Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/audit.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
  25
  26/*
  27 * NTP timekeeping variables:
  28 *
  29 * Note: All of the NTP state is protected by the timekeeping locks.
  30 */
  31
  32
  33/* USER_HZ period (usecs): */
  34unsigned long			tick_usec = USER_TICK_USEC;
  35
  36/* SHIFTED_HZ period (nsecs): */
  37unsigned long			tick_nsec;
  38
  39static u64			tick_length;
  40static u64			tick_length_base;
  41
  42#define SECS_PER_DAY		86400
  43#define MAX_TICKADJ		500LL		/* usecs */
  44#define MAX_TICKADJ_SCALED \
  45	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  46#define MAX_TAI_OFFSET		100000
  47
  48/*
  49 * phase-lock loop variables
  50 */
  51
  52/*
  53 * clock synchronization status
  54 *
  55 * (TIME_ERROR prevents overwriting the CMOS clock)
  56 */
  57static int			time_state = TIME_OK;
  58
  59/* clock status bits:							*/
  60static int			time_status = STA_UNSYNC;
  61
  62/* time adjustment (nsecs):						*/
  63static s64			time_offset;
  64
  65/* pll time constant:							*/
  66static long			time_constant = 2;
  67
  68/* maximum error (usecs):						*/
  69static long			time_maxerror = NTP_PHASE_LIMIT;
  70
  71/* estimated error (usecs):						*/
  72static long			time_esterror = NTP_PHASE_LIMIT;
  73
  74/* frequency offset (scaled nsecs/secs):				*/
  75static s64			time_freq;
  76
  77/* time at last adjustment (secs):					*/
  78static time64_t		time_reftime;
  79
  80static long			time_adjust;
  81
  82/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
  83static s64			ntp_tick_adj;
  84
  85/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  86static time64_t			ntp_next_leap_sec = TIME64_MAX;
  87
  88#ifdef CONFIG_NTP_PPS
  89
  90/*
  91 * The following variables are used when a pulse-per-second (PPS) signal
  92 * is available. They establish the engineering parameters of the clock
  93 * discipline loop when controlled by the PPS signal.
  94 */
  95#define PPS_VALID	10	/* PPS signal watchdog max (s) */
  96#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
  97#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
  98#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
  99#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 100				   increase pps_shift or consecutive bad
 101				   intervals to decrease it */
 102#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 103
 104static int pps_valid;		/* signal watchdog counter */
 105static long pps_tf[3];		/* phase median filter */
 106static long pps_jitter;		/* current jitter (ns) */
 107static struct timespec64 pps_fbase; /* beginning of the last freq interval */
 108static int pps_shift;		/* current interval duration (s) (shift) */
 109static int pps_intcnt;		/* interval counter */
 110static s64 pps_freq;		/* frequency offset (scaled ns/s) */
 111static long pps_stabil;		/* current stability (scaled ns/s) */
 112
 113/*
 114 * PPS signal quality monitors
 115 */
 116static long pps_calcnt;		/* calibration intervals */
 117static long pps_jitcnt;		/* jitter limit exceeded */
 118static long pps_stbcnt;		/* stability limit exceeded */
 119static long pps_errcnt;		/* calibration errors */
 120
 121
 122/* PPS kernel consumer compensates the whole phase error immediately.
 123 * Otherwise, reduce the offset by a fixed factor times the time constant.
 124 */
 125static inline s64 ntp_offset_chunk(s64 offset)
 126{
 127	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 128		return offset;
 129	else
 130		return shift_right(offset, SHIFT_PLL + time_constant);
 131}
 132
 133static inline void pps_reset_freq_interval(void)
 134{
 135	/* the PPS calibration interval may end
 136	   surprisingly early */
 137	pps_shift = PPS_INTMIN;
 138	pps_intcnt = 0;
 139}
 140
 141/**
 142 * pps_clear - Clears the PPS state variables
 143 */
 144static inline void pps_clear(void)
 145{
 146	pps_reset_freq_interval();
 147	pps_tf[0] = 0;
 148	pps_tf[1] = 0;
 149	pps_tf[2] = 0;
 150	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 151	pps_freq = 0;
 152}
 153
 154/* Decrease pps_valid to indicate that another second has passed since
 155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 156 * missing.
 157 */
 158static inline void pps_dec_valid(void)
 159{
 160	if (pps_valid > 0)
 161		pps_valid--;
 162	else {
 163		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 164				 STA_PPSWANDER | STA_PPSERROR);
 165		pps_clear();
 166	}
 167}
 168
 169static inline void pps_set_freq(s64 freq)
 170{
 171	pps_freq = freq;
 172}
 173
 174static inline int is_error_status(int status)
 175{
 176	return (status & (STA_UNSYNC|STA_CLOCKERR))
 177		/* PPS signal lost when either PPS time or
 178		 * PPS frequency synchronization requested
 179		 */
 180		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
 181			&& !(status & STA_PPSSIGNAL))
 182		/* PPS jitter exceeded when
 183		 * PPS time synchronization requested */
 184		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
 185			== (STA_PPSTIME|STA_PPSJITTER))
 186		/* PPS wander exceeded or calibration error when
 187		 * PPS frequency synchronization requested
 188		 */
 189		|| ((status & STA_PPSFREQ)
 190			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
 191}
 192
 193static inline void pps_fill_timex(struct __kernel_timex *txc)
 194{
 195	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 196					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 197	txc->jitter	   = pps_jitter;
 198	if (!(time_status & STA_NANO))
 199		txc->jitter = pps_jitter / NSEC_PER_USEC;
 200	txc->shift	   = pps_shift;
 201	txc->stabil	   = pps_stabil;
 202	txc->jitcnt	   = pps_jitcnt;
 203	txc->calcnt	   = pps_calcnt;
 204	txc->errcnt	   = pps_errcnt;
 205	txc->stbcnt	   = pps_stbcnt;
 206}
 207
 208#else /* !CONFIG_NTP_PPS */
 209
 210static inline s64 ntp_offset_chunk(s64 offset)
 211{
 212	return shift_right(offset, SHIFT_PLL + time_constant);
 213}
 214
 215static inline void pps_reset_freq_interval(void) {}
 216static inline void pps_clear(void) {}
 217static inline void pps_dec_valid(void) {}
 218static inline void pps_set_freq(s64 freq) {}
 219
 220static inline int is_error_status(int status)
 221{
 222	return status & (STA_UNSYNC|STA_CLOCKERR);
 223}
 224
 225static inline void pps_fill_timex(struct __kernel_timex *txc)
 226{
 227	/* PPS is not implemented, so these are zero */
 228	txc->ppsfreq	   = 0;
 229	txc->jitter	   = 0;
 230	txc->shift	   = 0;
 231	txc->stabil	   = 0;
 232	txc->jitcnt	   = 0;
 233	txc->calcnt	   = 0;
 234	txc->errcnt	   = 0;
 235	txc->stbcnt	   = 0;
 236}
 237
 238#endif /* CONFIG_NTP_PPS */
 239
 240
 241/**
 242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 243 *
 244 */
 245static inline int ntp_synced(void)
 246{
 247	return !(time_status & STA_UNSYNC);
 248}
 249
 250
 251/*
 252 * NTP methods:
 253 */
 254
 255/*
 256 * Update (tick_length, tick_length_base, tick_nsec), based
 257 * on (tick_usec, ntp_tick_adj, time_freq):
 258 */
 259static void ntp_update_frequency(void)
 260{
 261	u64 second_length;
 262	u64 new_base;
 263
 264	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 265						<< NTP_SCALE_SHIFT;
 266
 267	second_length		+= ntp_tick_adj;
 268	second_length		+= time_freq;
 269
 270	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 271	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 272
 273	/*
 274	 * Don't wait for the next second_overflow, apply
 275	 * the change to the tick length immediately:
 276	 */
 277	tick_length		+= new_base - tick_length_base;
 278	tick_length_base	 = new_base;
 279}
 280
 281static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 282{
 283	time_status &= ~STA_MODE;
 284
 285	if (secs < MINSEC)
 286		return 0;
 287
 288	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 289		return 0;
 290
 291	time_status |= STA_MODE;
 292
 293	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 294}
 295
 296static void ntp_update_offset(long offset)
 297{
 298	s64 freq_adj;
 299	s64 offset64;
 300	long secs;
 301
 302	if (!(time_status & STA_PLL))
 303		return;
 304
 305	if (!(time_status & STA_NANO)) {
 306		/* Make sure the multiplication below won't overflow */
 307		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 308		offset *= NSEC_PER_USEC;
 309	}
 310
 311	/*
 312	 * Scale the phase adjustment and
 313	 * clamp to the operating range.
 314	 */
 315	offset = clamp(offset, -MAXPHASE, MAXPHASE);
 316
 317	/*
 318	 * Select how the frequency is to be controlled
 319	 * and in which mode (PLL or FLL).
 320	 */
 321	secs = (long)(__ktime_get_real_seconds() - time_reftime);
 322	if (unlikely(time_status & STA_FREQHOLD))
 323		secs = 0;
 324
 325	time_reftime = __ktime_get_real_seconds();
 326
 327	offset64    = offset;
 328	freq_adj    = ntp_update_offset_fll(offset64, secs);
 329
 330	/*
 331	 * Clamp update interval to reduce PLL gain with low
 332	 * sampling rate (e.g. intermittent network connection)
 333	 * to avoid instability.
 334	 */
 335	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 336		secs = 1 << (SHIFT_PLL + 1 + time_constant);
 337
 338	freq_adj    += (offset64 * secs) <<
 339			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 340
 341	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 342
 343	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 344
 345	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 346}
 347
 348/**
 349 * ntp_clear - Clears the NTP state variables
 350 */
 351void ntp_clear(void)
 352{
 353	time_adjust	= 0;		/* stop active adjtime() */
 354	time_status	|= STA_UNSYNC;
 355	time_maxerror	= NTP_PHASE_LIMIT;
 356	time_esterror	= NTP_PHASE_LIMIT;
 357
 358	ntp_update_frequency();
 359
 360	tick_length	= tick_length_base;
 361	time_offset	= 0;
 362
 363	ntp_next_leap_sec = TIME64_MAX;
 364	/* Clear PPS state variables */
 365	pps_clear();
 366}
 367
 368
 369u64 ntp_tick_length(void)
 370{
 371	return tick_length;
 372}
 373
 374/**
 375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 376 *
 377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 379 */
 380ktime_t ntp_get_next_leap(void)
 381{
 382	ktime_t ret;
 383
 384	if ((time_state == TIME_INS) && (time_status & STA_INS))
 385		return ktime_set(ntp_next_leap_sec, 0);
 386	ret = KTIME_MAX;
 387	return ret;
 388}
 389
 390/*
 391 * this routine handles the overflow of the microsecond field
 392 *
 393 * The tricky bits of code to handle the accurate clock support
 394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 395 * They were originally developed for SUN and DEC kernels.
 396 * All the kudos should go to Dave for this stuff.
 397 *
 398 * Also handles leap second processing, and returns leap offset
 399 */
 400int second_overflow(time64_t secs)
 401{
 402	s64 delta;
 403	int leap = 0;
 404	s32 rem;
 405
 406	/*
 407	 * Leap second processing. If in leap-insert state at the end of the
 408	 * day, the system clock is set back one second; if in leap-delete
 409	 * state, the system clock is set ahead one second.
 410	 */
 411	switch (time_state) {
 412	case TIME_OK:
 413		if (time_status & STA_INS) {
 414			time_state = TIME_INS;
 415			div_s64_rem(secs, SECS_PER_DAY, &rem);
 416			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 417		} else if (time_status & STA_DEL) {
 418			time_state = TIME_DEL;
 419			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 420			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 421		}
 422		break;
 423	case TIME_INS:
 424		if (!(time_status & STA_INS)) {
 425			ntp_next_leap_sec = TIME64_MAX;
 426			time_state = TIME_OK;
 427		} else if (secs == ntp_next_leap_sec) {
 428			leap = -1;
 429			time_state = TIME_OOP;
 430			printk(KERN_NOTICE
 431				"Clock: inserting leap second 23:59:60 UTC\n");
 432		}
 433		break;
 434	case TIME_DEL:
 435		if (!(time_status & STA_DEL)) {
 436			ntp_next_leap_sec = TIME64_MAX;
 437			time_state = TIME_OK;
 438		} else if (secs == ntp_next_leap_sec) {
 439			leap = 1;
 440			ntp_next_leap_sec = TIME64_MAX;
 441			time_state = TIME_WAIT;
 442			printk(KERN_NOTICE
 443				"Clock: deleting leap second 23:59:59 UTC\n");
 444		}
 445		break;
 446	case TIME_OOP:
 447		ntp_next_leap_sec = TIME64_MAX;
 448		time_state = TIME_WAIT;
 449		break;
 450	case TIME_WAIT:
 451		if (!(time_status & (STA_INS | STA_DEL)))
 452			time_state = TIME_OK;
 453		break;
 454	}
 455
 456
 457	/* Bump the maxerror field */
 458	time_maxerror += MAXFREQ / NSEC_PER_USEC;
 459	if (time_maxerror > NTP_PHASE_LIMIT) {
 460		time_maxerror = NTP_PHASE_LIMIT;
 461		time_status |= STA_UNSYNC;
 462	}
 463
 464	/* Compute the phase adjustment for the next second */
 465	tick_length	 = tick_length_base;
 466
 467	delta		 = ntp_offset_chunk(time_offset);
 468	time_offset	-= delta;
 469	tick_length	+= delta;
 470
 471	/* Check PPS signal */
 472	pps_dec_valid();
 473
 474	if (!time_adjust)
 475		goto out;
 476
 477	if (time_adjust > MAX_TICKADJ) {
 478		time_adjust -= MAX_TICKADJ;
 479		tick_length += MAX_TICKADJ_SCALED;
 480		goto out;
 481	}
 482
 483	if (time_adjust < -MAX_TICKADJ) {
 484		time_adjust += MAX_TICKADJ;
 485		tick_length -= MAX_TICKADJ_SCALED;
 486		goto out;
 487	}
 488
 489	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 490							 << NTP_SCALE_SHIFT;
 491	time_adjust = 0;
 492
 493out:
 494	return leap;
 495}
 496
 
