Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/panic.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 */
  7
  8/*
  9 * This function is used through-out the kernel (including mm and fs)
 10 * to indicate a major problem.
 11 */
 12#include <linux/debug_locks.h>
 13#include <linux/sched/debug.h>
 14#include <linux/interrupt.h>
 15#include <linux/kgdb.h>
 16#include <linux/kmsg_dump.h>
 17#include <linux/kallsyms.h>
 18#include <linux/notifier.h>
 19#include <linux/vt_kern.h>
 20#include <linux/module.h>
 21#include <linux/random.h>
 22#include <linux/ftrace.h>
 23#include <linux/reboot.h>
 24#include <linux/delay.h>
 25#include <linux/kexec.h>
 
 26#include <linux/sched.h>
 
 27#include <linux/sysrq.h>
 28#include <linux/init.h>
 29#include <linux/nmi.h>
 30#include <linux/console.h>
 31#include <linux/bug.h>
 32#include <linux/ratelimit.h>
 33#include <linux/debugfs.h>
 
 
 
 34#include <asm/sections.h>
 35
 36#define PANIC_TIMER_STEP 100
 37#define PANIC_BLINK_SPD 18
 38
 
 
 
 
 
 
 
 
 
 
 39int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 40static unsigned long tainted_mask =
 41	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 42static int pause_on_oops;
 43static int pause_on_oops_flag;
 44static DEFINE_SPINLOCK(pause_on_oops_lock);
 45bool crash_kexec_post_notifiers;
 46int panic_on_warn __read_mostly;
 
 
 
 47
 48int panic_timeout = CONFIG_PANIC_TIMEOUT;
 49EXPORT_SYMBOL_GPL(panic_timeout);
 50
 51#define PANIC_PRINT_TASK_INFO		0x00000001
 52#define PANIC_PRINT_MEM_INFO		0x00000002
 53#define PANIC_PRINT_TIMER_INFO		0x00000004
 54#define PANIC_PRINT_LOCK_INFO		0x00000008
 55#define PANIC_PRINT_FTRACE_INFO		0x00000010
 56#define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
 
 57unsigned long panic_print;
 58
 59ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 60
 61EXPORT_SYMBOL(panic_notifier_list);
 62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63static long no_blink(int state)
 64{
 65	return 0;
 66}
 67
 68/* Returns how long it waited in ms */
 69long (*panic_blink)(int state);
 70EXPORT_SYMBOL(panic_blink);
 71
 72/*
 73 * Stop ourself in panic -- architecture code may override this
 74 */
 75void __weak panic_smp_self_stop(void)
 76{
 77	while (1)
 78		cpu_relax();
 79}
 80
 81/*
 82 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 83 * may override this to prepare for crash dumping, e.g. save regs info.
 84 */
 85void __weak nmi_panic_self_stop(struct pt_regs *regs)
 86{
 87	panic_smp_self_stop();
 88}
 89
 90/*
 91 * Stop other CPUs in panic.  Architecture dependent code may override this
 92 * with more suitable version.  For example, if the architecture supports
 93 * crash dump, it should save registers of each stopped CPU and disable
 94 * per-CPU features such as virtualization extensions.
 95 */
 96void __weak crash_smp_send_stop(void)
 97{
 98	static int cpus_stopped;
 99
100	/*
101	 * This function can be called twice in panic path, but obviously
102	 * we execute this only once.
103	 */
104	if (cpus_stopped)
105		return;
106
107	/*
108	 * Note smp_send_stop is the usual smp shutdown function, which
109	 * unfortunately means it may not be hardened to work in a panic
110	 * situation.
111	 */
112	smp_send_stop();
113	cpus_stopped = 1;
114}
115
116atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
117
118/*
119 * A variant of panic() called from NMI context. We return if we've already
120 * panicked on this CPU. If another CPU already panicked, loop in
121 * nmi_panic_self_stop() which can provide architecture dependent code such
122 * as saving register state for crash dump.
123 */
124void nmi_panic(struct pt_regs *regs, const char *msg)
125{
126	int old_cpu, cpu;
127
128	cpu = raw_smp_processor_id();
129	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
130
131	if (old_cpu == PANIC_CPU_INVALID)
 
132		panic("%s", msg);
133	else if (old_cpu != cpu)
134		nmi_panic_self_stop(regs);
135}
136EXPORT_SYMBOL(nmi_panic);
137
138static void panic_print_sys_info(void)
139{
140	if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
141		console_flush_on_panic(CONSOLE_REPLAY_ALL);
 
 
 
142
143	if (panic_print & PANIC_PRINT_TASK_INFO)
144		show_state();
145
146	if (panic_print & PANIC_PRINT_MEM_INFO)
147		show_mem(0, NULL);
148
149	if (panic_print & PANIC_PRINT_TIMER_INFO)
150		sysrq_timer_list_show();
151
152	if (panic_print & PANIC_PRINT_LOCK_INFO)
153		debug_show_all_locks();
154
155	if (panic_print & PANIC_PRINT_FTRACE_INFO)
156		ftrace_dump(DUMP_ALL);
157}
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159/**
160 *	panic - halt the system
161 *	@fmt: The text string to print
162 *
163 *	Display a message, then perform cleanups.
164 *
165 *	This function never returns.
166 */
167void panic(const char *fmt, ...)
168{
169	static char buf[1024];
170	va_list args;
171	long i, i_next = 0, len;
172	int state = 0;
173	int old_cpu, this_cpu;
174	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
175
 
 
 
 
 
 
 
 
 
