348
2349	if (order >= pageblock_order / 2 ||
2350		start_mt == MIGRATE_RECLAIMABLE ||
2351		start_mt == MIGRATE_UNMOVABLE ||
2352		page_group_by_mobility_disabled)
2353		return true;
2354
2355	return false;
2356}
2357
2358static inline void boost_watermark(struct zone *zone)
2359{
2360	unsigned long max_boost;
2361
2362	if (!watermark_boost_factor)
2363		return;
 
 
 
 
 
 
 
 
2364
2365	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2366			watermark_boost_factor, 10000);
2367
2368	/*
2369	 * high watermark may be uninitialised if fragmentation occurs
2370	 * very early in boot so do not boost. We do not fall
2371	 * through and boost by pageblock_nr_pages as failing
2372	 * allocations that early means that reclaim is not going
2373	 * to help and it may even be impossible to reclaim the
2374	 * boosted watermark resulting in a hang.
2375	 */
2376	if (!max_boost)
2377		return;
2378
2379	max_boost = max(pageblock_nr_pages, max_boost);
2380
2381	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2382		max_boost);
 
 
2383}
2384
2385/*
2386 * This function implements actual steal behaviour. If order is large enough,
2387 * we can steal whole pageblock. If not, we first move freepages in this
2388 * pageblock to our migratetype and determine how many already-allocated pages
2389 * are there in the pageblock with a compatible migratetype. If at least half
2390 * of pages are free or compatible, we can change migratetype of the pageblock
2391 * itself, so pages freed in the future will be put on the correct free list.
2392 */
2393static void steal_suitable_fallback(struct zone *zone, struct page *page,
2394		unsigned int alloc_flags, int start_type, bool whole_block)
2395{
2396	unsigned int current_order = page_order(page);
2397	struct free_area *area;
2398	int free_pages, movable_pages, alike_pages;
2399	int old_block_type;
2400
2401	old_block_type = get_pageblock_migratetype(page);
2402
2403	/*
2404	 * This can happen due to races and we want to prevent broken
2405	 * highatomic accounting.
2406	 */
2407	if (is_migrate_highatomic(old_block_type))
2408		goto single_page;
2409
2410	/* Take ownership for orders >= pageblock_order */
2411	if (current_order >= pageblock_order) {
2412		change_pageblock_range(page, current_order, start_type);
2413		goto single_page;
2414	}
2415
2416	/*
2417	 * Boost watermarks to increase reclaim pressure to reduce the
2418	 * likelihood of future fallbacks. Wake kswapd now as the node
2419	 * may be balanced overall and kswapd will not wake naturally.
2420	 */
2421	boost_watermark(zone);
2422	if (alloc_flags & ALLOC_KSWAPD)
2423		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2424
2425	/* We are not allowed to try stealing from the whole block */
2426	if (!whole_block)
2427		goto single_page;
2428
2429	free_pages = move_freepages_block(zone, page, start_type,
2430						&movable_pages);
 
 
 
 
2431	/*
2432	 * Determine how many pages are compatible with our allocation.
2433	 * For movable allocation, it's the number of movable pages which
2434	 * we just obtained. For other types it's a bit more tricky.
2435	 */
2436	if (start_type == MIGRATE_MOVABLE) {
2437		alike_pages = movable_pages;
2438	} else {
2439		/*
2440		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2441		 * to MOVABLE pageblock, consider all non-movable pages as
2442		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2443		 * vice versa, be conservative since we can't distinguish the
2444		 * exact migratetype of non-movable pages.
2445		 */
2446		if (old_block_type == MIGRATE_MOVABLE)
2447			alike_pages = pageblock_nr_pages
2448						- (free_pages + movable_pages);
2449		else
2450			alike_pages = 0;
2451	}
2452
2453	/* moving whole block can fail due to zone boundary conditions */
2454	if (!free_pages)
2455		goto single_page;
2456
2457	/*
2458	 * If a sufficient number of pages in the block are either free or of
2459	 * comparable migratability as our allocation, claim the whole block.
2460	 */
2461	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2462			page_group_by_mobility_disabled)
2463		set_pageblock_migratetype(page, start_type);
2464
2465	return;
2466
2467single_page:
2468	area = &zone->free_area[current_order];
2469	move_to_free_area(page, area, start_type);
2470}
2471
2472/*
2473 * Check whether there is a suitable fallback freepage with requested order.
2474 * If only_stealable is true, this function returns fallback_mt only if
2475 * we can steal other freepages all together. This would help to reduce
2476 * fragmentation due to mixed migratetype pages in one pageblock.
2477 */
2478int find_suitable_fallback(struct free_area *area, unsigned int order,
2479			int migratetype, bool only_stealable, bool *can_steal)
2480{
2481	int i;
2482	int fallback_mt;
2483
2484	if (area->nr_free == 0)
2485		return -1;
2486
2487	*can_steal = false;
2488	for (i = 0;; i++) {
2489		fallback_mt = fallbacks[migratetype][i];
2490		if (fallback_mt == MIGRATE_TYPES)
2491			break;
2492
2493		if (free_area_empty(area, fallback_mt))
2494			continue;
2495
2496		if (can_steal_fallback(order, migratetype))
2497			*can_steal = true;
2498
2499		if (!only_stealable)
2500			return fallback_mt;
2501
2502		if (*can_steal)
2503			return fallback_mt;
2504	}
2505
2506	return -1;
2507}
2508
2509/*
2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2511 * there are no empty page blocks that contain a page with a suitable order
2512 */
2513static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2514				unsigned int alloc_order)
2515{
2516	int mt;
2517	unsigned long max_managed, flags;
2518
2519	/*
2520	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
 
 
2521	 * Check is race-prone but harmless.
2522	 */
2523	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
 
 
2524	if (zone->nr_reserved_highatomic >= max_managed)
2525		return;
2526
2527	spin_lock_irqsave(&zone->lock, flags);
2528
2529	/* Recheck the nr_reserved_highatomic limit under the lock */
2530	if (zone->nr_reserved_highatomic >= max_managed)
2531		goto out_unlock;
2532
2533	/* Yoink! */
2534	mt = get_pageblock_migratetype(page);
2535	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2536	    && !is_migrate_cma(mt)) {
2537		zone->nr_reserved_highatomic += pageblock_nr_pages;
2538		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2539		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2540	}
2541
2542out_unlock:
2543	spin_unlock_irqrestore(&zone->lock, flags);
2544}
2545
2546/*
2547 * Used when an allocation is about to fail under memory pressure. This
2548 * potentially hurts the reliability of high-order allocations when under
2549 * intense memory pressure but failed atomic allocations should be easier
2550 * to recover from than an OOM.
2551 *
2552 * If @force is true, try to unreserve a pageblock even though highatomic
2553 * pageblock is exhausted.
2554 */
2555static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2556						bool force)
2557{
2558	struct zonelist *zonelist = ac->zonelist;
2559	unsigned long flags;
2560	struct zoneref *z;
2561	struct zone *zone;
2562	struct page *page;
2563	int order;
2564	bool ret;
2565
2566	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2567								ac->nodemask) {
2568		/*
2569		 * Preserve at least one pageblock unless memory pressure
2570		 * is really high.
2571		 */
2572		if (!force && zone->nr_reserved_highatomic <=
2573					pageblock_nr_pages)
2574			continue;
2575
2576		spin_lock_irqsave(&zone->lock, flags);
2577		for (order = 0; order < MAX_ORDER; order++) {
2578			struct free_area *area = &(zone->free_area[order]);
2579
2580			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2581			if (!page)
2582				continue;
2583
2584			/*
2585			 * In page freeing path, migratetype change is racy so
2586			 * we can counter several free pages in a pageblock
2587			 * in this loop althoug we changed the pageblock type
2588			 * from highatomic to ac->migratetype. So we should
2589			 * adjust the count once.
2590			 */
2591			if (is_migrate_highatomic_page(page)) {
2592				/*
2593				 * It should never happen but changes to
2594				 * locking could inadvertently allow a per-cpu
2595				 * drain to add pages to MIGRATE_HIGHATOMIC
2596				 * while unreserving so be safe and watch for
2597				 * underflows.
2598				 */
2599				zone->nr_reserved_highatomic -= min(
2600						pageblock_nr_pages,
2601						zone->nr_reserved_highatomic);
2602			}
2603
2604			/*
2605			 * Convert to ac->migratetype and avoid the normal
2606			 * pageblock stealing heuristics. Minimally, the caller
2607			 * is doing the work and needs the pages. More
2608			 * importantly, if the block was always converted to
2609			 * MIGRATE_UNMOVABLE or another type then the number
2610			 * of pageblocks that cannot be completely freed
2611			 * may increase.
2612			 */
2613			set_pageblock_migratetype(page, ac->migratetype);
2614			ret = move_freepages_block(zone, page, ac->migratetype,
2615									NULL);
2616			if (ret) {
2617				spin_unlock_irqrestore(&zone->lock, flags);
2618				return ret;
2619			}
2620		}
2621		spin_unlock_irqrestore(&zone->lock, flags);
2622	}
2623
2624	return false;
2625}
2626
2627/*
2628 * Try finding a free buddy page on the fallback list and put it on the free
2629 * list of requested migratetype, possibly along with other pages from the same
2630 * block, depending on fragmentation avoidance heuristics. Returns true if
2631 * fallback was found so that __rmqueue_smallest() can grab it.
2632 *
2633 * The use of signed ints for order and current_order is a deliberate
2634 * deviation from the rest of this file, to make the for loop
2635 * condition simpler.
2636 */
2637static __always_inline bool
2638__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2639						unsigned int alloc_flags)
2640{
2641	struct free_area *area;
2642	int current_order;
2643	int min_order = order;
2644	struct page *page;
2645	int fallback_mt;
2646	bool can_steal;
2647
2648	/*
2649	 * Do not steal pages from freelists belonging to other pageblocks
2650	 * i.e. orders < pageblock_order. If there are no local zones free,
2651	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2652	 */
2653	if (alloc_flags & ALLOC_NOFRAGMENT)
2654		min_order = pageblock_order;
2655
2656	/*
2657	 * Find the largest available free page in the other list. This roughly
2658	 * approximates finding the pageblock with the most free pages, which
2659	 * would be too costly to do exactly.
2660	 */
2661	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2662				--current_order) {
2663		area = &(zone->free_area[current_order]);
2664		fallback_mt = find_suitable_fallback(area, current_order,
2665				start_migratetype, false, &can_steal);
2666		if (fallback_mt == -1)
2667			continue;
2668
2669		/*
2670		 * We cannot steal all free pages from the pageblock and the
2671		 * requested migratetype is movable. In that case it's better to
2672		 * steal and split the smallest available page instead of the
2673		 * largest available page, because even if the next movable
2674		 * allocation falls back into a different pageblock than this
2675		 * one, it won't cause permanent fragmentation.
2676		 */
2677		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2678					&& current_order > order)
2679			goto find_smallest;
2680
2681		goto do_steal;
2682	}
2683
2684	return false;
2685
2686find_smallest:
2687	for (current_order = order; current_order < MAX_ORDER;
2688							current_order++) {
2689		area = &(zone->free_area[current_order]);
2690		fallback_mt = find_suitable_fallback(area, current_order,
2691				start_migratetype, false, &can_steal);
2692		if (fallback_mt != -1)
2693			break;
2694	}
2695
2696	/*
2697	 * This should not happen - we already found a suitable fallback
2698	 * when looking for the largest page.
2699	 */
2700	VM_BUG_ON(current_order == MAX_ORDER);
2701
2702do_steal:
2703	page = get_page_from_free_area(area, fallback_mt);
2704
2705	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2706								can_steal);
2707
2708	trace_mm_page_alloc_extfrag(page, order, current_order,
2709		start_migratetype, fallback_mt);
2710
2711	return true;
2712
2713}
2714
2715/*
2716 * Do the hard work of removing an element from the buddy allocator.
2717 * Call me with the zone->lock already held.
2718 */
2719static __always_inline struct page *
2720__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2721						unsigned int alloc_flags)
2722{
2723	struct page *page;
2724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725retry:
2726	page = __rmqueue_smallest(zone, order, migratetype);
2727	if (unlikely(!page)) {
2728		if (migratetype == MIGRATE_MOVABLE)
2729			page = __rmqueue_cma_fallback(zone, order);
2730
2731		if (!page && __rmqueue_fallback(zone, order, migratetype,
2732								alloc_flags))
2733			goto retry;
2734	}
2735
2736	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2737	return page;
2738}
2739
2740/*
2741 * Obtain a specified number of elements from the buddy allocator, all under
2742 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2743 * Returns the number of new pages which were placed at *list.
2744 */
2745static int rmqueue_bulk(struct zone *zone, unsigned int order,
2746			unsigned long count, struct list_head *list,
2747			int migratetype, unsigned int alloc_flags)
2748{
2749	int i, alloced = 0;
 
2750
2751	spin_lock(&zone->lock);
2752	for (i = 0; i < count; ++i) {
2753		struct page *page = __rmqueue(zone, order, migratetype,
2754								alloc_flags);
2755		if (unlikely(page == NULL))
2756			break;
2757
2758		if (unlikely(check_pcp_refill(page)))
2759			continue;
2760
2761		/*
2762		 * Split buddy pages returned by expand() are received here in
2763		 * physical page order. The page is added to the tail of
2764		 * caller's list. From the callers perspective, the linked list
2765		 * is ordered by page number under some conditions. This is
2766		 * useful for IO devices that can forward direction from the
2767		 * head, thus also in the physical page order. This is useful
2768		 * for IO devices that can merge IO requests if the physical
2769		 * pages are ordered properly.
2770		 */
2771		list_add_tail(&page->lru, list);
2772		alloced++;
2773		if (is_migrate_cma(get_pcppage_migratetype(page)))
2774			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2775					      -(1 << order));
2776	}
2777
2778	/*
2779	 * i pages were removed from the buddy list even if some leak due
2780	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2781	 * on i. Do not confuse with 'alloced' which is the number of
2782	 * pages added to the pcp list.
2783	 */
2784	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2785	spin_unlock(&zone->lock);
2786	return alloced;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2787}
2788
2789#ifdef CONFIG_NUMA
2790/*
2791 * Called from the vmstat counter updater to drain pagesets of this
2792 * currently executing processor on remote nodes after they have
2793 * expired.
2794 *
2795 * Note that this function must be called with the thread pinned to
2796 * a single processor.
2797 */
2798void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2799{
2800	unsigned long flags;
2801	int to_drain, batch;
2802
2803	local_irq_save(flags);
2804	batch = READ_ONCE(pcp->batch);
2805	to_drain = min(pcp->count, batch);
2806	if (to_drain > 0)
2807		free_pcppages_bulk(zone, to_drain, pcp);
2808	local_irq_restore(flags);
 
 
2809}
2810#endif
2811
2812/*
2813 * Drain pcplists of the indicated processor and zone.
2814 *
2815 * The processor must either be the current processor and the
2816 * thread pinned to the current processor or a processor that
2817 * is not online.
2818 */
2819static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2820{
2821	unsigned long flags;
2822	struct per_cpu_pageset *pset;
2823	struct per_cpu_pages *pcp;
2824
2825	local_irq_save(flags);
2826	pset = per_cpu_ptr(zone->pageset, cpu);
2827
2828	pcp = &pset->pcp;
2829	if (pcp->count)
2830		free_pcppages_bulk(zone, pcp->count, pcp);
2831	local_irq_restore(flags);
2832}
2833
2834/*
2835 * Drain pcplists of all zones on the indicated processor.
2836 *
2837 * The processor must either be the current processor and the
2838 * thread pinned to the current processor or a processor that
2839 * is not online.
2840 */
2841static void drain_pages(unsigned int cpu)
2842{
2843	struct zone *zone;
2844
2845	for_each_populated_zone(zone) {
2846		drain_pages_zone(cpu, zone);
2847	}
2848}
2849
2850/*
2851 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2852 *
2853 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2854 * the single zone's pages.
2855 */
2856void drain_local_pages(struct zone *zone)
2857{
2858	int cpu = smp_processor_id();
2859
2860	if (zone)
2861		drain_pages_zone(cpu, zone);
2862	else
2863		drain_pages(cpu);
2864}
2865
2866static void drain_local_pages_wq(struct work_struct *work)
2867{
2868	struct pcpu_drain *drain;
2869
2870	drain = container_of(work, struct pcpu_drain, work);
2871
2872	/*
2873	 * drain_all_pages doesn't use proper cpu hotplug protection so
2874	 * we can race with cpu offline when the WQ can move this from
2875	 * a cpu pinned worker to an unbound one. We can operate on a different
2876	 * cpu which is allright but we also have to make sure to not move to
2877	 * a different one.
2878	 */
2879	preempt_disable();
2880	drain_local_pages(drain->zone);
2881	preempt_enable();
2882}
2883
2884/*
2885 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2886 *
2887 * When zone parameter is non-NULL, spill just the single zone's pages.
2888 *
2889 * Note that this can be extremely slow as the draining happens in a workqueue.
 
 
 
 
2890 */
2891void drain_all_pages(struct zone *zone)
2892{
2893	int cpu;
2894
2895	/*
2896	 * Allocate in the BSS so we wont require allocation in
2897	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2898	 */
2899	static cpumask_t cpus_with_pcps;
2900
2901	/*
2902	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2903	 * initialized.
2904	 */
2905	if (WARN_ON_ONCE(!mm_percpu_wq))
2906		return;
2907
2908	/*
2909	 * Do not drain if one is already in progress unless it's specific to
2910	 * a zone. Such callers are primarily CMA and memory hotplug and need
2911	 * the drain to be complete when the call returns.
2912	 */
2913	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2914		if (!zone)
2915			return;
2916		mutex_lock(&pcpu_drain_mutex);
2917	}
2918
2919	/*
2920	 * We don't care about racing with CPU hotplug event
2921	 * as offline notification will cause the notified
2922	 * cpu to drain that CPU pcps and on_each_cpu_mask
2923	 * disables preemption as part of its processing
2924	 */
2925	for_each_online_cpu(cpu) {
2926		struct per_cpu_pageset *pcp;
2927		struct zone *z;
2928		bool has_pcps = false;
2929
2930		if (zone) {
2931			pcp = per_cpu_ptr(zone->pageset, cpu);
2932			if (pcp->pcp.count)
 
 
 
 
 
 
2933				has_pcps = true;
2934		} else {
2935			for_each_populated_zone(z) {
2936				pcp = per_cpu_ptr(z->pageset, cpu);
2937				if (pcp->pcp.count) {
2938					has_pcps = true;
2939					break;
2940				}
2941			}
2942		}
2943
2944		if (has_pcps)
2945			cpumask_set_cpu(cpu, &cpus_with_pcps);
2946		else
2947			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2948	}
2949
2950	for_each_cpu(cpu, &cpus_with_pcps) {
2951		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2952
2953		drain->zone = zone;
2954		INIT_WORK(&drain->work, drain_local_pages_wq);
2955		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2956	}
2957	for_each_cpu(cpu, &cpus_with_pcps)
2958		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2959
2960	mutex_unlock(&pcpu_drain_mutex);
2961}
2962
2963#ifdef CONFIG_HIBERNATION
2964
2965/*
2966 * Touch the watchdog for every WD_PAGE_COUNT pages.
 
 
2967 */
2968#define WD_PAGE_COUNT	(128*1024)
2969
2970void mark_free_pages(struct zone *zone)
2971{
2972	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2973	unsigned long flags;
2974	unsigned int order, t;
2975	struct page *page;
2976
2977	if (zone_is_empty(zone))
2978		return;
2979
2980	spin_lock_irqsave(&zone->lock, flags);
2981
2982	max_zone_pfn = zone_end_pfn(zone);
2983	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2984		if (pfn_valid(pfn)) {
2985			page = pfn_to_page(pfn);
2986
2987			if (!--page_count) {
2988				touch_nmi_watchdog();
2989				page_count = WD_PAGE_COUNT;
2990			}
2991
2992			if (page_zone(page) != zone)
2993				continue;
2994
2995			if (!swsusp_page_is_forbidden(page))
2996				swsusp_unset_page_free(page);
2997		}
2998
2999	for_each_migratetype_order(order, t) {
3000		list_for_each_entry(page,
3001				&zone->free_area[order].free_list[t], lru) {
3002			unsigned long i;
3003
3004			pfn = page_to_pfn(page);
3005			for (i = 0; i < (1UL << order); i++) {
3006				if (!--page_count) {
3007					touch_nmi_watchdog();
3008					page_count = WD_PAGE_COUNT;
3009				}
3010				swsusp_set_page_free(pfn_to_page(pfn + i));
3011			}
3012		}
3013	}
3014	spin_unlock_irqrestore(&zone->lock, flags);
3015}
3016#endif /* CONFIG_PM */
3017
3018static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
 
3019{
3020	int migratetype;
3021
3022	if (!free_pcp_prepare(page))
3023		return false;
3024
3025	migratetype = get_pfnblock_migratetype(page, pfn);
3026	set_pcppage_migratetype(page, migratetype);
3027	return true;
3028}
3029
3030static void free_unref_page_commit(struct page *page, unsigned long pfn)
3031{
3032	struct zone *zone = page_zone(page);
3033	struct per_cpu_pages *pcp;
3034	int migratetype;
 
 
3035
3036	migratetype = get_pcppage_migratetype(page);
3037	__count_vm_event(PGFREE);
 
 
 
 
 
3038
3039	/*
3040	 * We only track unmovable, reclaimable and movable on pcp lists.
3041	 * Free ISOLATE pages back to the allocator because they are being
3042	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3043	 * areas back if necessary. Otherwise, we may have to free
3044	 * excessively into the page allocator
3045	 */
3046	if (migratetype >= MIGRATE_PCPTYPES) {
3047		if (unlikely(is_migrate_isolate(migratetype))) {
3048			free_one_page(zone, page, pfn, 0, migratetype);
3049			return;
3050		}
3051		migratetype = MIGRATE_MOVABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3052	}
3053
3054	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3055	list_add(&page->lru, &pcp->lists[migratetype]);
3056	pcp->count++;
3057	if (pcp->count >= pcp->high) {
3058		unsigned long batch = READ_ONCE(pcp->batch);
3059		free_pcppages_bulk(zone, batch, pcp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3060	}
3061}
3062
3063/*
3064 * Free a 0-order page
3065 */
3066void free_unref_page(struct page *page)
3067{
3068	unsigned long flags;
 
 
3069	unsigned long pfn = page_to_pfn(page);
 
3070
3071	if (!free_unref_page_prepare(page, pfn))
3072		return;
3073
3074	local_irq_save(flags);
3075	free_unref_page_commit(page, pfn);
3076	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3077}
3078
3079/*
3080 * Free a list of 0-order pages
3081 */
3082void free_unref_page_list(struct list_head *list)
3083{
 
3084	struct page *page, *next;
3085	unsigned long flags, pfn;
 
3086	int batch_count = 0;
 
3087
3088	/* Prepare pages for freeing */
3089	list_for_each_entry_safe(page, next, list, lru) {
3090		pfn = page_to_pfn(page);
3091		if (!free_unref_page_prepare(page, pfn))
 
 
 
 
 
 
 
 
 
 
3092			list_del(&page->lru);
3093		set_page_private(page, pfn);
 
 
3094	}
3095
3096	local_irq_save(flags);
3097	list_for_each_entry_safe(page, next, list, lru) {
3098		unsigned long pfn = page_private(page);
3099
3100		set_page_private(page, 0);
3101		trace_mm_page_free_batched(page);
3102		free_unref_page_commit(page, pfn);
3103
3104		/*
3105		 * Guard against excessive IRQ disabled times when we get
3106		 * a large list of pages to free.
 
3107		 */
3108		if (++batch_count == SWAP_CLUSTER_MAX) {
3109			local_irq_restore(flags);
 
 
 
 
3110			batch_count = 0;
3111			local_irq_save(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3113	}
3114	local_irq_restore(flags);
3115}
3116
3117/*
3118 * split_page takes a non-compound higher-order page, and splits it into
3119 * n (1<<order) sub-pages: page[0..n]
3120 * Each sub-page must be freed individually.
3121 *
3122 * Note: this is probably too low level an operation for use in drivers.
3123 * Please consult with lkml before using this in your driver.
3124 */
3125void split_page(struct page *page, unsigned int order)
3126{
3127	int i;
3128
3129	VM_BUG_ON_PAGE(PageCompound(page), page);
3130	VM_BUG_ON_PAGE(!page_count(page), page);
3131
3132	for (i = 1; i < (1 << order); i++)
3133		set_page_refcounted(page + i);
3134	split_page_owner(page, order);
 
3135}
3136EXPORT_SYMBOL_GPL(split_page);
3137
3138int __isolate_free_page(struct page *page, unsigned int order)
3139{
3140	struct free_area *area = &page_zone(page)->free_area[order];
3141	unsigned long watermark;
3142	struct zone *zone;
3143	int mt;
3144
3145	BUG_ON(!PageBuddy(page));
3146
3147	zone = page_zone(page);
3148	mt = get_pageblock_migratetype(page);
3149
3150	if (!is_migrate_isolate(mt)) {
 
3151		/*
3152		 * Obey watermarks as if the page was being allocated. We can
3153		 * emulate a high-order watermark check with a raised order-0
3154		 * watermark, because we already know our high-order page
3155		 * exists.
3156		 */
3157		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3158		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3159			return 0;
3160
3161		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3162	}
3163
3164	/* Remove page from free list */
3165
3166	del_page_from_free_area(page, area);
3167
3168	/*
3169	 * Set the pageblock if the isolated page is at least half of a
3170	 * pageblock
3171	 */
3172	if (order >= pageblock_order - 1) {
3173		struct page *endpage = page + (1 << order) - 1;
3174		for (; page < endpage; page += pageblock_nr_pages) {
3175			int mt = get_pageblock_migratetype(page);
3176			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3177			    && !is_migrate_highatomic(mt))
 
 
 
3178				set_pageblock_migratetype(page,
3179							  MIGRATE_MOVABLE);
3180		}
3181	}
3182
3183
3184	return 1UL << order;
3185}
3186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187/*
3188 * Update NUMA hit/miss statistics
3189 *
3190 * Must be called with interrupts disabled.
3191 */
3192static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
 
3193{
3194#ifdef CONFIG_NUMA
3195	enum numa_stat_item local_stat = NUMA_LOCAL;
3196
3197	/* skip numa counters update if numa stats is disabled */
3198	if (!static_branch_likely(&vm_numa_stat_key))
3199		return;
3200
3201	if (zone_to_nid(z) != numa_node_id())
3202		local_stat = NUMA_OTHER;
3203
3204	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3205		__inc_numa_state(z, NUMA_HIT);
3206	else {
3207		__inc_numa_state(z, NUMA_MISS);
3208		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3209	}
3210	__inc_numa_state(z, local_stat);
3211#endif
3212}
3213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3214/* Remove page from the per-cpu list, caller must protect the list */
3215static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
 
 
3216			unsigned int alloc_flags,
3217			struct per_cpu_pages *pcp,
3218			struct list_head *list)
3219{
3220	struct page *page;
3221
3222	do {
3223		if (list_empty(list)) {
3224			pcp->count += rmqueue_bulk(zone, 0,
3225					pcp->batch, list,
 
 
 
3226					migratetype, alloc_flags);
 
 
3227			if (unlikely(list_empty(list)))
3228				return NULL;
3229		}
3230
3231		page = list_first_entry(list, struct page, lru);
3232		list_del(&page->lru);
3233		pcp->count--;
3234	} while (check_new_pcp(page));
3235
3236	return page;
3237}
3238
3239/* Lock and remove page from the per-cpu list */
3240static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3241			struct zone *zone, gfp_t gfp_flags,
3242			int migratetype, unsigned int alloc_flags)
3243{
3244	struct per_cpu_pages *pcp;
3245	struct list_head *list;
3246	struct page *page;
3247	unsigned long flags;
 
 
 
 
 
 
 
 
3248
3249	local_irq_save(flags);
3250	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3251	list = &pcp->lists[migratetype];
3252	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
 
 
 
 
 
 
3253	if (page) {
3254		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3255		zone_statistics(preferred_zone, zone);
3256	}
3257	local_irq_restore(flags);
3258	return page;
3259}
3260
3261/*
3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 
 
 
 
 
 
 
 
3263 */
 
3264static inline
3265struct page *rmqueue(struct zone *preferred_zone,
3266			struct zone *zone, unsigned int order,
3267			gfp_t gfp_flags, unsigned int alloc_flags,
3268			int migratetype)
3269{
3270	unsigned long flags;
3271	struct page *page;
3272
3273	if (likely(order == 0)) {
3274		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3275					migratetype, alloc_flags);
3276		goto out;
3277	}
3278
3279	/*
3280	 * We most definitely don't want callers attempting to
3281	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3282	 */
3283	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3284	spin_lock_irqsave(&zone->lock, flags);
3285
3286	do {
3287		page = NULL;
3288		if (alloc_flags & ALLOC_HARDER) {
3289			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3290			if (page)
3291				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3292		}
3293		if (!page)
3294			page = __rmqueue(zone, order, migratetype, alloc_flags);
3295	} while (page && check_new_pages(page, order));
3296	spin_unlock(&zone->lock);
3297	if (!page)
3298		goto failed;
3299	__mod_zone_freepage_state(zone, -(1 << order),
3300				  get_pcppage_migratetype(page));
3301
3302	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3303	zone_statistics(preferred_zone, zone);
3304	local_irq_restore(flags);
3305
3306out:
3307	/* Separate test+clear to avoid unnecessary atomics */
3308	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
 
3309		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3310		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3311	}
3312
3313	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3314	return page;
3315
3316failed:
3317	local_irq_restore(flags);
3318	return NULL;
3319}
3320
3321#ifdef CONFIG_FAIL_PAGE_ALLOC
3322
3323static struct {
3324	struct fault_attr attr;
3325
3326	bool ignore_gfp_highmem;
3327	bool ignore_gfp_reclaim;
3328	u32 min_order;
3329} fail_page_alloc = {
3330	.attr = FAULT_ATTR_INITIALIZER,
3331	.ignore_gfp_reclaim = true,
3332	.ignore_gfp_highmem = true,
3333	.min_order = 1,
3334};
3335
3336static int __init setup_fail_page_alloc(char *str)
3337{
3338	return setup_fault_attr(&fail_page_alloc.attr, str);
3339}
3340__setup("fail_page_alloc=", setup_fail_page_alloc);
3341
3342static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3343{
3344	if (order < fail_page_alloc.min_order)
3345		return false;
3346	if (gfp_mask & __GFP_NOFAIL)
3347		return false;
3348	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3349		return false;
3350	if (fail_page_alloc.ignore_gfp_reclaim &&
3351			(gfp_mask & __GFP_DIRECT_RECLAIM))
3352		return false;
3353
3354	return should_fail(&fail_page_alloc.attr, 1 << order);
3355}
 
3356
3357#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3358
3359static int __init fail_page_alloc_debugfs(void)
3360{
3361	umode_t mode = S_IFREG | 0600;
3362	struct dentry *dir;
3363
3364	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3365					&fail_page_alloc.attr);
3366
3367	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3368			    &fail_page_alloc.ignore_gfp_reclaim);
3369	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3370			    &fail_page_alloc.ignore_gfp_highmem);
3371	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3372
3373	return 0;
3374}
3375
3376late_initcall(fail_page_alloc_debugfs);
3377
3378#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3379
3380#else /* CONFIG_FAIL_PAGE_ALLOC */
3381
3382static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3383{
3384	return false;
3385}
3386
3387#endif /* CONFIG_FAIL_PAGE_ALLOC */
 
 
 
 
 
 
 
3388
3389static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3390{
3391	return __should_fail_alloc_page(gfp_mask, order);
3392}
3393ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3394
3395/*
3396 * Return true if free base pages are above 'mark'. For high-order checks it
3397 * will return true of the order-0 watermark is reached and there is at least
3398 * one free page of a suitable size. Checking now avoids taking the zone lock
3399 * to check in the allocation paths if no pages are free.
3400 */
3401bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3402			 int classzone_idx, unsigned int alloc_flags,
3403			 long free_pages)
3404{
3405	long min = mark;
3406	int o;
3407	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3408
3409	/* free_pages may go negative - that's OK */
3410	free_pages -= (1 << order) - 1;
3411
3412	if (alloc_flags & ALLOC_HIGH)
3413		min -= min / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3414
3415	/*
3416	 * If the caller does not have rights to ALLOC_HARDER then subtract
3417	 * the high-atomic reserves. This will over-estimate the size of the
3418	 * atomic reserve but it avoids a search.
3419	 */
3420	if (likely(!alloc_harder)) {
3421		free_pages -= z->nr_reserved_highatomic;
3422	} else {
3423		/*
3424		 * OOM victims can try even harder than normal ALLOC_HARDER
3425		 * users on the grounds that it's definitely going to be in
3426		 * the exit path shortly and free memory. Any allocation it
3427		 * makes during the free path will be small and short-lived.
3428		 */
3429		if (alloc_flags & ALLOC_OOM)
3430			min -= min / 2;
3431		else
3432			min -= min / 4;
3433	}
3434
3435
3436#ifdef CONFIG_CMA
3437	/* If allocation can't use CMA areas don't use free CMA pages */
3438	if (!(alloc_flags & ALLOC_CMA))
3439		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3440#endif
3441
3442	/*
3443	 * Check watermarks for an order-0 allocation request. If these
3444	 * are not met, then a high-order request also cannot go ahead
3445	 * even if a suitable page happened to be free.
3446	 */
3447	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3448		return false;
3449
3450	/* If this is an order-0 request then the watermark is fine */
3451	if (!order)
3452		return true;
3453
3454	/* For a high-order request, check at least one suitable page is free */
3455	for (o = order; o < MAX_ORDER; o++) {
3456		struct free_area *area = &z->free_area[o];
3457		int mt;
3458
3459		if (!area->nr_free)
3460			continue;
3461
3462		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3463			if (!free_area_empty(area, mt))
3464				return true;
3465		}
3466
3467#ifdef CONFIG_CMA
3468		if ((alloc_flags & ALLOC_CMA) &&
3469		    !free_area_empty(area, MIGRATE_CMA)) {
3470			return true;
3471		}
3472#endif
3473		if (alloc_harder &&
3474			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3475			return true;
 
3476	}
3477	return false;
3478}
3479
3480bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3481		      int classzone_idx, unsigned int alloc_flags)
3482{
3483	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3484					zone_page_state(z, NR_FREE_PAGES));
3485}
3486
3487static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3488		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
 
3489{
3490	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3491	long cma_pages = 0;
3492
3493#ifdef CONFIG_CMA
3494	/* If allocation can't use CMA areas don't use free CMA pages */
3495	if (!(alloc_flags & ALLOC_CMA))
3496		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3497#endif
3498
3499	/*
3500	 * Fast check for order-0 only. If this fails then the reserves
3501	 * need to be calculated. There is a corner case where the check
3502	 * passes but only the high-order atomic reserve are free. If
3503	 * the caller is !atomic then it'll uselessly search the free
3504	 * list. That corner case is then slower but it is harmless.
3505	 */
3506	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3507		return true;
3508
3509	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3510					free_pages);
 
 
 
 
 
 
 
 
 
 
 
 
3511}
3512
3513bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3514			unsigned long mark, int classzone_idx)
3515{
3516	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3517
3518	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3519		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3520
3521	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3522								free_pages);
3523}
3524
3525#ifdef CONFIG_NUMA
 
 
3526static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3527{
3528	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3529				node_reclaim_distance;
3530}
3531#else	/* CONFIG_NUMA */
3532static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3533{
3534	return true;
3535}
3536#endif	/* CONFIG_NUMA */
3537
3538/*
3539 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3540 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3541 * premature use of a lower zone may cause lowmem pressure problems that
3542 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3543 * probably too small. It only makes sense to spread allocations to avoid
3544 * fragmentation between the Normal and DMA32 zones.
3545 */
3546static inline unsigned int
3547alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3548{
3549	unsigned int alloc_flags = 0;
3550
3551	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3552		alloc_flags |= ALLOC_KSWAPD;
 
 
 
3553
3554#ifdef CONFIG_ZONE_DMA32
3555	if (!zone)
3556		return alloc_flags;
3557
3558	if (zone_idx(zone) != ZONE_NORMAL)
3559		return alloc_flags;
3560
3561	/*
3562	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3563	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3564	 * on UMA that if Normal is populated then so is DMA32.
3565	 */
3566	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3567	if (nr_online_nodes > 1 && !populated_zone(--zone))
3568		return alloc_flags;
3569
3570	alloc_flags |= ALLOC_NOFRAGMENT;
3571#endif /* CONFIG_ZONE_DMA32 */
3572	return alloc_flags;
3573}
3574
 
 
 
 
 
 
 
 
 
 
 
3575/*
3576 * get_page_from_freelist goes through the zonelist trying to allocate
3577 * a page.
3578 */
3579static struct page *
3580get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3581						const struct alloc_context *ac)
3582{
3583	struct zoneref *z;
3584	struct zone *zone;
3585	struct pglist_data *last_pgdat_dirty_limit = NULL;
 
3586	bool no_fallback;
3587
3588retry:
3589	/*
3590	 * Scan zonelist, looking for a zone with enough free.
3591	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3592	 */
3593	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3594	z = ac->preferred_zoneref;
3595	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3596								ac->nodemask) {
3597		struct page *page;
3598		unsigned long mark;
3599
3600		if (cpusets_enabled() &&
3601			(alloc_flags & ALLOC_CPUSET) &&
3602			!__cpuset_zone_allowed(zone, gfp_mask))
3603				continue;
3604		/*
3605		 * When allocating a page cache page for writing, we
3606		 * want to get it from a node that is within its dirty
3607		 * limit, such that no single node holds more than its
3608		 * proportional share of globally allowed dirty pages.
3609		 * The dirty limits take into account the node's
3610		 * lowmem reserves and high watermark so that kswapd
3611		 * should be able to balance it without having to
3612		 * write pages from its LRU list.
3613		 *
3614		 * XXX: For now, allow allocations to potentially
3615		 * exceed the per-node dirty limit in the slowpath
3616		 * (spread_dirty_pages unset) before going into reclaim,
3617		 * which is important when on a NUMA setup the allowed
3618		 * nodes are together not big enough to reach the
3619		 * global limit.  The proper fix for these situations
3620		 * will require awareness of nodes in the
3621		 * dirty-throttling and the flusher threads.
3622		 */
3623		if (ac->spread_dirty_pages) {
3624			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3625				continue;
 
 
3626
3627			if (!node_dirty_ok(zone->zone_pgdat)) {
3628				last_pgdat_dirty_limit = zone->zone_pgdat;
3629				continue;
3630			}
3631		}
3632
3633		if (no_fallback && nr_online_nodes > 1 &&
3634		    zone != ac->preferred_zoneref->zone) {
3635			int local_nid;
3636
3637			/*
3638			 * If moving to a remote node, retry but allow
3639			 * fragmenting fallbacks. Locality is more important
3640			 * than fragmentation avoidance.
3641			 */
3642			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3643			if (zone_to_nid(zone) != local_nid) {
3644				alloc_flags &= ~ALLOC_NOFRAGMENT;
3645				goto retry;
3646			}
3647		}
3648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3649		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3650		if (!zone_watermark_fast(zone, order, mark,
3651				       ac_classzone_idx(ac), alloc_flags)) {
 
3652			int ret;
3653
 
 
 
 
 
3654#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3655			/*
3656			 * Watermark failed for this zone, but see if we can
3657			 * grow this zone if it contains deferred pages.
3658			 */
3659			if (static_branch_unlikely(&deferred_pages)) {
3660				if (_deferred_grow_zone(zone, order))
3661					goto try_this_zone;
3662			}
3663#endif
3664			/* Checked here to keep the fast path fast */
3665			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3666			if (alloc_flags & ALLOC_NO_WATERMARKS)
3667				goto try_this_zone;
3668
3669			if (node_reclaim_mode == 0 ||
3670			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3671				continue;
3672
3673			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3674			switch (ret) {
3675			case NODE_RECLAIM_NOSCAN:
3676				/* did not scan */
3677				continue;
3678			case NODE_RECLAIM_FULL:
3679				/* scanned but unreclaimable */
3680				continue;
3681			default:
3682				/* did we reclaim enough */
3683				if (zone_watermark_ok(zone, order, mark,
3684						ac_classzone_idx(ac), alloc_flags))
3685					goto try_this_zone;
3686
3687				continue;
3688			}
3689		}
3690
3691try_this_zone:
3692		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3693				gfp_mask, alloc_flags, ac->migratetype);
3694		if (page) {
3695			prep_new_page(page, order, gfp_mask, alloc_flags);
3696
3697			/*
3698			 * If this is a high-order atomic allocation then check
3699			 * if the pageblock should be reserved for the future
3700			 */
3701			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3702				reserve_highatomic_pageblock(page, zone, order);
3703
3704			return page;
3705		} else {
 
 
 
 
 
3706#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3707			/* Try again if zone has deferred pages */
3708			if (static_branch_unlikely(&deferred_pages)) {
3709				if (_deferred_grow_zone(zone, order))
3710					goto try_this_zone;
3711			}
3712#endif
3713		}
3714	}
3715
3716	/*
3717	 * It's possible on a UMA machine to get through all zones that are
3718	 * fragmented. If avoiding fragmentation, reset and try again.
3719	 */
3720	if (no_fallback) {
3721		alloc_flags &= ~ALLOC_NOFRAGMENT;
3722		goto retry;
3723	}
3724
3725	return NULL;
3726}
3727
3728static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3729{
3730	unsigned int filter = SHOW_MEM_FILTER_NODES;
3731
3732	/*
3733	 * This documents exceptions given to allocations in certain
3734	 * contexts that are allowed to allocate outside current's set
3735	 * of allowed nodes.
3736	 */
3737	if (!(gfp_mask & __GFP_NOMEMALLOC))
3738		if (tsk_is_oom_victim(current) ||
3739		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3740			filter &= ~SHOW_MEM_FILTER_NODES;
3741	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3742		filter &= ~SHOW_MEM_FILTER_NODES;
3743
3744	show_mem(filter, nodemask);
3745}
3746
3747void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3748{
3749	struct va_format vaf;
3750	va_list args;
3751	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3752
3753	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
 
 
3754		return;
3755
3756	va_start(args, fmt);
3757	vaf.fmt = fmt;
3758	vaf.va = &args;
3759	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3760			current->comm, &vaf, gfp_mask, &gfp_mask,
3761			nodemask_pr_args(nodemask));
3762	va_end(args);
3763
3764	cpuset_print_current_mems_allowed();
3765	pr_cont("\n");
3766	dump_stack();
3767	warn_alloc_show_mem(gfp_mask, nodemask);
3768}
3769
3770static inline struct page *
3771__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3772			      unsigned int alloc_flags,
3773			      const struct alloc_context *ac)
3774{
3775	struct page *page;
3776
3777	page = get_page_from_freelist(gfp_mask, order,
3778			alloc_flags|ALLOC_CPUSET, ac);
3779	/*
3780	 * fallback to ignore cpuset restriction if our nodes
3781	 * are depleted
3782	 */
3783	if (!page)
3784		page = get_page_from_freelist(gfp_mask, order,
3785				alloc_flags, ac);
3786
3787	return page;
3788}
3789
3790static inline struct page *
3791__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3792	const struct alloc_context *ac, unsigned long *did_some_progress)
3793{
3794	struct oom_control oc = {
3795		.zonelist = ac->zonelist,
3796		.nodemask = ac->nodemask,
3797		.memcg = NULL,
3798		.gfp_mask = gfp_mask,
3799		.order = order,
3800	};
3801	struct page *page;
3802
3803	*did_some_progress = 0;
3804
3805	/*
3806	 * Acquire the oom lock.  If that fails, somebody else is
3807	 * making progress for us.
3808	 */
3809	if (!mutex_trylock(&oom_lock)) {
3810		*did_some_progress = 1;
3811		schedule_timeout_uninterruptible(1);
3812		return NULL;
3813	}
3814
3815	/*
3816	 * Go through the zonelist yet one more time, keep very high watermark
3817	 * here, this is only to catch a parallel oom killing, we must fail if
3818	 * we're still under heavy pressure. But make sure that this reclaim
3819	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3820	 * allocation which will never fail due to oom_lock already held.
3821	 */
3822	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3823				      ~__GFP_DIRECT_RECLAIM, order,
3824				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3825	if (page)
3826		goto out;
3827
3828	/* Coredumps can quickly deplete all memory reserves */
3829	if (current->flags & PF_DUMPCORE)
3830		goto out;
3831	/* The OOM killer will not help higher order allocs */
3832	if (order > PAGE_ALLOC_COSTLY_ORDER)
3833		goto out;
3834	/*
3835	 * We have already exhausted all our reclaim opportunities without any
3836	 * success so it is time to admit defeat. We will skip the OOM killer
3837	 * because it is very likely that the caller has a more reasonable
3838	 * fallback than shooting a random task.
 
