Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
 
 
   5#include "ice_lib.h"
 
   6#include "ice_dcb_lib.h"
 
 
   7
   8/**
   9 * ice_setup_rx_ctx - Configure a receive ring context
  10 * @ring: The Rx ring to configure
  11 *
  12 * Configure the Rx descriptor ring in RLAN context.
  13 */
  14static int ice_setup_rx_ctx(struct ice_ring *ring)
  15{
  16	struct ice_vsi *vsi = ring->vsi;
  17	struct ice_hw *hw = &vsi->back->hw;
  18	u32 rxdid = ICE_RXDID_FLEX_NIC;
  19	struct ice_rlan_ctx rlan_ctx;
  20	u32 regval;
  21	u16 pf_q;
  22	int err;
  23
  24	/* what is Rx queue number in global space of 2K Rx queues */
  25	pf_q = vsi->rxq_map[ring->q_index];
  26
  27	/* clear the context structure first */
  28	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
  29
  30	rlan_ctx.base = ring->dma >> 7;
  31
  32	rlan_ctx.qlen = ring->count;
  33
  34	/* Receive Packet Data Buffer Size.
  35	 * The Packet Data Buffer Size is defined in 128 byte units.
  36	 */
  37	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
  38
  39	/* use 32 byte descriptors */
  40	rlan_ctx.dsize = 1;
  41
  42	/* Strip the Ethernet CRC bytes before the packet is posted to host
  43	 * memory.
  44	 */
  45	rlan_ctx.crcstrip = 1;
  46
  47	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
  48	rlan_ctx.l2tsel = 1;
  49
  50	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
  51	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
  52	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
  53
  54	/* This controls whether VLAN is stripped from inner headers
  55	 * The VLAN in the inner L2 header is stripped to the receive
  56	 * descriptor if enabled by this flag.
  57	 */
  58	rlan_ctx.showiv = 0;
  59
  60	/* Max packet size for this queue - must not be set to a larger value
  61	 * than 5 x DBUF
  62	 */
  63	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
  64			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
  65
  66	/* Rx queue threshold in units of 64 */
  67	rlan_ctx.lrxqthresh = 1;
  68
  69	 /* Enable Flexible Descriptors in the queue context which
  70	  * allows this driver to select a specific receive descriptor format
  71	  */
  72	if (vsi->type != ICE_VSI_VF) {
  73		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
  74		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
  75			QRXFLXP_CNTXT_RXDID_IDX_M;
  76
  77		/* increasing context priority to pick up profile ID;
  78		 * default is 0x01; setting to 0x03 to ensure profile
  79		 * is programming if prev context is of same priority
  80		 */
  81		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
  82			QRXFLXP_CNTXT_RXDID_PRIO_M;
  83
  84		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
  85	}
  86
  87	/* Absolute queue number out of 2K needs to be passed */
  88	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
  89	if (err) {
  90		dev_err(&vsi->back->pdev->dev,
  91			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
  92			pf_q, err);
  93		return -EIO;
  94	}
  95
  96	if (vsi->type == ICE_VSI_VF)
  97		return 0;
  98
  99	/* init queue specific tail register */
 100	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 101	writel(0, ring->tail);
 102	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
 103
 104	return 0;
 105}
 106
 107/**
 108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 109 * @ring: The Tx ring to configure
 110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 111 * @pf_q: queue index in the PF space
 112 *
 113 * Configure the Tx descriptor ring in TLAN context.
 114 */
 115static void
 116ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 117{
 118	struct ice_vsi *vsi = ring->vsi;
 119	struct ice_hw *hw = &vsi->back->hw;
 120
 121	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 122
 123	tlan_ctx->port_num = vsi->port_info->lport;
 124
 125	/* Transmit Queue Length */
 126	tlan_ctx->qlen = ring->count;
 127
 128	ice_set_cgd_num(tlan_ctx, ring);
 129
 130	/* PF number */
 131	tlan_ctx->pf_num = hw->pf_id;
 132
 133	/* queue belongs to a specific VSI type
 134	 * VF / VM index should be programmed per vmvf_type setting:
 135	 * for vmvf_type = VF, it is VF number between 0-256
 136	 * for vmvf_type = VM, it is VM number between 0-767
 137	 * for PF or EMP this field should be set to zero
 138	 */
 139	switch (vsi->type) {
 140	case ICE_VSI_LB:
 141		/* fall through */
 142	case ICE_VSI_PF:
 143		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 144		break;
 145	case ICE_VSI_VF:
 146		/* Firmware expects vmvf_num to be absolute VF ID */
 147		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
 148		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 149		break;
 
 
 
 
 
 150	default:
 151		return;
 152	}
 153
 154	/* make sure the context is associated with the right VSI */
 155	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 156
 157	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 158	tlan_ctx->tso_qnum = pf_q;
 159
 160	/* Legacy or Advanced Host Interface:
 161	 * 0: Advanced Host Interface
 162	 * 1: Legacy Host Interface
 163	 */
 164	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 165}
 166
 167/**
 168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 169 * @pf: the PF being configured
 170 * @pf_q: the PF queue
 171 * @ena: enable or disable state of the queue
 172 *
 173 * This routine will wait for the given Rx queue of the PF to reach the
 174 * enabled or disabled state.
 175 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 176 * multiple retries; else will return 0 in case of success.
 177 */
 178static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 179{
 180	int i;
 181
 182	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 183		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 184			      QRX_CTRL_QENA_STAT_M))
 185			return 0;
 186
 187		usleep_range(20, 40);
 188	}
 189
 190	return -ETIMEDOUT;
 191}
 192
 193/**
 194 * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
 195 * @vsi: the VSI being configured
 196 * @ena: start or stop the Rx rings
 197 * @rxq_idx: Rx queue index
 
 
 
 
 198 */
 199#ifndef CONFIG_PCI_IOV
 200static
 201#endif /* !CONFIG_PCI_IOV */
 202int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 203{
 204	int pf_q = vsi->rxq_map[rxq_idx];
 205	struct ice_pf *pf = vsi->back;
 206	struct ice_hw *hw = &pf->hw;
 207	int ret = 0;
 208	u32 rx_reg;
 209
 210	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 211
 212	/* Skip if the queue is already in the requested state */
 213	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 214		return 0;
 215
 216	/* turn on/off the queue */
 217	if (ena)
 218		rx_reg |= QRX_CTRL_QENA_REQ_M;
 219	else
 220		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 221	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 222
 223	/* wait for the change to finish */
 224	ret = ice_pf_rxq_wait(pf, pf_q, ena);
 225	if (ret)
 226		dev_err(&pf->pdev->dev,
 227			"VSI idx %d Rx ring %d %sable timeout\n",
 228			vsi->idx, pf_q, (ena ? "en" : "dis"));
 229
 230	return ret;
 231}
 232
 233/**
 234 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 235 * @vsi: the VSI being configured
 236 * @ena: start or stop the Rx rings
 237 */
 238static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
 239{
 240	int i, ret = 0;
 241
 242	for (i = 0; i < vsi->num_rxq; i++) {
 243		ret = ice_vsi_ctrl_rx_ring(vsi, ena, i);
 244		if (ret)
 245			break;
 246	}
 247
 248	return ret;
 249}
 250
 251/**
 252 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 253 * @vsi: VSI pointer
 254 *
 255 * On error: returns error code (negative)
 256 * On success: returns 0
 257 */
 258static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
 259{
 260	struct ice_pf *pf = vsi->back;
 
 
 
 
 
 261
 262	/* allocate memory for both Tx and Rx ring pointers */
 263	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 264				     sizeof(*vsi->tx_rings), GFP_KERNEL);
 265	if (!vsi->tx_rings)
 266		return -ENOMEM;
 267
 268	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 269				     sizeof(*vsi->rx_rings), GFP_KERNEL);
 270	if (!vsi->rx_rings)
 271		goto err_rings;
 272
 273	vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 
 
 
 
 
 
 274				    sizeof(*vsi->txq_map), GFP_KERNEL);
 275
 276	if (!vsi->txq_map)
 277		goto err_txq_map;
 278
 279	vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 280				    sizeof(*vsi->rxq_map), GFP_KERNEL);
 281	if (!vsi->rxq_map)
 282		goto err_rxq_map;
 283
 284
 285	/* There is no need to allocate q_vectors for a loopback VSI. */
 286	if (vsi->type == ICE_VSI_LB)
 287		return 0;
 288
 289	/* allocate memory for q_vector pointers */
 290	vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
 291				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 292	if (!vsi->q_vectors)
 293		goto err_vectors;
 294
 
 
 
 
 295	return 0;
 296
 
 
 297err_vectors:
 298	devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 299err_rxq_map:
 300	devm_kfree(&pf->pdev->dev, vsi->txq_map);
 301err_txq_map:
 302	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 303err_rings:
 304	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 305	return -ENOMEM;
 306}
 307
 308/**
 309 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 310 * @vsi: the VSI being configured
 311 */
 312static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 313{
 314	switch (vsi->type) {
 315	case ICE_VSI_PF:
 316		/* fall through */
 
 317	case ICE_VSI_LB:
 318		vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 319		vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 
 
 
 
 
 
 320		break;
 321	default:
 322		dev_dbg(&vsi->back->pdev->dev,
 323			"Not setting number of Tx/Rx descriptors for VSI type %d\n",
 324			vsi->type);
 325		break;
 326	}
 327}
 328
 329/**
 330 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 331 * @vsi: the VSI being configured
 332 * @vf_id: ID of the VF being configured
 333 *
 334 * Return 0 on success and a negative value on error
 335 */
 336static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 337{
 
 338	struct ice_pf *pf = vsi->back;
 339	struct ice_vf *vf = NULL;
 340
 341	if (vsi->type == ICE_VSI_VF)
 342		vsi->vf_id = vf_id;
 343
 344	switch (vsi->type) {
 345	case ICE_VSI_PF:
 346		vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
 347				       num_online_cpus());
 
 
 
 
 
 
 348
 349		pf->num_lan_tx = vsi->alloc_txq;
 350
 351		/* only 1 Rx queue unless RSS is enabled */
 352		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 353			vsi->alloc_rxq = 1;
 354		else
 355			vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
 356					       num_online_cpus());
 
 
 
 
 
 
 
 357
 358		pf->num_lan_rx = vsi->alloc_rxq;
 359
 360		vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361		break;
 362	case ICE_VSI_VF:
 363		vf = &pf->vf[vsi->vf_id];
 
 364		vsi->alloc_txq = vf->num_vf_qs;
 365		vsi->alloc_rxq = vf->num_vf_qs;
 366		/* pf->num_vf_msix includes (VF miscellaneous vector +
 367		 * data queue interrupts). Since vsi->num_q_vectors is number
 368		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 369		 * original vector count
 370		 */
 371		vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
 
 
 
 
 
 
 
 
 
 372		break;
 373	case ICE_VSI_LB:
 374		vsi->alloc_txq = 1;
 375		vsi->alloc_rxq = 1;
 376		break;
 377	default:
 378		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 379		break;
 380	}
 381
 382	ice_vsi_set_num_desc(vsi);
 383}
 384
 385/**
 386 * ice_get_free_slot - get the next non-NULL location index in array
 387 * @array: array to search
 388 * @size: size of the array
 389 * @curr: last known occupied index to be used as a search hint
 390 *
 391 * void * is being used to keep the functionality generic. This lets us use this
 392 * function on any array of pointers.
 393 */
 394static int ice_get_free_slot(void *array, int size, int curr)
 395{
 396	int **tmp_array = (int **)array;
 397	int next;
 398
 399	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 400		next = curr + 1;
 401	} else {
 402		int i = 0;
 403
 404		while ((i < size) && (tmp_array[i]))
 405			i++;
 406		if (i == size)
 407			next = ICE_NO_VSI;
 408		else
 409			next = i;
 410	}
 411	return next;
 412}
 413
 414/**
 415 * ice_vsi_delete - delete a VSI from the switch
 416 * @vsi: pointer to VSI being removed
 417 */
 418void ice_vsi_delete(struct ice_vsi *vsi)
 419{
 420	struct ice_pf *pf = vsi->back;
 421	struct ice_vsi_ctx *ctxt;
 422	enum ice_status status;
 423
 424	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 
 425	if (!ctxt)
 426		return;
 427
 428	if (vsi->type == ICE_VSI_VF)
 429		ctxt->vf_num = vsi->vf_id;
 430	ctxt->vsi_num = vsi->vsi_num;
 431
 432	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 433
 434	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 435	if (status)
 436		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
 437			vsi->vsi_num);
 438
 439	devm_kfree(&pf->pdev->dev, ctxt);
 440}
 441
 442/**
 443 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 444 * @vsi: pointer to VSI being cleared
 445 */
 446static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 447{
 448	struct ice_pf *pf = vsi->back;
 
 
 
 449
 
 
 450	/* free the ring and vector containers */
 451	if (vsi->q_vectors) {
 452		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
 453		vsi->q_vectors = NULL;
 454	}
 455	if (vsi->tx_rings) {
 456		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 457		vsi->tx_rings = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458	}
 459	if (vsi->rx_rings) {
 460		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 461		vsi->rx_rings = NULL;
 
 
 
 462	}
 463	if (vsi->txq_map) {
 464		devm_kfree(&pf->pdev->dev, vsi->txq_map);
 465		vsi->txq_map = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466	}
 467	if (vsi->rxq_map) {
 468		devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 469		vsi->rxq_map = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470	}
 
 
 
 
 
 
 471}
 472
 473/**
 474 * ice_vsi_clear - clean up and deallocate the provided VSI
 475 * @vsi: pointer to VSI being cleared
 476 *
 477 * This deallocates the VSI's queue resources, removes it from the PF's
 478 * VSI array if necessary, and deallocates the VSI
 479 *
 480 * Returns 0 on success, negative on failure
 481 */
 482int ice_vsi_clear(struct ice_vsi *vsi)
 483{
 484	struct ice_pf *pf = NULL;
 
 485
 486	if (!vsi)
 487		return 0;
 488
 489	if (!vsi->back)
 490		return -EINVAL;
 491
 492	pf = vsi->back;
 
 493
 494	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 495		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
 496			vsi->idx);
 497		return -EINVAL;
 498	}
 499
 500	mutex_lock(&pf->sw_mutex);
 501	/* updates the PF for this cleared VSI */
 502
 503	pf->vsi[vsi->idx] = NULL;
 504	if (vsi->idx < pf->next_vsi)
 505		pf->next_vsi = vsi->idx;
 506
 
 507	ice_vsi_free_arrays(vsi);
 508	mutex_unlock(&pf->sw_mutex);
 509	devm_kfree(&pf->pdev->dev, vsi);
 
 510
 511	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512}
 513
 514/**
 515 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 516 * @irq: interrupt number
 517 * @data: pointer to a q_vector
 518 */
 519static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 520{
 521	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 522
 523	if (!q_vector->tx.ring && !q_vector->rx.ring)
 524		return IRQ_HANDLED;
 525
 
 
 526	napi_schedule(&q_vector->napi);
 527
 528	return IRQ_HANDLED;
 529}
 530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531/**
 532 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 533 * @pf: board private structure
 534 * @type: type of VSI
 535 * @vf_id: ID of the VF being configured
 
 
 536 *
 537 * returns a pointer to a VSI on success, NULL on failure.
 538 */
 539static struct ice_vsi *
 540ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
 541{
 
 542	struct ice_vsi *vsi = NULL;
 543
 544	/* Need to protect the allocation of the VSIs at the PF level */
 545	mutex_lock(&pf->sw_mutex);
 546
 547	/* If we have already allocated our maximum number of VSIs,
 548	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 549	 * is available to be populated
 550	 */
 551	if (pf->next_vsi == ICE_NO_VSI) {
 552		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
 553		goto unlock_pf;
 554	}
 555
 556	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
 557	if (!vsi)
 558		goto unlock_pf;
 559
 560	vsi->type = type;
 561	vsi->back = pf;
 562	set_bit(__ICE_DOWN, vsi->state);
 563
 
 564	vsi->idx = pf->next_vsi;
 565
 566	if (type == ICE_VSI_VF)
 567		ice_vsi_set_num_qs(vsi, vf_id);
 568	else
 569		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 570
 571	switch (vsi->type) {
 572	case ICE_VSI_PF:
 573		if (ice_vsi_alloc_arrays(vsi))
 574			goto err_rings;
 575
 576		/* Setup default MSIX irq handler for VSI */
 577		vsi->irq_handler = ice_msix_clean_rings;
 578		break;
 579	case ICE_VSI_VF:
 580		if (ice_vsi_alloc_arrays(vsi))
 581			goto err_rings;
 582		break;
 583	case ICE_VSI_LB:
 584		if (ice_vsi_alloc_arrays(vsi))
 585			goto err_rings;
 586		break;
 587	default:
 588		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 589		goto unlock_pf;
 590	}
 591
 592	/* fill VSI slot in the PF struct */
 593	pf->vsi[pf->next_vsi] = vsi;
 594
 595	/* prepare pf->next_vsi for next use */
 596	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 597					 pf->next_vsi);
 598	goto unlock_pf;
 599
 600err_rings:
 601	devm_kfree(&pf->pdev->dev, vsi);
 602	vsi = NULL;
 603unlock_pf:
 604	mutex_unlock(&pf->sw_mutex);
 605	return vsi;
 606}
 607
 608/**
 609 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 610 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 
 
 611 *
 612 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 613 */
 614static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 615{
 616	int offset, i;
 
 617
 618	mutex_lock(qs_cfg->qs_mutex);
 619	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 620					    0, qs_cfg->q_count, 0);
 621	if (offset >= qs_cfg->pf_map_size) {
 622		mutex_unlock(qs_cfg->qs_mutex);
 623		return -ENOMEM;
 624	}
 625
 626	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 627	for (i = 0; i < qs_cfg->q_count; i++)
 628		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
 629	mutex_unlock(qs_cfg->qs_mutex);
 
 
 
 
 
 
 
 
 
 630
 631	return 0;
 632}
 
 
 633
 634/**
 635 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 637 *
 638 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 639 */
 640static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 641{
 642	int i, index = 0;
 
 
 
 
 
 643
 644	mutex_lock(qs_cfg->qs_mutex);
 645	for (i = 0; i < qs_cfg->q_count; i++) {
 646		index = find_next_zero_bit(qs_cfg->pf_map,
 647					   qs_cfg->pf_map_size, index);
 648		if (index >= qs_cfg->pf_map_size)
 649			goto err_scatter;
 650		set_bit(index, qs_cfg->pf_map);
 651		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
 652	}
 653	mutex_unlock(qs_cfg->qs_mutex);
 654
 655	return 0;
 656err_scatter:
 657	for (index = 0; index < i; index++) {
 658		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 659		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 660	}
 661	mutex_unlock(qs_cfg->qs_mutex);
 662
 663	return -ENOMEM;
 664}
 
 665
 666/**
 667 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 668 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 669 *
 670 * This function first tries to find contiguous space. If it is not successful,
 671 * it tries with the scatter approach.
 672 *
 673 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 674 */
 675static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 676{
 677	int ret = 0;
 678
 679	ret = __ice_vsi_get_qs_contig(qs_cfg);
 680	if (ret) {
 681		/* contig failed, so try with scatter approach */
 682		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 683		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
 684					qs_cfg->scatter_count);
 685		ret = __ice_vsi_get_qs_sc(qs_cfg);
 
 
 
 
 
 
 
 
 686	}
 687	return ret;
 
 688}
 689
 690/**
 691 * ice_vsi_get_qs - Assign queues from PF to VSI
 692 * @vsi: the VSI to assign queues to
 693 *
 694 * Returns 0 on success and a negative value on error
 695 */
 696static int ice_vsi_get_qs(struct ice_vsi *vsi)
 697{
 698	struct ice_pf *pf = vsi->back;
 699	struct ice_qs_cfg tx_qs_cfg = {
 700		.qs_mutex = &pf->avail_q_mutex,
 701		.pf_map = pf->avail_txqs,
 702		.pf_map_size = pf->max_pf_txqs,
 703		.q_count = vsi->alloc_txq,
 704		.scatter_count = ICE_MAX_SCATTER_TXQS,
 705		.vsi_map = vsi->txq_map,
 706		.vsi_map_offset = 0,
 707		.mapping_mode = vsi->tx_mapping_mode
 708	};
 709	struct ice_qs_cfg rx_qs_cfg = {
 710		.qs_mutex = &pf->avail_q_mutex,
 711		.pf_map = pf->avail_rxqs,
 712		.pf_map_size = pf->max_pf_rxqs,
 713		.q_count = vsi->alloc_rxq,
 714		.scatter_count = ICE_MAX_SCATTER_RXQS,
 715		.vsi_map = vsi->rxq_map,
 716		.vsi_map_offset = 0,
 717		.mapping_mode = vsi->rx_mapping_mode
 718	};
 719	int ret = 0;
 720
 721	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
 722	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
 723
 724	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 725	if (!ret)
 726		ret = __ice_vsi_get_qs(&rx_qs_cfg);
 
 727
 728	return ret;
 
 
 
 
 
 729}
 730
 731/**
 732 * ice_vsi_put_qs - Release queues from VSI to PF
 733 * @vsi: the VSI that is going to release queues
 734 */
 735void ice_vsi_put_qs(struct ice_vsi *vsi)
 736{
 737	struct ice_pf *pf = vsi->back;
 738	int i;
 739
 740	mutex_lock(&pf->avail_q_mutex);
 741
 742	for (i = 0; i < vsi->alloc_txq; i++) {
 743		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 744		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 745	}
 746
 747	for (i = 0; i < vsi->alloc_rxq; i++) {
 748		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 749		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 750	}
 751
 752	mutex_unlock(&pf->avail_q_mutex);
 753}
 754
 755/**
 756 * ice_is_safe_mode
 757 * @pf: pointer to the PF struct
 758 *
 759 * returns true if driver is in safe mode, false otherwise
 760 */
 761bool ice_is_safe_mode(struct ice_pf *pf)
 762{
 763	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 764}
 765
 766/**
 767 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768 * @vsi: the VSI being removed
 769 */
 770static void ice_rss_clean(struct ice_vsi *vsi)
 771{
 772	struct ice_pf *pf;
 
 773
 774	pf = vsi->back;
 775
 776	if (vsi->rss_hkey_user)
 777		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
 778	if (vsi->rss_lut_user)
 779		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
 
 
 
 780}
 781
 782/**
 783 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 784 * @vsi: the VSI being configured
 785 */
 786static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 787{
 788	struct ice_hw_common_caps *cap;
 789	struct ice_pf *pf = vsi->back;
 
 790
 791	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 792		vsi->rss_size = 1;
 793		return;
 794	}
 795
 796	cap = &pf->hw.func_caps.common_cap;
 