 
176	/*
177	 * Disable local interrupts. This will prevent panic_smp_self_stop
178	 * from deadlocking the first cpu that invokes the panic, since
179	 * there is nothing to prevent an interrupt handler (that runs
180	 * after setting panic_cpu) from invoking panic() again.
181	 */
182	local_irq_disable();
183	preempt_disable_notrace();
184
185	/*
186	 * It's possible to come here directly from a panic-assertion and
187	 * not have preempt disabled. Some functions called from here want
188	 * preempt to be disabled. No point enabling it later though...
189	 *
190	 * Only one CPU is allowed to execute the panic code from here. For
191	 * multiple parallel invocations of panic, all other CPUs either
192	 * stop themself or will wait until they are stopped by the 1st CPU
193	 * with smp_send_stop().
194	 *
195	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
196	 * comes here, so go ahead.
197	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
198	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
199	 */
 
200	this_cpu = raw_smp_processor_id();
201	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
202
203	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
 
 
 
204		panic_smp_self_stop();
205
206	console_verbose();
207	bust_spinlocks(1);
208	va_start(args, fmt);
209	len = vscnprintf(buf, sizeof(buf), fmt, args);
210	va_end(args);
211
212	if (len && buf[len - 1] == '\n')
213		buf[len - 1] = '\0';
214
215	pr_emerg("Kernel panic - not syncing: %s\n", buf);
216#ifdef CONFIG_DEBUG_BUGVERBOSE
217	/*
218	 * Avoid nested stack-dumping if a panic occurs during oops processing
219	 */
220	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
221		dump_stack();
222#endif
223
224	/*
225	 * If kgdb is enabled, give it a chance to run before we stop all
226	 * the other CPUs or else we won't be able to debug processes left
227	 * running on them.
228	 */
229	kgdb_panic(buf);
230
231	/*
232	 * If we have crashed and we have a crash kernel loaded let it handle
233	 * everything else.
234	 * If we want to run this after calling panic_notifiers, pass
235	 * the "crash_kexec_post_notifiers" option to the kernel.
236	 *
237	 * Bypass the panic_cpu check and call __crash_kexec directly.
238	 */
239	if (!_crash_kexec_post_notifiers) {
240		printk_safe_flush_on_panic();
241		__crash_kexec(NULL);
242
243		/*
244		 * Note smp_send_stop is the usual smp shutdown function, which
245		 * unfortunately means it may not be hardened to work in a
246		 * panic situation.
247		 */
248		smp_send_stop();
249	} else {
250		/*
251		 * If we want to do crash dump after notifier calls and
252		 * kmsg_dump, we will need architecture dependent extra
253		 * works in addition to stopping other CPUs.
254		 */
255		crash_smp_send_stop();
256	}
257
258	/*
259	 * Run any panic handlers, including those that might need to
260	 * add information to the kmsg dump output.
261	 */
262	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
263
264	/* Call flush even twice. It tries harder with a single online CPU */
265	printk_safe_flush_on_panic();
266	kmsg_dump(KMSG_DUMP_PANIC);
267
268	/*
269	 * If you doubt kdump always works fine in any situation,
270	 * "crash_kexec_post_notifiers" offers you a chance to run
271	 * panic_notifiers and dumping kmsg before kdump.
272	 * Note: since some panic_notifiers can make crashed kernel
273	 * more unstable, it can increase risks of the kdump failure too.
274	 *
275	 * Bypass the panic_cpu check and call __crash_kexec directly.
276	 */
277	if (_crash_kexec_post_notifiers)
278		__crash_kexec(NULL);
279
280#ifdef CONFIG_VT
281	unblank_screen();
282#endif
283	console_unblank();
284
285	/*
286	 * We may have ended up stopping the CPU holding the lock (in
287	 * smp_send_stop()) while still having some valuable data in the console
288	 * buffer.  Try to acquire the lock then release it regardless of the
289	 * result.  The release will also print the buffers out.  Locks debug
290	 * should be disabled to avoid reporting bad unlock balance when
291	 * panic() is not being callled from OOPS.
292	 */
293	debug_locks_off();
294	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
295
296	panic_print_sys_info();
297
298	if (!panic_blink)
299		panic_blink = no_blink;
300
301	if (panic_timeout > 0) {
302		/*
303		 * Delay timeout seconds before rebooting the machine.
304		 * We can't use the "normal" timers since we just panicked.
305		 */
306		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
307
308		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
309			touch_nmi_watchdog();
310			if (i >= i_next) {
311				i += panic_blink(state ^= 1);
312				i_next = i + 3600 / PANIC_BLINK_SPD;
313			}
314			mdelay(PANIC_TIMER_STEP);
315		}
316	}
317	if (panic_timeout != 0) {
318		/*
319		 * This will not be a clean reboot, with everything
320		 * shutting down.  But if there is a chance of
321		 * rebooting the system it will be rebooted.
322		 */
323		if (panic_reboot_mode != REBOOT_UNDEFINED)
324			reboot_mode = panic_reboot_mode;
325		emergency_restart();
326	}
327#ifdef __sparc__
328	{
329		extern int stop_a_enabled;
330		/* Make sure the user can actually press Stop-A (L1-A) */
331		stop_a_enabled = 1;
332		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
333			 "twice on console to return to the boot prom\n");
334	}
335#endif
336#if defined(CONFIG_S390)
337	disabled_wait();
338#endif
339	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
340
341	/* Do not scroll important messages printed above */
342	suppress_printk = 1;
343	local_irq_enable();
344	for (i = 0; ; i += PANIC_TIMER_STEP) {
345		touch_softlockup_watchdog();
346		if (i >= i_next) {
347			i += panic_blink(state ^= 1);
348			i_next = i + 3600 / PANIC_BLINK_SPD;
349		}
350		mdelay(PANIC_TIMER_STEP);
351	}
352}
353
354EXPORT_SYMBOL(panic);
355
356/*
357 * TAINT_FORCED_RMMOD could be a per-module flag but the module
358 * is being removed anyway.
359 */
360const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
361	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
362	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
363	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
364	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
365	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
366	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
367	[ TAINT_USER ]			= { 'U', ' ', false },
368	[ TAINT_DIE ]			= { 'D', ' ', false },
369	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
370	[ TAINT_WARN ]			= { 'W', ' ', false },
371	[ TAINT_CRAP ]			= { 'C', ' ', true },
372	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
373	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
374	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
375	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
376	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
377	[ TAINT_AUX ]			= { 'X', ' ', true },
378	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
 