 
3839	 */
3840	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3841		goto out;
3842	/* The OOM killer does not needlessly kill tasks for lowmem */
3843	if (ac->high_zoneidx < ZONE_NORMAL)
3844		goto out;
3845	if (pm_suspended_storage())
3846		goto out;
3847	/*
3848	 * XXX: GFP_NOFS allocations should rather fail than rely on
3849	 * other request to make a forward progress.
3850	 * We are in an unfortunate situation where out_of_memory cannot
3851	 * do much for this context but let's try it to at least get
3852	 * access to memory reserved if the current task is killed (see
3853	 * out_of_memory). Once filesystems are ready to handle allocation
3854	 * failures more gracefully we should just bail out here.
3855	 */
3856
3857	/* The OOM killer may not free memory on a specific node */
3858	if (gfp_mask & __GFP_THISNODE)
3859		goto out;
3860
3861	/* Exhausted what can be done so it's blame time */
3862	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
 
3863		*did_some_progress = 1;
3864
3865		/*
3866		 * Help non-failing allocations by giving them access to memory
3867		 * reserves
3868		 */
3869		if (gfp_mask & __GFP_NOFAIL)
3870			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3871					ALLOC_NO_WATERMARKS, ac);
3872	}
3873out:
3874	mutex_unlock(&oom_lock);
3875	return page;
3876}
3877
3878/*
3879 * Maximum number of compaction retries wit a progress before OOM
3880 * killer is consider as the only way to move forward.
3881 */
3882#define MAX_COMPACT_RETRIES 16
3883
3884#ifdef CONFIG_COMPACTION
3885/* Try memory compaction for high-order allocations before reclaim */
3886static struct page *
3887__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3888		unsigned int alloc_flags, const struct alloc_context *ac,
3889		enum compact_priority prio, enum compact_result *compact_result)
3890{
3891	struct page *page = NULL;
3892	unsigned long pflags;
3893	unsigned int noreclaim_flag;
3894
3895	if (!order)
3896		return NULL;
3897
3898	psi_memstall_enter(&pflags);
 
3899	noreclaim_flag = memalloc_noreclaim_save();
3900
3901	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3902								prio, &page);
3903
3904	memalloc_noreclaim_restore(noreclaim_flag);
3905	psi_memstall_leave(&pflags);
 
3906
 
 
3907	/*
3908	 * At least in one zone compaction wasn't deferred or skipped, so let's
3909	 * count a compaction stall
3910	 */
3911	count_vm_event(COMPACTSTALL);
3912
3913	/* Prep a captured page if available */
3914	if (page)
3915		prep_new_page(page, order, gfp_mask, alloc_flags);
3916
3917	/* Try get a page from the freelist if available */
3918	if (!page)
3919		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3920
3921	if (page) {
3922		struct zone *zone = page_zone(page);
3923
3924		zone->compact_blockskip_flush = false;
3925		compaction_defer_reset(zone, order, true);
3926		count_vm_event(COMPACTSUCCESS);
3927		return page;
3928	}
3929
3930	/*
3931	 * It's bad if compaction run occurs and fails. The most likely reason
3932	 * is that pages exist, but not enough to satisfy watermarks.
3933	 */
3934	count_vm_event(COMPACTFAIL);
3935
3936	cond_resched();
3937
3938	return NULL;
3939}
3940
3941static inline bool
3942should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3943		     enum compact_result compact_result,
3944		     enum compact_priority *compact_priority,
3945		     int *compaction_retries)
3946{
3947	int max_retries = MAX_COMPACT_RETRIES;
3948	int min_priority;
3949	bool ret = false;
3950	int retries = *compaction_retries;
3951	enum compact_priority priority = *compact_priority;
3952
3953	if (!order)
3954		return false;
3955
3956	if (compaction_made_progress(compact_result))
3957		(*compaction_retries)++;
3958
3959	/*
3960	 * compaction considers all the zone as desperately out of memory
3961	 * so it doesn't really make much sense to retry except when the
3962	 * failure could be caused by insufficient priority
3963	 */
3964	if (compaction_failed(compact_result))
3965		goto check_priority;
3966
3967	/*
3968	 * compaction was skipped because there are not enough order-0 pages
3969	 * to work with, so we retry only if it looks like reclaim can help.
3970	 */
3971	if (compaction_needs_reclaim(compact_result)) {
3972		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3973		goto out;
3974	}
3975
3976	/*
3977	 * make sure the compaction wasn't deferred or didn't bail out early
3978	 * due to locks contention before we declare that we should give up.
3979	 * But the next retry should use a higher priority if allowed, so
3980	 * we don't just keep bailing out endlessly.
3981	 */
3982	if (compaction_withdrawn(compact_result)) {
3983		goto check_priority;
3984	}
3985
3986	/*
3987	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3988	 * costly ones because they are de facto nofail and invoke OOM
3989	 * killer to move on while costly can fail and users are ready
3990	 * to cope with that. 1/4 retries is rather arbitrary but we
3991	 * would need much more detailed feedback from compaction to
3992	 * make a better decision.
3993	 */
3994	if (order > PAGE_ALLOC_COSTLY_ORDER)
3995		max_retries /= 4;
3996	if (*compaction_retries <= max_retries) {
3997		ret = true;
3998		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
3999	}
4000
4001	/*
4002	 * Make sure there are attempts at the highest priority if we exhausted
4003	 * all retries or failed at the lower priorities.
4004	 */
4005check_priority:
4006	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4007			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4008
4009	if (*compact_priority > min_priority) {
4010		(*compact_priority)--;
4011		*compaction_retries = 0;
4012		ret = true;
4013	}
4014out:
4015	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4016	return ret;
4017}
4018#else
4019static inline struct page *
4020__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4021		unsigned int alloc_flags, const struct alloc_context *ac,
4022		enum compact_priority prio, enum compact_result *compact_result)
4023{
4024	*compact_result = COMPACT_SKIPPED;
4025	return NULL;
4026}
4027
4028static inline bool
4029should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4030		     enum compact_result compact_result,
4031		     enum compact_priority *compact_priority,
4032		     int *compaction_retries)
4033{
4034	struct zone *zone;
4035	struct zoneref *z;
4036
4037	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4038		return false;
4039
4040	/*
4041	 * There are setups with compaction disabled which would prefer to loop
4042	 * inside the allocator rather than hit the oom killer prematurely.
4043	 * Let's give them a good hope and keep retrying while the order-0
4044	 * watermarks are OK.
4045	 */
4046	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4047					ac->nodemask) {
4048		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4049					ac_classzone_idx(ac), alloc_flags))
4050			return true;
4051	}
4052	return false;
4053}
4054#endif /* CONFIG_COMPACTION */
4055
4056#ifdef CONFIG_LOCKDEP
4057static struct lockdep_map __fs_reclaim_map =
4058	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4059
4060static bool __need_fs_reclaim(gfp_t gfp_mask)
4061{
4062	gfp_mask = current_gfp_context(gfp_mask);
4063
4064	/* no reclaim without waiting on it */
4065	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4066		return false;
4067
4068	/* this guy won't enter reclaim */
4069	if (current->flags & PF_MEMALLOC)
4070		return false;
4071
4072	/* We're only interested __GFP_FS allocations for now */
4073	if (!(gfp_mask & __GFP_FS))
4074		return false;
4075
4076	if (gfp_mask & __GFP_NOLOCKDEP)
4077		return false;
4078
4079	return true;
4080}
4081
4082void __fs_reclaim_acquire(void)
4083{
4084	lock_map_acquire(&__fs_reclaim_map);
4085}
4086
4087void __fs_reclaim_release(void)
4088{
4089	lock_map_release(&__fs_reclaim_map);
4090}
4091
4092void fs_reclaim_acquire(gfp_t gfp_mask)
4093{
4094	if (__need_fs_reclaim(gfp_mask))
4095		__fs_reclaim_acquire();
 
 
 
 
 
 
 
 
 
 
4096}
4097EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4098
4099void fs_reclaim_release(gfp_t gfp_mask)
4100{
4101	if (__need_fs_reclaim(gfp_mask))
4102		__fs_reclaim_release();
 
 
 
 
4103}
4104EXPORT_SYMBOL_GPL(fs_reclaim_release);
4105#endif
4106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4107/* Perform direct synchronous page reclaim */
4108static int
4109__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4110					const struct alloc_context *ac)
4111{
4112	int progress;
4113	unsigned int noreclaim_flag;
4114	unsigned long pflags;
4115
4116	cond_resched();
4117
4118	/* We now go into synchronous reclaim */
4119	cpuset_memory_pressure_bump();
4120	psi_memstall_enter(&pflags);
4121	fs_reclaim_acquire(gfp_mask);
4122	noreclaim_flag = memalloc_noreclaim_save();
4123
4124	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4125								ac->nodemask);
4126
4127	memalloc_noreclaim_restore(noreclaim_flag);
4128	fs_reclaim_release(gfp_mask);
4129	psi_memstall_leave(&pflags);
4130
4131	cond_resched();
4132
4133	return progress;
4134}
4135
4136/* The really slow allocator path where we enter direct reclaim */
4137static inline struct page *
4138__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4139		unsigned int alloc_flags, const struct alloc_context *ac,
4140		unsigned long *did_some_progress)
4141{
4142	struct page *page = NULL;
 
4143	bool drained = false;
4144
 
4145	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4146	if (unlikely(!(*did_some_progress)))
4147		return NULL;
4148
4149retry:
4150	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4151
4152	/*
4153	 * If an allocation failed after direct reclaim, it could be because
4154	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4155	 * Shrink them them and try again
4156	 */
4157	if (!page && !drained) {
4158		unreserve_highatomic_pageblock(ac, false);
4159		drain_all_pages(NULL);
4160		drained = true;
4161		goto retry;
4162	}
 
 
4163
4164	return page;
4165}
4166
4167static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4168			     const struct alloc_context *ac)
4169{
4170	struct zoneref *z;
4171	struct zone *zone;
4172	pg_data_t *last_pgdat = NULL;
4173	enum zone_type high_zoneidx = ac->high_zoneidx;
4174
4175	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4176					ac->nodemask) {
4177		if (last_pgdat != zone->zone_pgdat)
4178			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4179		last_pgdat = zone->zone_pgdat;
 
 
 
4180	}
4181}
4182
4183static inline unsigned int
4184gfp_to_alloc_flags(gfp_t gfp_mask)
4185{
4186	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4187
4188	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4189	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
 
 
 
 
4190
4191	/*
4192	 * The caller may dip into page reserves a bit more if the caller
4193	 * cannot run direct reclaim, or if the caller has realtime scheduling
4194	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4195	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4196	 */
4197	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
4198
4199	if (gfp_mask & __GFP_ATOMIC) {
4200		/*
4201		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4202		 * if it can't schedule.
4203		 */
4204		if (!(gfp_mask & __GFP_NOMEMALLOC))
4205			alloc_flags |= ALLOC_HARDER;
 
 
 
 
 
4206		/*
4207		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4208		 * comment for __cpuset_node_allowed().
 
4209		 */
4210		alloc_flags &= ~ALLOC_CPUSET;
4211	} else if (unlikely(rt_task(current)) && !in_interrupt())
4212		alloc_flags |= ALLOC_HARDER;
 
4213
4214	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4215		alloc_flags |= ALLOC_KSWAPD;
4216
4217#ifdef CONFIG_CMA
4218	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4219		alloc_flags |= ALLOC_CMA;
4220#endif
4221	return alloc_flags;
4222}
4223
4224static bool oom_reserves_allowed(struct task_struct *tsk)
4225{
4226	if (!tsk_is_oom_victim(tsk))
4227		return false;
4228
4229	/*
4230	 * !MMU doesn't have oom reaper so give access to memory reserves
4231	 * only to the thread with TIF_MEMDIE set
4232	 */
4233	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4234		return false;
4235
4236	return true;
4237}
4238
4239/*
4240 * Distinguish requests which really need access to full memory
4241 * reserves from oom victims which can live with a portion of it
4242 */
4243static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4244{
4245	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4246		return 0;
4247	if (gfp_mask & __GFP_MEMALLOC)
4248		return ALLOC_NO_WATERMARKS;
4249	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4250		return ALLOC_NO_WATERMARKS;
4251	if (!in_interrupt()) {
4252		if (current->flags & PF_MEMALLOC)
4253			return ALLOC_NO_WATERMARKS;
4254		else if (oom_reserves_allowed(current))
4255			return ALLOC_OOM;
4256	}
4257
4258	return 0;
4259}
4260
4261bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4262{
4263	return !!__gfp_pfmemalloc_flags(gfp_mask);
4264}
4265
4266/*
4267 * Checks whether it makes sense to retry the reclaim to make a forward progress
4268 * for the given allocation request.
4269 *
4270 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4271 * without success, or when we couldn't even meet the watermark if we
4272 * reclaimed all remaining pages on the LRU lists.
4273 *
4274 * Returns true if a retry is viable or false to enter the oom path.
4275 */
4276static inline bool
4277should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4278		     struct alloc_context *ac, int alloc_flags,
4279		     bool did_some_progress, int *no_progress_loops)
4280{
4281	struct zone *zone;
4282	struct zoneref *z;
4283	bool ret = false;
4284
4285	/*
4286	 * Costly allocations might have made a progress but this doesn't mean
4287	 * their order will become available due to high fragmentation so
4288	 * always increment the no progress counter for them
4289	 */
4290	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4291		*no_progress_loops = 0;
4292	else
4293		(*no_progress_loops)++;
4294
4295	/*
4296	 * Make sure we converge to OOM if we cannot make any progress
4297	 * several times in the row.
4298	 */
4299	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4300		/* Before OOM, exhaust highatomic_reserve */
4301		return unreserve_highatomic_pageblock(ac, true);
4302	}
4303
4304	/*
4305	 * Keep reclaiming pages while there is a chance this will lead
4306	 * somewhere.  If none of the target zones can satisfy our allocation
4307	 * request even if all reclaimable pages are considered then we are
4308	 * screwed and have to go OOM.
4309	 */
4310	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4311					ac->nodemask) {
4312		unsigned long available;
4313		unsigned long reclaimable;
4314		unsigned long min_wmark = min_wmark_pages(zone);
4315		bool wmark;
4316
4317		available = reclaimable = zone_reclaimable_pages(zone);
4318		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4319
4320		/*
4321		 * Would the allocation succeed if we reclaimed all
4322		 * reclaimable pages?
4323		 */
4324		wmark = __zone_watermark_ok(zone, order, min_wmark,
4325				ac_classzone_idx(ac), alloc_flags, available);
4326		trace_reclaim_retry_zone(z, order, reclaimable,
4327				available, min_wmark, *no_progress_loops, wmark);
4328		if (wmark) {
4329			/*
4330			 * If we didn't make any progress and have a lot of
4331			 * dirty + writeback pages then we should wait for
4332			 * an IO to complete to slow down the reclaim and
4333			 * prevent from pre mature OOM
4334			 */
4335			if (!did_some_progress) {
4336				unsigned long write_pending;
4337
4338				write_pending = zone_page_state_snapshot(zone,
4339							NR_ZONE_WRITE_PENDING);
4340
4341				if (2 * write_pending > reclaimable) {
4342					congestion_wait(BLK_RW_ASYNC, HZ/10);
4343					return true;
4344				}
4345			}
4346
4347			ret = true;
4348			goto out;
4349		}
4350	}
4351
4352out:
4353	/*
4354	 * Memory allocation/reclaim might be called from a WQ context and the
4355	 * current implementation of the WQ concurrency control doesn't
4356	 * recognize that a particular WQ is congested if the worker thread is
4357	 * looping without ever sleeping. Therefore we have to do a short sleep
4358	 * here rather than calling cond_resched().
4359	 */
4360	if (current->flags & PF_WQ_WORKER)
4361		schedule_timeout_uninterruptible(1);
4362	else
4363		cond_resched();
 
 
 
 
 
4364	return ret;
4365}
4366
4367static inline bool
4368check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4369{
4370	/*
4371	 * It's possible that cpuset's mems_allowed and the nodemask from
4372	 * mempolicy don't intersect. This should be normally dealt with by
4373	 * policy_nodemask(), but it's possible to race with cpuset update in
4374	 * such a way the check therein was true, and then it became false
4375	 * before we got our cpuset_mems_cookie here.
4376	 * This assumes that for all allocations, ac->nodemask can come only
4377	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4378	 * when it does not intersect with the cpuset restrictions) or the
4379	 * caller can deal with a violated nodemask.
4380	 */
4381	if (cpusets_enabled() && ac->nodemask &&
4382			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4383		ac->nodemask = NULL;
4384		return true;
4385	}
4386
4387	/*
4388	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4389	 * possible to race with parallel threads in such a way that our
4390	 * allocation can fail while the mask is being updated. If we are about
4391	 * to fail, check if the cpuset changed during allocation and if so,
4392	 * retry.
4393	 */
4394	if (read_mems_allowed_retry(cpuset_mems_cookie))
4395		return true;
4396
4397	return false;
4398}
4399
4400static inline struct page *
4401__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4402						struct alloc_context *ac)
4403{
4404	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
 
4405	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4406	struct page *page = NULL;
4407	unsigned int alloc_flags;
4408	unsigned long did_some_progress;
4409	enum compact_priority compact_priority;
4410	enum compact_result compact_result;
4411	int compaction_retries;
4412	int no_progress_loops;
4413	unsigned int cpuset_mems_cookie;
 
4414	int reserve_flags;
4415
4416	/*
4417	 * We also sanity check to catch abuse of atomic reserves being used by
4418	 * callers that are not in atomic context.
4419	 */
4420	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4421				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4422		gfp_mask &= ~__GFP_ATOMIC;
4423
4424retry_cpuset:
4425	compaction_retries = 0;
4426	no_progress_loops = 0;
4427	compact_priority = DEF_COMPACT_PRIORITY;
4428	cpuset_mems_cookie = read_mems_allowed_begin();
 
4429
4430	/*
4431	 * The fast path uses conservative alloc_flags to succeed only until
4432	 * kswapd needs to be woken up, and to avoid the cost of setting up
4433	 * alloc_flags precisely. So we do that now.
4434	 */
4435	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4436
4437	/*
4438	 * We need to recalculate the starting point for the zonelist iterator
4439	 * because we might have used different nodemask in the fast path, or
4440	 * there was a cpuset modification and we are retrying - otherwise we
4441	 * could end up iterating over non-eligible zones endlessly.
4442	 */
4443	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4444					ac->high_zoneidx, ac->nodemask);
4445	if (!ac->preferred_zoneref->zone)
4446		goto nopage;
4447
 
 
 
 
 
 
 
 
 
 
 
 
 
4448	if (alloc_flags & ALLOC_KSWAPD)
4449		wake_all_kswapds(order, gfp_mask, ac);
4450
4451	/*
4452	 * The adjusted alloc_flags might result in immediate success, so try
4453	 * that first
4454	 */
4455	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4456	if (page)
4457		goto got_pg;
4458
4459	/*
4460	 * For costly allocations, try direct compaction first, as it's likely
4461	 * that we have enough base pages and don't need to reclaim. For non-
4462	 * movable high-order allocations, do that as well, as compaction will
4463	 * try prevent permanent fragmentation by migrating from blocks of the
4464	 * same migratetype.
4465	 * Don't try this for allocations that are allowed to ignore
4466	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4467	 */
4468	if (can_direct_reclaim &&
4469			(costly_order ||
4470			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4471			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4472		page = __alloc_pages_direct_compact(gfp_mask, order,
4473						alloc_flags, ac,
4474						INIT_COMPACT_PRIORITY,
4475						&compact_result);
4476		if (page)
4477			goto got_pg;
4478
4479		 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4480		     !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
 
 
 
4481			/*
4482			 * If allocating entire pageblock(s) and compaction
4483			 * failed because all zones are below low watermarks
4484			 * or is prohibited because it recently failed at this
4485			 * order, fail immediately unless the allocator has
4486			 * requested compaction and reclaim retry.
4487			 *
4488			 * Reclaim is
4489			 *  - potentially very expensive because zones are far
4490			 *    below their low watermarks or this is part of very
4491			 *    bursty high order allocations,
4492			 *  - not guaranteed to help because isolate_freepages()
4493			 *    may not iterate over freed pages as part of its
4494			 *    linear scan, and
4495			 *  - unlikely to make entire pageblocks free on its
4496			 *    own.
4497			 */
4498			if (compact_result == COMPACT_SKIPPED ||
4499			    compact_result == COMPACT_DEFERRED)
4500				goto nopage;
4501		}
4502
4503		/*
4504		 * Checks for costly allocations with __GFP_NORETRY, which
4505		 * includes THP page fault allocations
4506		 */
4507		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4508			/*
4509			 * If compaction is deferred for high-order allocations,
4510			 * it is because sync compaction recently failed. If
4511			 * this is the case and the caller requested a THP
4512			 * allocation, we do not want to heavily disrupt the
4513			 * system, so we fail the allocation instead of entering
4514			 * direct reclaim.
4515			 */
4516			if (compact_result == COMPACT_DEFERRED)
4517				goto nopage;
4518
4519			/*
4520			 * Looks like reclaim/compaction is worth trying, but
4521			 * sync compaction could be very expensive, so keep
4522			 * using async compaction.
4523			 */
4524			compact_priority = INIT_COMPACT_PRIORITY;
4525		}
4526	}
4527
4528retry:
4529	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4530	if (alloc_flags & ALLOC_KSWAPD)
4531		wake_all_kswapds(order, gfp_mask, ac);
4532
4533	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4534	if (reserve_flags)
4535		alloc_flags = reserve_flags;
 
4536
4537	/*
4538	 * Reset the nodemask and zonelist iterators if memory policies can be
4539	 * ignored. These allocations are high priority and system rather than
4540	 * user oriented.
4541	 */
4542	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4543		ac->nodemask = NULL;
4544		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4545					ac->high_zoneidx, ac->nodemask);
4546	}
4547
4548	/* Attempt with potentially adjusted zonelist and alloc_flags */
4549	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4550	if (page)
4551		goto got_pg;
4552
4553	/* Caller is not willing to reclaim, we can't balance anything */
4554	if (!can_direct_reclaim)
4555		goto nopage;
4556
4557	/* Avoid recursion of direct reclaim */
4558	if (current->flags & PF_MEMALLOC)
4559		goto nopage;
4560
4561	/* Try direct reclaim and then allocating */
4562	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4563							&did_some_progress);
4564	if (page)
4565		goto got_pg;
4566
4567	/* Try direct compaction and then allocating */
4568	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4569					compact_priority, &compact_result);
4570	if (page)
4571		goto got_pg;
4572
4573	/* Do not loop if specifically requested */
4574	if (gfp_mask & __GFP_NORETRY)
4575		goto nopage;
4576
4577	/*
4578	 * Do not retry costly high order allocations unless they are
4579	 * __GFP_RETRY_MAYFAIL
4580	 */
4581	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
 
4582		goto nopage;
4583
4584	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4585				 did_some_progress > 0, &no_progress_loops))
4586		goto retry;
4587
4588	/*
4589	 * It doesn't make any sense to retry for the compaction if the order-0
4590	 * reclaim is not able to make any progress because the current
4591	 * implementation of the compaction depends on the sufficient amount
4592	 * of free memory (see __compaction_suitable)
4593	 */
4594	if (did_some_progress > 0 &&
4595			should_compact_retry(ac, order, alloc_flags,
4596				compact_result, &compact_priority,
4597				&compaction_retries))
4598		goto retry;
4599
4600
4601	/* Deal with possible cpuset update races before we start OOM killing */
4602	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4603		goto retry_cpuset;
 
 
 
 
4604
4605	/* Reclaim has failed us, start killing things */
4606	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4607	if (page)
4608		goto got_pg;
4609
4610	/* Avoid allocations with no watermarks from looping endlessly */
4611	if (tsk_is_oom_victim(current) &&
4612	    (alloc_flags == ALLOC_OOM ||
4613	     (gfp_mask & __GFP_NOMEMALLOC)))
4614		goto nopage;
4615
4616	/* Retry as long as the OOM killer is making progress */
4617	if (did_some_progress) {
4618		no_progress_loops = 0;
4619		goto retry;
4620	}
4621
4622nopage:
4623	/* Deal with possible cpuset update races before we fail */
4624	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4625		goto retry_cpuset;
 
 
 
 
4626
4627	/*
4628	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4629	 * we always retry
4630	 */
4631	if (gfp_mask & __GFP_NOFAIL) {
4632		/*
4633		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4634		 * of any new users that actually require GFP_NOWAIT
4635		 */
4636		if (WARN_ON_ONCE(!can_direct_reclaim))
4637			goto fail;
4638
4639		/*
4640		 * PF_MEMALLOC request from this context is rather bizarre
4641		 * because we cannot reclaim anything and only can loop waiting
4642		 * for somebody to do a work for us
4643		 */
4644		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4645
4646		/*
4647		 * non failing costly orders are a hard requirement which we
4648		 * are not prepared for much so let's warn about these users
4649		 * so that we can identify them and convert them to something
4650		 * else.
4651		 */
4652		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4653
4654		/*
4655		 * Help non-failing allocations by giving them access to memory
4656		 * reserves but do not use ALLOC_NO_WATERMARKS because this
 
4657		 * could deplete whole memory reserves which would just make
4658		 * the situation worse
4659		 */
4660		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4661		if (page)
4662			goto got_pg;
4663
4664		cond_resched();
4665		goto retry;
4666	}
4667fail:
4668	warn_alloc(gfp_mask, ac->nodemask,
4669			"page allocation failure: order:%u", order);
4670got_pg:
4671	return page;
4672}
4673
4674static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4675		int preferred_nid, nodemask_t *nodemask,
4676		struct alloc_context *ac, gfp_t *alloc_mask,
4677		unsigned int *alloc_flags)
4678{
4679	ac->high_zoneidx = gfp_zone(gfp_mask);
4680	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4681	ac->nodemask = nodemask;
4682	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4683
4684	if (cpusets_enabled()) {
4685		*alloc_mask |= __GFP_HARDWALL;
4686		if (!ac->nodemask)
 
 
 
 
4687			ac->nodemask = &cpuset_current_mems_allowed;
4688		else
4689			*alloc_flags |= ALLOC_CPUSET;
4690	}
4691
4692	fs_reclaim_acquire(gfp_mask);
4693	fs_reclaim_release(gfp_mask);
4694
4695	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4696
4697	if (should_fail_alloc_page(gfp_mask, order))
4698		return false;
4699
4700	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4701		*alloc_flags |= ALLOC_CMA;
4702
4703	return true;
4704}
4705
4706/* Determine whether to spread dirty pages and what the first usable zone */
4707static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4708{
4709	/* Dirty zone balancing only done in the fast path */
4710	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4711
4712	/*
4713	 * The preferred zone is used for statistics but crucially it is
4714	 * also used as the starting point for the zonelist iterator. It
4715	 * may get reset for allocations that ignore memory policies.
4716	 */
4717	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4718					ac->high_zoneidx, ac->nodemask);
 
 
4719}
4720
4721/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4722 * This is the 'heart' of the zoned buddy allocator.
4723 */
4724struct page *
4725__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4726							nodemask_t *nodemask)
4727{
4728	struct page *page;
4729	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4730	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4731	struct alloc_context ac = { };
4732
4733	/*
4734	 * There are several places where we assume that the order value is sane
4735	 * so bail out early if the request is out of bound.
4736	 */
4737	if (unlikely(order >= MAX_ORDER)) {
4738		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4739		return NULL;
4740	}
4741
4742	gfp_mask &= gfp_allowed_mask;
4743	alloc_mask = gfp_mask;
4744	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
 
 
 
 
 
 
 
 
 
4745		return NULL;
4746
4747	finalise_ac(gfp_mask, &ac);
4748
4749	/*
4750	 * Forbid the first pass from falling back to types that fragment
4751	 * memory until all local zones are considered.
4752	 */
4753	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4754
4755	/* First allocation attempt */
4756	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4757	if (likely(page))
4758		goto out;
4759
4760	/*
4761	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4762	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4763	 * from a particular context which has been marked by
4764	 * memalloc_no{fs,io}_{save,restore}.
4765	 */
4766	alloc_mask = current_gfp_context(gfp_mask);
4767	ac.spread_dirty_pages = false;
4768
4769	/*
4770	 * Restore the original nodemask if it was potentially replaced with
4771	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4772	 */
4773	if (unlikely(ac.nodemask != nodemask))
4774		ac.nodemask = nodemask;
4775
4776	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4777
4778out:
4779	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4780	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4781		__free_pages(page, order);
4782		page = NULL;
4783	}
4784
4785	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
 
4786
4787	return page;
4788}
4789EXPORT_SYMBOL(__alloc_pages_nodemask);
 
 
 
 
 
 
 
 
 
4790
4791/*
4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4794 * you need to access high mem.
4795 */
4796unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4797{
4798	struct page *page;
4799
4800	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4801	if (!page)
4802		return 0;
4803	return (unsigned long) page_address(page);
4804}
4805EXPORT_SYMBOL(__get_free_pages);
4806
4807unsigned long get_zeroed_page(gfp_t gfp_mask)
4808{
4809	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4810}
4811EXPORT_SYMBOL(get_zeroed_page);
4812
4813static inline void free_the_page(struct page *page, unsigned int order)
4814{
4815	if (order == 0)		/* Via pcp? */
4816		free_unref_page(page);
4817	else
4818		__free_pages_ok(page, order);
4819}
4820
 
 
 
 
 
 
 
 
 
 
 
 
4821void __free_pages(struct page *page, unsigned int order)
4822{
 
 
 
4823	if (put_page_testzero(page))
4824		free_the_page(page, order);
 
 
 
4825}
4826EXPORT_SYMBOL(__free_pages);
4827
4828void free_pages(unsigned long addr, unsigned int order)
4829{
4830	if (addr != 0) {
4831		VM_BUG_ON(!virt_addr_valid((void *)addr));
4832		__free_pages(virt_to_page((void *)addr), order);
4833	}
4834}
4835
4836EXPORT_SYMBOL(free_pages);
4837
4838/*
4839 * Page Fragment:
4840 *  An arbitrary-length arbitrary-offset area of memory which resides
4841 *  within a 0 or higher order page.  Multiple fragments within that page
4842 *  are individually refcounted, in the page's reference counter.
4843 *
4844 * The page_frag functions below provide a simple allocation framework for
4845 * page fragments.  This is used by the network stack and network device
4846 * drivers to provide a backing region of memory for use as either an
4847 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4848 */
4849static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4850					     gfp_t gfp_mask)
4851{
4852	struct page *page = NULL;
4853	gfp_t gfp = gfp_mask;
4854
4855#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4856	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4857		    __GFP_NOMEMALLOC;
4858	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4859				PAGE_FRAG_CACHE_MAX_ORDER);
4860	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4861#endif
4862	if (unlikely(!page))
4863		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4864
4865	nc->va = page ? page_address(page) : NULL;
4866
4867	return page;
4868}
4869
4870void __page_frag_cache_drain(struct page *page, unsigned int count)
4871{
4872	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4873
4874	if (page_ref_sub_and_test(page, count))
4875		free_the_page(page, compound_order(page));
4876}
4877EXPORT_SYMBOL(__page_frag_cache_drain);
4878
4879void *page_frag_alloc(struct page_frag_cache *nc,
4880		      unsigned int fragsz, gfp_t gfp_mask)
 
4881{
4882	unsigned int size = PAGE_SIZE;
4883	struct page *page;
4884	int offset;
4885
4886	if (unlikely(!nc->va)) {
4887refill:
4888		page = __page_frag_cache_refill(nc, gfp_mask);
4889		if (!page)
4890			return NULL;
4891
4892#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4893		/* if size can vary use size else just use PAGE_SIZE */
4894		size = nc->size;
4895#endif
4896		/* Even if we own the page, we do not use atomic_set().
4897		 * This would break get_page_unless_zero() users.
4898		 */
4899		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4900
4901		/* reset page count bias and offset to start of new frag */
4902		nc->pfmemalloc = page_is_pfmemalloc(page);
4903		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4904		nc->offset = size;
4905	}
4906
4907	offset = nc->offset - fragsz;
4908	if (unlikely(offset < 0)) {
4909		page = virt_to_page(nc->va);
4910
4911		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4912			goto refill;
4913
 
 
 
 
 
4914#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4915		/* if size can vary use size else just use PAGE_SIZE */
4916		size = nc->size;
4917#endif
4918		/* OK, page count is 0, we can safely set it */
4919		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4920
4921		/* reset page count bias and offset to start of new frag */
4922		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4923		offset = size - fragsz;
 
 
 
 
 
 
 
 
 
 
 
 
4924	}
4925
4926	nc->pagecnt_bias--;
 
4927	nc->offset = offset;
4928
4929	return nc->va + offset;
4930}
4931EXPORT_SYMBOL(page_frag_alloc);
4932
4933/*
4934 * Frees a page fragment allocated out of either a compound or order 0 page.
4935 */
4936void page_frag_free(void *addr)
4937{
4938	struct page *page = virt_to_head_page(addr);
4939
4940	if (unlikely(put_page_testzero(page)))
4941		free_the_page(page, compound_order(page));
4942}
4943EXPORT_SYMBOL(page_frag_free);
4944
4945static void *make_alloc_exact(unsigned long addr, unsigned int order,
4946		size_t size)
4947{
4948	if (addr) {
4949		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4950		unsigned long used = addr + PAGE_ALIGN(size);
4951
4952		split_page(virt_to_page((void *)addr), order);
4953		while (used < alloc_end) {
4954			free_page(used);
4955			used += PAGE_SIZE;
4956		}
 
 
 
 
4957	}
4958	return (void *)addr;
4959}
4960
4961/**
4962 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4963 * @size: the number of bytes to allocate
4964 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4965 *
4966 * This function is similar to alloc_pages(), except that it allocates the
4967 * minimum number of pages to satisfy the request.  alloc_pages() can only
4968 * allocate memory in power-of-two pages.
4969 *
4970 * This function is also limited by MAX_ORDER.
4971 *
4972 * Memory allocated by this function must be released by free_pages_exact().
4973 *
4974 * Return: pointer to the allocated area or %NULL in case of error.
4975 */
4976void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4977{
4978	unsigned int order = get_order(size);
4979	unsigned long addr;
4980
4981	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982		gfp_mask &= ~__GFP_COMP;
4983
4984	addr = __get_free_pages(gfp_mask, order);
4985	return make_alloc_exact(addr, order, size);
4986}
4987EXPORT_SYMBOL(alloc_pages_exact);
4988
4989/**
4990 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4991 *			   pages on a node.
4992 * @nid: the preferred node ID where memory should be allocated
4993 * @size: the number of bytes to allocate
4994 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4995 *
4996 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4997 * back.
4998 *
4999 * Return: pointer to the allocated area or %NULL in case of error.
5000 */
5001void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5002{
5003	unsigned int order = get_order(size);
5004	struct page *p;
5005
5006	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5007		gfp_mask &= ~__GFP_COMP;
5008
5009	p = alloc_pages_node(nid, gfp_mask, order);
5010	if (!p)
5011		return NULL;
5012	return make_alloc_exact((unsigned long)page_address(p), order, size);
5013}
5014
5015/**
5016 * free_pages_exact - release memory allocated via alloc_pages_exact()
5017 * @virt: the value returned by alloc_pages_exact.
5018 * @size: size of allocation, same value as passed to alloc_pages_exact().
5019 *
5020 * Release the memory allocated by a previous call to alloc_pages_exact.
5021 */
5022void free_pages_exact(void *virt, size_t size)
5023{
5024	unsigned long addr = (unsigned long)virt;
5025	unsigned long end = addr + PAGE_ALIGN(size);
5026
5027	while (addr < end) {
5028		free_page(addr);
5029		addr += PAGE_SIZE;
5030	}
5031}
5032EXPORT_SYMBOL(free_pages_exact);
5033
5034/**
5035 * nr_free_zone_pages - count number of pages beyond high watermark
5036 * @offset: The zone index of the highest zone
5037 *
5038 * nr_free_zone_pages() counts the number of pages which are beyond the
5039 * high watermark within all zones at or below a given zone index.  For each
5040 * zone, the number of pages is calculated as:
5041 *
5042 *     nr_free_zone_pages = managed_pages - high_pages
5043 *
5044 * Return: number of pages beyond high watermark.
5045 */
5046static unsigned long nr_free_zone_pages(int offset)
5047{
5048	struct zoneref *z;
5049	struct zone *zone;
5050
5051	/* Just pick one node, since fallback list is circular */
5052	unsigned long sum = 0;
5053
5054	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5055
5056	for_each_zone_zonelist(zone, z, zonelist, offset) {
5057		unsigned long size = zone_managed_pages(zone);
5058		unsigned long high = high_wmark_pages(zone);
5059		if (size > high)
5060			sum += size - high;
5061	}
5062
5063	return sum;
5064}
5065
5066/**
5067 * nr_free_buffer_pages - count number of pages beyond high watermark
5068 *
5069 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5070 * watermark within ZONE_DMA and ZONE_NORMAL.
5071 *
5072 * Return: number of pages beyond high watermark within ZONE_DMA and
5073 * ZONE_NORMAL.
5074 */
5075unsigned long nr_free_buffer_pages(void)
5076{
5077	return nr_free_zone_pages(gfp_zone(GFP_USER));
5078}
5079EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5080
5081/**
5082 * nr_free_pagecache_pages - count number of pages beyond high watermark
5083 *
5084 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5085 * high watermark within all zones.
5086 *
5087 * Return: number of pages beyond high watermark within all zones.
5088 */
5089unsigned long nr_free_pagecache_pages(void)
5090{
5091	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5092}
5093
5094static inline void show_node(struct zone *zone)
5095{
5096	if (IS_ENABLED(CONFIG_NUMA))
5097		printk("Node %d ", zone_to_nid(zone));
5098}
5099
5100long si_mem_available(void)
5101{
5102	long available;
5103	unsigned long pagecache;
5104	unsigned long wmark_low = 0;
5105	unsigned long pages[NR_LRU_LISTS];
5106	unsigned long reclaimable;
5107	struct zone *zone;
5108	int lru;
5109
5110	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5111		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5112
5113	for_each_zone(zone)
5114		wmark_low += low_wmark_pages(zone);
5115
5116	/*
5117	 * Estimate the amount of memory available for userspace allocations,
5118	 * without causing swapping.
5119	 */
5120	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5121
5122	/*
5123	 * Not all the page cache can be freed, otherwise the system will
5124	 * start swapping. Assume at least half of the page cache, or the
5125	 * low watermark worth of cache, needs to stay.
5126	 */
5127	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5128	pagecache -= min(pagecache / 2, wmark_low);
5129	available += pagecache;
5130
5131	/*
5132	 * Part of the reclaimable slab and other kernel memory consists of
5133	 * items that are in use, and cannot be freed. Cap this estimate at the
5134	 * low watermark.
5135	 */
5136	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5137			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5138	available += reclaimable - min(reclaimable / 2, wmark_low);
5139
5140	if (available < 0)
5141		available = 0;
5142	return available;
5143}
5144EXPORT_SYMBOL_GPL(si_mem_available);
5145
5146void si_meminfo(struct sysinfo *val)
5147{
5148	val->totalram = totalram_pages();
5149	val->sharedram = global_node_page_state(NR_SHMEM);
5150	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5151	val->bufferram = nr_blockdev_pages();
5152	val->totalhigh = totalhigh_pages();
5153	val->freehigh = nr_free_highpages();
5154	val->mem_unit = PAGE_SIZE;
5155}
5156
5157EXPORT_SYMBOL(si_meminfo);
5158
5159#ifdef CONFIG_NUMA
5160void si_meminfo_node(struct sysinfo *val, int nid)
5161{
5162	int zone_type;		/* needs to be signed */
5163	unsigned long managed_pages = 0;
5164	unsigned long managed_highpages = 0;
5165	unsigned long free_highpages = 0;
5166	pg_data_t *pgdat = NODE_DATA(nid);
5167
5168	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5169		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5170	val->totalram = managed_pages;
5171	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5172	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5173#ifdef CONFIG_HIGHMEM
5174	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5175		struct zone *zone = &pgdat->node_zones[zone_type];
5176
5177		if (is_highmem(zone)) {
5178			managed_highpages += zone_managed_pages(zone);
5179			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5180		}
5181	}
5182	val->totalhigh = managed_highpages;
5183	val->freehigh = free_highpages;
5184#else
5185	val->totalhigh = managed_highpages;
5186	val->freehigh = free_highpages;
5187#endif
5188	val->mem_unit = PAGE_SIZE;
5189}
5190#endif
5191
5192/*
5193 * Determine whether the node should be displayed or not, depending on whether
5194 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5195 */
5196static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5197{
5198	if (!(flags & SHOW_MEM_FILTER_NODES))
5199		return false;
5200
5201	/*
5202	 * no node mask - aka implicit memory numa policy. Do not bother with
5203	 * the synchronization - read_mems_allowed_begin - because we do not
5204	 * have to be precise here.
5205	 */
5206	if (!nodemask)
5207		nodemask = &cpuset_current_mems_allowed;
5208
5209	return !node_isset(nid, *nodemask);
5210}
5211
5212#define K(x) ((x) << (PAGE_SHIFT-10))
5213
5214static void show_migration_types(unsigned char type)
5215{
5216	static const char types[MIGRATE_TYPES] = {
5217		[MIGRATE_UNMOVABLE]	= 'U',
5218		[MIGRATE_MOVABLE]	= 'M',
5219		[MIGRATE_RECLAIMABLE]	= 'E',
5220		[MIGRATE_HIGHATOMIC]	= 'H',
5221#ifdef CONFIG_CMA
5222		[MIGRATE_CMA]		= 'C',
5223#endif
5224#ifdef CONFIG_MEMORY_ISOLATION
5225		[MIGRATE_ISOLATE]	= 'I',
5226#endif
5227	};
5228	char tmp[MIGRATE_TYPES + 1];
5229	char *p = tmp;
5230	int i;
5231
5232	for (i = 0; i < MIGRATE_TYPES; i++) {
5233		if (type & (1 << i))
5234			*p++ = types[i];
5235	}
5236
5237	*p = '\0';
5238	printk(KERN_CONT "(%s) ", tmp);
5239}
5240
5241/*
5242 * Show free area list (used inside shift_scroll-lock stuff)
5243 * We also calculate the percentage fragmentation. We do this by counting the
5244 * memory on each free list with the exception of the first item on the list.
5245 *
5246 * Bits in @filter:
5247 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5248 *   cpuset.
5249 */
5250void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5251{
5252	unsigned long free_pcp = 0;
5253	int cpu;
5254	struct zone *zone;
5255	pg_data_t *pgdat;
5256
5257	for_each_populated_zone(zone) {
5258		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5259			continue;
5260
5261		for_each_online_cpu(cpu)
5262			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5263	}
5264
5265	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5266		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5267		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5268		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5269		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5270		" free:%lu free_pcp:%lu free_cma:%lu\n",
5271		global_node_page_state(NR_ACTIVE_ANON),
5272		global_node_page_state(NR_INACTIVE_ANON),
5273		global_node_page_state(NR_ISOLATED_ANON),
5274		global_node_page_state(NR_ACTIVE_FILE),
5275		global_node_page_state(NR_INACTIVE_FILE),
5276		global_node_page_state(NR_ISOLATED_FILE),
5277		global_node_page_state(NR_UNEVICTABLE),
5278		global_node_page_state(NR_FILE_DIRTY),
5279		global_node_page_state(NR_WRITEBACK),
5280		global_node_page_state(NR_UNSTABLE_NFS),
5281		global_node_page_state(NR_SLAB_RECLAIMABLE),
5282		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5283		global_node_page_state(NR_FILE_MAPPED),
5284		global_node_page_state(NR_SHMEM),
5285		global_zone_page_state(NR_PAGETABLE),
5286		global_zone_page_state(NR_BOUNCE),
5287		global_zone_page_state(NR_FREE_PAGES),
5288		free_pcp,
5289		global_zone_page_state(NR_FREE_CMA_PAGES));
5290
5291	for_each_online_pgdat(pgdat) {
5292		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5293			continue;
5294
5295		printk("Node %d"
5296			" active_anon:%lukB"
5297			" inactive_anon:%lukB"
5298			" active_file:%lukB"
5299			" inactive_file:%lukB"
5300			" unevictable:%lukB"
5301			" isolated(anon):%lukB"
5302			" isolated(file):%lukB"
5303			" mapped:%lukB"
5304			" dirty:%lukB"
5305			" writeback:%lukB"
5306			" shmem:%lukB"
5307#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5308			" shmem_thp: %lukB"
5309			" shmem_pmdmapped: %lukB"
5310			" anon_thp: %lukB"
5311#endif
5312			" writeback_tmp:%lukB"
5313			" unstable:%lukB"
5314			" all_unreclaimable? %s"
5315			"\n",
5316			pgdat->node_id,
5317			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5318			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5319			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5320			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5321			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5322			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5323			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5324			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5325			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5326			K(node_page_state(pgdat, NR_WRITEBACK)),
5327			K(node_page_state(pgdat, NR_SHMEM)),
5328#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5329			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5330			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5331					* HPAGE_PMD_NR),
5332			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5333#endif
5334			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5335			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5336			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5337				"yes" : "no");
5338	}
5339
5340	for_each_populated_zone(zone) {
5341		int i;
5342
5343		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5344			continue;
5345
5346		free_pcp = 0;
5347		for_each_online_cpu(cpu)
5348			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5349
5350		show_node(zone);
5351		printk(KERN_CONT
5352			"%s"
5353			" free:%lukB"
5354			" min:%lukB"
5355			" low:%lukB"
5356			" high:%lukB"
5357			" active_anon:%lukB"
5358			" inactive_anon:%lukB"
5359			" active_file:%lukB"
5360			" inactive_file:%lukB"
5361			" unevictable:%lukB"
5362			" writepending:%lukB"
5363			" present:%lukB"
5364			" managed:%lukB"
5365			" mlocked:%lukB"
5366			" kernel_stack:%lukB"
5367			" pagetables:%lukB"
5368			" bounce:%lukB"
5369			" free_pcp:%lukB"
5370			" local_pcp:%ukB"
5371			" free_cma:%lukB"
5372			"\n",
5373			zone->name,
5374			K(zone_page_state(zone, NR_FREE_PAGES)),
5375			K(min_wmark_pages(zone)),
5376			K(low_wmark_pages(zone)),
5377			K(high_wmark_pages(zone)),
5378			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5379			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5380			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5381			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5382			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5383			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5384			K(zone->present_pages),
5385			K(zone_managed_pages(zone)),
5386			K(zone_page_state(zone, NR_MLOCK)),
5387			zone_page_state(zone, NR_KERNEL_STACK_KB),
5388			K(zone_page_state(zone, NR_PAGETABLE)),
5389			K(zone_page_state(zone, NR_BOUNCE)),
5390			K(free_pcp),
5391			K(this_cpu_read(zone->pageset->pcp.count)),
5392			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5393		printk("lowmem_reserve[]:");
5394		for (i = 0; i < MAX_NR_ZONES; i++)
5395			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5396		printk(KERN_CONT "\n");
5397	}
5398
5399	for_each_populated_zone(zone) {
5400		unsigned int order;
5401		unsigned long nr[MAX_ORDER], flags, total = 0;
5402		unsigned char types[MAX_ORDER];
5403
5404		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5405			continue;
5406		show_node(zone);
5407		printk(KERN_CONT "%s: ", zone->name);
5408
5409		spin_lock_irqsave(&zone->lock, flags);
5410		for (order = 0; order < MAX_ORDER; order++) {
5411			struct free_area *area = &zone->free_area[order];
5412			int type;
5413
5414			nr[order] = area->nr_free;
5415			total += nr[order] << order;
5416
5417			types[order] = 0;
5418			for (type = 0; type < MIGRATE_TYPES; type++) {
5419				if (!free_area_empty(area, type))
5420					types[order] |= 1 << type;
5421			}
5422		}
5423		spin_unlock_irqrestore(&zone->lock, flags);
5424		for (order = 0; order < MAX_ORDER; order++) {
5425			printk(KERN_CONT "%lu*%lukB ",
5426			       nr[order], K(1UL) << order);
5427			if (nr[order])
5428				show_migration_types(types[order]);
5429		}
5430		printk(KERN_CONT "= %lukB\n", K(total));
5431	}
5432
5433	hugetlb_show_meminfo();
5434
5435	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5436
5437	show_swap_cache_info();
5438}
5439
5440static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5441{
5442	zoneref->zone = zone;
5443	zoneref->zone_idx = zone_idx(zone);
5444}
5445
5446/*
5447 * Builds allocation fallback zone lists.
5448 *
5449 * Add all populated zones of a node to the zonelist.
5450 */
5451static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5452{
5453	struct zone *zone;
5454	enum zone_type zone_type = MAX_NR_ZONES;
5455	int nr_zones = 0;
5456
5457	do {
5458		zone_type--;
5459		zone = pgdat->node_zones + zone_type;
5460		if (managed_zone(zone)) {
5461			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5462			check_highest_zone(zone_type);
5463		}
5464	} while (zone_type);
5465
5466	return nr_zones;
5467}
5468
5469#ifdef CONFIG_NUMA
5470
5471static int __parse_numa_zonelist_order(char *s)
5472{
5473	/*
5474	 * We used to support different zonlists modes but they turned
5475	 * out to be just not useful. Let's keep the warning in place
5476	 * if somebody still use the cmd line parameter so that we do
5477	 * not fail it silently
5478	 */
5479	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5480		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5481		return -EINVAL;
5482	}
5483	return 0;
5484}
5485
5486static __init int setup_numa_zonelist_order(char *s)
5487{
5488	if (!s)
5489		return 0;
5490
5491	return __parse_numa_zonelist_order(s);
5492}
5493early_param("numa_zonelist_order", setup_numa_zonelist_order);
5494
5495char numa_zonelist_order[] = "Node";
5496
5497/*
5498 * sysctl handler for numa_zonelist_order
5499 */
5500int numa_zonelist_order_handler(struct ctl_table *table, int write,
5501		void __user *buffer, size_t *length,
5502		loff_t *ppos)
5503{
5504	char *str;
5505	int ret;
5506
5507	if (!write)
5508		return proc_dostring(table, write, buffer, length, ppos);
5509	str = memdup_user_nul(buffer, 16);
5510	if (IS_ERR(str))
5511		return PTR_ERR(str);
5512
5513	ret = __parse_numa_zonelist_order(str);
5514	kfree(str);
5515	return ret;
5516}
5517
5518
5519#define MAX_NODE_LOAD (nr_online_nodes)
5520static int node_load[MAX_NUMNODES];
5521
5522/**
5523 * find_next_best_node - find the next node that should appear in a given node's fallback list
5524 * @node: node whose fallback list we're appending
5525 * @used_node_mask: nodemask_t of already used nodes
5526 *
5527 * We use a number of factors to determine which is the next node that should
5528 * appear on a given node's fallback list.  The node should not have appeared
5529 * already in @node's fallback list, and it should be the next closest node
5530 * according to the distance array (which contains arbitrary distance values
5531 * from each node to each node in the system), and should also prefer nodes
5532 * with no CPUs, since presumably they'll have very little allocation pressure
5533 * on them otherwise.
5534 *
5535 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5536 */
5537static int find_next_best_node(int node, nodemask_t *used_node_mask)
5538{
5539	int n, val;
5540	int min_val = INT_MAX;
5541	int best_node = NUMA_NO_NODE;
5542	const struct cpumask *tmp = cpumask_of_node(0);
5543
5544	/* Use the local node if we haven't already */
5545	if (!node_isset(node, *used_node_mask)) {
 
 
 
5546		node_set(node, *used_node_mask);
5547		return node;
5548	}
5549
5550	for_each_node_state(n, N_MEMORY) {
5551
5552		/* Don't want a node to appear more than once */
5553		if (node_isset(n, *used_node_mask))
5554			continue;
5555
5556		/* Use the distance array to find the distance */
5557		val = node_distance(node, n);
5558
5559		/* Penalize nodes under us ("prefer the next node") */
5560		val += (n < node);
5561
5562		/* Give preference to headless and unused nodes */
5563		tmp = cpumask_of_node(n);
5564		if (!cpumask_empty(tmp))
5565			val += PENALTY_FOR_NODE_WITH_CPUS;
5566
5567		/* Slight preference for less loaded node */
5568		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5569		val += node_load[n];
5570
5571		if (val < min_val) {
5572			min_val = val;
5573			best_node = n;
5574		}
5575	}
5576
5577	if (best_node >= 0)
5578		node_set(best_node, *used_node_mask);
5579
5580	return best_node;
5581}
5582
5583
5584/*
5585 * Build zonelists ordered by node and zones within node.
5586 * This results in maximum locality--normal zone overflows into local
5587 * DMA zone, if any--but risks exhausting DMA zone.
5588 */
5589static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5590		unsigned nr_nodes)
5591{
5592	struct zoneref *zonerefs;
5593	int i;
5594
5595	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5596
5597	for (i = 0; i < nr_nodes; i++) {
5598		int nr_zones;
5599
5600		pg_data_t *node = NODE_DATA(node_order[i]);
5601
5602		nr_zones = build_zonerefs_node(node, zonerefs);
5603		zonerefs += nr_zones;
5604	}
5605	zonerefs->zone = NULL;
5606	zonerefs->zone_idx = 0;
5607}
5608
5609/*
5610 * Build gfp_thisnode zonelists
5611 */
5612static void build_thisnode_zonelists(pg_data_t *pgdat)
5613{
5614	struct zoneref *zonerefs;
5615	int nr_zones;
5616
5617	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5618	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5619	zonerefs += nr_zones;
5620	zonerefs->zone = NULL;
5621	zonerefs->zone_idx = 0;
5622}
5623
5624/*
5625 * Build zonelists ordered by zone and nodes within zones.
5626 * This results in conserving DMA zone[s] until all Normal memory is
5627 * exhausted, but results in overflowing to remote node while memory
5628 * may still exist in local DMA zone.
5629 */
5630
5631static void build_zonelists(pg_data_t *pgdat)
5632{
5633	static int node_order[MAX_NUMNODES];
5634	int node, load, nr_nodes = 0;
5635	nodemask_t used_mask;
5636	int local_node, prev_node;
5637
5638	/* NUMA-aware ordering of nodes */
5639	local_node = pgdat->node_id;
5640	load = nr_online_nodes;
5641	prev_node = local_node;
5642	nodes_clear(used_mask);
5643
5644	memset(node_order, 0, sizeof(node_order));
5645	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5646		/*
5647		 * We don't want to pressure a particular node.
5648		 * So adding penalty to the first node in same
5649		 * distance group to make it round-robin.
5650		 */
5651		if (node_distance(local_node, node) !=
5652		    node_distance(local_node, prev_node))
5653			node_load[node] = load;
5654
5655		node_order[nr_nodes++] = node;
5656		prev_node = node;
5657		load--;
5658	}
5659
5660	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5661	build_thisnode_zonelists(pgdat);
 
 
 
