Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Scheduler internal types and methods:
4 */
5#include <linux/sched.h>
6
7#include <linux/sched/autogroup.h>
8#include <linux/sched/clock.h>
9#include <linux/sched/coredump.h>
10#include <linux/sched/cpufreq.h>
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
13#include <linux/sched/debug.h>
14#include <linux/sched/hotplug.h>
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/smt.h>
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29#include <linux/sched/task.h>
30#include <linux/sched/task_stack.h>
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
37
38#include <linux/binfmts.h>
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
48#include <linux/energy_model.h>
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
59#include <linux/psi.h>
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
62#include <linux/stop_machine.h>
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
70
71#ifdef CONFIG_PARAVIRT
72# include <asm/paravirt.h>
73#endif
74
75#include "cpupri.h"
76#include "cpudeadline.h"
77
78#ifdef CONFIG_SCHED_DEBUG
79# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
80#else
81# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
82#endif
83
84struct rq;
85struct cpuidle_state;
86
87/* task_struct::on_rq states: */
88#define TASK_ON_RQ_QUEUED 1
89#define TASK_ON_RQ_MIGRATING 2
90
91extern __read_mostly int scheduler_running;
92
93extern unsigned long calc_load_update;
94extern atomic_long_t calc_load_tasks;
95
96extern void calc_global_load_tick(struct rq *this_rq);
97extern long calc_load_fold_active(struct rq *this_rq, long adjust);
98
99/*
100 * Helpers for converting nanosecond timing to jiffy resolution
101 */
102#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103
104/*
105 * Increase resolution of nice-level calculations for 64-bit architectures.
106 * The extra resolution improves shares distribution and load balancing of
107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108 * hierarchies, especially on larger systems. This is not a user-visible change
109 * and does not change the user-interface for setting shares/weights.
110 *
111 * We increase resolution only if we have enough bits to allow this increased
112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113 * are pretty high and the returns do not justify the increased costs.
114 *
115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116 * increase coverage and consistency always enable it on 64-bit platforms.
117 */
118#ifdef CONFIG_64BIT
119# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
120# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
121# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
122#else
123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
124# define scale_load(w) (w)
125# define scale_load_down(w) (w)
126#endif
127
128/*
129 * Task weight (visible to users) and its load (invisible to users) have
130 * independent resolution, but they should be well calibrated. We use
131 * scale_load() and scale_load_down(w) to convert between them. The
132 * following must be true:
133 *
134 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
135 *
136 */
137#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
138
139/*
140 * Single value that decides SCHED_DEADLINE internal math precision.
141 * 10 -> just above 1us
142 * 9 -> just above 0.5us
143 */
144#define DL_SCALE 10
145
146/*
147 * Single value that denotes runtime == period, ie unlimited time.
148 */
149#define RUNTIME_INF ((u64)~0ULL)
150
151static inline int idle_policy(int policy)
152{
153 return policy == SCHED_IDLE;
154}
155static inline int fair_policy(int policy)
156{
157 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
158}
159
160static inline int rt_policy(int policy)
161{
162 return policy == SCHED_FIFO || policy == SCHED_RR;
163}
164
165static inline int dl_policy(int policy)
166{
167 return policy == SCHED_DEADLINE;
168}
169static inline bool valid_policy(int policy)
170{
171 return idle_policy(policy) || fair_policy(policy) ||
172 rt_policy(policy) || dl_policy(policy);
173}
174
175static inline int task_has_idle_policy(struct task_struct *p)
176{
177 return idle_policy(p->policy);
178}
179
180static inline int task_has_rt_policy(struct task_struct *p)
181{
182 return rt_policy(p->policy);
183}
184
185static inline int task_has_dl_policy(struct task_struct *p)
186{
187 return dl_policy(p->policy);
188}
189
190#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191
192/*
193 * !! For sched_setattr_nocheck() (kernel) only !!
194 *
195 * This is actually gross. :(
196 *
197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198 * tasks, but still be able to sleep. We need this on platforms that cannot
199 * atomically change clock frequency. Remove once fast switching will be
200 * available on such platforms.
201 *
202 * SUGOV stands for SchedUtil GOVernor.
203 */
204#define SCHED_FLAG_SUGOV 0x10000000
205
206static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207{
208#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210#else
211 return false;
212#endif
213}
214
215/*
216 * Tells if entity @a should preempt entity @b.
217 */
218static inline bool
219dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
220{
221 return dl_entity_is_special(a) ||
222 dl_time_before(a->deadline, b->deadline);
223}
224
225/*
226 * This is the priority-queue data structure of the RT scheduling class:
227 */
228struct rt_prio_array {
229 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230 struct list_head queue[MAX_RT_PRIO];
231};
232
233struct rt_bandwidth {
234 /* nests inside the rq lock: */
235 raw_spinlock_t rt_runtime_lock;
236 ktime_t rt_period;
237 u64 rt_runtime;
238 struct hrtimer rt_period_timer;
239 unsigned int rt_period_active;
240};
241
242void __dl_clear_params(struct task_struct *p);
243
244/*
245 * To keep the bandwidth of -deadline tasks and groups under control
246 * we need some place where:
247 * - store the maximum -deadline bandwidth of the system (the group);
248 * - cache the fraction of that bandwidth that is currently allocated.
249 *
250 * This is all done in the data structure below. It is similar to the
251 * one used for RT-throttling (rt_bandwidth), with the main difference
252 * that, since here we are only interested in admission control, we
253 * do not decrease any runtime while the group "executes", neither we
254 * need a timer to replenish it.
255 *
256 * With respect to SMP, the bandwidth is given on a per-CPU basis,
257 * meaning that:
258 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259 * - dl_total_bw array contains, in the i-eth element, the currently
260 * allocated bandwidth on the i-eth CPU.
261 * Moreover, groups consume bandwidth on each CPU, while tasks only
262 * consume bandwidth on the CPU they're running on.
263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264 * that will be shown the next time the proc or cgroup controls will
265 * be red. It on its turn can be changed by writing on its own
266 * control.
267 */
268struct dl_bandwidth {
269 raw_spinlock_t dl_runtime_lock;
270 u64 dl_runtime;
271 u64 dl_period;
272};
273
274static inline int dl_bandwidth_enabled(void)
275{
276 return sysctl_sched_rt_runtime >= 0;
277}
278
279struct dl_bw {
280 raw_spinlock_t lock;
281 u64 bw;
282 u64 total_bw;
283};
284
285static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286
287static inline
288void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
289{
290 dl_b->total_bw -= tsk_bw;
291 __dl_update(dl_b, (s32)tsk_bw / cpus);
292}
293
294static inline
295void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
296{
297 dl_b->total_bw += tsk_bw;
298 __dl_update(dl_b, -((s32)tsk_bw / cpus));
299}
300
301static inline
302bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303{
304 return dl_b->bw != -1 &&
305 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306}
307
308extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
309extern void init_dl_bw(struct dl_bw *dl_b);
310extern int sched_dl_global_validate(void);
311extern void sched_dl_do_global(void);
312extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
313extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315extern bool __checkparam_dl(const struct sched_attr *attr);
316extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
317extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
319extern bool dl_cpu_busy(unsigned int cpu);
320
321#ifdef CONFIG_CGROUP_SCHED
322
323#include <linux/cgroup.h>
324#include <linux/psi.h>
325
326struct cfs_rq;
327struct rt_rq;
328
329extern struct list_head task_groups;
330
331struct cfs_bandwidth {
332#ifdef CONFIG_CFS_BANDWIDTH
333 raw_spinlock_t lock;
334 ktime_t period;
335 u64 quota;
336 u64 runtime;
337 s64 hierarchical_quota;
338
339 u8 idle;
340 u8 period_active;
341 u8 distribute_running;
342 u8 slack_started;
343 struct hrtimer period_timer;
344 struct hrtimer slack_timer;
345 struct list_head throttled_cfs_rq;
346
347 /* Statistics: */
348 int nr_periods;
349 int nr_throttled;
350 u64 throttled_time;
351#endif
352};
353
354/* Task group related information */
355struct task_group {
356 struct cgroup_subsys_state css;
357
358#ifdef CONFIG_FAIR_GROUP_SCHED
359 /* schedulable entities of this group on each CPU */
360 struct sched_entity **se;
361 /* runqueue "owned" by this group on each CPU */
362 struct cfs_rq **cfs_rq;
363 unsigned long shares;
364
365#ifdef CONFIG_SMP
366 /*
367 * load_avg can be heavily contended at clock tick time, so put
368 * it in its own cacheline separated from the fields above which
369 * will also be accessed at each tick.
370 */
371 atomic_long_t load_avg ____cacheline_aligned;
372#endif
373#endif
374
375#ifdef CONFIG_RT_GROUP_SCHED
376 struct sched_rt_entity **rt_se;
377 struct rt_rq **rt_rq;
378
379 struct rt_bandwidth rt_bandwidth;
380#endif
381
382 struct rcu_head rcu;
383 struct list_head list;
384
385 struct task_group *parent;
386 struct list_head siblings;
387 struct list_head children;
388
389#ifdef CONFIG_SCHED_AUTOGROUP
390 struct autogroup *autogroup;
391#endif
392
393 struct cfs_bandwidth cfs_bandwidth;
394
395#ifdef CONFIG_UCLAMP_TASK_GROUP
396 /* The two decimal precision [%] value requested from user-space */
397 unsigned int uclamp_pct[UCLAMP_CNT];
398 /* Clamp values requested for a task group */
399 struct uclamp_se uclamp_req[UCLAMP_CNT];
400 /* Effective clamp values used for a task group */
401 struct uclamp_se uclamp[UCLAMP_CNT];
402#endif
403
404};
405
406#ifdef CONFIG_FAIR_GROUP_SCHED
407#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
408
409/*
410 * A weight of 0 or 1 can cause arithmetics problems.
411 * A weight of a cfs_rq is the sum of weights of which entities
412 * are queued on this cfs_rq, so a weight of a entity should not be
413 * too large, so as the shares value of a task group.
414 * (The default weight is 1024 - so there's no practical
415 * limitation from this.)
416 */
417#define MIN_SHARES (1UL << 1)
418#define MAX_SHARES (1UL << 18)
419#endif
420
421typedef int (*tg_visitor)(struct task_group *, void *);
422
423extern int walk_tg_tree_from(struct task_group *from,
424 tg_visitor down, tg_visitor up, void *data);
425
426/*
427 * Iterate the full tree, calling @down when first entering a node and @up when
428 * leaving it for the final time.
429 *
430 * Caller must hold rcu_lock or sufficient equivalent.
431 */
432static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
433{
434 return walk_tg_tree_from(&root_task_group, down, up, data);
435}
436
437extern int tg_nop(struct task_group *tg, void *data);
438
439extern void free_fair_sched_group(struct task_group *tg);
440extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
441extern void online_fair_sched_group(struct task_group *tg);
442extern void unregister_fair_sched_group(struct task_group *tg);
443extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
444 struct sched_entity *se, int cpu,
445 struct sched_entity *parent);
446extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
447
448extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
449extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
450extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
451
452extern void free_rt_sched_group(struct task_group *tg);
453extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
454extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
455 struct sched_rt_entity *rt_se, int cpu,
456 struct sched_rt_entity *parent);
457extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
458extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
459extern long sched_group_rt_runtime(struct task_group *tg);
460extern long sched_group_rt_period(struct task_group *tg);
461extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
462
463extern struct task_group *sched_create_group(struct task_group *parent);
464extern void sched_online_group(struct task_group *tg,
465 struct task_group *parent);
466extern void sched_destroy_group(struct task_group *tg);
467extern void sched_offline_group(struct task_group *tg);
468
469extern void sched_move_task(struct task_struct *tsk);
470
471#ifdef CONFIG_FAIR_GROUP_SCHED
472extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
473
474#ifdef CONFIG_SMP
475extern void set_task_rq_fair(struct sched_entity *se,
476 struct cfs_rq *prev, struct cfs_rq *next);
477#else /* !CONFIG_SMP */
478static inline void set_task_rq_fair(struct sched_entity *se,
479 struct cfs_rq *prev, struct cfs_rq *next) { }
480#endif /* CONFIG_SMP */
481#endif /* CONFIG_FAIR_GROUP_SCHED */
482
483#else /* CONFIG_CGROUP_SCHED */
484
485struct cfs_bandwidth { };
486
487#endif /* CONFIG_CGROUP_SCHED */
488
489/* CFS-related fields in a runqueue */
490struct cfs_rq {
491 struct load_weight load;
492 unsigned long runnable_weight;
493 unsigned int nr_running;
494 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
495 unsigned int idle_h_nr_running; /* SCHED_IDLE */
496
497 u64 exec_clock;
498 u64 min_vruntime;
499#ifndef CONFIG_64BIT
500 u64 min_vruntime_copy;
501#endif
502
503 struct rb_root_cached tasks_timeline;
504
505 /*
506 * 'curr' points to currently running entity on this cfs_rq.
507 * It is set to NULL otherwise (i.e when none are currently running).
508 */
509 struct sched_entity *curr;
510 struct sched_entity *next;
511 struct sched_entity *last;
512 struct sched_entity *skip;
513
514#ifdef CONFIG_SCHED_DEBUG
515 unsigned int nr_spread_over;
516#endif
517
518#ifdef CONFIG_SMP
519 /*
520 * CFS load tracking
521 */
522 struct sched_avg avg;
523#ifndef CONFIG_64BIT
524 u64 load_last_update_time_copy;
525#endif
526 struct {
527 raw_spinlock_t lock ____cacheline_aligned;
528 int nr;
529 unsigned long load_avg;
530 unsigned long util_avg;
531 unsigned long runnable_sum;
532 } removed;
533
534#ifdef CONFIG_FAIR_GROUP_SCHED
535 unsigned long tg_load_avg_contrib;
536 long propagate;
537 long prop_runnable_sum;
538
539 /*
540 * h_load = weight * f(tg)
541 *
542 * Where f(tg) is the recursive weight fraction assigned to
543 * this group.
544 */
545 unsigned long h_load;
546 u64 last_h_load_update;
547 struct sched_entity *h_load_next;
548#endif /* CONFIG_FAIR_GROUP_SCHED */
549#endif /* CONFIG_SMP */
550
551#ifdef CONFIG_FAIR_GROUP_SCHED
552 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
553
554 /*
555 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
556 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
557 * (like users, containers etc.)
558 *
559 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
560 * This list is used during load balance.
561 */
562 int on_list;
563 struct list_head leaf_cfs_rq_list;
564 struct task_group *tg; /* group that "owns" this runqueue */
565
566#ifdef CONFIG_CFS_BANDWIDTH
567 int runtime_enabled;
568 s64 runtime_remaining;
569
570 u64 throttled_clock;
571 u64 throttled_clock_task;
572 u64 throttled_clock_task_time;
573 int throttled;
574 int throttle_count;
575 struct list_head throttled_list;
576#endif /* CONFIG_CFS_BANDWIDTH */
577#endif /* CONFIG_FAIR_GROUP_SCHED */
578};
579
580static inline int rt_bandwidth_enabled(void)
581{
582 return sysctl_sched_rt_runtime >= 0;
583}
584
585/* RT IPI pull logic requires IRQ_WORK */
586#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
587# define HAVE_RT_PUSH_IPI
588#endif
589
590/* Real-Time classes' related field in a runqueue: */
591struct rt_rq {
592 struct rt_prio_array active;
593 unsigned int rt_nr_running;
594 unsigned int rr_nr_running;
595#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
596 struct {
597 int curr; /* highest queued rt task prio */
598#ifdef CONFIG_SMP
599 int next; /* next highest */
600#endif
601 } highest_prio;
602#endif
603#ifdef CONFIG_SMP
604 unsigned long rt_nr_migratory;
605 unsigned long rt_nr_total;
606 int overloaded;
607 struct plist_head pushable_tasks;
608
609#endif /* CONFIG_SMP */
610 int rt_queued;
611
612 int rt_throttled;
613 u64 rt_time;
614 u64 rt_runtime;
615 /* Nests inside the rq lock: */
616 raw_spinlock_t rt_runtime_lock;
617
618#ifdef CONFIG_RT_GROUP_SCHED
619 unsigned long rt_nr_boosted;
620
621 struct rq *rq;
622 struct task_group *tg;
623#endif
624};
625
626static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
627{
628 return rt_rq->rt_queued && rt_rq->rt_nr_running;
629}
630
631/* Deadline class' related fields in a runqueue */
632struct dl_rq {
633 /* runqueue is an rbtree, ordered by deadline */
634 struct rb_root_cached root;
635
636 unsigned long dl_nr_running;
637
638#ifdef CONFIG_SMP
639 /*
640 * Deadline values of the currently executing and the
641 * earliest ready task on this rq. Caching these facilitates
642 * the decision whether or not a ready but not running task
643 * should migrate somewhere else.
644 */
645 struct {
646 u64 curr;
647 u64 next;
648 } earliest_dl;
649
650 unsigned long dl_nr_migratory;
651 int overloaded;
652
653 /*
654 * Tasks on this rq that can be pushed away. They are kept in
655 * an rb-tree, ordered by tasks' deadlines, with caching
656 * of the leftmost (earliest deadline) element.
657 */
658 struct rb_root_cached pushable_dl_tasks_root;
659#else
660 struct dl_bw dl_bw;
661#endif
662 /*
663 * "Active utilization" for this runqueue: increased when a
664 * task wakes up (becomes TASK_RUNNING) and decreased when a
665 * task blocks
666 */
667 u64 running_bw;
668
669 /*
670 * Utilization of the tasks "assigned" to this runqueue (including
671 * the tasks that are in runqueue and the tasks that executed on this
672 * CPU and blocked). Increased when a task moves to this runqueue, and
673 * decreased when the task moves away (migrates, changes scheduling
674 * policy, or terminates).
675 * This is needed to compute the "inactive utilization" for the
676 * runqueue (inactive utilization = this_bw - running_bw).
677 */
678 u64 this_bw;
679 u64 extra_bw;
680
681 /*
682 * Inverse of the fraction of CPU utilization that can be reclaimed
683 * by the GRUB algorithm.
684 */
685 u64 bw_ratio;
686};
687
688#ifdef CONFIG_FAIR_GROUP_SCHED
689/* An entity is a task if it doesn't "own" a runqueue */
690#define entity_is_task(se) (!se->my_q)
691#else
692#define entity_is_task(se) 1
693#endif
694
695#ifdef CONFIG_SMP
696/*
697 * XXX we want to get rid of these helpers and use the full load resolution.
698 */
699static inline long se_weight(struct sched_entity *se)
700{
701 return scale_load_down(se->load.weight);
702}
703
704static inline long se_runnable(struct sched_entity *se)
705{
706 return scale_load_down(se->runnable_weight);
707}
708
709static inline bool sched_asym_prefer(int a, int b)
710{
711 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
712}
713
714struct perf_domain {
715 struct em_perf_domain *em_pd;
716 struct perf_domain *next;
717 struct rcu_head rcu;
718};
719
720/* Scheduling group status flags */
721#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
722#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
723
724/*
725 * We add the notion of a root-domain which will be used to define per-domain
726 * variables. Each exclusive cpuset essentially defines an island domain by
727 * fully partitioning the member CPUs from any other cpuset. Whenever a new
728 * exclusive cpuset is created, we also create and attach a new root-domain
729 * object.
730 *
731 */
732struct root_domain {
733 atomic_t refcount;
734 atomic_t rto_count;
735 struct rcu_head rcu;
736 cpumask_var_t span;
737 cpumask_var_t online;
738
739 /*
740 * Indicate pullable load on at least one CPU, e.g:
741 * - More than one runnable task
742 * - Running task is misfit
743 */
744 int overload;
745
746 /* Indicate one or more cpus over-utilized (tipping point) */
747 int overutilized;
748
749 /*
750 * The bit corresponding to a CPU gets set here if such CPU has more
751 * than one runnable -deadline task (as it is below for RT tasks).
752 */
753 cpumask_var_t dlo_mask;
754 atomic_t dlo_count;
755 struct dl_bw dl_bw;
756 struct cpudl cpudl;
757
758#ifdef HAVE_RT_PUSH_IPI
759 /*
760 * For IPI pull requests, loop across the rto_mask.
761 */
762 struct irq_work rto_push_work;
763 raw_spinlock_t rto_lock;
764 /* These are only updated and read within rto_lock */
765 int rto_loop;
766 int rto_cpu;
767 /* These atomics are updated outside of a lock */
768 atomic_t rto_loop_next;
769 atomic_t rto_loop_start;
770#endif
771 /*
772 * The "RT overload" flag: it gets set if a CPU has more than
773 * one runnable RT task.
774 */
775 cpumask_var_t rto_mask;
776 struct cpupri cpupri;
777
778 unsigned long max_cpu_capacity;
779
780 /*
781 * NULL-terminated list of performance domains intersecting with the
782 * CPUs of the rd. Protected by RCU.