 497static void sync_hw_clock(struct work_struct *work);
 498static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
 499
 500static void sched_sync_hw_clock(struct timespec64 now,
 501				unsigned long target_nsec, bool fail)
 502
 
 503{
 504	struct timespec64 next;
 505
 506	ktime_get_real_ts64(&next);
 507	if (!fail)
 508		next.tv_sec = 659;
 509	else {
 510		/*
 511		 * Try again as soon as possible. Delaying long periods
 512		 * decreases the accuracy of the work queue timer. Due to this
 513		 * the algorithm is very likely to require a short-sleep retry
 514		 * after the above long sleep to synchronize ts_nsec.
 515		 */
 516		next.tv_sec = 0;
 517	}
 518
 519	/* Compute the needed delay that will get to tv_nsec == target_nsec */
 520	next.tv_nsec = target_nsec - next.tv_nsec;
 521	if (next.tv_nsec <= 0)
 522		next.tv_nsec += NSEC_PER_SEC;
 523	if (next.tv_nsec >= NSEC_PER_SEC) {
 524		next.tv_sec++;
 525		next.tv_nsec -= NSEC_PER_SEC;
 526	}
 527
 528	queue_delayed_work(system_power_efficient_wq, &sync_work,
 529			   timespec64_to_jiffies(&next));
 530}
 531
 532static void sync_rtc_clock(void)
 533{
 534	unsigned long target_nsec;
 535	struct timespec64 adjust, now;
 536	int rc;
 537
 538	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
 539		return;
 
 
 540
 541	ktime_get_real_ts64(&now);
 