379};
380
381/**
382 * print_tainted - return a string to represent the kernel taint state.
383 *
384 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
385 *
386 * The string is overwritten by the next call to print_tainted(),
387 * but is always NULL terminated.
388 */
389const char *print_tainted(void)
390{
391	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
392
393	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
394
395	if (tainted_mask) {
396		char *s;
397		int i;
398
399		s = buf + sprintf(buf, "Tainted: ");
400		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
401			const struct taint_flag *t = &taint_flags[i];
402			*s++ = test_bit(i, &tainted_mask) ?
403					t->c_true : t->c_false;
404		}
405		*s = 0;
406	} else
407		snprintf(buf, sizeof(buf), "Not tainted");
408
409	return buf;
410}
411
412int test_taint(unsigned flag)
413{
414	return test_bit(flag, &tainted_mask);
415}
416EXPORT_SYMBOL(test_taint);
417
418unsigned long get_taint(void)
419{
420	return tainted_mask;
421}
422
423/**
424 * add_taint: add a taint flag if not already set.
425 * @flag: one of the TAINT_* constants.
426 * @lockdep_ok: whether lock debugging is still OK.
427 *
428 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
429 * some notewortht-but-not-corrupting cases, it can be set to true.
430 */
431void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
432{
433	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
434		pr_warn("Disabling lock debugging due to kernel taint\n");
435
436	set_bit(flag, &tainted_mask);
 
 
 
 
 
437}
438EXPORT_SYMBOL(add_taint);
439
440static void spin_msec(int msecs)
441{
442	int i;
443
444	for (i = 0; i < msecs; i++) {
445		touch_nmi_watchdog();
446		mdelay(1);
447	}
448}
449
450/*
451 * It just happens that oops_enter() and oops_exit() are identically
452 * implemented...
453 */
454static void do_oops_enter_exit(void)
455{
456	unsigned long flags;
457	static int spin_counter;
458
459	if (!pause_on_oops)
460		return;
461
462	spin_lock_irqsave(&pause_on_oops_lock, flags);
463	if (pause_on_oops_flag == 0) {
464		/* This CPU may now print the oops message */
465		pause_on_oops_flag = 1;
466	} else {
467		/* We need to stall this CPU */
468		if (!spin_counter) {
469			/* This CPU gets to do the counting */
470			spin_counter = pause_on_oops;
471			do {
472				spin_unlock(&pause_on_oops_lock);
473				spin_msec(MSEC_PER_SEC);
474				spin_lock(&pause_on_oops_lock);
475			} while (--spin_counter);
476			pause_on_oops_flag = 0;
477		} else {
478			/* This CPU waits for a different one */
479			while (spin_counter) {
480				spin_unlock(&pause_on_oops_lock);
481				spin_msec(1);
482				spin_lock(&pause_on_oops_lock);
483			}
484		}
485	}
486	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
487}
488
489/*
490 * Return true if the calling CPU is allowed to print oops-related info.
491 * This is a bit racy..
492 */
493int oops_may_print(void)
494{
495	return pause_on_oops_flag == 0;
496}
497
498/*
499 * Called when the architecture enters its oops handler, before it prints
500 * anything.  If this is the first CPU to oops, and it's oopsing the first
501 * time then let it proceed.
502 *
503 * This is all enabled by the pause_on_oops kernel boot option.  We do all
504 * this to ensure that oopses don't scroll off the screen.  It has the
505 * side-effect of preventing later-oopsing CPUs from mucking up the display,
506 * too.
507 *
508 * It turns out that the CPU which is allowed to print ends up pausing for
509 * the right duration, whereas all the other CPUs pause for twice as long:
510 * once in oops_enter(), once in oops_exit().
511 */
512void oops_enter(void)
513{
514	tracing_off();
515	/* can't trust the integrity of the kernel anymore: */
516	debug_locks_off();
517	do_oops_enter_exit();
518}
519
520/*
521 * 64-bit random ID for oopses:
522 */
523static u64 oops_id;
524
525static int init_oops_id(void)
526{
527	if (!oops_id)
528		get_random_bytes(&oops_id, sizeof(oops_id));
529	else
530		oops_id++;
531
532	return 0;
533}
534late_initcall(init_oops_id);
535
536void print_oops_end_marker(void)
537{
538	init_oops_id();
539	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
540}
541
542/*
543 * Called when the architecture exits its oops handler, after printing
544 * everything.
545 */
546void oops_exit(void)
547{
548	do_oops_enter_exit();
549	print_oops_end_marker();
550	kmsg_dump(KMSG_DUMP_OOPS);
551}
552
553struct warn_args {
554	const char *fmt;
555	va_list args;
556};
557
558void __warn(const char *file, int line, void *caller, unsigned taint,
559	    struct pt_regs *regs, struct warn_args *args)
560{
561	disable_trace_on_warning();
562
563	if (file)
564		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
565			raw_smp_processor_id(), current->pid, file, line,
566			caller);
567	else
568		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
569			raw_smp_processor_id(), current->pid, caller);
570
571	if (args)
572		vprintk(args->fmt, args->args);
573
574	if (panic_on_warn) {
575		/*
576		 * This thread may hit another WARN() in the panic path.
577		 * Resetting this prevents additional WARN() from panicking the
578		 * system on this thread.  Other threads are blocked by the
579		 * panic_mutex in panic().
580		 */
581		panic_on_warn = 0;
582		panic("panic_on_warn set ...\n");
583	}
584
585	print_modules();
586
587	if (regs)
588		show_regs(regs);
589	else
 