 
5662}
5663
5664#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5665/*
5666 * Return node id of node used for "local" allocations.
5667 * I.e., first node id of first zone in arg node's generic zonelist.
5668 * Used for initializing percpu 'numa_mem', which is used primarily
5669 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5670 */
5671int local_memory_node(int node)
5672{
5673	struct zoneref *z;
5674
5675	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5676				   gfp_zone(GFP_KERNEL),
5677				   NULL);
5678	return zone_to_nid(z->zone);
5679}
5680#endif
5681
5682static void setup_min_unmapped_ratio(void);
5683static void setup_min_slab_ratio(void);
5684#else	/* CONFIG_NUMA */
5685
5686static void build_zonelists(pg_data_t *pgdat)
5687{
5688	int node, local_node;
5689	struct zoneref *zonerefs;
5690	int nr_zones;
5691
5692	local_node = pgdat->node_id;
5693
5694	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5695	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5696	zonerefs += nr_zones;
5697
5698	/*
5699	 * Now we build the zonelist so that it contains the zones
5700	 * of all the other nodes.
5701	 * We don't want to pressure a particular node, so when
5702	 * building the zones for node N, we make sure that the
5703	 * zones coming right after the local ones are those from
5704	 * node N+1 (modulo N)
5705	 */
5706	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5707		if (!node_online(node))
5708			continue;
5709		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5710		zonerefs += nr_zones;
5711	}
5712	for (node = 0; node < local_node; node++) {
5713		if (!node_online(node))
5714			continue;
5715		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5716		zonerefs += nr_zones;
5717	}
5718
5719	zonerefs->zone = NULL;
5720	zonerefs->zone_idx = 0;
5721}
5722
5723#endif	/* CONFIG_NUMA */
5724
5725/*
5726 * Boot pageset table. One per cpu which is going to be used for all
5727 * zones and all nodes. The parameters will be set in such a way
5728 * that an item put on a list will immediately be handed over to
5729 * the buddy list. This is safe since pageset manipulation is done
5730 * with interrupts disabled.
5731 *
5732 * The boot_pagesets must be kept even after bootup is complete for
5733 * unused processors and/or zones. They do play a role for bootstrapping
5734 * hotplugged processors.
5735 *
5736 * zoneinfo_show() and maybe other functions do
5737 * not check if the processor is online before following the pageset pointer.
5738 * Other parts of the kernel may not check if the zone is available.
5739 */
5740static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5741static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5742static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
 
 
 
5743
5744static void __build_all_zonelists(void *data)
5745{
5746	int nid;
5747	int __maybe_unused cpu;
5748	pg_data_t *self = data;
5749	static DEFINE_SPINLOCK(lock);
5750
5751	spin_lock(&lock);
 
 
 
 
 
 
 
 
 
 
 
5752
5753#ifdef CONFIG_NUMA
5754	memset(node_load, 0, sizeof(node_load));
5755#endif
5756
5757	/*
5758	 * This node is hotadded and no memory is yet present.   So just
5759	 * building zonelists is fine - no need to touch other nodes.
5760	 */
5761	if (self && !node_online(self->node_id)) {
5762		build_zonelists(self);
5763	} else {
5764		for_each_online_node(nid) {
 
 
 
 
5765			pg_data_t *pgdat = NODE_DATA(nid);
5766
5767			build_zonelists(pgdat);
5768		}
5769
5770#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5771		/*
5772		 * We now know the "local memory node" for each node--
5773		 * i.e., the node of the first zone in the generic zonelist.
5774		 * Set up numa_mem percpu variable for on-line cpus.  During
5775		 * boot, only the boot cpu should be on-line;  we'll init the
5776		 * secondary cpus' numa_mem as they come on-line.  During
5777		 * node/memory hotplug, we'll fixup all on-line cpus.
5778		 */
5779		for_each_online_cpu(cpu)
5780			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5781#endif
5782	}
5783
5784	spin_unlock(&lock);
 
5785}
5786
5787static noinline void __init
5788build_all_zonelists_init(void)
5789{
5790	int cpu;
5791
5792	__build_all_zonelists(NULL);
5793
5794	/*
5795	 * Initialize the boot_pagesets that are going to be used
5796	 * for bootstrapping processors. The real pagesets for
5797	 * each zone will be allocated later when the per cpu
5798	 * allocator is available.
5799	 *
5800	 * boot_pagesets are used also for bootstrapping offline
5801	 * cpus if the system is already booted because the pagesets
5802	 * are needed to initialize allocators on a specific cpu too.
5803	 * F.e. the percpu allocator needs the page allocator which
5804	 * needs the percpu allocator in order to allocate its pagesets
5805	 * (a chicken-egg dilemma).
5806	 */
5807	for_each_possible_cpu(cpu)
5808		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5809
5810	mminit_verify_zonelist();
5811	cpuset_init_current_mems_allowed();
5812}
5813
5814/*
5815 * unless system_state == SYSTEM_BOOTING.
5816 *
5817 * __ref due to call of __init annotated helper build_all_zonelists_init
5818 * [protected by SYSTEM_BOOTING].
5819 */
5820void __ref build_all_zonelists(pg_data_t *pgdat)
5821{
 
 
5822	if (system_state == SYSTEM_BOOTING) {
5823		build_all_zonelists_init();
5824	} else {
5825		__build_all_zonelists(pgdat);
5826		/* cpuset refresh routine should be here */
5827	}
5828	vm_total_pages = nr_free_pagecache_pages();
 
5829	/*
5830	 * Disable grouping by mobility if the number of pages in the
5831	 * system is too low to allow the mechanism to work. It would be
5832	 * more accurate, but expensive to check per-zone. This check is
5833	 * made on memory-hotadd so a system can start with mobility
5834	 * disabled and enable it later
5835	 */
5836	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5837		page_group_by_mobility_disabled = 1;
5838	else
5839		page_group_by_mobility_disabled = 0;
5840
5841	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5842		nr_online_nodes,
5843		page_group_by_mobility_disabled ? "off" : "on",
5844		vm_total_pages);
5845#ifdef CONFIG_NUMA
5846	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5847#endif
5848}
5849
5850/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5851static bool __meminit
5852overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5853{
5854#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5855	static struct memblock_region *r;
5856
5857	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5858		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5859			for_each_memblock(memory, r) {
5860				if (*pfn < memblock_region_memory_end_pfn(r))
5861					break;
5862			}
5863		}
5864		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5865		    memblock_is_mirror(r)) {
5866			*pfn = memblock_region_memory_end_pfn(r);
5867			return true;
5868		}
5869	}
5870#endif
5871	return false;
5872}
5873
5874/*
5875 * Initially all pages are reserved - free ones are freed
5876 * up by memblock_free_all() once the early boot process is
5877 * done. Non-atomic initialization, single-pass.
5878 */
5879void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5880		unsigned long start_pfn, enum memmap_context context,
5881		struct vmem_altmap *altmap)
5882{
5883	unsigned long pfn, end_pfn = start_pfn + size;
5884	struct page *page;
5885
5886	if (highest_memmap_pfn < end_pfn - 1)
5887		highest_memmap_pfn = end_pfn - 1;
5888
5889#ifdef CONFIG_ZONE_DEVICE
5890	/*
5891	 * Honor reservation requested by the driver for this ZONE_DEVICE
5892	 * memory. We limit the total number of pages to initialize to just
5893	 * those that might contain the memory mapping. We will defer the
5894	 * ZONE_DEVICE page initialization until after we have released
5895	 * the hotplug lock.
5896	 */
5897	if (zone == ZONE_DEVICE) {
5898		if (!altmap)
5899			return;
5900
5901		if (start_pfn == altmap->base_pfn)
5902			start_pfn += altmap->reserve;
5903		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5904	}
5905#endif
5906
5907	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5908		/*
5909		 * There can be holes in boot-time mem_map[]s handed to this
5910		 * function.  They do not exist on hotplugged memory.
5911		 */
5912		if (context == MEMMAP_EARLY) {
5913			if (!early_pfn_valid(pfn))
5914				continue;
5915			if (!early_pfn_in_nid(pfn, nid))
5916				continue;
5917			if (overlap_memmap_init(zone, &pfn))
5918				continue;
5919			if (defer_init(nid, pfn, end_pfn))
5920				break;
5921		}
5922
5923		page = pfn_to_page(pfn);
5924		__init_single_page(page, pfn, zone, nid);
5925		if (context == MEMMAP_HOTPLUG)
5926			__SetPageReserved(page);
5927
5928		/*
5929		 * Mark the block movable so that blocks are reserved for
5930		 * movable at startup. This will force kernel allocations
5931		 * to reserve their blocks rather than leaking throughout
5932		 * the address space during boot when many long-lived
5933		 * kernel allocations are made.
5934		 *
5935		 * bitmap is created for zone's valid pfn range. but memmap
5936		 * can be created for invalid pages (for alignment)
5937		 * check here not to call set_pageblock_migratetype() against
5938		 * pfn out of zone.
5939		 */
5940		if (!(pfn & (pageblock_nr_pages - 1))) {
5941			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5942			cond_resched();
5943		}
5944	}
5945}
5946
5947#ifdef CONFIG_ZONE_DEVICE
5948void __ref memmap_init_zone_device(struct zone *zone,
5949				   unsigned long start_pfn,
5950				   unsigned long size,
5951				   struct dev_pagemap *pgmap)
5952{
5953	unsigned long pfn, end_pfn = start_pfn + size;
5954	struct pglist_data *pgdat = zone->zone_pgdat;
5955	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5956	unsigned long zone_idx = zone_idx(zone);
5957	unsigned long start = jiffies;
5958	int nid = pgdat->node_id;
5959
5960	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5961		return;
5962
5963	/*
5964	 * The call to memmap_init_zone should have already taken care
5965	 * of the pages reserved for the memmap, so we can just jump to
5966	 * the end of that region and start processing the device pages.
5967	 */
5968	if (altmap) {
5969		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5970		size = end_pfn - start_pfn;
5971	}
5972
5973	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5974		struct page *page = pfn_to_page(pfn);
5975
5976		__init_single_page(page, pfn, zone_idx, nid);
5977
5978		/*
5979		 * Mark page reserved as it will need to wait for onlining
5980		 * phase for it to be fully associated with a zone.
5981		 *
5982		 * We can use the non-atomic __set_bit operation for setting
5983		 * the flag as we are still initializing the pages.
5984		 */
5985		__SetPageReserved(page);
5986
5987		/*
5988		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5989		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
5990		 * ever freed or placed on a driver-private list.
5991		 */
5992		page->pgmap = pgmap;
5993		page->zone_device_data = NULL;
5994
5995		/*
5996		 * Mark the block movable so that blocks are reserved for
5997		 * movable at startup. This will force kernel allocations
5998		 * to reserve their blocks rather than leaking throughout
5999		 * the address space during boot when many long-lived
6000		 * kernel allocations are made.
6001		 *
6002		 * bitmap is created for zone's valid pfn range. but memmap
6003		 * can be created for invalid pages (for alignment)
6004		 * check here not to call set_pageblock_migratetype() against
6005		 * pfn out of zone.
6006		 *
6007		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6008		 * because this is done early in section_activate()
6009		 */
6010		if (!(pfn & (pageblock_nr_pages - 1))) {
6011			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6012			cond_resched();
6013		}
6014	}
6015
6016	pr_info("%s initialised %lu pages in %ums\n", __func__,
6017		size, jiffies_to_msecs(jiffies - start));
6018}
6019
6020#endif
6021static void __meminit zone_init_free_lists(struct zone *zone)
6022{
6023	unsigned int order, t;
6024	for_each_migratetype_order(order, t) {
6025		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6026		zone->free_area[order].nr_free = 0;
6027	}
6028}
6029
6030void __meminit __weak memmap_init(unsigned long size, int nid,
6031				  unsigned long zone, unsigned long start_pfn)
6032{
6033	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6034}
6035
6036static int zone_batchsize(struct zone *zone)
6037{
6038#ifdef CONFIG_MMU
6039	int batch;
6040
6041	/*
6042	 * The per-cpu-pages pools are set to around 1000th of the
6043	 * size of the zone.
 
 
6044	 */
6045	batch = zone_managed_pages(zone) / 1024;
6046	/* But no more than a meg. */
6047	if (batch * PAGE_SIZE > 1024 * 1024)
6048		batch = (1024 * 1024) / PAGE_SIZE;
6049	batch /= 4;		/* We effectively *= 4 below */
6050	if (batch < 1)
6051		batch = 1;
6052
6053	/*
6054	 * Clamp the batch to a 2^n - 1 value. Having a power
6055	 * of 2 value was found to be more likely to have
6056	 * suboptimal cache aliasing properties in some cases.
6057	 *
6058	 * For example if 2 tasks are alternately allocating
6059	 * batches of pages, one task can end up with a lot
6060	 * of pages of one half of the possible page colors
6061	 * and the other with pages of the other colors.
6062	 */
6063	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6064
6065	return batch;
6066
6067#else
6068	/* The deferral and batching of frees should be suppressed under NOMMU
6069	 * conditions.
6070	 *
6071	 * The problem is that NOMMU needs to be able to allocate large chunks
6072	 * of contiguous memory as there's no hardware page translation to
6073	 * assemble apparent contiguous memory from discontiguous pages.
6074	 *
6075	 * Queueing large contiguous runs of pages for batching, however,
6076	 * causes the pages to actually be freed in smaller chunks.  As there
6077	 * can be a significant delay between the individual batches being
6078	 * recycled, this leads to the once large chunks of space being
6079	 * fragmented and becoming unavailable for high-order allocations.
6080	 */
6081	return 0;
6082#endif
6083}
6084
6085/*
6086 * pcp->high and pcp->batch values are related and dependent on one another:
6087 * ->batch must never be higher then ->high.
6088 * The following function updates them in a safe manner without read side
6089 * locking.
6090 *
6091 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6092 * those fields changing asynchronously (acording the the above rule).
6093 *
6094 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6095 * outside of boot time (or some other assurance that no concurrent updaters
6096 * exist).
6097 */
6098static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6099		unsigned long batch)
6100{
6101       /* start with a fail safe value for batch */
6102	pcp->batch = 1;
6103	smp_wmb();
6104
6105       /* Update high, then batch, in order */
6106	pcp->high = high;
6107	smp_wmb();
6108
6109	pcp->batch = batch;
6110}
6111
6112/* a companion to pageset_set_high() */
6113static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6114{
6115	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6116}
6117
6118static void pageset_init(struct per_cpu_pageset *p)
6119{
6120	struct per_cpu_pages *pcp;
6121	int migratetype;
6122
6123	memset(p, 0, sizeof(*p));
6124
6125	pcp = &p->pcp;
6126	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6127		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6128}
6129
6130static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6131{
6132	pageset_init(p);
6133	pageset_set_batch(p, batch);
6134}
6135
6136/*
6137 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6138 * to the value high for the pageset p.
6139 */
6140static void pageset_set_high(struct per_cpu_pageset *p,
6141				unsigned long high)
6142{
6143	unsigned long batch = max(1UL, high / 4);
6144	if ((high / 4) > (PAGE_SHIFT * 8))
6145		batch = PAGE_SHIFT * 8;
6146
6147	pageset_update(&p->pcp, high, batch);
6148}
6149
6150static void pageset_set_high_and_batch(struct zone *zone,
6151				       struct per_cpu_pageset *pcp)
6152{
6153	if (percpu_pagelist_fraction)
6154		pageset_set_high(pcp,
6155			(zone_managed_pages(zone) /
6156				percpu_pagelist_fraction));
6157	else
6158		pageset_set_batch(pcp, zone_batchsize(zone));
6159}
6160
6161static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6162{
6163	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6164
6165	pageset_init(pcp);
6166	pageset_set_high_and_batch(zone, pcp);
6167}
6168
6169void __meminit setup_zone_pageset(struct zone *zone)
6170{
6171	int cpu;
6172	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6173	for_each_possible_cpu(cpu)
6174		zone_pageset_init(zone, cpu);
6175}
6176
6177/*
6178 * Allocate per cpu pagesets and initialize them.
6179 * Before this call only boot pagesets were available.
6180 */
6181void __init setup_per_cpu_pageset(void)
6182{
6183	struct pglist_data *pgdat;
6184	struct zone *zone;
6185
6186	for_each_populated_zone(zone)
6187		setup_zone_pageset(zone);
6188
6189	for_each_online_pgdat(pgdat)
6190		pgdat->per_cpu_nodestats =
6191			alloc_percpu(struct per_cpu_nodestat);
6192}
 
 
 
 
 
 
 
 
 
 
 
6193
6194static __meminit void zone_pcp_init(struct zone *zone)
6195{
6196	/*
6197	 * per cpu subsystem is not up at this point. The following code
6198	 * relies on the ability of the linker to provide the
6199	 * offset of a (static) per cpu variable into the per cpu area.
 
 
 
6200	 */
6201	zone->pageset = &boot_pageset;
6202
6203	if (populated_zone(zone))
6204		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6205			zone->name, zone->present_pages,
6206					 zone_batchsize(zone));
6207}
6208
6209void __meminit init_currently_empty_zone(struct zone *zone,
6210					unsigned long zone_start_pfn,
6211					unsigned long size)
6212{
6213	struct pglist_data *pgdat = zone->zone_pgdat;
6214	int zone_idx = zone_idx(zone) + 1;
6215
6216	if (zone_idx > pgdat->nr_zones)
6217		pgdat->nr_zones = zone_idx;
6218
6219	zone->zone_start_pfn = zone_start_pfn;
6220
6221	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6222			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6223			pgdat->node_id,
6224			(unsigned long)zone_idx(zone),
6225			zone_start_pfn, (zone_start_pfn + size));
6226
6227	zone_init_free_lists(zone);
6228	zone->initialized = 1;
6229}
6230
6231#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6232#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6233
6234/*
6235 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6236 */
6237int __meminit __early_pfn_to_nid(unsigned long pfn,
6238					struct mminit_pfnnid_cache *state)
6239{
6240	unsigned long start_pfn, end_pfn;
6241	int nid;
6242
6243	if (state->last_start <= pfn && pfn < state->last_end)
6244		return state->last_nid;
6245
6246	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6247	if (nid != NUMA_NO_NODE) {
6248		state->last_start = start_pfn;
6249		state->last_end = end_pfn;
6250		state->last_nid = nid;
6251	}
6252
6253	return nid;
6254}
6255#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6256
6257/**
6258 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6259 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6260 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6261 *
6262 * If an architecture guarantees that all ranges registered contain no holes
6263 * and may be freed, this this function may be used instead of calling
6264 * memblock_free_early_nid() manually.
6265 */
6266void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6267{
6268	unsigned long start_pfn, end_pfn;
6269	int i, this_nid;
6270
6271	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6272		start_pfn = min(start_pfn, max_low_pfn);
6273		end_pfn = min(end_pfn, max_low_pfn);
6274
6275		if (start_pfn < end_pfn)
6276			memblock_free_early_nid(PFN_PHYS(start_pfn),
6277					(end_pfn - start_pfn) << PAGE_SHIFT,
6278					this_nid);
6279	}
6280}
6281
6282/**
6283 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6284 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6285 *
6286 * If an architecture guarantees that all ranges registered contain no holes and may
6287 * be freed, this function may be used instead of calling memory_present() manually.
6288 */
6289void __init sparse_memory_present_with_active_regions(int nid)
6290{
6291	unsigned long start_pfn, end_pfn;
6292	int i, this_nid;
6293
6294	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6295		memory_present(this_nid, start_pfn, end_pfn);
6296}
6297
6298/**
6299 * get_pfn_range_for_nid - Return the start and end page frames for a node
6300 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6301 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6302 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6303 *
6304 * It returns the start and end page frame of a node based on information
6305 * provided by memblock_set_node(). If called for a node
6306 * with no available memory, a warning is printed and the start and end
6307 * PFNs will be 0.
6308 */
6309void __init get_pfn_range_for_nid(unsigned int nid,
6310			unsigned long *start_pfn, unsigned long *end_pfn)
6311{
6312	unsigned long this_start_pfn, this_end_pfn;
6313	int i;
6314
6315	*start_pfn = -1UL;
6316	*end_pfn = 0;
6317
6318	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6319		*start_pfn = min(*start_pfn, this_start_pfn);
6320		*end_pfn = max(*end_pfn, this_end_pfn);
6321	}
6322
6323	if (*start_pfn == -1UL)
6324		*start_pfn = 0;
6325}
6326
6327/*
6328 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6329 * assumption is made that zones within a node are ordered in monotonic
6330 * increasing memory addresses so that the "highest" populated zone is used
6331 */
6332static void __init find_usable_zone_for_movable(void)
6333{
6334	int zone_index;
6335	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6336		if (zone_index == ZONE_MOVABLE)
6337			continue;
6338
6339		if (arch_zone_highest_possible_pfn[zone_index] >
6340				arch_zone_lowest_possible_pfn[zone_index])
6341			break;
6342	}
6343
6344	VM_BUG_ON(zone_index == -1);
6345	movable_zone = zone_index;
6346}
6347
6348/*
6349 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6350 * because it is sized independent of architecture. Unlike the other zones,
6351 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6352 * in each node depending on the size of each node and how evenly kernelcore
6353 * is distributed. This helper function adjusts the zone ranges
6354 * provided by the architecture for a given node by using the end of the
6355 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6356 * zones within a node are in order of monotonic increases memory addresses
6357 */
6358static void __init adjust_zone_range_for_zone_movable(int nid,
6359					unsigned long zone_type,
6360					unsigned long node_start_pfn,
6361					unsigned long node_end_pfn,
6362					unsigned long *zone_start_pfn,
6363					unsigned long *zone_end_pfn)
6364{
6365	/* Only adjust if ZONE_MOVABLE is on this node */
6366	if (zone_movable_pfn[nid]) {
6367		/* Size ZONE_MOVABLE */
6368		if (zone_type == ZONE_MOVABLE) {
6369			*zone_start_pfn = zone_movable_pfn[nid];
6370			*zone_end_pfn = min(node_end_pfn,
6371				arch_zone_highest_possible_pfn[movable_zone]);
6372
6373		/* Adjust for ZONE_MOVABLE starting within this range */
6374		} else if (!mirrored_kernelcore &&
6375			*zone_start_pfn < zone_movable_pfn[nid] &&
6376			*zone_end_pfn > zone_movable_pfn[nid]) {
6377			*zone_end_pfn = zone_movable_pfn[nid];
6378
6379		/* Check if this whole range is within ZONE_MOVABLE */
6380		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6381			*zone_start_pfn = *zone_end_pfn;
6382	}
6383}
6384
6385/*
6386 * Return the number of pages a zone spans in a node, including holes
6387 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6388 */
6389static unsigned long __init zone_spanned_pages_in_node(int nid,
6390					unsigned long zone_type,
6391					unsigned long node_start_pfn,
6392					unsigned long node_end_pfn,
6393					unsigned long *zone_start_pfn,
6394					unsigned long *zone_end_pfn,
6395					unsigned long *ignored)
6396{
6397	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6398	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6399	/* When hotadd a new node from cpu_up(), the node should be empty */
6400	if (!node_start_pfn && !node_end_pfn)
6401		return 0;
6402
6403	/* Get the start and end of the zone */
6404	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6405	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6406	adjust_zone_range_for_zone_movable(nid, zone_type,
6407				node_start_pfn, node_end_pfn,
6408				zone_start_pfn, zone_end_pfn);
6409
6410	/* Check that this node has pages within the zone's required range */
6411	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6412		return 0;
6413
6414	/* Move the zone boundaries inside the node if necessary */
6415	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6416	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6417
6418	/* Return the spanned pages */
6419	return *zone_end_pfn - *zone_start_pfn;
6420}
6421
6422/*
6423 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6424 * then all holes in the requested range will be accounted for.
6425 */
6426unsigned long __init __absent_pages_in_range(int nid,
6427				unsigned long range_start_pfn,
6428				unsigned long range_end_pfn)
6429{
6430	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6431	unsigned long start_pfn, end_pfn;
6432	int i;
6433
6434	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6435		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6436		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6437		nr_absent -= end_pfn - start_pfn;
6438	}
6439	return nr_absent;
6440}
6441
6442/**
6443 * absent_pages_in_range - Return number of page frames in holes within a range
6444 * @start_pfn: The start PFN to start searching for holes
6445 * @end_pfn: The end PFN to stop searching for holes
6446 *
6447 * Return: the number of pages frames in memory holes within a range.
6448 */
6449unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6450							unsigned long end_pfn)
6451{
6452	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6453}
6454
6455/* Return the number of page frames in holes in a zone on a node */
6456static unsigned long __init zone_absent_pages_in_node(int nid,
6457					unsigned long zone_type,
6458					unsigned long node_start_pfn,
6459					unsigned long node_end_pfn,
6460					unsigned long *ignored)
6461{
6462	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6463	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6464	unsigned long zone_start_pfn, zone_end_pfn;
6465	unsigned long nr_absent;
6466
6467	/* When hotadd a new node from cpu_up(), the node should be empty */
6468	if (!node_start_pfn && !node_end_pfn)
6469		return 0;
6470
6471	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6472	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6473
6474	adjust_zone_range_for_zone_movable(nid, zone_type,
6475			node_start_pfn, node_end_pfn,
6476			&zone_start_pfn, &zone_end_pfn);
6477	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6478
6479	/*
6480	 * ZONE_MOVABLE handling.
6481	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6482	 * and vice versa.
6483	 */
6484	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6485		unsigned long start_pfn, end_pfn;
6486		struct memblock_region *r;
6487
6488		for_each_memblock(memory, r) {
6489			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6490					  zone_start_pfn, zone_end_pfn);
6491			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6492					zone_start_pfn, zone_end_pfn);
6493
6494			if (zone_type == ZONE_MOVABLE &&
6495			    memblock_is_mirror(r))
6496				nr_absent += end_pfn - start_pfn;
6497
6498			if (zone_type == ZONE_NORMAL &&
6499			    !memblock_is_mirror(r))
6500				nr_absent += end_pfn - start_pfn;
6501		}
6502	}
6503
6504	return nr_absent;
6505}
6506
6507#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6508static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6509					unsigned long zone_type,
6510					unsigned long node_start_pfn,
6511					unsigned long node_end_pfn,
6512					unsigned long *zone_start_pfn,
6513					unsigned long *zone_end_pfn,
6514					unsigned long *zones_size)
6515{
6516	unsigned int zone;
6517
6518	*zone_start_pfn = node_start_pfn;
6519	for (zone = 0; zone < zone_type; zone++)
6520		*zone_start_pfn += zones_size[zone];
6521
6522	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6523
6524	return zones_size[zone_type];
6525}
6526
6527static inline unsigned long __init zone_absent_pages_in_node(int nid,
6528						unsigned long zone_type,
6529						unsigned long node_start_pfn,
6530						unsigned long node_end_pfn,
6531						unsigned long *zholes_size)
6532{
6533	if (!zholes_size)
6534		return 0;
6535
6536	return zholes_size[zone_type];
6537}
6538
6539#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6540
6541static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6542						unsigned long node_start_pfn,
6543						unsigned long node_end_pfn,
6544						unsigned long *zones_size,
6545						unsigned long *zholes_size)
6546{
6547	unsigned long realtotalpages = 0, totalpages = 0;
6548	enum zone_type i;
6549
6550	for (i = 0; i < MAX_NR_ZONES; i++) {
6551		struct zone *zone = pgdat->node_zones + i;
6552		unsigned long zone_start_pfn, zone_end_pfn;
6553		unsigned long size, real_size;
6554
6555		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6556						  node_start_pfn,
6557						  node_end_pfn,
6558						  &zone_start_pfn,
6559						  &zone_end_pfn,
6560						  zones_size);
6561		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6562						  node_start_pfn, node_end_pfn,
6563						  zholes_size);
6564		if (size)
6565			zone->zone_start_pfn = zone_start_pfn;
6566		else
6567			zone->zone_start_pfn = 0;
6568		zone->spanned_pages = size;
6569		zone->present_pages = real_size;
6570
6571		totalpages += size;
6572		realtotalpages += real_size;
6573	}
6574
6575	pgdat->node_spanned_pages = totalpages;
6576	pgdat->node_present_pages = realtotalpages;
6577	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6578							realtotalpages);
6579}
6580
6581#ifndef CONFIG_SPARSEMEM
6582/*
6583 * Calculate the size of the zone->blockflags rounded to an unsigned long
6584 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6585 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6586 * round what is now in bits to nearest long in bits, then return it in
6587 * bytes.
 
 
 
 
 
 
 
 
 
 
6588 */
6589static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6590{
6591	unsigned long usemapsize;
6592
6593	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6594	usemapsize = roundup(zonesize, pageblock_nr_pages);
6595	usemapsize = usemapsize >> pageblock_order;
6596	usemapsize *= NR_PAGEBLOCK_BITS;
6597	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6598
6599	return usemapsize / 8;
6600}
6601
6602static void __ref setup_usemap(struct pglist_data *pgdat,
6603				struct zone *zone,
6604				unsigned long zone_start_pfn,
6605				unsigned long zonesize)
6606{
6607	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6608	zone->pageblock_flags = NULL;
6609	if (usemapsize) {
6610		zone->pageblock_flags =
6611			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6612					    pgdat->node_id);
6613		if (!zone->pageblock_flags)
6614			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6615			      usemapsize, zone->name, pgdat->node_id);
6616	}
6617}
6618#else
6619static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6620				unsigned long zone_start_pfn, unsigned long zonesize) {}
6621#endif /* CONFIG_SPARSEMEM */
6622
6623#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6624
6625/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6626void __init set_pageblock_order(void)
6627{
6628	unsigned int order;
6629
6630	/* Check that pageblock_nr_pages has not already been setup */
6631	if (pageblock_order)
6632		return;
6633
6634	if (HPAGE_SHIFT > PAGE_SHIFT)
6635		order = HUGETLB_PAGE_ORDER;
6636	else
6637		order = MAX_ORDER - 1;
6638
6639	/*
6640	 * Assume the largest contiguous order of interest is a huge page.
6641	 * This value may be variable depending on boot parameters on IA64 and
6642	 * powerpc.
6643	 */
6644	pageblock_order = order;
6645}
6646#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6647
6648/*
6649 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6650 * is unused as pageblock_order is set at compile-time. See
6651 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6652 * the kernel config
6653 */
6654void __init set_pageblock_order(void)
6655{
6656}
6657
6658#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 
6659
6660static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6661						unsigned long present_pages)
6662{
6663	unsigned long pages = spanned_pages;
6664
6665	/*
6666	 * Provide a more accurate estimation if there are holes within
6667	 * the zone and SPARSEMEM is in use. If there are holes within the
6668	 * zone, each populated memory region may cost us one or two extra
6669	 * memmap pages due to alignment because memmap pages for each
6670	 * populated regions may not be naturally aligned on page boundary.
6671	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6672	 */
6673	if (spanned_pages > present_pages + (present_pages >> 4) &&
6674	    IS_ENABLED(CONFIG_SPARSEMEM))
6675		pages = present_pages;
6676
6677	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6678}
6679
6680#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6681static void pgdat_init_split_queue(struct pglist_data *pgdat)
6682{
6683	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6684
6685	spin_lock_init(&ds_queue->split_queue_lock);
6686	INIT_LIST_HEAD(&ds_queue->split_queue);
6687	ds_queue->split_queue_len = 0;
6688}
6689#else
6690static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6691#endif
6692
6693#ifdef CONFIG_COMPACTION
6694static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6695{
6696	init_waitqueue_head(&pgdat->kcompactd_wait);
6697}
6698#else
6699static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6700#endif
6701
6702static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6703{
6704	pgdat_resize_init(pgdat);
6705
6706	pgdat_init_split_queue(pgdat);
6707	pgdat_init_kcompactd(pgdat);
6708
6709	init_waitqueue_head(&pgdat->kswapd_wait);
6710	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6711
6712	pgdat_page_ext_init(pgdat);
6713	spin_lock_init(&pgdat->lru_lock);
6714	lruvec_init(node_lruvec(pgdat));
6715}
6716
6717static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6718							unsigned long remaining_pages)
6719{
6720	atomic_long_set(&zone->managed_pages, remaining_pages);
6721	zone_set_nid(zone, nid);
6722	zone->name = zone_names[idx];
6723	zone->zone_pgdat = NODE_DATA(nid);
6724	spin_lock_init(&zone->lock);
6725	zone_seqlock_init(zone);
6726	zone_pcp_init(zone);
6727}
6728
6729/*
6730 * Set up the zone data structures
6731 * - init pgdat internals
6732 * - init all zones belonging to this node
6733 *
6734 * NOTE: this function is only called during memory hotplug
6735 */
6736#ifdef CONFIG_MEMORY_HOTPLUG
6737void __ref free_area_init_core_hotplug(int nid)
6738{
6739	enum zone_type z;
6740	pg_data_t *pgdat = NODE_DATA(nid);
6741
6742	pgdat_init_internals(pgdat);
6743	for (z = 0; z < MAX_NR_ZONES; z++)
6744		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
 
6745}
6746#endif
6747
6748/*
6749 * Set up the zone data structures:
6750 *   - mark all pages reserved
6751 *   - mark all memory queues empty
6752 *   - clear the memory bitmaps
6753 *
6754 * NOTE: pgdat should get zeroed by caller.
6755 * NOTE: this function is only called during early init.
6756 */
6757static void __init free_area_init_core(struct pglist_data *pgdat)
6758{
6759	enum zone_type j;
6760	int nid = pgdat->node_id;
6761
6762	pgdat_init_internals(pgdat);
6763	pgdat->per_cpu_nodestats = &boot_nodestats;
6764
6765	for (j = 0; j < MAX_NR_ZONES; j++) {
6766		struct zone *zone = pgdat->node_zones + j;
6767		unsigned long size, freesize, memmap_pages;
6768		unsigned long zone_start_pfn = zone->zone_start_pfn;
6769
6770		size = zone->spanned_pages;
6771		freesize = zone->present_pages;
6772
6773		/*
6774		 * Adjust freesize so that it accounts for how much memory
6775		 * is used by this zone for memmap. This affects the watermark
6776		 * and per-cpu initialisations
6777		 */
6778		memmap_pages = calc_memmap_size(size, freesize);
6779		if (!is_highmem_idx(j)) {
6780			if (freesize >= memmap_pages) {
6781				freesize -= memmap_pages;
6782				if (memmap_pages)
6783					printk(KERN_DEBUG
6784					       "  %s zone: %lu pages used for memmap\n",
6785					       zone_names[j], memmap_pages);
6786			} else
6787				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6788					zone_names[j], memmap_pages, freesize);
6789		}
6790
6791		/* Account for reserved pages */
6792		if (j == 0 && freesize > dma_reserve) {
6793			freesize -= dma_reserve;
6794			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6795					zone_names[0], dma_reserve);
6796		}
6797
6798		if (!is_highmem_idx(j))
6799			nr_kernel_pages += freesize;
6800		/* Charge for highmem memmap if there are enough kernel pages */
6801		else if (nr_kernel_pages > memmap_pages * 2)
6802			nr_kernel_pages -= memmap_pages;
6803		nr_all_pages += freesize;
6804
 
 
 
 
6805		/*
6806		 * Set an approximate value for lowmem here, it will be adjusted
6807		 * when the bootmem allocator frees pages into the buddy system.
6808		 * And all highmem pages will be managed by the buddy system.
6809		 */
6810		zone_init_internals(zone, j, nid, freesize);
6811
6812		if (!size)
6813			continue;
6814
6815		set_pageblock_order();
6816		setup_usemap(pgdat, zone, zone_start_pfn, size);
6817		init_currently_empty_zone(zone, zone_start_pfn, size);
6818		memmap_init(size, nid, j, zone_start_pfn);
6819	}
6820}
6821
6822#ifdef CONFIG_FLAT_NODE_MEM_MAP
6823static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6824{
6825	unsigned long __maybe_unused start = 0;
6826	unsigned long __maybe_unused offset = 0;
6827
6828	/* Skip empty nodes */
6829	if (!pgdat->node_spanned_pages)
 
6830		return;
6831
6832	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6833	offset = pgdat->node_start_pfn - start;
6834	/* ia64 gets its own node_mem_map, before this, without bootmem */
6835	if (!pgdat->node_mem_map) {
6836		unsigned long size, end;
6837		struct page *map;
6838
6839		/*
6840		 * The zone's endpoints aren't required to be MAX_ORDER
6841		 * aligned but the node_mem_map endpoints must be in order
6842		 * for the buddy allocator to function correctly.
6843		 */
6844		end = pgdat_end_pfn(pgdat);
6845		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6846		size =  (end - start) * sizeof(struct page);
6847		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6848					  pgdat->node_id);
6849		if (!map)
6850			panic("Failed to allocate %ld bytes for node %d memory map\n",
6851			      size, pgdat->node_id);
6852		pgdat->node_mem_map = map + offset;
6853	}
6854	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6855				__func__, pgdat->node_id, (unsigned long)pgdat,
6856				(unsigned long)pgdat->node_mem_map);
6857#ifndef CONFIG_NEED_MULTIPLE_NODES
6858	/*
6859	 * With no DISCONTIG, the global mem_map is just set as node 0's
6860	 */
6861	if (pgdat == NODE_DATA(0)) {
6862		mem_map = NODE_DATA(0)->node_mem_map;
6863#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6864		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6865			mem_map -= offset;
6866#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6867	}
6868#endif
6869}
6870#else
6871static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6872#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6873
6874#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6875static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6876{
6877	pgdat->first_deferred_pfn = ULONG_MAX;
6878}
6879#else
6880static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6881#endif
6882
6883void __init free_area_init_node(int nid, unsigned long *zones_size,
6884				   unsigned long node_start_pfn,
6885				   unsigned long *zholes_size)
6886{
6887	pg_data_t *pgdat = NODE_DATA(nid);
6888	unsigned long start_pfn = 0;
6889	unsigned long end_pfn = 0;
6890
6891	/* pg_data_t should be reset to zero when it's allocated */
6892	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6893
6894	pgdat->node_id = nid;
6895	pgdat->node_start_pfn = node_start_pfn;
6896	pgdat->per_cpu_nodestats = NULL;
6897#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6898	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6899	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6900		(u64)start_pfn << PAGE_SHIFT,
6901		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6902#else
6903	start_pfn = node_start_pfn;
6904#endif
6905	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6906				  zones_size, zholes_size);
6907
6908	alloc_node_mem_map(pgdat);
6909	pgdat_set_deferred_range(pgdat);
6910
6911	free_area_init_core(pgdat);
6912}
6913
6914#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6915/*
6916 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6917 * pages zeroed
6918 */
6919static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6920{
6921	unsigned long pfn;
6922	u64 pgcnt = 0;
6923
6924	for (pfn = spfn; pfn < epfn; pfn++) {
6925		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6926			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6927				+ pageblock_nr_pages - 1;
6928			continue;
6929		}
6930		mm_zero_struct_page(pfn_to_page(pfn));
6931		pgcnt++;
6932	}
6933
6934	return pgcnt;
6935}
 
6936
6937/*
6938 * Only struct pages that are backed by physical memory are zeroed and
6939 * initialized by going through __init_single_page(). But, there are some
6940 * struct pages which are reserved in memblock allocator and their fields
6941 * may be accessed (for example page_to_pfn() on some configuration accesses
6942 * flags). We must explicitly zero those struct pages.
6943 *
6944 * This function also addresses a similar issue where struct pages are left
6945 * uninitialized because the physical address range is not covered by
6946 * memblock.memory or memblock.reserved. That could happen when memblock
6947 * layout is manually configured via memmap=.
6948 */
6949void __init zero_resv_unavail(void)
6950{
6951	phys_addr_t start, end;
6952	u64 i, pgcnt;
6953	phys_addr_t next = 0;
6954
6955	/*
6956	 * Loop through unavailable ranges not covered by memblock.memory.
6957	 */
6958	pgcnt = 0;
6959	for_each_mem_range(i, &memblock.memory, NULL,
6960			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6961		if (next < start)
6962			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6963		next = end;
6964	}
6965	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6966
6967	/*
6968	 * Struct pages that do not have backing memory. This could be because
6969	 * firmware is using some of this memory, or for some other reasons.
6970	 */
6971	if (pgcnt)
6972		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6973}
6974#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6975
6976#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6977
6978#if MAX_NUMNODES > 1
6979/*
6980 * Figure out the number of possible node ids.
 
6981 */
6982void __init setup_nr_node_ids(void)
6983{
6984	unsigned int highest;
6985
6986	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6987	nr_node_ids = highest + 1;
6988}
6989#endif
6990
6991/**
6992 * node_map_pfn_alignment - determine the maximum internode alignment
6993 *
6994 * This function should be called after node map is populated and sorted.
6995 * It calculates the maximum power of two alignment which can distinguish
6996 * all the nodes.
6997 *
6998 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6999 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7000 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7001 * shifted, 1GiB is enough and this function will indicate so.
7002 *
7003 * This is used to test whether pfn -> nid mapping of the chosen memory
7004 * model has fine enough granularity to avoid incorrect mapping for the
7005 * populated node map.
7006 *
7007 * Return: the determined alignment in pfn's.  0 if there is no alignment
7008 * requirement (single node).
7009 */
7010unsigned long __init node_map_pfn_alignment(void)
7011{
7012	unsigned long accl_mask = 0, last_end = 0;
7013	unsigned long start, end, mask;
7014	int last_nid = NUMA_NO_NODE;
7015	int i, nid;
7016
7017	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7018		if (!start || last_nid < 0 || last_nid == nid) {
7019			last_nid = nid;
7020			last_end = end;
7021			continue;
7022		}
7023
7024		/*
7025		 * Start with a mask granular enough to pin-point to the
7026		 * start pfn and tick off bits one-by-one until it becomes
7027		 * too coarse to separate the current node from the last.
7028		 */
7029		mask = ~((1 << __ffs(start)) - 1);
7030		while (mask && last_end <= (start & (mask << 1)))
7031			mask <<= 1;
7032
7033		/* accumulate all internode masks */
7034		accl_mask |= mask;
7035	}
7036
7037	/* convert mask to number of pages */
7038	return ~accl_mask + 1;
7039}
7040
7041/* Find the lowest pfn for a node */
7042static unsigned long __init find_min_pfn_for_node(int nid)
7043{
7044	unsigned long min_pfn = ULONG_MAX;
7045	unsigned long start_pfn;
7046	int i;
7047
7048	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7049		min_pfn = min(min_pfn, start_pfn);
7050
7051	if (min_pfn == ULONG_MAX) {
7052		pr_warn("Could not find start_pfn for node %d\n", nid);
7053		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
7054	}
7055
7056	return min_pfn;
7057}
7058
7059/**
7060 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7061 *
7062 * Return: the minimum PFN based on information provided via
7063 * memblock_set_node().
7064 */
7065unsigned long __init find_min_pfn_with_active_regions(void)
7066{
7067	return find_min_pfn_for_node(MAX_NUMNODES);
7068}
7069
7070/*
7071 * early_calculate_totalpages()
7072 * Sum pages in active regions for movable zone.
7073 * Populate N_MEMORY for calculating usable_nodes.
7074 */
7075static unsigned long __init early_calculate_totalpages(void)
7076{
7077	unsigned long totalpages = 0;
7078	unsigned long start_pfn, end_pfn;
7079	int i, nid;
7080
7081	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7082		unsigned long pages = end_pfn - start_pfn;
7083
7084		totalpages += pages;
7085		if (pages)
7086			node_set_state(nid, N_MEMORY);
7087	}
7088	return totalpages;
7089}
7090
7091/*
7092 * Find the PFN the Movable zone begins in each node. Kernel memory
7093 * is spread evenly between nodes as long as the nodes have enough
7094 * memory. When they don't, some nodes will have more kernelcore than
7095 * others
7096 */
7097static void __init find_zone_movable_pfns_for_nodes(void)
7098{
7099	int i, nid;
7100	unsigned long usable_startpfn;
7101	unsigned long kernelcore_node, kernelcore_remaining;
7102	/* save the state before borrow the nodemask */
7103	nodemask_t saved_node_state = node_states[N_MEMORY];
7104	unsigned long totalpages = early_calculate_totalpages();
7105	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7106	struct memblock_region *r;
7107
7108	/* Need to find movable_zone earlier when movable_node is specified. */
7109	find_usable_zone_for_movable();
7110
7111	/*
7112	 * If movable_node is specified, ignore kernelcore and movablecore
7113	 * options.
7114	 */
7115	if (movable_node_is_enabled()) {
7116		for_each_memblock(memory, r) {
7117			if (!memblock_is_hotpluggable(r))
7118				continue;
7119
7120			nid = r->nid;
7121
7122			usable_startpfn = PFN_DOWN(r->base);
7123			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7124				min(usable_startpfn, zone_movable_pfn[nid]) :
7125				usable_startpfn;
7126		}
7127
7128		goto out2;
7129	}
7130
7131	/*
7132	 * If kernelcore=mirror is specified, ignore movablecore option
7133	 */
7134	if (mirrored_kernelcore) {
7135		bool mem_below_4gb_not_mirrored = false;
7136
7137		for_each_memblock(memory, r) {
7138			if (memblock_is_mirror(r))
7139				continue;
7140
7141			nid = r->nid;
7142
7143			usable_startpfn = memblock_region_memory_base_pfn(r);
7144
7145			if (usable_startpfn < 0x100000) {
7146				mem_below_4gb_not_mirrored = true;
7147				continue;
7148			}
7149
7150			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7151				min(usable_startpfn, zone_movable_pfn[nid]) :
7152				usable_startpfn;
7153		}
7154
7155		if (mem_below_4gb_not_mirrored)
7156			pr_warn("This configuration results in unmirrored kernel memory.");
7157
7158		goto out2;
7159	}
7160
7161	/*
7162	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7163	 * amount of necessary memory.
7164	 */
7165	if (required_kernelcore_percent)
7166		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7167				       10000UL;
7168	if (required_movablecore_percent)
7169		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7170					10000UL;
7171
7172	/*
7173	 * If movablecore= was specified, calculate what size of
7174	 * kernelcore that corresponds so that memory usable for
7175	 * any allocation type is evenly spread. If both kernelcore
7176	 * and movablecore are specified, then the value of kernelcore
7177	 * will be used for required_kernelcore if it's greater than
7178	 * what movablecore would have allowed.
7179	 */
7180	if (required_movablecore) {
7181		unsigned long corepages;
7182
7183		/*
7184		 * Round-up so that ZONE_MOVABLE is at least as large as what
7185		 * was requested by the user
7186		 */
7187		required_movablecore =
7188			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7189		required_movablecore = min(totalpages, required_movablecore);
7190		corepages = totalpages - required_movablecore;
7191
7192		required_kernelcore = max(required_kernelcore, corepages);
7193	}
7194
 
7195	/*
7196	 * If kernelcore was not specified or kernelcore size is larger
7197	 * than totalpages, there is no ZONE_MOVABLE.
7198	 */
7199	if (!required_kernelcore || required_kernelcore >= totalpages)
7200		goto out;
7201
7202	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7203	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7204
7205restart:
7206	/* Spread kernelcore memory as evenly as possible throughout nodes */
7207	kernelcore_node = required_kernelcore / usable_nodes;
7208	for_each_node_state(nid, N_MEMORY) {
7209		unsigned long start_pfn, end_pfn;
7210
7211		/*
7212		 * Recalculate kernelcore_node if the division per node
7213		 * now exceeds what is necessary to satisfy the requested
7214		 * amount of memory for the kernel
7215		 */
7216		if (required_kernelcore < kernelcore_node)
7217			kernelcore_node = required_kernelcore / usable_nodes;
7218
7219		/*
7220		 * As the map is walked, we track how much memory is usable
7221		 * by the kernel using kernelcore_remaining. When it is
7222		 * 0, the rest of the node is usable by ZONE_MOVABLE
7223		 */
7224		kernelcore_remaining = kernelcore_node;
7225
7226		/* Go through each range of PFNs within this node */
7227		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7228			unsigned long size_pages;
7229
7230			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7231			if (start_pfn >= end_pfn)
7232				continue;
7233
7234			/* Account for what is only usable for kernelcore */
7235			if (start_pfn < usable_startpfn) {
7236				unsigned long kernel_pages;
7237				kernel_pages = min(end_pfn, usable_startpfn)
7238								- start_pfn;
7239
7240				kernelcore_remaining -= min(kernel_pages,
7241							kernelcore_remaining);
7242				required_kernelcore -= min(kernel_pages,
7243							required_kernelcore);
7244
7245				/* Continue if range is now fully accounted */
7246				if (end_pfn <= usable_startpfn) {
7247
7248					/*
7249					 * Push zone_movable_pfn to the end so
7250					 * that if we have to rebalance
7251					 * kernelcore across nodes, we will
7252					 * not double account here
7253					 */
7254					zone_movable_pfn[nid] = end_pfn;
7255					continue;
7256				}
7257				start_pfn = usable_startpfn;
7258			}
7259
7260			/*
7261			 * The usable PFN range for ZONE_MOVABLE is from
7262			 * start_pfn->end_pfn. Calculate size_pages as the
7263			 * number of pages used as kernelcore
7264			 */
7265			size_pages = end_pfn - start_pfn;
7266			if (size_pages > kernelcore_remaining)
7267				size_pages = kernelcore_remaining;
7268			zone_movable_pfn[nid] = start_pfn + size_pages;
7269
7270			/*
7271			 * Some kernelcore has been met, update counts and
7272			 * break if the kernelcore for this node has been
7273			 * satisfied
7274			 */
7275			required_kernelcore -= min(required_kernelcore,
7276								size_pages);
7277			kernelcore_remaining -= size_pages;
7278			if (!kernelcore_remaining)
7279				break;
7280		}
7281	}
 