 797	switch (vsi->type) {
 
 798	case ICE_VSI_PF:
 799		/* PF VSI will inherit RSS instance of PF */
 800		vsi->rss_table_size = cap->rss_table_size;
 801		vsi->rss_size = min_t(int, num_online_cpus(),
 802				      BIT(cap->rss_table_entry_width));
 803		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 
 
 
 
 
 
 
 
 804		break;
 805	case ICE_VSI_VF:
 806		/* VF VSI will gets a small RSS table
 807		 * For VSI_LUT, LUT size should be set to 64 bytes
 808		 */
 809		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 810		vsi->rss_size = min_t(int, num_online_cpus(),
 811				      BIT(cap->rss_table_entry_width));
 812		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 813		break;
 814	case ICE_VSI_LB:
 815		break;
 816	default:
 817		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
 818			 vsi->type);
 819		break;
 820	}
 821}
 822
 823/**
 824 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 
 825 * @ctxt: the VSI context being set
 826 *
 827 * This initializes a default VSI context for all sections except the Queues.
 828 */
 829static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 830{
 831	u32 table = 0;
 832
 833	memset(&ctxt->info, 0, sizeof(ctxt->info));
 834	/* VSI's should be allocated from shared pool */
 835	ctxt->alloc_from_pool = true;
 836	/* Src pruning enabled by default */
 837	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 838	/* Traffic from VSI can be sent to LAN */
 839	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 840	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 841	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 842	 * packets untagged/tagged.
 843	 */
 844	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 845				  ICE_AQ_VSI_VLAN_MODE_M) >>
 846				 ICE_AQ_VSI_VLAN_MODE_S);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847	/* Have 1:1 UP mapping for both ingress/egress tables */
 848	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 849	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 850	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 851	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 852	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 853	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 854	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 855	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 856	ctxt->info.ingress_table = cpu_to_le32(table);
 857	ctxt->info.egress_table = cpu_to_le32(table);
 858	/* Have 1:1 UP mapping for outer to inner UP table */
 859	ctxt->info.outer_up_table = cpu_to_le32(table);
 860	/* No Outer tag support outer_tag_flags remains to zero */
 861}
 862
 863/**
 864 * ice_vsi_setup_q_map - Setup a VSI queue map
 865 * @vsi: the VSI being configured
 866 * @ctxt: VSI context structure
 867 */
 868static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 869{
 870	u16 offset = 0, qmap = 0, tx_count = 0;
 
 871	u16 qcount_tx = vsi->alloc_txq;
 872	u16 qcount_rx = vsi->alloc_rxq;
 873	u16 tx_numq_tc, rx_numq_tc;
 874	u16 pow = 0, max_rss = 0;
 875	bool ena_tc0 = false;
 876	u8 netdev_tc = 0;
 877	int i;
 878
 879	/* at least TC0 should be enabled by default */
 880	if (vsi->tc_cfg.numtc) {
 881		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 882			ena_tc0 = true;
 883	} else {
 884		ena_tc0 = true;
 885	}
 886
 887	if (ena_tc0) {
 888		vsi->tc_cfg.numtc++;
 889		vsi->tc_cfg.ena_tc |= 1;
 890	}
 
 
 891
 892	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 893	if (!rx_numq_tc)
 894		rx_numq_tc = 1;
 895	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
 896	if (!tx_numq_tc)
 897		tx_numq_tc = 1;
 898
 899	/* TC mapping is a function of the number of Rx queues assigned to the
 900	 * VSI for each traffic class and the offset of these queues.
 901	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 902	 * queues allocated to TC0. No:of queues is a power-of-2.
 903	 *
 904	 * If TC is not enabled, the queue offset is set to 0, and allocate one
 905	 * queue, this way, traffic for the given TC will be sent to the default
 906	 * queue.
 907	 *
 908	 * Setup number and offset of Rx queues for all TCs for the VSI
 909	 */
 910
 911	qcount_rx = rx_numq_tc;
 912
 913	/* qcount will change if RSS is enabled */
 914	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
 915		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
 916			if (vsi->type == ICE_VSI_PF)
 917				max_rss = ICE_MAX_LG_RSS_QS;
 918			else
 919				max_rss = ICE_MAX_SMALL_RSS_QS;
 920			qcount_rx = min_t(int, rx_numq_tc, max_rss);
 921			qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
 922		}
 923	}
 924
 925	/* find the (rounded up) power-of-2 of qcount */
 926	pow = order_base_2(qcount_rx);
 927
 928	ice_for_each_traffic_class(i) {
 929		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 930			/* TC is not enabled */
 931			vsi->tc_cfg.tc_info[i].qoffset = 0;
 932			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 933			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 934			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 935			ctxt->info.tc_mapping[i] = 0;
 936			continue;
 937		}
 938
 939		/* TC is enabled */
 940		vsi->tc_cfg.tc_info[i].qoffset = offset;
 941		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
 942		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
 943		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 944
 945		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 946			ICE_AQ_VSI_TC_Q_OFFSET_M) |
 947			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 948			 ICE_AQ_VSI_TC_Q_NUM_M);
 949		offset += qcount_rx;
 950		tx_count += tx_numq_tc;
 951		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 952	}
 953
 954	/* if offset is non-zero, means it is calculated correctly based on
 955	 * enabled TCs for a given VSI otherwise qcount_rx will always
 956	 * be correct and non-zero because it is based off - VSI's
 957	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
 958	 * at least 1)
 959	 */
 960	if (offset)
 961		vsi->num_rxq = offset;
 962	else
 963		vsi->num_rxq = qcount_rx;
 
 
 
 
 
 
 
 
 
 
 
 
 964
 965	vsi->num_txq = tx_count;
 
 966
 967	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 968		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 969		/* since there is a chance that num_rxq could have been changed
 970		 * in the above for loop, make num_txq equal to num_rxq.
 971		 */
 972		vsi->num_txq = vsi->num_rxq;
 973	}
 974
 975	/* Rx queue mapping */
 976	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 977	/* q_mapping buffer holds the info for the first queue allocated for
 978	 * this VSI in the PF space and also the number of queues associated
 979	 * with this VSI.
 980	 */
 981	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 982	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983}
 984
 985/**
 986 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 987 * @ctxt: the VSI context being set
 988 * @vsi: the VSI being configured
 989 */
 990static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 991{
 992	u8 lut_type, hash_type;
 
 993	struct ice_pf *pf;
 994
 995	pf = vsi->back;
 
 996
 997	switch (vsi->type) {
 
 998	case ICE_VSI_PF:
 999		/* PF VSI will inherit RSS instance of PF */
1000		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1001		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1002		break;
1003	case ICE_VSI_VF:
1004		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1005		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1006		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1007		break;
1008	case ICE_VSI_LB:
1009		dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
1010		return;
1011	default:
1012		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 
1013		return;
1014	}
1015
1016	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1017				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1018				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1019				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020}
1021
1022/**
1023 * ice_vsi_init - Create and initialize a VSI
1024 * @vsi: the VSI being configured
 
 
 
 
1025 *
1026 * This initializes a VSI context depending on the VSI type to be added and
1027 * passes it down to the add_vsi aq command to create a new VSI.
1028 */
1029static int ice_vsi_init(struct ice_vsi *vsi)
1030{
1031	struct ice_pf *pf = vsi->back;
1032	struct ice_hw *hw = &pf->hw;
1033	struct ice_vsi_ctx *ctxt;
 
1034	int ret = 0;
1035
1036	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 
1037	if (!ctxt)
1038		return -ENOMEM;
1039
1040	ctxt->info = vsi->info;
1041	switch (vsi->type) {
 
1042	case ICE_VSI_LB:
1043		/* fall through */
1044	case ICE_VSI_PF:
1045		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1046		break;
 
 
 
 
1047	case ICE_VSI_VF:
1048		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1049		/* VF number here is the absolute VF number (0-255) */
1050		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
1051		break;
1052	default:
1053		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054	}
1055
1056	ice_set_dflt_vsi_ctx(ctxt);
 
 
1057	/* if the switch is in VEB mode, allow VSI loopback */
1058	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1059		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1060
1061	/* Set LUT type and HASH type if RSS is enabled */
1062	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 
1063		ice_set_rss_vsi_ctx(ctxt, vsi);
 
 
 
 
 
 
 
1064
1065	ctxt->info.sw_id = vsi->port_info->sw_id;
1066	ice_vsi_setup_q_map(vsi, ctxt);
 
 
 
 
 
1067
1068	/* Enable MAC Antispoof with new VSI being initialized or updated */
1069	if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
1070		ctxt->info.valid_sections |=
1071			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1072		ctxt->info.sec_flags |=
1073			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
 
1074	}
1075
1076	/* Allow control frames out of main VSI */
1077	if (vsi->type == ICE_VSI_PF) {
1078		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1079		ctxt->info.valid_sections |=
1080			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1081	}
1082
1083	ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1084	if (ret) {
1085		dev_err(&pf->pdev->dev,
1086			"Add VSI failed, err %d\n", ret);
1087		return -EIO;
 
 
 
 
 
 
 
 
 
1088	}
1089
1090	/* keep context for update VSI operations */
1091	vsi->info = ctxt->info;
1092
1093	/* record VSI number returned */
1094	vsi->vsi_num = ctxt->vsi_num;
1095
1096	devm_kfree(&pf->pdev->dev, ctxt);
1097	return ret;
1098}
1099
1100/**
1101 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1102 * @vsi: VSI having the memory freed
1103 * @v_idx: index of the vector to be freed
1104 */
1105static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1106{
1107	struct ice_q_vector *q_vector;
1108	struct ice_pf *pf = vsi->back;
1109	struct ice_ring *ring;
1110
1111	if (!vsi->q_vectors[v_idx]) {
1112		dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1113			v_idx);
1114		return;
1115	}
1116	q_vector = vsi->q_vectors[v_idx];
1117
1118	ice_for_each_ring(ring, q_vector->tx)
1119		ring->q_vector = NULL;
1120	ice_for_each_ring(ring, q_vector->rx)
1121		ring->q_vector = NULL;
1122
1123	/* only VSI with an associated netdev is set up with NAPI */
1124	if (vsi->netdev)
1125		netif_napi_del(&q_vector->napi);
1126
1127	devm_kfree(&pf->pdev->dev, q_vector);
1128	vsi->q_vectors[v_idx] = NULL;
1129}
1130
1131/**
1132 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1133 * @vsi: the VSI having memory freed
1134 */
1135void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1136{
1137	int v_idx;
1138
1139	ice_for_each_q_vector(vsi, v_idx)
1140		ice_free_q_vector(vsi, v_idx);
1141}
1142
1143/**
1144 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1145 * @vsi: the VSI being configured
1146 * @v_idx: index of the vector in the VSI struct
1147 *
1148 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1149 */
1150static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1151{
1152	struct ice_pf *pf = vsi->back;
1153	struct ice_q_vector *q_vector;
1154
1155	/* allocate q_vector */
1156	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1157	if (!q_vector)
1158		return -ENOMEM;
1159
1160	q_vector->vsi = vsi;
1161	q_vector->v_idx = v_idx;
1162	if (vsi->type == ICE_VSI_VF)
1163		goto out;
1164	/* only set affinity_mask if the CPU is online */
1165	if (cpu_online(v_idx))
1166		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1167
1168	/* This will not be called in the driver load path because the netdev
1169	 * will not be created yet. All other cases with register the NAPI
1170	 * handler here (i.e. resume, reset/rebuild, etc.)
1171	 */
1172	if (vsi->netdev)
1173		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1174			       NAPI_POLL_WEIGHT);
1175
1176out:
1177	/* tie q_vector and VSI together */
1178	vsi->q_vectors[v_idx] = q_vector;
1179
1180	return 0;
1181}
1182
1183/**
1184 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1185 * @vsi: the VSI being configured
1186 *
1187 * We allocate one q_vector per queue interrupt. If allocation fails we
1188 * return -ENOMEM.
1189 */
1190static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1191{
1192	struct ice_pf *pf = vsi->back;
1193	int v_idx = 0, num_q_vectors;
1194	int err;
1195
1196	if (vsi->q_vectors[0]) {
1197		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1198			vsi->vsi_num);
1199		return -EEXIST;
1200	}
1201
1202	num_q_vectors = vsi->num_q_vectors;
1203
1204	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1205		err = ice_vsi_alloc_q_vector(vsi, v_idx);
1206		if (err)
1207			goto err_out;
1208	}
1209
1210	return 0;
1211
1212err_out:
1213	while (v_idx--)
1214		ice_free_q_vector(vsi, v_idx);
1215
1216	dev_err(&pf->pdev->dev,
1217		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1218		vsi->num_q_vectors, vsi->vsi_num, err);
1219	vsi->num_q_vectors = 0;
1220	return err;
1221}
1222
1223/**
1224 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1225 * @vsi: ptr to the VSI
1226 *
1227 * This should only be called after ice_vsi_alloc() which allocates the
1228 * corresponding SW VSI structure and initializes num_queue_pairs for the
1229 * newly allocated VSI.
1230 *
1231 * Returns 0 on success or negative on failure
1232 */
1233static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1234{
1235	struct ice_pf *pf = vsi->back;
1236	u16 num_q_vectors;
1237
1238	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1239	if (vsi->type == ICE_VSI_VF)
1240		return 0;
1241
1242	if (vsi->base_vector) {
1243		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1244			vsi->vsi_num, vsi->base_vector);
1245		return -EEXIST;
1246	}
1247
1248	num_q_vectors = vsi->num_q_vectors;
1249	/* reserve slots from OS requested IRQs */
1250	vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1251				       vsi->idx);
1252	if (vsi->base_vector < 0) {
1253		dev_err(&pf->pdev->dev,
1254			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1255			num_q_vectors, vsi->vsi_num, vsi->base_vector);
1256		return -ENOENT;
1257	}
1258	pf->num_avail_sw_msix -= num_q_vectors;
1259
1260	return 0;
1261}
1262
1263/**
1264 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1265 * @vsi: the VSI having rings deallocated
1266 */
1267static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1268{
1269	int i;
1270
 
 
 
 
 
 
 
 
 
 
 
 
1271	if (vsi->tx_rings) {
1272		for (i = 0; i < vsi->alloc_txq; i++) {
1273			if (vsi->tx_rings[i]) {
1274				kfree_rcu(vsi->tx_rings[i], rcu);
1275				vsi->tx_rings[i] = NULL;
1276			}
1277		}
1278	}
1279	if (vsi->rx_rings) {
1280		for (i = 0; i < vsi->alloc_rxq; i++) {
1281			if (vsi->rx_rings[i]) {
1282				kfree_rcu(vsi->rx_rings[i], rcu);
1283				vsi->rx_rings[i] = NULL;
1284			}
1285		}
1286	}
1287}
1288
1289/**
1290 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1291 * @vsi: VSI which is having rings allocated
1292 */
1293static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1294{
 
1295	struct ice_pf *pf = vsi->back;
1296	int i;
 
1297
 
1298	/* Allocate Tx rings */
1299	for (i = 0; i < vsi->alloc_txq; i++) {
1300		struct ice_ring *ring;
1301
1302		/* allocate with kzalloc(), free with kfree_rcu() */
1303		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1304
1305		if (!ring)
1306			goto err_out;
1307
1308		ring->q_index = i;
1309		ring->reg_idx = vsi->txq_map[i];
1310		ring->ring_active = false;
1311		ring->vsi = vsi;
1312		ring->dev = &pf->pdev->dev;
 
1313		ring->count = vsi->num_tx_desc;
1314		vsi->tx_rings[i] = ring;
 
 
 
 
 
1315	}
1316
1317	/* Allocate Rx rings */
1318	for (i = 0; i < vsi->alloc_rxq; i++) {
1319		struct ice_ring *ring;
1320
1321		/* allocate with kzalloc(), free with kfree_rcu() */
1322		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323		if (!ring)
1324			goto err_out;
1325
1326		ring->q_index = i;
1327		ring->reg_idx = vsi->rxq_map[i];
1328		ring->ring_active = false;
1329		ring->vsi = vsi;
1330		ring->netdev = vsi->netdev;
1331		ring->dev = &pf->pdev->dev;
1332		ring->count = vsi->num_rx_desc;
1333		vsi->rx_rings[i] = ring;
 
1334	}
1335
1336	return 0;
1337
1338err_out:
1339	ice_vsi_clear_rings(vsi);
1340	return -ENOMEM;
1341}
1342
1343/**
1344 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1345 * @vsi: the VSI being configured
1346 *
1347 * This function maps descriptor rings to the queue-specific vectors allotted
1348 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1349 * and Rx rings to the vector as "efficiently" as possible.
1350 */
1351#ifdef CONFIG_DCB
1352void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1353#else
1354static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1355#endif /* CONFIG_DCB */
1356{
1357	int q_vectors = vsi->num_q_vectors;
1358	int tx_rings_rem, rx_rings_rem;
1359	int v_id;
1360
1361	/* initially assigning remaining rings count to VSIs num queue value */
1362	tx_rings_rem = vsi->num_txq;
1363	rx_rings_rem = vsi->num_rxq;
1364
1365	for (v_id = 0; v_id < q_vectors; v_id++) {
1366		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1367		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1368
1369		/* Tx rings mapping to vector */
1370		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1371		q_vector->num_ring_tx = tx_rings_per_v;
1372		q_vector->tx.ring = NULL;
1373		q_vector->tx.itr_idx = ICE_TX_ITR;
1374		q_base = vsi->num_txq - tx_rings_rem;
1375
1376		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1377			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1378
1379			tx_ring->q_vector = q_vector;
1380			tx_ring->next = q_vector->tx.ring;
1381			q_vector->tx.ring = tx_ring;
1382		}
1383		tx_rings_rem -= tx_rings_per_v;
1384
1385		/* Rx rings mapping to vector */
1386		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1387		q_vector->num_ring_rx = rx_rings_per_v;
1388		q_vector->rx.ring = NULL;
1389		q_vector->rx.itr_idx = ICE_RX_ITR;
1390		q_base = vsi->num_rxq - rx_rings_rem;
1391
1392		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1393			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1394
1395			rx_ring->q_vector = q_vector;
1396			rx_ring->next = q_vector->rx.ring;
1397			q_vector->rx.ring = rx_ring;
1398		}
1399		rx_rings_rem -= rx_rings_per_v;
1400	}
1401}
1402
1403/**
1404 * ice_vsi_manage_rss_lut - disable/enable RSS
1405 * @vsi: the VSI being changed
1406 * @ena: boolean value indicating if this is an enable or disable request
1407 *
1408 * In the event of disable request for RSS, this function will zero out RSS
1409 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1410 * LUT.
1411 */
1412int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1413{
1414	int err = 0;
1415	u8 *lut;
1416
1417	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1418			   GFP_KERNEL);
1419	if (!lut)
1420		return -ENOMEM;
1421
1422	if (ena) {
1423		if (vsi->rss_lut_user)
1424			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1425		else
1426			ice_fill_rss_lut(lut, vsi->rss_table_size,
1427					 vsi->rss_size);
1428	}
1429
1430	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1431	devm_kfree(&vsi->back->pdev->dev, lut);
1432	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433}
1434
1435/**
1436 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1437 * @vsi: VSI to be configured
1438 */
1439static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1440{
1441	struct ice_aqc_get_set_rss_keys *key;
1442	struct ice_pf *pf = vsi->back;
1443	enum ice_status status;
1444	int err = 0;
1445	u8 *lut;
 
 
 
 
 
 
 
1446
1447	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
 
 
 
 
 
 
 
 
 
 
 
 
1448
1449	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1450	if (!lut)
1451		return -ENOMEM;
1452
1453	if (vsi->rss_lut_user)
1454		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1455	else
1456		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1457
1458	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1459				    vsi->rss_table_size);
1460
1461	if (status) {
1462		dev_err(&pf->pdev->dev,
1463			"set_rss_lut failed, error %d\n", status);
1464		err = -EIO;
1465		goto ice_vsi_cfg_rss_exit;
1466	}
1467
1468	key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1469	if (!key) {
1470		err = -ENOMEM;
1471		goto ice_vsi_cfg_rss_exit;
1472	}
1473
1474	if (vsi->rss_hkey_user)
1475		memcpy(key,
1476		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1477		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1478	else
1479		netdev_rss_key_fill((void *)key,
1480				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1481
1482	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
 
 
1483
1484	if (status) {
1485		dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1486			status);
1487		err = -EIO;
1488	}
1489
1490	devm_kfree(&pf->pdev->dev, key);
1491ice_vsi_cfg_rss_exit:
1492	devm_kfree(&pf->pdev->dev, lut);
1493	return err;
1494}
1495
1496/**
1497 * ice_add_mac_to_list - Add a MAC address filter entry to the list
1498 * @vsi: the VSI to be forwarded to
1499 * @add_list: pointer to the list which contains MAC filter entries
1500 * @macaddr: the MAC address to be added.
1501 *
1502 * Adds MAC address filter entry to the temp list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503 *
1504 * Returns 0 on success or ENOMEM on failure.
 