 
 
590		dump_stack();
591
592	print_irqtrace_events(current);
593
594	print_oops_end_marker();
 
595
596	/* Just a warning, don't kill lockdep. */
597	add_taint(taint, LOCKDEP_STILL_OK);
598}
599
 
600#ifndef __WARN_FLAGS
601void warn_slowpath_fmt(const char *file, int line, unsigned taint,
602		       const char *fmt, ...)
603{
 
604	struct warn_args args;
605
606	pr_warn(CUT_HERE);
607
608	if (!fmt) {
609		__warn(file, line, __builtin_return_address(0), taint,
610		       NULL, NULL);
 
611		return;
612	}
613
614	args.fmt = fmt;
615	va_start(args.args, fmt);
616	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
617	va_end(args.args);
 
618}
619EXPORT_SYMBOL(warn_slowpath_fmt);
620#else
621void __warn_printk(const char *fmt, ...)
622{
 
623	va_list args;
624
625	pr_warn(CUT_HERE);
626
627	va_start(args, fmt);
628	vprintk(fmt, args);
629	va_end(args);
 
630}
631EXPORT_SYMBOL(__warn_printk);
632#endif
633
634#ifdef CONFIG_BUG
635
636/* Support resetting WARN*_ONCE state */
637
638static int clear_warn_once_set(void *data, u64 val)
639{
640	generic_bug_clear_once();
641	memset(__start_once, 0, __end_once - __start_once);
642	return 0;
643}
644
645DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
646			 "%lld\n");
647
648static __init int register_warn_debugfs(void)
649{
650	/* Don't care about failure */
651	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
652				   &clear_warn_once_fops);
653	return 0;
654}
655
656device_initcall(register_warn_debugfs);
657#endif
658
659#ifdef CONFIG_STACKPROTECTOR
660
661/*
662 * Called when gcc's -fstack-protector feature is used, and
663 * gcc detects corruption of the on-stack canary value
664 */
665__visible void __stack_chk_fail(void)
666{
 
667	panic("stack-protector: Kernel stack is corrupted in: %pB",
668		__builtin_return_address(0));
 