7282
7283	/*
7284	 * If there is still required_kernelcore, we do another pass with one
7285	 * less node in the count. This will push zone_movable_pfn[nid] further
7286	 * along on the nodes that still have memory until kernelcore is
7287	 * satisfied
7288	 */
7289	usable_nodes--;
7290	if (usable_nodes && required_kernelcore > usable_nodes)
7291		goto restart;
7292
7293out2:
7294	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7295	for (nid = 0; nid < MAX_NUMNODES; nid++)
7296		zone_movable_pfn[nid] =
7297			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7298
7299out:
7300	/* restore the node_state */
7301	node_states[N_MEMORY] = saved_node_state;
7302}
7303
7304/* Any regular or high memory on that node ? */
7305static void check_for_memory(pg_data_t *pgdat, int nid)
7306{
7307	enum zone_type zone_type;
7308
7309	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7310		struct zone *zone = &pgdat->node_zones[zone_type];
7311		if (populated_zone(zone)) {
7312			if (IS_ENABLED(CONFIG_HIGHMEM))
7313				node_set_state(nid, N_HIGH_MEMORY);
7314			if (zone_type <= ZONE_NORMAL)
7315				node_set_state(nid, N_NORMAL_MEMORY);
7316			break;
7317		}
7318	}
7319}
7320
7321/**
7322 * free_area_init_nodes - Initialise all pg_data_t and zone data
7323 * @max_zone_pfn: an array of max PFNs for each zone
7324 *
7325 * This will call free_area_init_node() for each active node in the system.
7326 * Using the page ranges provided by memblock_set_node(), the size of each
7327 * zone in each node and their holes is calculated. If the maximum PFN
7328 * between two adjacent zones match, it is assumed that the zone is empty.
7329 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7330 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7331 * starts where the previous one ended. For example, ZONE_DMA32 starts
7332 * at arch_max_dma_pfn.
7333 */
7334void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7335{
7336	unsigned long start_pfn, end_pfn;
7337	int i, nid;
7338
7339	/* Record where the zone boundaries are */
7340	memset(arch_zone_lowest_possible_pfn, 0,
7341				sizeof(arch_zone_lowest_possible_pfn));
7342	memset(arch_zone_highest_possible_pfn, 0,
7343				sizeof(arch_zone_highest_possible_pfn));
7344
7345	start_pfn = find_min_pfn_with_active_regions();
7346
7347	for (i = 0; i < MAX_NR_ZONES; i++) {
7348		if (i == ZONE_MOVABLE)
7349			continue;
7350
7351		end_pfn = max(max_zone_pfn[i], start_pfn);
7352		arch_zone_lowest_possible_pfn[i] = start_pfn;
7353		arch_zone_highest_possible_pfn[i] = end_pfn;
7354
7355		start_pfn = end_pfn;
7356	}
7357
7358	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7359	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7360	find_zone_movable_pfns_for_nodes();
7361
7362	/* Print out the zone ranges */
7363	pr_info("Zone ranges:\n");
7364	for (i = 0; i < MAX_NR_ZONES; i++) {
7365		if (i == ZONE_MOVABLE)
7366			continue;
7367		pr_info("  %-8s ", zone_names[i]);
7368		if (arch_zone_lowest_possible_pfn[i] ==
7369				arch_zone_highest_possible_pfn[i])
7370			pr_cont("empty\n");
7371		else
7372			pr_cont("[mem %#018Lx-%#018Lx]\n",
7373				(u64)arch_zone_lowest_possible_pfn[i]
7374					<< PAGE_SHIFT,
7375				((u64)arch_zone_highest_possible_pfn[i]
7376					<< PAGE_SHIFT) - 1);
7377	}
7378
7379	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7380	pr_info("Movable zone start for each node\n");
7381	for (i = 0; i < MAX_NUMNODES; i++) {
7382		if (zone_movable_pfn[i])
7383			pr_info("  Node %d: %#018Lx\n", i,
7384			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7385	}
7386
7387	/*
7388	 * Print out the early node map, and initialize the
7389	 * subsection-map relative to active online memory ranges to
7390	 * enable future "sub-section" extensions of the memory map.
7391	 */
7392	pr_info("Early memory node ranges\n");
7393	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7394		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7395			(u64)start_pfn << PAGE_SHIFT,
7396			((u64)end_pfn << PAGE_SHIFT) - 1);
7397		subsection_map_init(start_pfn, end_pfn - start_pfn);
7398	}
7399
7400	/* Initialise every node */
7401	mminit_verify_pageflags_layout();
7402	setup_nr_node_ids();
7403	zero_resv_unavail();
7404	for_each_online_node(nid) {
7405		pg_data_t *pgdat = NODE_DATA(nid);
7406		free_area_init_node(nid, NULL,
7407				find_min_pfn_for_node(nid), NULL);
7408
7409		/* Any memory on that node */
7410		if (pgdat->node_present_pages)
7411			node_set_state(nid, N_MEMORY);
7412		check_for_memory(pgdat, nid);
7413	}
7414}
7415
7416static int __init cmdline_parse_core(char *p, unsigned long *core,
7417				     unsigned long *percent)
7418{
7419	unsigned long long coremem;
7420	char *endptr;
7421
7422	if (!p)
7423		return -EINVAL;
7424
7425	/* Value may be a percentage of total memory, otherwise bytes */
7426	coremem = simple_strtoull(p, &endptr, 0);
7427	if (*endptr == '%') {
7428		/* Paranoid check for percent values greater than 100 */
7429		WARN_ON(coremem > 100);
7430
7431		*percent = coremem;
7432	} else {
7433		coremem = memparse(p, &p);
7434		/* Paranoid check that UL is enough for the coremem value */
7435		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7436
7437		*core = coremem >> PAGE_SHIFT;
7438		*percent = 0UL;
7439	}
7440	return 0;
7441}
7442
7443/*
7444 * kernelcore=size sets the amount of memory for use for allocations that
7445 * cannot be reclaimed or migrated.
7446 */
7447static int __init cmdline_parse_kernelcore(char *p)
7448{
7449	/* parse kernelcore=mirror */
7450	if (parse_option_str(p, "mirror")) {
7451		mirrored_kernelcore = true;
7452		return 0;
7453	}
7454
7455	return cmdline_parse_core(p, &required_kernelcore,
7456				  &required_kernelcore_percent);
7457}
7458
7459/*
7460 * movablecore=size sets the amount of memory for use for allocations that
7461 * can be reclaimed or migrated.
7462 */
7463static int __init cmdline_parse_movablecore(char *p)
7464{
7465	return cmdline_parse_core(p, &required_movablecore,
7466				  &required_movablecore_percent);
7467}
7468
7469early_param("kernelcore", cmdline_parse_kernelcore);
7470early_param("movablecore", cmdline_parse_movablecore);
7471
7472#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7473
7474void adjust_managed_page_count(struct page *page, long count)
7475{
7476	atomic_long_add(count, &page_zone(page)->managed_pages);
7477	totalram_pages_add(count);
7478#ifdef CONFIG_HIGHMEM
7479	if (PageHighMem(page))
7480		totalhigh_pages_add(count);
7481#endif
7482}
7483EXPORT_SYMBOL(adjust_managed_page_count);
7484
7485unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7486{
7487	void *pos;
7488	unsigned long pages = 0;
7489
7490	start = (void *)PAGE_ALIGN((unsigned long)start);
7491	end = (void *)((unsigned long)end & PAGE_MASK);
7492	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7493		struct page *page = virt_to_page(pos);
7494		void *direct_map_addr;
7495
7496		/*
7497		 * 'direct_map_addr' might be different from 'pos'
7498		 * because some architectures' virt_to_page()
7499		 * work with aliases.  Getting the direct map
7500		 * address ensures that we get a _writeable_
7501		 * alias for the memset().
7502		 */
7503		direct_map_addr = page_address(page);
 
 
 
 
 
7504		if ((unsigned int)poison <= 0xFF)
7505			memset(direct_map_addr, poison, PAGE_SIZE);
7506
7507		free_reserved_page(page);
7508	}
7509
7510	if (pages && s)
7511		pr_info("Freeing %s memory: %ldK\n",
7512			s, pages << (PAGE_SHIFT - 10));
7513
7514	return pages;
7515}
7516
7517#ifdef	CONFIG_HIGHMEM
7518void free_highmem_page(struct page *page)
7519{
7520	__free_reserved_page(page);
7521	totalram_pages_inc();
7522	atomic_long_inc(&page_zone(page)->managed_pages);
7523	totalhigh_pages_inc();
7524}
7525#endif
7526
7527
7528void __init mem_init_print_info(const char *str)
7529{
7530	unsigned long physpages, codesize, datasize, rosize, bss_size;
7531	unsigned long init_code_size, init_data_size;
7532
7533	physpages = get_num_physpages();
7534	codesize = _etext - _stext;
7535	datasize = _edata - _sdata;
7536	rosize = __end_rodata - __start_rodata;
7537	bss_size = __bss_stop - __bss_start;
7538	init_data_size = __init_end - __init_begin;
7539	init_code_size = _einittext - _sinittext;
7540
7541	/*
7542	 * Detect special cases and adjust section sizes accordingly:
7543	 * 1) .init.* may be embedded into .data sections
7544	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7545	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7546	 * 3) .rodata.* may be embedded into .text or .data sections.
7547	 */
7548#define adj_init_size(start, end, size, pos, adj) \
7549	do { \
7550		if (start <= pos && pos < end && size > adj) \
7551			size -= adj; \
7552	} while (0)
7553
7554	adj_init_size(__init_begin, __init_end, init_data_size,
7555		     _sinittext, init_code_size);
7556	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7557	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7558	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7559	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7560
7561#undef	adj_init_size
7562
7563	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7564#ifdef	CONFIG_HIGHMEM
7565		", %luK highmem"
7566#endif
7567		"%s%s)\n",
7568		nr_free_pages() << (PAGE_SHIFT - 10),
7569		physpages << (PAGE_SHIFT - 10),
7570		codesize >> 10, datasize >> 10, rosize >> 10,
7571		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7572		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7573		totalcma_pages << (PAGE_SHIFT - 10),
7574#ifdef	CONFIG_HIGHMEM
7575		totalhigh_pages() << (PAGE_SHIFT - 10),
7576#endif
7577		str ? ", " : "", str ? str : "");
7578}
7579
7580/**
7581 * set_dma_reserve - set the specified number of pages reserved in the first zone
7582 * @new_dma_reserve: The number of pages to mark reserved
7583 *
7584 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7585 * In the DMA zone, a significant percentage may be consumed by kernel image
7586 * and other unfreeable allocations which can skew the watermarks badly. This
7587 * function may optionally be used to account for unfreeable pages in the
7588 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7589 * smaller per-cpu batchsize.
7590 */
7591void __init set_dma_reserve(unsigned long new_dma_reserve)
7592{
7593	dma_reserve = new_dma_reserve;
7594}
7595
7596void __init free_area_init(unsigned long *zones_size)
7597{
7598	zero_resv_unavail();
7599	free_area_init_node(0, zones_size,
7600			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7601}
7602
7603static int page_alloc_cpu_dead(unsigned int cpu)
7604{
 
7605
7606	lru_add_drain_cpu(cpu);
 
7607	drain_pages(cpu);
7608
7609	/*
7610	 * Spill the event counters of the dead processor
7611	 * into the current processors event counters.
7612	 * This artificially elevates the count of the current
7613	 * processor.
7614	 */
7615	vm_events_fold_cpu(cpu);
7616
7617	/*
7618	 * Zero the differential counters of the dead processor
7619	 * so that the vm statistics are consistent.
7620	 *
7621	 * This is only okay since the processor is dead and cannot
7622	 * race with what we are doing.
7623	 */
7624	cpu_vm_stats_fold(cpu);
 
 
 
 
7625	return 0;
7626}
7627
7628#ifdef CONFIG_NUMA
7629int hashdist = HASHDIST_DEFAULT;
7630
7631static int __init set_hashdist(char *str)
7632{
7633	if (!str)
7634		return 0;
7635	hashdist = simple_strtoul(str, &str, 0);
7636	return 1;
 
7637}
7638__setup("hashdist=", set_hashdist);
7639#endif
7640
7641void __init page_alloc_init(void)
7642{
7643	int ret;
7644
7645#ifdef CONFIG_NUMA
7646	if (num_node_state(N_MEMORY) == 1)
7647		hashdist = 0;
7648#endif
7649
7650	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7651					"mm/page_alloc:dead", NULL,
7652					page_alloc_cpu_dead);
7653	WARN_ON(ret < 0);
7654}
7655
7656/*
7657 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7658 *	or min_free_kbytes changes.
7659 */
7660static void calculate_totalreserve_pages(void)
7661{
7662	struct pglist_data *pgdat;
7663	unsigned long reserve_pages = 0;
7664	enum zone_type i, j;
7665
7666	for_each_online_pgdat(pgdat) {
7667
7668		pgdat->totalreserve_pages = 0;
7669
7670		for (i = 0; i < MAX_NR_ZONES; i++) {
7671			struct zone *zone = pgdat->node_zones + i;
7672			long max = 0;
7673			unsigned long managed_pages = zone_managed_pages(zone);
7674
7675			/* Find valid and maximum lowmem_reserve in the zone */
7676			for (j = i; j < MAX_NR_ZONES; j++) {
7677				if (zone->lowmem_reserve[j] > max)
7678					max = zone->lowmem_reserve[j];
7679			}
7680
7681			/* we treat the high watermark as reserved pages. */
7682			max += high_wmark_pages(zone);
7683
7684			if (max > managed_pages)
7685				max = managed_pages;
7686
7687			pgdat->totalreserve_pages += max;
7688
7689			reserve_pages += max;
7690		}
7691	}
7692	totalreserve_pages = reserve_pages;
7693}
7694
7695/*
7696 * setup_per_zone_lowmem_reserve - called whenever
7697 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7698 *	has a correct pages reserved value, so an adequate number of
7699 *	pages are left in the zone after a successful __alloc_pages().
7700 */
7701static void setup_per_zone_lowmem_reserve(void)
7702{
7703	struct pglist_data *pgdat;
7704	enum zone_type j, idx;
7705
7706	for_each_online_pgdat(pgdat) {
7707		for (j = 0; j < MAX_NR_ZONES; j++) {
7708			struct zone *zone = pgdat->node_zones + j;
7709			unsigned long managed_pages = zone_managed_pages(zone);
7710
7711			zone->lowmem_reserve[j] = 0;
7712
7713			idx = j;
7714			while (idx) {
7715				struct zone *lower_zone;
7716
7717				idx--;
7718				lower_zone = pgdat->node_zones + idx;
7719
7720				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7721					sysctl_lowmem_reserve_ratio[idx] = 0;
7722					lower_zone->lowmem_reserve[j] = 0;
7723				} else {
7724					lower_zone->lowmem_reserve[j] =
7725						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7726				}
7727				managed_pages += zone_managed_pages(lower_zone);
7728			}
7729		}
7730	}
7731
7732	/* update totalreserve_pages */
7733	calculate_totalreserve_pages();
7734}
7735
7736static void __setup_per_zone_wmarks(void)
7737{
7738	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7739	unsigned long lowmem_pages = 0;
7740	struct zone *zone;
7741	unsigned long flags;
7742
7743	/* Calculate total number of !ZONE_HIGHMEM pages */
7744	for_each_zone(zone) {
7745		if (!is_highmem(zone))
7746			lowmem_pages += zone_managed_pages(zone);
7747	}
7748
7749	for_each_zone(zone) {
7750		u64 tmp;
7751
7752		spin_lock_irqsave(&zone->lock, flags);
7753		tmp = (u64)pages_min * zone_managed_pages(zone);
7754		do_div(tmp, lowmem_pages);
7755		if (is_highmem(zone)) {
7756			/*
7757			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7758			 * need highmem pages, so cap pages_min to a small
7759			 * value here.
7760			 *
7761			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7762			 * deltas control async page reclaim, and so should
7763			 * not be capped for highmem.
7764			 */
7765			unsigned long min_pages;
7766
7767			min_pages = zone_managed_pages(zone) / 1024;
7768			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7769			zone->_watermark[WMARK_MIN] = min_pages;
7770		} else {
7771			/*
7772			 * If it's a lowmem zone, reserve a number of pages
7773			 * proportionate to the zone's size.
7774			 */
7775			zone->_watermark[WMARK_MIN] = tmp;
7776		}
7777
7778		/*
7779		 * Set the kswapd watermarks distance according to the
7780		 * scale factor in proportion to available memory, but
7781		 * ensure a minimum size on small systems.
7782		 */
7783		tmp = max_t(u64, tmp >> 2,
7784			    mult_frac(zone_managed_pages(zone),
7785				      watermark_scale_factor, 10000));
7786
7787		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7788		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7789		zone->watermark_boost = 0;
 
 
 
7790
7791		spin_unlock_irqrestore(&zone->lock, flags);
7792	}
7793
7794	/* update totalreserve_pages */
7795	calculate_totalreserve_pages();
7796}
7797
7798/**
7799 * setup_per_zone_wmarks - called when min_free_kbytes changes
7800 * or when memory is hot-{added|removed}
7801 *
7802 * Ensures that the watermark[min,low,high] values for each zone are set
7803 * correctly with respect to min_free_kbytes.
7804 */
7805void setup_per_zone_wmarks(void)
7806{
 
7807	static DEFINE_SPINLOCK(lock);
7808
7809	spin_lock(&lock);
7810	__setup_per_zone_wmarks();
7811	spin_unlock(&lock);
 
 
 
 
 
 
 
7812}
7813
7814/*
7815 * Initialise min_free_kbytes.
7816 *
7817 * For small machines we want it small (128k min).  For large machines
7818 * we want it large (64MB max).  But it is not linear, because network
7819 * bandwidth does not increase linearly with machine size.  We use
7820 *
7821 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7822 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7823 *
7824 * which yields
7825 *
7826 * 16MB:	512k
7827 * 32MB:	724k
7828 * 64MB:	1024k
7829 * 128MB:	1448k
7830 * 256MB:	2048k
7831 * 512MB:	2896k
7832 * 1024MB:	4096k
7833 * 2048MB:	5792k
7834 * 4096MB:	8192k
7835 * 8192MB:	11584k
7836 * 16384MB:	16384k
7837 */
7838int __meminit init_per_zone_wmark_min(void)
7839{
7840	unsigned long lowmem_kbytes;
7841	int new_min_free_kbytes;
7842
7843	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7844	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7845
7846	if (new_min_free_kbytes > user_min_free_kbytes) {
7847		min_free_kbytes = new_min_free_kbytes;
7848		if (min_free_kbytes < 128)
7849			min_free_kbytes = 128;
7850		if (min_free_kbytes > 65536)
7851			min_free_kbytes = 65536;
7852	} else {
7853		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7854				new_min_free_kbytes, user_min_free_kbytes);
7855	}
 
 
 
 
 
7856	setup_per_zone_wmarks();
7857	refresh_zone_stat_thresholds();
7858	setup_per_zone_lowmem_reserve();
7859
7860#ifdef CONFIG_NUMA
7861	setup_min_unmapped_ratio();
7862	setup_min_slab_ratio();
7863#endif
7864
 
 
7865	return 0;
7866}
7867core_initcall(init_per_zone_wmark_min)
7868
7869/*
7870 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7871 *	that we can call two helper functions whenever min_free_kbytes
7872 *	changes.
7873 */
7874int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7875	void __user *buffer, size_t *length, loff_t *ppos)
7876{
7877	int rc;
7878
7879	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7880	if (rc)
7881		return rc;
7882
7883	if (write) {
7884		user_min_free_kbytes = min_free_kbytes;
7885		setup_per_zone_wmarks();
7886	}
7887	return 0;
7888}
7889
7890int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7891	void __user *buffer, size_t *length, loff_t *ppos)
7892{
7893	int rc;
7894
7895	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7896	if (rc)
7897		return rc;
7898
7899	return 0;
7900}
7901
7902int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7903	void __user *buffer, size_t *length, loff_t *ppos)
7904{
7905	int rc;
7906
7907	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7908	if (rc)
7909		return rc;
7910
7911	if (write)
7912		setup_per_zone_wmarks();
7913
7914	return 0;
7915}
7916
7917#ifdef CONFIG_NUMA
7918static void setup_min_unmapped_ratio(void)
7919{
7920	pg_data_t *pgdat;
7921	struct zone *zone;
7922
7923	for_each_online_pgdat(pgdat)
7924		pgdat->min_unmapped_pages = 0;
7925
7926	for_each_zone(zone)
7927		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7928						         sysctl_min_unmapped_ratio) / 100;
7929}
7930
7931
7932int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7933	void __user *buffer, size_t *length, loff_t *ppos)
7934{
7935	int rc;
7936
7937	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7938	if (rc)
7939		return rc;
7940
7941	setup_min_unmapped_ratio();
7942
7943	return 0;
7944}
7945
7946static void setup_min_slab_ratio(void)
7947{
7948	pg_data_t *pgdat;
7949	struct zone *zone;
7950
7951	for_each_online_pgdat(pgdat)
7952		pgdat->min_slab_pages = 0;
7953
7954	for_each_zone(zone)
7955		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7956						     sysctl_min_slab_ratio) / 100;
7957}
7958
7959int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7960	void __user *buffer, size_t *length, loff_t *ppos)
7961{
7962	int rc;
7963
7964	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7965	if (rc)
7966		return rc;
7967
7968	setup_min_slab_ratio();
7969
7970	return 0;
7971}
7972#endif
7973
7974/*
7975 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7976 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7977 *	whenever sysctl_lowmem_reserve_ratio changes.
7978 *
7979 * The reserve ratio obviously has absolutely no relation with the
7980 * minimum watermarks. The lowmem reserve ratio can only make sense
7981 * if in function of the boot time zone sizes.
7982 */
7983int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7984	void __user *buffer, size_t *length, loff_t *ppos)
7985{
 
 
7986	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
7987	setup_per_zone_lowmem_reserve();
7988	return 0;
7989}
7990
7991/*
7992 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7993 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7994 * pagelist can have before it gets flushed back to buddy allocator.
7995 */
7996int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7997	void __user *buffer, size_t *length, loff_t *ppos)
7998{
7999	struct zone *zone;
8000	int old_percpu_pagelist_fraction;
8001	int ret;
8002
8003	mutex_lock(&pcp_batch_high_lock);
8004	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8005
8006	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8007	if (!write || ret < 0)
8008		goto out;
8009
8010	/* Sanity checking to avoid pcp imbalance */
8011	if (percpu_pagelist_fraction &&
8012	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8013		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8014		ret = -EINVAL;
8015		goto out;
8016	}
8017
8018	/* No change? */
8019	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8020		goto out;
8021
8022	for_each_populated_zone(zone) {
8023		unsigned int cpu;
8024
8025		for_each_possible_cpu(cpu)
8026			pageset_set_high_and_batch(zone,
8027					per_cpu_ptr(zone->pageset, cpu));
8028	}
8029out:
8030	mutex_unlock(&pcp_batch_high_lock);
8031	return ret;
8032}
8033
8034#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8035/*
8036 * Returns the number of pages that arch has reserved but
8037 * is not known to alloc_large_system_hash().
8038 */
8039static unsigned long __init arch_reserved_kernel_pages(void)
8040{
8041	return 0;
8042}
8043#endif
8044
8045/*
8046 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8047 * machines. As memory size is increased the scale is also increased but at
8048 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8049 * quadruples the scale is increased by one, which means the size of hash table
8050 * only doubles, instead of quadrupling as well.
8051 * Because 32-bit systems cannot have large physical memory, where this scaling
8052 * makes sense, it is disabled on such platforms.
8053 */
8054#if __BITS_PER_LONG > 32
8055#define ADAPT_SCALE_BASE	(64ul << 30)
8056#define ADAPT_SCALE_SHIFT	2
8057#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8058#endif
8059
8060/*
8061 * allocate a large system hash table from bootmem
8062 * - it is assumed that the hash table must contain an exact power-of-2
8063 *   quantity of entries
8064 * - limit is the number of hash buckets, not the total allocation size
8065 */
8066void *__init alloc_large_system_hash(const char *tablename,
8067				     unsigned long bucketsize,
8068				     unsigned long numentries,
8069				     int scale,
8070				     int flags,
8071				     unsigned int *_hash_shift,
8072				     unsigned int *_hash_mask,
8073				     unsigned long low_limit,
8074				     unsigned long high_limit)
8075{
8076	unsigned long long max = high_limit;
8077	unsigned long log2qty, size;
8078	void *table = NULL;
8079	gfp_t gfp_flags;
8080	bool virt;
8081
8082	/* allow the kernel cmdline to have a say */
8083	if (!numentries) {
8084		/* round applicable memory size up to nearest megabyte */
8085		numentries = nr_kernel_pages;
8086		numentries -= arch_reserved_kernel_pages();
8087
8088		/* It isn't necessary when PAGE_SIZE >= 1MB */
8089		if (PAGE_SHIFT < 20)
8090			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8091
8092#if __BITS_PER_LONG > 32
8093		if (!high_limit) {
8094			unsigned long adapt;
8095
8096			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8097			     adapt <<= ADAPT_SCALE_SHIFT)
8098				scale++;
8099		}
 
8100#endif
 
 
8101
8102		/* limit to 1 bucket per 2^scale bytes of low memory */
8103		if (scale > PAGE_SHIFT)
8104			numentries >>= (scale - PAGE_SHIFT);
8105		else
8106			numentries <<= (PAGE_SHIFT - scale);
8107
8108		/* Make sure we've got at least a 0-order allocation.. */
8109		if (unlikely(flags & HASH_SMALL)) {
8110			/* Makes no sense without HASH_EARLY */
8111			WARN_ON(!(flags & HASH_EARLY));
8112			if (!(numentries >> *_hash_shift)) {
8113				numentries = 1UL << *_hash_shift;
8114				BUG_ON(!numentries);
8115			}
8116		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8117			numentries = PAGE_SIZE / bucketsize;
8118	}
8119	numentries = roundup_pow_of_two(numentries);
8120
8121	/* limit allocation size to 1/16 total memory by default */
8122	if (max == 0) {
8123		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8124		do_div(max, bucketsize);
8125	}
8126	max = min(max, 0x80000000ULL);
8127
8128	if (numentries < low_limit)
8129		numentries = low_limit;
8130	if (numentries > max)
8131		numentries = max;
8132
8133	log2qty = ilog2(numentries);
8134
8135	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8136	do {
8137		virt = false;
8138		size = bucketsize << log2qty;
8139		if (flags & HASH_EARLY) {
8140			if (flags & HASH_ZERO)
8141				table = memblock_alloc(size, SMP_CACHE_BYTES);
8142			else
8143				table = memblock_alloc_raw(size,
8144							   SMP_CACHE_BYTES);
8145		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8146			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8147			virt = true;
8148		} else {
8149			/*
8150			 * If bucketsize is not a power-of-two, we may free
8151			 * some pages at the end of hash table which
8152			 * alloc_pages_exact() automatically does
8153			 */
8154			table = alloc_pages_exact(size, gfp_flags);
8155			kmemleak_alloc(table, size, 1, gfp_flags);
8156		}
8157	} while (!table && size > PAGE_SIZE && --log2qty);
8158
8159	if (!table)
8160		panic("Failed to allocate %s hash table\n", tablename);
8161
8162	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8163		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8164		virt ? "vmalloc" : "linear");
8165
8166	if (_hash_shift)
8167		*_hash_shift = log2qty;
8168	if (_hash_mask)
8169		*_hash_mask = (1 << log2qty) - 1;
8170
8171	return table;
8172}
8173
8174/*
8175 * This function checks whether pageblock includes unmovable pages or not.
8176 * If @count is not zero, it is okay to include less @count unmovable pages
8177 *
8178 * PageLRU check without isolation or lru_lock could race so that
8179 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8180 * check without lock_page also may miss some movable non-lru pages at
8181 * race condition. So you can't expect this function should be exact.
8182 */
8183bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8184			 int migratetype, int flags)
8185{
8186	unsigned long found;
8187	unsigned long iter = 0;
8188	unsigned long pfn = page_to_pfn(page);
8189	const char *reason = "unmovable page";
8190
8191	/*
8192	 * TODO we could make this much more efficient by not checking every
8193	 * page in the range if we know all of them are in MOVABLE_ZONE and
8194	 * that the movable zone guarantees that pages are migratable but
8195	 * the later is not the case right now unfortunatelly. E.g. movablecore
8196	 * can still lead to having bootmem allocations in zone_movable.
8197	 */
8198
8199	if (is_migrate_cma_page(page)) {
8200		/*
8201		 * CMA allocations (alloc_contig_range) really need to mark
8202		 * isolate CMA pageblocks even when they are not movable in fact
8203		 * so consider them movable here.
8204		 */
8205		if (is_migrate_cma(migratetype))
8206			return false;
8207
8208		reason = "CMA page";
8209		goto unmovable;
8210	}
8211
8212	for (found = 0; iter < pageblock_nr_pages; iter++) {
8213		unsigned long check = pfn + iter;
8214
8215		if (!pfn_valid_within(check))
8216			continue;
8217
8218		page = pfn_to_page(check);
8219
8220		if (PageReserved(page))
8221			goto unmovable;
8222
8223		/*
8224		 * If the zone is movable and we have ruled out all reserved
8225		 * pages then it should be reasonably safe to assume the rest
8226		 * is movable.
8227		 */
8228		if (zone_idx(zone) == ZONE_MOVABLE)
8229			continue;
8230
8231		/*
8232		 * Hugepages are not in LRU lists, but they're movable.
8233		 * We need not scan over tail pages because we don't
8234		 * handle each tail page individually in migration.
8235		 */
8236		if (PageHuge(page)) {
8237			struct page *head = compound_head(page);
8238			unsigned int skip_pages;
8239
8240			if (!hugepage_migration_supported(page_hstate(head)))
8241				goto unmovable;
8242
8243			skip_pages = compound_nr(head) - (page - head);
8244			iter += skip_pages - 1;
8245			continue;
8246		}
8247
8248		/*
8249		 * We can't use page_count without pin a page
8250		 * because another CPU can free compound page.
8251		 * This check already skips compound tails of THP
8252		 * because their page->_refcount is zero at all time.
8253		 */
8254		if (!page_ref_count(page)) {
8255			if (PageBuddy(page))
8256				iter += (1 << page_order(page)) - 1;
8257			continue;
8258		}
8259
8260		/*
8261		 * The HWPoisoned page may be not in buddy system, and
8262		 * page_count() is not 0.
8263		 */
8264		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8265			continue;
8266
8267		if (__PageMovable(page))
8268			continue;
8269
8270		if (!PageLRU(page))
8271			found++;
8272		/*
8273		 * If there are RECLAIMABLE pages, we need to check
8274		 * it.  But now, memory offline itself doesn't call
8275		 * shrink_node_slabs() and it still to be fixed.
8276		 */
8277		/*
8278		 * If the page is not RAM, page_count()should be 0.
8279		 * we don't need more check. This is an _used_ not-movable page.
8280		 *
8281		 * The problematic thing here is PG_reserved pages. PG_reserved
8282		 * is set to both of a memory hole page and a _used_ kernel
8283		 * page at boot.
8284		 */
8285		if (found > count)
8286			goto unmovable;
8287	}
8288	return false;
8289unmovable:
8290	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8291	if (flags & REPORT_FAILURE)
8292		dump_page(pfn_to_page(pfn + iter), reason);
8293	return true;
8294}
8295
8296#ifdef CONFIG_CONTIG_ALLOC
8297static unsigned long pfn_max_align_down(unsigned long pfn)
 
8298{
8299	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8300			     pageblock_nr_pages) - 1);
8301}
8302
8303static unsigned long pfn_max_align_up(unsigned long pfn)
8304{
8305	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8306				pageblock_nr_pages));
 
 
 
8307}
8308
8309/* [start, end) must belong to a single zone. */
8310static int __alloc_contig_migrate_range(struct compact_control *cc,
8311					unsigned long start, unsigned long end)
8312{
8313	/* This function is based on compact_zone() from compaction.c. */
8314	unsigned long nr_reclaimed;
8315	unsigned long pfn = start;
8316	unsigned int tries = 0;
8317	int ret = 0;
 
 
 
 
8318
8319	migrate_prep();
8320
8321	while (pfn < end || !list_empty(&cc->migratepages)) {
8322		if (fatal_signal_pending(current)) {
8323			ret = -EINTR;
8324			break;
8325		}
8326
8327		if (list_empty(&cc->migratepages)) {
8328			cc->nr_migratepages = 0;
8329			pfn = isolate_migratepages_range(cc, pfn, end);
8330			if (!pfn) {
8331				ret = -EINTR;
8332				break;
8333			}
8334			tries = 0;
8335		} else if (++tries == 5) {
8336			ret = ret < 0 ? ret : -EBUSY;
8337			break;
8338		}
8339
8340		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8341							&cc->migratepages);
8342		cc->nr_migratepages -= nr_reclaimed;
8343
8344		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8345				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
 
 
 
 
 
 
 
8346	}
 
 
8347	if (ret < 0) {
 
 
8348		putback_movable_pages(&cc->migratepages);
8349		return ret;
8350	}
8351	return 0;
8352}
8353
8354/**
8355 * alloc_contig_range() -- tries to allocate given range of pages
8356 * @start:	start PFN to allocate
8357 * @end:	one-past-the-last PFN to allocate
8358 * @migratetype:	migratetype of the underlaying pageblocks (either
8359 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8360 *			in range must have the same migratetype and it must
8361 *			be either of the two.
8362 * @gfp_mask:	GFP mask to use during compaction
8363 *
8364 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8365 * aligned.  The PFN range must belong to a single zone.
8366 *
8367 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8368 * pageblocks in the range.  Once isolated, the pageblocks should not
8369 * be modified by others.
8370 *
8371 * Return: zero on success or negative error code.  On success all
8372 * pages which PFN is in [start, end) are allocated for the caller and
8373 * need to be freed with free_contig_range().
8374 */
8375int alloc_contig_range(unsigned long start, unsigned long end,
8376		       unsigned migratetype, gfp_t gfp_mask)
8377{
8378	unsigned long outer_start, outer_end;
8379	unsigned int order;
8380	int ret = 0;
8381
8382	struct compact_control cc = {
8383		.nr_migratepages = 0,
8384		.order = -1,
8385		.zone = page_zone(pfn_to_page(start)),
8386		.mode = MIGRATE_SYNC,
8387		.ignore_skip_hint = true,
8388		.no_set_skip_hint = true,
8389		.gfp_mask = current_gfp_context(gfp_mask),
 
8390	};
8391	INIT_LIST_HEAD(&cc.migratepages);
8392
8393	/*
8394	 * What we do here is we mark all pageblocks in range as
8395	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8396	 * have different sizes, and due to the way page allocator
8397	 * work, we align the range to biggest of the two pages so
8398	 * that page allocator won't try to merge buddies from
8399	 * different pageblocks and change MIGRATE_ISOLATE to some
8400	 * other migration type.
8401	 *
8402	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8403	 * migrate the pages from an unaligned range (ie. pages that
8404	 * we are interested in).  This will put all the pages in
8405	 * range back to page allocator as MIGRATE_ISOLATE.
8406	 *
8407	 * When this is done, we take the pages in range from page
8408	 * allocator removing them from the buddy system.  This way
8409	 * page allocator will never consider using them.
8410	 *
8411	 * This lets us mark the pageblocks back as
8412	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8413	 * aligned range but not in the unaligned, original range are
8414	 * put back to page allocator so that buddy can use them.
8415	 */
8416
8417	ret = start_isolate_page_range(pfn_max_align_down(start),
8418				       pfn_max_align_up(end), migratetype, 0);
8419	if (ret < 0)
8420		return ret;
 
8421
8422	/*
8423	 * In case of -EBUSY, we'd like to know which page causes problem.
8424	 * So, just fall through. test_pages_isolated() has a tracepoint
8425	 * which will report the busy page.
8426	 *
8427	 * It is possible that busy pages could become available before
8428	 * the call to test_pages_isolated, and the range will actually be
8429	 * allocated.  So, if we fall through be sure to clear ret so that
8430	 * -EBUSY is not accidentally used or returned to caller.
8431	 */
8432	ret = __alloc_contig_migrate_range(&cc, start, end);
8433	if (ret && ret != -EBUSY)
8434		goto done;
8435	ret =0;
8436
8437	/*
8438	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8439	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8440	 * more, all pages in [start, end) are free in page allocator.
8441	 * What we are going to do is to allocate all pages from
8442	 * [start, end) (that is remove them from page allocator).
8443	 *
8444	 * The only problem is that pages at the beginning and at the
8445	 * end of interesting range may be not aligned with pages that
8446	 * page allocator holds, ie. they can be part of higher order
8447	 * pages.  Because of this, we reserve the bigger range and
8448	 * once this is done free the pages we are not interested in.
8449	 *
8450	 * We don't have to hold zone->lock here because the pages are
8451	 * isolated thus they won't get removed from buddy.
8452	 */
8453
8454	lru_add_drain_all();
8455
8456	order = 0;
8457	outer_start = start;
8458	while (!PageBuddy(pfn_to_page(outer_start))) {
8459		if (++order >= MAX_ORDER) {
8460			outer_start = start;
8461			break;
8462		}
8463		outer_start &= ~0UL << order;
8464	}
8465
8466	if (outer_start != start) {
8467		order = page_order(pfn_to_page(outer_start));
8468
8469		/*
8470		 * outer_start page could be small order buddy page and
8471		 * it doesn't include start page. Adjust outer_start
8472		 * in this case to report failed page properly
8473		 * on tracepoint in test_pages_isolated()
8474		 */
8475		if (outer_start + (1UL << order) <= start)
8476			outer_start = start;
8477	}
8478
8479	/* Make sure the range is really isolated. */
8480	if (test_pages_isolated(outer_start, end, false)) {
8481		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8482			__func__, outer_start, end);
8483		ret = -EBUSY;
8484		goto done;
8485	}
8486
8487	/* Grab isolated pages from freelists. */
8488	outer_end = isolate_freepages_range(&cc, outer_start, end);
8489	if (!outer_end) {
8490		ret = -EBUSY;
8491		goto done;
8492	}
8493
8494	/* Free head and tail (if any) */
8495	if (start != outer_start)
8496		free_contig_range(outer_start, start - outer_start);
8497	if (end != outer_end)
8498		free_contig_range(end, outer_end - end);
8499
8500done:
8501	undo_isolate_page_range(pfn_max_align_down(start),
8502				pfn_max_align_up(end), migratetype);
8503	return ret;
8504}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8505#endif /* CONFIG_CONTIG_ALLOC */
8506
8507void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8508{
8509	unsigned int count = 0;
8510
8511	for (; nr_pages--; pfn++) {
8512		struct page *page = pfn_to_page(pfn);
8513
8514		count += page_count(page) != 1;
8515		__free_page(page);
8516	}
8517	WARN(count != 0, "%d pages are still in use!\n", count);
8518}
 
8519
8520/*
8521 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8522 * page high values need to be recalulated.
 
 
 
 
8523 */
8524void __meminit zone_pcp_update(struct zone *zone)
8525{
8526	unsigned cpu;
8527	mutex_lock(&pcp_batch_high_lock);
8528	for_each_possible_cpu(cpu)
8529		pageset_set_high_and_batch(zone,
8530				per_cpu_ptr(zone->pageset, cpu));
 
 
 
 
 
8531	mutex_unlock(&pcp_batch_high_lock);
8532}
8533
8534void zone_pcp_reset(struct zone *zone)
8535{
8536	unsigned long flags;
8537	int cpu;
8538	struct per_cpu_pageset *pset;
8539
8540	/* avoid races with drain_pages()  */
8541	local_irq_save(flags);
8542	if (zone->pageset != &boot_pageset) {
8543		for_each_online_cpu(cpu) {
8544			pset = per_cpu_ptr(zone->pageset, cpu);
8545			drain_zonestat(zone, pset);
 
 
 
 
 
 
8546		}
8547		free_percpu(zone->pageset);
8548		zone->pageset = &boot_pageset;
8549	}
8550	local_irq_restore(flags);
8551}
8552
8553#ifdef CONFIG_MEMORY_HOTREMOVE
8554/*
8555 * All pages in the range must be in a single zone and isolated
8556 * before calling this.
8557 */
8558unsigned long
8559__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8560{
 
8561	struct page *page;
8562	struct zone *zone;
8563	unsigned int order, i;
8564	unsigned long pfn;
8565	unsigned long flags;
8566	unsigned long offlined_pages = 0;
8567
8568	/* find the first valid pfn */
8569	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8570		if (pfn_valid(pfn))
8571			break;
8572	if (pfn == end_pfn)
8573		return offlined_pages;
8574
8575	offline_mem_sections(pfn, end_pfn);
8576	zone = page_zone(pfn_to_page(pfn));
8577	spin_lock_irqsave(&zone->lock, flags);
8578	pfn = start_pfn;
8579	while (pfn < end_pfn) {
8580		if (!pfn_valid(pfn)) {
8581			pfn++;
8582			continue;
8583		}
8584		page = pfn_to_page(pfn);
8585		/*
8586		 * The HWPoisoned page may be not in buddy system, and
8587		 * page_count() is not 0.
8588		 */
8589		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8590			pfn++;
8591			SetPageReserved(page);
8592			offlined_pages++;
 
 
 
 
 
 
 
 
8593			continue;
8594		}
8595
8596		BUG_ON(page_count(page));
8597		BUG_ON(!PageBuddy(page));
8598		order = page_order(page);
8599		offlined_pages += 1 << order;
8600#ifdef CONFIG_DEBUG_VM
8601		pr_info("remove from free list %lx %d %lx\n",
8602			pfn, 1 << order, end_pfn);
8603#endif
8604		del_page_from_free_area(page, &zone->free_area[order]);
8605		for (i = 0; i < (1 << order); i++)
8606			SetPageReserved((page+i));
8607		pfn += (1 << order);
8608	}
8609	spin_unlock_irqrestore(&zone->lock, flags);
8610
8611	return offlined_pages;
8612}
8613#endif
8614
 
 
 
8615bool is_free_buddy_page(struct page *page)
8616{
8617	struct zone *zone = page_zone(page);
8618	unsigned long pfn = page_to_pfn(page);
8619	unsigned long flags;
8620	unsigned int order;
8621
8622	spin_lock_irqsave(&zone->lock, flags);
8623	for (order = 0; order < MAX_ORDER; order++) {
8624		struct page *page_head = page - (pfn & ((1 << order) - 1));
8625
8626		if (PageBuddy(page_head) && page_order(page_head) >= order)
 
8627			break;
8628	}
8629	spin_unlock_irqrestore(&zone->lock, flags);
8630
8631	return order < MAX_ORDER;
8632}
 
8633
8634#ifdef CONFIG_MEMORY_FAILURE
8635/*
8636 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8637 * test is performed under the zone lock to prevent a race against page
8638 * allocation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8639 */
8640bool set_hwpoison_free_buddy_page(struct page *page)
8641{
8642	struct zone *zone = page_zone(page);
8643	unsigned long pfn = page_to_pfn(page);
8644	unsigned long flags;
8645	unsigned int order;
8646	bool hwpoisoned = false;
8647
8648	spin_lock_irqsave(&zone->lock, flags);
8649	for (order = 0; order < MAX_ORDER; order++) {
8650		struct page *page_head = page - (pfn & ((1 << order) - 1));
 
8651
8652		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8653			if (!TestSetPageHWPoison(page))
8654				hwpoisoned = true;
 
 
 
 
 
 
 
 
 
 
 
 
8655			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8656		}
8657	}
8658	spin_unlock_irqrestore(&zone->lock, flags);
8659
8660	return hwpoisoned;
8661}
8662#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
 
  21#include <linux/interrupt.h>
 
  22#include <linux/jiffies.h>
 
  23#include <linux/compiler.h>
  24#include <linux/kernel.h>
  25#include <linux/kasan.h>
  26#include <linux/kmsan.h>
  27#include <linux/module.h>
  28#include <linux/suspend.h>
 
 
 
  29#include <linux/ratelimit.h>
  30#include <linux/oom.h>
  31#include <linux/topology.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/memory_hotplug.h>
  36#include <linux/nodemask.h>
 
  37#include <linux/vmstat.h>
 
 
 
 
 
 
 
  38#include <linux/fault-inject.h>
 
 
 
  39#include <linux/compaction.h>
  40#include <trace/events/kmem.h>
  41#include <trace/events/oom.h>
  42#include <linux/prefetch.h>
  43#include <linux/mm_inline.h>
  44#include <linux/mmu_notifier.h>
  45#include <linux/migrate.h>
 
 
  46#include <linux/sched/mm.h>
  47#include <linux/page_owner.h>
  48#include <linux/page_table_check.h>
  49#include <linux/memcontrol.h>
  50#include <linux/ftrace.h>
  51#include <linux/lockdep.h>
 
  52#include <linux/psi.h>
  53#include <linux/khugepaged.h>
  54#include <linux/delayacct.h>
  55#include <linux/cacheinfo.h>
  56#include <asm/div64.h>
  57#include "internal.h"
  58#include "shuffle.h"
  59#include "page_reporting.h"
  60
  61/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  62typedef int __bitwise fpi_t;
  63
  64/* No special request */
  65#define FPI_NONE		((__force fpi_t)0)
  66
  67/*
  68 * Skip free page reporting notification for the (possibly merged) page.
  69 * This does not hinder free page reporting from grabbing the page,
  70 * reporting it and marking it "reported" -  it only skips notifying
  71 * the free page reporting infrastructure about a newly freed page. For
  72 * example, used when temporarily pulling a page from a freelist and
  73 * putting it back unmodified.
  74 */
  75#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
  76
  77/*
  78 * Place the (possibly merged) page to the tail of the freelist. Will ignore
  79 * page shuffling (relevant code - e.g., memory onlining - is expected to
  80 * shuffle the whole zone).
  81 *
  82 * Note: No code should rely on this flag for correctness - it's purely
  83 *       to allow for optimizations when handing back either fresh pages
  84 *       (memory onlining) or untouched pages (page isolation, free page
  85 *       reporting).
  86 */
  87#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
  88
  89/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  90static DEFINE_MUTEX(pcp_batch_high_lock);
  91#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
  92
  93#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
  94/*
  95 * On SMP, spin_trylock is sufficient protection.
  96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
  97 */
  98#define pcp_trylock_prepare(flags)	do { } while (0)
  99#define pcp_trylock_finish(flag)	do { } while (0)
 100#else
 101
 102/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
 103#define pcp_trylock_prepare(flags)	local_irq_save(flags)
 104#define pcp_trylock_finish(flags)	local_irq_restore(flags)
 105#endif
 106
 107/*
 108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
 109 * a migration causing the wrong PCP to be locked and remote memory being
 110 * potentially allocated, pin the task to the CPU for the lookup+lock.
 111 * preempt_disable is used on !RT because it is faster than migrate_disable.
 112 * migrate_disable is used on RT because otherwise RT spinlock usage is
 113 * interfered with and a high priority task cannot preempt the allocator.
 114 */
 115#ifndef CONFIG_PREEMPT_RT
 116#define pcpu_task_pin()		preempt_disable()
 117#define pcpu_task_unpin()	preempt_enable()
 118#else
 119#define pcpu_task_pin()		migrate_disable()
 120#define pcpu_task_unpin()	migrate_enable()
 121#endif
 122
 123/*
 124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
 125 * Return value should be used with equivalent unlock helper.
 126 */
 127#define pcpu_spin_lock(type, member, ptr)				\
 128({									\
 129	type *_ret;							\
 130	pcpu_task_pin();						\
 131	_ret = this_cpu_ptr(ptr);					\
 132	spin_lock(&_ret->member);					\
 133	_ret;								\
 134})
 135
 136#define pcpu_spin_trylock(type, member, ptr)				\
 137({									\
 138	type *_ret;							\
 139	pcpu_task_pin();						\
 140	_ret = this_cpu_ptr(ptr);					\
 141	if (!spin_trylock(&_ret->member)) {				\
 142		pcpu_task_unpin();					\
 143		_ret = NULL;						\
 144	}								\
 145	_ret;								\
 146})
 147
 148#define pcpu_spin_unlock(member, ptr)					\
 149({									\
 150	spin_unlock(&ptr->member);					\
 151	pcpu_task_unpin();						\
 152})
 153
 154/* struct per_cpu_pages specific helpers. */
 155#define pcp_spin_lock(ptr)						\
 156	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
 157
 158#define pcp_spin_trylock(ptr)						\
 159	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
 160
 161#define pcp_spin_unlock(ptr)						\
 162	pcpu_spin_unlock(lock, ptr)
 163
 164#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 165DEFINE_PER_CPU(int, numa_node);
 166EXPORT_PER_CPU_SYMBOL(numa_node);
 167#endif
 168
 169DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 170
 171#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 172/*
 173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 176 * defined in <linux/topology.h>.
 177 */
 178DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 179EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 
 180#endif
 181
 182static DEFINE_MUTEX(pcpu_drain_mutex);
 
 
 
 
 
 
 183
 184#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 185volatile unsigned long latent_entropy __latent_entropy;
 186EXPORT_SYMBOL(latent_entropy);
 187#endif
 188
 189/*
 190 * Array of node states.
 191 */
 192nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 193	[N_POSSIBLE] = NODE_MASK_ALL,
 194	[N_ONLINE] = { { [0] = 1UL } },
 195#ifndef CONFIG_NUMA
 196	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 197#ifdef CONFIG_HIGHMEM
 198	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 199#endif
 200	[N_MEMORY] = { { [0] = 1UL } },
 201	[N_CPU] = { { [0] = 1UL } },
 202#endif	/* NUMA */
 203};
 204EXPORT_SYMBOL(node_states);
 205
 
 
 
 
 
 
 206gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207
 208/*
 209 * A cached value of the page's pageblock's migratetype, used when the page is
 210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 211 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 212 * Also the migratetype set in the page does not necessarily match the pcplist
 213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 214 * other index - this ensures that it will be put on the correct CMA freelist.
 215 */
 216static inline int get_pcppage_migratetype(struct page *page)
 217{
 218	return page->index;
 219}
 220
 221static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 222{
 223	page->index = migratetype;
 224}
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 227unsigned int pageblock_order __read_mostly;
 228#endif
 229
 230static void __free_pages_ok(struct page *page, unsigned int order,
 231			    fpi_t fpi_flags);
 232
 233/*
 234 * results with 256, 32 in the lowmem_reserve sysctl:
 235 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 236 *	1G machine -> (16M dma, 784M normal, 224M high)
 237 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 238 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 239 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 240 *
 241 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 242 * don't need any ZONE_NORMAL reservation
 243 */
 244static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 245#ifdef CONFIG_ZONE_DMA
 246	[ZONE_DMA] = 256,
 247#endif
 248#ifdef CONFIG_ZONE_DMA32
 249	[ZONE_DMA32] = 256,
 250#endif
 251	[ZONE_NORMAL] = 32,
 252#ifdef CONFIG_HIGHMEM
 253	[ZONE_HIGHMEM] = 0,
 254#endif
 255	[ZONE_MOVABLE] = 0,
 256};
 257
 258char * const zone_names[MAX_NR_ZONES] = {
 259#ifdef CONFIG_ZONE_DMA
 260	 "DMA",
 261#endif
 262#ifdef CONFIG_ZONE_DMA32
 263	 "DMA32",
 264#endif
 265	 "Normal",
 266#ifdef CONFIG_HIGHMEM
 267	 "HighMem",
 268#endif
 269	 "Movable",
 270#ifdef CONFIG_ZONE_DEVICE
 271	 "Device",
 272#endif
 273};
 274
 275const char * const migratetype_names[MIGRATE_TYPES] = {
 276	"Unmovable",
 277	"Movable",
 278	"Reclaimable",
 279	"HighAtomic",
 280#ifdef CONFIG_CMA
 281	"CMA",
 282#endif
 283#ifdef CONFIG_MEMORY_ISOLATION
 284	"Isolate",
 285#endif
 286};
 287
 