 
 
 
 
1505 */
1506int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1507			const u8 *macaddr)
1508{
1509	struct ice_fltr_list_entry *tmp;
1510	struct ice_pf *pf = vsi->back;
 
 
 
 
1511
1512	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1513	if (!tmp)
1514		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515
1516	tmp->fltr_info.flag = ICE_FLTR_TX;
1517	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1518	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1519	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1520	tmp->fltr_info.vsi_handle = vsi->idx;
1521	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
 
 
 
 
 
 
 
1522
1523	INIT_LIST_HEAD(&tmp->list_entry);
1524	list_add(&tmp->list_entry, add_list);
1525
1526	return 0;
 
 
 
 
1527}
1528
1529/**
1530 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1531 * @vsi: the VSI to be updated
1532 */
1533void ice_update_eth_stats(struct ice_vsi *vsi)
1534{
1535	struct ice_eth_stats *prev_es, *cur_es;
1536	struct ice_hw *hw = &vsi->back->hw;
 
1537	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1538
1539	prev_es = &vsi->eth_stats_prev;
1540	cur_es = &vsi->eth_stats;
1541
 
 
 
1542	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1543			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1544
1545	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1546			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1547
1548	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1549			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1550
1551	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1552			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1553
1554	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1555			  &prev_es->rx_discards, &cur_es->rx_discards);
1556
1557	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1558			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1559
1560	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1561			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1562
1563	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1564			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1565
1566	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1567			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1568
1569	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1570			  &prev_es->tx_errors, &cur_es->tx_errors);
1571
1572	vsi->stat_offsets_loaded = true;
1573}
1574
1575/**
1576 * ice_free_fltr_list - free filter lists helper
1577 * @dev: pointer to the device struct
1578 * @h: pointer to the list head to be freed
1579 *
1580 * Helper function to free filter lists previously created using
1581 * ice_add_mac_to_list
1582 */
1583void ice_free_fltr_list(struct device *dev, struct list_head *h)
 
 
1584{
1585	struct ice_fltr_list_entry *e, *tmp;
1586
1587	list_for_each_entry_safe(e, tmp, h, list_entry) {
1588		list_del(&e->list_entry);
1589		devm_kfree(dev, e);
1590	}
1591}
1592
1593/**
1594 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1595 * @vsi: the VSI being configured
1596 * @vid: VLAN ID to be added
1597 */
1598int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1599{
1600	struct ice_fltr_list_entry *tmp;
1601	struct ice_pf *pf = vsi->back;
1602	LIST_HEAD(tmp_add_list);
1603	enum ice_status status;
1604	int err = 0;
1605
1606	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1607	if (!tmp)
1608		return -ENOMEM;
1609
1610	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1611	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1612	tmp->fltr_info.flag = ICE_FLTR_TX;
1613	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1614	tmp->fltr_info.vsi_handle = vsi->idx;
1615	tmp->fltr_info.l_data.vlan.vlan_id = vid;
1616
1617	INIT_LIST_HEAD(&tmp->list_entry);
1618	list_add(&tmp->list_entry, &tmp_add_list);
1619
1620	status = ice_add_vlan(&pf->hw, &tmp_add_list);
1621	if (status) {
1622		err = -ENODEV;
1623		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1624			vid, vsi->vsi_num);
1625	}
1626
1627	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1628	return err;
1629}
1630
1631/**
1632 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1633 * @vsi: the VSI being configured
1634 * @vid: VLAN ID to be removed
1635 *
1636 * Returns 0 on success and negative on failure
1637 */
1638int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1639{
1640	struct ice_fltr_list_entry *list;
1641	struct ice_pf *pf = vsi->back;
1642	LIST_HEAD(tmp_add_list);
1643	enum ice_status status;
1644	int err = 0;
1645
1646	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1647	if (!list)
1648		return -ENOMEM;
1649
1650	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1651	list->fltr_info.vsi_handle = vsi->idx;
1652	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1653	list->fltr_info.l_data.vlan.vlan_id = vid;
1654	list->fltr_info.flag = ICE_FLTR_TX;
1655	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1656
1657	INIT_LIST_HEAD(&list->list_entry);
1658	list_add(&list->list_entry, &tmp_add_list);
1659
1660	status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1661	if (status == ICE_ERR_DOES_NOT_EXIST) {
1662		dev_dbg(&pf->pdev->dev,
1663			"Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1664			vid, vsi->vsi_num, status);
1665	} else if (status) {
1666		dev_err(&pf->pdev->dev,
1667			"Error removing VLAN %d on vsi %i error: %d\n",
1668			vid, vsi->vsi_num, status);
1669		err = -EIO;
1670	}
1671
1672	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1673	return err;
1674}
1675
1676/**
1677 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1678 * @vsi: the VSI being configured
1679 *
1680 * Return 0 on success and a negative value on error
1681 * Configure the Rx VSI for operation.
1682 */
1683int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1684{
1685	u16 i;
1686
1687	if (vsi->type == ICE_VSI_VF)
1688		goto setup_rings;
1689
1690	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1691		vsi->max_frame = vsi->netdev->mtu +
1692			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1693	else
1694		vsi->max_frame = ICE_RXBUF_2048;
1695
1696	vsi->rx_buf_len = ICE_RXBUF_2048;
1697setup_rings:
1698	/* set up individual rings */
1699	for (i = 0; i < vsi->num_rxq; i++) {
1700		int err;
1701
1702		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1703		if (err) {
1704			dev_err(&vsi->back->pdev->dev,
1705				"ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1706				i, err);
1707			return err;
1708		}
1709	}
1710
1711	return 0;
1712}
1713
1714/**
1715 * ice_vsi_cfg_txq - Configure single Tx queue
1716 * @vsi: the VSI that queue belongs to
1717 * @ring: Tx ring to be configured
1718 * @tc_q_idx: queue index within given TC
1719 * @qg_buf: queue group buffer
1720 * @tc: TC that Tx ring belongs to
1721 */
1722static int
1723ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
1724		struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
1725{
1726	struct ice_tlan_ctx tlan_ctx = { 0 };
1727	struct ice_aqc_add_txqs_perq *txq;
1728	struct ice_pf *pf = vsi->back;
1729	u8 buf_len = sizeof(*qg_buf);
1730	enum ice_status status;
1731	u16 pf_q;
1732
1733	pf_q = ring->reg_idx;
1734	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
1735	/* copy context contents into the qg_buf */
1736	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1737	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1738		    ice_tlan_ctx_info);
1739
1740	/* init queue specific tail reg. It is referred as
1741	 * transmit comm scheduler queue doorbell.
1742	 */
1743	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1744
1745	/* Add unique software queue handle of the Tx queue per
1746	 * TC into the VSI Tx ring
1747	 */
1748	ring->q_handle = tc_q_idx;
1749
1750	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1751				 1, qg_buf, buf_len, NULL);
1752	if (status) {
1753		dev_err(&pf->pdev->dev,
1754			"Failed to set LAN Tx queue context, error: %d\n",
1755			status);
1756		return -ENODEV;
1757	}
1758
1759	/* Add Tx Queue TEID into the VSI Tx ring from the
1760	 * response. This will complete configuring and
1761	 * enabling the queue.
1762	 */
1763	txq = &qg_buf->txqs[0];
1764	if (pf_q == le16_to_cpu(txq->txq_id))
1765		ring->txq_teid = le32_to_cpu(txq->q_teid);
1766
1767	return 0;
1768}
1769
1770/**
1771 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772 * @vsi: the VSI being configured
1773 * @rings: Tx ring array to be configured
1774 * @offset: offset within vsi->txq_map
1775 *
1776 * Return 0 on success and a negative value on error
1777 * Configure the Tx VSI for operation.
1778 */
1779static int
1780ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1781{
1782	struct ice_aqc_add_tx_qgrp *qg_buf;
1783	struct ice_pf *pf = vsi->back;
1784	u16 q_idx = 0, i;
1785	int err = 0;
1786	u8 tc;
1787
1788	qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL);
1789	if (!qg_buf)
1790		return -ENOMEM;
1791
1792	qg_buf->num_txqs = 1;
1793
1794	/* set up and configure the Tx queues for each enabled TC */
1795	ice_for_each_traffic_class(tc) {
1796		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1797			break;
1798
1799		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1800			err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset,
1801					      qg_buf, tc);
1802			if (err)
1803				goto err_cfg_txqs;
1804
1805			q_idx++;
1806		}
1807	}
1808err_cfg_txqs:
1809	devm_kfree(&pf->pdev->dev, qg_buf);
1810	return err;
1811}
1812
1813/**
1814 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1815 * @vsi: the VSI being configured
1816 *
1817 * Return 0 on success and a negative value on error
1818 * Configure the Tx VSI for operation.
1819 */
1820int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1821{
1822	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823}
1824
1825/**
1826 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1827 * @intrl: interrupt rate limit in usecs
1828 * @gran: interrupt rate limit granularity in usecs
1829 *
1830 * This function converts a decimal interrupt rate limit in usecs to the format
1831 * expected by firmware.
1832 */
1833u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1834{
1835	u32 val = intrl / gran;
1836
1837	if (val)
1838		return val | GLINT_RATE_INTRL_ENA_M;
1839	return 0;
1840}
1841
1842/**
1843 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1844 * @hw: board specific structure
 
1845 */
1846static void ice_cfg_itr_gran(struct ice_hw *hw)
1847{
1848	u32 regval = rd32(hw, GLINT_CTL);
1849
1850	/* no need to update global register if ITR gran is already set */
1851	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1852	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1853	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1854	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1855	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1856	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1857	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1858	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1859	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1860		return;
1861
1862	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1863		  GLINT_CTL_ITR_GRAN_200_M) |
1864		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1865		  GLINT_CTL_ITR_GRAN_100_M) |
1866		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1867		  GLINT_CTL_ITR_GRAN_50_M) |
1868		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1869		  GLINT_CTL_ITR_GRAN_25_M);
1870	wr32(hw, GLINT_CTL, regval);
1871}
1872
1873/**
1874 * ice_cfg_itr - configure the initial interrupt throttle values
1875 * @hw: pointer to the HW structure
1876 * @q_vector: interrupt vector that's being configured
1877 *
1878 * Configure interrupt throttling values for the ring containers that are
1879 * associated with the interrupt vector passed in.
1880 */
1881static void
1882ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1883{
1884	ice_cfg_itr_gran(hw);
1885
1886	if (q_vector->num_ring_rx) {
1887		struct ice_ring_container *rc = &q_vector->rx;
1888
1889		/* if this value is set then don't overwrite with default */
1890		if (!rc->itr_setting)
1891			rc->itr_setting = ICE_DFLT_RX_ITR;
1892
1893		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1894		rc->next_update = jiffies + 1;
1895		rc->current_itr = rc->target_itr;
1896		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1897		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1898	}
1899
1900	if (q_vector->num_ring_tx) {
1901		struct ice_ring_container *rc = &q_vector->tx;
1902
1903		/* if this value is set then don't overwrite with default */
1904		if (!rc->itr_setting)
1905			rc->itr_setting = ICE_DFLT_TX_ITR;
 
 
 
 
 
 
 
1906
1907		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1908		rc->next_update = jiffies + 1;
1909		rc->current_itr = rc->target_itr;
1910		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1911		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1912	}
1913}
1914
1915/**
1916 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1917 * @vsi: the VSI being configured
1918 * @txq: Tx queue being mapped to MSI-X vector
1919 * @msix_idx: MSI-X vector index within the function
1920 * @itr_idx: ITR index of the interrupt cause
1921 *
1922 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1923 * within the function space.
1924 */
1925#ifdef CONFIG_PCI_IOV
1926void
1927ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1928#else
1929static void
1930ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1931#endif /* CONFIG_PCI_IOV */
1932{
1933	struct ice_pf *pf = vsi->back;
1934	struct ice_hw *hw = &pf->hw;
1935	u32 val;
1936
1937	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1938
1939	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1940	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
 
1941
1942	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1943}
1944
1945/**
1946 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1947 * @vsi: the VSI being configured
1948 * @rxq: Rx queue being mapped to MSI-X vector
1949 * @msix_idx: MSI-X vector index within the function
1950 * @itr_idx: ITR index of the interrupt cause
1951 *
1952 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1953 * within the function space.
 
 
 
1954 */
1955#ifdef CONFIG_PCI_IOV
1956void
1957ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1958#else
1959static void
1960ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1961#endif /* CONFIG_PCI_IOV */
1962{
1963	struct ice_pf *pf = vsi->back;
1964	struct ice_hw *hw = &pf->hw;
1965	u32 val;
1966
1967	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1968
1969	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1970	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1971
1972	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1973
1974	ice_flush(hw);
1975}
1976
1977/**
1978 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1979 * @vsi: the VSI being configured
1980 *
1981 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1982 * for the VF VSI.
1983 */
1984void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1985{
1986	struct ice_pf *pf = vsi->back;
1987	struct ice_hw *hw = &pf->hw;
1988	u32 txq = 0, rxq = 0;
1989	int i, q;
1990
1991	for (i = 0; i < vsi->num_q_vectors; i++) {
1992		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1993		u16 reg_idx = q_vector->reg_idx;
1994
1995		ice_cfg_itr(hw, q_vector);
1996
1997		wr32(hw, GLINT_RATE(reg_idx),
1998		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1999
2000		/* Both Transmit Queue Interrupt Cause Control register
2001		 * and Receive Queue Interrupt Cause control register
2002		 * expects MSIX_INDX field to be the vector index
2003		 * within the function space and not the absolute
2004		 * vector index across PF or across device.
2005		 * For SR-IOV VF VSIs queue vector index always starts
2006		 * with 1 since first vector index(0) is used for OICR
2007		 * in VF space. Since VMDq and other PF VSIs are within
2008		 * the PF function space, use the vector index that is
2009		 * tracked for this PF.
2010		 */
2011		for (q = 0; q < q_vector->num_ring_tx; q++) {
2012			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2013					      q_vector->tx.itr_idx);
2014			txq++;
2015		}
2016
2017		for (q = 0; q < q_vector->num_ring_rx; q++) {
2018			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2019					      q_vector->rx.itr_idx);
2020			rxq++;
2021		}
2022	}
2023}
2024
2025/**
2026 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
2027 * @vsi: the VSI being changed
2028 */
2029int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
2030{
2031	struct device *dev = &vsi->back->pdev->dev;
2032	struct ice_hw *hw = &vsi->back->hw;
2033	struct ice_vsi_ctx *ctxt;
2034	enum ice_status status;
2035	int ret = 0;
2036
2037	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2038	if (!ctxt)
2039		return -ENOMEM;
2040
2041	/* Here we are configuring the VSI to let the driver add VLAN tags by
2042	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
2043	 * insertion happens in the Tx hot path, in ice_tx_map.
2044	 */
2045	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
2046
2047	/* Preserve existing VLAN strip setting */
2048	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
2049				  ICE_AQ_VSI_VLAN_EMOD_M);
2050
2051	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2052
2053	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2054	if (status) {
2055		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
2056			status, hw->adminq.sq_last_status);
2057		ret = -EIO;
2058		goto out;
2059	}
2060
2061	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2062out:
2063	devm_kfree(dev, ctxt);
2064	return ret;
2065}
2066
2067/**
2068 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
2069 * @vsi: the VSI being changed
2070 * @ena: boolean value indicating if this is a enable or disable request
2071 */
2072int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
2073{
2074	struct device *dev = &vsi->back->pdev->dev;
2075	struct ice_hw *hw = &vsi->back->hw;
2076	struct ice_vsi_ctx *ctxt;
2077	enum ice_status status;
2078	int ret = 0;
2079
2080	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2081	if (!ctxt)
2082		return -ENOMEM;
2083
2084	/* Here we are configuring what the VSI should do with the VLAN tag in
2085	 * the Rx packet. We can either leave the tag in the packet or put it in
2086	 * the Rx descriptor.
2087	 */
2088	if (ena)
2089		/* Strip VLAN tag from Rx packet and put it in the desc */
2090		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2091	else
2092		/* Disable stripping. Leave tag in packet */
2093		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2094
2095	/* Allow all packets untagged/tagged */
2096	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2097
2098	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2099
2100	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2101	if (status) {
2102		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2103			ena, status, hw->adminq.sq_last_status);
2104		ret = -EIO;
2105		goto out;
2106	}
2107
2108	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2109out:
2110	devm_kfree(dev, ctxt);
2111	return ret;
2112}
2113
2114/**
2115 * ice_vsi_start_rx_rings - start VSI's Rx rings
2116 * @vsi: the VSI whose rings are to be started
2117 *
2118 * Returns 0 on success and a negative value on error
2119 */
2120int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2121{
2122	return ice_vsi_ctrl_rx_rings(vsi, true);
2123}
2124
2125/**
2126 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2127 * @vsi: the VSI
2128 *
2129 * Returns 0 on success and a negative value on error
2130 */
2131int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2132{
2133	return ice_vsi_ctrl_rx_rings(vsi, false);
2134}
2135
2136/**
2137 * ice_trigger_sw_intr - trigger a software interrupt
2138 * @hw: pointer to the HW structure
2139 * @q_vector: interrupt vector to trigger the software interrupt for
2140 */
2141void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2142{
2143	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2144	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2145	     GLINT_DYN_CTL_SWINT_TRIG_M |
2146	     GLINT_DYN_CTL_INTENA_M);
2147}
2148
2149/**
2150 * ice_vsi_stop_tx_ring - Disable single Tx ring
2151 * @vsi: the VSI being configured
2152 * @rst_src: reset source
2153 * @rel_vmvf_num: Relative ID of VF/VM
2154 * @ring: Tx ring to be stopped
2155 * @txq_meta: Meta data of Tx ring to be stopped
2156 */
2157#ifndef CONFIG_PCI_IOV
2158static
2159#endif /* !CONFIG_PCI_IOV */
2160int
2161ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2162		     u16 rel_vmvf_num, struct ice_ring *ring,
2163		     struct ice_txq_meta *txq_meta)
2164{
2165	struct ice_pf *pf = vsi->back;
2166	struct ice_q_vector *q_vector;
2167	struct ice_hw *hw = &pf->hw;
2168	enum ice_status status;
2169	u32 val;
2170
2171	/* clear cause_ena bit for disabled queues */
2172	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
2173	val &= ~QINT_TQCTL_CAUSE_ENA_M;
2174	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
2175
2176	/* software is expected to wait for 100 ns */
2177	ndelay(100);
2178
2179	/* trigger a software interrupt for the vector
2180	 * associated to the queue to schedule NAPI handler
2181	 */
2182	q_vector = ring->q_vector;
2183	if (q_vector)
2184		ice_trigger_sw_intr(hw, q_vector);
2185
2186	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
2187				 txq_meta->tc, 1, &txq_meta->q_handle,
2188				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
2189				 rel_vmvf_num, NULL);
2190
2191	/* if the disable queue command was exercised during an
2192	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
2193	 * This is not an error as the reset operation disables
2194	 * queues at the hardware level anyway.
2195	 */
2196	if (status == ICE_ERR_RESET_ONGOING) {
2197		dev_dbg(&vsi->back->pdev->dev,
2198			"Reset in progress. LAN Tx queues already disabled\n");
2199	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
2200		dev_dbg(&vsi->back->pdev->dev,
2201			"LAN Tx queues do not exist, nothing to disable\n");
2202	} else if (status) {
2203		dev_err(&vsi->back->pdev->dev,
2204			"Failed to disable LAN Tx queues, error: %d\n", status);
2205		return -ENODEV;
2206	}
2207
2208	return 0;
2209}
2210
2211/**
2212 * ice_fill_txq_meta - Prepare the Tx queue's meta data
2213 * @vsi: VSI that ring belongs to
2214 * @ring: ring that txq_meta will be based on
2215 * @txq_meta: a helper struct that wraps Tx queue's information
2216 *
2217 * Set up a helper struct that will contain all the necessary fields that
2218 * are needed for stopping Tx queue
2219 */
2220#ifndef CONFIG_PCI_IOV
2221static
2222#endif /* !CONFIG_PCI_IOV */
2223void
2224ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
2225		  struct ice_txq_meta *txq_meta)
2226{
2227	u8 tc = 0;
2228
2229#ifdef CONFIG_DCB
2230	tc = ring->dcb_tc;
2231#endif /* CONFIG_DCB */
2232	txq_meta->q_id = ring->reg_idx;
2233	txq_meta->q_teid = ring->txq_teid;
2234	txq_meta->q_handle = ring->q_handle;
2235	txq_meta->vsi_idx = vsi->idx;
2236	txq_meta->tc = tc;
2237}
2238
2239/**
2240 * ice_vsi_stop_tx_rings - Disable Tx rings
2241 * @vsi: the VSI being configured
2242 * @rst_src: reset source
2243 * @rel_vmvf_num: Relative ID of VF/VM
2244 * @rings: Tx ring array to be stopped
 
2245 */
2246static int
2247ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2248		      u16 rel_vmvf_num, struct ice_ring **rings)
2249{
2250	u16 i, q_idx = 0;
2251	int status;
2252	u8 tc;
2253
2254	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2255		return -EINVAL;
2256
2257	/* set up the Tx queue list to be disabled for each enabled TC */
2258	ice_for_each_traffic_class(tc) {
2259		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2260			break;
2261
2262		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2263			struct ice_txq_meta txq_meta = { };
2264
2265			if (!rings || !rings[q_idx])
2266				return -EINVAL;
2267
2268			ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2269			status = ice_vsi_stop_tx_ring(vsi, rst_src,
2270						      rel_vmvf_num,
2271						      rings[q_idx], &txq_meta);
2272
2273			if (status)
2274				return status;
2275
2276			q_idx++;
2277		}
2278	}
2279
2280	return 0;
2281}
2282
2283/**
2284 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2285 * @vsi: the VSI being configured
2286 * @rst_src: reset source
2287 * @rel_vmvf_num: Relative ID of VF/VM
2288 */
2289int
2290ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2291			  u16 rel_vmvf_num)
2292{
2293	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
2294}
2295
2296/**
2297 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2298 * @vsi: VSI to enable or disable VLAN pruning on
2299 * @ena: set to true to enable VLAN pruning and false to disable it
2300 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2301 *
2302 * returns 0 if VSI is updated, negative otherwise
2303 */
2304int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2305{
2306	struct ice_vsi_ctx *ctxt;
2307	struct device *dev;
2308	struct ice_pf *pf;
2309	int status;
2310
2311	if (!vsi)
2312		return -EINVAL;
2313
2314	pf = vsi->back;
2315	dev = &pf->pdev->dev;
2316	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2317	if (!ctxt)
2318		return -ENOMEM;
2319
2320	ctxt->info = vsi->info;
2321
2322	if (ena) {
2323		ctxt->info.sec_flags |=
2324			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2325			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2326		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2327	} else {
2328		ctxt->info.sec_flags &=
2329			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2330			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2331		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2332	}
2333
2334	if (!vlan_promisc)
2335		ctxt->info.valid_sections =
2336			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2337				    ICE_AQ_VSI_PROP_SW_VALID);
2338
2339	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2340	if (status) {
2341		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2342			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2343			   pf->hw.adminq.sq_last_status);
2344		goto err_out;
2345	}
2346
2347	vsi->info.sec_flags = ctxt->info.sec_flags;
2348	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2349
2350	devm_kfree(dev, ctxt);
2351	return 0;
2352
2353err_out:
2354	devm_kfree(dev, ctxt);
2355	return -EIO;
2356}
2357
2358static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2359{
2360	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
 
 
 
 
2361
2362	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2363	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2364}
2365
2366/**
2367 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2368 * @vsi: VSI to set the q_vectors register index on
 
 
2369 */
2370static int
2371ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2372{
2373	u16 i;
2374
2375	if (!vsi || !vsi->q_vectors)
2376		return -EINVAL;
2377
2378	ice_for_each_q_vector(vsi, i) {
2379		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2380
2381		if (!q_vector) {
2382			dev_err(&vsi->back->pdev->dev,
2383				"Failed to set reg_idx on q_vector %d VSI %d\n",
2384				i, vsi->vsi_num);
2385			goto clear_reg_idx;
2386		}
2387
2388		if (vsi->type == ICE_VSI_VF) {
2389			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2390
2391			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
 
 
 
 
 