669}
670EXPORT_SYMBOL(__stack_chk_fail);
671
672#endif
673
674#ifdef CONFIG_ARCH_HAS_REFCOUNT
675void refcount_error_report(struct pt_regs *regs, const char *err)
676{
677	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
678		err, (void *)instruction_pointer(regs),
679		current->comm, task_pid_nr(current),
680		from_kuid_munged(&init_user_ns, current_uid()),
681		from_kuid_munged(&init_user_ns, current_euid()));
682}
683#endif
684
685core_param(panic, panic_timeout, int, 0644);
686core_param(panic_print, panic_print, ulong, 0644);
687core_param(pause_on_oops, pause_on_oops, int, 0644);
688core_param(panic_on_warn, panic_on_warn, int, 0644);
689core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
690
691static int __init oops_setup(char *s)
692{
693	if (!s)
694		return -EINVAL;
695	if (!strcmp(s, "panic"))
696		panic_on_oops = 1;
697	return 0;
698}
699early_param("oops", oops_setup);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/panic.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 */
  7
  8/*
  9 * This function is used through-out the kernel (including mm and fs)
 10 * to indicate a major problem.
 11 */
 12#include <linux/debug_locks.h>
 13#include <linux/sched/debug.h>
 14#include <linux/interrupt.h>
 15#include <linux/kgdb.h>
 16#include <linux/kmsg_dump.h>
 17#include <linux/kallsyms.h>
 18#include <linux/notifier.h>
 19#include <linux/vt_kern.h>
 20#include <linux/module.h>
 21#include <linux/random.h>
 22#include <linux/ftrace.h>
 23#include <linux/reboot.h>
 24#include <linux/delay.h>
 25#include <linux/kexec.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/sched.h>
 28#include <linux/string_helpers.h>
 29#include <linux/sysrq.h>
 30#include <linux/init.h>
 31#include <linux/nmi.h>
 32#include <linux/console.h>
 33#include <linux/bug.h>
 34#include <linux/ratelimit.h>
 35#include <linux/debugfs.h>
 36#include <linux/sysfs.h>
 37#include <linux/context_tracking.h>
 38#include <trace/events/error_report.h>
 39#include <asm/sections.h>
 40
 41#define PANIC_TIMER_STEP 100
 42#define PANIC_BLINK_SPD 18
 43
 44#ifdef CONFIG_SMP
 45/*
 46 * Should we dump all CPUs backtraces in an oops event?
 47 * Defaults to 0, can be changed via sysctl.
 48 */
 49static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
 50#else
 51#define sysctl_oops_all_cpu_backtrace 0
 52#endif /* CONFIG_SMP */
 53
 54int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 55static unsigned long tainted_mask =
 56	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 57static int pause_on_oops;
 58static int pause_on_oops_flag;
 59static DEFINE_SPINLOCK(pause_on_oops_lock);
 60bool crash_kexec_post_notifiers;
 61int panic_on_warn __read_mostly;
 62unsigned long panic_on_taint;
 63bool panic_on_taint_nousertaint = false;
 64static unsigned int warn_limit __read_mostly;
 65
 66int panic_timeout = CONFIG_PANIC_TIMEOUT;
 67EXPORT_SYMBOL_GPL(panic_timeout);
 68
 69#define PANIC_PRINT_TASK_INFO		0x00000001
 70#define PANIC_PRINT_MEM_INFO		0x00000002
 71#define PANIC_PRINT_TIMER_INFO		0x00000004
 72#define PANIC_PRINT_LOCK_INFO		0x00000008
 73#define PANIC_PRINT_FTRACE_INFO		0x00000010
 74#define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
 75#define PANIC_PRINT_ALL_CPU_BT		0x00000040
 76unsigned long panic_print;
 77
 78ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 79
 80EXPORT_SYMBOL(panic_notifier_list);
 81
 82#ifdef CONFIG_SYSCTL
 83static struct ctl_table kern_panic_table[] = {
 84#ifdef CONFIG_SMP
 85	{
 86		.procname       = "oops_all_cpu_backtrace",
 87		.data           = &sysctl_oops_all_cpu_backtrace,
 88		.maxlen         = sizeof(int),
 89		.mode           = 0644,
 90		.proc_handler   = proc_dointvec_minmax,
 91		.extra1         = SYSCTL_ZERO,
 92		.extra2         = SYSCTL_ONE,
 93	},
 94#endif
 95	{
 96		.procname       = "warn_limit",
 97		.data           = &warn_limit,
 98		.maxlen         = sizeof(warn_limit),
 99		.mode           = 0644,
100		.proc_handler   = proc_douintvec,
101	},
102	{ }
103};
104
105static __init int kernel_panic_sysctls_init(void)
106{
107	register_sysctl_init("kernel", kern_panic_table);
108	return 0;
109}
110late_initcall(kernel_panic_sysctls_init);
111#endif
112
113static atomic_t warn_count = ATOMIC_INIT(0);
114
115#ifdef CONFIG_SYSFS
116static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr,
117			       char *page)
118{
119	return sysfs_emit(page, "%d\n", atomic_read(&warn_count));
120}
121
122static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count);
123
124static __init int kernel_panic_sysfs_init(void)
125{
126	sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL);
127	return 0;
128}
129late_initcall(kernel_panic_sysfs_init);
130#endif
131
132static long no_blink(int state)
133{
134	return 0;
135}
136
137/* Returns how long it waited in ms */
138long (*panic_blink)(int state);
139EXPORT_SYMBOL(panic_blink);
140
141/*
142 * Stop ourself in panic -- architecture code may override this
143 */
144void __weak __noreturn panic_smp_self_stop(void)
145{
146	while (1)
147		cpu_relax();
148}
149
150/*
151 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
152 * may override this to prepare for crash dumping, e.g. save regs info.
153 */
154void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs)
155{
156	panic_smp_self_stop();
157}
158
159/*
160 * Stop other CPUs in panic.  Architecture dependent code may override this
161 * with more suitable version.  For example, if the architecture supports
162 * crash dump, it should save registers of each stopped CPU and disable
163 * per-CPU features such as virtualization extensions.
164 */
165void __weak crash_smp_send_stop(void)
166{
167	static int cpus_stopped;
168
169	/*
170	 * This function can be called twice in panic path, but obviously
171	 * we execute this only once.
172	 */
173	if (cpus_stopped)
174		return;
175
176	/*
177	 * Note smp_send_stop is the usual smp shutdown function, which
178	 * unfortunately means it may not be hardened to work in a panic
179	 * situation.
180	 */
181	smp_send_stop();
182	cpus_stopped = 1;
183}
184
185atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
186
187/*
188 * A variant of panic() called from NMI context. We return if we've already
189 * panicked on this CPU. If another CPU already panicked, loop in
190 * nmi_panic_self_stop() which can provide architecture dependent code such
191 * as saving register state for crash dump.
192 */
193void nmi_panic(struct pt_regs *regs, const char *msg)
194{
195	int old_cpu, this_cpu;
196
197	old_cpu = PANIC_CPU_INVALID;
198	this_cpu = raw_smp_processor_id();
199
200	/* atomic_try_cmpxchg updates old_cpu on failure */
201	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu))
202		panic("%s", msg);
203	else if (old_cpu != this_cpu)
204		nmi_panic_self_stop(regs);
205}
206EXPORT_SYMBOL(nmi_panic);
207
208static void panic_print_sys_info(bool console_flush)
209{
210	if (console_flush) {
211		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
212			console_flush_on_panic(CONSOLE_REPLAY_ALL);
213		return;
214	}
215
216	if (panic_print & PANIC_PRINT_TASK_INFO)
217		show_state();
218
219	if (panic_print & PANIC_PRINT_MEM_INFO)
220		show_mem();
221
222	if (panic_print & PANIC_PRINT_TIMER_INFO)
223		sysrq_timer_list_show();
224
225	if (panic_print & PANIC_PRINT_LOCK_INFO)
226		debug_show_all_locks();
227
228	if (panic_print & PANIC_PRINT_FTRACE_INFO)
229		ftrace_dump(DUMP_ALL);
230}
231
232void check_panic_on_warn(const char *origin)
233{
234	unsigned int limit;
235
236	if (panic_on_warn)
237		panic("%s: panic_on_warn set ...\n", origin);
238
239	limit = READ_ONCE(warn_limit);
240	if (atomic_inc_return(&warn_count) >= limit && limit)
241		panic("%s: system warned too often (kernel.warn_limit is %d)",
242		      origin, limit);
243}
244
245/*
246 * Helper that triggers the NMI backtrace (if set in panic_print)
247 * and then performs the secondary CPUs shutdown - we cannot have
248 * the NMI backtrace after the CPUs are off!
249 */
250static void panic_other_cpus_shutdown(bool crash_kexec)
251{
252	if (panic_print & PANIC_PRINT_ALL_CPU_BT)
253		trigger_all_cpu_backtrace();
254
255	/*
256	 * Note that smp_send_stop() is the usual SMP shutdown function,
257	 * which unfortunately may not be hardened to work in a panic
258	 * situation. If we want to do crash dump after notifier calls
259	 * and kmsg_dump, we will need architecture dependent extra
260	 * bits in addition to stopping other CPUs, hence we rely on
261	 * crash_smp_send_stop() for that.
262	 */
263	if (!crash_kexec)
264		smp_send_stop();
265	else
266		crash_smp_send_stop();
267}
268
269/**
270 *	panic - halt the system
271 *	@fmt: The text string to print
272 *
273 *	Display a message, then perform cleanups.
274 *
275 *	This function never returns.
276 */
277void panic(const char *fmt, ...)
278{
279	static char buf[1024];
280	va_list args;
281	long i, i_next = 0, len;
282	int state = 0;
283	int old_cpu, this_cpu;
284	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
285
286	if (panic_on_warn) {
287		/*
288		 * This thread may hit another WARN() in the panic path.
289		 * Resetting this prevents additional WARN() from panicking the
290		 * system on this thread.  Other threads are blocked by the
291		 * panic_mutex in panic().
292		 */
293		panic_on_warn = 0;
294	}
295
296	/*
297	 * Disable local interrupts. This will prevent panic_smp_self_stop
298	 * from deadlocking the first cpu that invokes the panic, since
299	 * there is nothing to prevent an interrupt handler (that runs
300	 * after setting panic_cpu) from invoking panic() again.
301	 */
302	local_irq_disable();
303	preempt_disable_notrace();
304
305	/*
306	 * It's possible to come here directly from a panic-assertion and
307	 * not have preempt disabled. Some functions called from here want
308	 * preempt to be disabled. No point enabling it later though...
309	 *
310	 * Only one CPU is allowed to execute the panic code from here. For
311	 * multiple parallel invocations of panic, all other CPUs either
312	 * stop themself or will wait until they are stopped by the 1st CPU
313	 * with smp_send_stop().
314	 *
315	 * cmpxchg success means this is the 1st CPU which comes here,
316	 * so go ahead.
317	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
318	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
319	 */
320	old_cpu = PANIC_CPU_INVALID;
321	this_cpu = raw_smp_processor_id();
 