 542
 543	adjust = now;
 544	if (persistent_clock_is_local)
 545		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547	/*
 548	 * The current RTC in use will provide the target_nsec it wants to be
 549	 * called at, and does rtc_tv_nsec_ok internally.
 550	 */
 551	rc = rtc_set_ntp_time(adjust, &target_nsec);
 552	if (rc == -ENODEV)
 553		return;
 554
 555	sched_sync_hw_clock(now, target_nsec, rc);
 
 
 
 
 
 
 
 
 
 
 556}
 557
 558#ifdef CONFIG_GENERIC_CMOS_UPDATE
 559int __weak update_persistent_clock64(struct timespec64 now64)
 560{
 561	return -ENODEV;
 562}
 
 
 
 
 
 563#endif
 564
 565static bool sync_cmos_clock(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566{
 567	static bool no_cmos;
 568	struct timespec64 now;
 569	struct timespec64 adjust;
 570	int rc = -EPROTO;
 571	long target_nsec = NSEC_PER_SEC / 2;
 572
 573	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
 574		return false;
 575
 576	if (no_cmos)
 577		return false;
 578
 579	/*
 580	 * Historically update_persistent_clock64() has followed x86
 581	 * semantics, which match the MC146818A/etc RTC. This RTC will store
 582	 * 'adjust' and then in .5s it will advance once second.
 583	 *
 584	 * Architectures are strongly encouraged to use rtclib and not
 585	 * implement this legacy API.
 586	 */
 587	ktime_get_real_ts64(&now);
 588	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
 589		if (persistent_clock_is_local)
 590			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 591		rc = update_persistent_clock64(adjust);
 592		/*
 593		 * The machine does not support update_persistent_clock64 even
 594		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
 595		 */
 596		if (rc == -ENODEV) {
 597			no_cmos = true;
 598			return false;
 599		}
 600	}
 601
 602	sched_sync_hw_clock(now, target_nsec, rc);
 603	return true;
 604}
 
 605
 606/*
 607 * If we have an externally synchronized Linux clock, then update RTC clock
 608 * accordingly every ~11 minutes. Generally RTCs can only store second
 609 * precision, but many RTCs will adjust the phase of their second tick to
 610 * match the moment of update. This infrastructure arranges to call to the RTC
 611 * set at the correct moment to phase synchronize the RTC second tick over
 612 * with the kernel clock.
 613 */
 614static void sync_hw_clock(struct work_struct *work)
 615{
 616	if (!ntp_synced())
 617		return;
 
 
 
 
 
 
 618
 619	if (sync_cmos_clock())
 
 
 
 
 
 620		return;
 621
 622	sync_rtc_clock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623}
 624
 625void ntp_notify_cmos_timer(void)
 626{
 627	if (!ntp_synced())
 628		return;
 
 
 
 
 
 
 629
 630	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
 631	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
 632		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
 
 633}
 
 
 