783 */
784 struct perf_domain __rcu *pd;
785};
786
787extern void init_defrootdomain(void);
788extern int sched_init_domains(const struct cpumask *cpu_map);
789extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
790extern void sched_get_rd(struct root_domain *rd);
791extern void sched_put_rd(struct root_domain *rd);
792
793#ifdef HAVE_RT_PUSH_IPI
794extern void rto_push_irq_work_func(struct irq_work *work);
795#endif
796#endif /* CONFIG_SMP */
797
798#ifdef CONFIG_UCLAMP_TASK
799/*
800 * struct uclamp_bucket - Utilization clamp bucket
801 * @value: utilization clamp value for tasks on this clamp bucket
802 * @tasks: number of RUNNABLE tasks on this clamp bucket
803 *
804 * Keep track of how many tasks are RUNNABLE for a given utilization
805 * clamp value.
806 */
807struct uclamp_bucket {
808 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
809 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
810};
811
812/*
813 * struct uclamp_rq - rq's utilization clamp
814 * @value: currently active clamp values for a rq
815 * @bucket: utilization clamp buckets affecting a rq
816 *
817 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
818 * A clamp value is affecting a rq when there is at least one task RUNNABLE
819 * (or actually running) with that value.
820 *
821 * There are up to UCLAMP_CNT possible different clamp values, currently there
822 * are only two: minimum utilization and maximum utilization.
823 *
824 * All utilization clamping values are MAX aggregated, since:
825 * - for util_min: we want to run the CPU at least at the max of the minimum
826 * utilization required by its currently RUNNABLE tasks.
827 * - for util_max: we want to allow the CPU to run up to the max of the
828 * maximum utilization allowed by its currently RUNNABLE tasks.
829 *
830 * Since on each system we expect only a limited number of different
831 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
832 * the metrics required to compute all the per-rq utilization clamp values.
833 */
834struct uclamp_rq {
835 unsigned int value;
836 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
837};
838#endif /* CONFIG_UCLAMP_TASK */
839
840/*
841 * This is the main, per-CPU runqueue data structure.
842 *
843 * Locking rule: those places that want to lock multiple runqueues
844 * (such as the load balancing or the thread migration code), lock
845 * acquire operations must be ordered by ascending &runqueue.
846 */
847struct rq {
848 /* runqueue lock: */
849 raw_spinlock_t lock;
850
851 /*
852 * nr_running and cpu_load should be in the same cacheline because
853 * remote CPUs use both these fields when doing load calculation.
854 */
855 unsigned int nr_running;
856#ifdef CONFIG_NUMA_BALANCING
857 unsigned int nr_numa_running;
858 unsigned int nr_preferred_running;
859 unsigned int numa_migrate_on;
860#endif
861#ifdef CONFIG_NO_HZ_COMMON
862#ifdef CONFIG_SMP
863 unsigned long last_load_update_tick;
864 unsigned long last_blocked_load_update_tick;
865 unsigned int has_blocked_load;
866#endif /* CONFIG_SMP */
867 unsigned int nohz_tick_stopped;
868 atomic_t nohz_flags;
869#endif /* CONFIG_NO_HZ_COMMON */
870
871 unsigned long nr_load_updates;
872 u64 nr_switches;
873
874#ifdef CONFIG_UCLAMP_TASK
875 /* Utilization clamp values based on CPU's RUNNABLE tasks */
876 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
877 unsigned int uclamp_flags;
878#define UCLAMP_FLAG_IDLE 0x01
879#endif
880
881 struct cfs_rq cfs;
882 struct rt_rq rt;
883 struct dl_rq dl;
884
885#ifdef CONFIG_FAIR_GROUP_SCHED
886 /* list of leaf cfs_rq on this CPU: */
887 struct list_head leaf_cfs_rq_list;
888 struct list_head *tmp_alone_branch;
889#endif /* CONFIG_FAIR_GROUP_SCHED */
890
891 /*
892 * This is part of a global counter where only the total sum
893 * over all CPUs matters. A task can increase this counter on
894 * one CPU and if it got migrated afterwards it may decrease
895 * it on another CPU. Always updated under the runqueue lock:
896 */
897 unsigned long nr_uninterruptible;
898
899 struct task_struct *curr;
900 struct task_struct *idle;
901 struct task_struct *stop;
902 unsigned long next_balance;
903 struct mm_struct *prev_mm;
904
905 unsigned int clock_update_flags;
906 u64 clock;
907 /* Ensure that all clocks are in the same cache line */
908 u64 clock_task ____cacheline_aligned;
909 u64 clock_pelt;
910 unsigned long lost_idle_time;
911
912 atomic_t nr_iowait;
913
914#ifdef CONFIG_MEMBARRIER
915 int membarrier_state;
916#endif
917
918#ifdef CONFIG_SMP
919 struct root_domain *rd;
920 struct sched_domain __rcu *sd;
921
922 unsigned long cpu_capacity;
923 unsigned long cpu_capacity_orig;
924
925 struct callback_head *balance_callback;
926
927 unsigned char idle_balance;
928
929 unsigned long misfit_task_load;
930
931 /* For active balancing */
932 int active_balance;
933 int push_cpu;
934 struct cpu_stop_work active_balance_work;
935
936 /* CPU of this runqueue: */
937 int cpu;
938 int online;
939
940 struct list_head cfs_tasks;
941
942 struct sched_avg avg_rt;
943 struct sched_avg avg_dl;
944#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
945 struct sched_avg avg_irq;
946#endif
947 u64 idle_stamp;
948 u64 avg_idle;
949
950 /* This is used to determine avg_idle's max value */
951 u64 max_idle_balance_cost;
952#endif
953
954#ifdef CONFIG_IRQ_TIME_ACCOUNTING
955 u64 prev_irq_time;
956#endif
957#ifdef CONFIG_PARAVIRT
958 u64 prev_steal_time;
959#endif
960#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
961 u64 prev_steal_time_rq;
962#endif
963
964 /* calc_load related fields */
965 unsigned long calc_load_update;
966 long calc_load_active;
967
968#ifdef CONFIG_SCHED_HRTICK
969#ifdef CONFIG_SMP
970 int hrtick_csd_pending;
971 call_single_data_t hrtick_csd;
972#endif
973 struct hrtimer hrtick_timer;
974#endif
975
976#ifdef CONFIG_SCHEDSTATS
977 /* latency stats */
978 struct sched_info rq_sched_info;
979 unsigned long long rq_cpu_time;
980 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
981
982 /* sys_sched_yield() stats */
983 unsigned int yld_count;
984
985 /* schedule() stats */
986 unsigned int sched_count;
987 unsigned int sched_goidle;
988
989 /* try_to_wake_up() stats */
990 unsigned int ttwu_count;
991 unsigned int ttwu_local;
992#endif
993
994#ifdef CONFIG_SMP
995 struct llist_head wake_list;
996#endif
997
998#ifdef CONFIG_CPU_IDLE
999 /* Must be inspected within a rcu lock section */
1000 struct cpuidle_state *idle_state;
1001#endif
1002};
1003
1004#ifdef CONFIG_FAIR_GROUP_SCHED
1005
1006/* CPU runqueue to which this cfs_rq is attached */
1007static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1008{
1009 return cfs_rq->rq;
1010}
1011
1012#else
1013
1014static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1015{
1016 return container_of(cfs_rq, struct rq, cfs);
1017}
1018#endif
1019
1020static inline int cpu_of(struct rq *rq)
1021{
1022#ifdef CONFIG_SMP
1023 return rq->cpu;
1024#else
1025 return 0;
1026#endif
1027}
1028
1029
1030#ifdef CONFIG_SCHED_SMT
1031extern void __update_idle_core(struct rq *rq);
1032
1033static inline void update_idle_core(struct rq *rq)
1034{
1035 if (static_branch_unlikely(&sched_smt_present))
1036 __update_idle_core(rq);
1037}
1038
1039#else
1040static inline void update_idle_core(struct rq *rq) { }
1041#endif
1042
1043DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1044
1045#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1046#define this_rq() this_cpu_ptr(&runqueues)
1047#define task_rq(p) cpu_rq(task_cpu(p))
1048#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1049#define raw_rq() raw_cpu_ptr(&runqueues)
1050
1051extern void update_rq_clock(struct rq *rq);
1052
1053static inline u64 __rq_clock_broken(struct rq *rq)
1054{
1055 return READ_ONCE(rq->clock);
1056}
1057
1058/*
1059 * rq::clock_update_flags bits
1060 *
1061 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1062 * call to __schedule(). This is an optimisation to avoid
1063 * neighbouring rq clock updates.
1064 *
1065 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1066 * in effect and calls to update_rq_clock() are being ignored.
1067 *
1068 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1069 * made to update_rq_clock() since the last time rq::lock was pinned.
1070 *
1071 * If inside of __schedule(), clock_update_flags will have been
1072 * shifted left (a left shift is a cheap operation for the fast path
1073 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1074 *
1075 * if (rq-clock_update_flags >= RQCF_UPDATED)
1076 *
1077 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1078 * one position though, because the next rq_unpin_lock() will shift it
1079 * back.
1080 */
1081#define RQCF_REQ_SKIP 0x01
1082#define RQCF_ACT_SKIP 0x02
1083#define RQCF_UPDATED 0x04
1084
1085static inline void assert_clock_updated(struct rq *rq)
1086{
1087 /*
1088 * The only reason for not seeing a clock update since the
1089 * last rq_pin_lock() is if we're currently skipping updates.
1090 */
1091 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1092}
1093
1094static inline u64 rq_clock(struct rq *rq)
1095{
1096 lockdep_assert_held(&rq->lock);
1097 assert_clock_updated(rq);
1098
1099 return rq->clock;
1100}
1101
1102static inline u64 rq_clock_task(struct rq *rq)
1103{
1104 lockdep_assert_held(&rq->lock);
1105 assert_clock_updated(rq);
1106
1107 return rq->clock_task;
1108}
1109
1110static inline void rq_clock_skip_update(struct rq *rq)
1111{
1112 lockdep_assert_held(&rq->lock);
1113 rq->clock_update_flags |= RQCF_REQ_SKIP;
1114}
1115
1116/*
1117 * See rt task throttling, which is the only time a skip
1118 * request is cancelled.
1119 */
1120static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1121{
1122 lockdep_assert_held(&rq->lock);
1123 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1124}
1125
1126struct rq_flags {
1127 unsigned long flags;
1128 struct pin_cookie cookie;
1129#ifdef CONFIG_SCHED_DEBUG
1130 /*
1131 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1132 * current pin context is stashed here in case it needs to be
1133 * restored in rq_repin_lock().
1134 */
1135 unsigned int clock_update_flags;
1136#endif
1137};
1138
1139static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1140{
1141 rf->cookie = lockdep_pin_lock(&rq->lock);
1142
1143#ifdef CONFIG_SCHED_DEBUG
1144 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1145 rf->clock_update_flags = 0;
1146#endif
1147}
1148
1149static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1150{
1151#ifdef CONFIG_SCHED_DEBUG
1152 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1153 rf->clock_update_flags = RQCF_UPDATED;
1154#endif
1155
1156 lockdep_unpin_lock(&rq->lock, rf->cookie);
1157}
1158
1159static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1160{
1161 lockdep_repin_lock(&rq->lock, rf->cookie);
1162
1163#ifdef CONFIG_SCHED_DEBUG
1164 /*
1165 * Restore the value we stashed in @rf for this pin context.
1166 */
1167 rq->clock_update_flags |= rf->clock_update_flags;
1168#endif
1169}
1170
1171struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1172 __acquires(rq->lock);
1173
1174struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1175 __acquires(p->pi_lock)
1176 __acquires(rq->lock);
1177
1178static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1179 __releases(rq->lock)
1180{
1181 rq_unpin_lock(rq, rf);
1182 raw_spin_unlock(&rq->lock);
1183}
1184
1185static inline void
1186task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1187 __releases(rq->lock)
1188 __releases(p->pi_lock)
1189{
1190 rq_unpin_lock(rq, rf);
1191 raw_spin_unlock(&rq->lock);
1192 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1193}
1194
1195static inline void
1196rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1197 __acquires(rq->lock)
1198{
1199 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1200 rq_pin_lock(rq, rf);
1201}
1202
1203static inline void
1204rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1205 __acquires(rq->lock)
1206{
1207 raw_spin_lock_irq(&rq->lock);
1208 rq_pin_lock(rq, rf);
1209}
1210
1211static inline void
1212rq_lock(struct rq *rq, struct rq_flags *rf)
1213 __acquires(rq->lock)
1214{
1215 raw_spin_lock(&rq->lock);
1216 rq_pin_lock(rq, rf);
1217}
1218
1219static inline void
1220rq_relock(struct rq *rq, struct rq_flags *rf)
1221 __acquires(rq->lock)
1222{
1223 raw_spin_lock(&rq->lock);
1224 rq_repin_lock(rq, rf);
1225}
1226
1227static inline void
1228rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1229 __releases(rq->lock)
1230{
1231 rq_unpin_lock(rq, rf);
1232 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1233}
1234
1235static inline void
1236rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1237 __releases(rq->lock)
1238{
1239 rq_unpin_lock(rq, rf);
1240 raw_spin_unlock_irq(&rq->lock);
1241}
1242
1243static inline void
1244rq_unlock(struct rq *rq, struct rq_flags *rf)
1245 __releases(rq->lock)
1246{
1247 rq_unpin_lock(rq, rf);
1248 raw_spin_unlock(&rq->lock);
1249}
1250
1251static inline struct rq *
1252this_rq_lock_irq(struct rq_flags *rf)
1253 __acquires(rq->lock)
1254{
1255 struct rq *rq;
1256
1257 local_irq_disable();
1258 rq = this_rq();
1259 rq_lock(rq, rf);
1260 return rq;
1261}
1262
1263#ifdef CONFIG_NUMA
1264enum numa_topology_type {
1265 NUMA_DIRECT,
1266 NUMA_GLUELESS_MESH,
1267 NUMA_BACKPLANE,
1268};
1269extern enum numa_topology_type sched_numa_topology_type;
1270extern int sched_max_numa_distance;
1271extern bool find_numa_distance(int distance);
1272extern void sched_init_numa(void);
1273extern void sched_domains_numa_masks_set(unsigned int cpu);
1274extern void sched_domains_numa_masks_clear(unsigned int cpu);
1275extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1276#else
1277static inline void sched_init_numa(void) { }
1278static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1279static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1280static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1281{
1282 return nr_cpu_ids;
1283}
1284#endif
1285
1286#ifdef CONFIG_NUMA_BALANCING
1287/* The regions in numa_faults array from task_struct */
1288enum numa_faults_stats {
1289 NUMA_MEM = 0,
1290 NUMA_CPU,
1291 NUMA_MEMBUF,
1292 NUMA_CPUBUF
1293};
1294extern void sched_setnuma(struct task_struct *p, int node);
1295extern int migrate_task_to(struct task_struct *p, int cpu);
1296extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1297 int cpu, int scpu);
1298extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1299#else
1300static inline void
1301init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1302{
1303}
1304#endif /* CONFIG_NUMA_BALANCING */
1305
1306#ifdef CONFIG_SMP
1307
1308static inline void
1309queue_balance_callback(struct rq *rq,
1310 struct callback_head *head,
1311 void (*func)(struct rq *rq))
1312{
1313 lockdep_assert_held(&rq->lock);
1314
1315 if (unlikely(head->next))
1316 return;
1317
1318 head->func = (void (*)(struct callback_head *))func;
1319 head->next = rq->balance_callback;
1320 rq->balance_callback = head;
1321}
1322
1323extern void sched_ttwu_pending(void);
1324
1325#define rcu_dereference_check_sched_domain(p) \
1326 rcu_dereference_check((p), \
1327 lockdep_is_held(&sched_domains_mutex))
1328
1329/*
1330 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1331 * See destroy_sched_domains: call_rcu for details.
1332 *
1333 * The domain tree of any CPU may only be accessed from within
1334 * preempt-disabled sections.
1335 */
1336#define for_each_domain(cpu, __sd) \
1337 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1338 __sd; __sd = __sd->parent)
1339
1340#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1341
1342/**
1343 * highest_flag_domain - Return highest sched_domain containing flag.
1344 * @cpu: The CPU whose highest level of sched domain is to
1345 * be returned.
1346 * @flag: The flag to check for the highest sched_domain
1347 * for the given CPU.
1348 *
1349 * Returns the highest sched_domain of a CPU which contains the given flag.
1350 */
1351static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1352{
1353 struct sched_domain *sd, *hsd = NULL;
1354
1355 for_each_domain(cpu, sd) {
1356 if (!(sd->flags & flag))
1357 break;
1358 hsd = sd;
1359 }
1360
1361 return hsd;
1362}
1363
1364static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1365{
1366 struct sched_domain *sd;
1367
1368 for_each_domain(cpu, sd) {
1369 if (sd->flags & flag)
1370 break;
1371 }
1372
1373 return sd;
1374}
1375
1376DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1377DECLARE_PER_CPU(int, sd_llc_size);
1378DECLARE_PER_CPU(int, sd_llc_id);
1379DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1380DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1381DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1382DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1383extern struct static_key_false sched_asym_cpucapacity;
1384
1385struct sched_group_capacity {
1386 atomic_t ref;
1387 /*
1388 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1389 * for a single CPU.
1390 */
1391 unsigned long capacity;
1392 unsigned long min_capacity; /* Min per-CPU capacity in group */
1393 unsigned long max_capacity; /* Max per-CPU capacity in group */
1394 unsigned long next_update;
1395 int imbalance; /* XXX unrelated to capacity but shared group state */
1396
1397#ifdef CONFIG_SCHED_DEBUG
1398 int id;
1399#endif
1400
1401 unsigned long cpumask[0]; /* Balance mask */
1402};
1403
1404struct sched_group {
1405 struct sched_group *next; /* Must be a circular list */
1406 atomic_t ref;
1407
1408 unsigned int group_weight;
1409 struct sched_group_capacity *sgc;
1410 int asym_prefer_cpu; /* CPU of highest priority in group */
1411
1412 /*
1413 * The CPUs this group covers.
1414 *
1415 * NOTE: this field is variable length. (Allocated dynamically
1416 * by attaching extra space to the end of the structure,
1417 * depending on how many CPUs the kernel has booted up with)
1418 */
1419 unsigned long cpumask[0];
1420};
1421
1422static inline struct cpumask *sched_group_span(struct sched_group *sg)
1423{
1424 return to_cpumask(sg->cpumask);
1425}
1426
1427/*
1428 * See build_balance_mask().
1429 */
1430static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1431{
1432 return to_cpumask(sg->sgc->cpumask);
1433}
1434
1435/**
1436 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1437 * @group: The group whose first CPU is to be returned.
1438 */
1439static inline unsigned int group_first_cpu(struct sched_group *group)
1440{
1441 return cpumask_first(sched_group_span(group));
1442}
1443
1444extern int group_balance_cpu(struct sched_group *sg);
1445
1446#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1447void register_sched_domain_sysctl(void);
1448void dirty_sched_domain_sysctl(int cpu);
1449void unregister_sched_domain_sysctl(void);
1450#else
1451static inline void register_sched_domain_sysctl(void)
1452{
1453}
1454static inline void dirty_sched_domain_sysctl(int cpu)
1455{
1456}
1457static inline void unregister_sched_domain_sysctl(void)
1458{
1459}
1460#endif
1461
1462extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
1463
1464#else
1465
1466static inline void sched_ttwu_pending(void) { }
1467
1468static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; }
1469
1470#endif /* CONFIG_SMP */
1471
1472#include "stats.h"
1473#include "autogroup.h"
1474
1475#ifdef CONFIG_CGROUP_SCHED
1476
1477/*
1478 * Return the group to which this tasks belongs.
1479 *
1480 * We cannot use task_css() and friends because the cgroup subsystem
1481 * changes that value before the cgroup_subsys::attach() method is called,
1482 * therefore we cannot pin it and might observe the wrong value.
1483 *
1484 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1485 * core changes this before calling sched_move_task().
1486 *
1487 * Instead we use a 'copy' which is updated from sched_move_task() while
1488 * holding both task_struct::pi_lock and rq::lock.
1489 */
1490static inline struct task_group *task_group(struct task_struct *p)
1491{
1492 return p->sched_task_group;
1493}
1494
1495/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1496static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1497{
1498#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1499 struct task_group *tg = task_group(p);
1500#endif
1501
1502#ifdef CONFIG_FAIR_GROUP_SCHED
1503 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1504 p->se.cfs_rq = tg->cfs_rq[cpu];
1505 p->se.parent = tg->se[cpu];
1506#endif
1507
1508#ifdef CONFIG_RT_GROUP_SCHED
1509 p->rt.rt_rq = tg->rt_rq[cpu];
1510 p->rt.parent = tg->rt_se[cpu];
1511#endif
1512}
1513
1514#else /* CONFIG_CGROUP_SCHED */
1515
1516static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1517static inline struct task_group *task_group(struct task_struct *p)
1518{
1519 return NULL;
1520}
1521
1522#endif /* CONFIG_CGROUP_SCHED */
1523
1524static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1525{
1526 set_task_rq(p, cpu);
1527#ifdef CONFIG_SMP
1528 /*
1529 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1530 * successfully executed on another CPU. We must ensure that updates of
1531 * per-task data have been completed by this moment.