322
323	/* atomic_try_cmpxchg updates old_cpu on failure */
324	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
325		/* go ahead */
326	} else if (old_cpu != this_cpu)
327		panic_smp_self_stop();
328
329	console_verbose();
330	bust_spinlocks(1);
331	va_start(args, fmt);
332	len = vscnprintf(buf, sizeof(buf), fmt, args);
333	va_end(args);
334
335	if (len && buf[len - 1] == '\n')
336		buf[len - 1] = '\0';
337
338	pr_emerg("Kernel panic - not syncing: %s\n", buf);
339#ifdef CONFIG_DEBUG_BUGVERBOSE
340	/*
341	 * Avoid nested stack-dumping if a panic occurs during oops processing
342	 */
343	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
344		dump_stack();
345#endif
346
347	/*
348	 * If kgdb is enabled, give it a chance to run before we stop all
349	 * the other CPUs or else we won't be able to debug processes left
350	 * running on them.
351	 */
352	kgdb_panic(buf);
353
354	/*
355	 * If we have crashed and we have a crash kernel loaded let it handle
356	 * everything else.
357	 * If we want to run this after calling panic_notifiers, pass
358	 * the "crash_kexec_post_notifiers" option to the kernel.
359	 *
360	 * Bypass the panic_cpu check and call __crash_kexec directly.
361	 */
362	if (!_crash_kexec_post_notifiers)
 
363		__crash_kexec(NULL);
364
365	panic_other_cpus_shutdown(_crash_kexec_post_notifiers);
 
 
 
 
 
 
 
 
 
 
 
 
 
366
367	/*
368	 * Run any panic handlers, including those that might need to
369	 * add information to the kmsg dump output.
370	 */
371	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
372
373	panic_print_sys_info(false);
374
375	kmsg_dump(KMSG_DUMP_PANIC);
376
377	/*
378	 * If you doubt kdump always works fine in any situation,
379	 * "crash_kexec_post_notifiers" offers you a chance to run
380	 * panic_notifiers and dumping kmsg before kdump.
381	 * Note: since some panic_notifiers can make crashed kernel
382	 * more unstable, it can increase risks of the kdump failure too.
383	 *
384	 * Bypass the panic_cpu check and call __crash_kexec directly.
385	 */
386	if (_crash_kexec_post_notifiers)
387		__crash_kexec(NULL);
388
 
 
 