 634
 635/*
 636 * Propagate a new txc->status value into the NTP state:
 637 */
 638static inline void process_adj_status(const struct __kernel_timex *txc)
 639{
 640	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 641		time_state = TIME_OK;
 642		time_status = STA_UNSYNC;
 643		ntp_next_leap_sec = TIME64_MAX;
 644		/* restart PPS frequency calibration */
 645		pps_reset_freq_interval();
 646	}
 647
 648	/*
 649	 * If we turn on PLL adjustments then reset the
 650	 * reference time to current time.
 651	 */
 652	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 653		time_reftime = __ktime_get_real_seconds();
 654
 655	/* only set allowed bits */
 656	time_status &= STA_RONLY;
 657	time_status |= txc->status & ~STA_RONLY;
 658}
 659
 660
 661static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
 662					  s32 *time_tai)
 663{
 664	if (txc->modes & ADJ_STATUS)
 665		process_adj_status(txc);
 666
 667	if (txc->modes & ADJ_NANO)
 668		time_status |= STA_NANO;
 669
 670	if (txc->modes & ADJ_MICRO)
 671		time_status &= ~STA_NANO;
 672
 673	if (txc->modes & ADJ_FREQUENCY) {
 674		time_freq = txc->freq * PPM_SCALE;
 675		time_freq = min(time_freq, MAXFREQ_SCALED);
 676		time_freq = max(time_freq, -MAXFREQ_SCALED);
 677		/* update pps_freq */
 678		pps_set_freq(time_freq);
 679	}
 680
 681	if (txc->modes & ADJ_MAXERROR)
 682		time_maxerror = txc->maxerror;
 683
 684	if (txc->modes & ADJ_ESTERROR)
 685		time_esterror = txc->esterror;
 686
 687	if (txc->modes & ADJ_TIMECONST) {
 688		time_constant = txc->constant;
 689		if (!(time_status & STA_NANO))
 690			time_constant += 4;
 691		time_constant = min(time_constant, (long)MAXTC);
 692		time_constant = max(time_constant, 0l);
 693	}
 694
 695	if (txc->modes & ADJ_TAI &&
 696			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
 697		*time_tai = txc->constant;
 698
 699	if (txc->modes & ADJ_OFFSET)
 700		ntp_update_offset(txc->offset);
 701
 702	if (txc->modes & ADJ_TICK)
 703		tick_usec = txc->tick;
 704
 705	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 706		ntp_update_frequency();
 707}
 708
 709
 710/*
 711 * adjtimex mainly allows reading (and writing, if superuser) of
 712 * kernel time-keeping variables. used by xntpd.
 713 */
 714int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
 715		  s32 *time_tai, struct audit_ntp_data *ad)
 716{
 717	int result;
 718
 719	if (txc->modes & ADJ_ADJTIME) {
 720		long save_adjust = time_adjust;
 721
 722		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 723			/* adjtime() is independent from ntp_adjtime() */
 724			time_adjust = txc->offset;
 725			ntp_update_frequency();
 726
 727			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
 728			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
 729		}
 730		txc->offset = save_adjust;
 731	} else {
 732		/* If there are input parameters, then process them: */
 733		if (txc->modes) {
 734			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
 735			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
 736			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
 737			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
 738			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
 739
 740			process_adjtimex_modes(txc, time_tai);
 741
 742			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
 743			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
 744			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
 745			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
 746			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
 747		}
 748
 749		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 750				  NTP_SCALE_SHIFT);
 751		if (!(time_status & STA_NANO))
 752			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
 753	}
 754
 755	result = time_state;	/* mostly `TIME_OK' */
 756	/* check for errors */
 757	if (is_error_status(time_status))
 758		result = TIME_ERROR;
 759
 760	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 761					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 762	txc->maxerror	   = time_maxerror;
 763	txc->esterror	   = time_esterror;
 764	txc->status	   = time_status;
 765	txc->constant	   = time_constant;
 766	txc->precision	   = 1;
 767	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 768	txc->tick	   = tick_usec;
 769	txc->tai	   = *time_tai;
 770
 771	/* fill PPS status fields */
 772	pps_fill_timex(txc);
 773
 774	txc->time.tv_sec = ts->tv_sec;
 775	txc->time.tv_usec = ts->tv_nsec;
 776	if (!(time_status & STA_NANO))
 777		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
 778
 779	/* Handle leapsec adjustments */
 780	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
 781		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
 782			result = TIME_OOP;
 783			txc->tai++;
 784			txc->time.tv_sec--;
 785		}
 786		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
 787			result = TIME_WAIT;
 788			txc->tai--;
 789			txc->time.tv_sec++;
 790		}
 791		if ((time_state == TIME_OOP) &&
 792					(ts->tv_sec == ntp_next_leap_sec)) {
 793			result = TIME_WAIT;
 794		}
 795	}
 796
 797	return result;
 798}
 799
 800#ifdef	CONFIG_NTP_PPS
 801
 802/* actually struct pps_normtime is good old struct timespec, but it is
 803 * semantically different (and it is the reason why it was invented):
 804 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 805 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 806struct pps_normtime {
 807	s64		sec;	/* seconds */
 808	long		nsec;	/* nanoseconds */
 809};
 810
 811/* normalize the timestamp so that nsec is in the
 812   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 813static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 814{
 815	struct pps_normtime norm = {
 816		.sec = ts.tv_sec,
 817		.nsec = ts.tv_nsec
 818	};
 819
 820	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 821		norm.nsec -= NSEC_PER_SEC;
 822		norm.sec++;
 823	}
 824
 825	return norm;
 826}
 827
 828/* get current phase correction and jitter */
 829static inline long pps_phase_filter_get(long *jitter)
 830{
 831	*jitter = pps_tf[0] - pps_tf[1];
 832	if (*jitter < 0)
 833		*jitter = -*jitter;
 834
 835	/* TODO: test various filters */
 836	return pps_tf[0];
 837}
 838
 839/* add the sample to the phase filter */
 840static inline void pps_phase_filter_add(long err)
 841{
 842	pps_tf[2] = pps_tf[1];
 843	pps_tf[1] = pps_tf[0];
 844	pps_tf[0] = err;
 845}
 846
 847/* decrease frequency calibration interval length.
 848 * It is halved after four consecutive unstable intervals.
 849 */
 850static inline void pps_dec_freq_interval(void)
 851{
 852	if (--pps_intcnt <= -PPS_INTCOUNT) {
 853		pps_intcnt = -PPS_INTCOUNT;
 854		if (pps_shift > PPS_INTMIN) {
 855			pps_shift--;
 856			pps_intcnt = 0;
 857		}
 858	}
 859}
 860
 861/* increase frequency calibration interval length.
 862 * It is doubled after four consecutive stable intervals.
 863 */
 864static inline void pps_inc_freq_interval(void)
 865{
 866	if (++pps_intcnt >= PPS_INTCOUNT) {
 867		pps_intcnt = PPS_INTCOUNT;
 868		if (pps_shift < PPS_INTMAX) {
 869			pps_shift++;
 870			pps_intcnt = 0;
 871		}
 872	}
 873}
 874
 875/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 876 * timestamps
 877 *
 878 * At the end of the calibration interval the difference between the
 879 * first and last MONOTONIC_RAW clock timestamps divided by the length
 880 * of the interval becomes the frequency update. If the interval was
 881 * too long, the data are discarded.
 882 * Returns the difference between old and new frequency values.
 883 */
 884static long hardpps_update_freq(struct pps_normtime freq_norm)
 885{
 886	long delta, delta_mod;
 887	s64 ftemp;
 888
 889	/* check if the frequency interval was too long */
 890	if (freq_norm.sec > (2 << pps_shift)) {
 891		time_status |= STA_PPSERROR;
 892		pps_errcnt++;
 893		pps_dec_freq_interval();
 894		printk_deferred(KERN_ERR
 895			"hardpps: PPSERROR: interval too long - %lld s\n",
 896			freq_norm.sec);
 897		return 0;
 898	}
 899
 900	/* here the raw frequency offset and wander (stability) is
 901	 * calculated. If the wander is less than the wander threshold
 902	 * the interval is increased; otherwise it is decreased.
 903	 */
 904	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 905			freq_norm.sec);
 906	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 907	pps_freq = ftemp;
 908	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 909		printk_deferred(KERN_WARNING
 910				"hardpps: PPSWANDER: change=%ld\n", delta);
 911		time_status |= STA_PPSWANDER;
 912		pps_stbcnt++;
 913		pps_dec_freq_interval();
 914	} else {	/* good sample */
 915		pps_inc_freq_interval();
 916	}
 917
 918	/* the stability metric is calculated as the average of recent
 919	 * frequency changes, but is used only for performance
 920	 * monitoring
 921	 */
 922	delta_mod = delta;
 923	if (delta_mod < 0)
 924		delta_mod = -delta_mod;
 925	pps_stabil += (div_s64(((s64)delta_mod) <<
 926				(NTP_SCALE_SHIFT - SHIFT_USEC),
 927				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 928
 929	/* if enabled, the system clock frequency is updated */
 930	if ((time_status & STA_PPSFREQ) != 0 &&
 931	    (time_status & STA_FREQHOLD) == 0) {
 932		time_freq = pps_freq;
 933		ntp_update_frequency();
 934	}
 935
 936	return delta;
 937}
 938
 939/* correct REALTIME clock phase error against PPS signal */
 940static void hardpps_update_phase(long error)
 941{
 942	long correction = -error;
 943	long jitter;
 944
 945	/* add the sample to the median filter */
 946	pps_phase_filter_add(correction);
 947	correction = pps_phase_filter_get(&jitter);
 948
 949	/* Nominal jitter is due to PPS signal noise. If it exceeds the
 950	 * threshold, the sample is discarded; otherwise, if so enabled,
 951	 * the time offset is updated.
 952	 */
 953	if (jitter > (pps_jitter << PPS_POPCORN)) {
 954		printk_deferred(KERN_WARNING
 955				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
 956				jitter, (pps_jitter << PPS_POPCORN));
 957		time_status |= STA_PPSJITTER;
 958		pps_jitcnt++;
 959	} else if (time_status & STA_PPSTIME) {
 960		/* correct the time using the phase offset */
 961		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
 962				NTP_INTERVAL_FREQ);
 963		/* cancel running adjtime() */
 964		time_adjust = 0;
 965	}
 966	/* update jitter */
 967	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
 968}
 969
 970/*
 971 * __hardpps() - discipline CPU clock oscillator to external PPS signal
 972 *
 973 * This routine is called at each PPS signal arrival in order to
 974 * discipline the CPU clock oscillator to the PPS signal. It takes two
 975 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 976 * is used to correct clock phase error and the latter is used to
 977 * correct the frequency.
 978 *
 979 * This code is based on David Mills's reference nanokernel
 980 * implementation. It was mostly rewritten but keeps the same idea.
 981 */
 982void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 983{
 984	struct pps_normtime pts_norm, freq_norm;
 985
 986	pts_norm = pps_normalize_ts(*phase_ts);
 987
 988	/* clear the error bits, they will be set again if needed */
 989	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 990
 991	/* indicate signal presence */
 992	time_status |= STA_PPSSIGNAL;
 993	pps_valid = PPS_VALID;
 994
 995	/* when called for the first time,
 996	 * just start the frequency interval */
 997	if (unlikely(pps_fbase.tv_sec == 0)) {
 998		pps_fbase = *raw_ts;
 999		return;
1000	}
1001
1002	/* ok, now we have a base for frequency calculation */
1003	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1004
1005	/* check that the signal is in the range
1006	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1007	if ((freq_norm.sec == 0) ||
1008			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1009			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1010		time_status |= STA_PPSJITTER;
1011		/* restart the frequency calibration interval */
1012		pps_fbase = *raw_ts;
1013		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1014		return;
1015	}
1016
1017	/* signal is ok */
1018
1019	/* check if the current frequency interval is finished */
1020	if (freq_norm.sec >= (1 << pps_shift)) {
1021		pps_calcnt++;
1022		/* restart the frequency calibration interval */
1023		pps_fbase = *raw_ts;
1024		hardpps_update_freq(freq_norm);
1025	}
1026
1027	hardpps_update_phase(pts_norm.nsec);
1028
1029}
1030#endif	/* CONFIG_NTP_PPS */
1031
1032static int __init ntp_tick_adj_setup(char *str)
1033{
1034	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1035	if (rc)
1036		return rc;
1037
1038	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1039	return 1;
1040}
1041
1042__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1043
1044void __init ntp_init(void)
1045{
1046	ntp_clear();
 