1532 */
1533 smp_wmb();
1534#ifdef CONFIG_THREAD_INFO_IN_TASK
1535 WRITE_ONCE(p->cpu, cpu);
1536#else
1537 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1538#endif
1539 p->wake_cpu = cpu;
1540#endif
1541}
1542
1543/*
1544 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1545 */
1546#ifdef CONFIG_SCHED_DEBUG
1547# include <linux/static_key.h>
1548# define const_debug __read_mostly
1549#else
1550# define const_debug const
1551#endif
1552
1553#define SCHED_FEAT(name, enabled) \
1554 __SCHED_FEAT_##name ,
1555
1556enum {
1557#include "features.h"
1558 __SCHED_FEAT_NR,
1559};
1560
1561#undef SCHED_FEAT
1562
1563#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1564
1565/*
1566 * To support run-time toggling of sched features, all the translation units
1567 * (but core.c) reference the sysctl_sched_features defined in core.c.
1568 */
1569extern const_debug unsigned int sysctl_sched_features;
1570
1571#define SCHED_FEAT(name, enabled) \
1572static __always_inline bool static_branch_##name(struct static_key *key) \
1573{ \
1574 return static_key_##enabled(key); \
1575}
1576
1577#include "features.h"
1578#undef SCHED_FEAT
1579
1580extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1581#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1582
1583#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1584
1585/*
1586 * Each translation unit has its own copy of sysctl_sched_features to allow
1587 * constants propagation at compile time and compiler optimization based on
1588 * features default.
1589 */
1590#define SCHED_FEAT(name, enabled) \
1591 (1UL << __SCHED_FEAT_##name) * enabled |
1592static const_debug __maybe_unused unsigned int sysctl_sched_features =
1593#include "features.h"
1594 0;
1595#undef SCHED_FEAT
1596
1597#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1598
1599#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1600
1601extern struct static_key_false sched_numa_balancing;
1602extern struct static_key_false sched_schedstats;
1603
1604static inline u64 global_rt_period(void)
1605{
1606 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1607}
1608
1609static inline u64 global_rt_runtime(void)
1610{
1611 if (sysctl_sched_rt_runtime < 0)
1612 return RUNTIME_INF;
1613
1614 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1615}
1616
1617static inline int task_current(struct rq *rq, struct task_struct *p)
1618{
1619 return rq->curr == p;
1620}
1621
1622static inline int task_running(struct rq *rq, struct task_struct *p)
1623{
1624#ifdef CONFIG_SMP
1625 return p->on_cpu;
1626#else
1627 return task_current(rq, p);
1628#endif
1629}
1630
1631static inline int task_on_rq_queued(struct task_struct *p)
1632{
1633 return p->on_rq == TASK_ON_RQ_QUEUED;
1634}
1635
1636static inline int task_on_rq_migrating(struct task_struct *p)
1637{
1638 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1639}
1640
1641/*
1642 * wake flags
1643 */
1644#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1645#define WF_FORK 0x02 /* Child wakeup after fork */
1646#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1647
1648/*
1649 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1650 * of tasks with abnormal "nice" values across CPUs the contribution that
1651 * each task makes to its run queue's load is weighted according to its
1652 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1653 * scaled version of the new time slice allocation that they receive on time
1654 * slice expiry etc.
1655 */
1656
1657#define WEIGHT_IDLEPRIO 3
1658#define WMULT_IDLEPRIO 1431655765
1659
1660extern const int sched_prio_to_weight[40];
1661extern const u32 sched_prio_to_wmult[40];
1662
1663/*
1664 * {de,en}queue flags:
1665 *
1666 * DEQUEUE_SLEEP - task is no longer runnable
1667 * ENQUEUE_WAKEUP - task just became runnable
1668 *
1669 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1670 * are in a known state which allows modification. Such pairs
1671 * should preserve as much state as possible.
1672 *
1673 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1674 * in the runqueue.
1675 *
1676 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1677 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1678 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1679 *
1680 */
1681
1682#define DEQUEUE_SLEEP 0x01
1683#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1684#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1685#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1686
1687#define ENQUEUE_WAKEUP 0x01
1688#define ENQUEUE_RESTORE 0x02
1689#define ENQUEUE_MOVE 0x04
1690#define ENQUEUE_NOCLOCK 0x08
1691
1692#define ENQUEUE_HEAD 0x10
1693#define ENQUEUE_REPLENISH 0x20
1694#ifdef CONFIG_SMP
1695#define ENQUEUE_MIGRATED 0x40
1696#else
1697#define ENQUEUE_MIGRATED 0x00
1698#endif
1699
1700#define RETRY_TASK ((void *)-1UL)
1701
1702struct sched_class {
1703 const struct sched_class *next;
1704
1705#ifdef CONFIG_UCLAMP_TASK
1706 int uclamp_enabled;
1707#endif
1708
1709 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1710 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1711 void (*yield_task) (struct rq *rq);
1712 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1713
1714 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1715
1716 /*
1717 * Both @prev and @rf are optional and may be NULL, in which case the
1718 * caller must already have invoked put_prev_task(rq, prev, rf).
1719 *
1720 * Otherwise it is the responsibility of the pick_next_task() to call
1721 * put_prev_task() on the @prev task or something equivalent, IFF it
1722 * returns a next task.
1723 *
1724 * In that case (@rf != NULL) it may return RETRY_TASK when it finds a
1725 * higher prio class has runnable tasks.
1726 */
1727 struct task_struct * (*pick_next_task)(struct rq *rq,
1728 struct task_struct *prev,
1729 struct rq_flags *rf);
1730 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1731 void (*set_next_task)(struct rq *rq, struct task_struct *p);
1732
1733#ifdef CONFIG_SMP
1734 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1735 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1736 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1737
1738 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1739
1740 void (*set_cpus_allowed)(struct task_struct *p,
1741 const struct cpumask *newmask);
1742
1743 void (*rq_online)(struct rq *rq);
1744 void (*rq_offline)(struct rq *rq);
1745#endif
1746
1747 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1748 void (*task_fork)(struct task_struct *p);
1749 void (*task_dead)(struct task_struct *p);
1750
1751 /*
1752 * The switched_from() call is allowed to drop rq->lock, therefore we
1753 * cannot assume the switched_from/switched_to pair is serliazed by
1754 * rq->lock. They are however serialized by p->pi_lock.
1755 */
1756 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1757 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1758 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1759 int oldprio);
1760
1761 unsigned int (*get_rr_interval)(struct rq *rq,
1762 struct task_struct *task);
1763
1764 void (*update_curr)(struct rq *rq);
1765
1766#define TASK_SET_GROUP 0
1767#define TASK_MOVE_GROUP 1
1768
1769#ifdef CONFIG_FAIR_GROUP_SCHED
1770 void (*task_change_group)(struct task_struct *p, int type);
1771#endif
1772};
1773
1774static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1775{
1776 WARN_ON_ONCE(rq->curr != prev);
1777 prev->sched_class->put_prev_task(rq, prev);
1778}
1779
1780static inline void set_next_task(struct rq *rq, struct task_struct *next)
1781{
1782 WARN_ON_ONCE(rq->curr != next);
1783 next->sched_class->set_next_task(rq, next);
1784}
1785
1786#ifdef CONFIG_SMP
1787#define sched_class_highest (&stop_sched_class)
1788#else
1789#define sched_class_highest (&dl_sched_class)
1790#endif
1791
1792#define for_class_range(class, _from, _to) \
1793 for (class = (_from); class != (_to); class = class->next)
1794
1795#define for_each_class(class) \
1796 for_class_range(class, sched_class_highest, NULL)
1797
1798extern const struct sched_class stop_sched_class;
1799extern const struct sched_class dl_sched_class;
1800extern const struct sched_class rt_sched_class;
1801extern const struct sched_class fair_sched_class;
1802extern const struct sched_class idle_sched_class;
1803
1804static inline bool sched_stop_runnable(struct rq *rq)
1805{
1806 return rq->stop && task_on_rq_queued(rq->stop);
1807}
1808
1809static inline bool sched_dl_runnable(struct rq *rq)
1810{
1811 return rq->dl.dl_nr_running > 0;
1812}
1813
1814static inline bool sched_rt_runnable(struct rq *rq)
1815{
1816 return rq->rt.rt_queued > 0;
1817}
1818
1819static inline bool sched_fair_runnable(struct rq *rq)
1820{
1821 return rq->cfs.nr_running > 0;
1822}
1823
1824#ifdef CONFIG_SMP
1825
1826extern void update_group_capacity(struct sched_domain *sd, int cpu);
1827
1828extern void trigger_load_balance(struct rq *rq);
1829
1830extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1831
1832#endif
1833
1834#ifdef CONFIG_CPU_IDLE
1835static inline void idle_set_state(struct rq *rq,
1836 struct cpuidle_state *idle_state)
1837{
1838 rq->idle_state = idle_state;
1839}
1840
1841static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1842{
1843 SCHED_WARN_ON(!rcu_read_lock_held());
1844
1845 return rq->idle_state;
1846}
1847#else
1848static inline void idle_set_state(struct rq *rq,
1849 struct cpuidle_state *idle_state)
1850{
1851}
1852
1853static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1854{
1855 return NULL;
1856}
1857#endif
1858
1859extern void schedule_idle(void);
1860
1861extern void sysrq_sched_debug_show(void);
1862extern void sched_init_granularity(void);
1863extern void update_max_interval(void);
1864
1865extern void init_sched_dl_class(void);
1866extern void init_sched_rt_class(void);
1867extern void init_sched_fair_class(void);
1868
1869extern void reweight_task(struct task_struct *p, int prio);
1870
1871extern void resched_curr(struct rq *rq);
1872extern void resched_cpu(int cpu);
1873
1874extern struct rt_bandwidth def_rt_bandwidth;
1875extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1876
1877extern struct dl_bandwidth def_dl_bandwidth;
1878extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1879extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1880extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1881extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1882
1883#define BW_SHIFT 20
1884#define BW_UNIT (1 << BW_SHIFT)
1885#define RATIO_SHIFT 8
1886unsigned long to_ratio(u64 period, u64 runtime);
1887
1888extern void init_entity_runnable_average(struct sched_entity *se);
1889extern void post_init_entity_util_avg(struct task_struct *p);
1890
1891#ifdef CONFIG_NO_HZ_FULL
1892extern bool sched_can_stop_tick(struct rq *rq);
1893extern int __init sched_tick_offload_init(void);
1894
1895/*
1896 * Tick may be needed by tasks in the runqueue depending on their policy and
1897 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1898 * nohz mode if necessary.
1899 */
1900static inline void sched_update_tick_dependency(struct rq *rq)
1901{
1902 int cpu;
1903
1904 if (!tick_nohz_full_enabled())
1905 return;
1906
1907 cpu = cpu_of(rq);
1908
1909 if (!tick_nohz_full_cpu(cpu))
1910 return;
1911
1912 if (sched_can_stop_tick(rq))
1913 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1914 else
1915 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1916}
1917#else
1918static inline int sched_tick_offload_init(void) { return 0; }
1919static inline void sched_update_tick_dependency(struct rq *rq) { }
1920#endif
1921
1922static inline void add_nr_running(struct rq *rq, unsigned count)
1923{
1924 unsigned prev_nr = rq->nr_running;
1925
1926 rq->nr_running = prev_nr + count;
1927
1928#ifdef CONFIG_SMP
1929 if (prev_nr < 2 && rq->nr_running >= 2) {
1930 if (!READ_ONCE(rq->rd->overload))
1931 WRITE_ONCE(rq->rd->overload, 1);
1932 }
1933#endif
1934
1935 sched_update_tick_dependency(rq);
1936}
1937
1938static inline void sub_nr_running(struct rq *rq, unsigned count)
1939{
1940 rq->nr_running -= count;
1941 /* Check if we still need preemption */
1942 sched_update_tick_dependency(rq);
1943}
1944
1945extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1946extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1947
1948extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1949
1950extern const_debug unsigned int sysctl_sched_nr_migrate;
1951extern const_debug unsigned int sysctl_sched_migration_cost;
1952
1953#ifdef CONFIG_SCHED_HRTICK
1954
1955/*
1956 * Use hrtick when:
1957 * - enabled by features
1958 * - hrtimer is actually high res
1959 */
1960static inline int hrtick_enabled(struct rq *rq)
1961{
1962 if (!sched_feat(HRTICK))
1963 return 0;
1964 if (!cpu_active(cpu_of(rq)))
1965 return 0;
1966 return hrtimer_is_hres_active(&rq->hrtick_timer);
1967}
1968
1969void hrtick_start(struct rq *rq, u64 delay);
1970
1971#else
1972
1973static inline int hrtick_enabled(struct rq *rq)
1974{
1975 return 0;
1976}
1977
1978#endif /* CONFIG_SCHED_HRTICK */
1979
1980#ifndef arch_scale_freq_capacity
1981static __always_inline
1982unsigned long arch_scale_freq_capacity(int cpu)
1983{
1984 return SCHED_CAPACITY_SCALE;
1985}
1986#endif
1987
1988#ifdef CONFIG_SMP
1989#ifdef CONFIG_PREEMPTION
1990
1991static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1992
1993/*
1994 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1995 * way at the expense of forcing extra atomic operations in all
1996 * invocations. This assures that the double_lock is acquired using the
1997 * same underlying policy as the spinlock_t on this architecture, which
1998 * reduces latency compared to the unfair variant below. However, it
1999 * also adds more overhead and therefore may reduce throughput.
2000 */
2001static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2002 __releases(this_rq->lock)
2003 __acquires(busiest->lock)
2004 __acquires(this_rq->lock)
2005{
2006 raw_spin_unlock(&this_rq->lock);
2007 double_rq_lock(this_rq, busiest);
2008
2009 return 1;
2010}
2011
2012#else
2013/*
2014 * Unfair double_lock_balance: Optimizes throughput at the expense of
2015 * latency by eliminating extra atomic operations when the locks are
2016 * already in proper order on entry. This favors lower CPU-ids and will
2017 * grant the double lock to lower CPUs over higher ids under contention,
2018 * regardless of entry order into the function.
2019 */
2020static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2021 __releases(this_rq->lock)
2022 __acquires(busiest->lock)
2023 __acquires(this_rq->lock)
2024{
2025 int ret = 0;
2026
2027 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2028 if (busiest < this_rq) {
2029 raw_spin_unlock(&this_rq->lock);
2030 raw_spin_lock(&busiest->lock);
2031 raw_spin_lock_nested(&this_rq->lock,
2032 SINGLE_DEPTH_NESTING);
2033 ret = 1;
2034 } else
2035 raw_spin_lock_nested(&busiest->lock,
2036 SINGLE_DEPTH_NESTING);
2037 }
2038 return ret;
2039}
2040
2041#endif /* CONFIG_PREEMPTION */
2042
2043/*
2044 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2045 */
2046static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2047{
2048 if (unlikely(!irqs_disabled())) {
2049 /* printk() doesn't work well under rq->lock */
2050 raw_spin_unlock(&this_rq->lock);
2051 BUG_ON(1);
2052 }
2053
2054 return _double_lock_balance(this_rq, busiest);
2055}
2056
2057static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2058 __releases(busiest->lock)
2059{
2060 raw_spin_unlock(&busiest->lock);
2061 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2062}
2063
2064static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2065{
2066 if (l1 > l2)
2067 swap(l1, l2);
2068
2069 spin_lock(l1);
2070 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2071}
2072
2073static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2074{
2075 if (l1 > l2)
2076 swap(l1, l2);
2077
2078 spin_lock_irq(l1);
2079 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2080}
2081
2082static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2083{
2084 if (l1 > l2)
2085 swap(l1, l2);
2086
2087 raw_spin_lock(l1);
2088 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2089}
2090
2091/*
2092 * double_rq_lock - safely lock two runqueues
2093 *
2094 * Note this does not disable interrupts like task_rq_lock,
2095 * you need to do so manually before calling.
2096 */
2097static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2098 __acquires(rq1->lock)
2099 __acquires(rq2->lock)
2100{
2101 BUG_ON(!irqs_disabled());
2102 if (rq1 == rq2) {
2103 raw_spin_lock(&rq1->lock);
2104 __acquire(rq2->lock); /* Fake it out ;) */
2105 } else {
2106 if (rq1 < rq2) {
2107 raw_spin_lock(&rq1->lock);
2108 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2109 } else {
2110 raw_spin_lock(&rq2->lock);
2111 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2112 }
2113 }
2114}
2115
2116/*
2117 * double_rq_unlock - safely unlock two runqueues
2118 *
2119 * Note this does not restore interrupts like task_rq_unlock,
2120 * you need to do so manually after calling.
2121 */
2122static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2123 __releases(rq1->lock)
2124 __releases(rq2->lock)
2125{
2126 raw_spin_unlock(&rq1->lock);
2127 if (rq1 != rq2)
2128 raw_spin_unlock(&rq2->lock);
2129 else
2130 __release(rq2->lock);
2131}
2132
2133extern void set_rq_online (struct rq *rq);
2134extern void set_rq_offline(struct rq *rq);
2135extern bool sched_smp_initialized;
2136
2137#else /* CONFIG_SMP */
2138
2139/*
2140 * double_rq_lock - safely lock two runqueues
2141 *
2142 * Note this does not disable interrupts like task_rq_lock,
2143 * you need to do so manually before calling.
2144 */
2145static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2146 __acquires(rq1->lock)
2147 __acquires(rq2->lock)
2148{
2149 BUG_ON(!irqs_disabled());
2150 BUG_ON(rq1 != rq2);
2151 raw_spin_lock(&rq1->lock);
2152 __acquire(rq2->lock); /* Fake it out ;) */
2153}
2154
2155/*
2156 * double_rq_unlock - safely unlock two runqueues
2157 *
2158 * Note this does not restore interrupts like task_rq_unlock,
2159 * you need to do so manually after calling.
2160 */
2161static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2162 __releases(rq1->lock)
2163 __releases(rq2->lock)
2164{
2165 BUG_ON(rq1 != rq2);
2166 raw_spin_unlock(&rq1->lock);
2167 __release(rq2->lock);
2168}
2169
2170#endif
2171
2172extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2173extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2174
2175#ifdef CONFIG_SCHED_DEBUG
2176extern bool sched_debug_enabled;
2177
2178extern void print_cfs_stats(struct seq_file *m, int cpu);
2179extern void print_rt_stats(struct seq_file *m, int cpu);
2180extern void print_dl_stats(struct seq_file *m, int cpu);
2181extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2182extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2183extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2184#ifdef CONFIG_NUMA_BALANCING
2185extern void
2186show_numa_stats(struct task_struct *p, struct seq_file *m);
2187extern void
2188print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2189 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2190#endif /* CONFIG_NUMA_BALANCING */
2191#endif /* CONFIG_SCHED_DEBUG */
2192
2193extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2194extern void init_rt_rq(struct rt_rq *rt_rq);
2195extern void init_dl_rq(struct dl_rq *dl_rq);
2196
2197extern void cfs_bandwidth_usage_inc(void);
2198extern void cfs_bandwidth_usage_dec(void);
2199
2200#ifdef CONFIG_NO_HZ_COMMON
2201#define NOHZ_BALANCE_KICK_BIT 0
2202#define NOHZ_STATS_KICK_BIT 1
2203
2204#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2205#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2206
2207#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2208
2209#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2210
2211extern void nohz_balance_exit_idle(struct rq *rq);
2212#else
2213static inline void nohz_balance_exit_idle(struct rq *rq) { }
2214#endif
2215
2216
2217#ifdef CONFIG_SMP
2218static inline
2219void __dl_update(struct dl_bw *dl_b, s64 bw)
2220{
2221 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2222 int i;
2223
2224 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2225 "sched RCU must be held");
2226 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2227 struct rq *rq = cpu_rq(i);
2228
2229 rq->dl.extra_bw += bw;
2230 }
2231}
2232#else
2233static inline
2234void __dl_update(struct dl_bw *dl_b, s64 bw)
2235{
2236 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2237
2238 dl->extra_bw += bw;
2239}
2240#endif
2241
2242
2243#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2244struct irqtime {
2245 u64 total;
2246 u64 tick_delta;
2247 u64 irq_start_time;
2248 struct u64_stats_sync sync;
2249};
2250
2251DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2252
2253/*
2254 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2255 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2256 * and never move forward.