 
 
 
 
 
 
 
 
 
 
 288int min_free_kbytes = 1024;
 289int user_min_free_kbytes = -1;
 290static int watermark_boost_factor __read_mostly = 15000;
 291static int watermark_scale_factor = 10;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292
 293/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 294int movable_zone;
 295EXPORT_SYMBOL(movable_zone);
 
 296
 297#if MAX_NUMNODES > 1
 298unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 299unsigned int nr_online_nodes __read_mostly = 1;
 300EXPORT_SYMBOL(nr_node_ids);
 301EXPORT_SYMBOL(nr_online_nodes);
 302#endif
 303
 304static bool page_contains_unaccepted(struct page *page, unsigned int order);
 305static void accept_page(struct page *page, unsigned int order);
 306static bool try_to_accept_memory(struct zone *zone, unsigned int order);
 307static inline bool has_unaccepted_memory(void);
 308static bool __free_unaccepted(struct page *page);
 309
 310int page_group_by_mobility_disabled __read_mostly;
 311
 312#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 313/*
 314 * During boot we initialize deferred pages on-demand, as needed, but once
 315 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 316 * and we can permanently disable that path.
 317 */
 318DEFINE_STATIC_KEY_TRUE(deferred_pages);
 319
 320static inline bool deferred_pages_enabled(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 321{
 322	return static_branch_unlikely(&deferred_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 323}
 324
 325/*
 326 * deferred_grow_zone() is __init, but it is called from
 327 * get_page_from_freelist() during early boot until deferred_pages permanently
 328 * disables this call. This is why we have refdata wrapper to avoid warning,
 329 * and to ensure that the function body gets unloaded.
 330 */
 331static bool __ref
 332_deferred_grow_zone(struct zone *zone, unsigned int order)
 333{
 334       return deferred_grow_zone(zone, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335}
 336#else
 337static inline bool deferred_pages_enabled(void)
 
 
 
 
 
 
 
 338{
 339	return false;
 340}
 341#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 342
 343/* Return a pointer to the bitmap storing bits affecting a block of pages */
 344static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 345							unsigned long pfn)
 346{
 347#ifdef CONFIG_SPARSEMEM
 348	return section_to_usemap(__pfn_to_section(pfn));
 349#else
 350	return page_zone(page)->pageblock_flags;
 351#endif /* CONFIG_SPARSEMEM */
 352}
 353
 354static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 355{
 356#ifdef CONFIG_SPARSEMEM
 357	pfn &= (PAGES_PER_SECTION-1);
 
 358#else
 359	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
 
 360#endif /* CONFIG_SPARSEMEM */
 361	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 
 368 * @mask: mask of bits that the caller is interested in
 369 *
 370 * Return: pageblock_bits flags
 371 */
 372unsigned long get_pfnblock_flags_mask(const struct page *page,
 373					unsigned long pfn, unsigned long mask)
 
 
 374{
 375	unsigned long *bitmap;
 376	unsigned long bitidx, word_bitidx;
 377	unsigned long word;
 378
 379	bitmap = get_pageblock_bitmap(page, pfn);
 380	bitidx = pfn_to_bitidx(page, pfn);
 381	word_bitidx = bitidx / BITS_PER_LONG;
 382	bitidx &= (BITS_PER_LONG-1);
 383	/*
 384	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
 385	 * a consistent read of the memory array, so that results, even though
 386	 * racy, are not corrupted.
 387	 */
 388	word = READ_ONCE(bitmap[word_bitidx]);
 389	return (word >> bitidx) & mask;
 
 
 
 
 390}
 391
 392static __always_inline int get_pfnblock_migratetype(const struct page *page,
 393					unsigned long pfn)
 394{
 395	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 396}
 397
 398/**
 399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 400 * @page: The page within the block of interest
 401 * @flags: The flags to set
 402 * @pfn: The target page frame number
 
 403 * @mask: mask of bits that the caller is interested in
 404 */
 405void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 406					unsigned long pfn,
 
 407					unsigned long mask)
 408{
 409	unsigned long *bitmap;
 410	unsigned long bitidx, word_bitidx;
 411	unsigned long word;
 412
 413	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 414	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 415
 416	bitmap = get_pageblock_bitmap(page, pfn);
 417	bitidx = pfn_to_bitidx(page, pfn);
 418	word_bitidx = bitidx / BITS_PER_LONG;
 419	bitidx &= (BITS_PER_LONG-1);
 420
 421	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 422
 423	mask <<= bitidx;
 424	flags <<= bitidx;
 
 425
 426	word = READ_ONCE(bitmap[word_bitidx]);
 427	do {
 428	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
 
 
 
 
 429}
 430
 431void set_pageblock_migratetype(struct page *page, int migratetype)
 432{
 433	if (unlikely(page_group_by_mobility_disabled &&
 434		     migratetype < MIGRATE_PCPTYPES))
 435		migratetype = MIGRATE_UNMOVABLE;
 436
 437	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 438				page_to_pfn(page), MIGRATETYPE_MASK);
 439}
 440
 441#ifdef CONFIG_DEBUG_VM
 442static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 443{
 444	int ret;
 445	unsigned seq;
 446	unsigned long pfn = page_to_pfn(page);
 447	unsigned long sp, start_pfn;
 448
 449	do {
 450		seq = zone_span_seqbegin(zone);
 451		start_pfn = zone->zone_start_pfn;
 452		sp = zone->spanned_pages;
 453		ret = !zone_spans_pfn(zone, pfn);
 
 454	} while (zone_span_seqretry(zone, seq));
 455
 456	if (ret)
 457		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 458			pfn, zone_to_nid(zone), zone->name,
 459			start_pfn, start_pfn + sp);
 460
 461	return ret;
 462}
 463
 
 
 
 
 
 
 
 
 
 464/*
 465 * Temporary debugging check for pages not lying within a given zone.
 466 */
 467static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 468{
 469	if (page_outside_zone_boundaries(zone, page))
 470		return 1;
 471	if (zone != page_zone(page))
 472		return 1;
 473
 474	return 0;
 475}
 476#else
 477static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 478{
 479	return 0;
 480}
 481#endif
 482
 483static void bad_page(struct page *page, const char *reason)
 
 484{
 485	static unsigned long resume;
 486	static unsigned long nr_shown;
 487	static unsigned long nr_unshown;
 488
 489	/*
 490	 * Allow a burst of 60 reports, then keep quiet for that minute;
 491	 * or allow a steady drip of one report per second.
 492	 */
 493	if (nr_shown == 60) {
 494		if (time_before(jiffies, resume)) {
 495			nr_unshown++;
 496			goto out;
 497		}
 498		if (nr_unshown) {
 499			pr_alert(
 500			      "BUG: Bad page state: %lu messages suppressed\n",
 501				nr_unshown);
 502			nr_unshown = 0;
 503		}
 504		nr_shown = 0;
 505	}
 506	if (nr_shown++ == 0)
 507		resume = jiffies + 60 * HZ;
 508
 509	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 510		current->comm, page_to_pfn(page));
 511	dump_page(page, reason);
 
 
 
 
 
 512
 513	print_modules();
 514	dump_stack();
 515out:
 516	/* Leave bad fields for debug, except PageBuddy could make trouble */
 517	page_mapcount_reset(page); /* remove PageBuddy */
 518	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 519}
 520
 521static inline unsigned int order_to_pindex(int migratetype, int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522{
 523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 524	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 525		VM_BUG_ON(order != pageblock_order);
 526		return NR_LOWORDER_PCP_LISTS;
 
 
 
 
 
 
 
 527	}
 
 
 
 
 
 
 
 
 528#else
 529	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 530#endif
 
 531
 532	return (MIGRATE_PCPTYPES * order) + migratetype;
 533}
 534
 535static inline int pindex_to_order(unsigned int pindex)
 536{
 537	int order = pindex / MIGRATE_PCPTYPES;
 
 
 
 538
 539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 540	if (pindex == NR_LOWORDER_PCP_LISTS)
 541		order = pageblock_order;
 542#else
 543	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 544#endif
 545
 546	return order;
 547}
 
 548
 549static inline bool pcp_allowed_order(unsigned int order)
 550{
 551	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 552		return true;
 553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 554	if (order == pageblock_order)
 555		return true;
 556#endif
 557	return false;
 558}
 559
 560static inline void free_the_page(struct page *page, unsigned int order)
 561{
 562	if (pcp_allowed_order(order))		/* Via pcp? */
 563		free_unref_page(page, order);
 564	else
 565		__free_pages_ok(page, order, FPI_NONE);
 
 
 
 
 
 566}
 
 567
 568/*
 569 * Higher-order pages are called "compound pages".  They are structured thusly:
 570 *
 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 572 *
 573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 575 *
 576 * The first tail page's ->compound_order holds the order of allocation.
 577 * This usage means that zero-order pages may not be compound.
 578 */
 579
 580void prep_compound_page(struct page *page, unsigned int order)
 581{
 582	int i;
 583	int nr_pages = 1 << order;
 584
 585	__SetPageHead(page);
 586	for (i = 1; i < nr_pages; i++)
 587		prep_compound_tail(page, i);
 
 
 588
 589	prep_compound_head(page, order);
 590}
 591
 592void destroy_large_folio(struct folio *folio)
 
 593{
 594	if (folio_test_hugetlb(folio)) {
 595		free_huge_folio(folio);
 596		return;
 597	}
 598
 599	if (folio_test_large_rmappable(folio))
 600		folio_undo_large_rmappable(folio);
 601
 602	mem_cgroup_uncharge(folio);
 603	free_the_page(&folio->page, folio_order(folio));
 
 604}
 
 
 
 
 
 
 605
 606static inline void set_buddy_order(struct page *page, unsigned int order)
 607{
 608	set_page_private(page, order);
 609	__SetPageBuddy(page);
 610}
 611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612#ifdef CONFIG_COMPACTION
 613static inline struct capture_control *task_capc(struct zone *zone)
 614{
 615	struct capture_control *capc = current->capture_control;
 616
 617	return unlikely(capc) &&
 618		!(current->flags & PF_KTHREAD) &&
 619		!capc->page &&
 620		capc->cc->zone == zone ? capc : NULL;
 
 621}
 622
 623static inline bool
 624compaction_capture(struct capture_control *capc, struct page *page,
 625		   int order, int migratetype)
 626{
 627	if (!capc || order != capc->cc->order)
 628		return false;
 629
 630	/* Do not accidentally pollute CMA or isolated regions*/
 631	if (is_migrate_cma(migratetype) ||
 632	    is_migrate_isolate(migratetype))
 633		return false;
 634
 635	/*
 636	 * Do not let lower order allocations pollute a movable pageblock.
 637	 * This might let an unmovable request use a reclaimable pageblock
 638	 * and vice-versa but no more than normal fallback logic which can
 639	 * have trouble finding a high-order free page.
 640	 */
 641	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 642		return false;
 643
 644	capc->page = page;
 645	return true;
 646}
 647
 648#else
 649static inline struct capture_control *task_capc(struct zone *zone)
 650{
 651	return NULL;
 652}
 653
 654static inline bool
 655compaction_capture(struct capture_control *capc, struct page *page,
 656		   int order, int migratetype)
 657{
 658	return false;
 659}
 660#endif /* CONFIG_COMPACTION */
 661
 662/* Used for pages not on another list */
 663static inline void add_to_free_list(struct page *page, struct zone *zone,
 664				    unsigned int order, int migratetype)
 665{
 666	struct free_area *area = &zone->free_area[order];
 667
 668	list_add(&page->buddy_list, &area->free_list[migratetype]);
 669	area->nr_free++;
 670}
 671
 672/* Used for pages not on another list */
 673static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 674					 unsigned int order, int migratetype)
 675{
 676	struct free_area *area = &zone->free_area[order];
 677
 678	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
 679	area->nr_free++;
 680}
 681
 682/*
 683 * Used for pages which are on another list. Move the pages to the tail
 684 * of the list - so the moved pages won't immediately be considered for
 685 * allocation again (e.g., optimization for memory onlining).
 686 */
 687static inline void move_to_free_list(struct page *page, struct zone *zone,
 688				     unsigned int order, int migratetype)
 689{
 690	struct free_area *area = &zone->free_area[order];
 691
 692	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
 693}
 694
 695static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 696					   unsigned int order)
 697{
 698	/* clear reported state and update reported page count */
 699	if (page_reported(page))
 700		__ClearPageReported(page);
 701
 702	list_del(&page->buddy_list);
 703	__ClearPageBuddy(page);
 704	set_page_private(page, 0);
 705	zone->free_area[order].nr_free--;
 706}
 707
 708static inline struct page *get_page_from_free_area(struct free_area *area,
 709					    int migratetype)
 710{
 711	return list_first_entry_or_null(&area->free_list[migratetype],
 712					struct page, buddy_list);
 713}
 714
 715/*
 716 * If this is not the largest possible page, check if the buddy
 717 * of the next-highest order is free. If it is, it's possible
 718 * that pages are being freed that will coalesce soon. In case,
 719 * that is happening, add the free page to the tail of the list
 720 * so it's less likely to be used soon and more likely to be merged
 721 * as a higher order page
 722 */
 723static inline bool
 724buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
 725		   struct page *page, unsigned int order)
 726{
 727	unsigned long higher_page_pfn;
 728	struct page *higher_page;
 729
 730	if (order >= MAX_PAGE_ORDER - 1)
 731		return false;
 732
 733	higher_page_pfn = buddy_pfn & pfn;
 734	higher_page = page + (higher_page_pfn - pfn);
 735
 736	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
 737			NULL) != NULL;
 738}
 739
 740/*
 741 * Freeing function for a buddy system allocator.
 742 *
 743 * The concept of a buddy system is to maintain direct-mapped table
 744 * (containing bit values) for memory blocks of various "orders".
 745 * The bottom level table contains the map for the smallest allocatable
 746 * units of memory (here, pages), and each level above it describes
 747 * pairs of units from the levels below, hence, "buddies".
 748 * At a high level, all that happens here is marking the table entry
 749 * at the bottom level available, and propagating the changes upward
 750 * as necessary, plus some accounting needed to play nicely with other
 751 * parts of the VM system.
 752 * At each level, we keep a list of pages, which are heads of continuous
 753 * free pages of length of (1 << order) and marked with PageBuddy.
 754 * Page's order is recorded in page_private(page) field.
 755 * So when we are allocating or freeing one, we can derive the state of the
 756 * other.  That is, if we allocate a small block, and both were
 757 * free, the remainder of the region must be split into blocks.
 758 * If a block is freed, and its buddy is also free, then this
 759 * triggers coalescing into a block of larger size.
 760 *
 761 * -- nyc
 762 */
 763
 764static inline void __free_one_page(struct page *page,
 765		unsigned long pfn,
 766		struct zone *zone, unsigned int order,
 767		int migratetype, fpi_t fpi_flags)
 768{
 769	struct capture_control *capc = task_capc(zone);
 770	unsigned long buddy_pfn = 0;
 771	unsigned long combined_pfn;
 
 772	struct page *buddy;
 773	bool to_tail;
 
 
 
 774
 775	VM_BUG_ON(!zone_is_initialized(zone));
 776	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 777
 778	VM_BUG_ON(migratetype == -1);
 779	if (likely(!is_migrate_isolate(migratetype)))
 780		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 781
 782	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 783	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 784
 785	while (order < MAX_PAGE_ORDER) {
 
 786		if (compaction_capture(capc, page, order, migratetype)) {
 787			__mod_zone_freepage_state(zone, -(1 << order),
 788								migratetype);
 789			return;
 790		}
 
 
 791
 792		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
 793		if (!buddy)
 
 794			goto done_merging;
 795
 796		if (unlikely(order >= pageblock_order)) {
 797			/*
 798			 * We want to prevent merge between freepages on pageblock
 799			 * without fallbacks and normal pageblock. Without this,
 800			 * pageblock isolation could cause incorrect freepage or CMA
 801			 * accounting or HIGHATOMIC accounting.
 802			 */
 803			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
 804
 805			if (migratetype != buddy_mt
 806					&& (!migratetype_is_mergeable(migratetype) ||
 807						!migratetype_is_mergeable(buddy_mt)))
 808				goto done_merging;
 809		}
 810
 811		/*
 812		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 813		 * merge with it and move up one order.
 814		 */
 815		if (page_is_guard(buddy))
 816			clear_page_guard(zone, buddy, order, migratetype);
 817		else
 818			del_page_from_free_list(buddy, zone, order);
 819		combined_pfn = buddy_pfn & pfn;
 820		page = page + (combined_pfn - pfn);
 821		pfn = combined_pfn;
 822		order++;
 823	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825done_merging:
 826	set_buddy_order(page, order);
 827
 828	if (fpi_flags & FPI_TO_TAIL)
 829		to_tail = true;
 830	else if (is_shuffle_order(order))
 831		to_tail = shuffle_pick_tail();
 832	else
 833		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834
 835	if (to_tail)
 836		add_to_free_list_tail(page, zone, order, migratetype);
 
 837	else
 838		add_to_free_list(page, zone, order, migratetype);
 839
 840	/* Notify page reporting subsystem of freed page */
 841	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
 842		page_reporting_notify_free(order);
 843}
 844
 845/**
 846 * split_free_page() -- split a free page at split_pfn_offset
 847 * @free_page:		the original free page
 848 * @order:		the order of the page
 849 * @split_pfn_offset:	split offset within the page
 850 *
 851 * Return -ENOENT if the free page is changed, otherwise 0
 852 *
 853 * It is used when the free page crosses two pageblocks with different migratetypes
 854 * at split_pfn_offset within the page. The split free page will be put into
 855 * separate migratetype lists afterwards. Otherwise, the function achieves
 856 * nothing.
 857 */
 858int split_free_page(struct page *free_page,
 859			unsigned int order, unsigned long split_pfn_offset)
 860{
 861	struct zone *zone = page_zone(free_page);
 862	unsigned long free_page_pfn = page_to_pfn(free_page);
 863	unsigned long pfn;
 864	unsigned long flags;
 865	int free_page_order;
 866	int mt;
 867	int ret = 0;
 868
 869	if (split_pfn_offset == 0)
 870		return ret;
 871
 872	spin_lock_irqsave(&zone->lock, flags);
 873
 874	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
 875		ret = -ENOENT;
 876		goto out;
 877	}
 878
 879	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
 880	if (likely(!is_migrate_isolate(mt)))
 881		__mod_zone_freepage_state(zone, -(1UL << order), mt);
 882
 883	del_page_from_free_list(free_page, zone, order);
 884	for (pfn = free_page_pfn;
 885	     pfn < free_page_pfn + (1UL << order);) {
 886		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
 887
 888		free_page_order = min_t(unsigned int,
 889					pfn ? __ffs(pfn) : order,
 890					__fls(split_pfn_offset));
 891		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
 892				mt, FPI_NONE);
 893		pfn += 1UL << free_page_order;
 894		split_pfn_offset -= (1UL << free_page_order);
 895		/* we have done the first part, now switch to second part */
 896		if (split_pfn_offset == 0)
 897			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
 898	}
 899out:
 900	spin_unlock_irqrestore(&zone->lock, flags);
 901	return ret;
 902}
 903/*
 904 * A bad page could be due to a number of fields. Instead of multiple branches,
 905 * try and check multiple fields with one check. The caller must do a detailed
 906 * check if necessary.
 907 */
 908static inline bool page_expected_state(struct page *page,
 909					unsigned long check_flags)
 910{
 911	if (unlikely(atomic_read(&page->_mapcount) != -1))
 912		return false;
 913
 914	if (unlikely((unsigned long)page->mapping |
 915			page_ref_count(page) |
 916#ifdef CONFIG_MEMCG
 917			page->memcg_data |
 918#endif
 919#ifdef CONFIG_PAGE_POOL
 920			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
 921#endif
 922			(page->flags & check_flags)))
 923		return false;
 924
 925	return true;
 926}
 927
 928static const char *page_bad_reason(struct page *page, unsigned long flags)
 929{
 930	const char *bad_reason = NULL;
 
 
 
 
 931
 932	if (unlikely(atomic_read(&page->_mapcount) != -1))
 933		bad_reason = "nonzero mapcount";
 934	if (unlikely(page->mapping != NULL))
 935		bad_reason = "non-NULL mapping";
 936	if (unlikely(page_ref_count(page) != 0))
 937		bad_reason = "nonzero _refcount";
 938	if (unlikely(page->flags & flags)) {
 939		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
 940			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
 941		else
 942			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 943	}
 944#ifdef CONFIG_MEMCG
 945	if (unlikely(page->memcg_data))
 946		bad_reason = "page still charged to cgroup";
 947#endif
 948#ifdef CONFIG_PAGE_POOL
 949	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
 950		bad_reason = "page_pool leak";
 951#endif
 952	return bad_reason;
 953}
 954
 955static void free_page_is_bad_report(struct page *page)
 956{
 957	bad_page(page,
 958		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
 959}
 960
 961static inline bool free_page_is_bad(struct page *page)
 962{
 963	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 964		return false;
 965
 966	/* Something has gone sideways, find it */
 967	free_page_is_bad_report(page);
 968	return true;
 969}
 970
 971static inline bool is_check_pages_enabled(void)
 972{
 973	return static_branch_unlikely(&check_pages_enabled);
 974}
 975
 976static int free_tail_page_prepare(struct page *head_page, struct page *page)
 977{
 978	struct folio *folio = (struct folio *)head_page;
 979	int ret = 1;
 980
 981	/*
 982	 * We rely page->lru.next never has bit 0 set, unless the page
 983	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 984	 */
 985	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 986
 987	if (!is_check_pages_enabled()) {
 988		ret = 0;
 989		goto out;
 990	}
 991	switch (page - head_page) {
 992	case 1:
 993		/* the first tail page: these may be in place of ->mapping */
 994		if (unlikely(folio_entire_mapcount(folio))) {
 995			bad_page(page, "nonzero entire_mapcount");
 996			goto out;
 997		}
 998		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
 999			bad_page(page, "nonzero nr_pages_mapped");
1000			goto out;
1001		}
1002		if (unlikely(atomic_read(&folio->_pincount))) {
1003			bad_page(page, "nonzero pincount");
1004			goto out;
1005		}
1006		break;
1007	case 2:
1008		/*
1009		 * the second tail page: ->mapping is
1010		 * deferred_list.next -- ignore value.
1011		 */
1012		break;
1013	default:
1014		if (page->mapping != TAIL_MAPPING) {
1015			bad_page(page, "corrupted mapping in tail page");
1016			goto out;
1017		}
1018		break;
1019	}
1020	if (unlikely(!PageTail(page))) {
1021		bad_page(page, "PageTail not set");
1022		goto out;
1023	}
1024	if (unlikely(compound_head(page) != head_page)) {
1025		bad_page(page, "compound_head not consistent");
1026		goto out;
1027	}
1028	ret = 0;
1029out:
1030	page->mapping = NULL;
1031	clear_compound_head(page);
1032	return ret;
1033}
1034
1035/*
1036 * Skip KASAN memory poisoning when either:
1037 *
1038 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1039 *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1040 *    using page tags instead (see below).
1041 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1042 *    that error detection is disabled for accesses via the page address.
1043 *
1044 * Pages will have match-all tags in the following circumstances:
1045 *
1046 * 1. Pages are being initialized for the first time, including during deferred
1047 *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1048 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1049 *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1050 * 3. The allocation was excluded from being checked due to sampling,
1051 *    see the call to kasan_unpoison_pages.
1052 *
1053 * Poisoning pages during deferred memory init will greatly lengthen the
1054 * process and cause problem in large memory systems as the deferred pages
1055 * initialization is done with interrupt disabled.
1056 *
1057 * Assuming that there will be no reference to those newly initialized
1058 * pages before they are ever allocated, this should have no effect on
1059 * KASAN memory tracking as the poison will be properly inserted at page
1060 * allocation time. The only corner case is when pages are allocated by
1061 * on-demand allocation and then freed again before the deferred pages
1062 * initialization is done, but this is not likely to happen.
1063 */
1064static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1065{
1066	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1067		return deferred_pages_enabled();
1068
1069	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1070}
1071
1072static void kernel_init_pages(struct page *page, int numpages)
1073{
1074	int i;
1075
1076	/* s390's use of memset() could override KASAN redzones. */
1077	kasan_disable_current();
1078	for (i = 0; i < numpages; i++)
1079		clear_highpage_kasan_tagged(page + i);
1080	kasan_enable_current();
1081}
1082
1083static __always_inline bool free_pages_prepare(struct page *page,
1084			unsigned int order, fpi_t fpi_flags)
1085{
1086	int bad = 0;
1087	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1088	bool init = want_init_on_free();
1089	bool compound = PageCompound(page);
1090
1091	VM_BUG_ON_PAGE(PageTail(page), page);
1092
1093	trace_mm_page_free(page, order);
1094	kmsan_free_page(page, order);
1095
1096	if (memcg_kmem_online() && PageMemcgKmem(page))
1097		__memcg_kmem_uncharge_page(page, order);
1098
1099	if (unlikely(PageHWPoison(page)) && !order) {
1100		/* Do not let hwpoison pages hit pcplists/buddy */
1101		reset_page_owner(page, order);
1102		page_table_check_free(page, order);
1103		return false;
1104	}
1105
1106	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1107
1108	/*
1109	 * Check tail pages before head page information is cleared to
1110	 * avoid checking PageCompound for order-0 pages.
1111	 */
1112	if (unlikely(order)) {
 
1113		int i;
1114
 
 
1115		if (compound)
1116			page[1].flags &= ~PAGE_FLAGS_SECOND;
1117		for (i = 1; i < (1 << order); i++) {
1118			if (compound)
1119				bad += free_tail_page_prepare(page, page + i);
1120			if (is_check_pages_enabled()) {
1121				if (free_page_is_bad(page + i)) {
1122					bad++;
1123					continue;
1124				}
1125			}
1126			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127		}
1128	}
1129	if (PageMappingFlags(page))
1130		page->mapping = NULL;
1131	if (is_check_pages_enabled()) {
1132		if (free_page_is_bad(page))
1133			bad++;
1134		if (bad)
1135			return false;
1136	}
1137
1138	page_cpupid_reset_last(page);
1139	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140	reset_page_owner(page, order);
1141	page_table_check_free(page, order);
1142
1143	if (!PageHighMem(page)) {
1144		debug_check_no_locks_freed(page_address(page),
1145					   PAGE_SIZE << order);
1146		debug_check_no_obj_freed(page_address(page),
1147					   PAGE_SIZE << order);
1148	}
 
 
1149
1150	kernel_poison_pages(page, 1 << order);
1151
1152	/*
1153	 * As memory initialization might be integrated into KASAN,
1154	 * KASAN poisoning and memory initialization code must be
1155	 * kept together to avoid discrepancies in behavior.
1156	 *
1157	 * With hardware tag-based KASAN, memory tags must be set before the
1158	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1159	 */
1160	if (!skip_kasan_poison) {
1161		kasan_poison_pages(page, order, init);
1162
1163		/* Memory is already initialized if KASAN did it internally. */
1164		if (kasan_has_integrated_init())
1165			init = false;
1166	}
1167	if (init)
1168		kernel_init_pages(page, 1 << order);
1169
1170	/*
1171	 * arch_free_page() can make the page's contents inaccessible.  s390
1172	 * does this.  So nothing which can access the page's contents should
1173	 * happen after this.
1174	 */
1175	arch_free_page(page, order);
1176
1177	debug_pagealloc_unmap_pages(page, 1 << order);
 
 
 
1178
1179	return true;
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182/*
1183 * Frees a number of pages from the PCP lists
1184 * Assumes all pages on list are in same zone.
1185 * count is the number of pages to free.
 
 
 
 
 
 
1186 */
1187static void free_pcppages_bulk(struct zone *zone, int count,
1188					struct per_cpu_pages *pcp,
1189					int pindex)
1190{
1191	unsigned long flags;
1192	unsigned int order;
 
1193	bool isolated_pageblocks;
1194	struct page *page;
1195
1196	/*
1197	 * Ensure proper count is passed which otherwise would stuck in the
1198	 * below while (list_empty(list)) loop.
1199	 */
1200	count = min(pcp->count, count);
1201
1202	/* Ensure requested pindex is drained first. */
1203	pindex = pindex - 1;
1204
1205	spin_lock_irqsave(&zone->lock, flags);
1206	isolated_pageblocks = has_isolate_pageblock(zone);
1207
1208	while (count > 0) {
1209		struct list_head *list;
1210		int nr_pages;
1211
1212		/* Remove pages from lists in a round-robin fashion. */
 
 
 
 
 
 
1213		do {
1214			if (++pindex > NR_PCP_LISTS - 1)
1215				pindex = 0;
1216			list = &pcp->lists[pindex];
 
1217		} while (list_empty(list));
1218
1219		order = pindex_to_order(pindex);
1220		nr_pages = 1 << order;
 
 
1221		do {
1222			int mt;
 
 
 
 
 
 
1223
1224			page = list_last_entry(list, struct page, pcp_list);
1225			mt = get_pcppage_migratetype(page);
1226
1227			/* must delete to avoid corrupting pcp list */
1228			list_del(&page->pcp_list);
1229			count -= nr_pages;
1230			pcp->count -= nr_pages;
1231
1232			/* MIGRATE_ISOLATE page should not go to pcplists */
1233			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1234			/* Pageblock could have been isolated meanwhile */
1235			if (unlikely(isolated_pageblocks))
1236				mt = get_pageblock_migratetype(page);
1237
1238			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1239			trace_mm_page_pcpu_drain(page, order, mt);
1240		} while (count > 0 && !list_empty(list));
1241	}
1242
1243	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244}
1245
1246static void free_one_page(struct zone *zone,
1247				struct page *page, unsigned long pfn,
1248				unsigned int order,
1249				int migratetype, fpi_t fpi_flags)
1250{
1251	unsigned long flags;
1252
1253	spin_lock_irqsave(&zone->lock, flags);
1254	if (unlikely(has_isolate_pageblock(zone) ||
1255		is_migrate_isolate(migratetype))) {
1256		migratetype = get_pfnblock_migratetype(page, pfn);
1257	}
1258	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1259	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260}
1261
1262static void __free_pages_ok(struct page *page, unsigned int order,
1263			    fpi_t fpi_flags)
1264{
 
1265	int migratetype;
1266	unsigned long pfn = page_to_pfn(page);
1267	struct zone *zone = page_zone(page);
1268
1269	if (!free_pages_prepare(page, order, fpi_flags))
1270		return;
1271
1272	/*
1273	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1274	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1275	 * This will reduce the lock holding time.
1276	 */
1277	migratetype = get_pfnblock_migratetype(page, pfn);
1278
1279	free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1280
1281	__count_vm_events(PGFREE, 1 << order);
 
 
1282}
1283
1284void __free_pages_core(struct page *page, unsigned int order)
1285{
1286	unsigned int nr_pages = 1 << order;
1287	struct page *p = page;
1288	unsigned int loop;
1289
1290	/*
1291	 * When initializing the memmap, __init_single_page() sets the refcount
1292	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1293	 * refcount of all involved pages to 0.
1294	 */
1295	prefetchw(p);
1296	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297		prefetchw(p + 1);
1298		__ClearPageReserved(p);
1299		set_page_count(p, 0);
1300	}
1301	__ClearPageReserved(p);
1302	set_page_count(p, 0);
1303
1304	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
 
 
 
 
 
 
 
 
1305
1306	if (page_contains_unaccepted(page, order)) {
1307		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1308			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310		accept_page(page, order);
1311	}
1312
1313	/*
1314	 * Bypass PCP and place fresh pages right to the tail, primarily
1315	 * relevant for memory onlining.
1316	 */
1317	__free_pages_ok(page, order, FPI_TO_TAIL);
 
1318}
1319
1320/*
1321 * Check that the whole (or subset of) a pageblock given by the interval of
1322 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1323 * with the migration of free compaction scanner.
 
 
1324 *
1325 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1326 *
1327 * It's possible on some configurations to have a setup like node0 node1 node0
1328 * i.e. it's possible that all pages within a zones range of pages do not
1329 * belong to a single zone. We assume that a border between node0 and node1
1330 * can occur within a single pageblock, but not a node0 node1 node0
1331 * interleaving within a single pageblock. It is therefore sufficient to check
1332 * the first and last page of a pageblock and avoid checking each individual
1333 * page in a pageblock.
1334 *
1335 * Note: the function may return non-NULL struct page even for a page block
1336 * which contains a memory hole (i.e. there is no physical memory for a subset
1337 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1338 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1339 * even though the start pfn is online and valid. This should be safe most of
1340 * the time because struct pages are still initialized via init_unavailable_range()
1341 * and pfn walkers shouldn't touch any physical memory range for which they do
1342 * not recognize any specific metadata in struct pages.
1343 */
1344struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345				     unsigned long end_pfn, struct zone *zone)
1346{
1347	struct page *start_page;
1348	struct page *end_page;
1349
1350	/* end_pfn is one past the range we are checking */
1351	end_pfn--;
1352
1353	if (!pfn_valid(end_pfn))
1354		return NULL;
1355
1356	start_page = pfn_to_online_page(start_pfn);
1357	if (!start_page)
1358		return NULL;
1359
1360	if (page_zone(start_page) != zone)
1361		return NULL;
1362
1363	end_page = pfn_to_page(end_pfn);
1364
1365	/* This gives a shorter code than deriving page_zone(end_page) */
1366	if (page_zone_id(start_page) != page_zone_id(end_page))
1367		return NULL;
1368
1369	return start_page;
1370}
1371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372/*
1373 * The order of subdivision here is critical for the IO subsystem.
1374 * Please do not alter this order without good reasons and regression
1375 * testing. Specifically, as large blocks of memory are subdivided,
1376 * the order in which smaller blocks are delivered depends on the order
1377 * they're subdivided in this function. This is the primary factor
1378 * influencing the order in which pages are delivered to the IO
1379 * subsystem according to empirical testing, and this is also justified
1380 * by considering the behavior of a buddy system containing a single
1381 * large block of memory acted on by a series of small allocations.
1382 * This behavior is a critical factor in sglist merging's success.
1383 *
1384 * -- nyc
1385 */
1386static inline void expand(struct zone *zone, struct page *page,
1387	int low, int high, int migratetype)
 
1388{
1389	unsigned long size = 1 << high;
1390
1391	while (high > low) {
 
1392		high--;
1393		size >>= 1;
1394		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1395
1396		/*
1397		 * Mark as guard pages (or page), that will allow to
1398		 * merge back to allocator when buddy will be freed.
1399		 * Corresponding page table entries will not be touched,
1400		 * pages will stay not present in virtual address space
1401		 */
1402		if (set_page_guard(zone, &page[size], high, migratetype))
1403			continue;
1404
1405		add_to_free_list(&page[size], zone, high, migratetype);
1406		set_buddy_order(&page[size], high);
1407	}
1408}
1409
1410static void check_new_page_bad(struct page *page)
1411{
 
 
 
 
 
 
 
 
 
1412	if (unlikely(page->flags & __PG_HWPOISON)) {
 
 
1413		/* Don't complain about hwpoisoned pages */
1414		page_mapcount_reset(page); /* remove PageBuddy */
1415		return;
1416	}
1417
1418	bad_page(page,
1419		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
 
 
 
 
 
 
1420}
1421
1422/*
1423 * This page is about to be returned from the page allocator
1424 */
1425static int check_new_page(struct page *page)
1426{
1427	if (likely(page_expected_state(page,
1428				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1429		return 0;
1430
1431	check_new_page_bad(page);
1432	return 1;
1433}
1434
1435static inline bool check_new_pages(struct page *page, unsigned int order)
1436{
1437	if (is_check_pages_enabled()) {
1438		for (int i = 0; i < (1 << order); i++) {
1439			struct page *p = page + i;
1440
1441			if (check_new_page(p))
1442				return true;
1443		}
1444	}
 
 
 
 
 
 
 
 
 
1445
1446	return false;
 
 
 
 
 
 
 
 
 
 
 
 
1447}
1448
1449static inline bool should_skip_kasan_unpoison(gfp_t flags)
1450{
1451	/* Don't skip if a software KASAN mode is enabled. */
1452	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1453	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1454		return false;
1455
1456	/* Skip, if hardware tag-based KASAN is not enabled. */
1457	if (!kasan_hw_tags_enabled())
1458		return true;
1459
1460	/*
1461	 * With hardware tag-based KASAN enabled, skip if this has been
1462	 * requested via __GFP_SKIP_KASAN.
1463	 */
1464	return flags & __GFP_SKIP_KASAN;
1465}
 
1466
1467static inline bool should_skip_init(gfp_t flags)
1468{
1469	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1470	if (!kasan_hw_tags_enabled())
1471		return false;
 
 
 
 
1472
1473	/* For hardware tag-based KASAN, skip if requested. */
1474	return (flags & __GFP_SKIP_ZERO);
1475}
1476
1477inline void post_alloc_hook(struct page *page, unsigned int order,
1478				gfp_t gfp_flags)
1479{
1480	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1481			!should_skip_init(gfp_flags);
1482	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1483	int i;
1484
1485	set_page_private(page, 0);
1486	set_page_refcounted(page);
1487
1488	arch_alloc_page(page, order);
1489	debug_pagealloc_map_pages(page, 1 << order);
1490
1491	/*
1492	 * Page unpoisoning must happen before memory initialization.
1493	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1494	 * allocations and the page unpoisoning code will complain.
1495	 */
1496	kernel_unpoison_pages(page, 1 << order);
1497
1498	/*
1499	 * As memory initialization might be integrated into KASAN,
1500	 * KASAN unpoisoning and memory initializion code must be
1501	 * kept together to avoid discrepancies in behavior.
1502	 */
1503
1504	/*
1505	 * If memory tags should be zeroed
1506	 * (which happens only when memory should be initialized as well).
1507	 */
1508	if (zero_tags) {
1509		/* Initialize both memory and memory tags. */
1510		for (i = 0; i != 1 << order; ++i)
1511			tag_clear_highpage(page + i);
1512
1513		/* Take note that memory was initialized by the loop above. */
1514		init = false;
1515	}
1516	if (!should_skip_kasan_unpoison(gfp_flags) &&
1517	    kasan_unpoison_pages(page, order, init)) {
1518		/* Take note that memory was initialized by KASAN. */
1519		if (kasan_has_integrated_init())
1520			init = false;
1521	} else {
1522		/*
1523		 * If memory tags have not been set by KASAN, reset the page
1524		 * tags to ensure page_address() dereferencing does not fault.
1525		 */
1526		for (i = 0; i != 1 << order; ++i)
1527			page_kasan_tag_reset(page + i);
1528	}
1529	/* If memory is still not initialized, initialize it now. */
1530	if (init)
1531		kernel_init_pages(page, 1 << order);
1532
1533	set_page_owner(page, order, gfp_flags);
1534	page_table_check_alloc(page, order);
1535}
1536
1537static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1538							unsigned int alloc_flags)
1539{
1540	post_alloc_hook(page, order, gfp_flags);
1541
 
 
 
1542	if (order && (gfp_flags & __GFP_COMP))
1543		prep_compound_page(page, order);
1544
1545	/*
1546	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1547	 * allocate the page. The expectation is that the caller is taking
1548	 * steps that will free more memory. The caller should avoid the page
1549	 * being used for !PFMEMALLOC purposes.
1550	 */
1551	if (alloc_flags & ALLOC_NO_WATERMARKS)
1552		set_page_pfmemalloc(page);
1553	else
1554		clear_page_pfmemalloc(page);
1555}
1556
1557/*
1558 * Go through the free lists for the given migratetype and remove
1559 * the smallest available page from the freelists
1560 */
1561static __always_inline
1562struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1563						int migratetype)
1564{
1565	unsigned int current_order;
1566	struct free_area *area;
1567	struct page *page;
1568
1569	/* Find a page of the appropriate size in the preferred list */
1570	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1571		area = &(zone->free_area[current_order]);
1572		page = get_page_from_free_area(area, migratetype);
1573		if (!page)
1574			continue;
1575		del_page_from_free_list(page, zone, current_order);
1576		expand(zone, page, order, current_order, migratetype);
1577		set_pcppage_migratetype(page, migratetype);
1578		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1579				pcp_allowed_order(order) &&
1580				migratetype < MIGRATE_PCPTYPES);
1581		return page;
1582	}
1583
1584	return NULL;
1585}
1586
1587
1588/*
1589 * This array describes the order lists are fallen back to when
1590 * the free lists for the desirable migrate type are depleted
1591 *
1592 * The other migratetypes do not have fallbacks.
1593 */
1594static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1595	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1596	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1597	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
 
 
 
 
 
 
1598};
1599
1600#ifdef CONFIG_CMA
1601static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1602					unsigned int order)
1603{
1604	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1605}
1606#else
1607static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608					unsigned int order) { return NULL; }
1609#endif
1610
1611/*
1612 * Move the free pages in a range to the freelist tail of the requested type.
1613 * Note that start_page and end_pages are not aligned on a pageblock
1614 * boundary. If alignment is required, use move_freepages_block()
1615 */
1616static int move_freepages(struct zone *zone,
1617			  unsigned long start_pfn, unsigned long end_pfn,
1618			  int migratetype, int *num_movable)
1619{
1620	struct page *page;
1621	unsigned long pfn;
1622	unsigned int order;
1623	int pages_moved = 0;
1624
1625	for (pfn = start_pfn; pfn <= end_pfn;) {
1626		page = pfn_to_page(pfn);
 
 
 
 
1627		if (!PageBuddy(page)) {
1628			/*
1629			 * We assume that pages that could be isolated for
1630			 * migration are movable. But we don't actually try
1631			 * isolating, as that would be expensive.
1632			 */
1633			if (num_movable &&
1634					(PageLRU(page) || __PageMovable(page)))
1635				(*num_movable)++;
1636			pfn++;
 
1637			continue;
1638		}
1639
1640		/* Make sure we are not inadvertently changing nodes */
1641		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1642		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1643
1644		order = buddy_order(page);
1645		move_to_free_list(page, zone, order, migratetype);
1646		pfn += 1 << order;
1647		pages_moved += 1 << order;
1648	}
1649
1650	return pages_moved;
1651}
1652
1653int move_freepages_block(struct zone *zone, struct page *page,
1654				int migratetype, int *num_movable)
1655{
1656	unsigned long start_pfn, end_pfn, pfn;
 
1657
1658	if (num_movable)
1659		*num_movable = 0;
1660
1661	pfn = page_to_pfn(page);
1662	start_pfn = pageblock_start_pfn(pfn);
1663	end_pfn = pageblock_end_pfn(pfn) - 1;
 
 
1664
1665	/* Do not cross zone boundaries */
1666	if (!zone_spans_pfn(zone, start_pfn))
1667		start_pfn = pfn;
1668	if (!zone_spans_pfn(zone, end_pfn))
1669		return 0;
1670
1671	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1672								num_movable);
1673}
1674
1675static void change_pageblock_range(struct page *pageblock_page,
1676					int start_order, int migratetype)
1677{
1678	int nr_pageblocks = 1 << (start_order - pageblock_order);
1679
1680	while (nr_pageblocks--) {
1681		set_pageblock_migratetype(pageblock_page, migratetype);
1682		pageblock_page += pageblock_nr_pages;
1683	}
1684}
1685
1686/*
1687 * When we are falling back to another migratetype during allocation, try to
1688 * steal extra free pages from the same pageblocks to satisfy further
1689 * allocations, instead of polluting multiple pageblocks.
1690 *
1691 * If we are stealing a relatively large buddy page, it is likely there will
1692 * be more free pages in the pageblock, so try to steal them all. For
1693 * reclaimable and unmovable allocations, we steal regardless of page size,
1694 * as fragmentation caused by those allocations polluting movable pageblocks
1695 * is worse than movable allocations stealing from unmovable and reclaimable
1696 * pageblocks.
1697 */
1698static bool can_steal_fallback(unsigned int order, int start_mt)
1699{
1700	/*
1701	 * Leaving this order check is intended, although there is
1702	 * relaxed order check in next check. The reason is that
1703	 * we can actually steal whole pageblock if this condition met,
1704	 * but, below check doesn't guarantee it and that is just heuristic
1705	 * so could be changed anytime.
1706	 */
1707	if (order >= pageblock_order)
1708		return true;
1709
1710	if (order >= pageblock_order / 2 ||
1711		start_mt == MIGRATE_RECLAIMABLE ||
1712		start_mt == MIGRATE_UNMOVABLE ||
1713		page_group_by_mobility_disabled)
1714		return true;
1715
1716	return false;
1717}
1718
1719static inline bool boost_watermark(struct zone *zone)
1720{
1721	unsigned long max_boost;
1722
1723	if (!watermark_boost_factor)
1724		return false;
1725	/*
1726	 * Don't bother in zones that are unlikely to produce results.
1727	 * On small machines, including kdump capture kernels running
1728	 * in a small area, boosting the watermark can cause an out of
1729	 * memory situation immediately.
1730	 */
1731	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1732		return false;
1733
1734	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1735			watermark_boost_factor, 10000);
1736
1737	/*
1738	 * high watermark may be uninitialised if fragmentation occurs
1739	 * very early in boot so do not boost. We do not fall
1740	 * through and boost by pageblock_nr_pages as failing
1741	 * allocations that early means that reclaim is not going
1742	 * to help and it may even be impossible to reclaim the
1743	 * boosted watermark resulting in a hang.
1744	 */
1745	if (!max_boost)
1746		return false;
1747
1748	max_boost = max(pageblock_nr_pages, max_boost);
1749
1750	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1751		max_boost);
1752
1753	return true;
1754}
1755
1756/*
1757 * This function implements actual steal behaviour. If order is large enough,
1758 * we can steal whole pageblock. If not, we first move freepages in this
1759 * pageblock to our migratetype and determine how many already-allocated pages
1760 * are there in the pageblock with a compatible migratetype. If at least half
1761 * of pages are free or compatible, we can change migratetype of the pageblock
1762 * itself, so pages freed in the future will be put on the correct free list.
1763 */
1764static void steal_suitable_fallback(struct zone *zone, struct page *page,
1765		unsigned int alloc_flags, int start_type, bool whole_block)
1766{
1767	unsigned int current_order = buddy_order(page);
 
1768	int free_pages, movable_pages, alike_pages;
1769	int old_block_type;
1770
1771	old_block_type = get_pageblock_migratetype(page);
1772
1773	/*
1774	 * This can happen due to races and we want to prevent broken
1775	 * highatomic accounting.
1776	 */
1777	if (is_migrate_highatomic(old_block_type))
1778		goto single_page;
1779
1780	/* Take ownership for orders >= pageblock_order */
1781	if (current_order >= pageblock_order) {
1782		change_pageblock_range(page, current_order, start_type);
1783		goto single_page;
1784	}
1785
1786	/*
1787	 * Boost watermarks to increase reclaim pressure to reduce the
1788	 * likelihood of future fallbacks. Wake kswapd now as the node
1789	 * may be balanced overall and kswapd will not wake naturally.
1790	 */
1791	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
 
1792		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1793
1794	/* We are not allowed to try stealing from the whole block */
1795	if (!whole_block)
1796		goto single_page;
1797
1798	free_pages = move_freepages_block(zone, page, start_type,
1799						&movable_pages);
1800	/* moving whole block can fail due to zone boundary conditions */
1801	if (!free_pages)
1802		goto single_page;
1803
1804	/*
1805	 * Determine how many pages are compatible with our allocation.
1806	 * For movable allocation, it's the number of movable pages which
1807	 * we just obtained. For other types it's a bit more tricky.
1808	 */
1809	if (start_type == MIGRATE_MOVABLE) {
1810		alike_pages = movable_pages;
1811	} else {
1812		/*
1813		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1814		 * to MOVABLE pageblock, consider all non-movable pages as
1815		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1816		 * vice versa, be conservative since we can't distinguish the
1817		 * exact migratetype of non-movable pages.
1818		 */
1819		if (old_block_type == MIGRATE_MOVABLE)
1820			alike_pages = pageblock_nr_pages
1821						- (free_pages + movable_pages);
1822		else
1823			alike_pages = 0;
1824	}
 
 
 
 
 
1825	/*
1826	 * If a sufficient number of pages in the block are either free or of
1827	 * compatible migratability as our allocation, claim the whole block.
1828	 */
1829	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1830			page_group_by_mobility_disabled)
1831		set_pageblock_migratetype(page, start_type);
1832
1833	return;
1834
1835single_page:
1836	move_to_free_list(page, zone, current_order, start_type);
 
1837}
1838
1839/*
1840 * Check whether there is a suitable fallback freepage with requested order.
1841 * If only_stealable is true, this function returns fallback_mt only if
1842 * we can steal other freepages all together. This would help to reduce
1843 * fragmentation due to mixed migratetype pages in one pageblock.
1844 */
1845int find_suitable_fallback(struct free_area *area, unsigned int order,
1846			int migratetype, bool only_stealable, bool *can_steal)
1847{
1848	int i;
1849	int fallback_mt;
1850
1851	if (area->nr_free == 0)
1852		return -1;
1853
1854	*can_steal = false;
1855	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1856		fallback_mt = fallbacks[migratetype][i];
 
 
 
1857		if (free_area_empty(area, fallback_mt))
1858			continue;
1859
1860		if (can_steal_fallback(order, migratetype))
1861			*can_steal = true;
1862
1863		if (!only_stealable)
1864			return fallback_mt;
1865
1866		if (*can_steal)
1867			return fallback_mt;
1868	}
1869
1870	return -1;
1871}
1872
1873/*
1874 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1875 * there are no empty page blocks that contain a page with a suitable order
1876 */
1877static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
 