1047}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/audit.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
  25
  26/*
  27 * NTP timekeeping variables:
  28 *
  29 * Note: All of the NTP state is protected by the timekeeping locks.
  30 */
  31
  32
  33/* USER_HZ period (usecs): */
  34unsigned long			tick_usec = USER_TICK_USEC;
  35
  36/* SHIFTED_HZ period (nsecs): */
  37unsigned long			tick_nsec;
  38
  39static u64			tick_length;
  40static u64			tick_length_base;
  41
  42#define SECS_PER_DAY		86400
  43#define MAX_TICKADJ		500LL		/* usecs */
  44#define MAX_TICKADJ_SCALED \
  45	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  46#define MAX_TAI_OFFSET		100000
  47
  48/*
  49 * phase-lock loop variables
  50 */
  51
  52/*
  53 * clock synchronization status
  54 *
  55 * (TIME_ERROR prevents overwriting the CMOS clock)
  56 */
  57static int			time_state = TIME_OK;
  58
  59/* clock status bits:							*/
  60static int			time_status = STA_UNSYNC;
  61
  62/* time adjustment (nsecs):						*/
  63static s64			time_offset;
  64
  65/* pll time constant:							*/
  66static long			time_constant = 2;
  67
  68/* maximum error (usecs):						*/
  69static long			time_maxerror = NTP_PHASE_LIMIT;
  70
  71/* estimated error (usecs):						*/
  72static long			time_esterror = NTP_PHASE_LIMIT;
  73
  74/* frequency offset (scaled nsecs/secs):				*/
  75static s64			time_freq;
  76
  77/* time at last adjustment (secs):					*/
  78static time64_t		time_reftime;
  79
  80static long			time_adjust;
  81
  82/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
  83static s64			ntp_tick_adj;
  84
  85/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  86static time64_t			ntp_next_leap_sec = TIME64_MAX;
  87
  88#ifdef CONFIG_NTP_PPS
  89
  90/*
  91 * The following variables are used when a pulse-per-second (PPS) signal
  92 * is available. They establish the engineering parameters of the clock
  93 * discipline loop when controlled by the PPS signal.
  94 */
  95#define PPS_VALID	10	/* PPS signal watchdog max (s) */
  96#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
  97#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
  98#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
  99#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 100				   increase pps_shift or consecutive bad
 101				   intervals to decrease it */
 102#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 103
 104static int pps_valid;		/* signal watchdog counter */
 105static long pps_tf[3];		/* phase median filter */
 106static long pps_jitter;		/* current jitter (ns) */
 107static struct timespec64 pps_fbase; /* beginning of the last freq interval */
 108static int pps_shift;		/* current interval duration (s) (shift) */
 109static int pps_intcnt;		/* interval counter */
 110static s64 pps_freq;		/* frequency offset (scaled ns/s) */
 111static long pps_stabil;		/* current stability (scaled ns/s) */
 112
 113/*
 114 * PPS signal quality monitors
 115 */
 116static long pps_calcnt;		/* calibration intervals */
 117static long pps_jitcnt;		/* jitter limit exceeded */
 118static long pps_stbcnt;		/* stability limit exceeded */
 119static long pps_errcnt;		/* calibration errors */
 120
 121
 122/* PPS kernel consumer compensates the whole phase error immediately.
 123 * Otherwise, reduce the offset by a fixed factor times the time constant.
 124 */
 125static inline s64 ntp_offset_chunk(s64 offset)
 126{
 127	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 128		return offset;
 129	else
 130		return shift_right(offset, SHIFT_PLL + time_constant);
 131}
 132
 133static inline void pps_reset_freq_interval(void)
 134{
 135	/* the PPS calibration interval may end
 136	   surprisingly early */
 137	pps_shift = PPS_INTMIN;
 138	pps_intcnt = 0;
 139}
 140
 141/**
 142 * pps_clear - Clears the PPS state variables
 143 */
 144static inline void pps_clear(void)
 145{
 146	pps_reset_freq_interval();
 147	pps_tf[0] = 0;
 148	pps_tf[1] = 0;
 149	pps_tf[2] = 0;
 150	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 151	pps_freq = 0;
 152}
 153
 154/* Decrease pps_valid to indicate that another second has passed since
 155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 156 * missing.
 157 */
 158static inline void pps_dec_valid(void)
 159{
 160	if (pps_valid > 0)
 161		pps_valid--;
 162	else {
 163		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 164				 STA_PPSWANDER | STA_PPSERROR);
 165		pps_clear();
 166	}
 167}
 168
 169static inline void pps_set_freq(s64 freq)
 170{
 171	pps_freq = freq;
 172}
 173
 174static inline int is_error_status(int status)
 175{
 176	return (status & (STA_UNSYNC|STA_CLOCKERR))
 177		/* PPS signal lost when either PPS time or
 178		 * PPS frequency synchronization requested
 179		 */
 180		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
 181			&& !(status & STA_PPSSIGNAL))
 182		/* PPS jitter exceeded when
 183		 * PPS time synchronization requested */
 184		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
 185			== (STA_PPSTIME|STA_PPSJITTER))
 186		/* PPS wander exceeded or calibration error when
 187		 * PPS frequency synchronization requested
 188		 */
 189		|| ((status & STA_PPSFREQ)
 190			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
 191}
 192
 193static inline void pps_fill_timex(struct __kernel_timex *txc)
 194{
 195	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 196					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 197	txc->jitter	   = pps_jitter;
 198	if (!(time_status & STA_NANO))
 199		txc->jitter = pps_jitter / NSEC_PER_USEC;
 200	txc->shift	   = pps_shift;
 201	txc->stabil	   = pps_stabil;
 202	txc->jitcnt	   = pps_jitcnt;
 203	txc->calcnt	   = pps_calcnt;
 204	txc->errcnt	   = pps_errcnt;
 205	txc->stbcnt	   = pps_stbcnt;
 206}
 207
 208#else /* !CONFIG_NTP_PPS */
 209
 210static inline s64 ntp_offset_chunk(s64 offset)
 211{
 212	return shift_right(offset, SHIFT_PLL + time_constant);
 213}
 214
 215static inline void pps_reset_freq_interval(void) {}
 216static inline void pps_clear(void) {}
 217static inline void pps_dec_valid(void) {}
 218static inline void pps_set_freq(s64 freq) {}
 219
 220static inline int is_error_status(int status)
 221{
 222	return status & (STA_UNSYNC|STA_CLOCKERR);
 223}
 224
 225static inline void pps_fill_timex(struct __kernel_timex *txc)
 226{
 227	/* PPS is not implemented, so these are zero */
 228	txc->ppsfreq	   = 0;
 229	txc->jitter	   = 0;
 230	txc->shift	   = 0;
 231	txc->stabil	   = 0;
 232	txc->jitcnt	   = 0;
 233	txc->calcnt	   = 0;
 234	txc->errcnt	   = 0;
 235	txc->stbcnt	   = 0;
 236}
 237
 238#endif /* CONFIG_NTP_PPS */
 239
 240
 241/**
 242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 243 *
 244 */
 245static inline int ntp_synced(void)
 246{
 247	return !(time_status & STA_UNSYNC);
 248}
 249
 250
 251/*
 252 * NTP methods:
 253 */
 254
 255/*
 256 * Update (tick_length, tick_length_base, tick_nsec), based
 257 * on (tick_usec, ntp_tick_adj, time_freq):
 258 */
 259static void ntp_update_frequency(void)
 260{
 261	u64 second_length;
 262	u64 new_base;
 263
 264	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 265						<< NTP_SCALE_SHIFT;
 266
 267	second_length		+= ntp_tick_adj;
 268	second_length		+= time_freq;
 269
 270	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 271	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 272
 273	/*
 274	 * Don't wait for the next second_overflow, apply
 275	 * the change to the tick length immediately:
 276	 */
 277	tick_length		+= new_base - tick_length_base;
 278	tick_length_base	 = new_base;
 279}
 280
 281static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 282{
 283	time_status &= ~STA_MODE;
 284
 285	if (secs < MINSEC)
 286		return 0;
 287
 288	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 289		return 0;
 290
 291	time_status |= STA_MODE;
 292
 293	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 294}
 295
 296static void ntp_update_offset(long offset)
 297{
 298	s64 freq_adj;
 299	s64 offset64;
 300	long secs;
 301
 302	if (!(time_status & STA_PLL))
 303		return;
 304
 305	if (!(time_status & STA_NANO)) {
 306		/* Make sure the multiplication below won't overflow */
 307		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 308		offset *= NSEC_PER_USEC;
 309	}
 310
 311	/*
 312	 * Scale the phase adjustment and
 313	 * clamp to the operating range.
 314	 */
 315	offset = clamp(offset, -MAXPHASE, MAXPHASE);
 316
 317	/*
 318	 * Select how the frequency is to be controlled
 319	 * and in which mode (PLL or FLL).
 320	 */
 321	secs = (long)(__ktime_get_real_seconds() - time_reftime);
 322	if (unlikely(time_status & STA_FREQHOLD))
 323		secs = 0;
 324
 325	time_reftime = __ktime_get_real_seconds();
 326
 327	offset64    = offset;
 328	freq_adj    = ntp_update_offset_fll(offset64, secs);
 329
 330	/*
 331	 * Clamp update interval to reduce PLL gain with low
 332	 * sampling rate (e.g. intermittent network connection)
 333	 * to avoid instability.
 334	 */
 335	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 336		secs = 1 << (SHIFT_PLL + 1 + time_constant);
 337
 338	freq_adj    += (offset64 * secs) <<
 339			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 340
 341	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 342
 343	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 344
 345	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 346}
 347
 348/**
 349 * ntp_clear - Clears the NTP state variables
 350 */
 351void ntp_clear(void)
 352{
 353	time_adjust	= 0;		/* stop active adjtime() */
 354	time_status	|= STA_UNSYNC;
 355	time_maxerror	= NTP_PHASE_LIMIT;
 356	time_esterror	= NTP_PHASE_LIMIT;
 357
 358	ntp_update_frequency();
 359
 360	tick_length	= tick_length_base;
 361	time_offset	= 0;
 362
 363	ntp_next_leap_sec = TIME64_MAX;
 364	/* Clear PPS state variables */
 365	pps_clear();
 366}
 367
 368
 369u64 ntp_tick_length(void)
 370{
 371	return tick_length;
 372}
 373
 374/**
 375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 376 *
 377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 379 */
 380ktime_t ntp_get_next_leap(void)
 381{
 382	ktime_t ret;
 383
 384	if ((time_state == TIME_INS) && (time_status & STA_INS))
 385		return ktime_set(ntp_next_leap_sec, 0);
 386	ret = KTIME_MAX;
 387	return ret;
 388}
 389
 390/*
 391 * this routine handles the overflow of the microsecond field
 392 *
 393 * The tricky bits of code to handle the accurate clock support
 394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 395 * They were originally developed for SUN and DEC kernels.
 396 * All the kudos should go to Dave for this stuff.
 397 *
 398 * Also handles leap second processing, and returns leap offset
 399 */
 400int second_overflow(time64_t secs)
 401{
 402	s64 delta;
 403	int leap = 0;
 404	s32 rem;
 405
 406	/*
 407	 * Leap second processing. If in leap-insert state at the end of the
 408	 * day, the system clock is set back one second; if in leap-delete
 409	 * state, the system clock is set ahead one second.
 410	 */
 411	switch (time_state) {
 412	case TIME_OK:
 413		if (time_status & STA_INS) {
 414			time_state = TIME_INS;
 415			div_s64_rem(secs, SECS_PER_DAY, &rem);
 416			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 417		} else if (time_status & STA_DEL) {
 418			time_state = TIME_DEL;
 419			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 420			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 421		}
 422		break;
 423	case TIME_INS:
 424		if (!(time_status & STA_INS)) {
 425			ntp_next_leap_sec = TIME64_MAX;
 426			time_state = TIME_OK;
 427		} else if (secs == ntp_next_leap_sec) {
 428			leap = -1;
 429			time_state = TIME_OOP;
 430			printk(KERN_NOTICE
 431				"Clock: inserting leap second 23:59:60 UTC\n");
 432		}
 433		break;
 434	case TIME_DEL:
 435		if (!(time_status & STA_DEL)) {
 436			ntp_next_leap_sec = TIME64_MAX;
 437			time_state = TIME_OK;
 438		} else if (secs == ntp_next_leap_sec) {
 439			leap = 1;
 440			ntp_next_leap_sec = TIME64_MAX;
 441			time_state = TIME_WAIT;
 442			printk(KERN_NOTICE
 443				"Clock: deleting leap second 23:59:59 UTC\n");
 444		}
 445		break;
 446	case TIME_OOP:
 447		ntp_next_leap_sec = TIME64_MAX;
 448		time_state = TIME_WAIT;
 449		break;
 450	case TIME_WAIT:
 451		if (!(time_status & (STA_INS | STA_DEL)))
 452			time_state = TIME_OK;
 453		break;
 454	}
 455
 456
 457	/* Bump the maxerror field */
 458	time_maxerror += MAXFREQ / NSEC_PER_USEC;
 459	if (time_maxerror > NTP_PHASE_LIMIT) {
 460		time_maxerror = NTP_PHASE_LIMIT;
 461		time_status |= STA_UNSYNC;
 462	}
 463
 464	/* Compute the phase adjustment for the next second */
 465	tick_length	 = tick_length_base;
 466
 467	delta		 = ntp_offset_chunk(time_offset);
 468	time_offset	-= delta;
 469	tick_length	+= delta;
 470
 471	/* Check PPS signal */
 472	pps_dec_valid();
 473
 474	if (!time_adjust)
 475		goto out;
 476
 477	if (time_adjust > MAX_TICKADJ) {
 478		time_adjust -= MAX_TICKADJ;
 479		tick_length += MAX_TICKADJ_SCALED;
 480		goto out;
 481	}
 482
 483	if (time_adjust < -MAX_TICKADJ) {
 484		time_adjust += MAX_TICKADJ;
 485		tick_length -= MAX_TICKADJ_SCALED;
 486		goto out;
 487	}
 488
 489	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 490							 << NTP_SCALE_SHIFT;
 491	time_adjust = 0;
 492
 493out:
 494	return leap;
 495}
 496
 497#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 498static void sync_hw_clock(struct work_struct *work);
 499static DECLARE_WORK(sync_work, sync_hw_clock);
 500static struct hrtimer sync_hrtimer;
 501#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
 