2257 */
2258static inline u64 irq_time_read(int cpu)
2259{
2260 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2261 unsigned int seq;
2262 u64 total;
2263
2264 do {
2265 seq = __u64_stats_fetch_begin(&irqtime->sync);
2266 total = irqtime->total;
2267 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2268
2269 return total;
2270}
2271#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2272
2273#ifdef CONFIG_CPU_FREQ
2274DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2275
2276/**
2277 * cpufreq_update_util - Take a note about CPU utilization changes.
2278 * @rq: Runqueue to carry out the update for.
2279 * @flags: Update reason flags.
2280 *
2281 * This function is called by the scheduler on the CPU whose utilization is
2282 * being updated.
2283 *
2284 * It can only be called from RCU-sched read-side critical sections.
2285 *
2286 * The way cpufreq is currently arranged requires it to evaluate the CPU
2287 * performance state (frequency/voltage) on a regular basis to prevent it from
2288 * being stuck in a completely inadequate performance level for too long.
2289 * That is not guaranteed to happen if the updates are only triggered from CFS
2290 * and DL, though, because they may not be coming in if only RT tasks are
2291 * active all the time (or there are RT tasks only).
2292 *
2293 * As a workaround for that issue, this function is called periodically by the
2294 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2295 * but that really is a band-aid. Going forward it should be replaced with
2296 * solutions targeted more specifically at RT tasks.
2297 */
2298static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2299{
2300 struct update_util_data *data;
2301
2302 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2303 cpu_of(rq)));
2304 if (data)
2305 data->func(data, rq_clock(rq), flags);
2306}
2307#else
2308static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2309#endif /* CONFIG_CPU_FREQ */
2310
2311#ifdef CONFIG_UCLAMP_TASK
2312enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2313
2314static __always_inline
2315unsigned int uclamp_util_with(struct rq *rq, unsigned int util,
2316 struct task_struct *p)
2317{
2318 unsigned int min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2319 unsigned int max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2320
2321 if (p) {
2322 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2323 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2324 }
2325
2326 /*
2327 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2328 * RUNNABLE tasks with _different_ clamps, we can end up with an
2329 * inversion. Fix it now when the clamps are applied.
2330 */
2331 if (unlikely(min_util >= max_util))
2332 return min_util;
2333
2334 return clamp(util, min_util, max_util);
2335}
2336
2337static inline unsigned int uclamp_util(struct rq *rq, unsigned int util)
2338{
2339 return uclamp_util_with(rq, util, NULL);
2340}
2341#else /* CONFIG_UCLAMP_TASK */
2342static inline unsigned int uclamp_util_with(struct rq *rq, unsigned int util,
2343 struct task_struct *p)
2344{
2345 return util;
2346}
2347static inline unsigned int uclamp_util(struct rq *rq, unsigned int util)
2348{
2349 return util;
2350}
2351#endif /* CONFIG_UCLAMP_TASK */
2352
2353#ifdef arch_scale_freq_capacity
2354# ifndef arch_scale_freq_invariant
2355# define arch_scale_freq_invariant() true
2356# endif
2357#else
2358# define arch_scale_freq_invariant() false
2359#endif
2360
2361#ifdef CONFIG_SMP
2362static inline unsigned long capacity_orig_of(int cpu)
2363{
2364 return cpu_rq(cpu)->cpu_capacity_orig;
2365}
2366#endif
2367
2368/**
2369 * enum schedutil_type - CPU utilization type
2370 * @FREQUENCY_UTIL: Utilization used to select frequency
2371 * @ENERGY_UTIL: Utilization used during energy calculation
2372 *
2373 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2374 * need to be aggregated differently depending on the usage made of them. This
2375 * enum is used within schedutil_freq_util() to differentiate the types of
2376 * utilization expected by the callers, and adjust the aggregation accordingly.
2377 */
2378enum schedutil_type {
2379 FREQUENCY_UTIL,
2380 ENERGY_UTIL,
2381};
2382
2383#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2384
2385unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2386 unsigned long max, enum schedutil_type type,
2387 struct task_struct *p);
2388
2389static inline unsigned long cpu_bw_dl(struct rq *rq)
2390{
2391 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2392}
2393
2394static inline unsigned long cpu_util_dl(struct rq *rq)
2395{
2396 return READ_ONCE(rq->avg_dl.util_avg);
2397}
2398
2399static inline unsigned long cpu_util_cfs(struct rq *rq)
2400{
2401 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2402
2403 if (sched_feat(UTIL_EST)) {
2404 util = max_t(unsigned long, util,
2405 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2406 }
2407
2408 return util;
2409}
2410
2411static inline unsigned long cpu_util_rt(struct rq *rq)
2412{
2413 return READ_ONCE(rq->avg_rt.util_avg);
2414}
2415#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2416static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2417 unsigned long max, enum schedutil_type type,
2418 struct task_struct *p)
2419{
2420 return 0;
2421}
2422#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2423
2424#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2425static inline unsigned long cpu_util_irq(struct rq *rq)
2426{
2427 return rq->avg_irq.util_avg;
2428}
2429
2430static inline
2431unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2432{
2433 util *= (max - irq);
2434 util /= max;
2435
2436 return util;
2437
2438}
2439#else
2440static inline unsigned long cpu_util_irq(struct rq *rq)
2441{
2442 return 0;
2443}
2444
2445static inline
2446unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2447{
2448 return util;
2449}
2450#endif
2451
2452#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2453
2454#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2455
2456DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2457
2458static inline bool sched_energy_enabled(void)
2459{
2460 return static_branch_unlikely(&sched_energy_present);
2461}
2462
2463#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2464
2465#define perf_domain_span(pd) NULL
2466static inline bool sched_energy_enabled(void) { return false; }
2467
2468#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2469
2470#ifdef CONFIG_MEMBARRIER
2471/*
2472 * The scheduler provides memory barriers required by membarrier between:
2473 * - prior user-space memory accesses and store to rq->membarrier_state,
2474 * - store to rq->membarrier_state and following user-space memory accesses.
2475 * In the same way it provides those guarantees around store to rq->curr.
2476 */
2477static inline void membarrier_switch_mm(struct rq *rq,
2478 struct mm_struct *prev_mm,
2479 struct mm_struct *next_mm)
2480{
2481 int membarrier_state;
2482
2483 if (prev_mm == next_mm)
2484 return;
2485
2486 membarrier_state = atomic_read(&next_mm->membarrier_state);
2487 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2488 return;
2489
2490 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2491}
2492#else
2493static inline void membarrier_switch_mm(struct rq *rq,
2494 struct mm_struct *prev_mm,
2495 struct mm_struct *next_mm)
2496{
2497}
2498#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Scheduler internal types and methods:
4 */
5#ifndef _KERNEL_SCHED_SCHED_H
6#define _KERNEL_SCHED_SCHED_H
7
8#include <linux/sched/affinity.h>
9#include <linux/sched/autogroup.h>
10#include <linux/sched/cpufreq.h>
11#include <linux/sched/deadline.h>
12#include <linux/sched.h>
13#include <linux/sched/loadavg.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/rseq_api.h>
16#include <linux/sched/signal.h>
17#include <linux/sched/smt.h>
18#include <linux/sched/stat.h>
19#include <linux/sched/sysctl.h>
20#include <linux/sched/task_flags.h>
21#include <linux/sched/task.h>
22#include <linux/sched/topology.h>
23
24#include <linux/atomic.h>
25#include <linux/bitmap.h>
26#include <linux/bug.h>
27#include <linux/capability.h>
28#include <linux/cgroup_api.h>
29#include <linux/cgroup.h>
30#include <linux/context_tracking.h>
31#include <linux/cpufreq.h>
32#include <linux/cpumask_api.h>
33#include <linux/ctype.h>
34#include <linux/file.h>
35#include <linux/fs_api.h>
36#include <linux/hrtimer_api.h>
37#include <linux/interrupt.h>
38#include <linux/irq_work.h>
39#include <linux/jiffies.h>
40#include <linux/kref_api.h>
41#include <linux/kthread.h>
42#include <linux/ktime_api.h>
43#include <linux/lockdep_api.h>
44#include <linux/lockdep.h>
45#include <linux/minmax.h>
46#include <linux/mm.h>
47#include <linux/module.h>
48#include <linux/mutex_api.h>
49#include <linux/plist.h>
50#include <linux/poll.h>
51#include <linux/proc_fs.h>
52#include <linux/profile.h>
53#include <linux/psi.h>
54#include <linux/rcupdate.h>
55#include <linux/seq_file.h>
56#include <linux/seqlock.h>
57#include <linux/softirq.h>
58#include <linux/spinlock_api.h>
59#include <linux/static_key.h>
60#include <linux/stop_machine.h>
61#include <linux/syscalls_api.h>
62#include <linux/syscalls.h>
63#include <linux/tick.h>
64#include <linux/topology.h>
65#include <linux/types.h>
66#include <linux/u64_stats_sync_api.h>
67#include <linux/uaccess.h>
68#include <linux/wait_api.h>
69#include <linux/wait_bit.h>
70#include <linux/workqueue_api.h>
71
72#include <trace/events/power.h>
73#include <trace/events/sched.h>
74
75#include "../workqueue_internal.h"
76
77#ifdef CONFIG_PARAVIRT
78# include <asm/paravirt.h>
79# include <asm/paravirt_api_clock.h>
80#endif
81
82#include "cpupri.h"
83#include "cpudeadline.h"
84
85#ifdef CONFIG_SCHED_DEBUG
86# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
87#else
88# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
89#endif
90
91struct rq;
92struct cpuidle_state;
93
94/* task_struct::on_rq states: */
95#define TASK_ON_RQ_QUEUED 1
96#define TASK_ON_RQ_MIGRATING 2
97
98extern __read_mostly int scheduler_running;
99
100extern unsigned long calc_load_update;
101extern atomic_long_t calc_load_tasks;
102
103extern void calc_global_load_tick(struct rq *this_rq);
104extern long calc_load_fold_active(struct rq *this_rq, long adjust);
105
106extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
107
108extern int sysctl_sched_rt_period;
109extern int sysctl_sched_rt_runtime;
110extern int sched_rr_timeslice;
111
112/*
113 * Helpers for converting nanosecond timing to jiffy resolution
114 */
115#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
116
117/*
118 * Increase resolution of nice-level calculations for 64-bit architectures.
119 * The extra resolution improves shares distribution and load balancing of
120 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
121 * hierarchies, especially on larger systems. This is not a user-visible change
122 * and does not change the user-interface for setting shares/weights.
123 *
124 * We increase resolution only if we have enough bits to allow this increased
125 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
126 * are pretty high and the returns do not justify the increased costs.
127 *
128 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
129 * increase coverage and consistency always enable it on 64-bit platforms.
130 */
131#ifdef CONFIG_64BIT
132# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
133# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
134# define scale_load_down(w) \
135({ \
136 unsigned long __w = (w); \
137 if (__w) \
138 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
139 __w; \
140})
141#else
142# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
143# define scale_load(w) (w)
144# define scale_load_down(w) (w)
145#endif
146
147/*
148 * Task weight (visible to users) and its load (invisible to users) have
149 * independent resolution, but they should be well calibrated. We use
150 * scale_load() and scale_load_down(w) to convert between them. The
151 * following must be true:
152 *
153 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
154 *
155 */
156#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
157
158/*
159 * Single value that decides SCHED_DEADLINE internal math precision.
160 * 10 -> just above 1us
161 * 9 -> just above 0.5us
162 */
163#define DL_SCALE 10
164
165/*
166 * Single value that denotes runtime == period, ie unlimited time.
167 */
168#define RUNTIME_INF ((u64)~0ULL)
169
170static inline int idle_policy(int policy)
171{
172 return policy == SCHED_IDLE;
173}
174static inline int fair_policy(int policy)
175{
176 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
177}
178
179static inline int rt_policy(int policy)
180{
181 return policy == SCHED_FIFO || policy == SCHED_RR;
182}
183
184static inline int dl_policy(int policy)
185{
186 return policy == SCHED_DEADLINE;
187}
188static inline bool valid_policy(int policy)
189{
190 return idle_policy(policy) || fair_policy(policy) ||
191 rt_policy(policy) || dl_policy(policy);
192}
193
194static inline int task_has_idle_policy(struct task_struct *p)
195{
196 return idle_policy(p->policy);
197}
198
199static inline int task_has_rt_policy(struct task_struct *p)
200{
201 return rt_policy(p->policy);
202}
203
204static inline int task_has_dl_policy(struct task_struct *p)
205{
206 return dl_policy(p->policy);
207}
208
209#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
210
211static inline void update_avg(u64 *avg, u64 sample)
212{
213 s64 diff = sample - *avg;
214 *avg += diff / 8;
215}
216
217/*
218 * Shifting a value by an exponent greater *or equal* to the size of said value
219 * is UB; cap at size-1.
220 */
221#define shr_bound(val, shift) \
222 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
223
224/*
225 * !! For sched_setattr_nocheck() (kernel) only !!
226 *
227 * This is actually gross. :(
228 *
229 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
230 * tasks, but still be able to sleep. We need this on platforms that cannot
231 * atomically change clock frequency. Remove once fast switching will be
232 * available on such platforms.
233 *
234 * SUGOV stands for SchedUtil GOVernor.
235 */
236#define SCHED_FLAG_SUGOV 0x10000000
237
238#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
239
240static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
241{
242#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
243 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
244#else
245 return false;
246#endif
247}
248
249/*
250 * Tells if entity @a should preempt entity @b.
251 */
252static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
253 const struct sched_dl_entity *b)
254{
255 return dl_entity_is_special(a) ||
256 dl_time_before(a->deadline, b->deadline);
257}
258
259/*
260 * This is the priority-queue data structure of the RT scheduling class:
261 */
262struct rt_prio_array {
263 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
264 struct list_head queue[MAX_RT_PRIO];
265};
266
267struct rt_bandwidth {
268 /* nests inside the rq lock: */
269 raw_spinlock_t rt_runtime_lock;
270 ktime_t rt_period;
271 u64 rt_runtime;
272 struct hrtimer rt_period_timer;
273 unsigned int rt_period_active;
274};
275
276static inline int dl_bandwidth_enabled(void)
277{
278 return sysctl_sched_rt_runtime >= 0;
279}
280
281/*
282 * To keep the bandwidth of -deadline tasks under control
283 * we need some place where:
284 * - store the maximum -deadline bandwidth of each cpu;
285 * - cache the fraction of bandwidth that is currently allocated in
286 * each root domain;
287 *
288 * This is all done in the data structure below. It is similar to the
289 * one used for RT-throttling (rt_bandwidth), with the main difference
290 * that, since here we are only interested in admission control, we
291 * do not decrease any runtime while the group "executes", neither we
292 * need a timer to replenish it.
293 *
294 * With respect to SMP, bandwidth is given on a per root domain basis,
295 * meaning that:
296 * - bw (< 100%) is the deadline bandwidth of each CPU;
297 * - total_bw is the currently allocated bandwidth in each root domain;
298 */
299struct dl_bw {
300 raw_spinlock_t lock;
301 u64 bw;
302 u64 total_bw;
303};
304
305extern void init_dl_bw(struct dl_bw *dl_b);
306extern int sched_dl_global_validate(void);
307extern void sched_dl_do_global(void);
308extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
309extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
310extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
311extern bool __checkparam_dl(const struct sched_attr *attr);
312extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
313extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
314extern int dl_bw_check_overflow(int cpu);
315
316/*
317 * SCHED_DEADLINE supports servers (nested scheduling) with the following
318 * interface:
319 *
320 * dl_se::rq -- runqueue we belong to.
321 *
322 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
323 * server when it runs out of tasks to run.
324 *
325 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
326 * returns NULL.
327 *
328 * dl_server_update() -- called from update_curr_common(), propagates runtime
329 * to the server.
330 *
331 * dl_server_start()
332 * dl_server_stop() -- start/stop the server when it has (no) tasks.
333 *
334 * dl_server_init() -- initializes the server.
335 */
336extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
337extern void dl_server_start(struct sched_dl_entity *dl_se);
338extern void dl_server_stop(struct sched_dl_entity *dl_se);
339extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
340 dl_server_has_tasks_f has_tasks,
341 dl_server_pick_f pick);
342
343#ifdef CONFIG_CGROUP_SCHED
344
345struct cfs_rq;
346struct rt_rq;
347
348extern struct list_head task_groups;
349
350struct cfs_bandwidth {
351#ifdef CONFIG_CFS_BANDWIDTH
352 raw_spinlock_t lock;
353 ktime_t period;
354 u64 quota;
355 u64 runtime;
356 u64 burst;
357 u64 runtime_snap;
358 s64 hierarchical_quota;
359
360 u8 idle;
361 u8 period_active;
362 u8 slack_started;
363 struct hrtimer period_timer;
364 struct hrtimer slack_timer;
365 struct list_head throttled_cfs_rq;
366
367 /* Statistics: */
368 int nr_periods;
369 int nr_throttled;
370 int nr_burst;
371 u64 throttled_time;
372 u64 burst_time;
373#endif
374};
375
376/* Task group related information */
377struct task_group {
378 struct cgroup_subsys_state css;
379
380#ifdef CONFIG_FAIR_GROUP_SCHED
381 /* schedulable entities of this group on each CPU */
382 struct sched_entity **se;
383 /* runqueue "owned" by this group on each CPU */
384 struct cfs_rq **cfs_rq;
385 unsigned long shares;
386
387 /* A positive value indicates that this is a SCHED_IDLE group. */
388 int idle;
389
390#ifdef CONFIG_SMP
391 /*
392 * load_avg can be heavily contended at clock tick time, so put
393 * it in its own cacheline separated from the fields above which
394 * will also be accessed at each tick.
395 */
396 atomic_long_t load_avg ____cacheline_aligned;
397#endif
398#endif
399
400#ifdef CONFIG_RT_GROUP_SCHED
401 struct sched_rt_entity **rt_se;
402 struct rt_rq **rt_rq;
403
404 struct rt_bandwidth rt_bandwidth;
405#endif
406
407 struct rcu_head rcu;
408 struct list_head list;
409
410 struct task_group *parent;
411 struct list_head siblings;
412 struct list_head children;
413
414#ifdef CONFIG_SCHED_AUTOGROUP
415 struct autogroup *autogroup;
416#endif
417
418 struct cfs_bandwidth cfs_bandwidth;
419
420#ifdef CONFIG_UCLAMP_TASK_GROUP
421 /* The two decimal precision [%] value requested from user-space */
422 unsigned int uclamp_pct[UCLAMP_CNT];
423 /* Clamp values requested for a task group */
424 struct uclamp_se uclamp_req[UCLAMP_CNT];
425 /* Effective clamp values used for a task group */
426 struct uclamp_se uclamp[UCLAMP_CNT];
427#endif
428
429};
430
431#ifdef CONFIG_FAIR_GROUP_SCHED
432#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
433
434/*
435 * A weight of 0 or 1 can cause arithmetics problems.
436 * A weight of a cfs_rq is the sum of weights of which entities
437 * are queued on this cfs_rq, so a weight of a entity should not be
438 * too large, so as the shares value of a task group.
439 * (The default weight is 1024 - so there's no practical
440 * limitation from this.)
441 */
442#define MIN_SHARES (1UL << 1)
443#define MAX_SHARES (1UL << 18)
444#endif
445
446typedef int (*tg_visitor)(struct task_group *, void *);
447
448extern int walk_tg_tree_from(struct task_group *from,
449 tg_visitor down, tg_visitor up, void *data);
450
451/*
452 * Iterate the full tree, calling @down when first entering a node and @up when
453 * leaving it for the final time.
454 *
455 * Caller must hold rcu_lock or sufficient equivalent.