1878{
1879	int mt;
1880	unsigned long max_managed, flags;
1881
1882	/*
1883	 * The number reserved as: minimum is 1 pageblock, maximum is
1884	 * roughly 1% of a zone. But if 1% of a zone falls below a
1885	 * pageblock size, then don't reserve any pageblocks.
1886	 * Check is race-prone but harmless.
1887	 */
1888	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1889		return;
1890	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1891	if (zone->nr_reserved_highatomic >= max_managed)
1892		return;
1893
1894	spin_lock_irqsave(&zone->lock, flags);
1895
1896	/* Recheck the nr_reserved_highatomic limit under the lock */
1897	if (zone->nr_reserved_highatomic >= max_managed)
1898		goto out_unlock;
1899
1900	/* Yoink! */
1901	mt = get_pageblock_migratetype(page);
1902	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1903	if (migratetype_is_mergeable(mt)) {
1904		zone->nr_reserved_highatomic += pageblock_nr_pages;
1905		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1906		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1907	}
1908
1909out_unlock:
1910	spin_unlock_irqrestore(&zone->lock, flags);
1911}
1912
1913/*
1914 * Used when an allocation is about to fail under memory pressure. This
1915 * potentially hurts the reliability of high-order allocations when under
1916 * intense memory pressure but failed atomic allocations should be easier
1917 * to recover from than an OOM.
1918 *
1919 * If @force is true, try to unreserve a pageblock even though highatomic
1920 * pageblock is exhausted.
1921 */
1922static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1923						bool force)
1924{
1925	struct zonelist *zonelist = ac->zonelist;
1926	unsigned long flags;
1927	struct zoneref *z;
1928	struct zone *zone;
1929	struct page *page;
1930	int order;
1931	bool ret;
1932
1933	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1934								ac->nodemask) {
1935		/*
1936		 * Preserve at least one pageblock unless memory pressure
1937		 * is really high.
1938		 */
1939		if (!force && zone->nr_reserved_highatomic <=
1940					pageblock_nr_pages)
1941			continue;
1942
1943		spin_lock_irqsave(&zone->lock, flags);
1944		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1945			struct free_area *area = &(zone->free_area[order]);
1946
1947			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1948			if (!page)
1949				continue;
1950
1951			/*
1952			 * In page freeing path, migratetype change is racy so
1953			 * we can counter several free pages in a pageblock
1954			 * in this loop although we changed the pageblock type
1955			 * from highatomic to ac->migratetype. So we should
1956			 * adjust the count once.
1957			 */
1958			if (is_migrate_highatomic_page(page)) {
1959				/*
1960				 * It should never happen but changes to
1961				 * locking could inadvertently allow a per-cpu
1962				 * drain to add pages to MIGRATE_HIGHATOMIC
1963				 * while unreserving so be safe and watch for
1964				 * underflows.
1965				 */
1966				zone->nr_reserved_highatomic -= min(
1967						pageblock_nr_pages,
1968						zone->nr_reserved_highatomic);
1969			}
1970
1971			/*
1972			 * Convert to ac->migratetype and avoid the normal
1973			 * pageblock stealing heuristics. Minimally, the caller
1974			 * is doing the work and needs the pages. More
1975			 * importantly, if the block was always converted to
1976			 * MIGRATE_UNMOVABLE or another type then the number
1977			 * of pageblocks that cannot be completely freed
1978			 * may increase.
1979			 */
1980			set_pageblock_migratetype(page, ac->migratetype);
1981			ret = move_freepages_block(zone, page, ac->migratetype,
1982									NULL);
1983			if (ret) {
1984				spin_unlock_irqrestore(&zone->lock, flags);
1985				return ret;
1986			}
1987		}
1988		spin_unlock_irqrestore(&zone->lock, flags);
1989	}
1990
1991	return false;
1992}
1993
1994/*
1995 * Try finding a free buddy page on the fallback list and put it on the free
1996 * list of requested migratetype, possibly along with other pages from the same
1997 * block, depending on fragmentation avoidance heuristics. Returns true if
1998 * fallback was found so that __rmqueue_smallest() can grab it.
1999 *
2000 * The use of signed ints for order and current_order is a deliberate
2001 * deviation from the rest of this file, to make the for loop
2002 * condition simpler.
2003 */
2004static __always_inline bool
2005__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2006						unsigned int alloc_flags)
2007{
2008	struct free_area *area;
2009	int current_order;
2010	int min_order = order;
2011	struct page *page;
2012	int fallback_mt;
2013	bool can_steal;
2014
2015	/*
2016	 * Do not steal pages from freelists belonging to other pageblocks
2017	 * i.e. orders < pageblock_order. If there are no local zones free,
2018	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2019	 */
2020	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2021		min_order = pageblock_order;
2022
2023	/*
2024	 * Find the largest available free page in the other list. This roughly
2025	 * approximates finding the pageblock with the most free pages, which
2026	 * would be too costly to do exactly.
2027	 */
2028	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2029				--current_order) {
2030		area = &(zone->free_area[current_order]);
2031		fallback_mt = find_suitable_fallback(area, current_order,
2032				start_migratetype, false, &can_steal);
2033		if (fallback_mt == -1)
2034			continue;
2035
2036		/*
2037		 * We cannot steal all free pages from the pageblock and the
2038		 * requested migratetype is movable. In that case it's better to
2039		 * steal and split the smallest available page instead of the
2040		 * largest available page, because even if the next movable
2041		 * allocation falls back into a different pageblock than this
2042		 * one, it won't cause permanent fragmentation.
2043		 */
2044		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2045					&& current_order > order)
2046			goto find_smallest;
2047
2048		goto do_steal;
2049	}
2050
2051	return false;
2052
2053find_smallest:
2054	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
 
2055		area = &(zone->free_area[current_order]);
2056		fallback_mt = find_suitable_fallback(area, current_order,
2057				start_migratetype, false, &can_steal);
2058		if (fallback_mt != -1)
2059			break;
2060	}
2061
2062	/*
2063	 * This should not happen - we already found a suitable fallback
2064	 * when looking for the largest page.
2065	 */
2066	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2067
2068do_steal:
2069	page = get_page_from_free_area(area, fallback_mt);
2070
2071	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2072								can_steal);
2073
2074	trace_mm_page_alloc_extfrag(page, order, current_order,
2075		start_migratetype, fallback_mt);
2076
2077	return true;
2078
2079}
2080
2081/*
2082 * Do the hard work of removing an element from the buddy allocator.
2083 * Call me with the zone->lock already held.
2084 */
2085static __always_inline struct page *
2086__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2087						unsigned int alloc_flags)
2088{
2089	struct page *page;
2090
2091	if (IS_ENABLED(CONFIG_CMA)) {
2092		/*
2093		 * Balance movable allocations between regular and CMA areas by
2094		 * allocating from CMA when over half of the zone's free memory
2095		 * is in the CMA area.
2096		 */
2097		if (alloc_flags & ALLOC_CMA &&
2098		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2099		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2100			page = __rmqueue_cma_fallback(zone, order);
2101			if (page)
2102				return page;
2103		}
2104	}
2105retry:
2106	page = __rmqueue_smallest(zone, order, migratetype);
2107	if (unlikely(!page)) {
2108		if (alloc_flags & ALLOC_CMA)
2109			page = __rmqueue_cma_fallback(zone, order);
2110
2111		if (!page && __rmqueue_fallback(zone, order, migratetype,
2112								alloc_flags))
2113			goto retry;
2114	}
 
 
2115	return page;
2116}
2117
2118/*
2119 * Obtain a specified number of elements from the buddy allocator, all under
2120 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2121 * Returns the number of new pages which were placed at *list.
2122 */
2123static int rmqueue_bulk(struct zone *zone, unsigned int order,
2124			unsigned long count, struct list_head *list,
2125			int migratetype, unsigned int alloc_flags)
2126{
2127	unsigned long flags;
2128	int i;
2129
2130	spin_lock_irqsave(&zone->lock, flags);
2131	for (i = 0; i < count; ++i) {
2132		struct page *page = __rmqueue(zone, order, migratetype,
2133								alloc_flags);
2134		if (unlikely(page == NULL))
2135			break;
2136
 
 
 
2137		/*
2138		 * Split buddy pages returned by expand() are received here in
2139		 * physical page order. The page is added to the tail of
2140		 * caller's list. From the callers perspective, the linked list
2141		 * is ordered by page number under some conditions. This is
2142		 * useful for IO devices that can forward direction from the
2143		 * head, thus also in the physical page order. This is useful
2144		 * for IO devices that can merge IO requests if the physical
2145		 * pages are ordered properly.
2146		 */
2147		list_add_tail(&page->pcp_list, list);
 
2148		if (is_migrate_cma(get_pcppage_migratetype(page)))
2149			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2150					      -(1 << order));
2151	}
2152
 
 
 
 
 
 
2153	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2154	spin_unlock_irqrestore(&zone->lock, flags);
2155
2156	return i;
2157}
2158
2159/*
2160 * Called from the vmstat counter updater to decay the PCP high.
2161 * Return whether there are addition works to do.
2162 */
2163int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2164{
2165	int high_min, to_drain, batch;
2166	int todo = 0;
2167
2168	high_min = READ_ONCE(pcp->high_min);
2169	batch = READ_ONCE(pcp->batch);
2170	/*
2171	 * Decrease pcp->high periodically to try to free possible
2172	 * idle PCP pages.  And, avoid to free too many pages to
2173	 * control latency.  This caps pcp->high decrement too.
2174	 */
2175	if (pcp->high > high_min) {
2176		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2177				 pcp->high - (pcp->high >> 3), high_min);
2178		if (pcp->high > high_min)
2179			todo++;
2180	}
2181
2182	to_drain = pcp->count - pcp->high;
2183	if (to_drain > 0) {
2184		spin_lock(&pcp->lock);
2185		free_pcppages_bulk(zone, to_drain, pcp, 0);
2186		spin_unlock(&pcp->lock);
2187		todo++;
2188	}
2189
2190	return todo;
2191}
2192
2193#ifdef CONFIG_NUMA
2194/*
2195 * Called from the vmstat counter updater to drain pagesets of this
2196 * currently executing processor on remote nodes after they have
2197 * expired.
 
 
 
2198 */
2199void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2200{
 
2201	int to_drain, batch;
2202
 
2203	batch = READ_ONCE(pcp->batch);
2204	to_drain = min(pcp->count, batch);
2205	if (to_drain > 0) {
2206		spin_lock(&pcp->lock);
2207		free_pcppages_bulk(zone, to_drain, pcp, 0);
2208		spin_unlock(&pcp->lock);
2209	}
2210}
2211#endif
2212
2213/*
2214 * Drain pcplists of the indicated processor and zone.
 
 
 
 
2215 */
2216static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2217{
 
 
2218	struct per_cpu_pages *pcp;
2219
2220	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2221	if (pcp->count) {
2222		spin_lock(&pcp->lock);
2223		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2224		spin_unlock(&pcp->lock);
2225	}
 
2226}
2227
2228/*
2229 * Drain pcplists of all zones on the indicated processor.
 
 
 
 
2230 */
2231static void drain_pages(unsigned int cpu)
2232{
2233	struct zone *zone;
2234
2235	for_each_populated_zone(zone) {
2236		drain_pages_zone(cpu, zone);
2237	}
2238}
2239
2240/*
2241 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 
 
 
2242 */
2243void drain_local_pages(struct zone *zone)
2244{
2245	int cpu = smp_processor_id();
2246
2247	if (zone)
2248		drain_pages_zone(cpu, zone);
2249	else
2250		drain_pages(cpu);
2251}
2252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2253/*
2254 * The implementation of drain_all_pages(), exposing an extra parameter to
2255 * drain on all cpus.
 
2256 *
2257 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2258 * not empty. The check for non-emptiness can however race with a free to
2259 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2260 * that need the guarantee that every CPU has drained can disable the
2261 * optimizing racy check.
2262 */
2263static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2264{
2265	int cpu;
2266
2267	/*
2268	 * Allocate in the BSS so we won't require allocation in
2269	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2270	 */
2271	static cpumask_t cpus_with_pcps;
2272
2273	/*
 
 
 
 
 
 
 
2274	 * Do not drain if one is already in progress unless it's specific to
2275	 * a zone. Such callers are primarily CMA and memory hotplug and need
2276	 * the drain to be complete when the call returns.
2277	 */
2278	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2279		if (!zone)
2280			return;
2281		mutex_lock(&pcpu_drain_mutex);
2282	}
2283
2284	/*
2285	 * We don't care about racing with CPU hotplug event
2286	 * as offline notification will cause the notified
2287	 * cpu to drain that CPU pcps and on_each_cpu_mask
2288	 * disables preemption as part of its processing
2289	 */
2290	for_each_online_cpu(cpu) {
2291		struct per_cpu_pages *pcp;
2292		struct zone *z;
2293		bool has_pcps = false;
2294
2295		if (force_all_cpus) {
2296			/*
2297			 * The pcp.count check is racy, some callers need a
2298			 * guarantee that no cpu is missed.
2299			 */
2300			has_pcps = true;
2301		} else if (zone) {
2302			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303			if (pcp->count)
2304				has_pcps = true;
2305		} else {
2306			for_each_populated_zone(z) {
2307				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2308				if (pcp->count) {
2309					has_pcps = true;
2310					break;
2311				}
2312			}
2313		}
2314
2315		if (has_pcps)
2316			cpumask_set_cpu(cpu, &cpus_with_pcps);
2317		else
2318			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2319	}
2320
2321	for_each_cpu(cpu, &cpus_with_pcps) {
2322		if (zone)
2323			drain_pages_zone(cpu, zone);
2324		else
2325			drain_pages(cpu);
 
2326	}
 
 
2327
2328	mutex_unlock(&pcpu_drain_mutex);
2329}
2330
 
 
2331/*
2332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333 *
2334 * When zone parameter is non-NULL, spill just the single zone's pages.
2335 */
2336void drain_all_pages(struct zone *zone)
 
 
2337{
2338	__drain_all_pages(zone, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339}
 
2340
2341static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2342							unsigned int order)
2343{
2344	int migratetype;
2345
2346	if (!free_pages_prepare(page, order, FPI_NONE))
2347		return false;
2348
2349	migratetype = get_pfnblock_migratetype(page, pfn);
2350	set_pcppage_migratetype(page, migratetype);
2351	return true;
2352}
2353
2354static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2355{
2356	int min_nr_free, max_nr_free;
2357
2358	/* Free as much as possible if batch freeing high-order pages. */
2359	if (unlikely(free_high))
2360		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2361
2362	/* Check for PCP disabled or boot pageset */
2363	if (unlikely(high < batch))
2364		return 1;
2365
2366	/* Leave at least pcp->batch pages on the list */
2367	min_nr_free = batch;
2368	max_nr_free = high - batch;
2369
2370	/*
2371	 * Increase the batch number to the number of the consecutive
2372	 * freed pages to reduce zone lock contention.
 
 
 
2373	 */
2374	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2375
2376	return batch;
2377}
2378
2379static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2380		       int batch, bool free_high)
2381{
2382	int high, high_min, high_max;
2383
2384	high_min = READ_ONCE(pcp->high_min);
2385	high_max = READ_ONCE(pcp->high_max);
2386	high = pcp->high = clamp(pcp->high, high_min, high_max);
2387
2388	if (unlikely(!high))
2389		return 0;
2390
2391	if (unlikely(free_high)) {
2392		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2393				high_min);
2394		return 0;
2395	}
2396
2397	/*
2398	 * If reclaim is active, limit the number of pages that can be
2399	 * stored on pcp lists
2400	 */
2401	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2402		int free_count = max_t(int, pcp->free_count, batch);
2403
2404		pcp->high = max(high - free_count, high_min);
2405		return min(batch << 2, pcp->high);
2406	}
2407
2408	if (high_min == high_max)
2409		return high;
2410
2411	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2412		int free_count = max_t(int, pcp->free_count, batch);
2413
2414		pcp->high = max(high - free_count, high_min);
2415		high = max(pcp->count, high_min);
2416	} else if (pcp->count >= high) {
2417		int need_high = pcp->free_count + batch;
2418
2419		/* pcp->high should be large enough to hold batch freed pages */
2420		if (pcp->high < need_high)
2421			pcp->high = clamp(need_high, high_min, high_max);
2422	}
2423
2424	return high;
2425}
2426
2427static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2428				   struct page *page, int migratetype,
2429				   unsigned int order)
2430{
2431	int high, batch;
2432	int pindex;
2433	bool free_high = false;
2434
2435	/*
2436	 * On freeing, reduce the number of pages that are batch allocated.
2437	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2438	 * allocations.
2439	 */
2440	pcp->alloc_factor >>= 1;
2441	__count_vm_events(PGFREE, 1 << order);
2442	pindex = order_to_pindex(migratetype, order);
2443	list_add(&page->pcp_list, &pcp->lists[pindex]);
2444	pcp->count += 1 << order;
2445
2446	batch = READ_ONCE(pcp->batch);
2447	/*
2448	 * As high-order pages other than THP's stored on PCP can contribute
2449	 * to fragmentation, limit the number stored when PCP is heavily
2450	 * freeing without allocation. The remainder after bulk freeing
2451	 * stops will be drained from vmstat refresh context.
2452	 */
2453	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2454		free_high = (pcp->free_count >= batch &&
2455			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2456			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2457			      pcp->count >= READ_ONCE(batch)));
2458		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2459	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2460		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2461	}
2462	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2463		pcp->free_count += (1 << order);
2464	high = nr_pcp_high(pcp, zone, batch, free_high);
2465	if (pcp->count >= high) {
2466		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2467				   pcp, pindex);
2468		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2469		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2470				      ZONE_MOVABLE, 0))
2471			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2472	}
2473}
2474
2475/*
2476 * Free a pcp page
2477 */
2478void free_unref_page(struct page *page, unsigned int order)
2479{
2480	unsigned long __maybe_unused UP_flags;
2481	struct per_cpu_pages *pcp;
2482	struct zone *zone;
2483	unsigned long pfn = page_to_pfn(page);
2484	int migratetype, pcpmigratetype;
2485
2486	if (!free_unref_page_prepare(page, pfn, order))
2487		return;
2488
2489	/*
2490	 * We only track unmovable, reclaimable and movable on pcp lists.
2491	 * Place ISOLATE pages on the isolated list because they are being
2492	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2493	 * get those areas back if necessary. Otherwise, we may have to free
2494	 * excessively into the page allocator
2495	 */
2496	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2497	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2498		if (unlikely(is_migrate_isolate(migratetype))) {
2499			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2500			return;
2501		}
2502		pcpmigratetype = MIGRATE_MOVABLE;
2503	}
2504
2505	zone = page_zone(page);
2506	pcp_trylock_prepare(UP_flags);
2507	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2508	if (pcp) {
2509		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2510		pcp_spin_unlock(pcp);
2511	} else {
2512		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2513	}
2514	pcp_trylock_finish(UP_flags);
2515}
2516
2517/*
2518 * Free a list of 0-order pages
2519 */
2520void free_unref_page_list(struct list_head *list)
2521{
2522	unsigned long __maybe_unused UP_flags;
2523	struct page *page, *next;
2524	struct per_cpu_pages *pcp = NULL;
2525	struct zone *locked_zone = NULL;
2526	int batch_count = 0;
2527	int migratetype;
2528
2529	/* Prepare pages for freeing */
2530	list_for_each_entry_safe(page, next, list, lru) {
2531		unsigned long pfn = page_to_pfn(page);
2532		if (!free_unref_page_prepare(page, pfn, 0)) {
2533			list_del(&page->lru);
2534			continue;
2535		}
2536
2537		/*
2538		 * Free isolated pages directly to the allocator, see
2539		 * comment in free_unref_page.
2540		 */
2541		migratetype = get_pcppage_migratetype(page);
2542		if (unlikely(is_migrate_isolate(migratetype))) {
2543			list_del(&page->lru);
2544			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2545			continue;
2546		}
2547	}
2548
 
2549	list_for_each_entry_safe(page, next, list, lru) {
2550		struct zone *zone = page_zone(page);
2551
2552		list_del(&page->lru);
2553		migratetype = get_pcppage_migratetype(page);
 
2554
2555		/*
2556		 * Either different zone requiring a different pcp lock or
2557		 * excessive lock hold times when freeing a large list of
2558		 * pages.
2559		 */
2560		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2561			if (pcp) {
2562				pcp_spin_unlock(pcp);
2563				pcp_trylock_finish(UP_flags);
2564			}
2565
2566			batch_count = 0;
2567
2568			/*
2569			 * trylock is necessary as pages may be getting freed
2570			 * from IRQ or SoftIRQ context after an IO completion.
2571			 */
2572			pcp_trylock_prepare(UP_flags);
2573			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2574			if (unlikely(!pcp)) {
2575				pcp_trylock_finish(UP_flags);
2576				free_one_page(zone, page, page_to_pfn(page),
2577					      0, migratetype, FPI_NONE);
2578				locked_zone = NULL;
2579				continue;
2580			}
2581			locked_zone = zone;
2582		}
2583
2584		/*
2585		 * Non-isolated types over MIGRATE_PCPTYPES get added
2586		 * to the MIGRATE_MOVABLE pcp list.
2587		 */
2588		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2589			migratetype = MIGRATE_MOVABLE;
2590
2591		trace_mm_page_free_batched(page);
2592		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2593		batch_count++;
2594	}
2595
2596	if (pcp) {
2597		pcp_spin_unlock(pcp);
2598		pcp_trylock_finish(UP_flags);
2599	}
 
2600}
2601
2602/*
2603 * split_page takes a non-compound higher-order page, and splits it into
2604 * n (1<<order) sub-pages: page[0..n]
2605 * Each sub-page must be freed individually.
2606 *
2607 * Note: this is probably too low level an operation for use in drivers.
2608 * Please consult with lkml before using this in your driver.
2609 */
2610void split_page(struct page *page, unsigned int order)
2611{
2612	int i;
2613
2614	VM_BUG_ON_PAGE(PageCompound(page), page);
2615	VM_BUG_ON_PAGE(!page_count(page), page);
2616
2617	for (i = 1; i < (1 << order); i++)
2618		set_page_refcounted(page + i);
2619	split_page_owner(page, 1 << order);
2620	split_page_memcg(page, 1 << order);
2621}
2622EXPORT_SYMBOL_GPL(split_page);
2623
2624int __isolate_free_page(struct page *page, unsigned int order)
2625{
2626	struct zone *zone = page_zone(page);
2627	int mt = get_pageblock_migratetype(page);
 
 
 
 
 
 
 
2628
2629	if (!is_migrate_isolate(mt)) {
2630		unsigned long watermark;
2631		/*
2632		 * Obey watermarks as if the page was being allocated. We can
2633		 * emulate a high-order watermark check with a raised order-0
2634		 * watermark, because we already know our high-order page
2635		 * exists.
2636		 */
2637		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2638		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2639			return 0;
2640
2641		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2642	}
2643
2644	del_page_from_free_list(page, zone, order);
 
 
2645
2646	/*
2647	 * Set the pageblock if the isolated page is at least half of a
2648	 * pageblock
2649	 */
2650	if (order >= pageblock_order - 1) {
2651		struct page *endpage = page + (1 << order) - 1;
2652		for (; page < endpage; page += pageblock_nr_pages) {
2653			int mt = get_pageblock_migratetype(page);
2654			/*
2655			 * Only change normal pageblocks (i.e., they can merge
2656			 * with others)
2657			 */
2658			if (migratetype_is_mergeable(mt))
2659				set_pageblock_migratetype(page,
2660							  MIGRATE_MOVABLE);
2661		}
2662	}
2663
 
2664	return 1UL << order;
2665}
2666
2667/**
2668 * __putback_isolated_page - Return a now-isolated page back where we got it
2669 * @page: Page that was isolated
2670 * @order: Order of the isolated page
2671 * @mt: The page's pageblock's migratetype
2672 *
2673 * This function is meant to return a page pulled from the free lists via
2674 * __isolate_free_page back to the free lists they were pulled from.
2675 */
2676void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2677{
2678	struct zone *zone = page_zone(page);
2679
2680	/* zone lock should be held when this function is called */
2681	lockdep_assert_held(&zone->lock);
2682
2683	/* Return isolated page to tail of freelist. */
2684	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2685			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2686}
2687
2688/*
2689 * Update NUMA hit/miss statistics
 
 
2690 */
2691static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2692				   long nr_account)
2693{
2694#ifdef CONFIG_NUMA
2695	enum numa_stat_item local_stat = NUMA_LOCAL;
2696
2697	/* skip numa counters update if numa stats is disabled */
2698	if (!static_branch_likely(&vm_numa_stat_key))
2699		return;
2700
2701	if (zone_to_nid(z) != numa_node_id())
2702		local_stat = NUMA_OTHER;
2703
2704	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2705		__count_numa_events(z, NUMA_HIT, nr_account);
2706	else {
2707		__count_numa_events(z, NUMA_MISS, nr_account);
2708		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2709	}
2710	__count_numa_events(z, local_stat, nr_account);
2711#endif
2712}
2713
2714static __always_inline
2715struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2716			   unsigned int order, unsigned int alloc_flags,
2717			   int migratetype)
2718{
2719	struct page *page;
2720	unsigned long flags;
2721
2722	do {
2723		page = NULL;
2724		spin_lock_irqsave(&zone->lock, flags);
2725		if (alloc_flags & ALLOC_HIGHATOMIC)
2726			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2727		if (!page) {
2728			page = __rmqueue(zone, order, migratetype, alloc_flags);
2729
2730			/*
2731			 * If the allocation fails, allow OOM handling access
2732			 * to HIGHATOMIC reserves as failing now is worse than
2733			 * failing a high-order atomic allocation in the
2734			 * future.
2735			 */
2736			if (!page && (alloc_flags & ALLOC_OOM))
2737				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2738
2739			if (!page) {
2740				spin_unlock_irqrestore(&zone->lock, flags);
2741				return NULL;
2742			}
2743		}
2744		__mod_zone_freepage_state(zone, -(1 << order),
2745					  get_pcppage_migratetype(page));
2746		spin_unlock_irqrestore(&zone->lock, flags);
2747	} while (check_new_pages(page, order));
2748
2749	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2750	zone_statistics(preferred_zone, zone, 1);
2751
2752	return page;
2753}
2754
2755static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2756{
2757	int high, base_batch, batch, max_nr_alloc;
2758	int high_max, high_min;
2759
2760	base_batch = READ_ONCE(pcp->batch);
2761	high_min = READ_ONCE(pcp->high_min);
2762	high_max = READ_ONCE(pcp->high_max);
2763	high = pcp->high = clamp(pcp->high, high_min, high_max);
2764
2765	/* Check for PCP disabled or boot pageset */
2766	if (unlikely(high < base_batch))
2767		return 1;
2768
2769	if (order)
2770		batch = base_batch;
2771	else
2772		batch = (base_batch << pcp->alloc_factor);
2773
2774	/*
2775	 * If we had larger pcp->high, we could avoid to allocate from
2776	 * zone.
2777	 */
2778	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2779		high = pcp->high = min(high + batch, high_max);
2780
2781	if (!order) {
2782		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2783		/*
2784		 * Double the number of pages allocated each time there is
2785		 * subsequent allocation of order-0 pages without any freeing.
2786		 */
2787		if (batch <= max_nr_alloc &&
2788		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2789			pcp->alloc_factor++;
2790		batch = min(batch, max_nr_alloc);
2791	}
2792
2793	/*
2794	 * Scale batch relative to order if batch implies free pages
2795	 * can be stored on the PCP. Batch can be 1 for small zones or
2796	 * for boot pagesets which should never store free pages as
2797	 * the pages may belong to arbitrary zones.
2798	 */
2799	if (batch > 1)
2800		batch = max(batch >> order, 2);
2801
2802	return batch;
2803}
2804
2805/* Remove page from the per-cpu list, caller must protect the list */
2806static inline
2807struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2808			int migratetype,
2809			unsigned int alloc_flags,
2810			struct per_cpu_pages *pcp,
2811			struct list_head *list)
2812{
2813	struct page *page;
2814
2815	do {
2816		if (list_empty(list)) {
2817			int batch = nr_pcp_alloc(pcp, zone, order);
2818			int alloced;
2819
2820			alloced = rmqueue_bulk(zone, order,
2821					batch, list,
2822					migratetype, alloc_flags);
2823
2824			pcp->count += alloced << order;
2825			if (unlikely(list_empty(list)))
2826				return NULL;
2827		}
2828
2829		page = list_first_entry(list, struct page, pcp_list);
2830		list_del(&page->pcp_list);
2831		pcp->count -= 1 << order;
2832	} while (check_new_pages(page, order));
2833
2834	return page;
2835}
2836
2837/* Lock and remove page from the per-cpu list */
2838static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2839			struct zone *zone, unsigned int order,
2840			int migratetype, unsigned int alloc_flags)
2841{
2842	struct per_cpu_pages *pcp;
2843	struct list_head *list;
2844	struct page *page;
2845	unsigned long __maybe_unused UP_flags;
2846
2847	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2848	pcp_trylock_prepare(UP_flags);
2849	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2850	if (!pcp) {
2851		pcp_trylock_finish(UP_flags);
2852		return NULL;
2853	}
2854
2855	/*
2856	 * On allocation, reduce the number of pages that are batch freed.
2857	 * See nr_pcp_free() where free_factor is increased for subsequent
2858	 * frees.
2859	 */
2860	pcp->free_count >>= 1;
2861	list = &pcp->lists[order_to_pindex(migratetype, order)];
2862	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2863	pcp_spin_unlock(pcp);
2864	pcp_trylock_finish(UP_flags);
2865	if (page) {
2866		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2867		zone_statistics(preferred_zone, zone, 1);
2868	}
 
2869	return page;
2870}
2871
2872/*
2873 * Allocate a page from the given zone.
2874 * Use pcplists for THP or "cheap" high-order allocations.
2875 */
2876
2877/*
2878 * Do not instrument rmqueue() with KMSAN. This function may call
2879 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2880 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2881 * may call rmqueue() again, which will result in a deadlock.
2882 */
2883__no_sanitize_memory
2884static inline
2885struct page *rmqueue(struct zone *preferred_zone,
2886			struct zone *zone, unsigned int order,
2887			gfp_t gfp_flags, unsigned int alloc_flags,
2888			int migratetype)
2889{
 
2890	struct page *page;
2891
 
 
 
 
 
 
2892	/*
2893	 * We most definitely don't want callers attempting to
2894	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895	 */
2896	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
 
2897
2898	if (likely(pcp_allowed_order(order))) {
2899		page = rmqueue_pcplist(preferred_zone, zone, order,
2900				       migratetype, alloc_flags);
2901		if (likely(page))
2902			goto out;
2903	}
 
 
 
 
 
 
 
 
 
2904
2905	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2906							migratetype);
 
2907
2908out:
2909	/* Separate test+clear to avoid unnecessary atomics */
2910	if ((alloc_flags & ALLOC_KSWAPD) &&
2911	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2912		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2913		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2914	}
2915
2916	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2917	return page;
 
 
 
 
2918}
2919
2920noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921{
2922	return __should_fail_alloc_page(gfp_mask, order);
 
 
 
 
 
 
 
 
 
 
2923}
2924ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2925
2926static inline long __zone_watermark_unusable_free(struct zone *z,
2927				unsigned int order, unsigned int alloc_flags)
 
2928{
2929	long unusable_free = (1 << order) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930
2931	/*
2932	 * If the caller does not have rights to reserves below the min
2933	 * watermark then subtract the high-atomic reserves. This will
2934	 * over-estimate the size of the atomic reserve but it avoids a search.
2935	 */
2936	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2937		unusable_free += z->nr_reserved_highatomic;
 
2938
2939#ifdef CONFIG_CMA
2940	/* If allocation can't use CMA areas don't use free CMA pages */
2941	if (!(alloc_flags & ALLOC_CMA))
2942		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2943#endif
2944#ifdef CONFIG_UNACCEPTED_MEMORY
2945	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2946#endif
2947
2948	return unusable_free;
 
 
2949}
 
2950
2951/*
2952 * Return true if free base pages are above 'mark'. For high-order checks it
2953 * will return true of the order-0 watermark is reached and there is at least
2954 * one free page of a suitable size. Checking now avoids taking the zone lock
2955 * to check in the allocation paths if no pages are free.
2956 */
2957bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2958			 int highest_zoneidx, unsigned int alloc_flags,
2959			 long free_pages)
2960{
2961	long min = mark;
2962	int o;
 
2963
2964	/* free_pages may go negative - that's OK */
2965	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2966
2967	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2968		/*
2969		 * __GFP_HIGH allows access to 50% of the min reserve as well
2970		 * as OOM.
2971		 */
2972		if (alloc_flags & ALLOC_MIN_RESERVE) {
2973			min -= min / 2;
2974
2975			/*
2976			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2977			 * access more reserves than just __GFP_HIGH. Other
2978			 * non-blocking allocations requests such as GFP_NOWAIT
2979			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2980			 * access to the min reserve.
2981			 */
2982			if (alloc_flags & ALLOC_NON_BLOCK)
2983				min -= min / 4;
2984		}
2985
 
 
 
 
 
 
 
 
2986		/*
2987		 * OOM victims can try even harder than the normal reserve
2988		 * users on the grounds that it's definitely going to be in
2989		 * the exit path shortly and free memory. Any allocation it
2990		 * makes during the free path will be small and short-lived.
2991		 */
2992		if (alloc_flags & ALLOC_OOM)
2993			min -= min / 2;
 
 
2994	}
2995
 
 
 
 
 
 
 
2996	/*
2997	 * Check watermarks for an order-0 allocation request. If these
2998	 * are not met, then a high-order request also cannot go ahead
2999	 * even if a suitable page happened to be free.
3000	 */
3001	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3002		return false;
3003
3004	/* If this is an order-0 request then the watermark is fine */
3005	if (!order)
3006		return true;
3007
3008	/* For a high-order request, check at least one suitable page is free */
3009	for (o = order; o < NR_PAGE_ORDERS; o++) {
3010		struct free_area *area = &z->free_area[o];
3011		int mt;
3012
3013		if (!area->nr_free)
3014			continue;
3015
3016		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3017			if (!free_area_empty(area, mt))
3018				return true;
3019		}
3020
3021#ifdef CONFIG_CMA
3022		if ((alloc_flags & ALLOC_CMA) &&
3023		    !free_area_empty(area, MIGRATE_CMA)) {
3024			return true;
3025		}
3026#endif
3027		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3028		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3029			return true;
3030		}
3031	}
3032	return false;
3033}
3034
3035bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3036		      int highest_zoneidx, unsigned int alloc_flags)
3037{
3038	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3039					zone_page_state(z, NR_FREE_PAGES));
3040}
3041
3042static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3043				unsigned long mark, int highest_zoneidx,
3044				unsigned int alloc_flags, gfp_t gfp_mask)
3045{
3046	long free_pages;
 
3047
3048	free_pages = zone_page_state(z, NR_FREE_PAGES);
 
 
 
 
3049
3050	/*
3051	 * Fast check for order-0 only. If this fails then the reserves
3052	 * need to be calculated.
 
 
 
3053	 */
3054	if (!order) {
3055		long usable_free;
3056		long reserved;
3057
3058		usable_free = free_pages;
3059		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3060
3061		/* reserved may over estimate high-atomic reserves. */
3062		usable_free -= min(usable_free, reserved);
3063		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3064			return true;
3065	}
3066
3067	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3068					free_pages))
3069		return true;
3070
3071	/*
3072	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3073	 * when checking the min watermark. The min watermark is the
3074	 * point where boosting is ignored so that kswapd is woken up
3075	 * when below the low watermark.
3076	 */
3077	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3078		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3079		mark = z->_watermark[WMARK_MIN];
3080		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3081					alloc_flags, free_pages);
3082	}
3083
3084	return false;
3085}
3086
3087bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3088			unsigned long mark, int highest_zoneidx)
3089{
3090	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3091
3092	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3093		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3094
3095	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3096								free_pages);
3097}
3098
3099#ifdef CONFIG_NUMA
3100int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3101
3102static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3103{
3104	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3105				node_reclaim_distance;
3106}
3107#else	/* CONFIG_NUMA */
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
3110	return true;
3111}
3112#endif	/* CONFIG_NUMA */
3113
3114/*
3115 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3116 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3117 * premature use of a lower zone may cause lowmem pressure problems that
3118 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3119 * probably too small. It only makes sense to spread allocations to avoid
3120 * fragmentation between the Normal and DMA32 zones.
3121 */
3122static inline unsigned int
3123alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3124{
3125	unsigned int alloc_flags;
3126
3127	/*
3128	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3129	 * to save a branch.
3130	 */
3131	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3132
3133#ifdef CONFIG_ZONE_DMA32
3134	if (!zone)
3135		return alloc_flags;
3136
3137	if (zone_idx(zone) != ZONE_NORMAL)
3138		return alloc_flags;
3139
3140	/*
3141	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3142	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3143	 * on UMA that if Normal is populated then so is DMA32.
3144	 */
3145	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3146	if (nr_online_nodes > 1 && !populated_zone(--zone))
3147		return alloc_flags;
3148
3149	alloc_flags |= ALLOC_NOFRAGMENT;
3150#endif /* CONFIG_ZONE_DMA32 */
3151	return alloc_flags;
3152}
3153
3154/* Must be called after current_gfp_context() which can change gfp_mask */
3155static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3156						  unsigned int alloc_flags)
3157{
3158#ifdef CONFIG_CMA
3159	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3160		alloc_flags |= ALLOC_CMA;
3161#endif
3162	return alloc_flags;
3163}
3164
3165/*
3166 * get_page_from_freelist goes through the zonelist trying to allocate
3167 * a page.
3168 */
3169static struct page *
3170get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3171						const struct alloc_context *ac)
3172{
3173	struct zoneref *z;
3174	struct zone *zone;
3175	struct pglist_data *last_pgdat = NULL;
3176	bool last_pgdat_dirty_ok = false;
3177	bool no_fallback;
3178
3179retry:
3180	/*
3181	 * Scan zonelist, looking for a zone with enough free.
3182	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3183	 */
3184	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3185	z = ac->preferred_zoneref;
3186	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3187					ac->nodemask) {
3188		struct page *page;
3189		unsigned long mark;
3190
3191		if (cpusets_enabled() &&
3192			(alloc_flags & ALLOC_CPUSET) &&
3193			!__cpuset_zone_allowed(zone, gfp_mask))
3194				continue;
3195		/*
3196		 * When allocating a page cache page for writing, we
3197		 * want to get it from a node that is within its dirty
3198		 * limit, such that no single node holds more than its
3199		 * proportional share of globally allowed dirty pages.
3200		 * The dirty limits take into account the node's
3201		 * lowmem reserves and high watermark so that kswapd
3202		 * should be able to balance it without having to
3203		 * write pages from its LRU list.
3204		 *
3205		 * XXX: For now, allow allocations to potentially
3206		 * exceed the per-node dirty limit in the slowpath
3207		 * (spread_dirty_pages unset) before going into reclaim,
3208		 * which is important when on a NUMA setup the allowed
3209		 * nodes are together not big enough to reach the
3210		 * global limit.  The proper fix for these situations
3211		 * will require awareness of nodes in the
3212		 * dirty-throttling and the flusher threads.
3213		 */
3214		if (ac->spread_dirty_pages) {
3215			if (last_pgdat != zone->zone_pgdat) {
3216				last_pgdat = zone->zone_pgdat;
3217				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3218			}
3219
3220			if (!last_pgdat_dirty_ok)
 
3221				continue;
 
3222		}
3223
3224		if (no_fallback && nr_online_nodes > 1 &&
3225		    zone != ac->preferred_zoneref->zone) {
3226			int local_nid;
3227
3228			/*
3229			 * If moving to a remote node, retry but allow
3230			 * fragmenting fallbacks. Locality is more important
3231			 * than fragmentation avoidance.
3232			 */
3233			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3234			if (zone_to_nid(zone) != local_nid) {
3235				alloc_flags &= ~ALLOC_NOFRAGMENT;
3236				goto retry;
3237			}
3238		}
3239
3240		/*
3241		 * Detect whether the number of free pages is below high
3242		 * watermark.  If so, we will decrease pcp->high and free
3243		 * PCP pages in free path to reduce the possibility of
3244		 * premature page reclaiming.  Detection is done here to
3245		 * avoid to do that in hotter free path.
3246		 */
3247		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3248			goto check_alloc_wmark;
3249
3250		mark = high_wmark_pages(zone);
3251		if (zone_watermark_fast(zone, order, mark,
3252					ac->highest_zoneidx, alloc_flags,
3253					gfp_mask))
3254			goto try_this_zone;
3255		else
3256			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3257
3258check_alloc_wmark:
3259		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3260		if (!zone_watermark_fast(zone, order, mark,
3261				       ac->highest_zoneidx, alloc_flags,
3262				       gfp_mask)) {
3263			int ret;
3264
3265			if (has_unaccepted_memory()) {
3266				if (try_to_accept_memory(zone, order))
3267					goto try_this_zone;
3268			}
3269
3270#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3271			/*
3272			 * Watermark failed for this zone, but see if we can
3273			 * grow this zone if it contains deferred pages.
3274			 */
3275			if (deferred_pages_enabled()) {
3276				if (_deferred_grow_zone(zone, order))
3277					goto try_this_zone;
3278			}
3279#endif
3280			/* Checked here to keep the fast path fast */
3281			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3282			if (alloc_flags & ALLOC_NO_WATERMARKS)
3283				goto try_this_zone;
3284
3285			if (!node_reclaim_enabled() ||
3286			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3287				continue;
3288
3289			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3290			switch (ret) {
3291			case NODE_RECLAIM_NOSCAN:
3292				/* did not scan */
3293				continue;
3294			case NODE_RECLAIM_FULL:
3295				/* scanned but unreclaimable */
3296				continue;
3297			default:
3298				/* did we reclaim enough */
3299				if (zone_watermark_ok(zone, order, mark,
3300					ac->highest_zoneidx, alloc_flags))
3301					goto try_this_zone;
3302
3303				continue;
3304			}
3305		}
3306
3307try_this_zone:
3308		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3309				gfp_mask, alloc_flags, ac->migratetype);
3310		if (page) {
3311			prep_new_page(page, order, gfp_mask, alloc_flags);
3312
3313			/*
3314			 * If this is a high-order atomic allocation then check
3315			 * if the pageblock should be reserved for the future
3316			 */
3317			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3318				reserve_highatomic_pageblock(page, zone);
3319
3320			return page;
3321		} else {
3322			if (has_unaccepted_memory()) {
3323				if (try_to_accept_memory(zone, order))
3324					goto try_this_zone;
3325			}
3326
3327#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3328			/* Try again if zone has deferred pages */
3329			if (deferred_pages_enabled()) {
3330				if (_deferred_grow_zone(zone, order))
3331					goto try_this_zone;
3332			}
3333#endif
3334		}
3335	}
3336
3337	/*
3338	 * It's possible on a UMA machine to get through all zones that are
3339	 * fragmented. If avoiding fragmentation, reset and try again.
3340	 */
3341	if (no_fallback) {
3342		alloc_flags &= ~ALLOC_NOFRAGMENT;
3343		goto retry;
3344	}
3345
3346	return NULL;
3347}
3348
3349static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3350{
3351	unsigned int filter = SHOW_MEM_FILTER_NODES;
3352
3353	/*
3354	 * This documents exceptions given to allocations in certain
3355	 * contexts that are allowed to allocate outside current's set
3356	 * of allowed nodes.
3357	 */
3358	if (!(gfp_mask & __GFP_NOMEMALLOC))
3359		if (tsk_is_oom_victim(current) ||
3360		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3361			filter &= ~SHOW_MEM_FILTER_NODES;
3362	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3363		filter &= ~SHOW_MEM_FILTER_NODES;
3364
3365	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3366}
3367
3368void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3369{
3370	struct va_format vaf;
3371	va_list args;
3372	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3373
3374	if ((gfp_mask & __GFP_NOWARN) ||
3375	     !__ratelimit(&nopage_rs) ||
3376	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3377		return;
3378
3379	va_start(args, fmt);
3380	vaf.fmt = fmt;
3381	vaf.va = &args;
3382	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3383			current->comm, &vaf, gfp_mask, &gfp_mask,
3384			nodemask_pr_args(nodemask));
3385	va_end(args);
3386
3387	cpuset_print_current_mems_allowed();
3388	pr_cont("\n");
3389	dump_stack();
3390	warn_alloc_show_mem(gfp_mask, nodemask);
3391}
3392
3393static inline struct page *
3394__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3395			      unsigned int alloc_flags,
3396			      const struct alloc_context *ac)
3397{
3398	struct page *page;
3399
3400	page = get_page_from_freelist(gfp_mask, order,
3401			alloc_flags|ALLOC_CPUSET, ac);
3402	/*
3403	 * fallback to ignore cpuset restriction if our nodes
3404	 * are depleted
3405	 */
3406	if (!page)
3407		page = get_page_from_freelist(gfp_mask, order,
3408				alloc_flags, ac);
3409
3410	return page;
3411}
3412
3413static inline struct page *
3414__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3415	const struct alloc_context *ac, unsigned long *did_some_progress)
3416{
3417	struct oom_control oc = {
3418		.zonelist = ac->zonelist,
3419		.nodemask = ac->nodemask,
3420		.memcg = NULL,
3421		.gfp_mask = gfp_mask,
3422		.order = order,
3423	};
3424	struct page *page;
3425
3426	*did_some_progress = 0;
3427
3428	/*
3429	 * Acquire the oom lock.  If that fails, somebody else is
3430	 * making progress for us.
3431	 */
3432	if (!mutex_trylock(&oom_lock)) {
3433		*did_some_progress = 1;
3434		schedule_timeout_uninterruptible(1);
3435		return NULL;
3436	}
3437
3438	/*
3439	 * Go through the zonelist yet one more time, keep very high watermark
3440	 * here, this is only to catch a parallel oom killing, we must fail if
3441	 * we're still under heavy pressure. But make sure that this reclaim
3442	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3443	 * allocation which will never fail due to oom_lock already held.
3444	 */
3445	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3446				      ~__GFP_DIRECT_RECLAIM, order,
3447				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3448	if (page)
3449		goto out;
3450
3451	/* Coredumps can quickly deplete all memory reserves */
3452	if (current->flags & PF_DUMPCORE)
3453		goto out;
3454	/* The OOM killer will not help higher order allocs */
3455	if (order > PAGE_ALLOC_COSTLY_ORDER)
3456		goto out;
3457	/*
3458	 * We have already exhausted all our reclaim opportunities without any
3459	 * success so it is time to admit defeat. We will skip the OOM killer
3460	 * because it is very likely that the caller has a more reasonable
3461	 * fallback than shooting a random task.
3462	 *
3463	 * The OOM killer may not free memory on a specific node.
3464	 */
3465	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3466		goto out;
3467	/* The OOM killer does not needlessly kill tasks for lowmem */
3468	if (ac->highest_zoneidx < ZONE_NORMAL)
3469		goto out;
3470	if (pm_suspended_storage())
3471		goto out;
3472	/*
3473	 * XXX: GFP_NOFS allocations should rather fail than rely on
3474	 * other request to make a forward progress.
3475	 * We are in an unfortunate situation where out_of_memory cannot
3476	 * do much for this context but let's try it to at least get
3477	 * access to memory reserved if the current task is killed (see
3478	 * out_of_memory). Once filesystems are ready to handle allocation
3479	 * failures more gracefully we should just bail out here.
3480	 */
3481
 
 
 
 
3482	/* Exhausted what can be done so it's blame time */
3483	if (out_of_memory(&oc) ||
3484	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3485		*did_some_progress = 1;
3486
3487		/*
3488		 * Help non-failing allocations by giving them access to memory
3489		 * reserves
3490		 */
3491		if (gfp_mask & __GFP_NOFAIL)
3492			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3493					ALLOC_NO_WATERMARKS, ac);
3494	}
3495out:
3496	mutex_unlock(&oom_lock);
3497	return page;
3498}
3499
3500/*
3501 * Maximum number of compaction retries with a progress before OOM
3502 * killer is consider as the only way to move forward.
3503 */
3504#define MAX_COMPACT_RETRIES 16
3505
3506#ifdef CONFIG_COMPACTION
3507/* Try memory compaction for high-order allocations before reclaim */
3508static struct page *
3509__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3510		unsigned int alloc_flags, const struct alloc_context *ac,
3511		enum compact_priority prio, enum compact_result *compact_result)
3512{
3513	struct page *page = NULL;
3514	unsigned long pflags;
3515	unsigned int noreclaim_flag;
3516
3517	if (!order)
3518		return NULL;
3519
3520	psi_memstall_enter(&pflags);
3521	delayacct_compact_start();
3522	noreclaim_flag = memalloc_noreclaim_save();
3523
3524	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3525								prio, &page);
3526
3527	memalloc_noreclaim_restore(noreclaim_flag);
3528	psi_memstall_leave(&pflags);
3529	delayacct_compact_end();
3530
3531	if (*compact_result == COMPACT_SKIPPED)
3532		return NULL;
3533	/*
3534	 * At least in one zone compaction wasn't deferred or skipped, so let's
3535	 * count a compaction stall
3536	 */
3537	count_vm_event(COMPACTSTALL);
3538
3539	/* Prep a captured page if available */
3540	if (page)
3541		prep_new_page(page, order, gfp_mask, alloc_flags);
3542
3543	/* Try get a page from the freelist if available */
3544	if (!page)
3545		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3546
3547	if (page) {
3548		struct zone *zone = page_zone(page);
3549
3550		zone->compact_blockskip_flush = false;
3551		compaction_defer_reset(zone, order, true);
3552		count_vm_event(COMPACTSUCCESS);
3553		return page;
3554	}
3555
3556	/*
3557	 * It's bad if compaction run occurs and fails. The most likely reason
3558	 * is that pages exist, but not enough to satisfy watermarks.
3559	 */
3560	count_vm_event(COMPACTFAIL);
3561
3562	cond_resched();
3563
3564	return NULL;
3565}
3566
3567static inline bool
3568should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3569		     enum compact_result compact_result,
3570		     enum compact_priority *compact_priority,
3571		     int *compaction_retries)
3572{
3573	int max_retries = MAX_COMPACT_RETRIES;
3574	int min_priority;
3575	bool ret = false;
3576	int retries = *compaction_retries;
3577	enum compact_priority priority = *compact_priority;
3578
3579	if (!order)
3580		return false;
3581
3582	if (fatal_signal_pending(current))
3583		return false;
 
 
 
 
 
 
 
 
3584
3585	/*
3586	 * Compaction was skipped due to a lack of free order-0
3587	 * migration targets. Continue if reclaim can help.
3588	 */
3589	if (compact_result == COMPACT_SKIPPED) {
3590		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3591		goto out;
3592	}
3593
3594	/*
3595	 * Compaction managed to coalesce some page blocks, but the
3596	 * allocation failed presumably due to a race. Retry some.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3597	 */
3598	if (compact_result == COMPACT_SUCCESS) {
3599		/*
3600		 * !costly requests are much more important than
3601		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3602		 * facto nofail and invoke OOM killer to move on while
3603		 * costly can fail and users are ready to cope with
3604		 * that. 1/4 retries is rather arbitrary but we would
3605		 * need much more detailed feedback from compaction to
3606		 * make a better decision.
3607		 */
3608		if (order > PAGE_ALLOC_COSTLY_ORDER)
3609			max_retries /= 4;
3610
3611		if (++(*compaction_retries) <= max_retries) {
3612			ret = true;
3613			goto out;
3614		}
3615	}
3616
3617	/*
3618	 * Compaction failed. Retry with increasing priority.
 