 502
 503static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
 504{
 505	queue_work(system_freezable_power_efficient_wq, &sync_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 506
 507	return HRTIMER_NORESTART;
 
 
 
 
 
 
 
 
 
 
 508}
 509
 510static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
 511{
 512	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
 
 
 513
 514	if (retry)
 515		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
 516	else
 517		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
 518
 519	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
 520}
 521
 522/*
 523 * Check whether @now is correct versus the required time to update the RTC
 524 * and calculate the value which needs to be written to the RTC so that the
 525 * next seconds increment of the RTC after the write is aligned with the next
 526 * seconds increment of clock REALTIME.
 527 *
 528 * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
 529 *
 530 * t2.tv_nsec == 0
 531 * tsched = t2 - set_offset_nsec
 532 * newval = t2 - NSEC_PER_SEC
 533 *
 534 * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
 535 *
 536 * As the execution of this code is not guaranteed to happen exactly at
 537 * tsched this allows it to happen within a fuzzy region:
 538 *
 539 *	abs(now - tsched) < FUZZ
 540 *
 541 * If @now is not inside the allowed window the function returns false.
 542 */
 543static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
 544				  struct timespec64 *to_set,
 545				  const struct timespec64 *now)
 546{
 547	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
 548	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
 549	struct timespec64 delay = {.tv_sec = -1,
 550				   .tv_nsec = set_offset_nsec};
 551
 552	*to_set = timespec64_add(*now, delay);
 
 
 
 
 