456 */
457static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
458{
459 return walk_tg_tree_from(&root_task_group, down, up, data);
460}
461
462extern int tg_nop(struct task_group *tg, void *data);
463
464#ifdef CONFIG_FAIR_GROUP_SCHED
465extern void free_fair_sched_group(struct task_group *tg);
466extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
467extern void online_fair_sched_group(struct task_group *tg);
468extern void unregister_fair_sched_group(struct task_group *tg);
469#else
470static inline void free_fair_sched_group(struct task_group *tg) { }
471static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
472{
473 return 1;
474}
475static inline void online_fair_sched_group(struct task_group *tg) { }
476static inline void unregister_fair_sched_group(struct task_group *tg) { }
477#endif
478
479extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
480 struct sched_entity *se, int cpu,
481 struct sched_entity *parent);
482extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
483
484extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
485extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
486extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
487extern bool cfs_task_bw_constrained(struct task_struct *p);
488
489extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
490 struct sched_rt_entity *rt_se, int cpu,
491 struct sched_rt_entity *parent);
492extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
493extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
494extern long sched_group_rt_runtime(struct task_group *tg);
495extern long sched_group_rt_period(struct task_group *tg);
496extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
497
498extern struct task_group *sched_create_group(struct task_group *parent);
499extern void sched_online_group(struct task_group *tg,
500 struct task_group *parent);
501extern void sched_destroy_group(struct task_group *tg);
502extern void sched_release_group(struct task_group *tg);
503
504extern void sched_move_task(struct task_struct *tsk);
505
506#ifdef CONFIG_FAIR_GROUP_SCHED
507extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
508
509extern int sched_group_set_idle(struct task_group *tg, long idle);
510
511#ifdef CONFIG_SMP
512extern void set_task_rq_fair(struct sched_entity *se,
513 struct cfs_rq *prev, struct cfs_rq *next);
514#else /* !CONFIG_SMP */
515static inline void set_task_rq_fair(struct sched_entity *se,
516 struct cfs_rq *prev, struct cfs_rq *next) { }
517#endif /* CONFIG_SMP */
518#endif /* CONFIG_FAIR_GROUP_SCHED */
519
520#else /* CONFIG_CGROUP_SCHED */
521
522struct cfs_bandwidth { };
523static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
524
525#endif /* CONFIG_CGROUP_SCHED */
526
527extern void unregister_rt_sched_group(struct task_group *tg);
528extern void free_rt_sched_group(struct task_group *tg);
529extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
530
531/*
532 * u64_u32_load/u64_u32_store
533 *
534 * Use a copy of a u64 value to protect against data race. This is only
535 * applicable for 32-bits architectures.
536 */
537#ifdef CONFIG_64BIT
538# define u64_u32_load_copy(var, copy) var
539# define u64_u32_store_copy(var, copy, val) (var = val)
540#else
541# define u64_u32_load_copy(var, copy) \
542({ \
543 u64 __val, __val_copy; \
544 do { \
545 __val_copy = copy; \
546 /* \
547 * paired with u64_u32_store_copy(), ordering access \
548 * to var and copy. \
549 */ \
550 smp_rmb(); \
551 __val = var; \
552 } while (__val != __val_copy); \
553 __val; \
554})
555# define u64_u32_store_copy(var, copy, val) \
556do { \
557 typeof(val) __val = (val); \
558 var = __val; \
559 /* \
560 * paired with u64_u32_load_copy(), ordering access to var and \
561 * copy. \
562 */ \
563 smp_wmb(); \
564 copy = __val; \
565} while (0)
566#endif
567# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
568# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
569
570/* CFS-related fields in a runqueue */
571struct cfs_rq {
572 struct load_weight load;
573 unsigned int nr_running;
574 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
575 unsigned int idle_nr_running; /* SCHED_IDLE */
576 unsigned int idle_h_nr_running; /* SCHED_IDLE */
577
578 s64 avg_vruntime;
579 u64 avg_load;
580
581 u64 exec_clock;
582 u64 min_vruntime;
583#ifdef CONFIG_SCHED_CORE
584 unsigned int forceidle_seq;
585 u64 min_vruntime_fi;
586#endif
587
588#ifndef CONFIG_64BIT
589 u64 min_vruntime_copy;
590#endif
591
592 struct rb_root_cached tasks_timeline;
593
594 /*
595 * 'curr' points to currently running entity on this cfs_rq.
596 * It is set to NULL otherwise (i.e when none are currently running).
597 */
598 struct sched_entity *curr;
599 struct sched_entity *next;
600
601#ifdef CONFIG_SCHED_DEBUG
602 unsigned int nr_spread_over;
603#endif
604
605#ifdef CONFIG_SMP
606 /*
607 * CFS load tracking
608 */
609 struct sched_avg avg;
610#ifndef CONFIG_64BIT
611 u64 last_update_time_copy;
612#endif
613 struct {
614 raw_spinlock_t lock ____cacheline_aligned;
615 int nr;
616 unsigned long load_avg;
617 unsigned long util_avg;
618 unsigned long runnable_avg;
619 } removed;
620
621#ifdef CONFIG_FAIR_GROUP_SCHED
622 u64 last_update_tg_load_avg;
623 unsigned long tg_load_avg_contrib;
624 long propagate;
625 long prop_runnable_sum;
626
627 /*
628 * h_load = weight * f(tg)
629 *
630 * Where f(tg) is the recursive weight fraction assigned to
631 * this group.
632 */
633 unsigned long h_load;
634 u64 last_h_load_update;
635 struct sched_entity *h_load_next;
636#endif /* CONFIG_FAIR_GROUP_SCHED */
637#endif /* CONFIG_SMP */
638
639#ifdef CONFIG_FAIR_GROUP_SCHED
640 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
641
642 /*
643 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
644 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
645 * (like users, containers etc.)
646 *
647 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
648 * This list is used during load balance.
649 */
650 int on_list;
651 struct list_head leaf_cfs_rq_list;
652 struct task_group *tg; /* group that "owns" this runqueue */
653
654 /* Locally cached copy of our task_group's idle value */
655 int idle;
656
657#ifdef CONFIG_CFS_BANDWIDTH
658 int runtime_enabled;
659 s64 runtime_remaining;
660
661 u64 throttled_pelt_idle;
662#ifndef CONFIG_64BIT
663 u64 throttled_pelt_idle_copy;
664#endif
665 u64 throttled_clock;
666 u64 throttled_clock_pelt;
667 u64 throttled_clock_pelt_time;
668 u64 throttled_clock_self;
669 u64 throttled_clock_self_time;
670 int throttled;
671 int throttle_count;
672 struct list_head throttled_list;
673 struct list_head throttled_csd_list;
674#endif /* CONFIG_CFS_BANDWIDTH */
675#endif /* CONFIG_FAIR_GROUP_SCHED */
676};
677
678static inline int rt_bandwidth_enabled(void)
679{
680 return sysctl_sched_rt_runtime >= 0;
681}
682
683/* RT IPI pull logic requires IRQ_WORK */
684#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
685# define HAVE_RT_PUSH_IPI
686#endif
687
688/* Real-Time classes' related field in a runqueue: */
689struct rt_rq {
690 struct rt_prio_array active;
691 unsigned int rt_nr_running;
692 unsigned int rr_nr_running;
693#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
694 struct {
695 int curr; /* highest queued rt task prio */
696#ifdef CONFIG_SMP
697 int next; /* next highest */
698#endif
699 } highest_prio;
700#endif
701#ifdef CONFIG_SMP
702 int overloaded;
703 struct plist_head pushable_tasks;
704
705#endif /* CONFIG_SMP */
706 int rt_queued;
707
708 int rt_throttled;
709 u64 rt_time;
710 u64 rt_runtime;
711 /* Nests inside the rq lock: */
712 raw_spinlock_t rt_runtime_lock;
713
714#ifdef CONFIG_RT_GROUP_SCHED
715 unsigned int rt_nr_boosted;
716
717 struct rq *rq;
718 struct task_group *tg;
719#endif
720};
721
722static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
723{
724 return rt_rq->rt_queued && rt_rq->rt_nr_running;
725}
726
727/* Deadline class' related fields in a runqueue */
728struct dl_rq {
729 /* runqueue is an rbtree, ordered by deadline */
730 struct rb_root_cached root;
731
732 unsigned int dl_nr_running;
733
734#ifdef CONFIG_SMP
735 /*
736 * Deadline values of the currently executing and the
737 * earliest ready task on this rq. Caching these facilitates
738 * the decision whether or not a ready but not running task
739 * should migrate somewhere else.
740 */
741 struct {
742 u64 curr;
743 u64 next;
744 } earliest_dl;
745
746 int overloaded;
747
748 /*
749 * Tasks on this rq that can be pushed away. They are kept in
750 * an rb-tree, ordered by tasks' deadlines, with caching
751 * of the leftmost (earliest deadline) element.
752 */
753 struct rb_root_cached pushable_dl_tasks_root;
754#else
755 struct dl_bw dl_bw;
756#endif
757 /*
758 * "Active utilization" for this runqueue: increased when a
759 * task wakes up (becomes TASK_RUNNING) and decreased when a
760 * task blocks
761 */
762 u64 running_bw;
763
764 /*
765 * Utilization of the tasks "assigned" to this runqueue (including
766 * the tasks that are in runqueue and the tasks that executed on this
767 * CPU and blocked). Increased when a task moves to this runqueue, and
768 * decreased when the task moves away (migrates, changes scheduling
769 * policy, or terminates).
770 * This is needed to compute the "inactive utilization" for the
771 * runqueue (inactive utilization = this_bw - running_bw).
772 */
773 u64 this_bw;
774 u64 extra_bw;
775
776 /*
777 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
778 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
779 */
780 u64 max_bw;
781
782 /*
783 * Inverse of the fraction of CPU utilization that can be reclaimed
784 * by the GRUB algorithm.
785 */
786 u64 bw_ratio;
787};
788
789#ifdef CONFIG_FAIR_GROUP_SCHED
790/* An entity is a task if it doesn't "own" a runqueue */
791#define entity_is_task(se) (!se->my_q)
792
793static inline void se_update_runnable(struct sched_entity *se)
794{
795 if (!entity_is_task(se))
796 se->runnable_weight = se->my_q->h_nr_running;
797}
798
799static inline long se_runnable(struct sched_entity *se)
800{
801 if (entity_is_task(se))
802 return !!se->on_rq;
803 else
804 return se->runnable_weight;
805}
806
807#else
808#define entity_is_task(se) 1
809
810static inline void se_update_runnable(struct sched_entity *se) {}
811
812static inline long se_runnable(struct sched_entity *se)
813{
814 return !!se->on_rq;
815}
816#endif
817
818#ifdef CONFIG_SMP
819/*
820 * XXX we want to get rid of these helpers and use the full load resolution.
821 */
822static inline long se_weight(struct sched_entity *se)
823{
824 return scale_load_down(se->load.weight);
825}
826
827
828static inline bool sched_asym_prefer(int a, int b)
829{
830 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
831}
832
833struct perf_domain {
834 struct em_perf_domain *em_pd;
835 struct perf_domain *next;
836 struct rcu_head rcu;
837};
838
839/* Scheduling group status flags */
840#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
841#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
842
843/*
844 * We add the notion of a root-domain which will be used to define per-domain
845 * variables. Each exclusive cpuset essentially defines an island domain by
846 * fully partitioning the member CPUs from any other cpuset. Whenever a new
847 * exclusive cpuset is created, we also create and attach a new root-domain
848 * object.
849 *
850 */
851struct root_domain {
852 atomic_t refcount;
853 atomic_t rto_count;
854 struct rcu_head rcu;
855 cpumask_var_t span;
856 cpumask_var_t online;
857
858 /*
859 * Indicate pullable load on at least one CPU, e.g:
860 * - More than one runnable task
861 * - Running task is misfit
862 */
863 int overload;
864
865 /* Indicate one or more cpus over-utilized (tipping point) */
866 int overutilized;
867
868 /*
869 * The bit corresponding to a CPU gets set here if such CPU has more
870 * than one runnable -deadline task (as it is below for RT tasks).
871 */
872 cpumask_var_t dlo_mask;
873 atomic_t dlo_count;
874 struct dl_bw dl_bw;
875 struct cpudl cpudl;
876
877 /*
878 * Indicate whether a root_domain's dl_bw has been checked or
879 * updated. It's monotonously increasing value.
880 *
881 * Also, some corner cases, like 'wrap around' is dangerous, but given
882 * that u64 is 'big enough'. So that shouldn't be a concern.
883 */
884 u64 visit_gen;
885
886#ifdef HAVE_RT_PUSH_IPI
887 /*
888 * For IPI pull requests, loop across the rto_mask.
889 */
890 struct irq_work rto_push_work;
891 raw_spinlock_t rto_lock;
892 /* These are only updated and read within rto_lock */
893 int rto_loop;
894 int rto_cpu;
895 /* These atomics are updated outside of a lock */
896 atomic_t rto_loop_next;
897 atomic_t rto_loop_start;
898#endif
899 /*
900 * The "RT overload" flag: it gets set if a CPU has more than
901 * one runnable RT task.
902 */
903 cpumask_var_t rto_mask;
904 struct cpupri cpupri;
905
906 unsigned long max_cpu_capacity;
907
908 /*
909 * NULL-terminated list of performance domains intersecting with the
910 * CPUs of the rd. Protected by RCU.
911 */
912 struct perf_domain __rcu *pd;
913};
914
915extern void init_defrootdomain(void);
916extern int sched_init_domains(const struct cpumask *cpu_map);
917extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
918extern void sched_get_rd(struct root_domain *rd);
919extern void sched_put_rd(struct root_domain *rd);
920
921#ifdef HAVE_RT_PUSH_IPI
922extern void rto_push_irq_work_func(struct irq_work *work);
923#endif
924#endif /* CONFIG_SMP */
925
926#ifdef CONFIG_UCLAMP_TASK
927/*
928 * struct uclamp_bucket - Utilization clamp bucket
929 * @value: utilization clamp value for tasks on this clamp bucket
930 * @tasks: number of RUNNABLE tasks on this clamp bucket
931 *
932 * Keep track of how many tasks are RUNNABLE for a given utilization
933 * clamp value.
934 */
935struct uclamp_bucket {
936 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
937 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
938};
939
940/*
941 * struct uclamp_rq - rq's utilization clamp
942 * @value: currently active clamp values for a rq
943 * @bucket: utilization clamp buckets affecting a rq
944 *
945 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
946 * A clamp value is affecting a rq when there is at least one task RUNNABLE
947 * (or actually running) with that value.
948 *
949 * There are up to UCLAMP_CNT possible different clamp values, currently there
950 * are only two: minimum utilization and maximum utilization.
951 *
952 * All utilization clamping values are MAX aggregated, since:
953 * - for util_min: we want to run the CPU at least at the max of the minimum
954 * utilization required by its currently RUNNABLE tasks.
955 * - for util_max: we want to allow the CPU to run up to the max of the
956 * maximum utilization allowed by its currently RUNNABLE tasks.
957 *
958 * Since on each system we expect only a limited number of different
959 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
960 * the metrics required to compute all the per-rq utilization clamp values.
961 */
962struct uclamp_rq {
963 unsigned int value;
964 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
965};
966
967DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
968#endif /* CONFIG_UCLAMP_TASK */
969
970struct rq;
971struct balance_callback {
972 struct balance_callback *next;
973 void (*func)(struct rq *rq);
974};
975
976/*
977 * This is the main, per-CPU runqueue data structure.
978 *
979 * Locking rule: those places that want to lock multiple runqueues
980 * (such as the load balancing or the thread migration code), lock
981 * acquire operations must be ordered by ascending &runqueue.
982 */
983struct rq {
984 /* runqueue lock: */
985 raw_spinlock_t __lock;
986
987 unsigned int nr_running;
988#ifdef CONFIG_NUMA_BALANCING
989 unsigned int nr_numa_running;
990 unsigned int nr_preferred_running;
991 unsigned int numa_migrate_on;
992#endif
993#ifdef CONFIG_NO_HZ_COMMON
994#ifdef CONFIG_SMP
995 unsigned long last_blocked_load_update_tick;
996 unsigned int has_blocked_load;
997 call_single_data_t nohz_csd;
998#endif /* CONFIG_SMP */
999 unsigned int nohz_tick_stopped;
1000 atomic_t nohz_flags;
1001#endif /* CONFIG_NO_HZ_COMMON */
1002
1003#ifdef CONFIG_SMP
1004 unsigned int ttwu_pending;
1005#endif
1006 u64 nr_switches;
1007
1008#ifdef CONFIG_UCLAMP_TASK
1009 /* Utilization clamp values based on CPU's RUNNABLE tasks */
1010 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
1011 unsigned int uclamp_flags;
1012#define UCLAMP_FLAG_IDLE 0x01
1013#endif
1014
1015 struct cfs_rq cfs;
1016 struct rt_rq rt;
1017 struct dl_rq dl;
1018
1019#ifdef CONFIG_FAIR_GROUP_SCHED
1020 /* list of leaf cfs_rq on this CPU: */
1021 struct list_head leaf_cfs_rq_list;
1022 struct list_head *tmp_alone_branch;
1023#endif /* CONFIG_FAIR_GROUP_SCHED */
1024
1025 /*
1026 * This is part of a global counter where only the total sum
1027 * over all CPUs matters. A task can increase this counter on
1028 * one CPU and if it got migrated afterwards it may decrease
1029 * it on another CPU. Always updated under the runqueue lock:
1030 */
1031 unsigned int nr_uninterruptible;
1032
1033 struct task_struct __rcu *curr;
1034 struct task_struct *idle;
1035 struct task_struct *stop;
1036 unsigned long next_balance;
1037 struct mm_struct *prev_mm;
1038
1039 unsigned int clock_update_flags;
1040 u64 clock;
1041 /* Ensure that all clocks are in the same cache line */
1042 u64 clock_task ____cacheline_aligned;
1043 u64 clock_pelt;
1044 unsigned long lost_idle_time;
1045 u64 clock_pelt_idle;
1046 u64 clock_idle;
1047#ifndef CONFIG_64BIT
1048 u64 clock_pelt_idle_copy;
1049 u64 clock_idle_copy;
1050#endif
1051
1052 atomic_t nr_iowait;
1053
1054#ifdef CONFIG_SCHED_DEBUG
1055 u64 last_seen_need_resched_ns;
1056 int ticks_without_resched;
1057#endif
1058
1059#ifdef CONFIG_MEMBARRIER
1060 int membarrier_state;
1061#endif
1062
1063#ifdef CONFIG_SMP
1064 struct root_domain *rd;
1065 struct sched_domain __rcu *sd;
1066
1067 unsigned long cpu_capacity;
1068
1069 struct balance_callback *balance_callback;
1070
1071 unsigned char nohz_idle_balance;
1072 unsigned char idle_balance;
1073
1074 unsigned long misfit_task_load;
1075
1076 /* For active balancing */
1077 int active_balance;
1078 int push_cpu;
1079 struct cpu_stop_work active_balance_work;
1080
1081 /* CPU of this runqueue: */
1082 int cpu;
1083 int online;
1084
1085 struct list_head cfs_tasks;
1086
1087 struct sched_avg avg_rt;
1088 struct sched_avg avg_dl;
1089#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1090 struct sched_avg avg_irq;
1091#endif
1092#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1093 struct sched_avg avg_thermal;
1094#endif
1095 u64 idle_stamp;
1096 u64 avg_idle;
1097
1098 /* This is used to determine avg_idle's max value */
1099 u64 max_idle_balance_cost;
1100
1101#ifdef CONFIG_HOTPLUG_CPU
1102 struct rcuwait hotplug_wait;
1103#endif
1104#endif /* CONFIG_SMP */
1105
1106#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1107 u64 prev_irq_time;
1108#endif
1109#ifdef CONFIG_PARAVIRT
1110 u64 prev_steal_time;
1111#endif
1112#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1113 u64 prev_steal_time_rq;
1114#endif
1115
1116 /* calc_load related fields */
1117 unsigned long calc_load_update;
1118 long calc_load_active;
1119
1120#ifdef CONFIG_SCHED_HRTICK
1121#ifdef CONFIG_SMP
1122 call_single_data_t hrtick_csd;
1123#endif
1124 struct hrtimer hrtick_timer;
1125 ktime_t hrtick_time;
1126#endif
1127
1128#ifdef CONFIG_SCHEDSTATS
1129 /* latency stats */
1130 struct sched_info rq_sched_info;
1131 unsigned long long rq_cpu_time;
1132 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1133
1134 /* sys_sched_yield() stats */
1135 unsigned int yld_count;
1136
1137 /* schedule() stats */
1138 unsigned int sched_count;
1139 unsigned int sched_goidle;
1140
1141 /* try_to_wake_up() stats */
1142 unsigned int ttwu_count;
1143 unsigned int ttwu_local;
1144#endif
1145
1146#ifdef CONFIG_CPU_IDLE
1147 /* Must be inspected within a rcu lock section */
1148 struct cpuidle_state *idle_state;
1149#endif
1150
1151#ifdef CONFIG_SMP
1152 unsigned int nr_pinned;
1153#endif
1154 unsigned int push_busy;
1155 struct cpu_stop_work push_work;
1156
1157#ifdef CONFIG_SCHED_CORE
1158 /* per rq */
1159 struct rq *core;
1160 struct task_struct *core_pick;
1161 unsigned int core_enabled;
1162 unsigned int core_sched_seq;
1163 struct rb_root core_tree;
1164
1165 /* shared state -- careful with sched_core_cpu_deactivate() */
1166 unsigned int core_task_seq;
1167 unsigned int core_pick_seq;
1168 unsigned long core_cookie;
1169 unsigned int core_forceidle_count;
1170 unsigned int core_forceidle_seq;
1171 unsigned int core_forceidle_occupation;
1172 u64 core_forceidle_start;
1173#endif
1174
1175 /* Scratch cpumask to be temporarily used under rq_lock */
1176 cpumask_var_t scratch_mask;
1177
1178#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1179 call_single_data_t cfsb_csd;
1180 struct list_head cfsb_csd_list;
1181#endif
1182};
1183
1184#ifdef CONFIG_FAIR_GROUP_SCHED
1185
1186/* CPU runqueue to which this cfs_rq is attached */
1187static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1188{
1189 return cfs_rq->rq;
1190}
1191
1192#else
1193
1194static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1195{
1196 return container_of(cfs_rq, struct rq, cfs);
1197}
1198#endif
1199
1200static inline int cpu_of(struct rq *rq)
1201{
1202#ifdef CONFIG_SMP
1203 return rq->cpu;
1204#else
1205 return 0;
1206#endif
1207}
1208
1209#define MDF_PUSH 0x01
1210
1211static inline bool is_migration_disabled(struct task_struct *p)
1212{
1213#ifdef CONFIG_SMP
1214 return p->migration_disabled;
1215#else
1216 return false;
1217#endif
1218}
1219
1220DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1221
1222#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1223#define this_rq() this_cpu_ptr(&runqueues)
1224#define task_rq(p) cpu_rq(task_cpu(p))
1225#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1226#define raw_rq() raw_cpu_ptr(&runqueues)
1227
1228struct sched_group;
1229#ifdef CONFIG_SCHED_CORE
1230static inline struct cpumask *sched_group_span(struct sched_group *sg);
1231
1232DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1233
1234static inline bool sched_core_enabled(struct rq *rq)
1235{
1236 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1237}
1238
1239static inline bool sched_core_disabled(void)
1240{
1241 return !static_branch_unlikely(&__sched_core_enabled);
1242}
1243
1244/*
1245 * Be careful with this function; not for general use. The return value isn't
1246 * stable unless you actually hold a relevant rq->__lock.