 
2392		} else {
2393			q_vector->reg_idx =
2394				q_vector->v_idx + vsi->base_vector;
2395		}
2396	}
2397
2398	return 0;
2399
2400clear_reg_idx:
2401	ice_for_each_q_vector(vsi, i) {
2402		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2403
2404		if (q_vector)
2405			q_vector->reg_idx = 0;
2406	}
2407
2408	return -EINVAL;
2409}
2410
2411/**
2412 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2413 * @vsi: the VSI being configured
2414 * @add_rule: boolean value to add or remove ethertype filter rule
 
 
2415 */
2416static void
2417ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2418{
2419	struct ice_fltr_list_entry *list;
 
 
 
 
 
2420	struct ice_pf *pf = vsi->back;
2421	LIST_HEAD(tmp_add_list);
2422	enum ice_status status;
2423
2424	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2425	if (!list)
 
 
 
 
 
2426		return;
2427
2428	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2429	list->fltr_info.fltr_act = ICE_DROP_PACKET;
2430	list->fltr_info.flag = ICE_FLTR_TX;
2431	list->fltr_info.src_id = ICE_SRC_ID_VSI;
2432	list->fltr_info.vsi_handle = vsi->idx;
2433	list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434
2435	INIT_LIST_HEAD(&list->list_entry);
2436	list_add(&list->list_entry, &tmp_add_list);
 
 
 
 
 
 
 
 
2437
2438	if (add_rule)
2439		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2440	else
2441		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
 
 
2442
2443	if (status)
2444		dev_err(&pf->pdev->dev,
2445			"Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2446			vsi->vsi_num, status);
 
 
 
 
 
2447
2448	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2449}
2450
2451/**
2452 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2453 * @vsi: the VSI being configured
2454 * @tx: bool to determine Tx or Rx rule
2455 * @create: bool to determine create or remove Rule
2456 */
2457void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2458{
2459	struct ice_fltr_list_entry *list;
2460	struct ice_pf *pf = vsi->back;
2461	LIST_HEAD(tmp_add_list);
2462	enum ice_status status;
 
2463
2464	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2465	if (!list)
 
 
 
 
2466		return;
 
2467
2468	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2469	list->fltr_info.vsi_handle = vsi->idx;
2470	list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2471
2472	if (tx) {
2473		list->fltr_info.fltr_act = ICE_DROP_PACKET;
2474		list->fltr_info.flag = ICE_FLTR_TX;
2475		list->fltr_info.src_id = ICE_SRC_ID_VSI;
2476	} else {
2477		list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2478		list->fltr_info.flag = ICE_FLTR_RX;
2479		list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2480	}
2481
2482	INIT_LIST_HEAD(&list->list_entry);
2483	list_add(&list->list_entry, &tmp_add_list);
 
 
 
2484
2485	if (create)
2486		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2487	else
2488		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2489
2490	if (status)
2491		dev_err(&pf->pdev->dev,
2492			"Fail %s %s LLDP rule on VSI %i error: %d\n",
2493			create ? "adding" : "removing", tx ? "TX" : "RX",
2494			vsi->vsi_num, status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2495
2496	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2497}
2498
2499/**
2500 * ice_vsi_setup - Set up a VSI by a given type
2501 * @pf: board private structure
2502 * @pi: pointer to the port_info instance
2503 * @type: VSI type
2504 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2505 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2506 *         fill-in ICE_INVAL_VFID as input.
2507 *
2508 * This allocates the sw VSI structure and its queue resources.
2509 *
2510 * Returns pointer to the successfully allocated and configured VSI sw struct on
2511 * success, NULL on failure.
2512 */
2513struct ice_vsi *
2514ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2515	      enum ice_vsi_type type, u16 vf_id)
2516{
2517	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2518	struct device *dev = &pf->pdev->dev;
2519	enum ice_status status;
2520	struct ice_vsi *vsi;
2521	int ret, i;
2522
2523	if (type == ICE_VSI_VF)
2524		vsi = ice_vsi_alloc(pf, type, vf_id);
2525	else
2526		vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2527
2528	if (!vsi) {
2529		dev_err(dev, "could not allocate VSI\n");
2530		return NULL;
2531	}
2532
2533	vsi->port_info = pi;
2534	vsi->vsw = pf->first_sw;
2535	if (vsi->type == ICE_VSI_PF)
2536		vsi->ethtype = ETH_P_PAUSE;
2537
2538	if (vsi->type == ICE_VSI_VF)
2539		vsi->vf_id = vf_id;
2540
2541	if (ice_vsi_get_qs(vsi)) {
 
2542		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2543			vsi->idx);
2544		goto unroll_get_qs;
2545	}
2546
2547	/* set RSS capabilities */
2548	ice_vsi_set_rss_params(vsi);
2549
2550	/* set TC configuration */
2551	ice_vsi_set_tc_cfg(vsi);
2552
2553	/* create the VSI */
2554	ret = ice_vsi_init(vsi);
2555	if (ret)
2556		goto unroll_get_qs;
2557
 
 
2558	switch (vsi->type) {
 
 
2559	case ICE_VSI_PF:
2560		ret = ice_vsi_alloc_q_vectors(vsi);
2561		if (ret)
2562			goto unroll_vsi_init;
2563
2564		ret = ice_vsi_setup_vector_base(vsi);
2565		if (ret)
2566			goto unroll_alloc_q_vector;
2567
2568		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2569		if (ret)
2570			goto unroll_vector_base;
2571
2572		ret = ice_vsi_alloc_rings(vsi);
2573		if (ret)
2574			goto unroll_vector_base;
2575
2576		ice_vsi_map_rings_to_vectors(vsi);
2577
2578		/* Do not exit if configuring RSS had an issue, at least
2579		 * receive traffic on first queue. Hence no need to capture
2580		 * return value
2581		 */
2582		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583			ice_vsi_cfg_rss_lut_key(vsi);
 
 
2584		break;
2585	case ICE_VSI_VF:
2586		/* VF driver will take care of creating netdev for this type and
2587		 * map queues to vectors through Virtchnl, PF driver only
2588		 * creates a VSI and corresponding structures for bookkeeping
2589		 * purpose
2590		 */
2591		ret = ice_vsi_alloc_q_vectors(vsi);
2592		if (ret)
2593			goto unroll_vsi_init;
2594
2595		ret = ice_vsi_alloc_rings(vsi);
2596		if (ret)
2597			goto unroll_alloc_q_vector;
2598
2599		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2600		if (ret)
2601			goto unroll_vector_base;
2602
 
 
2603		/* Do not exit if configuring RSS had an issue, at least
2604		 * receive traffic on first queue. Hence no need to capture
2605		 * return value
2606		 */
2607		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2608			ice_vsi_cfg_rss_lut_key(vsi);
 
 
2609		break;
2610	case ICE_VSI_LB:
2611		ret = ice_vsi_alloc_rings(vsi);
2612		if (ret)
2613			goto unroll_vsi_init;
 
 
 
 
 
2614		break;
2615	default:
2616		/* clean up the resources and exit */
 
2617		goto unroll_vsi_init;
2618	}
2619
2620	/* configure VSI nodes based on number of queues and TC's */
2621	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2622		max_txqs[i] = vsi->alloc_txq;
2623
2624	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2625				 max_txqs);
2626	if (status) {
2627		dev_err(&pf->pdev->dev,
2628			"VSI %d failed lan queue config, error %d\n",
2629			vsi->vsi_num, status);
2630		goto unroll_vector_base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631	}
2632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2634	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636	 * The rule is added once for PF VSI in order to create appropriate
2637	 * recipe, since VSI/VSI list is ignored with drop action...
2638	 * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2639	 * need to be dropped so that VFs cannot send LLDP packets to reconfig
2640	 * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2641	 * then Rx LLDP packets need to be redirected up the stack.
2642	 */
2643	if (!ice_is_safe_mode(pf)) {
2644		if (vsi->type == ICE_VSI_PF) {
2645			ice_vsi_add_rem_eth_mac(vsi, true);
2646
2647			/* Tx LLDP packets */
2648			ice_cfg_sw_lldp(vsi, true, true);
2649
2650			/* Rx LLDP packets */
2651			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2652				ice_cfg_sw_lldp(vsi, false, true);
2653		}
2654	}
2655
 
 
 
2656	return vsi;
2657
2658unroll_vector_base:
2659	/* reclaim SW interrupts back to the common pool */
2660	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2661	pf->num_avail_sw_msix += vsi->num_q_vectors;
2662unroll_alloc_q_vector:
2663	ice_vsi_free_q_vectors(vsi);
2664unroll_vsi_init:
2665	ice_vsi_delete(vsi);
2666unroll_get_qs:
2667	ice_vsi_put_qs(vsi);
2668	ice_vsi_clear(vsi);
2669
2670	return NULL;
2671}
2672
2673/**
2674 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675 * @vsi: the VSI being cleaned up
2676 */
2677static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678{
2679	struct ice_pf *pf = vsi->back;
2680	struct ice_hw *hw = &pf->hw;
2681	u32 txq = 0;
2682	u32 rxq = 0;
2683	int i, q;
2684
2685	for (i = 0; i < vsi->num_q_vectors; i++) {
2686		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687		u16 reg_idx = q_vector->reg_idx;
2688
2689		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2690		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2691		for (q = 0; q < q_vector->num_ring_tx; q++) {
 
2692			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
 
 
 
 
 
2693			txq++;
2694		}
2695
2696		for (q = 0; q < q_vector->num_ring_rx; q++) {
 
2697			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2698			rxq++;
2699		}
2700	}
2701
2702	ice_flush(hw);
2703}
2704
2705/**
2706 * ice_vsi_free_irq - Free the IRQ association with the OS
2707 * @vsi: the VSI being configured
2708 */
2709void ice_vsi_free_irq(struct ice_vsi *vsi)
2710{
2711	struct ice_pf *pf = vsi->back;
2712	int base = vsi->base_vector;
2713	int i;
2714
2715	if (!vsi->q_vectors || !vsi->irqs_ready)
2716		return;
2717
2718	ice_vsi_release_msix(vsi);
2719	if (vsi->type == ICE_VSI_VF)
2720		return;
2721
2722	vsi->irqs_ready = false;
 
 
2723	ice_for_each_q_vector(vsi, i) {
2724		u16 vector = i + base;
2725		int irq_num;
2726
2727		irq_num = pf->msix_entries[vector].vector;
2728
2729		/* free only the irqs that were actually requested */
2730		if (!vsi->q_vectors[i] ||
2731		    !(vsi->q_vectors[i]->num_ring_tx ||
2732		      vsi->q_vectors[i]->num_ring_rx))
2733			continue;
2734
2735		/* clear the affinity notifier in the IRQ descriptor */
2736		irq_set_affinity_notifier(irq_num, NULL);
 
2737
2738		/* clear the affinity_mask in the IRQ descriptor */
2739		irq_set_affinity_hint(irq_num, NULL);
2740		synchronize_irq(irq_num);
2741		devm_free_irq(&pf->pdev->dev, irq_num,
2742			      vsi->q_vectors[i]);
2743	}
2744}
2745
2746/**
2747 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2748 * @vsi: the VSI having resources freed
2749 */
2750void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2751{
2752	int i;
2753
2754	if (!vsi->tx_rings)
2755		return;
2756
2757	ice_for_each_txq(vsi, i)
2758		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2759			ice_free_tx_ring(vsi->tx_rings[i]);
2760}
2761
2762/**
2763 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2764 * @vsi: the VSI having resources freed
2765 */
2766void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2767{
2768	int i;
2769
2770	if (!vsi->rx_rings)
2771		return;
2772
2773	ice_for_each_rxq(vsi, i)
2774		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2775			ice_free_rx_ring(vsi->rx_rings[i]);
2776}
2777
2778/**
2779 * ice_vsi_close - Shut down a VSI
2780 * @vsi: the VSI being shut down
2781 */
2782void ice_vsi_close(struct ice_vsi *vsi)
2783{
2784	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2785		ice_down(vsi);
2786
2787	ice_vsi_free_irq(vsi);
2788	ice_vsi_free_tx_rings(vsi);
2789	ice_vsi_free_rx_rings(vsi);
2790}
2791
2792/**
2793 * ice_free_res - free a block of resources
2794 * @res: pointer to the resource
2795 * @index: starting index previously returned by ice_get_res
2796 * @id: identifier to track owner
2797 *
2798 * Returns number of resources freed
2799 */
2800int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2801{
2802	int count = 0;
2803	int i;
2804
2805	if (!res || index >= res->end)
2806		return -EINVAL;
 
 
 
 
 
 
 
 
 
2807
2808	id |= ICE_RES_VALID_BIT;
2809	for (i = index; i < res->end && res->list[i] == id; i++) {
2810		res->list[i] = 0;
2811		count++;
 
2812	}
2813
2814	return count;
2815}
2816
2817/**
2818 * ice_search_res - Search the tracker for a block of resources
2819 * @res: pointer to the resource
2820 * @needed: size of the block needed
2821 * @id: identifier to track owner
2822 *
2823 * Returns the base item index of the block, or -ENOMEM for error
2824 */
2825static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2826{
2827	int start = 0, end = 0;
2828
2829	if (needed > res->end)
2830		return -ENOMEM;
2831
2832	id |= ICE_RES_VALID_BIT;
2833
2834	do {
2835		/* skip already allocated entries */
2836		if (res->list[end++] & ICE_RES_VALID_BIT) {
2837			start = end;
2838			if ((start + needed) > res->end)
2839				break;
2840		}
2841
2842		if (end == (start + needed)) {
2843			int i = start;
 
 
2844
2845			/* there was enough, so assign it to the requestor */
2846			while (i != end)
2847				res->list[i++] = id;
2848
2849			return start;
 
 
 
2850		}
2851	} while (end < res->end);
2852
2853	return -ENOMEM;
2854}
2855
2856/**
2857 * ice_get_res - get a block of resources
2858 * @pf: board private structure
2859 * @res: pointer to the resource
2860 * @needed: size of the block needed
2861 * @id: identifier to track owner
2862 *
2863 * Returns the base item index of the block, or negative for error
2864 */
2865int
2866ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2867{
2868	if (!res || !pf)
2869		return -EINVAL;
2870
2871	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2872		dev_err(&pf->pdev->dev,
2873			"param err: needed=%d, num_entries = %d id=0x%04x\n",
2874			needed, res->num_entries, id);
2875		return -EINVAL;
2876	}
2877
2878	return ice_search_res(res, needed, id);
2879}
2880
2881/**
2882 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2883 * @vsi: the VSI being un-configured
2884 */
2885void ice_vsi_dis_irq(struct ice_vsi *vsi)
2886{
2887	int base = vsi->base_vector;
2888	struct ice_pf *pf = vsi->back;
2889	struct ice_hw *hw = &pf->hw;
2890	u32 val;
2891	int i;
2892
2893	/* disable interrupt causation from each queue */
2894	if (vsi->tx_rings) {
2895		ice_for_each_txq(vsi, i) {
2896			if (vsi->tx_rings[i]) {
2897				u16 reg;
2898
2899				reg = vsi->tx_rings[i]->reg_idx;
2900				val = rd32(hw, QINT_TQCTL(reg));
2901				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2902				wr32(hw, QINT_TQCTL(reg), val);
2903			}
2904		}
2905	}
2906
2907	if (vsi->rx_rings) {
2908		ice_for_each_rxq(vsi, i) {
2909			if (vsi->rx_rings[i]) {
2910				u16 reg;
2911
2912				reg = vsi->rx_rings[i]->reg_idx;
2913				val = rd32(hw, QINT_RQCTL(reg));
2914				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2915				wr32(hw, QINT_RQCTL(reg), val);
2916			}
2917		}
2918	}
2919
2920	/* disable each interrupt */
2921	ice_for_each_q_vector(vsi, i) {
2922		if (!vsi->q_vectors[i])
2923			continue;
2924		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2925	}
2926
2927	ice_flush(hw);
2928
2929	/* don't call synchronize_irq() for VF's from the host */
2930	if (vsi->type == ICE_VSI_VF)
2931		return;
2932
2933	ice_for_each_q_vector(vsi, i)
2934		synchronize_irq(pf->msix_entries[i + base].vector);
2935}
2936
2937/**
2938 * ice_napi_del - Remove NAPI handler for the VSI
2939 * @vsi: VSI for which NAPI handler is to be removed
 
 
 
 
 
 
2940 */
2941void ice_napi_del(struct ice_vsi *vsi)
 
 
 
2942{
2943	int v_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2944
2945	if (!vsi->netdev)
2946		return;
2947
2948	ice_for_each_q_vector(vsi, v_idx)
2949		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2950}
2951
2952/**
2953 * ice_vsi_release - Delete a VSI and free its resources
2954 * @vsi: the VSI being removed
2955 *
2956 * Returns 0 on success or < 0 on error
2957 */
2958int ice_vsi_release(struct ice_vsi *vsi)
2959{
2960	struct ice_pf *pf;
2961
2962	if (!vsi->back)
2963		return -ENODEV;
2964	pf = vsi->back;
2965
2966	/* do not unregister while driver is in the reset recovery pending
2967	 * state. Since reset/rebuild happens through PF service task workqueue,
2968	 * it's not a good idea to unregister netdev that is associated to the
2969	 * PF that is running the work queue items currently. This is done to
2970	 * avoid check_flush_dependency() warning on this wq
2971	 */
2972	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2973		unregister_netdev(vsi->netdev);
2974
2975	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976		ice_rss_clean(vsi);
2977
2978	/* Disable VSI and free resources */
2979	if (vsi->type != ICE_VSI_LB)
2980		ice_vsi_dis_irq(vsi);
2981	ice_vsi_close(vsi);
 
2982
2983	/* SR-IOV determines needed MSIX resources all at once instead of per
2984	 * VSI since when VFs are spawned we know how many VFs there are and how
2985	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2986	 * cleared in the same manner.
2987	 */
2988	if (vsi->type != ICE_VSI_VF) {
2989		/* reclaim SW interrupts back to the common pool */
2990		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2991		pf->num_avail_sw_msix += vsi->num_q_vectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992	}
2993
2994	if (!ice_is_safe_mode(pf)) {
2995		if (vsi->type == ICE_VSI_PF) {
2996			ice_vsi_add_rem_eth_mac(vsi, false);
2997			ice_cfg_sw_lldp(vsi, true, false);
2998			/* The Rx rule will only exist to remove if the LLDP FW
2999			 * engine is currently stopped
3000			 */
3001			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002				ice_cfg_sw_lldp(vsi, false, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3003		}
 
 
 
3004	}
3005
3006	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
3007	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3008	ice_vsi_delete(vsi);
3009	ice_vsi_free_q_vectors(vsi);
 
 
 
 
 
 
 
 
 
3010
3011	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
3012	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
3013		free_netdev(vsi->netdev);
3014		vsi->netdev = NULL;
3015	}
 
3016
3017	ice_vsi_clear_rings(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3018
3019	ice_vsi_put_qs(vsi);
3020
3021	/* retain SW VSI data structure since it is needed to unregister and
3022	 * free VSI netdev when PF is not in reset recovery pending state,\
3023	 * for ex: during rmmod.
3024	 */
3025	if (!ice_is_reset_in_progress(pf->state))
3026		ice_vsi_clear(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3027
3028	return 0;
3029}
3030
3031/**
3032 * ice_vsi_rebuild - Rebuild VSI after reset
3033 * @vsi: VSI to be rebuild
 
 
 
 
3034 *
3035 * Returns 0 on success and negative value on failure
3036 */
3037int ice_vsi_rebuild(struct ice_vsi *vsi)
3038{
3039	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3040	struct ice_vf *vf = NULL;
3041	enum ice_status status;
3042	struct ice_pf *pf;
3043	int ret, i;
3044
3045	if (!vsi)
3046		return -EINVAL;
3047
3048	pf = vsi->back;
3049	if (vsi->type == ICE_VSI_VF)
3050		vf = &pf->vf[vsi->vf_id];
3051
3052	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3053	ice_vsi_free_q_vectors(vsi);
3054
3055	/* SR-IOV determines needed MSIX resources all at once instead of per
3056	 * VSI since when VFs are spawned we know how many VFs there are and how
3057	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3058	 * cleared in the same manner.
3059	 */
3060	if (vsi->type != ICE_VSI_VF) {
3061		/* reclaim SW interrupts back to the common pool */
3062		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3063		pf->num_avail_sw_msix += vsi->num_q_vectors;
3064		vsi->base_vector = 0;
3065	}
3066
3067	ice_vsi_put_qs(vsi);
3068	ice_vsi_clear_rings(vsi);
3069	ice_vsi_free_arrays(vsi);
3070	ice_dev_onetime_setup(&pf->hw);
3071	if (vsi->type == ICE_VSI_VF)
3072		ice_vsi_set_num_qs(vsi, vf->vf_id);
3073	else
3074		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3075
3076	ret = ice_vsi_alloc_arrays(vsi);
3077	if (ret < 0)
3078		goto err_vsi;
3079
3080	ice_vsi_get_qs(vsi);
3081	ice_vsi_set_tc_cfg(vsi);
3082
3083	/* Initialize VSI struct elements and create VSI in FW */
3084	ret = ice_vsi_init(vsi);
3085	if (ret < 0)
3086		goto err_vsi;
3087
3088
3089	switch (vsi->type) {
3090	case ICE_VSI_PF:
3091		ret = ice_vsi_alloc_q_vectors(vsi);
3092		if (ret)
3093			goto err_rings;
3094
3095		ret = ice_vsi_setup_vector_base(vsi);
3096		if (ret)
3097			goto err_vectors;
3098
3099		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3100		if (ret)
3101			goto err_vectors;
 
3102
3103		ret = ice_vsi_alloc_rings(vsi);
3104		if (ret)
3105			goto err_vectors;
3106
3107		ice_vsi_map_rings_to_vectors(vsi);
3108		/* Do not exit if configuring RSS had an issue, at least
3109		 * receive traffic on first queue. Hence no need to capture
3110		 * return value
3111		 */
3112		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3113			ice_vsi_cfg_rss_lut_key(vsi);
3114		break;
3115	case ICE_VSI_VF:
3116		ret = ice_vsi_alloc_q_vectors(vsi);
3117		if (ret)
3118			goto err_rings;
3119
3120		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3121		if (ret)
3122			goto err_vectors;
 
3123
3124		ret = ice_vsi_alloc_rings(vsi);
3125		if (ret)
3126			goto err_vectors;
 
 
 