 
 553
 554	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
 555		to_set->tv_nsec = 0;
 556		return true;
 557	}
 558
 559	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
 560		to_set->tv_sec++;
 561		to_set->tv_nsec = 0;
 562		return true;
 563	}
 564	return false;
 565}
 566
 567#ifdef CONFIG_GENERIC_CMOS_UPDATE
 568int __weak update_persistent_clock64(struct timespec64 now64)
 569{
 570	return -ENODEV;
 571}
 572#else
 573static inline int update_persistent_clock64(struct timespec64 now64)
 574{
 575	return -ENODEV;
 576}
 577#endif
 578
 579#ifdef CONFIG_RTC_SYSTOHC
 580/* Save NTP synchronized time to the RTC */
 581static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 582{
 583	struct rtc_device *rtc;
 584	struct rtc_time tm;
 585	int err = -ENODEV;
 586
 587	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
 588	if (!rtc)
 589		return -ENODEV;
 590
 591	if (!rtc->ops || !rtc->ops->set_time)
 592		goto out_close;
 593
 594	/* First call might not have the correct offset */
 595	if (*offset_nsec == rtc->set_offset_nsec) {
 596		rtc_time64_to_tm(to_set->tv_sec, &tm);
 597		err = rtc_set_time(rtc, &tm);
 598	} else {
 599		/* Store the update offset and let the caller try again */
 600		*offset_nsec = rtc->set_offset_nsec;
 601		err = -EAGAIN;
 602	}
 603out_close:
 604	rtc_class_close(rtc);
 605	return err;
 606}
 607#else
 608static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 609{
 610	return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611}
 612#endif
 613
 614/*
 615 * If we have an externally synchronized Linux clock, then update RTC clock
 616 * accordingly every ~11 minutes. Generally RTCs can only store second
 617 * precision, but many RTCs will adjust the phase of their second tick to
 618 * match the moment of update. This infrastructure arranges to call to the RTC
 619 * set at the correct moment to phase synchronize the RTC second tick over
 620 * with the kernel clock.
 621 */
 622static void sync_hw_clock(struct work_struct *work)
 623{
 624	/*
 625	 * The default synchronization offset is 500ms for the deprecated
 626	 * update_persistent_clock64() under the assumption that it uses
 627	 * the infamous CMOS clock (MC146818).
 628	 */
 629	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
 630	struct timespec64 now, to_set;
 631	int res = -EAGAIN;
 632
 633	/*
 634	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
 635	 * managed to schedule the work between the timer firing and the
 636	 * work being able to rearm the timer. Wait for the timer to expire.
 637	 */
 638	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
 639		return;
 640
 641	ktime_get_real_ts64(&now);
 642	/* If @now is not in the allowed window, try again */
 643	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
 644		goto rearm;
 645
 646	/* Take timezone adjusted RTCs into account */
 647	if (persistent_clock_is_local)
 648		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
 649
 650	/* Try the legacy RTC first. */
 651	res = update_persistent_clock64(to_set);
 652	if (res != -ENODEV)
 653		goto rearm;
 654
 655	/* Try the RTC class */
 656	res = update_rtc(&to_set, &offset_nsec);
 657	if (res == -ENODEV)
 658		return;
 659rearm:
 660	sched_sync_hw_clock(offset_nsec, res != 0);
 661}
 662
 663void ntp_notify_cmos_timer(void)
 664{
 665	/*
 666	 * When the work is currently executed but has not yet the timer
 667	 * rearmed this queues the work immediately again. No big issue,
 668	 * just a pointless work scheduled.
 669	 */
 670	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
 671		queue_work(system_freezable_power_efficient_wq, &sync_work);
 672}
 673
 674static void __init ntp_init_cmos_sync(void)
 675{
 676	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 677	sync_hrtimer.function = sync_timer_callback;
 678}
 679#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 680static inline void __init ntp_init_cmos_sync(void) { }
 681#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 682
 683/*
 684 * Propagate a new txc->status value into the NTP state:
 685 */
 686static inline void process_adj_status(const struct __kernel_timex *txc)
 687{
 688	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 689		time_state = TIME_OK;
 690		time_status = STA_UNSYNC;
 691		ntp_next_leap_sec = TIME64_MAX;
 692		/* restart PPS frequency calibration */
 693		pps_reset_freq_interval();
 694	}
 695
 696	/*
 697	 * If we turn on PLL adjustments then reset the
 698	 * reference time to current time.
 699	 */
 700	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 701		time_reftime = __ktime_get_real_seconds();
 702
 703	/* only set allowed bits */
 704	time_status &= STA_RONLY;
 705	time_status |= txc->status & ~STA_RONLY;
 706}
 707
 708
 709static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
 710					  s32 *time_tai)
 711{
 712	if (txc->modes & ADJ_STATUS)
 713		process_adj_status(txc);
 714
 715	if (txc->modes & ADJ_NANO)
 716		time_status |= STA_NANO;
 717
 718	if (txc->modes & ADJ_MICRO)
 719		time_status &= ~STA_NANO;
 720
 721	if (txc->modes & ADJ_FREQUENCY) {
 722		time_freq = txc->freq * PPM_SCALE;
 723		time_freq = min(time_freq, MAXFREQ_SCALED);
 724		time_freq = max(time_freq, -MAXFREQ_SCALED);
 725		/* update pps_freq */
 726		pps_set_freq(time_freq);
 727	}
 728
 729	if (txc->modes & ADJ_MAXERROR)
 730		time_maxerror = txc->maxerror;
 731
 732	if (txc->modes & ADJ_ESTERROR)
 733		time_esterror = txc->esterror;
 734
 735	if (txc->modes & ADJ_TIMECONST) {
 736		time_constant = txc->constant;
 737		if (!(time_status & STA_NANO))
 738			time_constant += 4;
 739		time_constant = min(time_constant, (long)MAXTC);
 740		time_constant = max(time_constant, 0l);
 741	}
 742
 743	if (txc->modes & ADJ_TAI &&
 744			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
 745		*time_tai = txc->constant;
 746
 747	if (txc->modes & ADJ_OFFSET)
 748		ntp_update_offset(txc->offset);
 749
 750	if (txc->modes & ADJ_TICK)
 751		tick_usec = txc->tick;
 752
 753	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 754		ntp_update_frequency();
 755}
 756
 757
 758/*
 759 * adjtimex mainly allows reading (and writing, if superuser) of
 760 * kernel time-keeping variables. used by xntpd.
 761 */
 762int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
 763		  s32 *time_tai, struct audit_ntp_data *ad)
 764{
 765	int result;
 766
 767	if (txc->modes & ADJ_ADJTIME) {
 768		long save_adjust = time_adjust;
 769
 770		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 771			/* adjtime() is independent from ntp_adjtime() */
 772			time_adjust = txc->offset;
 773			ntp_update_frequency();
 774
 775			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
 776			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
 777		}
 778		txc->offset = save_adjust;
 779	} else {
 780		/* If there are input parameters, then process them: */
 781		if (txc->modes) {
 782			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
 783			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
 784			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
 785			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
 786			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
 787
 788			process_adjtimex_modes(txc, time_tai);
 789
 790			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
 791			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
 792			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
 793			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
 794			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
 795		}
 796
 797		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 798				  NTP_SCALE_SHIFT);
 799		if (!(time_status & STA_NANO))
 800			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
 801	}
 802
 803	result = time_state;	/* mostly `TIME_OK' */
 804	/* check for errors */
 805	if (is_error_status(time_status))
 806		result = TIME_ERROR;
 807
 808	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 809					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 810	txc->maxerror	   = time_maxerror;
 811	txc->esterror	   = time_esterror;
 812	txc->status	   = time_status;
 813	txc->constant	   = time_constant;
 814	txc->precision	   = 1;
 815	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 816	txc->tick	   = tick_usec;
 817	txc->tai	   = *time_tai;
 818
 819	/* fill PPS status fields */
 820	pps_fill_timex(txc);
 821
 822	txc->time.tv_sec = ts->tv_sec;