3619	 */
 
3620	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3621			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3622
3623	if (*compact_priority > min_priority) {
3624		(*compact_priority)--;
3625		*compaction_retries = 0;
3626		ret = true;
3627	}
3628out:
3629	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3630	return ret;
3631}
3632#else
3633static inline struct page *
3634__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3635		unsigned int alloc_flags, const struct alloc_context *ac,
3636		enum compact_priority prio, enum compact_result *compact_result)
3637{
3638	*compact_result = COMPACT_SKIPPED;
3639	return NULL;
3640}
3641
3642static inline bool
3643should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3644		     enum compact_result compact_result,
3645		     enum compact_priority *compact_priority,
3646		     int *compaction_retries)
3647{
3648	struct zone *zone;
3649	struct zoneref *z;
3650
3651	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3652		return false;
3653
3654	/*
3655	 * There are setups with compaction disabled which would prefer to loop
3656	 * inside the allocator rather than hit the oom killer prematurely.
3657	 * Let's give them a good hope and keep retrying while the order-0
3658	 * watermarks are OK.
3659	 */
3660	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3661				ac->highest_zoneidx, ac->nodemask) {
3662		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3663					ac->highest_zoneidx, alloc_flags))
3664			return true;
3665	}
3666	return false;
3667}
3668#endif /* CONFIG_COMPACTION */
3669
3670#ifdef CONFIG_LOCKDEP
3671static struct lockdep_map __fs_reclaim_map =
3672	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3673
3674static bool __need_reclaim(gfp_t gfp_mask)
3675{
 
 
3676	/* no reclaim without waiting on it */
3677	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3678		return false;
3679
3680	/* this guy won't enter reclaim */
3681	if (current->flags & PF_MEMALLOC)
3682		return false;
3683
 
 
 
 
3684	if (gfp_mask & __GFP_NOLOCKDEP)
3685		return false;
3686
3687	return true;
3688}
3689
3690void __fs_reclaim_acquire(unsigned long ip)
3691{
3692	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3693}
3694
3695void __fs_reclaim_release(unsigned long ip)
3696{
3697	lock_release(&__fs_reclaim_map, ip);
3698}
3699
3700void fs_reclaim_acquire(gfp_t gfp_mask)
3701{
3702	gfp_mask = current_gfp_context(gfp_mask);
3703
3704	if (__need_reclaim(gfp_mask)) {
3705		if (gfp_mask & __GFP_FS)
3706			__fs_reclaim_acquire(_RET_IP_);
3707
3708#ifdef CONFIG_MMU_NOTIFIER
3709		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3710		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3711#endif
3712
3713	}
3714}
3715EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3716
3717void fs_reclaim_release(gfp_t gfp_mask)
3718{
3719	gfp_mask = current_gfp_context(gfp_mask);
3720
3721	if (__need_reclaim(gfp_mask)) {
3722		if (gfp_mask & __GFP_FS)
3723			__fs_reclaim_release(_RET_IP_);
3724	}
3725}
3726EXPORT_SYMBOL_GPL(fs_reclaim_release);
3727#endif
3728
3729/*
3730 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3731 * have been rebuilt so allocation retries. Reader side does not lock and
3732 * retries the allocation if zonelist changes. Writer side is protected by the
3733 * embedded spin_lock.
3734 */
3735static DEFINE_SEQLOCK(zonelist_update_seq);
3736
3737static unsigned int zonelist_iter_begin(void)
3738{
3739	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3740		return read_seqbegin(&zonelist_update_seq);
3741
3742	return 0;
3743}
3744
3745static unsigned int check_retry_zonelist(unsigned int seq)
3746{
3747	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3748		return read_seqretry(&zonelist_update_seq, seq);
3749
3750	return seq;
3751}
3752
3753/* Perform direct synchronous page reclaim */
3754static unsigned long
3755__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756					const struct alloc_context *ac)
3757{
 
3758	unsigned int noreclaim_flag;
3759	unsigned long progress;
3760
3761	cond_resched();
3762
3763	/* We now go into synchronous reclaim */
3764	cpuset_memory_pressure_bump();
 
3765	fs_reclaim_acquire(gfp_mask);
3766	noreclaim_flag = memalloc_noreclaim_save();
3767
3768	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3769								ac->nodemask);
3770
3771	memalloc_noreclaim_restore(noreclaim_flag);
3772	fs_reclaim_release(gfp_mask);
 
3773
3774	cond_resched();
3775
3776	return progress;
3777}
3778
3779/* The really slow allocator path where we enter direct reclaim */
3780static inline struct page *
3781__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3782		unsigned int alloc_flags, const struct alloc_context *ac,
3783		unsigned long *did_some_progress)
3784{
3785	struct page *page = NULL;
3786	unsigned long pflags;
3787	bool drained = false;
3788
3789	psi_memstall_enter(&pflags);
3790	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791	if (unlikely(!(*did_some_progress)))
3792		goto out;
3793
3794retry:
3795	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796
3797	/*
3798	 * If an allocation failed after direct reclaim, it could be because
3799	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800	 * Shrink them and try again
3801	 */
3802	if (!page && !drained) {
3803		unreserve_highatomic_pageblock(ac, false);
3804		drain_all_pages(NULL);
3805		drained = true;
3806		goto retry;
3807	}
3808out:
3809	psi_memstall_leave(&pflags);
3810
3811	return page;
3812}
3813
3814static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3815			     const struct alloc_context *ac)
3816{
3817	struct zoneref *z;
3818	struct zone *zone;
3819	pg_data_t *last_pgdat = NULL;
3820	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3821
3822	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3823					ac->nodemask) {
3824		if (!managed_zone(zone))
3825			continue;
3826		if (last_pgdat != zone->zone_pgdat) {
3827			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3828			last_pgdat = zone->zone_pgdat;
3829		}
3830	}
3831}
3832
3833static inline unsigned int
3834gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3835{
3836	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3837
3838	/*
3839	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3840	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3841	 * to save two branches.
3842	 */
3843	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3844	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3845
3846	/*
3847	 * The caller may dip into page reserves a bit more if the caller
3848	 * cannot run direct reclaim, or if the caller has realtime scheduling
3849	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3850	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3851	 */
3852	alloc_flags |= (__force int)
3853		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3854
3855	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3856		/*
3857		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3858		 * if it can't schedule.
3859		 */
3860		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3861			alloc_flags |= ALLOC_NON_BLOCK;
3862
3863			if (order > 0)
3864				alloc_flags |= ALLOC_HIGHATOMIC;
3865		}
3866
3867		/*
3868		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3869		 * GFP_ATOMIC) rather than fail, see the comment for
3870		 * cpuset_node_allowed().
3871		 */
3872		if (alloc_flags & ALLOC_MIN_RESERVE)
3873			alloc_flags &= ~ALLOC_CPUSET;
3874	} else if (unlikely(rt_task(current)) && in_task())
3875		alloc_flags |= ALLOC_MIN_RESERVE;
3876
3877	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
 
3878
 
 
 
 
3879	return alloc_flags;
3880}
3881
3882static bool oom_reserves_allowed(struct task_struct *tsk)
3883{
3884	if (!tsk_is_oom_victim(tsk))
3885		return false;
3886
3887	/*
3888	 * !MMU doesn't have oom reaper so give access to memory reserves
3889	 * only to the thread with TIF_MEMDIE set
3890	 */
3891	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3892		return false;
3893
3894	return true;
3895}
3896
3897/*
3898 * Distinguish requests which really need access to full memory
3899 * reserves from oom victims which can live with a portion of it
3900 */
3901static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3902{
3903	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3904		return 0;
3905	if (gfp_mask & __GFP_MEMALLOC)
3906		return ALLOC_NO_WATERMARKS;
3907	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3908		return ALLOC_NO_WATERMARKS;
3909	if (!in_interrupt()) {
3910		if (current->flags & PF_MEMALLOC)
3911			return ALLOC_NO_WATERMARKS;
3912		else if (oom_reserves_allowed(current))
3913			return ALLOC_OOM;
3914	}
3915
3916	return 0;
3917}
3918
3919bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3920{
3921	return !!__gfp_pfmemalloc_flags(gfp_mask);
3922}
3923
3924/*
3925 * Checks whether it makes sense to retry the reclaim to make a forward progress
3926 * for the given allocation request.
3927 *
3928 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3929 * without success, or when we couldn't even meet the watermark if we
3930 * reclaimed all remaining pages on the LRU lists.
3931 *
3932 * Returns true if a retry is viable or false to enter the oom path.
3933 */
3934static inline bool
3935should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3936		     struct alloc_context *ac, int alloc_flags,
3937		     bool did_some_progress, int *no_progress_loops)
3938{
3939	struct zone *zone;
3940	struct zoneref *z;
3941	bool ret = false;
3942
3943	/*
3944	 * Costly allocations might have made a progress but this doesn't mean
3945	 * their order will become available due to high fragmentation so
3946	 * always increment the no progress counter for them
3947	 */
3948	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3949		*no_progress_loops = 0;
3950	else
3951		(*no_progress_loops)++;
3952
3953	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3954		goto out;
3955
 
 
 
 
 
3956
3957	/*
3958	 * Keep reclaiming pages while there is a chance this will lead
3959	 * somewhere.  If none of the target zones can satisfy our allocation
3960	 * request even if all reclaimable pages are considered then we are
3961	 * screwed and have to go OOM.
3962	 */
3963	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3964				ac->highest_zoneidx, ac->nodemask) {
3965		unsigned long available;
3966		unsigned long reclaimable;
3967		unsigned long min_wmark = min_wmark_pages(zone);
3968		bool wmark;
3969
3970		available = reclaimable = zone_reclaimable_pages(zone);
3971		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3972
3973		/*
3974		 * Would the allocation succeed if we reclaimed all
3975		 * reclaimable pages?
3976		 */
3977		wmark = __zone_watermark_ok(zone, order, min_wmark,
3978				ac->highest_zoneidx, alloc_flags, available);
3979		trace_reclaim_retry_zone(z, order, reclaimable,
3980				available, min_wmark, *no_progress_loops, wmark);
3981		if (wmark) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3982			ret = true;
3983			break;
3984		}
3985	}
3986
 
3987	/*
3988	 * Memory allocation/reclaim might be called from a WQ context and the
3989	 * current implementation of the WQ concurrency control doesn't
3990	 * recognize that a particular WQ is congested if the worker thread is
3991	 * looping without ever sleeping. Therefore we have to do a short sleep
3992	 * here rather than calling cond_resched().
3993	 */
3994	if (current->flags & PF_WQ_WORKER)
3995		schedule_timeout_uninterruptible(1);
3996	else
3997		cond_resched();
3998out:
3999	/* Before OOM, exhaust highatomic_reserve */
4000	if (!ret)
4001		return unreserve_highatomic_pageblock(ac, true);
4002
4003	return ret;
4004}
4005
4006static inline bool
4007check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4008{
4009	/*
4010	 * It's possible that cpuset's mems_allowed and the nodemask from
4011	 * mempolicy don't intersect. This should be normally dealt with by
4012	 * policy_nodemask(), but it's possible to race with cpuset update in
4013	 * such a way the check therein was true, and then it became false
4014	 * before we got our cpuset_mems_cookie here.
4015	 * This assumes that for all allocations, ac->nodemask can come only
4016	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4017	 * when it does not intersect with the cpuset restrictions) or the
4018	 * caller can deal with a violated nodemask.
4019	 */
4020	if (cpusets_enabled() && ac->nodemask &&
4021			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4022		ac->nodemask = NULL;
4023		return true;
4024	}
4025
4026	/*
4027	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4028	 * possible to race with parallel threads in such a way that our
4029	 * allocation can fail while the mask is being updated. If we are about
4030	 * to fail, check if the cpuset changed during allocation and if so,
4031	 * retry.
4032	 */
4033	if (read_mems_allowed_retry(cpuset_mems_cookie))
4034		return true;
4035
4036	return false;
4037}
4038
4039static inline struct page *
4040__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4041						struct alloc_context *ac)
4042{
4043	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4044	bool can_compact = gfp_compaction_allowed(gfp_mask);
4045	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4046	struct page *page = NULL;
4047	unsigned int alloc_flags;
4048	unsigned long did_some_progress;
4049	enum compact_priority compact_priority;
4050	enum compact_result compact_result;
4051	int compaction_retries;
4052	int no_progress_loops;
4053	unsigned int cpuset_mems_cookie;
4054	unsigned int zonelist_iter_cookie;
4055	int reserve_flags;
4056
4057restart:
 
 
 
 
 
 
 
 
4058	compaction_retries = 0;
4059	no_progress_loops = 0;
4060	compact_priority = DEF_COMPACT_PRIORITY;
4061	cpuset_mems_cookie = read_mems_allowed_begin();
4062	zonelist_iter_cookie = zonelist_iter_begin();
4063
4064	/*
4065	 * The fast path uses conservative alloc_flags to succeed only until
4066	 * kswapd needs to be woken up, and to avoid the cost of setting up
4067	 * alloc_flags precisely. So we do that now.
4068	 */
4069	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4070
4071	/*
4072	 * We need to recalculate the starting point for the zonelist iterator
4073	 * because we might have used different nodemask in the fast path, or
4074	 * there was a cpuset modification and we are retrying - otherwise we
4075	 * could end up iterating over non-eligible zones endlessly.
4076	 */
4077	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4078					ac->highest_zoneidx, ac->nodemask);
4079	if (!ac->preferred_zoneref->zone)
4080		goto nopage;
4081
4082	/*
4083	 * Check for insane configurations where the cpuset doesn't contain
4084	 * any suitable zone to satisfy the request - e.g. non-movable
4085	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4086	 */
4087	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4088		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4089					ac->highest_zoneidx,
4090					&cpuset_current_mems_allowed);
4091		if (!z->zone)
4092			goto nopage;
4093	}
4094
4095	if (alloc_flags & ALLOC_KSWAPD)
4096		wake_all_kswapds(order, gfp_mask, ac);
4097
4098	/*
4099	 * The adjusted alloc_flags might result in immediate success, so try
4100	 * that first
4101	 */
4102	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4103	if (page)
4104		goto got_pg;
4105
4106	/*
4107	 * For costly allocations, try direct compaction first, as it's likely
4108	 * that we have enough base pages and don't need to reclaim. For non-
4109	 * movable high-order allocations, do that as well, as compaction will
4110	 * try prevent permanent fragmentation by migrating from blocks of the
4111	 * same migratetype.
4112	 * Don't try this for allocations that are allowed to ignore
4113	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4114	 */
4115	if (can_direct_reclaim && can_compact &&
4116			(costly_order ||
4117			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4118			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4119		page = __alloc_pages_direct_compact(gfp_mask, order,
4120						alloc_flags, ac,
4121						INIT_COMPACT_PRIORITY,
4122						&compact_result);
4123		if (page)
4124			goto got_pg;
4125
4126		/*
4127		 * Checks for costly allocations with __GFP_NORETRY, which
4128		 * includes some THP page fault allocations
4129		 */
4130		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4131			/*
4132			 * If allocating entire pageblock(s) and compaction
4133			 * failed because all zones are below low watermarks
4134			 * or is prohibited because it recently failed at this
4135			 * order, fail immediately unless the allocator has
4136			 * requested compaction and reclaim retry.
4137			 *
4138			 * Reclaim is
4139			 *  - potentially very expensive because zones are far
4140			 *    below their low watermarks or this is part of very
4141			 *    bursty high order allocations,
4142			 *  - not guaranteed to help because isolate_freepages()
4143			 *    may not iterate over freed pages as part of its
4144			 *    linear scan, and
4145			 *  - unlikely to make entire pageblocks free on its
4146			 *    own.
4147			 */
4148			if (compact_result == COMPACT_SKIPPED ||
4149			    compact_result == COMPACT_DEFERRED)
4150				goto nopage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4151
4152			/*
4153			 * Looks like reclaim/compaction is worth trying, but
4154			 * sync compaction could be very expensive, so keep
4155			 * using async compaction.
4156			 */
4157			compact_priority = INIT_COMPACT_PRIORITY;
4158		}
4159	}
4160
4161retry:
4162	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4163	if (alloc_flags & ALLOC_KSWAPD)
4164		wake_all_kswapds(order, gfp_mask, ac);
4165
4166	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4167	if (reserve_flags)
4168		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4169					  (alloc_flags & ALLOC_KSWAPD);
4170
4171	/*
4172	 * Reset the nodemask and zonelist iterators if memory policies can be
4173	 * ignored. These allocations are high priority and system rather than
4174	 * user oriented.
4175	 */
4176	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4177		ac->nodemask = NULL;
4178		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4179					ac->highest_zoneidx, ac->nodemask);
4180	}
4181
4182	/* Attempt with potentially adjusted zonelist and alloc_flags */
4183	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4184	if (page)
4185		goto got_pg;
4186
4187	/* Caller is not willing to reclaim, we can't balance anything */
4188	if (!can_direct_reclaim)
4189		goto nopage;
4190
4191	/* Avoid recursion of direct reclaim */
4192	if (current->flags & PF_MEMALLOC)
4193		goto nopage;
4194
4195	/* Try direct reclaim and then allocating */
4196	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4197							&did_some_progress);
4198	if (page)
4199		goto got_pg;
4200
4201	/* Try direct compaction and then allocating */
4202	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4203					compact_priority, &compact_result);
4204	if (page)
4205		goto got_pg;
4206
4207	/* Do not loop if specifically requested */
4208	if (gfp_mask & __GFP_NORETRY)
4209		goto nopage;
4210
4211	/*
4212	 * Do not retry costly high order allocations unless they are
4213	 * __GFP_RETRY_MAYFAIL and we can compact
4214	 */
4215	if (costly_order && (!can_compact ||
4216			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4217		goto nopage;
4218
4219	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4220				 did_some_progress > 0, &no_progress_loops))
4221		goto retry;
4222
4223	/*
4224	 * It doesn't make any sense to retry for the compaction if the order-0
4225	 * reclaim is not able to make any progress because the current
4226	 * implementation of the compaction depends on the sufficient amount
4227	 * of free memory (see __compaction_suitable)
4228	 */
4229	if (did_some_progress > 0 && can_compact &&
4230			should_compact_retry(ac, order, alloc_flags,
4231				compact_result, &compact_priority,
4232				&compaction_retries))
4233		goto retry;
4234
4235
4236	/*
4237	 * Deal with possible cpuset update races or zonelist updates to avoid
4238	 * a unnecessary OOM kill.
4239	 */
4240	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4241	    check_retry_zonelist(zonelist_iter_cookie))
4242		goto restart;
4243
4244	/* Reclaim has failed us, start killing things */
4245	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4246	if (page)
4247		goto got_pg;
4248
4249	/* Avoid allocations with no watermarks from looping endlessly */
4250	if (tsk_is_oom_victim(current) &&
4251	    (alloc_flags & ALLOC_OOM ||
4252	     (gfp_mask & __GFP_NOMEMALLOC)))
4253		goto nopage;
4254
4255	/* Retry as long as the OOM killer is making progress */
4256	if (did_some_progress) {
4257		no_progress_loops = 0;
4258		goto retry;
4259	}
4260
4261nopage:
4262	/*
4263	 * Deal with possible cpuset update races or zonelist updates to avoid
4264	 * a unnecessary OOM kill.
4265	 */
4266	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4267	    check_retry_zonelist(zonelist_iter_cookie))
4268		goto restart;
4269
4270	/*
4271	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4272	 * we always retry
4273	 */
4274	if (gfp_mask & __GFP_NOFAIL) {
4275		/*
4276		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4277		 * of any new users that actually require GFP_NOWAIT
4278		 */
4279		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4280			goto fail;
4281
4282		/*
4283		 * PF_MEMALLOC request from this context is rather bizarre
4284		 * because we cannot reclaim anything and only can loop waiting
4285		 * for somebody to do a work for us
4286		 */
4287		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4288
4289		/*
4290		 * non failing costly orders are a hard requirement which we
4291		 * are not prepared for much so let's warn about these users
4292		 * so that we can identify them and convert them to something
4293		 * else.
4294		 */
4295		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4296
4297		/*
4298		 * Help non-failing allocations by giving some access to memory
4299		 * reserves normally used for high priority non-blocking
4300		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4301		 * could deplete whole memory reserves which would just make
4302		 * the situation worse.
4303		 */
4304		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4305		if (page)
4306			goto got_pg;
4307
4308		cond_resched();
4309		goto retry;
4310	}
4311fail:
4312	warn_alloc(gfp_mask, ac->nodemask,
4313			"page allocation failure: order:%u", order);
4314got_pg:
4315	return page;
4316}
4317
4318static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4319		int preferred_nid, nodemask_t *nodemask,
4320		struct alloc_context *ac, gfp_t *alloc_gfp,
4321		unsigned int *alloc_flags)
4322{
4323	ac->highest_zoneidx = gfp_zone(gfp_mask);
4324	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4325	ac->nodemask = nodemask;
4326	ac->migratetype = gfp_migratetype(gfp_mask);
4327
4328	if (cpusets_enabled()) {
4329		*alloc_gfp |= __GFP_HARDWALL;
4330		/*
4331		 * When we are in the interrupt context, it is irrelevant
4332		 * to the current task context. It means that any node ok.
4333		 */
4334		if (in_task() && !ac->nodemask)
4335			ac->nodemask = &cpuset_current_mems_allowed;
4336		else
4337			*alloc_flags |= ALLOC_CPUSET;
4338	}
4339
4340	might_alloc(gfp_mask);
 
 
 
4341
4342	if (should_fail_alloc_page(gfp_mask, order))
4343		return false;
4344
4345	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
 
4346
 
 
 
 
 
 
4347	/* Dirty zone balancing only done in the fast path */
4348	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4349
4350	/*
4351	 * The preferred zone is used for statistics but crucially it is
4352	 * also used as the starting point for the zonelist iterator. It
4353	 * may get reset for allocations that ignore memory policies.
4354	 */
4355	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4356					ac->highest_zoneidx, ac->nodemask);
4357
4358	return true;
4359}
4360
4361/*
4362 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4363 * @gfp: GFP flags for the allocation
4364 * @preferred_nid: The preferred NUMA node ID to allocate from
4365 * @nodemask: Set of nodes to allocate from, may be NULL
4366 * @nr_pages: The number of pages desired on the list or array
4367 * @page_list: Optional list to store the allocated pages
4368 * @page_array: Optional array to store the pages
4369 *
4370 * This is a batched version of the page allocator that attempts to
4371 * allocate nr_pages quickly. Pages are added to page_list if page_list
4372 * is not NULL, otherwise it is assumed that the page_array is valid.
4373 *
4374 * For lists, nr_pages is the number of pages that should be allocated.
4375 *
4376 * For arrays, only NULL elements are populated with pages and nr_pages
4377 * is the maximum number of pages that will be stored in the array.
4378 *
4379 * Returns the number of pages on the list or array.
4380 */
4381unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4382			nodemask_t *nodemask, int nr_pages,
4383			struct list_head *page_list,
4384			struct page **page_array)
4385{
4386	struct page *page;
4387	unsigned long __maybe_unused UP_flags;
4388	struct zone *zone;
4389	struct zoneref *z;
4390	struct per_cpu_pages *pcp;
4391	struct list_head *pcp_list;
4392	struct alloc_context ac;
4393	gfp_t alloc_gfp;
4394	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4395	int nr_populated = 0, nr_account = 0;
4396
4397	/*
4398	 * Skip populated array elements to determine if any pages need
4399	 * to be allocated before disabling IRQs.
4400	 */
4401	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4402		nr_populated++;
4403
4404	/* No pages requested? */
4405	if (unlikely(nr_pages <= 0))
4406		goto out;
4407
4408	/* Already populated array? */
4409	if (unlikely(page_array && nr_pages - nr_populated == 0))
4410		goto out;
4411
4412	/* Bulk allocator does not support memcg accounting. */
4413	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4414		goto failed;
4415
4416	/* Use the single page allocator for one page. */
4417	if (nr_pages - nr_populated == 1)
4418		goto failed;
4419
4420#ifdef CONFIG_PAGE_OWNER
4421	/*
4422	 * PAGE_OWNER may recurse into the allocator to allocate space to
4423	 * save the stack with pagesets.lock held. Releasing/reacquiring
4424	 * removes much of the performance benefit of bulk allocation so
4425	 * force the caller to allocate one page at a time as it'll have
4426	 * similar performance to added complexity to the bulk allocator.
4427	 */
4428	if (static_branch_unlikely(&page_owner_inited))
4429		goto failed;
4430#endif
4431
4432	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4433	gfp &= gfp_allowed_mask;
4434	alloc_gfp = gfp;
4435	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4436		goto out;
4437	gfp = alloc_gfp;
4438
4439	/* Find an allowed local zone that meets the low watermark. */
4440	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4441		unsigned long mark;
4442
4443		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4444		    !__cpuset_zone_allowed(zone, gfp)) {
4445			continue;
4446		}
4447
4448		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4449		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4450			goto failed;
4451		}
4452
4453		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4454		if (zone_watermark_fast(zone, 0,  mark,
4455				zonelist_zone_idx(ac.preferred_zoneref),
4456				alloc_flags, gfp)) {
4457			break;
4458		}
4459	}
4460
4461	/*
4462	 * If there are no allowed local zones that meets the watermarks then
4463	 * try to allocate a single page and reclaim if necessary.
4464	 */
4465	if (unlikely(!zone))
4466		goto failed;
4467
4468	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4469	pcp_trylock_prepare(UP_flags);
4470	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4471	if (!pcp)
4472		goto failed_irq;
4473
4474	/* Attempt the batch allocation */
4475	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4476	while (nr_populated < nr_pages) {
4477
4478		/* Skip existing pages */
4479		if (page_array && page_array[nr_populated]) {
4480			nr_populated++;
4481			continue;
4482		}
4483
4484		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4485								pcp, pcp_list);
4486		if (unlikely(!page)) {
4487			/* Try and allocate at least one page */
4488			if (!nr_account) {
4489				pcp_spin_unlock(pcp);
4490				goto failed_irq;
4491			}
4492			break;
4493		}
4494		nr_account++;
4495
4496		prep_new_page(page, 0, gfp, 0);
4497		if (page_list)
4498			list_add(&page->lru, page_list);
4499		else
4500			page_array[nr_populated] = page;
4501		nr_populated++;
4502	}
4503
4504	pcp_spin_unlock(pcp);
4505	pcp_trylock_finish(UP_flags);
4506
4507	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4508	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4509
4510out:
4511	return nr_populated;
4512
4513failed_irq:
4514	pcp_trylock_finish(UP_flags);
4515
4516failed:
4517	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4518	if (page) {
4519		if (page_list)
4520			list_add(&page->lru, page_list);
4521		else
4522			page_array[nr_populated] = page;
4523		nr_populated++;
4524	}
4525
4526	goto out;
4527}
4528EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4529
4530/*
4531 * This is the 'heart' of the zoned buddy allocator.
4532 */
4533struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
 
4534							nodemask_t *nodemask)
4535{
4536	struct page *page;
4537	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4538	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4539	struct alloc_context ac = { };
4540
4541	/*
4542	 * There are several places where we assume that the order value is sane
4543	 * so bail out early if the request is out of bound.
4544	 */
4545	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
 
4546		return NULL;
 
4547
4548	gfp &= gfp_allowed_mask;
4549	/*
4550	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4551	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4552	 * from a particular context which has been marked by
4553	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4554	 * movable zones are not used during allocation.
4555	 */
4556	gfp = current_gfp_context(gfp);
4557	alloc_gfp = gfp;
4558	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4559			&alloc_gfp, &alloc_flags))
4560		return NULL;
4561
 
 
4562	/*
4563	 * Forbid the first pass from falling back to types that fragment
4564	 * memory until all local zones are considered.
4565	 */
4566	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4567
4568	/* First allocation attempt */
4569	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4570	if (likely(page))
4571		goto out;
4572
4573	alloc_gfp = gfp;
 
 
 
 
 
 
4574	ac.spread_dirty_pages = false;
4575
4576	/*
4577	 * Restore the original nodemask if it was potentially replaced with
4578	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4579	 */
4580	ac.nodemask = nodemask;
 
4581
4582	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4583
4584out:
4585	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4586	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4587		__free_pages(page, order);
4588		page = NULL;
4589	}
4590
4591	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4592	kmsan_alloc_page(page, order, alloc_gfp);
4593
4594	return page;
4595}
4596EXPORT_SYMBOL(__alloc_pages);
4597
4598struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4599		nodemask_t *nodemask)
4600{
4601	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4602					preferred_nid, nodemask);
4603	return page_rmappable_folio(page);
4604}
4605EXPORT_SYMBOL(__folio_alloc);
4606
4607/*
4608 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4609 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4610 * you need to access high mem.
4611 */
4612unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4613{
4614	struct page *page;
4615
4616	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4617	if (!page)
4618		return 0;
4619	return (unsigned long) page_address(page);
4620}
4621EXPORT_SYMBOL(__get_free_pages);
4622
4623unsigned long get_zeroed_page(gfp_t gfp_mask)
4624{
4625	return __get_free_page(gfp_mask | __GFP_ZERO);
4626}
4627EXPORT_SYMBOL(get_zeroed_page);
4628
4629/**
4630 * __free_pages - Free pages allocated with alloc_pages().
4631 * @page: The page pointer returned from alloc_pages().
4632 * @order: The order of the allocation.
4633 *
4634 * This function can free multi-page allocations that are not compound
4635 * pages.  It does not check that the @order passed in matches that of
4636 * the allocation, so it is easy to leak memory.  Freeing more memory
4637 * than was allocated will probably emit a warning.
4638 *
4639 * If the last reference to this page is speculative, it will be released
4640 * by put_page() which only frees the first page of a non-compound
4641 * allocation.  To prevent the remaining pages from being leaked, we free
4642 * the subsequent pages here.  If you want to use the page's reference
4643 * count to decide when to free the allocation, you should allocate a
4644 * compound page, and use put_page() instead of __free_pages().
4645 *
4646 * Context: May be called in interrupt context or while holding a normal
4647 * spinlock, but not in NMI context or while holding a raw spinlock.
4648 */
4649void __free_pages(struct page *page, unsigned int order)
4650{
4651	/* get PageHead before we drop reference */
4652	int head = PageHead(page);
4653
4654	if (put_page_testzero(page))
4655		free_the_page(page, order);
4656	else if (!head)
4657		while (order-- > 0)
4658			free_the_page(page + (1 << order), order);
4659}
4660EXPORT_SYMBOL(__free_pages);
4661
4662void free_pages(unsigned long addr, unsigned int order)
4663{
4664	if (addr != 0) {
4665		VM_BUG_ON(!virt_addr_valid((void *)addr));
4666		__free_pages(virt_to_page((void *)addr), order);
4667	}
4668}
4669
4670EXPORT_SYMBOL(free_pages);
4671
4672/*
4673 * Page Fragment:
4674 *  An arbitrary-length arbitrary-offset area of memory which resides
4675 *  within a 0 or higher order page.  Multiple fragments within that page
4676 *  are individually refcounted, in the page's reference counter.
4677 *
4678 * The page_frag functions below provide a simple allocation framework for
4679 * page fragments.  This is used by the network stack and network device
4680 * drivers to provide a backing region of memory for use as either an
4681 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4682 */
4683static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4684					     gfp_t gfp_mask)
4685{
4686	struct page *page = NULL;
4687	gfp_t gfp = gfp_mask;
4688
4689#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4690	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4691		    __GFP_NOMEMALLOC;
4692	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4693				PAGE_FRAG_CACHE_MAX_ORDER);
4694	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4695#endif
4696	if (unlikely(!page))
4697		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4698
4699	nc->va = page ? page_address(page) : NULL;
4700
4701	return page;
4702}
4703
4704void __page_frag_cache_drain(struct page *page, unsigned int count)
4705{
4706	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4707
4708	if (page_ref_sub_and_test(page, count))
4709		free_the_page(page, compound_order(page));
4710}
4711EXPORT_SYMBOL(__page_frag_cache_drain);
4712
4713void *page_frag_alloc_align(struct page_frag_cache *nc,
4714		      unsigned int fragsz, gfp_t gfp_mask,
4715		      unsigned int align_mask)
4716{
4717	unsigned int size = PAGE_SIZE;
4718	struct page *page;
4719	int offset;
4720
4721	if (unlikely(!nc->va)) {
4722refill:
4723		page = __page_frag_cache_refill(nc, gfp_mask);
4724		if (!page)
4725			return NULL;
4726
4727#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4728		/* if size can vary use size else just use PAGE_SIZE */
4729		size = nc->size;
4730#endif
4731		/* Even if we own the page, we do not use atomic_set().
4732		 * This would break get_page_unless_zero() users.
4733		 */
4734		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4735
4736		/* reset page count bias and offset to start of new frag */
4737		nc->pfmemalloc = page_is_pfmemalloc(page);
4738		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4739		nc->offset = size;
4740	}
4741
4742	offset = nc->offset - fragsz;
4743	if (unlikely(offset < 0)) {
4744		page = virt_to_page(nc->va);
4745
4746		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4747			goto refill;
4748
4749		if (unlikely(nc->pfmemalloc)) {
4750			free_the_page(page, compound_order(page));
4751			goto refill;
4752		}
4753
4754#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4755		/* if size can vary use size else just use PAGE_SIZE */
4756		size = nc->size;
4757#endif
4758		/* OK, page count is 0, we can safely set it */
4759		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4760
4761		/* reset page count bias and offset to start of new frag */
4762		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4763		offset = size - fragsz;
4764		if (unlikely(offset < 0)) {
4765			/*
4766			 * The caller is trying to allocate a fragment
4767			 * with fragsz > PAGE_SIZE but the cache isn't big
4768			 * enough to satisfy the request, this may
4769			 * happen in low memory conditions.
4770			 * We don't release the cache page because
4771			 * it could make memory pressure worse
4772			 * so we simply return NULL here.
4773			 */
4774			return NULL;
4775		}
4776	}
4777
4778	nc->pagecnt_bias--;
4779	offset &= align_mask;
4780	nc->offset = offset;
4781
4782	return nc->va + offset;
4783}
4784EXPORT_SYMBOL(page_frag_alloc_align);
4785
4786/*
4787 * Frees a page fragment allocated out of either a compound or order 0 page.
4788 */
4789void page_frag_free(void *addr)
4790{
4791	struct page *page = virt_to_head_page(addr);
4792
4793	if (unlikely(put_page_testzero(page)))
4794		free_the_page(page, compound_order(page));
4795}
4796EXPORT_SYMBOL(page_frag_free);
4797
4798static void *make_alloc_exact(unsigned long addr, unsigned int order,
4799		size_t size)
4800{
4801	if (addr) {
4802		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4803		struct page *page = virt_to_page((void *)addr);
4804		struct page *last = page + nr;
4805
4806		split_page_owner(page, 1 << order);
4807		split_page_memcg(page, 1 << order);
4808		while (page < --last)
4809			set_page_refcounted(last);
4810
4811		last = page + (1UL << order);
4812		for (page += nr; page < last; page++)
4813			__free_pages_ok(page, 0, FPI_TO_TAIL);
4814	}
4815	return (void *)addr;
4816}
4817
4818/**
4819 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4820 * @size: the number of bytes to allocate
4821 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4822 *
4823 * This function is similar to alloc_pages(), except that it allocates the
4824 * minimum number of pages to satisfy the request.  alloc_pages() can only
4825 * allocate memory in power-of-two pages.
4826 *
4827 * This function is also limited by MAX_PAGE_ORDER.
4828 *
4829 * Memory allocated by this function must be released by free_pages_exact().
4830 *
4831 * Return: pointer to the allocated area or %NULL in case of error.
4832 */
4833void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4834{
4835	unsigned int order = get_order(size);
4836	unsigned long addr;
4837
4838	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4839		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4840
4841	addr = __get_free_pages(gfp_mask, order);
4842	return make_alloc_exact(addr, order, size);
4843}
4844EXPORT_SYMBOL(alloc_pages_exact);
4845
4846/**
4847 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4848 *			   pages on a node.
4849 * @nid: the preferred node ID where memory should be allocated
4850 * @size: the number of bytes to allocate
4851 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4852 *
4853 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4854 * back.
4855 *
4856 * Return: pointer to the allocated area or %NULL in case of error.
4857 */
4858void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4859{
4860	unsigned int order = get_order(size);
4861	struct page *p;
4862
4863	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4864		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4865
4866	p = alloc_pages_node(nid, gfp_mask, order);
4867	if (!p)
4868		return NULL;
4869	return make_alloc_exact((unsigned long)page_address(p), order, size);
4870}
4871
4872/**
4873 * free_pages_exact - release memory allocated via alloc_pages_exact()
4874 * @virt: the value returned by alloc_pages_exact.
4875 * @size: size of allocation, same value as passed to alloc_pages_exact().
4876 *
4877 * Release the memory allocated by a previous call to alloc_pages_exact.
4878 */
4879void free_pages_exact(void *virt, size_t size)
4880{
4881	unsigned long addr = (unsigned long)virt;
4882	unsigned long end = addr + PAGE_ALIGN(size);
4883
4884	while (addr < end) {
4885		free_page(addr);
4886		addr += PAGE_SIZE;
4887	}
4888}
4889EXPORT_SYMBOL(free_pages_exact);
4890
4891/**
4892 * nr_free_zone_pages - count number of pages beyond high watermark
4893 * @offset: The zone index of the highest zone
4894 *
4895 * nr_free_zone_pages() counts the number of pages which are beyond the
4896 * high watermark within all zones at or below a given zone index.  For each
4897 * zone, the number of pages is calculated as:
4898 *
4899 *     nr_free_zone_pages = managed_pages - high_pages
4900 *
4901 * Return: number of pages beyond high watermark.
4902 */
4903static unsigned long nr_free_zone_pages(int offset)
4904{
4905	struct zoneref *z;
4906	struct zone *zone;
4907
4908	/* Just pick one node, since fallback list is circular */
4909	unsigned long sum = 0;
4910
4911	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4912
4913	for_each_zone_zonelist(zone, z, zonelist, offset) {
4914		unsigned long size = zone_managed_pages(zone);
4915		unsigned long high = high_wmark_pages(zone);
4916		if (size > high)
4917			sum += size - high;
4918	}
4919
4920	return sum;
4921}
4922
4923/**
4924 * nr_free_buffer_pages - count number of pages beyond high watermark
4925 *
4926 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4927 * watermark within ZONE_DMA and ZONE_NORMAL.
4928 *
4929 * Return: number of pages beyond high watermark within ZONE_DMA and
4930 * ZONE_NORMAL.
4931 */
4932unsigned long nr_free_buffer_pages(void)
4933{
4934	return nr_free_zone_pages(gfp_zone(GFP_USER));
4935}
4936EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4938static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4939{
4940	zoneref->zone = zone;
4941	zoneref->zone_idx = zone_idx(zone);
4942}
4943
4944/*
4945 * Builds allocation fallback zone lists.
4946 *
4947 * Add all populated zones of a node to the zonelist.
4948 */
4949static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4950{
4951	struct zone *zone;
4952	enum zone_type zone_type = MAX_NR_ZONES;
4953	int nr_zones = 0;
4954
4955	do {
4956		zone_type--;
4957		zone = pgdat->node_zones + zone_type;
4958		if (populated_zone(zone)) {
4959			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4960			check_highest_zone(zone_type);
4961		}
4962	} while (zone_type);
4963
4964	return nr_zones;
4965}
4966
4967#ifdef CONFIG_NUMA
4968
4969static int __parse_numa_zonelist_order(char *s)
4970{
4971	/*
4972	 * We used to support different zonelists modes but they turned
4973	 * out to be just not useful. Let's keep the warning in place
4974	 * if somebody still use the cmd line parameter so that we do
4975	 * not fail it silently
4976	 */
4977	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4978		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4979		return -EINVAL;
4980	}
4981	return 0;
4982}
4983
4984static char numa_zonelist_order[] = "Node";
4985#define NUMA_ZONELIST_ORDER_LEN	16
 
 
 
 
 
 
 
 
 
4986/*
4987 * sysctl handler for numa_zonelist_order
4988 */
4989static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4990		void *buffer, size_t *length, loff_t *ppos)
 
4991{
4992	if (write)
4993		return __parse_numa_zonelist_order(buffer);
4994	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
4995}
4996
 
 
4997static int node_load[MAX_NUMNODES];
4998
4999/**
5000 * find_next_best_node - find the next node that should appear in a given node's fallback list
5001 * @node: node whose fallback list we're appending
5002 * @used_node_mask: nodemask_t of already used nodes
5003 *
5004 * We use a number of factors to determine which is the next node that should
5005 * appear on a given node's fallback list.  The node should not have appeared
5006 * already in @node's fallback list, and it should be the next closest node
5007 * according to the distance array (which contains arbitrary distance values
5008 * from each node to each node in the system), and should also prefer nodes
5009 * with no CPUs, since presumably they'll have very little allocation pressure
5010 * on them otherwise.
5011 *
5012 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5013 */
5014int find_next_best_node(int node, nodemask_t *used_node_mask)
5015{
5016	int n, val;
5017	int min_val = INT_MAX;
5018	int best_node = NUMA_NO_NODE;
 
5019
5020	/*
5021	 * Use the local node if we haven't already, but for memoryless local
5022	 * node, we should skip it and fall back to other nodes.
5023	 */
5024	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5025		node_set(node, *used_node_mask);
5026		return node;
5027	}
5028
5029	for_each_node_state(n, N_MEMORY) {
5030
5031		/* Don't want a node to appear more than once */
5032		if (node_isset(n, *used_node_mask))
5033			continue;
5034
5035		/* Use the distance array to find the distance */
5036		val = node_distance(node, n);
5037
5038		/* Penalize nodes under us ("prefer the next node") */
5039		val += (n < node);
5040
5041		/* Give preference to headless and unused nodes */
5042		if (!cpumask_empty(cpumask_of_node(n)))
 
5043			val += PENALTY_FOR_NODE_WITH_CPUS;
5044
5045		/* Slight preference for less loaded node */
5046		val *= MAX_NUMNODES;
5047		val += node_load[n];
5048
5049		if (val < min_val) {
5050			min_val = val;
5051			best_node = n;
5052		}
5053	}
5054
5055	if (best_node >= 0)
5056		node_set(best_node, *used_node_mask);
5057
5058	return best_node;
5059}
5060
5061
5062/*
5063 * Build zonelists ordered by node and zones within node.
5064 * This results in maximum locality--normal zone overflows into local
5065 * DMA zone, if any--but risks exhausting DMA zone.
5066 */
5067static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5068		unsigned nr_nodes)
5069{
5070	struct zoneref *zonerefs;
5071	int i;
5072
5073	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5074
5075	for (i = 0; i < nr_nodes; i++) {
5076		int nr_zones;
5077
5078		pg_data_t *node = NODE_DATA(node_order[i]);
5079
5080		nr_zones = build_zonerefs_node(node, zonerefs);
5081		zonerefs += nr_zones;
5082	}
5083	zonerefs->zone = NULL;
5084	zonerefs->zone_idx = 0;
5085}
5086
5087/*
5088 * Build gfp_thisnode zonelists
5089 */
5090static void build_thisnode_zonelists(pg_data_t *pgdat)
5091{
5092	struct zoneref *zonerefs;
5093	int nr_zones;
5094
5095	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5096	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5097	zonerefs += nr_zones;
5098	zonerefs->zone = NULL;
5099	zonerefs->zone_idx = 0;
5100}
5101
5102/*
5103 * Build zonelists ordered by zone and nodes within zones.
5104 * This results in conserving DMA zone[s] until all Normal memory is
5105 * exhausted, but results in overflowing to remote node while memory
5106 * may still exist in local DMA zone.
5107 */
5108
5109static void build_zonelists(pg_data_t *pgdat)
5110{
5111	static int node_order[MAX_NUMNODES];
5112	int node, nr_nodes = 0;
5113	nodemask_t used_mask = NODE_MASK_NONE;
5114	int local_node, prev_node;
5115
5116	/* NUMA-aware ordering of nodes */
5117	local_node = pgdat->node_id;
 
5118	prev_node = local_node;
 
5119
5120	memset(node_order, 0, sizeof(node_order));
5121	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5122		/*
5123		 * We don't want to pressure a particular node.
5124		 * So adding penalty to the first node in same
5125		 * distance group to make it round-robin.
5126		 */
5127		if (node_distance(local_node, node) !=
5128		    node_distance(local_node, prev_node))
5129			node_load[node] += 1;
5130
5131		node_order[nr_nodes++] = node;
5132		prev_node = node;
 
5133	}
5134
5135	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5136	build_thisnode_zonelists(pgdat);
5137	pr_info("Fallback order for Node %d: ", local_node);
5138	for (node = 0; node < nr_nodes; node++)
5139		pr_cont("%d ", node_order[node]);
5140	pr_cont("\n");
5141}
5142
5143#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5144/*
5145 * Return node id of node used for "local" allocations.
5146 * I.e., first node id of first zone in arg node's generic zonelist.
5147 * Used for initializing percpu 'numa_mem', which is used primarily
5148 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5149 */
5150int local_memory_node(int node)
5151{
5152	struct zoneref *z;
5153
5154	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5155				   gfp_zone(GFP_KERNEL),
5156				   NULL);
5157	return zone_to_nid(z->zone);
5158}
5159#endif
5160
5161static void setup_min_unmapped_ratio(void);
5162static void setup_min_slab_ratio(void);
5163#else	/* CONFIG_NUMA */
5164
5165static void build_zonelists(pg_data_t *pgdat)
5166{
5167	int node, local_node;
5168	struct zoneref *zonerefs;
5169	int nr_zones;
5170
5171	local_node = pgdat->node_id;
5172
5173	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5174	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5175	zonerefs += nr_zones;
5176
5177	/*
5178	 * Now we build the zonelist so that it contains the zones
5179	 * of all the other nodes.
5180	 * We don't want to pressure a particular node, so when
5181	 * building the zones for node N, we make sure that the
5182	 * zones coming right after the local ones are those from
5183	 * node N+1 (modulo N)
5184	 */
5185	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5186		if (!node_online(node))
5187			continue;
5188		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5189		zonerefs += nr_zones;
5190	}
5191	for (node = 0; node < local_node; node++) {
5192		if (!node_online(node))
5193			continue;
5194		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5195		zonerefs += nr_zones;
5196	}
5197
5198	zonerefs->zone = NULL;
5199	zonerefs->zone_idx = 0;
5200}
5201
5202#endif	/* CONFIG_NUMA */
5203
5204/*
5205 * Boot pageset table. One per cpu which is going to be used for all
5206 * zones and all nodes. The parameters will be set in such a way
5207 * that an item put on a list will immediately be handed over to
5208 * the buddy list. This is safe since pageset manipulation is done
5209 * with interrupts disabled.
5210 *
5211 * The boot_pagesets must be kept even after bootup is complete for
5212 * unused processors and/or zones. They do play a role for bootstrapping
5213 * hotplugged processors.
5214 *
5215 * zoneinfo_show() and maybe other functions do
5216 * not check if the processor is online before following the pageset pointer.
5217 * Other parts of the kernel may not check if the zone is available.
5218 */
5219static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5220/* These effectively disable the pcplists in the boot pageset completely */
5221#define BOOT_PAGESET_HIGH	0
5222#define BOOT_PAGESET_BATCH	1
5223static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5224static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5225
5226static void __build_all_zonelists(void *data)
5227{
5228	int nid;
5229	int __maybe_unused cpu;
5230	pg_data_t *self = data;
5231	unsigned long flags;
5232
5233	/*
5234	 * The zonelist_update_seq must be acquired with irqsave because the
5235	 * reader can be invoked from IRQ with GFP_ATOMIC.
5236	 */
5237	write_seqlock_irqsave(&zonelist_update_seq, flags);
5238	/*
5239	 * Also disable synchronous printk() to prevent any printk() from
5240	 * trying to hold port->lock, for
5241	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5242	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5243	 */
5244	printk_deferred_enter();
5245
5246#ifdef CONFIG_NUMA
5247	memset(node_load, 0, sizeof(node_load));
5248#endif
5249
5250	/*
5251	 * This node is hotadded and no memory is yet present.   So just
5252	 * building zonelists is fine - no need to touch other nodes.
5253	 */
5254	if (self && !node_online(self->node_id)) {
5255		build_zonelists(self);
5256	} else {
5257		/*
5258		 * All possible nodes have pgdat preallocated
5259		 * in free_area_init
5260		 */
5261		for_each_node(nid) {
5262			pg_data_t *pgdat = NODE_DATA(nid);
5263
5264			build_zonelists(pgdat);
5265		}
5266
5267#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268		/*
5269		 * We now know the "local memory node" for each node--
5270		 * i.e., the node of the first zone in the generic zonelist.
5271		 * Set up numa_mem percpu variable for on-line cpus.  During
5272		 * boot, only the boot cpu should be on-line;  we'll init the
5273		 * secondary cpus' numa_mem as they come on-line.  During
5274		 * node/memory hotplug, we'll fixup all on-line cpus.
5275		 */
5276		for_each_online_cpu(cpu)
5277			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5278#endif
5279	}
5280
5281	printk_deferred_exit();
5282	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5283}
5284
5285static noinline void __init
5286build_all_zonelists_init(void)
5287{
5288	int cpu;
5289
5290	__build_all_zonelists(NULL);
5291
5292	/*
5293	 * Initialize the boot_pagesets that are going to be used
5294	 * for bootstrapping processors. The real pagesets for
5295	 * each zone will be allocated later when the per cpu
5296	 * allocator is available.
5297	 *
5298	 * boot_pagesets are used also for bootstrapping offline
5299	 * cpus if the system is already booted because the pagesets
5300	 * are needed to initialize allocators on a specific cpu too.
5301	 * F.e. the percpu allocator needs the page allocator which
5302	 * needs the percpu allocator in order to allocate its pagesets
5303	 * (a chicken-egg dilemma).
5304	 */
5305	for_each_possible_cpu(cpu)
5306		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5307
5308	mminit_verify_zonelist();
5309	cpuset_init_current_mems_allowed();
5310}
5311
5312/*
5313 * unless system_state == SYSTEM_BOOTING.
5314 *
5315 * __ref due to call of __init annotated helper build_all_zonelists_init
5316 * [protected by SYSTEM_BOOTING].
5317 */
5318void __ref build_all_zonelists(pg_data_t *pgdat)
5319{
5320	unsigned long vm_total_pages;
5321
5322	if (system_state == SYSTEM_BOOTING) {
5323		build_all_zonelists_init();
5324	} else {
5325		__build_all_zonelists(pgdat);
5326		/* cpuset refresh routine should be here */
5327	}
5328	/* Get the number of free pages beyond high watermark in all zones. */
5329	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5330	/*
5331	 * Disable grouping by mobility if the number of pages in the
5332	 * system is too low to allow the mechanism to work. It would be
5333	 * more accurate, but expensive to check per-zone. This check is
5334	 * made on memory-hotadd so a system can start with mobility
5335	 * disabled and enable it later
5336	 */
5337	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5338		page_group_by_mobility_disabled = 1;
5339	else
5340		page_group_by_mobility_disabled = 0;
5341
5342	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5343		nr_online_nodes,
5344		page_group_by_mobility_disabled ? "off" : "on",
5345		vm_total_pages);
5346#ifdef CONFIG_NUMA
5347	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5348#endif
5349}
5350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5351static int zone_batchsize(struct zone *zone)
5352{
5353#ifdef CONFIG_MMU
5354	int batch;
5355
5356	/*
5357	 * The number of pages to batch allocate is either ~0.1%
5358	 * of the zone or 1MB, whichever is smaller. The batch
5359	 * size is striking a balance between allocation latency
5360	 * and zone lock contention.
5361	 */
5362	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
 
 
 
5363	batch /= 4;		/* We effectively *= 4 below */
5364	if (batch < 1)
5365		batch = 1;
5366
5367	/*
5368	 * Clamp the batch to a 2^n - 1 value. Having a power
5369	 * of 2 value was found to be more likely to have
5370	 * suboptimal cache aliasing properties in some cases.
5371	 *
5372	 * For example if 2 tasks are alternately allocating
5373	 * batches of pages, one task can end up with a lot
5374	 * of pages of one half of the possible page colors
5375	 * and the other with pages of the other colors.
5376	 */
5377	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5378
5379	return batch;
5380
5381#else
5382	/* The deferral and batching of frees should be suppressed under NOMMU
5383	 * conditions.
5384	 *
5385	 * The problem is that NOMMU needs to be able to allocate large chunks
5386	 * of contiguous memory as there's no hardware page translation to
5387	 * assemble apparent contiguous memory from discontiguous pages.
5388	 *
5389	 * Queueing large contiguous runs of pages for batching, however,
5390	 * causes the pages to actually be freed in smaller chunks.  As there
5391	 * can be a significant delay between the individual batches being
5392	 * recycled, this leads to the once large chunks of space being
5393	 * fragmented and becoming unavailable for high-order allocations.
5394	 */
5395	return 0;
5396#endif
5397}
5398
5399static int percpu_pagelist_high_fraction;
5400static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5401			 int high_fraction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5402{
5403#ifdef CONFIG_MMU
5404	int high;
5405	int nr_split_cpus;
5406	unsigned long total_pages;
 
5407
5408	if (!high_fraction) {
5409		/*
5410		 * By default, the high value of the pcp is based on the zone
5411		 * low watermark so that if they are full then background
5412		 * reclaim will not be started prematurely.
5413		 */
5414		total_pages = low_wmark_pages(zone);
5415	} else {
5416		/*
5417		 * If percpu_pagelist_high_fraction is configured, the high
5418		 * value is based on a fraction of the managed pages in the
5419		 * zone.
5420		 */
5421		total_pages = zone_managed_pages(zone) / high_fraction;
5422	}
5423
 
 
5424	/*
5425	 * Split the high value across all online CPUs local to the zone. Note
5426	 * that early in boot that CPUs may not be online yet and that during
5427	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5428	 * onlined. For memory nodes that have no CPUs, split the high value
5429	 * across all online CPUs to mitigate the risk that reclaim is triggered
5430	 * prematurely due to pages stored on pcp lists.
5431	 */
5432	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5433	if (!nr_split_cpus)
5434		nr_split_cpus = num_online_cpus();
5435	high = total_pages / nr_split_cpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5436
5437	/*
5438	 * Ensure high is at least batch*4. The multiple is based on the
5439	 * historical relationship between high and batch.
 