3127
3128		break;
3129	default:
3130		break;
3131	}
3132
3133	/* configure VSI nodes based on number of queues and TC's */
3134	for (i = 0; i < vsi->tc_cfg.numtc; i++)
3135		max_txqs[i] = vsi->alloc_txq;
3136
3137	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3138				 max_txqs);
3139	if (status) {
3140		dev_err(&pf->pdev->dev,
3141			"VSI %d failed lan queue config, error %d\n",
3142			vsi->vsi_num, status);
3143		goto err_vectors;
3144	}
3145	return 0;
3146
3147err_vectors:
3148	ice_vsi_free_q_vectors(vsi);
3149err_rings:
3150	if (vsi->netdev) {
3151		vsi->current_netdev_flags = 0;
3152		unregister_netdev(vsi->netdev);
3153		free_netdev(vsi->netdev);
3154		vsi->netdev = NULL;
3155	}
3156err_vsi:
3157	ice_vsi_clear(vsi);
3158	set_bit(__ICE_RESET_FAILED, pf->state);
3159	return ret;
3160}
3161
3162/**
3163 * ice_is_reset_in_progress - check for a reset in progress
3164 * @state: PF state field
3165 */
3166bool ice_is_reset_in_progress(unsigned long *state)
3167{
3168	return test_bit(__ICE_RESET_OICR_RECV, state) ||
3169	       test_bit(__ICE_PFR_REQ, state) ||
3170	       test_bit(__ICE_CORER_REQ, state) ||
3171	       test_bit(__ICE_GLOBR_REQ, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172}
3173
3174#ifdef CONFIG_DCB
3175/**
3176 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3177 * @vsi: VSI being configured
3178 * @ctx: the context buffer returned from AQ VSI update command
3179 */
3180static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3181{
3182	vsi->info.mapping_flags = ctx->info.mapping_flags;
3183	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3184	       sizeof(vsi->info.q_mapping));
3185	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3186	       sizeof(vsi->info.tc_mapping));
3187}
3188
3189/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3191 * @vsi: VSI to be configured
3192 * @ena_tc: TC bitmap
3193 *
3194 * VSI queues expected to be quiesced before calling this function
3195 */
3196int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3197{
3198	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3199	struct ice_vsi_ctx *ctx;
3200	struct ice_pf *pf = vsi->back;
3201	enum ice_status status;
 
 
3202	int i, ret = 0;
3203	u8 num_tc = 0;
3204
 
 
 
 
 
3205	ice_for_each_traffic_class(i) {
3206		/* build bitmap of enabled TCs */
3207		if (ena_tc & BIT(i))
3208			num_tc++;
3209		/* populate max_txqs per TC */
3210		max_txqs[i] = vsi->alloc_txq;
 
 
 
 
 
 
3211	}
3212
 
3213	vsi->tc_cfg.ena_tc = ena_tc;
3214	vsi->tc_cfg.numtc = num_tc;
3215
3216	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3217	if (!ctx)
3218		return -ENOMEM;
3219
3220	ctx->vf_num = 0;
3221	ctx->info = vsi->info;
3222
3223	ice_vsi_setup_q_map(vsi, ctx);
 
 
 
 
 
 
 
 
 
3224
3225	/* must to indicate which section of VSI context are being modified */
3226	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3227	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3228	if (status) {
3229		dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3230		ret = -EIO;
3231		goto out;
3232	}
3233
3234	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3235				 max_txqs);
 
 
 
 
3236
3237	if (status) {
3238		dev_err(&pf->pdev->dev,
3239			"VSI %d failed TC config, error %d\n",
3240			vsi->vsi_num, status);
3241		ret = -EIO;
3242		goto out;
3243	}
3244	ice_vsi_update_q_map(vsi, ctx);
3245	vsi->info.valid_sections = 0;
3246
3247	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3248out:
3249	devm_kfree(&pf->pdev->dev, ctx);
3250	return ret;
3251}
3252#endif /* CONFIG_DCB */
3253
3254/**
3255 * ice_nvm_version_str - format the NVM version strings
3256 * @hw: ptr to the hardware info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257 */
3258char *ice_nvm_version_str(struct ice_hw *hw)
3259{
3260	u8 oem_ver, oem_patch, ver_hi, ver_lo;
3261	static char buf[ICE_NVM_VER_LEN];
3262	u16 oem_build;
3263
3264	ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
3265			    &ver_lo);
 
 
 
 
 
 
 
 
 
 
3266
3267	snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo,
3268		 hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
3269
3270	return buf;
3271}
3272
3273/**
3274 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
3275 * @vsi: the VSI being configured MAC filter
3276 * @macaddr: the MAC address to be added.
3277 * @set: Add or delete a MAC filter
3278 *
3279 * Adds or removes MAC address filter entry for VF VSI
 
 
3280 */
3281enum ice_status
3282ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set)
3283{
3284	LIST_HEAD(tmp_add_list);
3285	enum ice_status status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3286
3287	 /* Update MAC filter list to be added or removed for a VSI */
3288	if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) {
3289		status = ICE_ERR_NO_MEMORY;
3290		goto cfg_mac_fltr_exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3291	}
3292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293	if (set)
3294		status = ice_add_mac(&vsi->back->hw, &tmp_add_list);
3295	else
3296		status = ice_remove_mac(&vsi->back->hw, &tmp_add_list);
3297
3298cfg_mac_fltr_exit:
3299	ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list);
3300	return status;
 
 
3301}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_base.h"
   6#include "ice_flow.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_devlink.h"
  11#include "ice_vsi_vlan_ops.h"
  12
  13/**
  14 * ice_vsi_type_str - maps VSI type enum to string equivalents
  15 * @vsi_type: VSI type enum
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  16 */
  17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
 
  18{
  19	switch (vsi_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20	case ICE_VSI_PF:
  21		return "ICE_VSI_PF";
 
  22	case ICE_VSI_VF:
  23		return "ICE_VSI_VF";
  24	case ICE_VSI_CTRL:
  25		return "ICE_VSI_CTRL";
  26	case ICE_VSI_CHNL:
  27		return "ICE_VSI_CHNL";
  28	case ICE_VSI_LB:
  29		return "ICE_VSI_LB";
  30	case ICE_VSI_SWITCHDEV_CTRL:
  31		return "ICE_VSI_SWITCHDEV_CTRL";
  32	default:
  33		return "unknown";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34	}
 
 
  35}
  36
  37/**
  38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
  39 * @vsi: the VSI being configured
  40 * @ena: start or stop the Rx rings
  41 *
  42 * First enable/disable all of the Rx rings, flush any remaining writes, and
  43 * then verify that they have all been enabled/disabled successfully. This will
  44 * let all of the register writes complete when enabling/disabling the Rx rings
  45 * before waiting for the change in hardware to complete.
  46 */
  47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
 
 
 
  48{
 
 
 
  49	int ret = 0;
  50	u16 i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52	ice_for_each_rxq(vsi, i)
  53		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
  54
  55	ice_flush(&vsi->back->hw);
 
 
 
 
 
 
 
  56
  57	ice_for_each_rxq(vsi, i) {
  58		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
  59		if (ret)
  60			break;
  61	}
  62
  63	return ret;
  64}
  65
  66/**
  67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
  68 * @vsi: VSI pointer
  69 *
  70 * On error: returns error code (negative)
  71 * On success: returns 0
  72 */
  73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
  74{
  75	struct ice_pf *pf = vsi->back;
  76	struct device *dev;
  77
  78	dev = ice_pf_to_dev(pf);
  79	if (vsi->type == ICE_VSI_CHNL)
  80		return 0;
  81
  82	/* allocate memory for both Tx and Rx ring pointers */
  83	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
  84				     sizeof(*vsi->tx_rings), GFP_KERNEL);
  85	if (!vsi->tx_rings)
  86		return -ENOMEM;
  87
  88	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
  89				     sizeof(*vsi->rx_rings), GFP_KERNEL);
  90	if (!vsi->rx_rings)
  91		goto err_rings;
  92
  93	/* txq_map needs to have enough space to track both Tx (stack) rings
  94	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
  95	 * so use num_possible_cpus() as we want to always provide XDP ring
  96	 * per CPU, regardless of queue count settings from user that might
  97	 * have come from ethtool's set_channels() callback;
  98	 */
  99	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
 100				    sizeof(*vsi->txq_map), GFP_KERNEL);
 101
 102	if (!vsi->txq_map)
 103		goto err_txq_map;
 104
 105	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
 106				    sizeof(*vsi->rxq_map), GFP_KERNEL);
 107	if (!vsi->rxq_map)
 108		goto err_rxq_map;
 109
 
 110	/* There is no need to allocate q_vectors for a loopback VSI. */
 111	if (vsi->type == ICE_VSI_LB)
 112		return 0;
 113
 114	/* allocate memory for q_vector pointers */
 115	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
 116				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 117	if (!vsi->q_vectors)
 118		goto err_vectors;
 119
 120	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
 121	if (!vsi->af_xdp_zc_qps)
 122		goto err_zc_qps;
 123
 124	return 0;
 125
 126err_zc_qps:
 127	devm_kfree(dev, vsi->q_vectors);
 128err_vectors:
 129	devm_kfree(dev, vsi->rxq_map);
 130err_rxq_map:
 131	devm_kfree(dev, vsi->txq_map);
 132err_txq_map:
 133	devm_kfree(dev, vsi->rx_rings);
 134err_rings:
 135	devm_kfree(dev, vsi->tx_rings);
 136	return -ENOMEM;
 137}
 138
 139/**
 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 141 * @vsi: the VSI being configured
 142 */
 143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 144{
 145	switch (vsi->type) {
 146	case ICE_VSI_PF:
 147	case ICE_VSI_SWITCHDEV_CTRL:
 148	case ICE_VSI_CTRL:
 149	case ICE_VSI_LB:
 150		/* a user could change the values of num_[tr]x_desc using
 151		 * ethtool -G so we should keep those values instead of
 152		 * overwriting them with the defaults.
 153		 */
 154		if (!vsi->num_rx_desc)
 155			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 156		if (!vsi->num_tx_desc)
 157			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 158		break;
 159	default:
 160		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 
 161			vsi->type);
 162		break;
 163	}
 164}
 165
 166/**
 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 168 * @vsi: the VSI being configured
 
 169 *
 170 * Return 0 on success and a negative value on error
 171 */
 172static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
 173{
 174	enum ice_vsi_type vsi_type = vsi->type;
 175	struct ice_pf *pf = vsi->back;
 176	struct ice_vf *vf = vsi->vf;
 177
 178	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
 179		return;
 180
 181	switch (vsi_type) {
 182	case ICE_VSI_PF:
 183		if (vsi->req_txq) {
 184			vsi->alloc_txq = vsi->req_txq;
 185			vsi->num_txq = vsi->req_txq;
 186		} else {
 187			vsi->alloc_txq = min3(pf->num_lan_msix,
 188					      ice_get_avail_txq_count(pf),
 189					      (u16)num_online_cpus());
 190		}
 191
 192		pf->num_lan_tx = vsi->alloc_txq;
 193
 194		/* only 1 Rx queue unless RSS is enabled */
 195		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 196			vsi->alloc_rxq = 1;
 197		} else {
 198			if (vsi->req_rxq) {
 199				vsi->alloc_rxq = vsi->req_rxq;
 200				vsi->num_rxq = vsi->req_rxq;
 201			} else {
 202				vsi->alloc_rxq = min3(pf->num_lan_msix,
 203						      ice_get_avail_rxq_count(pf),
 204						      (u16)num_online_cpus());
 205			}
 206		}
 207
 208		pf->num_lan_rx = vsi->alloc_rxq;
 209
 210		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
 211					   max_t(int, vsi->alloc_rxq,
 212						 vsi->alloc_txq));
 213		break;
 214	case ICE_VSI_SWITCHDEV_CTRL:
 215		/* The number of queues for ctrl VSI is equal to number of PRs
 216		 * Each ring is associated to the corresponding VF_PR netdev.
 217		 * Tx and Rx rings are always equal
 218		 */
 219		if (vsi->req_txq && vsi->req_rxq) {
 220			vsi->alloc_txq = vsi->req_txq;
 221			vsi->alloc_rxq = vsi->req_rxq;
 222		} else {
 223			vsi->alloc_txq = 1;
 224			vsi->alloc_rxq = 1;
 225		}
 226
 227		vsi->num_q_vectors = 1;
 228		break;
 229	case ICE_VSI_VF:
 230		if (vf->num_req_qs)
 231			vf->num_vf_qs = vf->num_req_qs;
 232		vsi->alloc_txq = vf->num_vf_qs;
 233		vsi->alloc_rxq = vf->num_vf_qs;
 234		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
 235		 * data queue interrupts). Since vsi->num_q_vectors is number
 236		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 237		 * original vector count
 238		 */
 239		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
 240		break;
 241	case ICE_VSI_CTRL:
 242		vsi->alloc_txq = 1;
 243		vsi->alloc_rxq = 1;
 244		vsi->num_q_vectors = 1;
 245		break;
 246	case ICE_VSI_CHNL:
 247		vsi->alloc_txq = 0;
 248		vsi->alloc_rxq = 0;
 249		break;
 250	case ICE_VSI_LB:
 251		vsi->alloc_txq = 1;
 252		vsi->alloc_rxq = 1;
 253		break;
 254	default:
 255		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
 256		break;
 257	}
 258
 259	ice_vsi_set_num_desc(vsi);
 260}
 261
 262/**
 263 * ice_get_free_slot - get the next non-NULL location index in array
 264 * @array: array to search
 265 * @size: size of the array
 266 * @curr: last known occupied index to be used as a search hint
 267 *
 268 * void * is being used to keep the functionality generic. This lets us use this
 269 * function on any array of pointers.
 270 */
 271static int ice_get_free_slot(void *array, int size, int curr)
 272{
 273	int **tmp_array = (int **)array;
 274	int next;
 275
 276	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 277		next = curr + 1;
 278	} else {
 279		int i = 0;
 280
 281		while ((i < size) && (tmp_array[i]))
 282			i++;
 283		if (i == size)
 284			next = ICE_NO_VSI;
 285		else
 286			next = i;
 287	}
 288	return next;
 289}
 290
 291/**
 292 * ice_vsi_delete_from_hw - delete a VSI from the switch
 293 * @vsi: pointer to VSI being removed
 294 */
 295static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
 296{
 297	struct ice_pf *pf = vsi->back;
 298	struct ice_vsi_ctx *ctxt;
 299	int status;
 300
 301	ice_fltr_remove_all(vsi);
 302	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 303	if (!ctxt)
 304		return;
 305
 306	if (vsi->type == ICE_VSI_VF)
 307		ctxt->vf_num = vsi->vf->vf_id;
 308	ctxt->vsi_num = vsi->vsi_num;
 309
 310	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 311
 312	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 313	if (status)
 314		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
 315			vsi->vsi_num, status);
 316
 317	kfree(ctxt);
 318}
 319
 320/**
 321 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 322 * @vsi: pointer to VSI being cleared
 323 */
 324static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 325{
 326	struct ice_pf *pf = vsi->back;
 327	struct device *dev;
 328
 329	dev = ice_pf_to_dev(pf);
 330
 331	bitmap_free(vsi->af_xdp_zc_qps);
 332	vsi->af_xdp_zc_qps = NULL;
 333	/* free the ring and vector containers */
 334	devm_kfree(dev, vsi->q_vectors);
 335	vsi->q_vectors = NULL;
 336	devm_kfree(dev, vsi->tx_rings);
 337	vsi->tx_rings = NULL;
 338	devm_kfree(dev, vsi->rx_rings);
 339	vsi->rx_rings = NULL;
 340	devm_kfree(dev, vsi->txq_map);
 341	vsi->txq_map = NULL;
 342	devm_kfree(dev, vsi->rxq_map);
 343	vsi->rxq_map = NULL;
 344}
 345
 346/**
 347 * ice_vsi_free_stats - Free the ring statistics structures
 348 * @vsi: VSI pointer
 349 */
 350static void ice_vsi_free_stats(struct ice_vsi *vsi)
 351{
 352	struct ice_vsi_stats *vsi_stat;
 353	struct ice_pf *pf = vsi->back;
 354	int i;
 355
 356	if (vsi->type == ICE_VSI_CHNL)
 357		return;
 358	if (!pf->vsi_stats)
 359		return;
 360
 361	vsi_stat = pf->vsi_stats[vsi->idx];
 362	if (!vsi_stat)
 363		return;
 364
 365	ice_for_each_alloc_txq(vsi, i) {
 366		if (vsi_stat->tx_ring_stats[i]) {
 367			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
 368			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
 369		}
 370	}
 371
 372	ice_for_each_alloc_rxq(vsi, i) {
 373		if (vsi_stat->rx_ring_stats[i]) {
 374			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
 375			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
 376		}
 377	}
 378
 379	kfree(vsi_stat->tx_ring_stats);
 380	kfree(vsi_stat->rx_ring_stats);
 381	kfree(vsi_stat);
 382	pf->vsi_stats[vsi->idx] = NULL;
 383}
 384
 385/**
 386 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
 387 * @vsi: VSI which is having stats allocated
 388 */
 389static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
 390{
 391	struct ice_ring_stats **tx_ring_stats;
 392	struct ice_ring_stats **rx_ring_stats;
 393	struct ice_vsi_stats *vsi_stats;
 394	struct ice_pf *pf = vsi->back;
 395	u16 i;
 396
 397	vsi_stats = pf->vsi_stats[vsi->idx];
 398	tx_ring_stats = vsi_stats->tx_ring_stats;
 399	rx_ring_stats = vsi_stats->rx_ring_stats;
 400
 401	/* Allocate Tx ring stats */
 402	ice_for_each_alloc_txq(vsi, i) {
 403		struct ice_ring_stats *ring_stats;
 404		struct ice_tx_ring *ring;
 405
 406		ring = vsi->tx_rings[i];
 407		ring_stats = tx_ring_stats[i];
 408
 409		if (!ring_stats) {
 410			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
 411			if (!ring_stats)
 412				goto err_out;
 413
 414			WRITE_ONCE(tx_ring_stats[i], ring_stats);
 415		}
 416
 417		ring->ring_stats = ring_stats;
 418	}
 419
 420	/* Allocate Rx ring stats */
 421	ice_for_each_alloc_rxq(vsi, i) {
 422		struct ice_ring_stats *ring_stats;
 423		struct ice_rx_ring *ring;
 424
 425		ring = vsi->rx_rings[i];
 426		ring_stats = rx_ring_stats[i];
 427
 428		if (!ring_stats) {
 429			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
 430			if (!ring_stats)
 431				goto err_out;
 432
 433			WRITE_ONCE(rx_ring_stats[i], ring_stats);
 434		}
 435
 436		ring->ring_stats = ring_stats;
 437	}
 438
 439	return 0;
 440
 441err_out:
 442	ice_vsi_free_stats(vsi);
 443	return -ENOMEM;
 444}
 445
 446/**
 447 * ice_vsi_free - clean up and deallocate the provided VSI
 448 * @vsi: pointer to VSI being cleared
 449 *
 450 * This deallocates the VSI's queue resources, removes it from the PF's
 451 * VSI array if necessary, and deallocates the VSI
 
 
 452 */
 453static void ice_vsi_free(struct ice_vsi *vsi)
 454{
 455	struct ice_pf *pf = NULL;
 456	struct device *dev;
 457
 458	if (!vsi || !vsi->back)
 459		return;
 
 
 
 460
 461	pf = vsi->back;
 462	dev = ice_pf_to_dev(pf);
 463
 464	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 465		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
 466		return;
 
 467	}
 468
 469	mutex_lock(&pf->sw_mutex);
 470	/* updates the PF for this cleared VSI */
 471
 472	pf->vsi[vsi->idx] = NULL;
 473	pf->next_vsi = vsi->idx;
 
 474
 475	ice_vsi_free_stats(vsi);
 476	ice_vsi_free_arrays(vsi);
 477	mutex_unlock(&pf->sw_mutex);
 478	devm_kfree(dev, vsi);
 479}
 480
 481void ice_vsi_delete(struct ice_vsi *vsi)
 482{
 483	ice_vsi_delete_from_hw(vsi);
 484	ice_vsi_free(vsi);
 485}
 486
 487/**
 488 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
 489 * @irq: interrupt number
 490 * @data: pointer to a q_vector
 491 */
 492static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
 493{
 494	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 495
 496	if (!q_vector->tx.tx_ring)
 497		return IRQ_HANDLED;
 498
 499#define FDIR_RX_DESC_CLEAN_BUDGET 64
 500	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
 501	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
 502
 503	return IRQ_HANDLED;
 504}
 505
 506/**
 507 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 508 * @irq: interrupt number
 509 * @data: pointer to a q_vector
 510 */
 511static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 512{
 513	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 514
 515	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
 516		return IRQ_HANDLED;
 517
 518	q_vector->total_events++;
 519
 520	napi_schedule(&q_vector->napi);
 521
 522	return IRQ_HANDLED;
 523}
 524
 525static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
 526{
 527	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 528	struct ice_pf *pf = q_vector->vsi->back;
 529	struct ice_repr *repr;
 530	unsigned long id;
 531
 532	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
 533		return IRQ_HANDLED;
 534
 535	xa_for_each(&pf->eswitch.reprs, id, repr)
 536		napi_schedule(&repr->q_vector->napi);
 537
 538	return IRQ_HANDLED;
 539}
 540
 541/**
 542 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
 543 * @vsi: VSI pointer
 544 */
 545static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
 546{
 547	struct ice_vsi_stats *vsi_stat;
 548	struct ice_pf *pf = vsi->back;
 549
 550	if (vsi->type == ICE_VSI_CHNL)
 551		return 0;
 552	if (!pf->vsi_stats)
 553		return -ENOENT;
 554
 555	if (pf->vsi_stats[vsi->idx])
 556	/* realloc will happen in rebuild path */
 557		return 0;
 558
 559	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
 560	if (!vsi_stat)
 561		return -ENOMEM;
 562
 563	vsi_stat->tx_ring_stats =
 564		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
 565			GFP_KERNEL);
 566	if (!vsi_stat->tx_ring_stats)
 567		goto err_alloc_tx;
 568
 569	vsi_stat->rx_ring_stats =
 570		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
 571			GFP_KERNEL);
 572	if (!vsi_stat->rx_ring_stats)
 573		goto err_alloc_rx;
 574
 575	pf->vsi_stats[vsi->idx] = vsi_stat;
 576
 577	return 0;
 578
 579err_alloc_rx:
 580	kfree(vsi_stat->rx_ring_stats);
 581err_alloc_tx:
 582	kfree(vsi_stat->tx_ring_stats);
 583	kfree(vsi_stat);
 584	pf->vsi_stats[vsi->idx] = NULL;
 585	return -ENOMEM;
 586}
 587
 588/**
 589 * ice_vsi_alloc_def - set default values for already allocated VSI
 590 * @vsi: ptr to VSI
 591 * @ch: ptr to channel
 592 */
 593static int
 594ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
 595{
 596	if (vsi->type != ICE_VSI_CHNL) {
 597		ice_vsi_set_num_qs(vsi);
 598		if (ice_vsi_alloc_arrays(vsi))
 599			return -ENOMEM;
 600	}
 601
 602	switch (vsi->type) {
 603	case ICE_VSI_SWITCHDEV_CTRL:
 604		/* Setup eswitch MSIX irq handler for VSI */
 605		vsi->irq_handler = ice_eswitch_msix_clean_rings;
 606		break;
 607	case ICE_VSI_PF:
 608		/* Setup default MSIX irq handler for VSI */
 609		vsi->irq_handler = ice_msix_clean_rings;
 610		break;
 611	case ICE_VSI_CTRL:
 612		/* Setup ctrl VSI MSIX irq handler */
 613		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
 614		break;
 615	case ICE_VSI_CHNL:
 616		if (!ch)
 617			return -EINVAL;
 618
 619		vsi->num_rxq = ch->num_rxq;
 620		vsi->num_txq = ch->num_txq;
 621		vsi->next_base_q = ch->base_q;
 622		break;
 623	case ICE_VSI_VF:
 624	case ICE_VSI_LB:
 625		break;
 626	default:
 627		ice_vsi_free_arrays(vsi);
 628		return -EINVAL;
 629	}
 630
 631	return 0;
 632}
 633
 634/**
 635 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 636 * @pf: board private structure
 637 *
 638 * Reserves a VSI index from the PF and allocates an empty VSI structure
 639 * without a type. The VSI structure must later be initialized by calling
 640 * ice_vsi_cfg().
 641 *
 642 * returns a pointer to a VSI on success, NULL on failure.
 643 */
 644static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
 