 823	txc->time.tv_usec = ts->tv_nsec;
 824	if (!(time_status & STA_NANO))
 825		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
 826
 827	/* Handle leapsec adjustments */
 828	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
 829		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
 830			result = TIME_OOP;
 831			txc->tai++;
 832			txc->time.tv_sec--;
 833		}
 834		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
 835			result = TIME_WAIT;
 836			txc->tai--;
 837			txc->time.tv_sec++;
 838		}
 839		if ((time_state == TIME_OOP) &&
 840					(ts->tv_sec == ntp_next_leap_sec)) {
 841			result = TIME_WAIT;
 842		}
 843	}
 844
 845	return result;
 846}
 847
 848#ifdef	CONFIG_NTP_PPS
 849
 850/* actually struct pps_normtime is good old struct timespec, but it is
 851 * semantically different (and it is the reason why it was invented):
 852 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 853 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 854struct pps_normtime {
 855	s64		sec;	/* seconds */
 856	long		nsec;	/* nanoseconds */
 857};
 858
 859/* normalize the timestamp so that nsec is in the
 860   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 861static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 862{
 863	struct pps_normtime norm = {
 864		.sec = ts.tv_sec,
 865		.nsec = ts.tv_nsec
 866	};
 867
 868	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 869		norm.nsec -= NSEC_PER_SEC;
 870		norm.sec++;
 871	}
 872
 873	return norm;
 874}
 875
 876/* get current phase correction and jitter */
 877static inline long pps_phase_filter_get(long *jitter)
 878{
 879	*jitter = pps_tf[0] - pps_tf[1];
 880	if (*jitter < 0)
 881		*jitter = -*jitter;
 882
 883	/* TODO: test various filters */
 884	return pps_tf[0];
 885}
 886
 887/* add the sample to the phase filter */
 888static inline void pps_phase_filter_add(long err)
 889{
 890	pps_tf[2] = pps_tf[1];
 891	pps_tf[1] = pps_tf[0];
 892	pps_tf[0] = err;
 893}
 894
 895/* decrease frequency calibration interval length.
 896 * It is halved after four consecutive unstable intervals.
 897 */
 898static inline void pps_dec_freq_interval(void)
 899{
 900	if (--pps_intcnt <= -PPS_INTCOUNT) {
 901		pps_intcnt = -PPS_INTCOUNT;
 902		if (pps_shift > PPS_INTMIN) {
 903			pps_shift--;
 904			pps_intcnt = 0;
 905		}
 906	}
 907}
 908
 909/* increase frequency calibration interval length.
 910 * It is doubled after four consecutive stable intervals.
 911 */
 912static inline void pps_inc_freq_interval(void)
 913{
 914	if (++pps_intcnt >= PPS_INTCOUNT) {
 915		pps_intcnt = PPS_INTCOUNT;
 916		if (pps_shift < PPS_INTMAX) {
 917			pps_shift++;
 918			pps_intcnt = 0;
 919		}
 920	}
 921}
 922
 923/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 924 * timestamps
 925 *
 926 * At the end of the calibration interval the difference between the
 927 * first and last MONOTONIC_RAW clock timestamps divided by the length
 928 * of the interval becomes the frequency update. If the interval was
 929 * too long, the data are discarded.
 930 * Returns the difference between old and new frequency values.
 931 */
 932static long hardpps_update_freq(struct pps_normtime freq_norm)
 933{
 934	long delta, delta_mod;
 935	s64 ftemp;
 936
 937	/* check if the frequency interval was too long */
 938	if (freq_norm.sec > (2 << pps_shift)) {
 939		time_status |= STA_PPSERROR;
 940		pps_errcnt++;
 941		pps_dec_freq_interval();
 942		printk_deferred(KERN_ERR
 943			"hardpps: PPSERROR: interval too long - %lld s\n",
 944			freq_norm.sec);
 945		return 0;
 946	}
 947
 948	/* here the raw frequency offset and wander (stability) is
 949	 * calculated. If the wander is less than the wander threshold
 950	 * the interval is increased; otherwise it is decreased.
 951	 */
 952	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 953			freq_norm.sec);
 954	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 955	pps_freq = ftemp;
 956	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 957		printk_deferred(KERN_WARNING
 958				"hardpps: PPSWANDER: change=%ld\n", delta);
 959		time_status |= STA_PPSWANDER;
 960		pps_stbcnt++;
 961		pps_dec_freq_interval();
 962	} else {	/* good sample */
 963		pps_inc_freq_interval();
 964	}
 965
 966	/* the stability metric is calculated as the average of recent
 967	 * frequency changes, but is used only for performance
 968	 * monitoring
 969	 */
 970	delta_mod = delta;
 971	if (delta_mod < 0)
 972		delta_mod = -delta_mod;
 973	pps_stabil += (div_s64(((s64)delta_mod) <<
 974				(NTP_SCALE_SHIFT - SHIFT_USEC),
 975				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 976
 977	/* if enabled, the system clock frequency is updated */
 978	if ((time_status & STA_PPSFREQ) != 0 &&
 979	    (time_status & STA_FREQHOLD) == 0) {
 980		time_freq = pps_freq;
 981		ntp_update_frequency();
 982	}
 983
 984	return delta;
 985}
 986
 987/* correct REALTIME clock phase error against PPS signal */
 988static void hardpps_update_phase(long error)
 989{
 990	long correction = -error;
 991	long jitter;
 992
 993	/* add the sample to the median filter */
 994	pps_phase_filter_add(correction);
 995	correction = pps_phase_filter_get(&jitter);
 996
 997	/* Nominal jitter is due to PPS signal noise. If it exceeds the
 998	 * threshold, the sample is discarded; otherwise, if so enabled,
 999	 * the time offset is updated.
1000	 */
1001	if (jitter > (pps_jitter << PPS_POPCORN)) {
1002		printk_deferred(KERN_WARNING
1003				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1004				jitter, (pps_jitter << PPS_POPCORN));
1005		time_status |= STA_PPSJITTER;
1006		pps_jitcnt++;
1007	} else if (time_status & STA_PPSTIME) {
1008		/* correct the time using the phase offset */
1009		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1010				NTP_INTERVAL_FREQ);
1011		/* cancel running adjtime() */
1012		time_adjust = 0;
1013	}
1014	/* update jitter */
1015	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1016}
1017
1018/*
1019 * __hardpps() - discipline CPU clock oscillator to external PPS signal
1020 *
1021 * This routine is called at each PPS signal arrival in order to
1022 * discipline the CPU clock oscillator to the PPS signal. It takes two
1023 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1024 * is used to correct clock phase error and the latter is used to
1025 * correct the frequency.
1026 *
1027 * This code is based on David Mills's reference nanokernel
1028 * implementation. It was mostly rewritten but keeps the same idea.
1029 */
1030void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1031{
1032	struct pps_normtime pts_norm, freq_norm;
1033
1034	pts_norm = pps_normalize_ts(*phase_ts);
1035
1036	/* clear the error bits, they will be set again if needed */
1037	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1038
1039	/* indicate signal presence */
1040	time_status |= STA_PPSSIGNAL;
1041	pps_valid = PPS_VALID;
1042
1043	/* when called for the first time,
1044	 * just start the frequency interval */
1045	if (unlikely(pps_fbase.tv_sec == 0)) {
1046		pps_fbase = *raw_ts;
1047		return;
1048	}
1049
1050	/* ok, now we have a base for frequency calculation */
1051	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1052
1053	/* check that the signal is in the range
1054	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1055	if ((freq_norm.sec == 0) ||
1056			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1057			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1058		time_status |= STA_PPSJITTER;
1059		/* restart the frequency calibration interval */
1060		pps_fbase = *raw_ts;
1061		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1062		return;
1063	}
1064
1065	/* signal is ok */
1066
1067	/* check if the current frequency interval is finished */
1068	if (freq_norm.sec >= (1 << pps_shift)) {
1069		pps_calcnt++;
1070		/* restart the frequency calibration interval */
1071		pps_fbase = *raw_ts;
1072		hardpps_update_freq(freq_norm);
1073	}
1074
1075	hardpps_update_phase(pts_norm.nsec);
1076
1077}
1078#endif	/* CONFIG_NTP_PPS */
1079
1080static int __init ntp_tick_adj_setup(char *str)
1081{
1082	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1083	if (rc)
1084		return rc;
1085
1086	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1087	return 1;
1088}
1089
1090__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1091
1092void __init ntp_init(void)
1093{
1094	ntp_clear();
1095	ntp_init_cmos_sync();
1096}