389	console_unblank();
390
391	/*
392	 * We may have ended up stopping the CPU holding the lock (in
393	 * smp_send_stop()) while still having some valuable data in the console
394	 * buffer.  Try to acquire the lock then release it regardless of the
395	 * result.  The release will also print the buffers out.  Locks debug
396	 * should be disabled to avoid reporting bad unlock balance when
397	 * panic() is not being callled from OOPS.
398	 */
399	debug_locks_off();
400	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
401
402	panic_print_sys_info(true);
403
404	if (!panic_blink)
405		panic_blink = no_blink;
406
407	if (panic_timeout > 0) {
408		/*
409		 * Delay timeout seconds before rebooting the machine.
410		 * We can't use the "normal" timers since we just panicked.
411		 */
412		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
413
414		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
415			touch_nmi_watchdog();
416			if (i >= i_next) {
417				i += panic_blink(state ^= 1);
418				i_next = i + 3600 / PANIC_BLINK_SPD;
419			}
420			mdelay(PANIC_TIMER_STEP);
421		}
422	}
423	if (panic_timeout != 0) {
424		/*
425		 * This will not be a clean reboot, with everything
426		 * shutting down.  But if there is a chance of
427		 * rebooting the system it will be rebooted.
428		 */
429		if (panic_reboot_mode != REBOOT_UNDEFINED)
430			reboot_mode = panic_reboot_mode;
431		emergency_restart();
432	}
433#ifdef __sparc__
434	{
435		extern int stop_a_enabled;
436		/* Make sure the user can actually press Stop-A (L1-A) */
437		stop_a_enabled = 1;
438		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
439			 "twice on console to return to the boot prom\n");
440	}
441#endif
442#if defined(CONFIG_S390)
443	disabled_wait();
444#endif
445	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
446
447	/* Do not scroll important messages printed above */
448	suppress_printk = 1;
449	local_irq_enable();
450	for (i = 0; ; i += PANIC_TIMER_STEP) {
451		touch_softlockup_watchdog();
452		if (i >= i_next) {
453			i += panic_blink(state ^= 1);
454			i_next = i + 3600 / PANIC_BLINK_SPD;
455		}
456		mdelay(PANIC_TIMER_STEP);
457	}
458}
459
460EXPORT_SYMBOL(panic);
461
462/*
463 * TAINT_FORCED_RMMOD could be a per-module flag but the module
464 * is being removed anyway.
465 */
466const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
467	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
468	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
469	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
470	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
471	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
472	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
473	[ TAINT_USER ]			= { 'U', ' ', false },
474	[ TAINT_DIE ]			= { 'D', ' ', false },
475	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
476	[ TAINT_WARN ]			= { 'W', ' ', false },
477	[ TAINT_CRAP ]			= { 'C', ' ', true },
478	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
479	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
480	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
481	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
482	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
483	[ TAINT_AUX ]			= { 'X', ' ', true },
484	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
485	[ TAINT_TEST ]			= { 'N', ' ', true },
486};
487
488/**
489 * print_tainted - return a string to represent the kernel taint state.
490 *
491 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
492 *
493 * The string is overwritten by the next call to print_tainted(),
494 * but is always NULL terminated.
495 */
496const char *print_tainted(void)
497{
498	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
499
500	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
501
502	if (tainted_mask) {
503		char *s;
504		int i;
505
506		s = buf + sprintf(buf, "Tainted: ");
507		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
508			const struct taint_flag *t = &taint_flags[i];
509			*s++ = test_bit(i, &tainted_mask) ?
510					t->c_true : t->c_false;
511		}
512		*s = 0;
513	} else
514		snprintf(buf, sizeof(buf), "Not tainted");
515
516	return buf;
517}
518
519int test_taint(unsigned flag)
520{
521	return test_bit(flag, &tainted_mask);
522}
523EXPORT_SYMBOL(test_taint);
524
525unsigned long get_taint(void)
526{
527	return tainted_mask;
528}
529
530/**
531 * add_taint: add a taint flag if not already set.
532 * @flag: one of the TAINT_* constants.
533 * @lockdep_ok: whether lock debugging is still OK.
534 *
535 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
536 * some notewortht-but-not-corrupting cases, it can be set to true.
537 */
538void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
539{
540	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
541		pr_warn("Disabling lock debugging due to kernel taint\n");
542
543	set_bit(flag, &tainted_mask);
544
545	if (tainted_mask & panic_on_taint) {
546		panic_on_taint = 0;
547		panic("panic_on_taint set ...");
548	}
549}
550EXPORT_SYMBOL(add_taint);
551
552static void spin_msec(int msecs)
553{
554	int i;
555
556	for (i = 0; i < msecs; i++) {
557		touch_nmi_watchdog();
558		mdelay(1);
559	}
560}
561
562/*
563 * It just happens that oops_enter() and oops_exit() are identically
564 * implemented...
565 */
566static void do_oops_enter_exit(void)
567{
568	unsigned long flags;
569	static int spin_counter;
570
571	if (!pause_on_oops)
572		return;
573
574	spin_lock_irqsave(&pause_on_oops_lock, flags);
575	if (pause_on_oops_flag == 0) {
576		/* This CPU may now print the oops message */
577		pause_on_oops_flag = 1;
578	} else {
579		/* We need to stall this CPU */
580		if (!spin_counter) {
581			/* This CPU gets to do the counting */
582			spin_counter = pause_on_oops;
583			do {
584				spin_unlock(&pause_on_oops_lock);
585				spin_msec(MSEC_PER_SEC);
586				spin_lock(&pause_on_oops_lock);
587			} while (--spin_counter);
588			pause_on_oops_flag = 0;
589		} else {
590			/* This CPU waits for a different one */
591			while (spin_counter) {
592				spin_unlock(&pause_on_oops_lock);
593				spin_msec(1);
594				spin_lock(&pause_on_oops_lock);
595			}
596		}
597	}
598	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
599}
600
601/*
602 * Return true if the calling CPU is allowed to print oops-related info.
603 * This is a bit racy..
604 */
605bool oops_may_print(void)
606{
607	return pause_on_oops_flag == 0;
608}
609
610/*
611 * Called when the architecture enters its oops handler, before it prints
612 * anything.  If this is the first CPU to oops, and it's oopsing the first
613 * time then let it proceed.
614 *
615 * This is all enabled by the pause_on_oops kernel boot option.  We do all
616 * this to ensure that oopses don't scroll off the screen.  It has the
617 * side-effect of preventing later-oopsing CPUs from mucking up the display,
618 * too.
619 *
620 * It turns out that the CPU which is allowed to print ends up pausing for
621 * the right duration, whereas all the other CPUs pause for twice as long:
622 * once in oops_enter(), once in oops_exit().
623 */
624void oops_enter(void)
625{
626	tracing_off();
627	/* can't trust the integrity of the kernel anymore: */
628	debug_locks_off();
629	do_oops_enter_exit();
 