1247 */
1248static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1249{
1250 if (sched_core_enabled(rq))
1251 return &rq->core->__lock;
1252
1253 return &rq->__lock;
1254}
1255
1256static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1257{
1258 if (rq->core_enabled)
1259 return &rq->core->__lock;
1260
1261 return &rq->__lock;
1262}
1263
1264bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1265 bool fi);
1266void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1267
1268/*
1269 * Helpers to check if the CPU's core cookie matches with the task's cookie
1270 * when core scheduling is enabled.
1271 * A special case is that the task's cookie always matches with CPU's core
1272 * cookie if the CPU is in an idle core.
1273 */
1274static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1275{
1276 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1277 if (!sched_core_enabled(rq))
1278 return true;
1279
1280 return rq->core->core_cookie == p->core_cookie;
1281}
1282
1283static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1284{
1285 bool idle_core = true;
1286 int cpu;
1287
1288 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1289 if (!sched_core_enabled(rq))
1290 return true;
1291
1292 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1293 if (!available_idle_cpu(cpu)) {
1294 idle_core = false;
1295 break;
1296 }
1297 }
1298
1299 /*
1300 * A CPU in an idle core is always the best choice for tasks with
1301 * cookies.
1302 */
1303 return idle_core || rq->core->core_cookie == p->core_cookie;
1304}
1305
1306static inline bool sched_group_cookie_match(struct rq *rq,
1307 struct task_struct *p,
1308 struct sched_group *group)
1309{
1310 int cpu;
1311
1312 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1313 if (!sched_core_enabled(rq))
1314 return true;
1315
1316 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1317 if (sched_core_cookie_match(cpu_rq(cpu), p))
1318 return true;
1319 }
1320 return false;
1321}
1322
1323static inline bool sched_core_enqueued(struct task_struct *p)
1324{
1325 return !RB_EMPTY_NODE(&p->core_node);
1326}
1327
1328extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1329extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1330
1331extern void sched_core_get(void);
1332extern void sched_core_put(void);
1333
1334#else /* !CONFIG_SCHED_CORE */
1335
1336static inline bool sched_core_enabled(struct rq *rq)
1337{
1338 return false;
1339}
1340
1341static inline bool sched_core_disabled(void)
1342{
1343 return true;
1344}
1345
1346static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1347{
1348 return &rq->__lock;
1349}
1350
1351static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1352{
1353 return &rq->__lock;
1354}
1355
1356static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1357{
1358 return true;
1359}
1360
1361static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1362{
1363 return true;
1364}
1365
1366static inline bool sched_group_cookie_match(struct rq *rq,
1367 struct task_struct *p,
1368 struct sched_group *group)
1369{
1370 return true;
1371}
1372#endif /* CONFIG_SCHED_CORE */
1373
1374static inline void lockdep_assert_rq_held(struct rq *rq)
1375{
1376 lockdep_assert_held(__rq_lockp(rq));
1377}
1378
1379extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1380extern bool raw_spin_rq_trylock(struct rq *rq);
1381extern void raw_spin_rq_unlock(struct rq *rq);
1382
1383static inline void raw_spin_rq_lock(struct rq *rq)
1384{
1385 raw_spin_rq_lock_nested(rq, 0);
1386}
1387
1388static inline void raw_spin_rq_lock_irq(struct rq *rq)
1389{
1390 local_irq_disable();
1391 raw_spin_rq_lock(rq);
1392}
1393
1394static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1395{
1396 raw_spin_rq_unlock(rq);
1397 local_irq_enable();
1398}
1399
1400static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1401{
1402 unsigned long flags;
1403 local_irq_save(flags);
1404 raw_spin_rq_lock(rq);
1405 return flags;
1406}
1407
1408static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1409{
1410 raw_spin_rq_unlock(rq);
1411 local_irq_restore(flags);
1412}
1413
1414#define raw_spin_rq_lock_irqsave(rq, flags) \
1415do { \
1416 flags = _raw_spin_rq_lock_irqsave(rq); \
1417} while (0)
1418
1419#ifdef CONFIG_SCHED_SMT
1420extern void __update_idle_core(struct rq *rq);
1421
1422static inline void update_idle_core(struct rq *rq)
1423{
1424 if (static_branch_unlikely(&sched_smt_present))
1425 __update_idle_core(rq);
1426}
1427
1428#else
1429static inline void update_idle_core(struct rq *rq) { }
1430#endif
1431
1432#ifdef CONFIG_FAIR_GROUP_SCHED
1433static inline struct task_struct *task_of(struct sched_entity *se)
1434{
1435 SCHED_WARN_ON(!entity_is_task(se));
1436 return container_of(se, struct task_struct, se);
1437}
1438
1439static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1440{
1441 return p->se.cfs_rq;
1442}
1443
1444/* runqueue on which this entity is (to be) queued */
1445static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1446{
1447 return se->cfs_rq;
1448}
1449
1450/* runqueue "owned" by this group */
1451static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1452{
1453 return grp->my_q;
1454}
1455
1456#else
1457
1458#define task_of(_se) container_of(_se, struct task_struct, se)
1459
1460static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1461{
1462 return &task_rq(p)->cfs;
1463}
1464
1465static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1466{
1467 const struct task_struct *p = task_of(se);
1468 struct rq *rq = task_rq(p);
1469
1470 return &rq->cfs;
1471}
1472
1473/* runqueue "owned" by this group */
1474static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1475{
1476 return NULL;
1477}
1478#endif
1479
1480extern void update_rq_clock(struct rq *rq);
1481
1482/*
1483 * rq::clock_update_flags bits
1484 *
1485 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1486 * call to __schedule(). This is an optimisation to avoid
1487 * neighbouring rq clock updates.
1488 *
1489 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1490 * in effect and calls to update_rq_clock() are being ignored.
1491 *
1492 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1493 * made to update_rq_clock() since the last time rq::lock was pinned.
1494 *
1495 * If inside of __schedule(), clock_update_flags will have been
1496 * shifted left (a left shift is a cheap operation for the fast path
1497 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1498 *
1499 * if (rq-clock_update_flags >= RQCF_UPDATED)
1500 *
1501 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1502 * one position though, because the next rq_unpin_lock() will shift it
1503 * back.
1504 */
1505#define RQCF_REQ_SKIP 0x01
1506#define RQCF_ACT_SKIP 0x02
1507#define RQCF_UPDATED 0x04
1508
1509static inline void assert_clock_updated(struct rq *rq)
1510{
1511 /*
1512 * The only reason for not seeing a clock update since the
1513 * last rq_pin_lock() is if we're currently skipping updates.
1514 */
1515 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1516}
1517
1518static inline u64 rq_clock(struct rq *rq)
1519{
1520 lockdep_assert_rq_held(rq);
1521 assert_clock_updated(rq);
1522
1523 return rq->clock;
1524}
1525
1526static inline u64 rq_clock_task(struct rq *rq)
1527{
1528 lockdep_assert_rq_held(rq);
1529 assert_clock_updated(rq);
1530
1531 return rq->clock_task;
1532}
1533
1534/**
1535 * By default the decay is the default pelt decay period.
1536 * The decay shift can change the decay period in
1537 * multiples of 32.
1538 * Decay shift Decay period(ms)
1539 * 0 32
1540 * 1 64
1541 * 2 128
1542 * 3 256
1543 * 4 512
1544 */
1545extern int sched_thermal_decay_shift;
1546
1547static inline u64 rq_clock_thermal(struct rq *rq)
1548{
1549 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1550}
1551
1552static inline void rq_clock_skip_update(struct rq *rq)
1553{
1554 lockdep_assert_rq_held(rq);
1555 rq->clock_update_flags |= RQCF_REQ_SKIP;
1556}
1557
1558/*
1559 * See rt task throttling, which is the only time a skip
1560 * request is canceled.
1561 */
1562static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1563{
1564 lockdep_assert_rq_held(rq);
1565 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1566}
1567
1568/*
1569 * During cpu offlining and rq wide unthrottling, we can trigger
1570 * an update_rq_clock() for several cfs and rt runqueues (Typically
1571 * when using list_for_each_entry_*)
1572 * rq_clock_start_loop_update() can be called after updating the clock
1573 * once and before iterating over the list to prevent multiple update.
1574 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1575 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1576 */
1577static inline void rq_clock_start_loop_update(struct rq *rq)
1578{
1579 lockdep_assert_rq_held(rq);
1580 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1581 rq->clock_update_flags |= RQCF_ACT_SKIP;
1582}
1583
1584static inline void rq_clock_stop_loop_update(struct rq *rq)
1585{
1586 lockdep_assert_rq_held(rq);
1587 rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1588}
1589
1590struct rq_flags {
1591 unsigned long flags;
1592 struct pin_cookie cookie;
1593#ifdef CONFIG_SCHED_DEBUG
1594 /*
1595 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1596 * current pin context is stashed here in case it needs to be
1597 * restored in rq_repin_lock().
1598 */
1599 unsigned int clock_update_flags;
1600#endif
1601};
1602
1603extern struct balance_callback balance_push_callback;
1604
1605/*
1606 * Lockdep annotation that avoids accidental unlocks; it's like a
1607 * sticky/continuous lockdep_assert_held().
1608 *
1609 * This avoids code that has access to 'struct rq *rq' (basically everything in
1610 * the scheduler) from accidentally unlocking the rq if they do not also have a
1611 * copy of the (on-stack) 'struct rq_flags rf'.
1612 *
1613 * Also see Documentation/locking/lockdep-design.rst.
1614 */
1615static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1616{
1617 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1618
1619#ifdef CONFIG_SCHED_DEBUG
1620 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1621 rf->clock_update_flags = 0;
1622#ifdef CONFIG_SMP
1623 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1624#endif
1625#endif
1626}
1627
1628static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1629{
1630#ifdef CONFIG_SCHED_DEBUG
1631 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1632 rf->clock_update_flags = RQCF_UPDATED;
1633#endif
1634
1635 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1636}
1637
1638static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1639{
1640 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1641
1642#ifdef CONFIG_SCHED_DEBUG
1643 /*
1644 * Restore the value we stashed in @rf for this pin context.
1645 */
1646 rq->clock_update_flags |= rf->clock_update_flags;
1647#endif
1648}
1649
1650struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1651 __acquires(rq->lock);
1652
1653struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1654 __acquires(p->pi_lock)
1655 __acquires(rq->lock);
1656
1657static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1658 __releases(rq->lock)
1659{
1660 rq_unpin_lock(rq, rf);
1661 raw_spin_rq_unlock(rq);
1662}
1663
1664static inline void
1665task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1666 __releases(rq->lock)
1667 __releases(p->pi_lock)
1668{
1669 rq_unpin_lock(rq, rf);
1670 raw_spin_rq_unlock(rq);
1671 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1672}
1673
1674DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1675 _T->rq = task_rq_lock(_T->lock, &_T->rf),
1676 task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1677 struct rq *rq; struct rq_flags rf)
1678
1679static inline void
1680rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1681 __acquires(rq->lock)
1682{
1683 raw_spin_rq_lock_irqsave(rq, rf->flags);
1684 rq_pin_lock(rq, rf);
1685}
1686
1687static inline void
1688rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1689 __acquires(rq->lock)
1690{
1691 raw_spin_rq_lock_irq(rq);
1692 rq_pin_lock(rq, rf);
1693}
1694
1695static inline void
1696rq_lock(struct rq *rq, struct rq_flags *rf)
1697 __acquires(rq->lock)
1698{
1699 raw_spin_rq_lock(rq);
1700 rq_pin_lock(rq, rf);
1701}
1702
1703static inline void
1704rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1705 __releases(rq->lock)
1706{
1707 rq_unpin_lock(rq, rf);
1708 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1709}
1710
1711static inline void
1712rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1713 __releases(rq->lock)
1714{
1715 rq_unpin_lock(rq, rf);
1716 raw_spin_rq_unlock_irq(rq);
1717}
1718
1719static inline void
1720rq_unlock(struct rq *rq, struct rq_flags *rf)
1721 __releases(rq->lock)
1722{
1723 rq_unpin_lock(rq, rf);
1724 raw_spin_rq_unlock(rq);
1725}
1726
1727DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1728 rq_lock(_T->lock, &_T->rf),
1729 rq_unlock(_T->lock, &_T->rf),
1730 struct rq_flags rf)
1731
1732DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1733 rq_lock_irq(_T->lock, &_T->rf),
1734 rq_unlock_irq(_T->lock, &_T->rf),
1735 struct rq_flags rf)
1736
1737DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1738 rq_lock_irqsave(_T->lock, &_T->rf),
1739 rq_unlock_irqrestore(_T->lock, &_T->rf),
1740 struct rq_flags rf)
1741
1742static inline struct rq *
1743this_rq_lock_irq(struct rq_flags *rf)
1744 __acquires(rq->lock)
1745{
1746 struct rq *rq;
1747
1748 local_irq_disable();
1749 rq = this_rq();
1750 rq_lock(rq, rf);
1751 return rq;
1752}
1753
1754#ifdef CONFIG_NUMA
1755enum numa_topology_type {
1756 NUMA_DIRECT,
1757 NUMA_GLUELESS_MESH,
1758 NUMA_BACKPLANE,
1759};
1760extern enum numa_topology_type sched_numa_topology_type;
1761extern int sched_max_numa_distance;
1762extern bool find_numa_distance(int distance);
1763extern void sched_init_numa(int offline_node);
1764extern void sched_update_numa(int cpu, bool online);
1765extern void sched_domains_numa_masks_set(unsigned int cpu);
1766extern void sched_domains_numa_masks_clear(unsigned int cpu);
1767extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1768#else
1769static inline void sched_init_numa(int offline_node) { }
1770static inline void sched_update_numa(int cpu, bool online) { }
1771static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1772static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1773static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1774{
1775 return nr_cpu_ids;
1776}
1777#endif
1778
1779#ifdef CONFIG_NUMA_BALANCING
1780/* The regions in numa_faults array from task_struct */
1781enum numa_faults_stats {
1782 NUMA_MEM = 0,
1783 NUMA_CPU,
1784 NUMA_MEMBUF,
1785 NUMA_CPUBUF
1786};
1787extern void sched_setnuma(struct task_struct *p, int node);
1788extern int migrate_task_to(struct task_struct *p, int cpu);
1789extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1790 int cpu, int scpu);
1791extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1792#else
1793static inline void
1794init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1795{
1796}
1797#endif /* CONFIG_NUMA_BALANCING */
1798
1799#ifdef CONFIG_SMP
1800
1801static inline void
1802queue_balance_callback(struct rq *rq,
1803 struct balance_callback *head,
1804 void (*func)(struct rq *rq))
1805{
1806 lockdep_assert_rq_held(rq);
1807
1808 /*
1809 * Don't (re)queue an already queued item; nor queue anything when
1810 * balance_push() is active, see the comment with
1811 * balance_push_callback.
1812 */
1813 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1814 return;
1815
1816 head->func = func;
1817 head->next = rq->balance_callback;
1818 rq->balance_callback = head;
1819}
1820
1821#define rcu_dereference_check_sched_domain(p) \
1822 rcu_dereference_check((p), \
1823 lockdep_is_held(&sched_domains_mutex))
1824
1825/*
1826 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1827 * See destroy_sched_domains: call_rcu for details.
1828 *
1829 * The domain tree of any CPU may only be accessed from within
1830 * preempt-disabled sections.
1831 */
1832#define for_each_domain(cpu, __sd) \
1833 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1834 __sd; __sd = __sd->parent)
1835
1836/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1837#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1838static const unsigned int SD_SHARED_CHILD_MASK =
1839#include <linux/sched/sd_flags.h>
18400;
1841#undef SD_FLAG
1842
1843/**
1844 * highest_flag_domain - Return highest sched_domain containing flag.
1845 * @cpu: The CPU whose highest level of sched domain is to
1846 * be returned.
1847 * @flag: The flag to check for the highest sched_domain
1848 * for the given CPU.
1849 *
1850 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1851 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1852 */
1853static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1854{
1855 struct sched_domain *sd, *hsd = NULL;
1856
1857 for_each_domain(cpu, sd) {
1858 if (sd->flags & flag) {
1859 hsd = sd;
1860 continue;
1861 }
1862
1863 /*
1864 * Stop the search if @flag is known to be shared at lower
1865 * levels. It will not be found further up.
1866 */
1867 if (flag & SD_SHARED_CHILD_MASK)
1868 break;
1869 }
1870
1871 return hsd;
1872}
1873
1874static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1875{
1876 struct sched_domain *sd;
1877
1878 for_each_domain(cpu, sd) {
1879 if (sd->flags & flag)
1880 break;
1881 }
1882
1883 return sd;
1884}
1885
1886DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1887DECLARE_PER_CPU(int, sd_llc_size);
1888DECLARE_PER_CPU(int, sd_llc_id);
1889DECLARE_PER_CPU(int, sd_share_id);
1890DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1891DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1892DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1893DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1894extern struct static_key_false sched_asym_cpucapacity;
1895extern struct static_key_false sched_cluster_active;
1896
1897static __always_inline bool sched_asym_cpucap_active(void)
1898{
1899 return static_branch_unlikely(&sched_asym_cpucapacity);
1900}
1901
1902struct sched_group_capacity {
1903 atomic_t ref;
1904 /*
1905 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1906 * for a single CPU.
1907 */
1908 unsigned long capacity;
1909 unsigned long min_capacity; /* Min per-CPU capacity in group */
1910 unsigned long max_capacity; /* Max per-CPU capacity in group */
1911 unsigned long next_update;
1912 int imbalance; /* XXX unrelated to capacity but shared group state */
1913
1914#ifdef CONFIG_SCHED_DEBUG
1915 int id;
1916#endif
1917
1918 unsigned long cpumask[]; /* Balance mask */
1919};
1920
1921struct sched_group {
1922 struct sched_group *next; /* Must be a circular list */
1923 atomic_t ref;
1924
1925 unsigned int group_weight;
1926 unsigned int cores;
1927 struct sched_group_capacity *sgc;
1928 int asym_prefer_cpu; /* CPU of highest priority in group */
1929 int flags;
1930
1931 /*
1932 * The CPUs this group covers.
1933 *
1934 * NOTE: this field is variable length. (Allocated dynamically
1935 * by attaching extra space to the end of the structure,
1936 * depending on how many CPUs the kernel has booted up with)
1937 */
1938 unsigned long cpumask[];
1939};
1940
1941static inline struct cpumask *sched_group_span(struct sched_group *sg)
1942{
1943 return to_cpumask(sg->cpumask);
1944}
1945
1946/*
1947 * See build_balance_mask().