 645{
 646	struct device *dev = ice_pf_to_dev(pf);
 647	struct ice_vsi *vsi = NULL;
 648
 649	/* Need to protect the allocation of the VSIs at the PF level */
 650	mutex_lock(&pf->sw_mutex);
 651
 652	/* If we have already allocated our maximum number of VSIs,
 653	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 654	 * is available to be populated
 655	 */
 656	if (pf->next_vsi == ICE_NO_VSI) {
 657		dev_dbg(dev, "out of VSI slots!\n");
 658		goto unlock_pf;
 659	}
 660
 661	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
 662	if (!vsi)
 663		goto unlock_pf;
 664
 
 665	vsi->back = pf;
 666	set_bit(ICE_VSI_DOWN, vsi->state);
 667
 668	/* fill slot and make note of the index */
 669	vsi->idx = pf->next_vsi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670	pf->vsi[pf->next_vsi] = vsi;
 671
 672	/* prepare pf->next_vsi for next use */
 673	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 674					 pf->next_vsi);
 
 675
 
 
 
 676unlock_pf:
 677	mutex_unlock(&pf->sw_mutex);
 678	return vsi;
 679}
 680
 681/**
 682 * ice_alloc_fd_res - Allocate FD resource for a VSI
 683 * @vsi: pointer to the ice_vsi
 684 *
 685 * This allocates the FD resources
 686 *
 687 * Returns 0 on success, -EPERM on no-op or -EIO on failure
 688 */
 689static int ice_alloc_fd_res(struct ice_vsi *vsi)
 690{
 691	struct ice_pf *pf = vsi->back;
 692	u32 g_val, b_val;
 693
 694	/* Flow Director filters are only allocated/assigned to the PF VSI or
 695	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
 696	 * add/delete filters so resources are not allocated to it
 697	 */
 698	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
 699		return -EPERM;
 
 700
 701	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
 702	      vsi->type == ICE_VSI_CHNL))
 703		return -EPERM;
 704
 705	/* FD filters from guaranteed pool per VSI */
 706	g_val = pf->hw.func_caps.fd_fltr_guar;
 707	if (!g_val)
 708		return -EPERM;
 709
 710	/* FD filters from best effort pool */
 711	b_val = pf->hw.func_caps.fd_fltr_best_effort;
 712	if (!b_val)
 713		return -EPERM;
 714
 715	/* PF main VSI gets only 64 FD resources from guaranteed pool
 716	 * when ADQ is configured.
 717	 */
 718#define ICE_PF_VSI_GFLTR	64
 719
 720	/* determine FD filter resources per VSI from shared(best effort) and
 721	 * dedicated pool
 722	 */
 723	if (vsi->type == ICE_VSI_PF) {
 724		vsi->num_gfltr = g_val;
 725		/* if MQPRIO is configured, main VSI doesn't get all FD
 726		 * resources from guaranteed pool. PF VSI gets 64 FD resources
 727		 */
 728		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
 729			if (g_val < ICE_PF_VSI_GFLTR)
 730				return -EPERM;
 731			/* allow bare minimum entries for PF VSI */
 732			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
 733		}
 734
 735		/* each VSI gets same "best_effort" quota */
 736		vsi->num_bfltr = b_val;
 737	} else if (vsi->type == ICE_VSI_VF) {
 738		vsi->num_gfltr = 0;
 
 
 
 
 
 
 739
 740		/* each VSI gets same "best_effort" quota */
 741		vsi->num_bfltr = b_val;
 742	} else {
 743		struct ice_vsi *main_vsi;
 744		int numtc;
 
 
 745
 746		main_vsi = ice_get_main_vsi(pf);
 747		if (!main_vsi)
 748			return -EPERM;
 749
 750		if (!main_vsi->all_numtc)
 751			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 752
 753		/* figure out ADQ numtc */
 754		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
 755
 756		/* only one TC but still asking resources for channels,
 757		 * invalid config
 758		 */
 759		if (numtc < ICE_CHNL_START_TC)
 760			return -EPERM;
 761
 762		g_val -= ICE_PF_VSI_GFLTR;
 763		/* channel VSIs gets equal share from guaranteed pool */
 764		vsi->num_gfltr = g_val / numtc;
 765
 766		/* each VSI gets same "best_effort" quota */
 767		vsi->num_bfltr = b_val;
 768	}
 769
 770	return 0;
 771}
 772
 773/**
 774 * ice_vsi_get_qs - Assign queues from PF to VSI
 775 * @vsi: the VSI to assign queues to
 776 *
 777 * Returns 0 on success and a negative value on error
 778 */
 779static int ice_vsi_get_qs(struct ice_vsi *vsi)
 780{
 781	struct ice_pf *pf = vsi->back;
 782	struct ice_qs_cfg tx_qs_cfg = {
 783		.qs_mutex = &pf->avail_q_mutex,
 784		.pf_map = pf->avail_txqs,
 785		.pf_map_size = pf->max_pf_txqs,
 786		.q_count = vsi->alloc_txq,
 787		.scatter_count = ICE_MAX_SCATTER_TXQS,
 788		.vsi_map = vsi->txq_map,
 789		.vsi_map_offset = 0,
 790		.mapping_mode = ICE_VSI_MAP_CONTIG
 791	};
 792	struct ice_qs_cfg rx_qs_cfg = {
 793		.qs_mutex = &pf->avail_q_mutex,
 794		.pf_map = pf->avail_rxqs,
 795		.pf_map_size = pf->max_pf_rxqs,
 796		.q_count = vsi->alloc_rxq,
 797		.scatter_count = ICE_MAX_SCATTER_RXQS,
 798		.vsi_map = vsi->rxq_map,
 799		.vsi_map_offset = 0,
 800		.mapping_mode = ICE_VSI_MAP_CONTIG
 801	};
 802	int ret;
 803
 804	if (vsi->type == ICE_VSI_CHNL)
 805		return 0;
 806
 807	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 808	if (ret)
 809		return ret;
 810	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
 811
 812	ret = __ice_vsi_get_qs(&rx_qs_cfg);
 813	if (ret)
 814		return ret;
 815	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
 816
 817	return 0;
 818}
 819
 820/**
 821 * ice_vsi_put_qs - Release queues from VSI to PF
 822 * @vsi: the VSI that is going to release queues
 823 */
 824static void ice_vsi_put_qs(struct ice_vsi *vsi)
 825{
 826	struct ice_pf *pf = vsi->back;
 827	int i;
 828
 829	mutex_lock(&pf->avail_q_mutex);
 830
 831	ice_for_each_alloc_txq(vsi, i) {
 832		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 833		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 834	}
 835
 836	ice_for_each_alloc_rxq(vsi, i) {
 837		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 838		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 839	}
 840
 841	mutex_unlock(&pf->avail_q_mutex);
 842}
 843
 844/**
 845 * ice_is_safe_mode
 846 * @pf: pointer to the PF struct
 847 *
 848 * returns true if driver is in safe mode, false otherwise
 849 */
 850bool ice_is_safe_mode(struct ice_pf *pf)
 851{
 852	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 853}
 854
 855/**
 856 * ice_is_rdma_ena
 857 * @pf: pointer to the PF struct
 858 *
 859 * returns true if RDMA is currently supported, false otherwise
 860 */
 861bool ice_is_rdma_ena(struct ice_pf *pf)
 862{
 863	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
 864}
 865
 866/**
 867 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
 868 * @vsi: the VSI being cleaned up
 869 *
 870 * This function deletes RSS input set for all flows that were configured
 871 * for this VSI
 872 */
 873static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
 874{
 875	struct ice_pf *pf = vsi->back;
 876	int status;
 877
 878	if (ice_is_safe_mode(pf))
 879		return;
 880
 881	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
 882	if (status)
 883		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
 884			vsi->vsi_num, status);
 885}
 886
 887/**
 888 * ice_rss_clean - Delete RSS related VSI structures and configuration
 889 * @vsi: the VSI being removed
 890 */
 891static void ice_rss_clean(struct ice_vsi *vsi)
 892{
 893	struct ice_pf *pf = vsi->back;
 894	struct device *dev;
 895
 896	dev = ice_pf_to_dev(pf);
 897
 898	devm_kfree(dev, vsi->rss_hkey_user);
 899	devm_kfree(dev, vsi->rss_lut_user);
 900
 901	ice_vsi_clean_rss_flow_fld(vsi);
 902	/* remove RSS replay list */
 903	if (!ice_is_safe_mode(pf))
 904		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
 905}
 906
 907/**
 908 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 909 * @vsi: the VSI being configured
 910 */
 911static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 912{
 913	struct ice_hw_common_caps *cap;
 914	struct ice_pf *pf = vsi->back;
 915	u16 max_rss_size;
 916
 917	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 918		vsi->rss_size = 1;
 919		return;
 920	}
 921
 922	cap = &pf->hw.func_caps.common_cap;
 923	max_rss_size = BIT(cap->rss_table_entry_width);
 924	switch (vsi->type) {
 925	case ICE_VSI_CHNL:
 926	case ICE_VSI_PF:
 927		/* PF VSI will inherit RSS instance of PF */
 928		vsi->rss_table_size = (u16)cap->rss_table_size;
 929		if (vsi->type == ICE_VSI_CHNL)
 930			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
 931		else
 932			vsi->rss_size = min_t(u16, num_online_cpus(),
 933					      max_rss_size);
 934		vsi->rss_lut_type = ICE_LUT_PF;
 935		break;
 936	case ICE_VSI_SWITCHDEV_CTRL:
 937		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
 938		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
 939		vsi->rss_lut_type = ICE_LUT_VSI;
 940		break;
 941	case ICE_VSI_VF:
 942		/* VF VSI will get a small RSS table.
 943		 * For VSI_LUT, LUT size should be set to 64 bytes.
 944		 */
 945		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
 946		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
 947		vsi->rss_lut_type = ICE_LUT_VSI;
 
 948		break;
 949	case ICE_VSI_LB:
 950		break;
 951	default:
 952		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
 953			ice_vsi_type_str(vsi->type));
 954		break;
 955	}
 956}
 957
 958/**
 959 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 960 * @hw: HW structure used to determine the VLAN mode of the device
 961 * @ctxt: the VSI context being set
 962 *
 963 * This initializes a default VSI context for all sections except the Queues.
 964 */
 965static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
 966{
 967	u32 table = 0;
 968
 969	memset(&ctxt->info, 0, sizeof(ctxt->info));
 970	/* VSI's should be allocated from shared pool */
 971	ctxt->alloc_from_pool = true;
 972	/* Src pruning enabled by default */
 973	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 974	/* Traffic from VSI can be sent to LAN */
 975	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 976	/* allow all untagged/tagged packets by default on Tx */
 977	ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
 978						 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
 979	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
 980	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
 981	 *
 982	 * DVM - leave inner VLAN in packet by default
 983	 */
 984	if (ice_is_dvm_ena(hw)) {
 985		ctxt->info.inner_vlan_flags |=
 986			FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
 987				   ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
 988		ctxt->info.outer_vlan_flags =
 989			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
 990				   ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
 991		ctxt->info.outer_vlan_flags |=
 992			FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
 993				   ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
 994		ctxt->info.outer_vlan_flags |=
 995			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
 996				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
 997	}
 998	/* Have 1:1 UP mapping for both ingress/egress tables */
 999	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1000	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1001	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1002	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1003	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1004	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1005	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1006	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1007	ctxt->info.ingress_table = cpu_to_le32(table);
1008	ctxt->info.egress_table = cpu_to_le32(table);
1009	/* Have 1:1 UP mapping for outer to inner UP table */
1010	ctxt->info.outer_up_table = cpu_to_le32(table);
1011	/* No Outer tag support outer_tag_flags remains to zero */
1012}
1013
1014/**
1015 * ice_vsi_setup_q_map - Setup a VSI queue map
1016 * @vsi: the VSI being configured
1017 * @ctxt: VSI context structure
1018 */
1019static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1020{
1021	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1022	u16 num_txq_per_tc, num_rxq_per_tc;
1023	u16 qcount_tx = vsi->alloc_txq;
1024	u16 qcount_rx = vsi->alloc_rxq;
 
 
 
1025	u8 netdev_tc = 0;
1026	int i;
1027
1028	if (!vsi->tc_cfg.numtc) {
1029		/* at least TC0 should be enabled by default */
1030		vsi->tc_cfg.numtc = 1;
1031		vsi->tc_cfg.ena_tc = 1;
 
 
1032	}
1033
1034	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1035	if (!num_rxq_per_tc)
1036		num_rxq_per_tc = 1;
1037	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1038	if (!num_txq_per_tc)
1039		num_txq_per_tc = 1;
1040
1041	/* find the (rounded up) power-of-2 of qcount */
1042	pow = (u16)order_base_2(num_rxq_per_tc);
 
 
 
 
1043
1044	/* TC mapping is a function of the number of Rx queues assigned to the
1045	 * VSI for each traffic class and the offset of these queues.
1046	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1047	 * queues allocated to TC0. No:of queues is a power-of-2.
1048	 *
1049	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1050	 * queue, this way, traffic for the given TC will be sent to the default
1051	 * queue.
1052	 *
1053	 * Setup number and offset of Rx queues for all TCs for the VSI
1054	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055	ice_for_each_traffic_class(i) {
1056		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1057			/* TC is not enabled */
1058			vsi->tc_cfg.tc_info[i].qoffset = 0;
1059			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1060			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1061			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1062			ctxt->info.tc_mapping[i] = 0;
1063			continue;
1064		}
1065
1066		/* TC is enabled */
1067		vsi->tc_cfg.tc_info[i].qoffset = offset;
1068		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1069		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1070		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1071
1072		qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1073		qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1074		offset += num_rxq_per_tc;
1075		tx_count += num_txq_per_tc;
 
 
1076		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1077	}
1078
1079	/* if offset is non-zero, means it is calculated correctly based on
1080	 * enabled TCs for a given VSI otherwise qcount_rx will always
1081	 * be correct and non-zero because it is based off - VSI's
1082	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1083	 * at least 1)
1084	 */
1085	if (offset)
1086		rx_count = offset;
1087	else
1088		rx_count = num_rxq_per_tc;
1089
1090	if (rx_count > vsi->alloc_rxq) {
1091		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1092			rx_count, vsi->alloc_rxq);
1093		return -EINVAL;
1094	}
1095
1096	if (tx_count > vsi->alloc_txq) {
1097		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1098			tx_count, vsi->alloc_txq);
1099		return -EINVAL;
1100	}
1101
1102	vsi->num_txq = tx_count;
1103	vsi->num_rxq = rx_count;
1104
1105	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1106		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1107		/* since there is a chance that num_rxq could have been changed
1108		 * in the above for loop, make num_txq equal to num_rxq.
1109		 */
1110		vsi->num_txq = vsi->num_rxq;
1111	}
1112
1113	/* Rx queue mapping */
1114	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1115	/* q_mapping buffer holds the info for the first queue allocated for
1116	 * this VSI in the PF space and also the number of queues associated
1117	 * with this VSI.
1118	 */
1119	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1120	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1121
1122	return 0;
1123}
1124
1125/**
1126 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1127 * @ctxt: the VSI context being set
1128 * @vsi: the VSI being configured
1129 */
1130static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1131{
1132	u8 dflt_q_group, dflt_q_prio;
1133	u16 dflt_q, report_q, val;
1134
1135	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1136	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1137		return;
1138
1139	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1140	ctxt->info.valid_sections |= cpu_to_le16(val);
1141	dflt_q = 0;
1142	dflt_q_group = 0;
1143	report_q = 0;
1144	dflt_q_prio = 0;
1145
1146	/* enable flow director filtering/programming */
1147	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1148	ctxt->info.fd_options = cpu_to_le16(val);
1149	/* max of allocated flow director filters */
1150	ctxt->info.max_fd_fltr_dedicated =
1151			cpu_to_le16(vsi->num_gfltr);
1152	/* max of shared flow director filters any VSI may program */
1153	ctxt->info.max_fd_fltr_shared =
1154			cpu_to_le16(vsi->num_bfltr);
1155	/* default queue index within the VSI of the default FD */
1156	val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1157	/* target queue or queue group to the FD filter */
1158	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1159	ctxt->info.fd_def_q = cpu_to_le16(val);
1160	/* queue index on which FD filter completion is reported */
1161	val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1162	/* priority of the default qindex action */
1163	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1164	ctxt->info.fd_report_opt = cpu_to_le16(val);
1165}
1166
1167/**
1168 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1169 * @ctxt: the VSI context being set
1170 * @vsi: the VSI being configured
1171 */
1172static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1173{
1174	u8 lut_type, hash_type;
1175	struct device *dev;
1176	struct ice_pf *pf;
1177
1178	pf = vsi->back;
1179	dev = ice_pf_to_dev(pf);
1180
1181	switch (vsi->type) {
1182	case ICE_VSI_CHNL:
1183	case ICE_VSI_PF:
1184		/* PF VSI will inherit RSS instance of PF */
1185		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
 
1186		break;
1187	case ICE_VSI_VF:
1188		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1189		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 
1190		break;
 
 
 
1191	default:
1192		dev_dbg(dev, "Unsupported VSI type %s\n",
1193			ice_vsi_type_str(vsi->type));
1194		return;
1195	}
1196
1197	hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1198	vsi->rss_hfunc = hash_type;
1199
1200	ctxt->info.q_opt_rss =
1201		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1202		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1203}
1204
1205static void
1206ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1207{
1208	struct ice_pf *pf = vsi->back;
1209	u16 qcount, qmap;
1210	u8 offset = 0;
1211	int pow;
1212
1213	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1214
1215	pow = order_base_2(qcount);
1216	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1217	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1218
1219	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1220	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1221	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1222	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1223}
1224
1225/**
1226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1227 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1228 *
1229 * returns true if Rx VLAN pruning is enabled and false otherwise.
1230 */
1231static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1232{
1233	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1234}
1235
1236/**
1237 * ice_vsi_init - Create and initialize a VSI
1238 * @vsi: the VSI being configured
1239 * @vsi_flags: VSI configuration flags
1240 *
1241 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1242 * reconfigure an existing context.
1243 *
1244 * This initializes a VSI context depending on the VSI type to be added and
1245 * passes it down to the add_vsi aq command to create a new VSI.
1246 */
1247static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1248{
1249	struct ice_pf *pf = vsi->back;
1250	struct ice_hw *hw = &pf->hw;
1251	struct ice_vsi_ctx *ctxt;
1252	struct device *dev;
1253	int ret = 0;
1254
1255	dev = ice_pf_to_dev(pf);
1256	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1257	if (!ctxt)
1258		return -ENOMEM;
1259
 
1260	switch (vsi->type) {
1261	case ICE_VSI_CTRL:
1262	case ICE_VSI_LB:
 
1263	case ICE_VSI_PF:
1264		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1265		break;
1266	case ICE_VSI_SWITCHDEV_CTRL:
1267	case ICE_VSI_CHNL:
1268		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1269		break;
1270	case ICE_VSI_VF:
1271		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1272		/* VF number here is the absolute VF number (0-255) */
1273		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1274		break;
1275	default:
1276		ret = -ENODEV;
1277		goto out;
1278	}
1279
1280	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1281	 * prune enabled
1282	 */
1283	if (vsi->type == ICE_VSI_CHNL) {
1284		struct ice_vsi *main_vsi;
1285
1286		main_vsi = ice_get_main_vsi(pf);
1287		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1288			ctxt->info.sw_flags2 |=
1289				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1290		else
1291			ctxt->info.sw_flags2 &=
1292				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1293	}
1294
1295	ice_set_dflt_vsi_ctx(hw, ctxt);
1296	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1297		ice_set_fd_vsi_ctx(ctxt, vsi);
1298	/* if the switch is in VEB mode, allow VSI loopback */
1299	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1300		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1301
1302	/* Set LUT type and HASH type if RSS is enabled */
1303	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1304	    vsi->type != ICE_VSI_CTRL) {
1305		ice_set_rss_vsi_ctx(ctxt, vsi);
1306		/* if updating VSI context, make sure to set valid_section:
1307		 * to indicate which section of VSI context being updated
1308		 */
1309		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1310			ctxt->info.valid_sections |=
1311				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1312	}
1313
1314	ctxt->info.sw_id = vsi->port_info->sw_id;
1315	if (vsi->type == ICE_VSI_CHNL) {
1316		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1317	} else {
1318		ret = ice_vsi_setup_q_map(vsi, ctxt);
1319		if (ret)
1320			goto out;
1321
1322		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1323			/* means VSI being updated */
1324			/* must to indicate which section of VSI context are
1325			 * being modified
1326			 */
1327			ctxt->info.valid_sections |=
1328				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1329	}
1330
1331	/* Allow control frames out of main VSI */
1332	if (vsi->type == ICE_VSI_PF) {
1333		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1334		ctxt->info.valid_sections |=
1335			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1336	}
1337
1338	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1339		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1340		if (ret) {
1341			dev_err(dev, "Add VSI failed, err %d\n", ret);
1342			ret = -EIO;
1343			goto out;
1344		}
1345	} else {
1346		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1347		if (ret) {
1348			dev_err(dev, "Update VSI failed, err %d\n", ret);
1349			ret = -EIO;
1350			goto out;
1351		}
1352	}
1353
1354	/* keep context for update VSI operations */
1355	vsi->info = ctxt->info;
1356
1357	/* record VSI number returned */
1358	vsi->vsi_num = ctxt->vsi_num;
1359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360out:
1361	kfree(ctxt);
1362	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363}
1364
1365/**
1366 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1367 * @vsi: the VSI having rings deallocated
1368 */
1369static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1370{
1371	int i;
1372
1373	/* Avoid stale references by clearing map from vector to ring */
1374	if (vsi->q_vectors) {
1375		ice_for_each_q_vector(vsi, i) {
1376			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1377
1378			if (q_vector) {
1379				q_vector->tx.tx_ring = NULL;
1380				q_vector->rx.rx_ring = NULL;
1381			}
1382		}
1383	}
1384
1385	if (vsi->tx_rings) {
1386		ice_for_each_alloc_txq(vsi, i) {
1387			if (vsi->tx_rings[i]) {
1388				kfree_rcu(vsi->tx_rings[i], rcu);
1389				WRITE_ONCE(vsi->tx_rings[i], NULL);
1390			}
1391		}
1392	}
1393	if (vsi->rx_rings) {
1394		ice_for_each_alloc_rxq(vsi, i) {
1395			if (vsi->rx_rings[i]) {
1396				kfree_rcu(vsi->rx_rings[i], rcu);
1397				WRITE_ONCE(vsi->rx_rings[i], NULL);
1398			}
1399		}
1400	}
1401}
1402
1403/**
1404 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1405 * @vsi: VSI which is having rings allocated
1406 */
1407static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1408{
1409	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1410	struct ice_pf *pf = vsi->back;
1411	struct device *dev;
1412	u16 i;
1413
1414	dev = ice_pf_to_dev(pf);
1415	/* Allocate Tx rings */
1416	ice_for_each_alloc_txq(vsi, i) {
1417		struct ice_tx_ring *ring;
1418
1419		/* allocate with kzalloc(), free with kfree_rcu() */
1420		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1421
1422		if (!ring)
1423			goto err_out;
1424
1425		ring->q_index = i;
1426		ring->reg_idx = vsi->txq_map[i];
 