5440	 */
5441	high = max(high, batch << 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5442
5443	return high;
5444#else
5445	return 0;
5446#endif
5447}
5448
 
5449/*
5450 * pcp->high and pcp->batch values are related and generally batch is lower
5451 * than high. They are also related to pcp->count such that count is lower
5452 * than high, and as soon as it reaches high, the pcplist is flushed.
5453 *
5454 * However, guaranteeing these relations at all times would require e.g. write
5455 * barriers here but also careful usage of read barriers at the read side, and
5456 * thus be prone to error and bad for performance. Thus the update only prevents
5457 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5458 * should ensure they can cope with those fields changing asynchronously, and
5459 * fully trust only the pcp->count field on the local CPU with interrupts
5460 * disabled.
5461 *
5462 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5463 * outside of boot time (or some other assurance that no concurrent updaters
5464 * exist).
5465 */
5466static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5467			   unsigned long high_max, unsigned long batch)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5468{
5469	WRITE_ONCE(pcp->batch, batch);
5470	WRITE_ONCE(pcp->high_min, high_min);
5471	WRITE_ONCE(pcp->high_max, high_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5472}
 
5473
5474static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
 
 
 
 
 
5475{
5476	int pindex;
5477
5478	memset(pcp, 0, sizeof(*pcp));
5479	memset(pzstats, 0, sizeof(*pzstats));
5480
5481	spin_lock_init(&pcp->lock);
5482	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5483		INIT_LIST_HEAD(&pcp->lists[pindex]);
 
5484
5485	/*
5486	 * Set batch and high values safe for a boot pageset. A true percpu
5487	 * pageset's initialization will update them subsequently. Here we don't
5488	 * need to be as careful as pageset_update() as nobody can access the
5489	 * pageset yet.
 
 
5490	 */
5491	pcp->high_min = BOOT_PAGESET_HIGH;
5492	pcp->high_max = BOOT_PAGESET_HIGH;
5493	pcp->batch = BOOT_PAGESET_BATCH;
5494	pcp->free_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5495}
5496
5497static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5498					      unsigned long high_max, unsigned long batch)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5499{
5500	struct per_cpu_pages *pcp;
5501	int cpu;
5502
5503	for_each_possible_cpu(cpu) {
5504		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5505		pageset_update(pcp, high_min, high_max, batch);
5506	}
5507}
 
5508
5509/*
5510 * Calculate and set new high and batch values for all per-cpu pagesets of a
5511 * zone based on the zone's size.
 
 
 
 
 
5512 */
5513static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5514{
5515	int new_high_min, new_high_max, new_batch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5516
5517	new_batch = max(1, zone_batchsize(zone));
5518	if (percpu_pagelist_high_fraction) {
5519		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5520					     percpu_pagelist_high_fraction);
5521		/*
5522		 * PCP high is tuned manually, disable auto-tuning via
5523		 * setting high_min and high_max to the manual value.
 
5524		 */
5525		new_high_max = new_high_min;
5526	} else {
5527		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5528		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5529					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
 
 
 
 
5530	}
 
 
 
 
 
 
 
5531
5532	if (zone->pageset_high_min == new_high_min &&
5533	    zone->pageset_high_max == new_high_max &&
5534	    zone->pageset_batch == new_batch)
5535		return;
5536
5537	zone->pageset_high_min = new_high_min;
5538	zone->pageset_high_max = new_high_max;
5539	zone->pageset_batch = new_batch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5540
5541	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5542					  new_batch);
 
 
5543}
 
 
 
5544
5545void __meminit setup_zone_pageset(struct zone *zone)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5546{
5547	int cpu;
 
 
 
 
 
 
 
 
 
 
 
5548
5549	/* Size may be 0 on !SMP && !NUMA */
5550	if (sizeof(struct per_cpu_zonestat) > 0)
5551		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5552
5553	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5554	for_each_possible_cpu(cpu) {
5555		struct per_cpu_pages *pcp;
5556		struct per_cpu_zonestat *pzstats;
 
 
 
 
 
 
 
 
 
 
 
 
 
5557
5558		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5559		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5560		per_cpu_pages_init(pcp, pzstats);
 
 
 
 
 
 
5561	}
 
5562
5563	zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
5564}
 
5565
 
 
 
5566/*
5567 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5568 * page high values need to be recalculated.
5569 */
5570static void zone_pcp_update(struct zone *zone, int cpu_online)
5571{
5572	mutex_lock(&pcp_batch_high_lock);
5573	zone_set_pageset_high_and_batch(zone, cpu_online);
5574	mutex_unlock(&pcp_batch_high_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5575}
5576
5577static void zone_pcp_update_cacheinfo(struct zone *zone)
 
5578{
5579	int cpu;
5580	struct per_cpu_pages *pcp;
5581	struct cpu_cacheinfo *cci;
 
 
 
5582
5583	for_each_online_cpu(cpu) {
5584		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5585		cci = get_cpu_cacheinfo(cpu);
5586		/*
5587		 * If data cache slice of CPU is large enough, "pcp->batch"
5588		 * pages can be preserved in PCP before draining PCP for
5589		 * consecutive high-order pages freeing without allocation.
5590		 * This can reduce zone lock contention without hurting
5591		 * cache-hot pages sharing.
5592		 */
5593		spin_lock(&pcp->lock);
5594		if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5595			pcp->flags |= PCPF_FREE_HIGH_BATCH;
5596		else
5597			pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5598		spin_unlock(&pcp->lock);
5599	}
 
 
5600}
5601
5602void setup_pcp_cacheinfo(void)
 
 
 
 
 
 
5603{
5604	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5605
5606	for_each_populated_zone(zone)
5607		zone_pcp_update_cacheinfo(zone);
 
 
 
5608}
5609
5610/*
5611 * Allocate per cpu pagesets and initialize them.
5612 * Before this call only boot pagesets were available.
 
 
5613 */
5614void __init setup_per_cpu_pageset(void)
5615{
5616	struct pglist_data *pgdat;
5617	struct zone *zone;
5618	int __maybe_unused cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5619
5620	for_each_populated_zone(zone)
5621		setup_zone_pageset(zone);
5622
5623#ifdef CONFIG_NUMA
5624	/*
5625	 * Unpopulated zones continue using the boot pagesets.
5626	 * The numa stats for these pagesets need to be reset.
5627	 * Otherwise, they will end up skewing the stats of
5628	 * the nodes these zones are associated with.
5629	 */
5630	for_each_possible_cpu(cpu) {
5631		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5632		memset(pzstats->vm_numa_event, 0,
5633		       sizeof(pzstats->vm_numa_event));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5634	}
5635#endif
5636
5637	for_each_online_pgdat(pgdat)
5638		pgdat->per_cpu_nodestats =
5639			alloc_percpu(struct per_cpu_nodestat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5640}
5641
5642__meminit void zone_pcp_init(struct zone *zone)
 
5643{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5644	/*
5645	 * per cpu subsystem is not up at this point. The following code
5646	 * relies on the ability of the linker to provide the
5647	 * offset of a (static) per cpu variable into the per cpu area.
5648	 */
5649	zone->per_cpu_pageset = &boot_pageset;
5650	zone->per_cpu_zonestats = &boot_zonestats;
5651	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5652	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5653	zone->pageset_batch = BOOT_PAGESET_BATCH;
 
 
5654
5655	if (populated_zone(zone))
5656		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5657			 zone->present_pages, zone_batchsize(zone));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5658}
5659
 
 
 
 
 
5660void adjust_managed_page_count(struct page *page, long count)
5661{
5662	atomic_long_add(count, &page_zone(page)->managed_pages);
5663	totalram_pages_add(count);
5664#ifdef CONFIG_HIGHMEM
5665	if (PageHighMem(page))
5666		totalhigh_pages_add(count);
5667#endif
5668}
5669EXPORT_SYMBOL(adjust_managed_page_count);
5670
5671unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5672{
5673	void *pos;
5674	unsigned long pages = 0;
5675
5676	start = (void *)PAGE_ALIGN((unsigned long)start);
5677	end = (void *)((unsigned long)end & PAGE_MASK);
5678	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5679		struct page *page = virt_to_page(pos);
5680		void *direct_map_addr;
5681
5682		/*
5683		 * 'direct_map_addr' might be different from 'pos'
5684		 * because some architectures' virt_to_page()
5685		 * work with aliases.  Getting the direct map
5686		 * address ensures that we get a _writeable_
5687		 * alias for the memset().
5688		 */
5689		direct_map_addr = page_address(page);
5690		/*
5691		 * Perform a kasan-unchecked memset() since this memory
5692		 * has not been initialized.
5693		 */
5694		direct_map_addr = kasan_reset_tag(direct_map_addr);
5695		if ((unsigned int)poison <= 0xFF)
5696			memset(direct_map_addr, poison, PAGE_SIZE);
5697
5698		free_reserved_page(page);
5699	}
5700
5701	if (pages && s)
5702		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
 
5703
5704	return pages;
5705}
5706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5707static int page_alloc_cpu_dead(unsigned int cpu)
5708{
5709	struct zone *zone;
5710
5711	lru_add_drain_cpu(cpu);
5712	mlock_drain_remote(cpu);
5713	drain_pages(cpu);
5714
5715	/*
5716	 * Spill the event counters of the dead processor
5717	 * into the current processors event counters.
5718	 * This artificially elevates the count of the current
5719	 * processor.
5720	 */
5721	vm_events_fold_cpu(cpu);
5722
5723	/*
5724	 * Zero the differential counters of the dead processor
5725	 * so that the vm statistics are consistent.
5726	 *
5727	 * This is only okay since the processor is dead and cannot
5728	 * race with what we are doing.
5729	 */
5730	cpu_vm_stats_fold(cpu);
5731
5732	for_each_populated_zone(zone)
5733		zone_pcp_update(zone, 0);
5734
5735	return 0;
5736}
5737
5738static int page_alloc_cpu_online(unsigned int cpu)
 
 
 
5739{
5740	struct zone *zone;
5741
5742	for_each_populated_zone(zone)
5743		zone_pcp_update(zone, 1);
5744	return 0;
5745}
 
 
5746
5747void __init page_alloc_init_cpuhp(void)
5748{
5749	int ret;
5750
5751	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5752					"mm/page_alloc:pcp",
5753					page_alloc_cpu_online,
 
 
 
 
5754					page_alloc_cpu_dead);
5755	WARN_ON(ret < 0);
5756}
5757
5758/*
5759 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5760 *	or min_free_kbytes changes.
5761 */
5762static void calculate_totalreserve_pages(void)
5763{
5764	struct pglist_data *pgdat;
5765	unsigned long reserve_pages = 0;
5766	enum zone_type i, j;
5767
5768	for_each_online_pgdat(pgdat) {
5769
5770		pgdat->totalreserve_pages = 0;
5771
5772		for (i = 0; i < MAX_NR_ZONES; i++) {
5773			struct zone *zone = pgdat->node_zones + i;
5774			long max = 0;
5775			unsigned long managed_pages = zone_managed_pages(zone);
5776
5777			/* Find valid and maximum lowmem_reserve in the zone */
5778			for (j = i; j < MAX_NR_ZONES; j++) {
5779				if (zone->lowmem_reserve[j] > max)
5780					max = zone->lowmem_reserve[j];
5781			}
5782
5783			/* we treat the high watermark as reserved pages. */
5784			max += high_wmark_pages(zone);
5785
5786			if (max > managed_pages)
5787				max = managed_pages;
5788
5789			pgdat->totalreserve_pages += max;
5790
5791			reserve_pages += max;
5792		}
5793	}
5794	totalreserve_pages = reserve_pages;
5795}
5796
5797/*
5798 * setup_per_zone_lowmem_reserve - called whenever
5799 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5800 *	has a correct pages reserved value, so an adequate number of
5801 *	pages are left in the zone after a successful __alloc_pages().
5802 */
5803static void setup_per_zone_lowmem_reserve(void)
5804{
5805	struct pglist_data *pgdat;
5806	enum zone_type i, j;
5807
5808	for_each_online_pgdat(pgdat) {
5809		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5810			struct zone *zone = &pgdat->node_zones[i];
5811			int ratio = sysctl_lowmem_reserve_ratio[i];
5812			bool clear = !ratio || !zone_managed_pages(zone);
5813			unsigned long managed_pages = 0;
5814
5815			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5816				struct zone *upper_zone = &pgdat->node_zones[j];
5817
5818				managed_pages += zone_managed_pages(upper_zone);
5819
5820				if (clear)
5821					zone->lowmem_reserve[j] = 0;
5822				else
5823					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
 
 
5824			}
5825		}
5826	}
5827
5828	/* update totalreserve_pages */
5829	calculate_totalreserve_pages();
5830}
5831
5832static void __setup_per_zone_wmarks(void)
5833{
5834	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5835	unsigned long lowmem_pages = 0;
5836	struct zone *zone;
5837	unsigned long flags;
5838
5839	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5840	for_each_zone(zone) {
5841		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5842			lowmem_pages += zone_managed_pages(zone);
5843	}
5844
5845	for_each_zone(zone) {
5846		u64 tmp;
5847
5848		spin_lock_irqsave(&zone->lock, flags);
5849		tmp = (u64)pages_min * zone_managed_pages(zone);
5850		do_div(tmp, lowmem_pages);
5851		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5852			/*
5853			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5854			 * need highmem and movable zones pages, so cap pages_min
5855			 * to a small  value here.
5856			 *
5857			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5858			 * deltas control async page reclaim, and so should
5859			 * not be capped for highmem and movable zones.
5860			 */
5861			unsigned long min_pages;
5862
5863			min_pages = zone_managed_pages(zone) / 1024;
5864			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5865			zone->_watermark[WMARK_MIN] = min_pages;
5866		} else {
5867			/*
5868			 * If it's a lowmem zone, reserve a number of pages
5869			 * proportionate to the zone's size.
5870			 */
5871			zone->_watermark[WMARK_MIN] = tmp;
5872		}
5873
5874		/*
5875		 * Set the kswapd watermarks distance according to the
5876		 * scale factor in proportion to available memory, but
5877		 * ensure a minimum size on small systems.
5878		 */
5879		tmp = max_t(u64, tmp >> 2,
5880			    mult_frac(zone_managed_pages(zone),
5881				      watermark_scale_factor, 10000));
5882
 
 
5883		zone->watermark_boost = 0;
5884		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5885		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5886		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5887
5888		spin_unlock_irqrestore(&zone->lock, flags);
5889	}
5890
5891	/* update totalreserve_pages */
5892	calculate_totalreserve_pages();
5893}
5894
5895/**
5896 * setup_per_zone_wmarks - called when min_free_kbytes changes
5897 * or when memory is hot-{added|removed}
5898 *
5899 * Ensures that the watermark[min,low,high] values for each zone are set
5900 * correctly with respect to min_free_kbytes.
5901 */
5902void setup_per_zone_wmarks(void)
5903{
5904	struct zone *zone;
5905	static DEFINE_SPINLOCK(lock);
5906
5907	spin_lock(&lock);
5908	__setup_per_zone_wmarks();
5909	spin_unlock(&lock);
5910
5911	/*
5912	 * The watermark size have changed so update the pcpu batch
5913	 * and high limits or the limits may be inappropriate.
5914	 */
5915	for_each_zone(zone)
5916		zone_pcp_update(zone, 0);
5917}
5918
5919/*
5920 * Initialise min_free_kbytes.
5921 *
5922 * For small machines we want it small (128k min).  For large machines
5923 * we want it large (256MB max).  But it is not linear, because network
5924 * bandwidth does not increase linearly with machine size.  We use
5925 *
5926 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5927 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5928 *
5929 * which yields
5930 *
5931 * 16MB:	512k
5932 * 32MB:	724k
5933 * 64MB:	1024k
5934 * 128MB:	1448k
5935 * 256MB:	2048k
5936 * 512MB:	2896k
5937 * 1024MB:	4096k
5938 * 2048MB:	5792k
5939 * 4096MB:	8192k
5940 * 8192MB:	11584k
5941 * 16384MB:	16384k
5942 */
5943void calculate_min_free_kbytes(void)
5944{
5945	unsigned long lowmem_kbytes;
5946	int new_min_free_kbytes;
5947
5948	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5949	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5950
5951	if (new_min_free_kbytes > user_min_free_kbytes)
5952		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5953	else
 
 
 
 
5954		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5955				new_min_free_kbytes, user_min_free_kbytes);
5956
5957}
5958
5959int __meminit init_per_zone_wmark_min(void)
5960{
5961	calculate_min_free_kbytes();
5962	setup_per_zone_wmarks();
5963	refresh_zone_stat_thresholds();
5964	setup_per_zone_lowmem_reserve();
5965
5966#ifdef CONFIG_NUMA
5967	setup_min_unmapped_ratio();
5968	setup_min_slab_ratio();
5969#endif
5970
5971	khugepaged_min_free_kbytes_update();
5972
5973	return 0;
5974}
5975postcore_initcall(init_per_zone_wmark_min)
5976
5977/*
5978 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5979 *	that we can call two helper functions whenever min_free_kbytes
5980 *	changes.
5981 */
5982static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5983		void *buffer, size_t *length, loff_t *ppos)
5984{
5985	int rc;
5986
5987	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5988	if (rc)
5989		return rc;
5990
5991	if (write) {
5992		user_min_free_kbytes = min_free_kbytes;
5993		setup_per_zone_wmarks();
5994	}
5995	return 0;
5996}
5997
5998static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5999		void *buffer, size_t *length, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
6000{
6001	int rc;
6002
6003	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6004	if (rc)
6005		return rc;
6006
6007	if (write)
6008		setup_per_zone_wmarks();
6009
6010	return 0;
6011}
6012
6013#ifdef CONFIG_NUMA
6014static void setup_min_unmapped_ratio(void)
6015{
6016	pg_data_t *pgdat;
6017	struct zone *zone;
6018
6019	for_each_online_pgdat(pgdat)
6020		pgdat->min_unmapped_pages = 0;
6021
6022	for_each_zone(zone)
6023		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6024						         sysctl_min_unmapped_ratio) / 100;
6025}
6026
6027
6028static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6029		void *buffer, size_t *length, loff_t *ppos)
6030{
6031	int rc;
6032
6033	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6034	if (rc)
6035		return rc;
6036
6037	setup_min_unmapped_ratio();
6038
6039	return 0;
6040}
6041
6042static void setup_min_slab_ratio(void)
6043{
6044	pg_data_t *pgdat;
6045	struct zone *zone;
6046
6047	for_each_online_pgdat(pgdat)
6048		pgdat->min_slab_pages = 0;
6049
6050	for_each_zone(zone)
6051		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6052						     sysctl_min_slab_ratio) / 100;
6053}
6054
6055static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6056		void *buffer, size_t *length, loff_t *ppos)
6057{
6058	int rc;
6059
6060	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6061	if (rc)
6062		return rc;
6063
6064	setup_min_slab_ratio();
6065
6066	return 0;
6067}
6068#endif
6069
6070/*
6071 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6072 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6073 *	whenever sysctl_lowmem_reserve_ratio changes.
6074 *
6075 * The reserve ratio obviously has absolutely no relation with the
6076 * minimum watermarks. The lowmem reserve ratio can only make sense
6077 * if in function of the boot time zone sizes.
6078 */
6079static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6080		int write, void *buffer, size_t *length, loff_t *ppos)
6081{
6082	int i;
6083
6084	proc_dointvec_minmax(table, write, buffer, length, ppos);
6085
6086	for (i = 0; i < MAX_NR_ZONES; i++) {
6087		if (sysctl_lowmem_reserve_ratio[i] < 1)
6088			sysctl_lowmem_reserve_ratio[i] = 0;
6089	}
6090
6091	setup_per_zone_lowmem_reserve();
6092	return 0;
6093}
6094
6095/*
6096 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6097 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6098 * pagelist can have before it gets flushed back to buddy allocator.
6099 */
6100static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6101		int write, void *buffer, size_t *length, loff_t *ppos)
6102{
6103	struct zone *zone;
6104	int old_percpu_pagelist_high_fraction;
6105	int ret;
6106
6107	mutex_lock(&pcp_batch_high_lock);
6108	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6109
6110	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6111	if (!write || ret < 0)
6112		goto out;
6113
6114	/* Sanity checking to avoid pcp imbalance */
6115	if (percpu_pagelist_high_fraction &&
6116	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6117		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6118		ret = -EINVAL;
6119		goto out;
6120	}
6121
6122	/* No change? */
6123	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6124		goto out;
6125
6126	for_each_populated_zone(zone)
6127		zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
6128out:
6129	mutex_unlock(&pcp_batch_high_lock);
6130	return ret;
6131}
6132
6133static struct ctl_table page_alloc_sysctl_table[] = {
6134	{
6135		.procname	= "min_free_kbytes",
6136		.data		= &min_free_kbytes,
6137		.maxlen		= sizeof(min_free_kbytes),
6138		.mode		= 0644,
6139		.proc_handler	= min_free_kbytes_sysctl_handler,
6140		.extra1		= SYSCTL_ZERO,
6141	},
6142	{
6143		.procname	= "watermark_boost_factor",
6144		.data		= &watermark_boost_factor,
6145		.maxlen		= sizeof(watermark_boost_factor),
6146		.mode		= 0644,
6147		.proc_handler	= proc_dointvec_minmax,
6148		.extra1		= SYSCTL_ZERO,
6149	},
6150	{
6151		.procname	= "watermark_scale_factor",
6152		.data		= &watermark_scale_factor,
6153		.maxlen		= sizeof(watermark_scale_factor),
6154		.mode		= 0644,
6155		.proc_handler	= watermark_scale_factor_sysctl_handler,
6156		.extra1		= SYSCTL_ONE,
6157		.extra2		= SYSCTL_THREE_THOUSAND,
6158	},
6159	{
6160		.procname	= "percpu_pagelist_high_fraction",
6161		.data		= &percpu_pagelist_high_fraction,
6162		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6163		.mode		= 0644,
6164		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6165		.extra1		= SYSCTL_ZERO,
6166	},
6167	{
6168		.procname	= "lowmem_reserve_ratio",
6169		.data		= &sysctl_lowmem_reserve_ratio,
6170		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6171		.mode		= 0644,
6172		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6173	},
6174#ifdef CONFIG_NUMA
6175	{
6176		.procname	= "numa_zonelist_order",
6177		.data		= &numa_zonelist_order,
6178		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6179		.mode		= 0644,
6180		.proc_handler	= numa_zonelist_order_handler,
6181	},
6182	{
6183		.procname	= "min_unmapped_ratio",
6184		.data		= &sysctl_min_unmapped_ratio,
6185		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6186		.mode		= 0644,
6187		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6188		.extra1		= SYSCTL_ZERO,
6189		.extra2		= SYSCTL_ONE_HUNDRED,
6190	},
6191	{
6192		.procname	= "min_slab_ratio",
6193		.data		= &sysctl_min_slab_ratio,
6194		.maxlen		= sizeof(sysctl_min_slab_ratio),
6195		.mode		= 0644,
6196		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6197		.extra1		= SYSCTL_ZERO,
6198		.extra2		= SYSCTL_ONE_HUNDRED,
6199	},
6200#endif
6201	{}
6202};
6203
6204void __init page_alloc_sysctl_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6205{
6206	register_sysctl_init("vm", page_alloc_sysctl_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6207}
6208
6209#ifdef CONFIG_CONTIG_ALLOC
6210/* Usage: See admin-guide/dynamic-debug-howto.rst */
6211static void alloc_contig_dump_pages(struct list_head *page_list)
6212{
6213	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
 
 
6214
6215	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6216		struct page *page;
6217
6218		dump_stack();
6219		list_for_each_entry(page, page_list, lru)
6220			dump_page(page, "migration failure");
6221	}
6222}
6223
6224/* [start, end) must belong to a single zone. */
6225int __alloc_contig_migrate_range(struct compact_control *cc,
6226					unsigned long start, unsigned long end)
6227{
6228	/* This function is based on compact_zone() from compaction.c. */
6229	unsigned int nr_reclaimed;
6230	unsigned long pfn = start;
6231	unsigned int tries = 0;
6232	int ret = 0;
6233	struct migration_target_control mtc = {
6234		.nid = zone_to_nid(cc->zone),
6235		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6236	};
6237
6238	lru_cache_disable();
6239
6240	while (pfn < end || !list_empty(&cc->migratepages)) {
6241		if (fatal_signal_pending(current)) {
6242			ret = -EINTR;
6243			break;
6244		}
6245
6246		if (list_empty(&cc->migratepages)) {
6247			cc->nr_migratepages = 0;
6248			ret = isolate_migratepages_range(cc, pfn, end);
6249			if (ret && ret != -EAGAIN)
 
6250				break;
6251			pfn = cc->migrate_pfn;
6252			tries = 0;
6253		} else if (++tries == 5) {
6254			ret = -EBUSY;
6255			break;
6256		}
6257
6258		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6259							&cc->migratepages);
6260		cc->nr_migratepages -= nr_reclaimed;
6261
6262		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6263			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6264
6265		/*
6266		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6267		 * to retry again over this error, so do the same here.
6268		 */
6269		if (ret == -ENOMEM)
6270			break;
6271	}
6272
6273	lru_cache_enable();
6274	if (ret < 0) {
6275		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6276			alloc_contig_dump_pages(&cc->migratepages);
6277		putback_movable_pages(&cc->migratepages);
6278		return ret;
6279	}
6280	return 0;
6281}
6282
6283/**
6284 * alloc_contig_range() -- tries to allocate given range of pages
6285 * @start:	start PFN to allocate
6286 * @end:	one-past-the-last PFN to allocate
6287 * @migratetype:	migratetype of the underlying pageblocks (either
6288 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6289 *			in range must have the same migratetype and it must
6290 *			be either of the two.
6291 * @gfp_mask:	GFP mask to use during compaction
6292 *
6293 * The PFN range does not have to be pageblock aligned. The PFN range must
6294 * belong to a single zone.
6295 *
6296 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6297 * pageblocks in the range.  Once isolated, the pageblocks should not
6298 * be modified by others.
6299 *
6300 * Return: zero on success or negative error code.  On success all
6301 * pages which PFN is in [start, end) are allocated for the caller and
6302 * need to be freed with free_contig_range().
6303 */
6304int alloc_contig_range(unsigned long start, unsigned long end,
6305		       unsigned migratetype, gfp_t gfp_mask)
6306{
6307	unsigned long outer_start, outer_end;
6308	int order;
6309	int ret = 0;
6310
6311	struct compact_control cc = {
6312		.nr_migratepages = 0,
6313		.order = -1,
6314		.zone = page_zone(pfn_to_page(start)),
6315		.mode = MIGRATE_SYNC,
6316		.ignore_skip_hint = true,
6317		.no_set_skip_hint = true,
6318		.gfp_mask = current_gfp_context(gfp_mask),
6319		.alloc_contig = true,
6320	};
6321	INIT_LIST_HEAD(&cc.migratepages);
6322
6323	/*
6324	 * What we do here is we mark all pageblocks in range as
6325	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6326	 * have different sizes, and due to the way page allocator
6327	 * work, start_isolate_page_range() has special handlings for this.
 
 
 
6328	 *
6329	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6330	 * migrate the pages from an unaligned range (ie. pages that
6331	 * we are interested in). This will put all the pages in
6332	 * range back to page allocator as MIGRATE_ISOLATE.
6333	 *
6334	 * When this is done, we take the pages in range from page
6335	 * allocator removing them from the buddy system.  This way
6336	 * page allocator will never consider using them.
6337	 *
6338	 * This lets us mark the pageblocks back as
6339	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6340	 * aligned range but not in the unaligned, original range are
6341	 * put back to page allocator so that buddy can use them.
6342	 */
6343
6344	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6345	if (ret)
6346		goto done;
6347
6348	drain_all_pages(cc.zone);
6349
6350	/*
6351	 * In case of -EBUSY, we'd like to know which page causes problem.
6352	 * So, just fall through. test_pages_isolated() has a tracepoint
6353	 * which will report the busy page.
6354	 *
6355	 * It is possible that busy pages could become available before
6356	 * the call to test_pages_isolated, and the range will actually be
6357	 * allocated.  So, if we fall through be sure to clear ret so that
6358	 * -EBUSY is not accidentally used or returned to caller.
6359	 */
6360	ret = __alloc_contig_migrate_range(&cc, start, end);
6361	if (ret && ret != -EBUSY)
6362		goto done;
6363	ret = 0;
6364
6365	/*
6366	 * Pages from [start, end) are within a pageblock_nr_pages
6367	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6368	 * more, all pages in [start, end) are free in page allocator.
6369	 * What we are going to do is to allocate all pages from
6370	 * [start, end) (that is remove them from page allocator).
6371	 *
6372	 * The only problem is that pages at the beginning and at the
6373	 * end of interesting range may be not aligned with pages that
6374	 * page allocator holds, ie. they can be part of higher order
6375	 * pages.  Because of this, we reserve the bigger range and
6376	 * once this is done free the pages we are not interested in.
6377	 *
6378	 * We don't have to hold zone->lock here because the pages are
6379	 * isolated thus they won't get removed from buddy.
6380	 */
6381
 
 
6382	order = 0;
6383	outer_start = start;
6384	while (!PageBuddy(pfn_to_page(outer_start))) {
6385		if (++order > MAX_PAGE_ORDER) {
6386			outer_start = start;
6387			break;
6388		}
6389		outer_start &= ~0UL << order;
6390	}
6391
6392	if (outer_start != start) {
6393		order = buddy_order(pfn_to_page(outer_start));
6394
6395		/*
6396		 * outer_start page could be small order buddy page and
6397		 * it doesn't include start page. Adjust outer_start
6398		 * in this case to report failed page properly
6399		 * on tracepoint in test_pages_isolated()
6400		 */
6401		if (outer_start + (1UL << order) <= start)
6402			outer_start = start;
6403	}
6404
6405	/* Make sure the range is really isolated. */
6406	if (test_pages_isolated(outer_start, end, 0)) {
 
 
6407		ret = -EBUSY;
6408		goto done;
6409	}
6410
6411	/* Grab isolated pages from freelists. */
6412	outer_end = isolate_freepages_range(&cc, outer_start, end);
6413	if (!outer_end) {
6414		ret = -EBUSY;
6415		goto done;
6416	}
6417
6418	/* Free head and tail (if any) */
6419	if (start != outer_start)
6420		free_contig_range(outer_start, start - outer_start);
6421	if (end != outer_end)
6422		free_contig_range(end, outer_end - end);
6423
6424done:
6425	undo_isolate_page_range(start, end, migratetype);
 
6426	return ret;
6427}
6428EXPORT_SYMBOL(alloc_contig_range);
6429
6430static int __alloc_contig_pages(unsigned long start_pfn,
6431				unsigned long nr_pages, gfp_t gfp_mask)
6432{
6433	unsigned long end_pfn = start_pfn + nr_pages;
6434
6435	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6436				  gfp_mask);
6437}
6438
6439static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6440				   unsigned long nr_pages)
6441{
6442	unsigned long i, end_pfn = start_pfn + nr_pages;
6443	struct page *page;
6444
6445	for (i = start_pfn; i < end_pfn; i++) {
6446		page = pfn_to_online_page(i);
6447		if (!page)
6448			return false;
6449
6450		if (page_zone(page) != z)
6451			return false;
6452
6453		if (PageReserved(page))
6454			return false;
6455
6456		if (PageHuge(page))
6457			return false;
6458	}
6459	return true;
6460}
6461
6462static bool zone_spans_last_pfn(const struct zone *zone,
6463				unsigned long start_pfn, unsigned long nr_pages)
6464{
6465	unsigned long last_pfn = start_pfn + nr_pages - 1;
6466
6467	return zone_spans_pfn(zone, last_pfn);
6468}
6469
6470/**
6471 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6472 * @nr_pages:	Number of contiguous pages to allocate
6473 * @gfp_mask:	GFP mask to limit search and used during compaction
6474 * @nid:	Target node
6475 * @nodemask:	Mask for other possible nodes
6476 *
6477 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6478 * on an applicable zonelist to find a contiguous pfn range which can then be
6479 * tried for allocation with alloc_contig_range(). This routine is intended
6480 * for allocation requests which can not be fulfilled with the buddy allocator.
6481 *
6482 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6483 * power of two, then allocated range is also guaranteed to be aligned to same
6484 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6485 *
6486 * Allocated pages can be freed with free_contig_range() or by manually calling
6487 * __free_page() on each allocated page.
6488 *
6489 * Return: pointer to contiguous pages on success, or NULL if not successful.
6490 */
6491struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6492				int nid, nodemask_t *nodemask)
6493{
6494	unsigned long ret, pfn, flags;
6495	struct zonelist *zonelist;
6496	struct zone *zone;
6497	struct zoneref *z;
6498
6499	zonelist = node_zonelist(nid, gfp_mask);
6500	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6501					gfp_zone(gfp_mask), nodemask) {
6502		spin_lock_irqsave(&zone->lock, flags);
6503
6504		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6505		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6506			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6507				/*
6508				 * We release the zone lock here because
6509				 * alloc_contig_range() will also lock the zone
6510				 * at some point. If there's an allocation
6511				 * spinning on this lock, it may win the race
6512				 * and cause alloc_contig_range() to fail...
6513				 */
6514				spin_unlock_irqrestore(&zone->lock, flags);
6515				ret = __alloc_contig_pages(pfn, nr_pages,
6516							gfp_mask);
6517				if (!ret)
6518					return pfn_to_page(pfn);
6519				spin_lock_irqsave(&zone->lock, flags);
6520			}
6521			pfn += nr_pages;
6522		}
6523		spin_unlock_irqrestore(&zone->lock, flags);
6524	}
6525	return NULL;
6526}
6527#endif /* CONFIG_CONTIG_ALLOC */
6528
6529void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6530{
6531	unsigned long count = 0;
6532
6533	for (; nr_pages--; pfn++) {
6534		struct page *page = pfn_to_page(pfn);
6535
6536		count += page_count(page) != 1;
6537		__free_page(page);
6538	}
6539	WARN(count != 0, "%lu pages are still in use!\n", count);
6540}
6541EXPORT_SYMBOL(free_contig_range);
6542
6543/*
6544 * Effectively disable pcplists for the zone by setting the high limit to 0
6545 * and draining all cpus. A concurrent page freeing on another CPU that's about
6546 * to put the page on pcplist will either finish before the drain and the page
6547 * will be drained, or observe the new high limit and skip the pcplist.
6548 *
6549 * Must be paired with a call to zone_pcp_enable().
6550 */
6551void zone_pcp_disable(struct zone *zone)
6552{
 
6553	mutex_lock(&pcp_batch_high_lock);
6554	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6555	__drain_all_pages(zone, true);
6556}
6557
6558void zone_pcp_enable(struct zone *zone)
6559{
6560	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6561		zone->pageset_high_max, zone->pageset_batch);
6562	mutex_unlock(&pcp_batch_high_lock);
6563}
6564
6565void zone_pcp_reset(struct zone *zone)
6566{
 
6567	int cpu;
6568	struct per_cpu_zonestat *pzstats;
6569
6570	if (zone->per_cpu_pageset != &boot_pageset) {
 
 
6571		for_each_online_cpu(cpu) {
6572			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6573			drain_zonestat(zone, pzstats);
6574		}
6575		free_percpu(zone->per_cpu_pageset);
6576		zone->per_cpu_pageset = &boot_pageset;
6577		if (zone->per_cpu_zonestats != &boot_zonestats) {
6578			free_percpu(zone->per_cpu_zonestats);
6579			zone->per_cpu_zonestats = &boot_zonestats;
6580		}
 
 
6581	}
 
6582}
6583
6584#ifdef CONFIG_MEMORY_HOTREMOVE
6585/*
6586 * All pages in the range must be in a single zone, must not contain holes,
6587 * must span full sections, and must be isolated before calling this function.
6588 */
6589void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 
6590{
6591	unsigned long pfn = start_pfn;
6592	struct page *page;
6593	struct zone *zone;
6594	unsigned int order;
 
6595	unsigned long flags;
 
 
 
 
 
 
 
 
6596
6597	offline_mem_sections(pfn, end_pfn);
6598	zone = page_zone(pfn_to_page(pfn));
6599	spin_lock_irqsave(&zone->lock, flags);
 
6600	while (pfn < end_pfn) {
 
 
 
 
6601		page = pfn_to_page(pfn);
6602		/*
6603		 * The HWPoisoned page may be not in buddy system, and
6604		 * page_count() is not 0.
6605		 */
6606		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6607			pfn++;
6608			continue;
6609		}
6610		/*
6611		 * At this point all remaining PageOffline() pages have a
6612		 * reference count of 0 and can simply be skipped.
6613		 */
6614		if (PageOffline(page)) {
6615			BUG_ON(page_count(page));
6616			BUG_ON(PageBuddy(page));
6617			pfn++;
6618			continue;
6619		}
6620
6621		BUG_ON(page_count(page));
6622		BUG_ON(!PageBuddy(page));
6623		order = buddy_order(page);
6624		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
6625		pfn += (1 << order);
6626	}
6627	spin_unlock_irqrestore(&zone->lock, flags);
 
 
6628}
6629#endif
6630
6631/*
6632 * This function returns a stable result only if called under zone lock.
6633 */
6634bool is_free_buddy_page(struct page *page)
6635{
 
6636	unsigned long pfn = page_to_pfn(page);
 
6637	unsigned int order;
6638
6639	for (order = 0; order < NR_PAGE_ORDERS; order++) {
 
6640		struct page *page_head = page - (pfn & ((1 << order) - 1));
6641
6642		if (PageBuddy(page_head) &&
6643		    buddy_order_unsafe(page_head) >= order)
6644			break;
6645	}
 
6646
6647	return order <= MAX_PAGE_ORDER;
6648}
6649EXPORT_SYMBOL(is_free_buddy_page);
6650
6651#ifdef CONFIG_MEMORY_FAILURE
6652/*
6653 * Break down a higher-order page in sub-pages, and keep our target out of
6654 * buddy allocator.
6655 */
6656static void break_down_buddy_pages(struct zone *zone, struct page *page,
6657				   struct page *target, int low, int high,
6658				   int migratetype)
6659{
6660	unsigned long size = 1 << high;
6661	struct page *current_buddy;
6662
6663	while (high > low) {
6664		high--;
6665		size >>= 1;
6666
6667		if (target >= &page[size]) {
6668			current_buddy = page;
6669			page = page + size;
6670		} else {
6671			current_buddy = page + size;
6672		}
6673
6674		if (set_page_guard(zone, current_buddy, high, migratetype))
6675			continue;
6676
6677		add_to_free_list(current_buddy, zone, high, migratetype);
6678		set_buddy_order(current_buddy, high);
6679	}
6680}
6681
6682/*
6683 * Take a page that will be marked as poisoned off the buddy allocator.
6684 */
6685bool take_page_off_buddy(struct page *page)
6686{
6687	struct zone *zone = page_zone(page);
6688	unsigned long pfn = page_to_pfn(page);
6689	unsigned long flags;
6690	unsigned int order;
6691	bool ret = false;
6692
6693	spin_lock_irqsave(&zone->lock, flags);
6694	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6695		struct page *page_head = page - (pfn & ((1 << order) - 1));
6696		int page_order = buddy_order(page_head);
6697
6698		if (PageBuddy(page_head) && page_order >= order) {
6699			unsigned long pfn_head = page_to_pfn(page_head);
6700			int migratetype = get_pfnblock_migratetype(page_head,
6701								   pfn_head);
6702
6703			del_page_from_free_list(page_head, zone, page_order);
6704			break_down_buddy_pages(zone, page_head, page, 0,
6705						page_order, migratetype);
6706			SetPageHWPoisonTakenOff(page);
6707			if (!is_migrate_isolate(migratetype))
6708				__mod_zone_freepage_state(zone, -1, migratetype);
6709			ret = true;
6710			break;
6711		}
6712		if (page_count(page_head) > 0)
6713			break;
6714	}
6715	spin_unlock_irqrestore(&zone->lock, flags);
6716	return ret;
6717}
6718
6719/*
6720 * Cancel takeoff done by take_page_off_buddy().
6721 */
6722bool put_page_back_buddy(struct page *page)
6723{
6724	struct zone *zone = page_zone(page);
6725	unsigned long pfn = page_to_pfn(page);
6726	unsigned long flags;
6727	int migratetype = get_pfnblock_migratetype(page, pfn);
6728	bool ret = false;
6729
6730	spin_lock_irqsave(&zone->lock, flags);
6731	if (put_page_testzero(page)) {
6732		ClearPageHWPoisonTakenOff(page);
6733		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6734		if (TestClearPageHWPoison(page)) {
6735			ret = true;
6736		}
6737	}
6738	spin_unlock_irqrestore(&zone->lock, flags);
6739
6740	return ret;
6741}
6742#endif
6743
6744#ifdef CONFIG_ZONE_DMA
6745bool has_managed_dma(void)
6746{
6747	struct pglist_data *pgdat;
6748
6749	for_each_online_pgdat(pgdat) {
6750		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6751
6752		if (managed_zone(zone))
6753			return true;
6754	}
6755	return false;
6756}
6757#endif /* CONFIG_ZONE_DMA */
6758
6759#ifdef CONFIG_UNACCEPTED_MEMORY
6760
6761/* Counts number of zones with unaccepted pages. */
6762static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6763
6764static bool lazy_accept = true;
6765
6766static int __init accept_memory_parse(char *p)
6767{
6768	if (!strcmp(p, "lazy")) {
6769		lazy_accept = true;
6770		return 0;
6771	} else if (!strcmp(p, "eager")) {
6772		lazy_accept = false;
6773		return 0;
6774	} else {
6775		return -EINVAL;
6776	}
6777}
6778early_param("accept_memory", accept_memory_parse);
6779
6780static bool page_contains_unaccepted(struct page *page, unsigned int order)
6781{
6782	phys_addr_t start = page_to_phys(page);
6783	phys_addr_t end = start + (PAGE_SIZE << order);
6784
6785	return range_contains_unaccepted_memory(start, end);
6786}
6787
6788static void accept_page(struct page *page, unsigned int order)
6789{
6790	phys_addr_t start = page_to_phys(page);
6791
6792	accept_memory(start, start + (PAGE_SIZE << order));
6793}
6794
6795static bool try_to_accept_memory_one(struct zone *zone)
6796{
6797	unsigned long flags;
6798	struct page *page;
6799	bool last;
6800
6801	if (list_empty(&zone->unaccepted_pages))
6802		return false;
6803
6804	spin_lock_irqsave(&zone->lock, flags);
6805	page = list_first_entry_or_null(&zone->unaccepted_pages,
6806					struct page, lru);
6807	if (!page) {
6808		spin_unlock_irqrestore(&zone->lock, flags);
6809		return false;
6810	}
6811
6812	list_del(&page->lru);
6813	last = list_empty(&zone->unaccepted_pages);
6814
6815	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6816	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6817	spin_unlock_irqrestore(&zone->lock, flags);
6818
6819	accept_page(page, MAX_PAGE_ORDER);
6820
6821	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6822
6823	if (last)
6824		static_branch_dec(&zones_with_unaccepted_pages);
6825
6826	return true;
6827}
6828
6829static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6830{
6831	long to_accept;
6832	int ret = false;
6833
6834	/* How much to accept to get to high watermark? */
6835	to_accept = high_wmark_pages(zone) -
6836		    (zone_page_state(zone, NR_FREE_PAGES) -
6837		    __zone_watermark_unusable_free(zone, order, 0));
6838
6839	/* Accept at least one page */
6840	do {
6841		if (!try_to_accept_memory_one(zone))
6842			break;
6843		ret = true;
6844		to_accept -= MAX_ORDER_NR_PAGES;
6845	} while (to_accept > 0);
6846
6847	return ret;
6848}
6849
6850static inline bool has_unaccepted_memory(void)
6851{
6852	return static_branch_unlikely(&zones_with_unaccepted_pages);
6853}
6854
6855static bool __free_unaccepted(struct page *page)
6856{
6857	struct zone *zone = page_zone(page);
6858	unsigned long flags;
6859	bool first = false;
6860
6861	if (!lazy_accept)
6862		return false;
6863
6864	spin_lock_irqsave(&zone->lock, flags);
6865	first = list_empty(&zone->unaccepted_pages);
6866	list_add_tail(&page->lru, &zone->unaccepted_pages);
6867	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6868	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6869	spin_unlock_irqrestore(&zone->lock, flags);
6870
6871	if (first)
6872		static_branch_inc(&zones_with_unaccepted_pages);
6873
6874	return true;
6875}
6876
6877#else
6878
6879static bool page_contains_unaccepted(struct page *page, unsigned int order)
6880{
6881	return false;
6882}
6883
6884static void accept_page(struct page *page, unsigned int order)
6885{
6886}
6887
6888static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6889{
6890	return false;
6891}
6892
6893static inline bool has_unaccepted_memory(void)
6894{
6895	return false;
6896}
6897
6898static bool __free_unaccepted(struct page *page)
6899{
6900	BUILD_BUG();
6901	return false;
6902}
6903
6904#endif /* CONFIG_UNACCEPTED_MEMORY */