1948 */
1949static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1950{
1951 return to_cpumask(sg->sgc->cpumask);
1952}
1953
1954extern int group_balance_cpu(struct sched_group *sg);
1955
1956#ifdef CONFIG_SCHED_DEBUG
1957void update_sched_domain_debugfs(void);
1958void dirty_sched_domain_sysctl(int cpu);
1959#else
1960static inline void update_sched_domain_debugfs(void)
1961{
1962}
1963static inline void dirty_sched_domain_sysctl(int cpu)
1964{
1965}
1966#endif
1967
1968extern int sched_update_scaling(void);
1969
1970static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1971{
1972 if (!p->user_cpus_ptr)
1973 return cpu_possible_mask; /* &init_task.cpus_mask */
1974 return p->user_cpus_ptr;
1975}
1976#endif /* CONFIG_SMP */
1977
1978#include "stats.h"
1979
1980#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1981
1982extern void __sched_core_account_forceidle(struct rq *rq);
1983
1984static inline void sched_core_account_forceidle(struct rq *rq)
1985{
1986 if (schedstat_enabled())
1987 __sched_core_account_forceidle(rq);
1988}
1989
1990extern void __sched_core_tick(struct rq *rq);
1991
1992static inline void sched_core_tick(struct rq *rq)
1993{
1994 if (sched_core_enabled(rq) && schedstat_enabled())
1995 __sched_core_tick(rq);
1996}
1997
1998#else
1999
2000static inline void sched_core_account_forceidle(struct rq *rq) {}
2001
2002static inline void sched_core_tick(struct rq *rq) {}
2003
2004#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
2005
2006#ifdef CONFIG_CGROUP_SCHED
2007
2008/*
2009 * Return the group to which this tasks belongs.
2010 *
2011 * We cannot use task_css() and friends because the cgroup subsystem
2012 * changes that value before the cgroup_subsys::attach() method is called,
2013 * therefore we cannot pin it and might observe the wrong value.
2014 *
2015 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2016 * core changes this before calling sched_move_task().
2017 *
2018 * Instead we use a 'copy' which is updated from sched_move_task() while
2019 * holding both task_struct::pi_lock and rq::lock.
2020 */
2021static inline struct task_group *task_group(struct task_struct *p)
2022{
2023 return p->sched_task_group;
2024}
2025
2026/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2027static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2028{
2029#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2030 struct task_group *tg = task_group(p);
2031#endif
2032
2033#ifdef CONFIG_FAIR_GROUP_SCHED
2034 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2035 p->se.cfs_rq = tg->cfs_rq[cpu];
2036 p->se.parent = tg->se[cpu];
2037 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2038#endif
2039
2040#ifdef CONFIG_RT_GROUP_SCHED
2041 p->rt.rt_rq = tg->rt_rq[cpu];
2042 p->rt.parent = tg->rt_se[cpu];
2043#endif
2044}
2045
2046#else /* CONFIG_CGROUP_SCHED */
2047
2048static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2049static inline struct task_group *task_group(struct task_struct *p)
2050{
2051 return NULL;
2052}
2053
2054#endif /* CONFIG_CGROUP_SCHED */
2055
2056static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2057{
2058 set_task_rq(p, cpu);
2059#ifdef CONFIG_SMP
2060 /*
2061 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2062 * successfully executed on another CPU. We must ensure that updates of
2063 * per-task data have been completed by this moment.
2064 */
2065 smp_wmb();
2066 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2067 p->wake_cpu = cpu;
2068#endif
2069}
2070
2071/*
2072 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2073 */
2074#ifdef CONFIG_SCHED_DEBUG
2075# define const_debug __read_mostly
2076#else
2077# define const_debug const
2078#endif
2079
2080#define SCHED_FEAT(name, enabled) \
2081 __SCHED_FEAT_##name ,
2082
2083enum {
2084#include "features.h"
2085 __SCHED_FEAT_NR,
2086};
2087
2088#undef SCHED_FEAT
2089
2090#ifdef CONFIG_SCHED_DEBUG
2091
2092/*
2093 * To support run-time toggling of sched features, all the translation units
2094 * (but core.c) reference the sysctl_sched_features defined in core.c.
2095 */
2096extern const_debug unsigned int sysctl_sched_features;
2097
2098#ifdef CONFIG_JUMP_LABEL
2099#define SCHED_FEAT(name, enabled) \
2100static __always_inline bool static_branch_##name(struct static_key *key) \
2101{ \
2102 return static_key_##enabled(key); \
2103}
2104
2105#include "features.h"
2106#undef SCHED_FEAT
2107
2108extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2109#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2110
2111#else /* !CONFIG_JUMP_LABEL */
2112
2113#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2114
2115#endif /* CONFIG_JUMP_LABEL */
2116
2117#else /* !SCHED_DEBUG */
2118
2119/*
2120 * Each translation unit has its own copy of sysctl_sched_features to allow
2121 * constants propagation at compile time and compiler optimization based on
2122 * features default.
2123 */
2124#define SCHED_FEAT(name, enabled) \
2125 (1UL << __SCHED_FEAT_##name) * enabled |
2126static const_debug __maybe_unused unsigned int sysctl_sched_features =
2127#include "features.h"
2128 0;
2129#undef SCHED_FEAT
2130
2131#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2132
2133#endif /* SCHED_DEBUG */
2134
2135extern struct static_key_false sched_numa_balancing;
2136extern struct static_key_false sched_schedstats;
2137
2138static inline u64 global_rt_period(void)
2139{
2140 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2141}
2142
2143static inline u64 global_rt_runtime(void)
2144{
2145 if (sysctl_sched_rt_runtime < 0)
2146 return RUNTIME_INF;
2147
2148 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2149}
2150
2151static inline int task_current(struct rq *rq, struct task_struct *p)
2152{
2153 return rq->curr == p;
2154}
2155
2156static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2157{
2158#ifdef CONFIG_SMP
2159 return p->on_cpu;
2160#else
2161 return task_current(rq, p);
2162#endif
2163}
2164
2165static inline int task_on_rq_queued(struct task_struct *p)
2166{
2167 return p->on_rq == TASK_ON_RQ_QUEUED;
2168}
2169
2170static inline int task_on_rq_migrating(struct task_struct *p)
2171{
2172 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2173}
2174
2175/* Wake flags. The first three directly map to some SD flag value */
2176#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2177#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2178#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2179
2180#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2181#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2182#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
2183
2184#ifdef CONFIG_SMP
2185static_assert(WF_EXEC == SD_BALANCE_EXEC);
2186static_assert(WF_FORK == SD_BALANCE_FORK);
2187static_assert(WF_TTWU == SD_BALANCE_WAKE);
2188#endif
2189
2190/*
2191 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2192 * of tasks with abnormal "nice" values across CPUs the contribution that
2193 * each task makes to its run queue's load is weighted according to its
2194 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2195 * scaled version of the new time slice allocation that they receive on time
2196 * slice expiry etc.
2197 */
2198
2199#define WEIGHT_IDLEPRIO 3
2200#define WMULT_IDLEPRIO 1431655765
2201
2202extern const int sched_prio_to_weight[40];
2203extern const u32 sched_prio_to_wmult[40];
2204
2205/*
2206 * {de,en}queue flags:
2207 *
2208 * DEQUEUE_SLEEP - task is no longer runnable
2209 * ENQUEUE_WAKEUP - task just became runnable
2210 *
2211 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2212 * are in a known state which allows modification. Such pairs
2213 * should preserve as much state as possible.
2214 *
2215 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2216 * in the runqueue.
2217 *
2218 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2219 *
2220 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2221 *
2222 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2223 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2224 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2225 *
2226 */
2227
2228#define DEQUEUE_SLEEP 0x01
2229#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2230#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2231#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2232#define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */
2233
2234#define ENQUEUE_WAKEUP 0x01
2235#define ENQUEUE_RESTORE 0x02
2236#define ENQUEUE_MOVE 0x04
2237#define ENQUEUE_NOCLOCK 0x08
2238
2239#define ENQUEUE_HEAD 0x10
2240#define ENQUEUE_REPLENISH 0x20
2241#ifdef CONFIG_SMP
2242#define ENQUEUE_MIGRATED 0x40
2243#else
2244#define ENQUEUE_MIGRATED 0x00
2245#endif
2246#define ENQUEUE_INITIAL 0x80
2247#define ENQUEUE_MIGRATING 0x100
2248
2249#define RETRY_TASK ((void *)-1UL)
2250
2251struct affinity_context {
2252 const struct cpumask *new_mask;
2253 struct cpumask *user_mask;
2254 unsigned int flags;
2255};
2256
2257extern s64 update_curr_common(struct rq *rq);
2258
2259struct sched_class {
2260
2261#ifdef CONFIG_UCLAMP_TASK
2262 int uclamp_enabled;
2263#endif
2264
2265 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2266 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2267 void (*yield_task) (struct rq *rq);
2268 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2269
2270 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2271
2272 struct task_struct *(*pick_next_task)(struct rq *rq);
2273
2274 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2275 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2276
2277#ifdef CONFIG_SMP
2278 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2279 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2280
2281 struct task_struct * (*pick_task)(struct rq *rq);
2282
2283 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2284
2285 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2286
2287 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2288
2289 void (*rq_online)(struct rq *rq);
2290 void (*rq_offline)(struct rq *rq);
2291
2292 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2293#endif
2294
2295 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2296 void (*task_fork)(struct task_struct *p);
2297 void (*task_dead)(struct task_struct *p);
2298
2299 /*
2300 * The switched_from() call is allowed to drop rq->lock, therefore we
2301 * cannot assume the switched_from/switched_to pair is serialized by
2302 * rq->lock. They are however serialized by p->pi_lock.
2303 */
2304 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2305 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2306 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2307 int oldprio);
2308
2309 unsigned int (*get_rr_interval)(struct rq *rq,
2310 struct task_struct *task);
2311
2312 void (*update_curr)(struct rq *rq);
2313
2314#ifdef CONFIG_FAIR_GROUP_SCHED
2315 void (*task_change_group)(struct task_struct *p);
2316#endif
2317
2318#ifdef CONFIG_SCHED_CORE
2319 int (*task_is_throttled)(struct task_struct *p, int cpu);
2320#endif
2321};
2322
2323static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2324{
2325 WARN_ON_ONCE(rq->curr != prev);
2326 prev->sched_class->put_prev_task(rq, prev);
2327}
2328
2329static inline void set_next_task(struct rq *rq, struct task_struct *next)
2330{
2331 next->sched_class->set_next_task(rq, next, false);
2332}
2333
2334
2335/*
2336 * Helper to define a sched_class instance; each one is placed in a separate
2337 * section which is ordered by the linker script:
2338 *
2339 * include/asm-generic/vmlinux.lds.h
2340 *
2341 * *CAREFUL* they are laid out in *REVERSE* order!!!
2342 *
2343 * Also enforce alignment on the instance, not the type, to guarantee layout.
2344 */
2345#define DEFINE_SCHED_CLASS(name) \
2346const struct sched_class name##_sched_class \
2347 __aligned(__alignof__(struct sched_class)) \
2348 __section("__" #name "_sched_class")
2349
2350/* Defined in include/asm-generic/vmlinux.lds.h */
2351extern struct sched_class __sched_class_highest[];
2352extern struct sched_class __sched_class_lowest[];
2353
2354#define for_class_range(class, _from, _to) \
2355 for (class = (_from); class < (_to); class++)
2356
2357#define for_each_class(class) \
2358 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2359
2360#define sched_class_above(_a, _b) ((_a) < (_b))
2361
2362extern const struct sched_class stop_sched_class;
2363extern const struct sched_class dl_sched_class;
2364extern const struct sched_class rt_sched_class;
2365extern const struct sched_class fair_sched_class;
2366extern const struct sched_class idle_sched_class;
2367
2368static inline bool sched_stop_runnable(struct rq *rq)
2369{
2370 return rq->stop && task_on_rq_queued(rq->stop);
2371}
2372
2373static inline bool sched_dl_runnable(struct rq *rq)
2374{
2375 return rq->dl.dl_nr_running > 0;
2376}
2377
2378static inline bool sched_rt_runnable(struct rq *rq)
2379{
2380 return rq->rt.rt_queued > 0;
2381}
2382
2383static inline bool sched_fair_runnable(struct rq *rq)
2384{
2385 return rq->cfs.nr_running > 0;
2386}
2387
2388extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2389extern struct task_struct *pick_next_task_idle(struct rq *rq);
2390
2391#define SCA_CHECK 0x01
2392#define SCA_MIGRATE_DISABLE 0x02
2393#define SCA_MIGRATE_ENABLE 0x04
2394#define SCA_USER 0x08
2395
2396#ifdef CONFIG_SMP
2397
2398extern void update_group_capacity(struct sched_domain *sd, int cpu);
2399
2400extern void trigger_load_balance(struct rq *rq);
2401
2402extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2403
2404static inline struct task_struct *get_push_task(struct rq *rq)
2405{
2406 struct task_struct *p = rq->curr;
2407
2408 lockdep_assert_rq_held(rq);
2409
2410 if (rq->push_busy)
2411 return NULL;
2412
2413 if (p->nr_cpus_allowed == 1)
2414 return NULL;
2415
2416 if (p->migration_disabled)
2417 return NULL;
2418
2419 rq->push_busy = true;
2420 return get_task_struct(p);
2421}
2422
2423extern int push_cpu_stop(void *arg);
2424
2425#endif
2426
2427#ifdef CONFIG_CPU_IDLE
2428static inline void idle_set_state(struct rq *rq,
2429 struct cpuidle_state *idle_state)
2430{
2431 rq->idle_state = idle_state;
2432}
2433
2434static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2435{
2436 SCHED_WARN_ON(!rcu_read_lock_held());
2437
2438 return rq->idle_state;
2439}
2440#else
2441static inline void idle_set_state(struct rq *rq,
2442 struct cpuidle_state *idle_state)
2443{
2444}
2445
2446static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2447{
2448 return NULL;
2449}
2450#endif
2451
2452extern void schedule_idle(void);
2453asmlinkage void schedule_user(void);
2454
2455extern void sysrq_sched_debug_show(void);
2456extern void sched_init_granularity(void);
2457extern void update_max_interval(void);
2458
2459extern void init_sched_dl_class(void);
2460extern void init_sched_rt_class(void);
2461extern void init_sched_fair_class(void);
2462
2463extern void reweight_task(struct task_struct *p, int prio);
2464
2465extern void resched_curr(struct rq *rq);
2466extern void resched_cpu(int cpu);
2467
2468extern struct rt_bandwidth def_rt_bandwidth;
2469extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2470extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2471
2472extern void init_dl_entity(struct sched_dl_entity *dl_se);
2473
2474#define BW_SHIFT 20
2475#define BW_UNIT (1 << BW_SHIFT)
2476#define RATIO_SHIFT 8
2477#define MAX_BW_BITS (64 - BW_SHIFT)
2478#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2479unsigned long to_ratio(u64 period, u64 runtime);
2480
2481extern void init_entity_runnable_average(struct sched_entity *se);
2482extern void post_init_entity_util_avg(struct task_struct *p);
2483
2484#ifdef CONFIG_NO_HZ_FULL
2485extern bool sched_can_stop_tick(struct rq *rq);
2486extern int __init sched_tick_offload_init(void);
2487
2488/*
2489 * Tick may be needed by tasks in the runqueue depending on their policy and
2490 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2491 * nohz mode if necessary.
2492 */
2493static inline void sched_update_tick_dependency(struct rq *rq)
2494{
2495 int cpu = cpu_of(rq);
2496
2497 if (!tick_nohz_full_cpu(cpu))
2498 return;
2499
2500 if (sched_can_stop_tick(rq))
2501 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2502 else
2503 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2504}
2505#else
2506static inline int sched_tick_offload_init(void) { return 0; }
2507static inline void sched_update_tick_dependency(struct rq *rq) { }
2508#endif
2509
2510static inline void add_nr_running(struct rq *rq, unsigned count)
2511{
2512 unsigned prev_nr = rq->nr_running;
2513
2514 rq->nr_running = prev_nr + count;
2515 if (trace_sched_update_nr_running_tp_enabled()) {
2516 call_trace_sched_update_nr_running(rq, count);
2517 }
2518
2519#ifdef CONFIG_SMP
2520 if (prev_nr < 2 && rq->nr_running >= 2) {
2521 if (!READ_ONCE(rq->rd->overload))
2522 WRITE_ONCE(rq->rd->overload, 1);
2523 }
2524#endif
2525
2526 sched_update_tick_dependency(rq);
2527}
2528
2529static inline void sub_nr_running(struct rq *rq, unsigned count)
2530{
2531 rq->nr_running -= count;
2532 if (trace_sched_update_nr_running_tp_enabled()) {
2533 call_trace_sched_update_nr_running(rq, -count);
2534 }
2535
2536 /* Check if we still need preemption */
2537 sched_update_tick_dependency(rq);
2538}
2539
2540extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2541extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2542
2543extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2544
2545#ifdef CONFIG_PREEMPT_RT
2546#define SCHED_NR_MIGRATE_BREAK 8
2547#else
2548#define SCHED_NR_MIGRATE_BREAK 32
2549#endif
2550
2551extern const_debug unsigned int sysctl_sched_nr_migrate;
2552extern const_debug unsigned int sysctl_sched_migration_cost;
2553
2554extern unsigned int sysctl_sched_base_slice;
2555
2556#ifdef CONFIG_SCHED_DEBUG
2557extern int sysctl_resched_latency_warn_ms;
2558extern int sysctl_resched_latency_warn_once;
2559
2560extern unsigned int sysctl_sched_tunable_scaling;
2561
2562extern unsigned int sysctl_numa_balancing_scan_delay;
2563extern unsigned int sysctl_numa_balancing_scan_period_min;
2564extern unsigned int sysctl_numa_balancing_scan_period_max;
2565extern unsigned int sysctl_numa_balancing_scan_size;
2566extern unsigned int sysctl_numa_balancing_hot_threshold;
2567#endif
2568
2569#ifdef CONFIG_SCHED_HRTICK
2570
2571/*
2572 * Use hrtick when:
2573 * - enabled by features
2574 * - hrtimer is actually high res
2575 */
2576static inline int hrtick_enabled(struct rq *rq)
2577{
2578 if (!cpu_active(cpu_of(rq)))
2579 return 0;
2580 return hrtimer_is_hres_active(&rq->hrtick_timer);
2581}
2582
2583static inline int hrtick_enabled_fair(struct rq *rq)
2584{
2585 if (!sched_feat(HRTICK))
2586 return 0;
2587 return hrtick_enabled(rq);
2588}
2589
2590static inline int hrtick_enabled_dl(struct rq *rq)
2591{
2592 if (!sched_feat(HRTICK_DL))
2593 return 0;
2594 return hrtick_enabled(rq);
2595}
2596
2597void hrtick_start(struct rq *rq, u64 delay);
2598
2599#else
2600
2601static inline int hrtick_enabled_fair(struct rq *rq)
2602{
2603 return 0;
2604}
2605
2606static inline int hrtick_enabled_dl(struct rq *rq)
2607{
2608 return 0;
2609}
2610
2611static inline int hrtick_enabled(struct rq *rq)
2612{
2613 return 0;
2614}
2615
2616#endif /* CONFIG_SCHED_HRTICK */
2617
2618#ifndef arch_scale_freq_tick
2619static __always_inline
2620void arch_scale_freq_tick(void)
2621{
2622}
2623#endif
2624
2625#ifndef arch_scale_freq_capacity
2626/**
2627 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2628 * @cpu: the CPU in question.
2629 *
2630 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2631 *
2632 * f_curr
2633 * ------ * SCHED_CAPACITY_SCALE
2634 * f_max
2635 */
2636static __always_inline
2637unsigned long arch_scale_freq_capacity(int cpu)
2638{
2639 return SCHED_CAPACITY_SCALE;
2640}
2641#endif
2642
2643#ifdef CONFIG_SCHED_DEBUG
2644/*
2645 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2646 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2647 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2648 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2649 */
2650static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2651{
2652 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2653 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2654#ifdef CONFIG_SMP
2655 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2656#endif
2657}
2658#else
2659static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2660#endif
2661
2662#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
2663__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2664static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2665{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
2666 _lock; return _t; }
2667
2668#ifdef CONFIG_SMP
2669
2670static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2671{
2672#ifdef CONFIG_SCHED_CORE
2673 /*
2674 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2675 * order by core-id first and cpu-id second.
2676 *
2677 * Notably:
2678 *
2679 * double_rq_lock(0,3); will take core-0, core-1 lock
2680 * double_rq_lock(1,2); will take core-1, core-0 lock
2681 *
2682 * when only cpu-id is considered.
2683 */
2684 if (rq1->core->cpu < rq2->core->cpu)
2685 return true;
2686 if (rq1->core->cpu > rq2->core->cpu)
2687 return false;
2688
2689 /*
2690 * __sched_core_flip() relies on SMT having cpu-id lock order.
2691 */
2692#endif
2693 return rq1->cpu < rq2->cpu;
2694}
2695
2696extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2697
2698#ifdef CONFIG_PREEMPTION
2699
2700/*
2701 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2702 * way at the expense of forcing extra atomic operations in all
2703 * invocations. This assures that the double_lock is acquired using the
2704 * same underlying policy as the spinlock_t on this architecture, which
2705 * reduces latency compared to the unfair variant below. However, it
2706 * also adds more overhead and therefore may reduce throughput.