1427		ring->vsi = vsi;
1428		ring->tx_tstamps = &pf->ptp.port.tx;
1429		ring->dev = dev;
1430		ring->count = vsi->num_tx_desc;
1431		ring->txq_teid = ICE_INVAL_TEID;
1432		if (dvm_ena)
1433			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1434		else
1435			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1436		WRITE_ONCE(vsi->tx_rings[i], ring);
1437	}
1438
1439	/* Allocate Rx rings */
1440	ice_for_each_alloc_rxq(vsi, i) {
1441		struct ice_rx_ring *ring;
1442
1443		/* allocate with kzalloc(), free with kfree_rcu() */
1444		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1445		if (!ring)
1446			goto err_out;
1447
1448		ring->q_index = i;
1449		ring->reg_idx = vsi->rxq_map[i];
 
1450		ring->vsi = vsi;
1451		ring->netdev = vsi->netdev;
1452		ring->dev = dev;
1453		ring->count = vsi->num_rx_desc;
1454		ring->cached_phctime = pf->ptp.cached_phc_time;
1455		WRITE_ONCE(vsi->rx_rings[i], ring);
1456	}
1457
1458	return 0;
1459
1460err_out:
1461	ice_vsi_clear_rings(vsi);
1462	return -ENOMEM;
1463}
1464
1465/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466 * ice_vsi_manage_rss_lut - disable/enable RSS
1467 * @vsi: the VSI being changed
1468 * @ena: boolean value indicating if this is an enable or disable request
1469 *
1470 * In the event of disable request for RSS, this function will zero out RSS
1471 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1472 * LUT.
1473 */
1474void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1475{
 
1476	u8 *lut;
1477
1478	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
 
1479	if (!lut)
1480		return;
1481
1482	if (ena) {
1483		if (vsi->rss_lut_user)
1484			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1485		else
1486			ice_fill_rss_lut(lut, vsi->rss_table_size,
1487					 vsi->rss_size);
1488	}
1489
1490	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1491	kfree(lut);
1492}
1493
1494/**
1495 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1496 * @vsi: VSI to be configured
1497 * @disable: set to true to have FCS / CRC in the frame data
1498 */
1499void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1500{
1501	int i;
1502
1503	ice_for_each_rxq(vsi, i)
1504		if (disable)
1505			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1506		else
1507			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1508}
1509
1510/**
1511 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1512 * @vsi: VSI to be configured
1513 */
1514int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1515{
 
1516	struct ice_pf *pf = vsi->back;
1517	struct device *dev;
1518	u8 *lut, *key;
1519	int err;
1520
1521	dev = ice_pf_to_dev(pf);
1522	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1523	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1524		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1525	} else {
1526		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1527
1528		/* If orig_rss_size is valid and it is less than determined
1529		 * main VSI's rss_size, update main VSI's rss_size to be
1530		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1531		 * RSS table gets programmed to be correct (whatever it was
1532		 * to begin with (prior to setup-tc for ADQ config)
1533		 */
1534		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1535		    vsi->orig_rss_size <= vsi->num_rxq) {
1536			vsi->rss_size = vsi->orig_rss_size;
1537			/* now orig_rss_size is used, reset it to zero */
1538			vsi->orig_rss_size = 0;
1539		}
1540	}
1541
1542	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1543	if (!lut)
1544		return -ENOMEM;
1545
1546	if (vsi->rss_lut_user)
1547		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1548	else
1549		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1550
1551	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1552	if (err) {
1553		dev_err(dev, "set_rss_lut failed, error %d\n", err);
 
 
 
 
1554		goto ice_vsi_cfg_rss_exit;
1555	}
1556
1557	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1558	if (!key) {
1559		err = -ENOMEM;
1560		goto ice_vsi_cfg_rss_exit;
1561	}
1562
1563	if (vsi->rss_hkey_user)
1564		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
 
 
1565	else
1566		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
 
1567
1568	err = ice_set_rss_key(vsi, key);
1569	if (err)
1570		dev_err(dev, "set_rss_key failed, error %d\n", err);
1571
1572	kfree(key);
 
 
 
 
 
 
1573ice_vsi_cfg_rss_exit:
1574	kfree(lut);
1575	return err;
1576}
1577
1578/**
1579 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1580 * @vsi: VSI to be configured
 
 
1581 *
1582 * This function will only be called during the VF VSI setup. Upon successful
1583 * completion of package download, this function will configure default RSS
1584 * input sets for VF VSI.
1585 */
1586static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1587{
1588	struct ice_pf *pf = vsi->back;
1589	struct device *dev;
1590	int status;
1591
1592	dev = ice_pf_to_dev(pf);
1593	if (ice_is_safe_mode(pf)) {
1594		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1595			vsi->vsi_num);
1596		return;
1597	}
1598
1599	status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1600	if (status)
1601		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1602			vsi->vsi_num, status);
1603}
1604
1605static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1606	/* configure RSS for IPv4 with input set IP src/dst */
1607	{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1608	/* configure RSS for IPv6 with input set IPv6 src/dst */
1609	{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1610	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1611	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1612				ICE_HASH_TCP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1613	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1614	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1615				ICE_HASH_UDP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1616	/* configure RSS for sctp4 with input set IP src/dst - only support
1617	 * RSS on SCTPv4 on outer headers (non-tunneled)
1618	 */
1619	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1620		ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1621	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1622	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1623				ICE_HASH_TCP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1624	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1625	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1626				ICE_HASH_UDP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1627	/* configure RSS for sctp6 with input set IPv6 src/dst - only support
1628	 * RSS on SCTPv6 on outer headers (non-tunneled)
1629	 */
1630	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1631		ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1632	/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1633	{ICE_FLOW_SEG_HDR_ESP,
1634		ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1635};
1636
1637/**
1638 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1639 * @vsi: VSI to be configured
1640 *
1641 * This function will only be called after successful download package call
1642 * during initialization of PF. Since the downloaded package will erase the
1643 * RSS section, this function will configure RSS input sets for different
1644 * flow types. The last profile added has the highest priority, therefore 2
1645 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1646 * (i.e. IPv4 src/dst TCP src/dst port).
1647 */
1648static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
 
1649{
1650	u16 vsi_num = vsi->vsi_num;
1651	struct ice_pf *pf = vsi->back;
1652	struct ice_hw *hw = &pf->hw;
1653	struct device *dev;
1654	int status;
1655	u32 i;
1656
1657	dev = ice_pf_to_dev(pf);
1658	if (ice_is_safe_mode(pf)) {
1659		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1660			vsi_num);
1661		return;
1662	}
1663	for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1664		const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1665
1666		status = ice_add_rss_cfg(hw, vsi, cfg);
1667		if (status)
1668			dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1669				cfg->addl_hdrs, cfg->hash_flds,
1670				cfg->hdr_type, cfg->symm);
1671	}
1672}
1673
1674/**
1675 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1676 * @vsi: VSI
1677 */
1678static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1679{
1680	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1681		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1682		vsi->rx_buf_len = ICE_RXBUF_1664;
1683#if (PAGE_SIZE < 8192)
1684	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1685		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1686		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1687		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1688#endif
1689	} else {
1690		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1691		vsi->rx_buf_len = ICE_RXBUF_3072;
1692	}
1693}
1694
1695/**
1696 * ice_pf_state_is_nominal - checks the PF for nominal state
1697 * @pf: pointer to PF to check
1698 *
1699 * Check the PF's state for a collection of bits that would indicate
1700 * the PF is in a state that would inhibit normal operation for
1701 * driver functionality.
1702 *
1703 * Returns true if PF is in a nominal state, false otherwise
1704 */
1705bool ice_pf_state_is_nominal(struct ice_pf *pf)
1706{
1707	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1708
1709	if (!pf)
1710		return false;
1711
1712	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1713	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1714		return false;
1715
1716	return true;
1717}
1718
1719/**
1720 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1721 * @vsi: the VSI to be updated
1722 */
1723void ice_update_eth_stats(struct ice_vsi *vsi)
1724{
1725	struct ice_eth_stats *prev_es, *cur_es;
1726	struct ice_hw *hw = &vsi->back->hw;
1727	struct ice_pf *pf = vsi->back;
1728	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1729
1730	prev_es = &vsi->eth_stats_prev;
1731	cur_es = &vsi->eth_stats;
1732
1733	if (ice_is_reset_in_progress(pf->state))
1734		vsi->stat_offsets_loaded = false;
1735
1736	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1737			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1738
1739	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1740			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1741
1742	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1743			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1744
1745	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1746			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1747
1748	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1749			  &prev_es->rx_discards, &cur_es->rx_discards);
1750
1751	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1752			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1753
1754	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1755			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1756
1757	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1758			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1759
1760	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1761			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1762
1763	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1764			  &prev_es->tx_errors, &cur_es->tx_errors);
1765
1766	vsi->stat_offsets_loaded = true;
1767}
1768
1769/**
1770 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1771 * @hw: HW pointer
1772 * @pf_q: index of the Rx queue in the PF's queue space
1773 * @rxdid: flexible descriptor RXDID
1774 * @prio: priority for the RXDID for this queue
1775 * @ena_ts: true to enable timestamp and false to disable timestamp
1776 */
1777void
1778ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1779			bool ena_ts)
1780{
1781	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1782
1783	/* clear any previous values */
1784	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1785		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1786		    QRXFLXP_CNTXT_TS_M);
 
1787
1788	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1789	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790
1791	if (ena_ts)
1792		/* Enable TimeSync on this queue */
1793		regval |= QRXFLXP_CNTXT_TS_M;
 
 
 
1794
1795	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1796}
1797
1798int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1799{
1800	if (q_idx >= vsi->num_rxq)
1801		return -EINVAL;
 
 
1802
1803	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
 
1804}
1805
1806int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
 
 
 
 
 
 
 
1807{
1808	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
 
 
 
 
1809
1810	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1811		return -EINVAL;
 
1812
1813	qg_buf->num_txqs = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814
1815	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
 
1816}
1817
1818/**
1819 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1820 * @vsi: the VSI being configured
1821 *
1822 * Return 0 on success and a negative value on error
1823 * Configure the Rx VSI for operation.
1824 */
1825int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1826{
1827	u16 i;
1828
1829	if (vsi->type == ICE_VSI_VF)
1830		goto setup_rings;
1831
1832	ice_vsi_cfg_frame_size(vsi);
 
 
 
 
 
 
1833setup_rings:
1834	/* set up individual rings */
1835	ice_for_each_rxq(vsi, i) {
1836		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1837
1838		if (err)
 
 
 
 
1839			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840	}
1841
 
 
 
 
 
 
 
 
1842	return 0;
1843}
1844
1845/**
1846 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1847 * @vsi: the VSI being configured
1848 * @rings: Tx ring array to be configured
1849 * @count: number of Tx ring array elements
1850 *
1851 * Return 0 on success and a negative value on error
1852 * Configure the Tx VSI for operation.
1853 */
1854static int
1855ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1856{
1857	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
 
 
1858	int err = 0;
1859	u16 q_idx;
 
 
 
 
1860
1861	qg_buf->num_txqs = 1;
1862
1863	for (q_idx = 0; q_idx < count; q_idx++) {
1864		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1865		if (err)
1866			break;
 
 
 
 
 
 
 
 
 
1867	}
1868
 
1869	return err;
1870}
1871
1872/**
1873 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1874 * @vsi: the VSI being configured
1875 *
1876 * Return 0 on success and a negative value on error
1877 * Configure the Tx VSI for operation.
1878 */
1879int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1880{
1881	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1882}
1883
1884/**
1885 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1886 * @vsi: the VSI being configured
1887 *
1888 * Return 0 on success and a negative value on error
1889 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1890 */
1891int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1892{
1893	int ret;
1894	int i;
1895
1896	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1897	if (ret)
1898		return ret;
1899
1900	ice_for_each_rxq(vsi, i)
1901		ice_tx_xsk_pool(vsi, i);
1902
1903	return 0;
1904}
1905
1906/**
1907 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1908 * @intrl: interrupt rate limit in usecs
1909 * @gran: interrupt rate limit granularity in usecs
1910 *
1911 * This function converts a decimal interrupt rate limit in usecs to the format
1912 * expected by firmware.
1913 */
1914static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1915{
1916	u32 val = intrl / gran;
1917
1918	if (val)
1919		return val | GLINT_RATE_INTRL_ENA_M;
1920	return 0;
1921}
1922
1923/**
1924 * ice_write_intrl - write throttle rate limit to interrupt specific register
1925 * @q_vector: pointer to interrupt specific structure
1926 * @intrl: throttle rate limit in microseconds to write
1927 */
1928void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1929{
1930	struct ice_hw *hw = &q_vector->vsi->back->hw;
1931
1932	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1933	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934}
1935
1936static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
 
 
 
 
 
 
 
 
 
1937{
1938	switch (rc->type) {
1939	case ICE_RX_CONTAINER:
1940		if (rc->rx_ring)
1941			return rc->rx_ring->q_vector;
1942		break;
1943	case ICE_TX_CONTAINER:
1944		if (rc->tx_ring)
1945			return rc->tx_ring->q_vector;
1946		break;
1947	default:
1948		break;
 
 
 
1949	}
1950
1951	return NULL;
1952}
1953
1954/**
1955 * __ice_write_itr - write throttle rate to register
1956 * @q_vector: pointer to interrupt data structure
1957 * @rc: pointer to ring container
1958 * @itr: throttle rate in microseconds to write
1959 */
1960static void __ice_write_itr(struct ice_q_vector *q_vector,
1961			    struct ice_ring_container *rc, u16 itr)
1962{
1963	struct ice_hw *hw = &q_vector->vsi->back->hw;
1964
1965	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1966	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
 
 
 
 
1967}
1968
1969/**
1970 * ice_write_itr - write throttle rate to queue specific register
1971 * @rc: pointer to ring container
1972 * @itr: throttle rate in microseconds to write
 
 
 
 
 
1973 */
1974void ice_write_itr(struct ice_ring_container *rc, u16 itr)
 
 
 
 
 
 
1975{
1976	struct ice_q_vector *q_vector;
 
 
 
 
1977
1978	q_vector = ice_pull_qvec_from_rc(rc);
1979	if (!q_vector)
1980		return;
1981
1982	__ice_write_itr(q_vector, rc, itr);
1983}
1984
1985/**
1986 * ice_set_q_vector_intrl - set up interrupt rate limiting
1987 * @q_vector: the vector to be configured
 
 
 
1988 *
1989 * Interrupt rate limiting is local to the vector, not per-queue so we must
1990 * detect if either ring container has dynamic moderation enabled to decide
1991 * what to set the interrupt rate limit to via INTRL settings. In the case that
1992 * dynamic moderation is disabled on both, write the value with the cached
1993 * setting to make sure INTRL register matches the user visible value.
1994 */
1995void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
 
 
 
 
 
 
1996{
1997	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1998		/* in the case of dynamic enabled, cap each vector to no more
1999		 * than (4 us) 250,000 ints/sec, which allows low latency
2000		 * but still less than 500,000 interrupts per second, which
2001		 * reduces CPU a bit in the case of the lowest latency
2002		 * setting. The 4 here is a value in microseconds.
2003		 */
2004		ice_write_intrl(q_vector, 4);
2005	} else {
2006		ice_write_intrl(q_vector, q_vector->intrl);
2007	}
 
2008}
2009
2010/**
2011 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2012 * @vsi: the VSI being configured
2013 *
2014 * This configures MSIX mode interrupts for the PF VSI, and should not be used
2015 * for the VF VSI.
2016 */
2017void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2018{
2019	struct ice_pf *pf = vsi->back;
2020	struct ice_hw *hw = &pf->hw;
2021	u16 txq = 0, rxq = 0;
2022	int i, q;
2023
2024	ice_for_each_q_vector(vsi, i) {
2025		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2026		u16 reg_idx = q_vector->reg_idx;
2027
2028		ice_cfg_itr(hw, q_vector);
2029
 
 
 
2030		/* Both Transmit Queue Interrupt Cause Control register
2031		 * and Receive Queue Interrupt Cause control register
2032		 * expects MSIX_INDX field to be the vector index
2033		 * within the function space and not the absolute
2034		 * vector index across PF or across device.
2035		 * For SR-IOV VF VSIs queue vector index always starts
2036		 * with 1 since first vector index(0) is used for OICR
2037		 * in VF space. Since VMDq and other PF VSIs are within
2038		 * the PF function space, use the vector index that is
2039		 * tracked for this PF.
2040		 */
2041		for (q = 0; q < q_vector->num_ring_tx; q++) {
2042			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2043					      q_vector->tx.itr_idx);
2044			txq++;
2045		}
2046
2047		for (q = 0; q < q_vector->num_ring_rx; q++) {
2048			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2049					      q_vector->rx.itr_idx);
2050			rxq++;
2051		}
2052	}
2053}
2054
2055/**
2056 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2057 * @vsi: the VSI whose rings are to be enabled
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058 *
2059 * Returns 0 on success and a negative value on error
2060 */
2061int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2062{
2063	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2064}
2065
2066/**
2067 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2068 * @vsi: the VSI whose rings are to be disabled
2069 *
2070 * Returns 0 on success and a negative value on error
2071 */
2072int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073{
2074	return ice_vsi_ctrl_all_rx_rings(vsi, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075}
2076
2077/**
2078 * ice_vsi_stop_tx_rings - Disable Tx rings
2079 * @vsi: the VSI being configured
2080 * @rst_src: reset source
2081 * @rel_vmvf_num: Relative ID of VF/VM
2082 * @rings: Tx ring array to be stopped
2083 * @count: number of Tx ring array elements
2084 */
2085static int
2086ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2087		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2088{
2089	u16 q_idx;
 
 
2090
2091	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2092		return -EINVAL;
2093
2094	for (q_idx = 0; q_idx < count; q_idx++) {
2095		struct ice_txq_meta txq_meta = { };
2096		int status;
2097
2098		if (!rings || !rings[q_idx])
2099			return -EINVAL;
2100
2101		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2102		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2103					      rings[q_idx], &txq_meta);
2104
2105		if (status)
2106			return status;
 
 
 
 
 
 
 
 
2107	}
2108
2109	return 0;
2110}
2111
2112/**
2113 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2114 * @vsi: the VSI being configured
2115 * @rst_src: reset source
2116 * @rel_vmvf_num: Relative ID of VF/VM
2117 */
2118int
2119ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2120			  u16 rel_vmvf_num)
2121{
2122	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2123}
2124
2125/**
2126 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2127 * @vsi: the VSI being configured
 
 
 
 
2128 */
2129int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2130{
2131	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2132}
 
 
 
 
 
 
 
 
 
 
 
 
 
2133
2134/**
2135 * ice_vsi_is_rx_queue_active
2136 * @vsi: the VSI being configured
2137 *
2138 * Return true if at least one queue is active.
2139 */
2140bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2141{
2142	struct ice_pf *pf = vsi->back;
2143	struct ice_hw *hw = &pf->hw;
2144	int i;
2145
2146	ice_for_each_rxq(vsi, i) {
2147		u32 rx_reg;
2148		int pf_q;
 
2149
2150		pf_q = vsi->rxq_map[i];
2151		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2152		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2153			return true;
 
 
2154	}
2155
2156	return false;
 
 
 
 
 
 
 
 
2157}
2158
2159static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2160{
2161	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2162		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2163		vsi->tc_cfg.numtc = 1;
2164		return;
2165	}
2166
2167	/* set VSI TC information based on DCB config */
2168	ice_vsi_set_dcb_tc_cfg(vsi);
2169}
2170
2171/**
2172 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2173 * @vsi: the VSI being configured
2174 * @tx: bool to determine Tx or Rx rule
2175 * @create: bool to determine create or remove Rule
2176 */
2177void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
 
2178{
2179	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2180			enum ice_sw_fwd_act_type act);
2181	struct ice_pf *pf = vsi->back;
2182	struct device *dev;
2183	int status;
 
 
 
 
 
 
 
 
 
2184
2185	dev = ice_pf_to_dev(pf);
2186	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2187
2188	if (tx) {
2189		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2190				  ICE_DROP_PACKET);
2191	} else {
2192		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2193			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2194							  create);
2195		} else {
2196			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2197					  ICE_FWD_TO_VSI);
2198		}
2199	}
2200
2201	if (status)
2202		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2203			create ? "adding" : "removing", tx ? "TX" : "RX",
2204			vsi->vsi_num, status);
 
 
 
 
 
 
 
2205}
2206
2207/**
2208 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2209 * @vsi: pointer to the VSI
2210 *
2211 * This function will allocate new scheduler aggregator now if needed and will
2212 * move specified VSI into it.
2213 */
2214static void ice_set_agg_vsi(struct ice_vsi *vsi)
 