630
631	if (sysctl_oops_all_cpu_backtrace)
632		trigger_all_cpu_backtrace();
 
 
 
 
 
 
 
 
 
 
 
633}
 
634
635static void print_oops_end_marker(void)
636{
637	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
 
638}
639
640/*
641 * Called when the architecture exits its oops handler, after printing
642 * everything.
643 */
644void oops_exit(void)
645{
646	do_oops_enter_exit();
647	print_oops_end_marker();
648	kmsg_dump(KMSG_DUMP_OOPS);
649}
650
651struct warn_args {
652	const char *fmt;
653	va_list args;
654};
655
656void __warn(const char *file, int line, void *caller, unsigned taint,
657	    struct pt_regs *regs, struct warn_args *args)
658{
659	disable_trace_on_warning();
660
661	if (file)
662		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
663			raw_smp_processor_id(), current->pid, file, line,
664			caller);
665	else
666		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
667			raw_smp_processor_id(), current->pid, caller);
668
669	if (args)
670		vprintk(args->fmt, args->args);
671
 
 
 
 
 
 
 
 
 
 
 
672	print_modules();
673
674	if (regs)
675		show_regs(regs);
676
677	check_panic_on_warn("kernel");
678
679	if (!regs)
680		dump_stack();
681
682	print_irqtrace_events(current);
683
684	print_oops_end_marker();
685	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
686
687	/* Just a warning, don't kill lockdep. */
688	add_taint(taint, LOCKDEP_STILL_OK);
689}
690
691#ifdef CONFIG_BUG
692#ifndef __WARN_FLAGS
693void warn_slowpath_fmt(const char *file, int line, unsigned taint,
694		       const char *fmt, ...)
695{
696	bool rcu = warn_rcu_enter();
697	struct warn_args args;
698
699	pr_warn(CUT_HERE);
700
701	if (!fmt) {
702		__warn(file, line, __builtin_return_address(0), taint,
703		       NULL, NULL);
704		warn_rcu_exit(rcu);
705		return;
706	}
707
708	args.fmt = fmt;
709	va_start(args.args, fmt);
710	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
711	va_end(args.args);
712	warn_rcu_exit(rcu);
713}
714EXPORT_SYMBOL(warn_slowpath_fmt);
715#else
716void __warn_printk(const char *fmt, ...)
717{
718	bool rcu = warn_rcu_enter();
719	va_list args;
720
721	pr_warn(CUT_HERE);
722
723	va_start(args, fmt);
724	vprintk(fmt, args);
725	va_end(args);
726	warn_rcu_exit(rcu);
727}
728EXPORT_SYMBOL(__warn_printk);
729#endif
730
 
 
731/* Support resetting WARN*_ONCE state */
732
733static int clear_warn_once_set(void *data, u64 val)
734{
735	generic_bug_clear_once();
736	memset(__start_once, 0, __end_once - __start_once);
737	return 0;
738}
739
740DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
741			 "%lld\n");
742
743static __init int register_warn_debugfs(void)
744{
745	/* Don't care about failure */
746	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
747				   &clear_warn_once_fops);
748	return 0;
749}
750
751device_initcall(register_warn_debugfs);
752#endif
753
754#ifdef CONFIG_STACKPROTECTOR
755
756/*
757 * Called when gcc's -fstack-protector feature is used, and
758 * gcc detects corruption of the on-stack canary value
759 */
760__visible noinstr void __stack_chk_fail(void)
761{
762	instrumentation_begin();
763	panic("stack-protector: Kernel stack is corrupted in: %pB",
764		__builtin_return_address(0));
765	instrumentation_end();
766}
767EXPORT_SYMBOL(__stack_chk_fail);
768
769#endif
770
 
 
 
 
 
 
 
 
 
 
 
771core_param(panic, panic_timeout, int, 0644);
772core_param(panic_print, panic_print, ulong, 0644);
773core_param(pause_on_oops, pause_on_oops, int, 0644);
774core_param(panic_on_warn, panic_on_warn, int, 0644);
775core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
776
777static int __init oops_setup(char *s)
778{
779	if (!s)
780		return -EINVAL;
781	if (!strcmp(s, "panic"))
782		panic_on_oops = 1;
783	return 0;
784}
785early_param("oops", oops_setup);
786
787static int __init panic_on_taint_setup(char *s)
788{
789	char *taint_str;
790
791	if (!s)
792		return -EINVAL;
793
794	taint_str = strsep(&s, ",");
795	if (kstrtoul(taint_str, 16, &panic_on_taint))
796		return -EINVAL;
797
798	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
799	panic_on_taint &= TAINT_FLAGS_MAX;
800
801	if (!panic_on_taint)
802		return -EINVAL;
803
804	if (s && !strcmp(s, "nousertaint"))
805		panic_on_taint_nousertaint = true;
806
807	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
808		panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
809
810	return 0;
811}
812early_param("panic_on_taint", panic_on_taint_setup);