2707 */
2708static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2709 __releases(this_rq->lock)
2710 __acquires(busiest->lock)
2711 __acquires(this_rq->lock)
2712{
2713 raw_spin_rq_unlock(this_rq);
2714 double_rq_lock(this_rq, busiest);
2715
2716 return 1;
2717}
2718
2719#else
2720/*
2721 * Unfair double_lock_balance: Optimizes throughput at the expense of
2722 * latency by eliminating extra atomic operations when the locks are
2723 * already in proper order on entry. This favors lower CPU-ids and will
2724 * grant the double lock to lower CPUs over higher ids under contention,
2725 * regardless of entry order into the function.
2726 */
2727static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2728 __releases(this_rq->lock)
2729 __acquires(busiest->lock)
2730 __acquires(this_rq->lock)
2731{
2732 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2733 likely(raw_spin_rq_trylock(busiest))) {
2734 double_rq_clock_clear_update(this_rq, busiest);
2735 return 0;
2736 }
2737
2738 if (rq_order_less(this_rq, busiest)) {
2739 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2740 double_rq_clock_clear_update(this_rq, busiest);
2741 return 0;
2742 }
2743
2744 raw_spin_rq_unlock(this_rq);
2745 double_rq_lock(this_rq, busiest);
2746
2747 return 1;
2748}
2749
2750#endif /* CONFIG_PREEMPTION */
2751
2752/*
2753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2754 */
2755static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2756{
2757 lockdep_assert_irqs_disabled();
2758
2759 return _double_lock_balance(this_rq, busiest);
2760}
2761
2762static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2763 __releases(busiest->lock)
2764{
2765 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2766 raw_spin_rq_unlock(busiest);
2767 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2768}
2769
2770static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2771{
2772 if (l1 > l2)
2773 swap(l1, l2);
2774
2775 spin_lock(l1);
2776 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2777}
2778
2779static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2780{
2781 if (l1 > l2)
2782 swap(l1, l2);
2783
2784 spin_lock_irq(l1);
2785 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2786}
2787
2788static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2789{
2790 if (l1 > l2)
2791 swap(l1, l2);
2792
2793 raw_spin_lock(l1);
2794 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2795}
2796
2797static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2798{
2799 raw_spin_unlock(l1);
2800 raw_spin_unlock(l2);
2801}
2802
2803DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2804 double_raw_lock(_T->lock, _T->lock2),
2805 double_raw_unlock(_T->lock, _T->lock2))
2806
2807/*
2808 * double_rq_unlock - safely unlock two runqueues
2809 *
2810 * Note this does not restore interrupts like task_rq_unlock,
2811 * you need to do so manually after calling.
2812 */
2813static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2814 __releases(rq1->lock)
2815 __releases(rq2->lock)
2816{
2817 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2818 raw_spin_rq_unlock(rq2);
2819 else
2820 __release(rq2->lock);
2821 raw_spin_rq_unlock(rq1);
2822}
2823
2824extern void set_rq_online (struct rq *rq);
2825extern void set_rq_offline(struct rq *rq);
2826extern bool sched_smp_initialized;
2827
2828#else /* CONFIG_SMP */
2829
2830/*
2831 * double_rq_lock - safely lock two runqueues
2832 *
2833 * Note this does not disable interrupts like task_rq_lock,
2834 * you need to do so manually before calling.
2835 */
2836static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2837 __acquires(rq1->lock)
2838 __acquires(rq2->lock)
2839{
2840 WARN_ON_ONCE(!irqs_disabled());
2841 WARN_ON_ONCE(rq1 != rq2);
2842 raw_spin_rq_lock(rq1);
2843 __acquire(rq2->lock); /* Fake it out ;) */
2844 double_rq_clock_clear_update(rq1, rq2);
2845}
2846
2847/*
2848 * double_rq_unlock - safely unlock two runqueues
2849 *
2850 * Note this does not restore interrupts like task_rq_unlock,
2851 * you need to do so manually after calling.
2852 */
2853static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2854 __releases(rq1->lock)
2855 __releases(rq2->lock)
2856{
2857 WARN_ON_ONCE(rq1 != rq2);
2858 raw_spin_rq_unlock(rq1);
2859 __release(rq2->lock);
2860}
2861
2862#endif
2863
2864DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2865 double_rq_lock(_T->lock, _T->lock2),
2866 double_rq_unlock(_T->lock, _T->lock2))
2867
2868extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
2869extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2870extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2871
2872#ifdef CONFIG_SCHED_DEBUG
2873extern bool sched_debug_verbose;
2874
2875extern void print_cfs_stats(struct seq_file *m, int cpu);
2876extern void print_rt_stats(struct seq_file *m, int cpu);
2877extern void print_dl_stats(struct seq_file *m, int cpu);
2878extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2879extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2880extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2881
2882extern void resched_latency_warn(int cpu, u64 latency);
2883#ifdef CONFIG_NUMA_BALANCING
2884extern void
2885show_numa_stats(struct task_struct *p, struct seq_file *m);
2886extern void
2887print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2888 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2889#endif /* CONFIG_NUMA_BALANCING */
2890#else
2891static inline void resched_latency_warn(int cpu, u64 latency) {}
2892#endif /* CONFIG_SCHED_DEBUG */
2893
2894extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2895extern void init_rt_rq(struct rt_rq *rt_rq);
2896extern void init_dl_rq(struct dl_rq *dl_rq);
2897
2898extern void cfs_bandwidth_usage_inc(void);
2899extern void cfs_bandwidth_usage_dec(void);
2900
2901#ifdef CONFIG_NO_HZ_COMMON
2902#define NOHZ_BALANCE_KICK_BIT 0
2903#define NOHZ_STATS_KICK_BIT 1
2904#define NOHZ_NEWILB_KICK_BIT 2
2905#define NOHZ_NEXT_KICK_BIT 3
2906
2907/* Run rebalance_domains() */
2908#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2909/* Update blocked load */
2910#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2911/* Update blocked load when entering idle */
2912#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2913/* Update nohz.next_balance */
2914#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2915
2916#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2917
2918#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2919
2920extern void nohz_balance_exit_idle(struct rq *rq);
2921#else
2922static inline void nohz_balance_exit_idle(struct rq *rq) { }
2923#endif
2924
2925#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2926extern void nohz_run_idle_balance(int cpu);
2927#else
2928static inline void nohz_run_idle_balance(int cpu) { }
2929#endif
2930
2931#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2932struct irqtime {
2933 u64 total;
2934 u64 tick_delta;
2935 u64 irq_start_time;
2936 struct u64_stats_sync sync;
2937};
2938
2939DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2940
2941/*
2942 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2943 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2944 * and never move forward.
2945 */
2946static inline u64 irq_time_read(int cpu)
2947{
2948 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2949 unsigned int seq;
2950 u64 total;
2951
2952 do {
2953 seq = __u64_stats_fetch_begin(&irqtime->sync);
2954 total = irqtime->total;
2955 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2956
2957 return total;
2958}
2959#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2960
2961#ifdef CONFIG_CPU_FREQ
2962DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2963
2964/**
2965 * cpufreq_update_util - Take a note about CPU utilization changes.
2966 * @rq: Runqueue to carry out the update for.
2967 * @flags: Update reason flags.
2968 *
2969 * This function is called by the scheduler on the CPU whose utilization is
2970 * being updated.
2971 *
2972 * It can only be called from RCU-sched read-side critical sections.
2973 *
2974 * The way cpufreq is currently arranged requires it to evaluate the CPU
2975 * performance state (frequency/voltage) on a regular basis to prevent it from
2976 * being stuck in a completely inadequate performance level for too long.
2977 * That is not guaranteed to happen if the updates are only triggered from CFS
2978 * and DL, though, because they may not be coming in if only RT tasks are
2979 * active all the time (or there are RT tasks only).
2980 *
2981 * As a workaround for that issue, this function is called periodically by the
2982 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2983 * but that really is a band-aid. Going forward it should be replaced with
2984 * solutions targeted more specifically at RT tasks.
2985 */
2986static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2987{
2988 struct update_util_data *data;
2989
2990 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2991 cpu_of(rq)));
2992 if (data)
2993 data->func(data, rq_clock(rq), flags);
2994}
2995#else
2996static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2997#endif /* CONFIG_CPU_FREQ */
2998
2999#ifdef arch_scale_freq_capacity
3000# ifndef arch_scale_freq_invariant
3001# define arch_scale_freq_invariant() true
3002# endif
3003#else
3004# define arch_scale_freq_invariant() false
3005#endif
3006
3007#ifdef CONFIG_SMP
3008unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3009 unsigned long *min,
3010 unsigned long *max);
3011
3012unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3013 unsigned long min,
3014 unsigned long max);
3015
3016
3017/*
3018 * Verify the fitness of task @p to run on @cpu taking into account the
3019 * CPU original capacity and the runtime/deadline ratio of the task.
3020 *
3021 * The function will return true if the original capacity of @cpu is
3022 * greater than or equal to task's deadline density right shifted by
3023 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3024 */
3025static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3026{
3027 unsigned long cap = arch_scale_cpu_capacity(cpu);
3028
3029 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3030}
3031
3032static inline unsigned long cpu_bw_dl(struct rq *rq)
3033{
3034 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3035}
3036
3037static inline unsigned long cpu_util_dl(struct rq *rq)
3038{
3039 return READ_ONCE(rq->avg_dl.util_avg);
3040}
3041
3042
3043extern unsigned long cpu_util_cfs(int cpu);
3044extern unsigned long cpu_util_cfs_boost(int cpu);
3045
3046static inline unsigned long cpu_util_rt(struct rq *rq)
3047{
3048 return READ_ONCE(rq->avg_rt.util_avg);
3049}
3050#endif
3051
3052#ifdef CONFIG_UCLAMP_TASK
3053unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3054
3055static inline unsigned long uclamp_rq_get(struct rq *rq,
3056 enum uclamp_id clamp_id)
3057{
3058 return READ_ONCE(rq->uclamp[clamp_id].value);
3059}
3060
3061static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3062 unsigned int value)
3063{
3064 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3065}
3066
3067static inline bool uclamp_rq_is_idle(struct rq *rq)
3068{
3069 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3070}
3071
3072/* Is the rq being capped/throttled by uclamp_max? */
3073static inline bool uclamp_rq_is_capped(struct rq *rq)
3074{
3075 unsigned long rq_util;
3076 unsigned long max_util;
3077
3078 if (!static_branch_likely(&sched_uclamp_used))
3079 return false;
3080
3081 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3082 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3083
3084 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3085}
3086
3087/*
3088 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3089 * by default in the fast path and only gets turned on once userspace performs
3090 * an operation that requires it.
3091 *
3092 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3093 * hence is active.
3094 */
3095static inline bool uclamp_is_used(void)
3096{
3097 return static_branch_likely(&sched_uclamp_used);
3098}
3099#else /* CONFIG_UCLAMP_TASK */
3100static inline unsigned long uclamp_eff_value(struct task_struct *p,
3101 enum uclamp_id clamp_id)
3102{
3103 if (clamp_id == UCLAMP_MIN)
3104 return 0;
3105
3106 return SCHED_CAPACITY_SCALE;
3107}
3108
3109static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3110
3111static inline bool uclamp_is_used(void)
3112{
3113 return false;
3114}
3115
3116static inline unsigned long uclamp_rq_get(struct rq *rq,
3117 enum uclamp_id clamp_id)
3118{
3119 if (clamp_id == UCLAMP_MIN)
3120 return 0;
3121
3122 return SCHED_CAPACITY_SCALE;
3123}
3124
3125static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3126 unsigned int value)
3127{
3128}
3129
3130static inline bool uclamp_rq_is_idle(struct rq *rq)
3131{
3132 return false;
3133}
3134#endif /* CONFIG_UCLAMP_TASK */
3135
3136#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3137static inline unsigned long cpu_util_irq(struct rq *rq)
3138{
3139 return rq->avg_irq.util_avg;
3140}
3141
3142static inline
3143unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3144{
3145 util *= (max - irq);
3146 util /= max;
3147
3148 return util;
3149
3150}
3151#else
3152static inline unsigned long cpu_util_irq(struct rq *rq)
3153{
3154 return 0;
3155}
3156
3157static inline
3158unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3159{
3160 return util;
3161}
3162#endif
3163
3164#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3165
3166#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3167
3168DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3169
3170static inline bool sched_energy_enabled(void)
3171{
3172 return static_branch_unlikely(&sched_energy_present);
3173}
3174
3175extern struct cpufreq_governor schedutil_gov;
3176
3177#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3178
3179#define perf_domain_span(pd) NULL
3180static inline bool sched_energy_enabled(void) { return false; }
3181
3182#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3183
3184#ifdef CONFIG_MEMBARRIER
3185/*
3186 * The scheduler provides memory barriers required by membarrier between:
3187 * - prior user-space memory accesses and store to rq->membarrier_state,
3188 * - store to rq->membarrier_state and following user-space memory accesses.
3189 * In the same way it provides those guarantees around store to rq->curr.
3190 */
3191static inline void membarrier_switch_mm(struct rq *rq,
3192 struct mm_struct *prev_mm,
3193 struct mm_struct *next_mm)
3194{
3195 int membarrier_state;
3196
3197 if (prev_mm == next_mm)
3198 return;
3199
3200 membarrier_state = atomic_read(&next_mm->membarrier_state);
3201 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3202 return;
3203
3204 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3205}
3206#else
3207static inline void membarrier_switch_mm(struct rq *rq,
3208 struct mm_struct *prev_mm,
3209 struct mm_struct *next_mm)
3210{
3211}
3212#endif
3213
3214#ifdef CONFIG_SMP
3215static inline bool is_per_cpu_kthread(struct task_struct *p)
3216{
3217 if (!(p->flags & PF_KTHREAD))
3218 return false;
3219
3220 if (p->nr_cpus_allowed != 1)
3221 return false;
3222
3223 return true;
3224}
3225#endif
3226
3227extern void swake_up_all_locked(struct swait_queue_head *q);
3228extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3229
3230extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3231
3232#ifdef CONFIG_PREEMPT_DYNAMIC
3233extern int preempt_dynamic_mode;
3234extern int sched_dynamic_mode(const char *str);
3235extern void sched_dynamic_update(int mode);
3236#endif
3237
3238#ifdef CONFIG_SCHED_MM_CID
3239
3240#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3241#define MM_CID_SCAN_DELAY 100 /* 100ms */
3242
3243extern raw_spinlock_t cid_lock;
3244extern int use_cid_lock;
3245
3246extern void sched_mm_cid_migrate_from(struct task_struct *t);
3247extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3248extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3249extern void init_sched_mm_cid(struct task_struct *t);
3250
3251static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3252{
3253 if (cid < 0)
3254 return;
3255 cpumask_clear_cpu(cid, mm_cidmask(mm));
3256}
3257
3258/*
3259 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3260 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3261 * be held to transition to other states.
3262 *
3263 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3264 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3265 */
3266static inline void mm_cid_put_lazy(struct task_struct *t)
3267{
3268 struct mm_struct *mm = t->mm;
3269 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3270 int cid;
3271
3272 lockdep_assert_irqs_disabled();
3273 cid = __this_cpu_read(pcpu_cid->cid);
3274 if (!mm_cid_is_lazy_put(cid) ||
3275 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3276 return;
3277 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3278}
3279
3280static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3281{
3282 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3283 int cid, res;
3284
3285 lockdep_assert_irqs_disabled();
3286 cid = __this_cpu_read(pcpu_cid->cid);
3287 for (;;) {
3288 if (mm_cid_is_unset(cid))
3289 return MM_CID_UNSET;
3290 /*
3291 * Attempt transition from valid or lazy-put to unset.
3292 */
3293 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3294 if (res == cid)
3295 break;
3296 cid = res;
3297 }
3298 return cid;
3299}
3300
3301static inline void mm_cid_put(struct mm_struct *mm)
3302{
3303 int cid;
3304
3305 lockdep_assert_irqs_disabled();
3306 cid = mm_cid_pcpu_unset(mm);
3307 if (cid == MM_CID_UNSET)
3308 return;
3309 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3310}
3311
3312static inline int __mm_cid_try_get(struct mm_struct *mm)
3313{
3314 struct cpumask *cpumask;
3315 int cid;
3316
3317 cpumask = mm_cidmask(mm);
3318 /*
3319 * Retry finding first zero bit if the mask is temporarily
3320 * filled. This only happens during concurrent remote-clear
3321 * which owns a cid without holding a rq lock.
3322 */
3323 for (;;) {
3324 cid = cpumask_first_zero(cpumask);
3325 if (cid < nr_cpu_ids)
3326 break;
3327 cpu_relax();
3328 }
3329 if (cpumask_test_and_set_cpu(cid, cpumask))
3330 return -1;
3331 return cid;
3332}
3333
3334/*
3335 * Save a snapshot of the current runqueue time of this cpu
3336 * with the per-cpu cid value, allowing to estimate how recently it was used.
3337 */
3338static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3339{
3340 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3341
3342 lockdep_assert_rq_held(rq);
3343 WRITE_ONCE(pcpu_cid->time, rq->clock);
3344}
3345
3346static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3347{
3348 int cid;
3349
3350 /*
3351 * All allocations (even those using the cid_lock) are lock-free. If
3352 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3353 * guarantee forward progress.
3354 */
3355 if (!READ_ONCE(use_cid_lock)) {
3356 cid = __mm_cid_try_get(mm);
3357 if (cid >= 0)
3358 goto end;
3359 raw_spin_lock(&cid_lock);
3360 } else {
3361 raw_spin_lock(&cid_lock);
3362 cid = __mm_cid_try_get(mm);
3363 if (cid >= 0)
3364 goto unlock;
3365 }
3366
3367 /*
3368 * cid concurrently allocated. Retry while forcing following
3369 * allocations to use the cid_lock to ensure forward progress.
3370 */
3371 WRITE_ONCE(use_cid_lock, 1);
3372 /*
3373 * Set use_cid_lock before allocation. Only care about program order
3374 * because this is only required for forward progress.
3375 */
3376 barrier();
3377 /*
3378 * Retry until it succeeds. It is guaranteed to eventually succeed once
3379 * all newcoming allocations observe the use_cid_lock flag set.
3380 */
3381 do {
3382 cid = __mm_cid_try_get(mm);
3383 cpu_relax();
3384 } while (cid < 0);
3385 /*
3386 * Allocate before clearing use_cid_lock. Only care about
3387 * program order because this is for forward progress.
3388 */
3389 barrier();
3390 WRITE_ONCE(use_cid_lock, 0);
3391unlock:
3392 raw_spin_unlock(&cid_lock);
3393end:
3394 mm_cid_snapshot_time(rq, mm);
3395 return cid;
3396}
3397
3398static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3399{
3400 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3401 struct cpumask *cpumask;
3402 int cid;
3403
3404 lockdep_assert_rq_held(rq);
3405 cpumask = mm_cidmask(mm);
3406 cid = __this_cpu_read(pcpu_cid->cid);
3407 if (mm_cid_is_valid(cid)) {
3408 mm_cid_snapshot_time(rq, mm);
3409 return cid;
3410 }
3411 if (mm_cid_is_lazy_put(cid)) {
3412 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3413 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3414 }
3415 cid = __mm_cid_get(rq, mm);
3416 __this_cpu_write(pcpu_cid->cid, cid);
3417 return cid;
3418}
3419
3420static inline void switch_mm_cid(struct rq *rq,
3421 struct task_struct *prev,
3422 struct task_struct *next)
3423{
3424 /*
3425 * Provide a memory barrier between rq->curr store and load of
3426 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3427 *
3428 * Should be adapted if context_switch() is modified.
3429 */
3430 if (!next->mm) { // to kernel
3431 /*
3432 * user -> kernel transition does not guarantee a barrier, but
3433 * we can use the fact that it performs an atomic operation in
3434 * mmgrab().
3435 */
3436 if (prev->mm) // from user
3437 smp_mb__after_mmgrab();
3438 /*
3439 * kernel -> kernel transition does not change rq->curr->mm
3440 * state. It stays NULL.
3441 */
3442 } else { // to user
3443 /*
3444 * kernel -> user transition does not provide a barrier
3445 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3446 * Provide it here.
3447 */
3448 if (!prev->mm) // from kernel
3449 smp_mb();
3450 /*
3451 * user -> user transition guarantees a memory barrier through
3452 * switch_mm() when current->mm changes. If current->mm is
3453 * unchanged, no barrier is needed.
3454 */
3455 }
3456 if (prev->mm_cid_active) {
3457 mm_cid_snapshot_time(rq, prev->mm);
3458 mm_cid_put_lazy(prev);
3459 prev->mm_cid = -1;
3460 }
3461 if (next->mm_cid_active)
3462 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3463}
3464
3465#else
3466static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3467static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3468static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3469static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3470static inline void init_sched_mm_cid(struct task_struct *t) { }
3471#endif
3472
3473extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3474extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3475
3476#endif /* _KERNEL_SCHED_SCHED_H */