2215{
2216	struct device *dev = ice_pf_to_dev(vsi->back);
2217	struct ice_agg_node *agg_node_iter = NULL;
2218	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2219	struct ice_agg_node *agg_node = NULL;
2220	int node_offset, max_agg_nodes = 0;
2221	struct ice_port_info *port_info;
2222	struct ice_pf *pf = vsi->back;
2223	u32 agg_node_id_start = 0;
2224	int status;
2225
2226	/* create (as needed) scheduler aggregator node and move VSI into
2227	 * corresponding aggregator node
2228	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2229	 * - VF aggregator nodes will contain VF VSI
2230	 */
2231	port_info = pf->hw.port_info;
2232	if (!port_info)
2233		return;
2234
2235	switch (vsi->type) {
2236	case ICE_VSI_CTRL:
2237	case ICE_VSI_CHNL:
2238	case ICE_VSI_LB:
2239	case ICE_VSI_PF:
2240	case ICE_VSI_SWITCHDEV_CTRL:
2241		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2242		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2243		agg_node_iter = &pf->pf_agg_node[0];
2244		break;
2245	case ICE_VSI_VF:
2246		/* user can create 'n' VFs on a given PF, but since max children
2247		 * per aggregator node can be only 64. Following code handles
2248		 * aggregator(s) for VF VSIs, either selects a agg_node which
2249		 * was already created provided num_vsis < 64, otherwise
2250		 * select next available node, which will be created
2251		 */
2252		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2253		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2254		agg_node_iter = &pf->vf_agg_node[0];
2255		break;
2256	default:
2257		/* other VSI type, handle later if needed */
2258		dev_dbg(dev, "unexpected VSI type %s\n",
2259			ice_vsi_type_str(vsi->type));
2260		return;
2261	}
2262
2263	/* find the appropriate aggregator node */
2264	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2265		/* see if we can find space in previously created
2266		 * node if num_vsis < 64, otherwise skip
2267		 */
2268		if (agg_node_iter->num_vsis &&
2269		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2270			agg_node_iter++;
2271			continue;
2272		}
2273
2274		if (agg_node_iter->valid &&
2275		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2276			agg_id = agg_node_iter->agg_id;
2277			agg_node = agg_node_iter;
2278			break;
2279		}
2280
2281		/* find unclaimed agg_id */
2282		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2283			agg_id = node_offset + agg_node_id_start;
2284			agg_node = agg_node_iter;
2285			break;
2286		}
2287		/* move to next agg_node */
2288		agg_node_iter++;
2289	}
2290
2291	if (!agg_node)
2292		return;
2293
2294	/* if selected aggregator node was not created, create it */
2295	if (!agg_node->valid) {
2296		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2297				     (u8)vsi->tc_cfg.ena_tc);
2298		if (status) {
2299			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2300				agg_id);
2301			return;
2302		}
2303		/* aggregator node is created, store the needed info */
2304		agg_node->valid = true;
2305		agg_node->agg_id = agg_id;
2306	}
2307
2308	/* move VSI to corresponding aggregator node */
2309	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2310				     (u8)vsi->tc_cfg.ena_tc);
2311	if (status) {
2312		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2313			vsi->idx, agg_id);
2314		return;
2315	}
2316
2317	/* keep active children count for aggregator node */
2318	agg_node->num_vsis++;
 
2319
2320	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2321	 * to aggregator node
2322	 */
2323	vsi->agg_node = agg_node;
2324	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2325		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2326		vsi->agg_node->num_vsis);
2327}
 
2328
2329static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2330{
2331	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2332	struct device *dev = ice_pf_to_dev(pf);
2333	int ret, i;
2334
2335	/* configure VSI nodes based on number of queues and TC's */
2336	ice_for_each_traffic_class(i) {
2337		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2338			continue;
2339
2340		if (vsi->type == ICE_VSI_CHNL) {
2341			if (!vsi->alloc_txq && vsi->num_txq)
2342				max_txqs[i] = vsi->num_txq;
2343			else
2344				max_txqs[i] = pf->num_lan_tx;
2345		} else {
2346			max_txqs[i] = vsi->alloc_txq;
2347		}
2348
2349		if (vsi->type == ICE_VSI_PF)
2350			max_txqs[i] += vsi->num_xdp_txq;
2351	}
2352
2353	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2354	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2355			      max_txqs);
2356	if (ret) {
2357		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2358			vsi->vsi_num, ret);
2359		return ret;
2360	}
2361
2362	return 0;
2363}
2364
2365/**
2366 * ice_vsi_cfg_def - configure default VSI based on the type
2367 * @vsi: pointer to VSI
2368 * @params: the parameters to configure this VSI with
 
 
 
 
 
 
 
 
 
2369 */
2370static int
2371ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
 
2372{
2373	struct device *dev = ice_pf_to_dev(vsi->back);
2374	struct ice_pf *pf = vsi->back;
2375	int ret;
 
 
2376
2377	vsi->vsw = pf->first_sw;
 
 
 
2378
2379	ret = ice_vsi_alloc_def(vsi, params->ch);
2380	if (ret)
2381		return ret;
 
2382
2383	/* allocate memory for Tx/Rx ring stat pointers */
2384	ret = ice_vsi_alloc_stat_arrays(vsi);
2385	if (ret)
2386		goto unroll_vsi_alloc;
2387
2388	ice_alloc_fd_res(vsi);
 
2389
2390	ret = ice_vsi_get_qs(vsi);
2391	if (ret) {
2392		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2393			vsi->idx);
2394		goto unroll_vsi_alloc_stat;
2395	}
2396
2397	/* set RSS capabilities */
2398	ice_vsi_set_rss_params(vsi);
2399
2400	/* set TC configuration */
2401	ice_vsi_set_tc_cfg(vsi);
2402
2403	/* create the VSI */
2404	ret = ice_vsi_init(vsi, params->flags);
2405	if (ret)
2406		goto unroll_get_qs;
2407
2408	ice_vsi_init_vlan_ops(vsi);
2409
2410	switch (vsi->type) {
2411	case ICE_VSI_CTRL:
2412	case ICE_VSI_SWITCHDEV_CTRL:
2413	case ICE_VSI_PF:
2414		ret = ice_vsi_alloc_q_vectors(vsi);
2415		if (ret)
2416			goto unroll_vsi_init;
2417
2418		ret = ice_vsi_alloc_rings(vsi);
 
 
 
 
2419		if (ret)
2420			goto unroll_vector_base;
2421
2422		ret = ice_vsi_alloc_ring_stats(vsi);
2423		if (ret)
2424			goto unroll_vector_base;
2425
2426		ice_vsi_map_rings_to_vectors(vsi);
2427
2428		/* Associate q_vector rings to napi */
2429		ice_vsi_set_napi_queues(vsi);
2430
2431		vsi->stat_offsets_loaded = false;
2432
2433		if (ice_is_xdp_ena_vsi(vsi)) {
2434			ret = ice_vsi_determine_xdp_res(vsi);
2435			if (ret)
2436				goto unroll_vector_base;
2437			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2438			if (ret)
2439				goto unroll_vector_base;
2440		}
2441
2442		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2443		if (vsi->type != ICE_VSI_CTRL)
2444			/* Do not exit if configuring RSS had an issue, at
2445			 * least receive traffic on first queue. Hence no
2446			 * need to capture return value
2447			 */
2448			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2449				ice_vsi_cfg_rss_lut_key(vsi);
2450				ice_vsi_set_rss_flow_fld(vsi);
2451			}
2452		ice_init_arfs(vsi);
2453		break;
2454	case ICE_VSI_CHNL:
2455		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2456			ice_vsi_cfg_rss_lut_key(vsi);
2457			ice_vsi_set_rss_flow_fld(vsi);
2458		}
2459		break;
2460	case ICE_VSI_VF:
2461		/* VF driver will take care of creating netdev for this type and
2462		 * map queues to vectors through Virtchnl, PF driver only
2463		 * creates a VSI and corresponding structures for bookkeeping
2464		 * purpose
2465		 */
2466		ret = ice_vsi_alloc_q_vectors(vsi);
2467		if (ret)
2468			goto unroll_vsi_init;
2469
2470		ret = ice_vsi_alloc_rings(vsi);
2471		if (ret)
2472			goto unroll_alloc_q_vector;
2473
2474		ret = ice_vsi_alloc_ring_stats(vsi);
2475		if (ret)
2476			goto unroll_vector_base;
2477
2478		vsi->stat_offsets_loaded = false;
2479
2480		/* Do not exit if configuring RSS had an issue, at least
2481		 * receive traffic on first queue. Hence no need to capture
2482		 * return value
2483		 */
2484		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2485			ice_vsi_cfg_rss_lut_key(vsi);
2486			ice_vsi_set_vf_rss_flow_fld(vsi);
2487		}
2488		break;
2489	case ICE_VSI_LB:
2490		ret = ice_vsi_alloc_rings(vsi);
2491		if (ret)
2492			goto unroll_vsi_init;
2493
2494		ret = ice_vsi_alloc_ring_stats(vsi);
2495		if (ret)
2496			goto unroll_vector_base;
2497
2498		break;
2499	default:
2500		/* clean up the resources and exit */
2501		ret = -EINVAL;
2502		goto unroll_vsi_init;
2503	}
2504
2505	return 0;
 
 
2506
2507unroll_vector_base:
2508	/* reclaim SW interrupts back to the common pool */
2509unroll_alloc_q_vector:
2510	ice_vsi_free_q_vectors(vsi);
2511unroll_vsi_init:
2512	ice_vsi_delete_from_hw(vsi);
2513unroll_get_qs:
2514	ice_vsi_put_qs(vsi);
2515unroll_vsi_alloc_stat:
2516	ice_vsi_free_stats(vsi);
2517unroll_vsi_alloc:
2518	ice_vsi_free_arrays(vsi);
2519	return ret;
2520}
2521
2522/**
2523 * ice_vsi_cfg - configure a previously allocated VSI
2524 * @vsi: pointer to VSI
2525 * @params: parameters used to configure this VSI
2526 */
2527int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2528{
2529	struct ice_pf *pf = vsi->back;
2530	int ret;
2531
2532	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2533		return -EINVAL;
2534
2535	vsi->type = params->type;
2536	vsi->port_info = params->pi;
2537
2538	/* For VSIs which don't have a connected VF, this will be NULL */
2539	vsi->vf = params->vf;
2540
2541	ret = ice_vsi_cfg_def(vsi, params);
2542	if (ret)
2543		return ret;
2544
2545	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2546	if (ret)
2547		ice_vsi_decfg(vsi);
2548
2549	if (vsi->type == ICE_VSI_CTRL) {
2550		if (vsi->vf) {
2551			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2552			vsi->vf->ctrl_vsi_idx = vsi->idx;
2553		} else {
2554			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2555			pf->ctrl_vsi_idx = vsi->idx;
2556		}
2557	}
2558
2559	return ret;
2560}
2561
2562/**
2563 * ice_vsi_decfg - remove all VSI configuration
2564 * @vsi: pointer to VSI
2565 */
2566void ice_vsi_decfg(struct ice_vsi *vsi)
2567{
2568	struct ice_pf *pf = vsi->back;
2569	int err;
2570
2571	/* The Rx rule will only exist to remove if the LLDP FW
2572	 * engine is currently stopped
2573	 */
2574	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2575	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2576		ice_cfg_sw_lldp(vsi, false, false);
2577
2578	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2579	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2580	if (err)
2581		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2582			vsi->vsi_num, err);
2583
2584	if (ice_is_xdp_ena_vsi(vsi))
2585		/* return value check can be skipped here, it always returns
2586		 * 0 if reset is in progress
2587		 */
2588		ice_destroy_xdp_rings(vsi);
2589
2590	ice_vsi_clear_rings(vsi);
2591	ice_vsi_free_q_vectors(vsi);
2592	ice_vsi_put_qs(vsi);
2593	ice_vsi_free_arrays(vsi);
2594
2595	/* SR-IOV determines needed MSIX resources all at once instead of per
2596	 * VSI since when VFs are spawned we know how many VFs there are and how
2597	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2598	 * cleared in the same manner.
2599	 */
2600
2601	if (vsi->type == ICE_VSI_VF &&
2602	    vsi->agg_node && vsi->agg_node->valid)
2603		vsi->agg_node->num_vsis--;
2604}
2605
2606/**
2607 * ice_vsi_setup - Set up a VSI by a given type
2608 * @pf: board private structure
2609 * @params: parameters to use when creating the VSI
2610 *
2611 * This allocates the sw VSI structure and its queue resources.
2612 *
2613 * Returns pointer to the successfully allocated and configured VSI sw struct on
2614 * success, NULL on failure.
2615 */
2616struct ice_vsi *
2617ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2618{
2619	struct device *dev = ice_pf_to_dev(pf);
2620	struct ice_vsi *vsi;
2621	int ret;
2622
2623	/* ice_vsi_setup can only initialize a new VSI, and we must have
2624	 * a port_info structure for it.
2625	 */
2626	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2627	    WARN_ON(!params->pi))
2628		return NULL;
2629
2630	vsi = ice_vsi_alloc(pf);
2631	if (!vsi) {
2632		dev_err(dev, "could not allocate VSI\n");
2633		return NULL;
2634	}
2635
2636	ret = ice_vsi_cfg(vsi, params);
2637	if (ret)
2638		goto err_vsi_cfg;
2639
2640	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2641	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2642	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2643	 * The rule is added once for PF VSI in order to create appropriate
2644	 * recipe, since VSI/VSI list is ignored with drop action...
2645	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2646	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2647	 * settings in the HW.
2648	 */
2649	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2650		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2651				 ICE_DROP_PACKET);
2652		ice_cfg_sw_lldp(vsi, true, true);
 
 
 
 
 
 
 
 
2653	}
2654
2655	if (!vsi->agg_node)
2656		ice_set_agg_vsi(vsi);
2657
2658	return vsi;
2659
2660err_vsi_cfg:
2661	ice_vsi_free(vsi);
 
 
 
 
 
 
 
 
 
2662
2663	return NULL;
2664}
2665
2666/**
2667 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2668 * @vsi: the VSI being cleaned up
2669 */
2670static void ice_vsi_release_msix(struct ice_vsi *vsi)
2671{
2672	struct ice_pf *pf = vsi->back;
2673	struct ice_hw *hw = &pf->hw;
2674	u32 txq = 0;
2675	u32 rxq = 0;
2676	int i, q;
2677
2678	ice_for_each_q_vector(vsi, i) {
2679		struct ice_q_vector *q_vector = vsi->q_vectors[i];
 
2680
2681		ice_write_intrl(q_vector, 0);
 
2682		for (q = 0; q < q_vector->num_ring_tx; q++) {
2683			ice_write_itr(&q_vector->tx, 0);
2684			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2685			if (ice_is_xdp_ena_vsi(vsi)) {
2686				u32 xdp_txq = txq + vsi->num_xdp_txq;
2687
2688				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2689			}
2690			txq++;
2691		}
2692
2693		for (q = 0; q < q_vector->num_ring_rx; q++) {
2694			ice_write_itr(&q_vector->rx, 0);
2695			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2696			rxq++;
2697		}
2698	}
2699
2700	ice_flush(hw);
2701}
2702
2703/**
2704 * ice_vsi_free_irq - Free the IRQ association with the OS
2705 * @vsi: the VSI being configured
2706 */
2707void ice_vsi_free_irq(struct ice_vsi *vsi)
2708{
2709	struct ice_pf *pf = vsi->back;
 
2710	int i;
2711
2712	if (!vsi->q_vectors || !vsi->irqs_ready)
2713		return;
2714
2715	ice_vsi_release_msix(vsi);
2716	if (vsi->type == ICE_VSI_VF)
2717		return;
2718
2719	vsi->irqs_ready = false;
2720	ice_free_cpu_rx_rmap(vsi);
2721
2722	ice_for_each_q_vector(vsi, i) {
 
2723		int irq_num;
2724
2725		irq_num = vsi->q_vectors[i]->irq.virq;
2726
2727		/* free only the irqs that were actually requested */
2728		if (!vsi->q_vectors[i] ||
2729		    !(vsi->q_vectors[i]->num_ring_tx ||
2730		      vsi->q_vectors[i]->num_ring_rx))
2731			continue;
2732
2733		/* clear the affinity notifier in the IRQ descriptor */
2734		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2735			irq_set_affinity_notifier(irq_num, NULL);
2736
2737		/* clear the affinity_mask in the IRQ descriptor */
2738		irq_set_affinity_hint(irq_num, NULL);
2739		synchronize_irq(irq_num);
2740		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
 
2741	}
2742}
2743
2744/**
2745 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2746 * @vsi: the VSI having resources freed
2747 */
2748void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2749{
2750	int i;
2751
2752	if (!vsi->tx_rings)
2753		return;
2754
2755	ice_for_each_txq(vsi, i)
2756		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2757			ice_free_tx_ring(vsi->tx_rings[i]);
2758}
2759
2760/**
2761 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2762 * @vsi: the VSI having resources freed
2763 */
2764void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2765{
2766	int i;
2767
2768	if (!vsi->rx_rings)
2769		return;
2770
2771	ice_for_each_rxq(vsi, i)
2772		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2773			ice_free_rx_ring(vsi->rx_rings[i]);
2774}
2775
2776/**
2777 * ice_vsi_close - Shut down a VSI
2778 * @vsi: the VSI being shut down
2779 */
2780void ice_vsi_close(struct ice_vsi *vsi)
2781{
2782	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2783		ice_down(vsi);
2784
2785	ice_vsi_free_irq(vsi);
2786	ice_vsi_free_tx_rings(vsi);
2787	ice_vsi_free_rx_rings(vsi);
2788}
2789
2790/**
2791 * ice_ena_vsi - resume a VSI
2792 * @vsi: the VSI being resume
2793 * @locked: is the rtnl_lock already held
 
 
 
2794 */
2795int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2796{
2797	int err = 0;
 
2798
2799	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2800		return 0;
2801
2802	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2803
2804	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2805		if (netif_running(vsi->netdev)) {
2806			if (!locked)
2807				rtnl_lock();
2808
2809			err = ice_open_internal(vsi->netdev);
2810
2811			if (!locked)
2812				rtnl_unlock();
2813		}
2814	} else if (vsi->type == ICE_VSI_CTRL) {
2815		err = ice_vsi_open_ctrl(vsi);
2816	}
2817
2818	return err;
2819}
2820
2821/**
2822 * ice_dis_vsi - pause a VSI
2823 * @vsi: the VSI being paused
2824 * @locked: is the rtnl_lock already held
 
 
 
2825 */
2826void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2827{
2828	if (test_bit(ICE_VSI_DOWN, vsi->state))
2829		return;
 
 
 
 
2830
2831	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
 
 
 
 
 
 
2832
2833	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2834		if (netif_running(vsi->netdev)) {
2835			if (!locked)
2836				rtnl_lock();
2837
2838			ice_vsi_close(vsi);
 
 
2839
2840			if (!locked)
2841				rtnl_unlock();
2842		} else {
2843			ice_vsi_close(vsi);
2844		}
2845	} else if (vsi->type == ICE_VSI_CTRL ||
2846		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2847		ice_vsi_close(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2848	}
 
 
2849}
2850
2851/**
2852 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2853 * @vsi: the VSI being un-configured
2854 */
2855void ice_vsi_dis_irq(struct ice_vsi *vsi)
2856{
 
2857	struct ice_pf *pf = vsi->back;
2858	struct ice_hw *hw = &pf->hw;
2859	u32 val;
2860	int i;
2861
2862	/* disable interrupt causation from each queue */
2863	if (vsi->tx_rings) {
2864		ice_for_each_txq(vsi, i) {
2865			if (vsi->tx_rings[i]) {
2866				u16 reg;
2867
2868				reg = vsi->tx_rings[i]->reg_idx;
2869				val = rd32(hw, QINT_TQCTL(reg));
2870				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2871				wr32(hw, QINT_TQCTL(reg), val);
2872			}
2873		}
2874	}
2875
2876	if (vsi->rx_rings) {
2877		ice_for_each_rxq(vsi, i) {
2878			if (vsi->rx_rings[i]) {
2879				u16 reg;
2880
2881				reg = vsi->rx_rings[i]->reg_idx;
2882				val = rd32(hw, QINT_RQCTL(reg));
2883				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2884				wr32(hw, QINT_RQCTL(reg), val);
2885			}
2886		}
2887	}
2888
2889	/* disable each interrupt */
2890	ice_for_each_q_vector(vsi, i) {
2891		if (!vsi->q_vectors[i])
2892			continue;
2893		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2894	}
2895
2896	ice_flush(hw);
2897
2898	/* don't call synchronize_irq() for VF's from the host */
2899	if (vsi->type == ICE_VSI_VF)
2900		return;
2901
2902	ice_for_each_q_vector(vsi, i)
2903		synchronize_irq(vsi->q_vectors[i]->irq.virq);
2904}
2905
2906/**
2907 * __ice_queue_set_napi - Set the napi instance for the queue
2908 * @dev: device to which NAPI and queue belong
2909 * @queue_index: Index of queue
2910 * @type: queue type as RX or TX
2911 * @napi: NAPI context
2912 * @locked: is the rtnl_lock already held
2913 *
2914 * Set the napi instance for the queue. Caller indicates the lock status.
2915 */
2916static void
2917__ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2918		     enum netdev_queue_type type, struct napi_struct *napi,
2919		     bool locked)
2920{
2921	if (!locked)
2922		rtnl_lock();
2923	netif_queue_set_napi(dev, queue_index, type, napi);
2924	if (!locked)
2925		rtnl_unlock();
2926}
2927
2928/**
2929 * ice_queue_set_napi - Set the napi instance for the queue
2930 * @vsi: VSI being configured
2931 * @queue_index: Index of queue
2932 * @type: queue type as RX or TX
2933 * @napi: NAPI context
2934 *
2935 * Set the napi instance for the queue. The rtnl lock state is derived from the
2936 * execution path.
2937 */
2938void
2939ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
2940		   enum netdev_queue_type type, struct napi_struct *napi)
2941{
2942	struct ice_pf *pf = vsi->back;
2943
2944	if (!vsi->netdev)
2945		return;
2946
2947	if (current_work() == &pf->serv_task ||
2948	    test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
2949	    test_bit(ICE_DOWN, pf->state) ||
2950	    test_bit(ICE_SUSPENDED, pf->state))
2951		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2952				     false);
2953	else
2954		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2955				     true);
2956}
2957
2958/**
2959 * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2960 * @q_vector: q_vector pointer
2961 * @locked: is the rtnl_lock already held
2962 *
2963 * Associate the q_vector napi with all the queue[s] on the vector.
2964 * Caller indicates the lock status.
2965 */
2966void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2967{
2968	struct ice_rx_ring *rx_ring;
2969	struct ice_tx_ring *tx_ring;
2970
2971	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2972		__ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2973				     NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2974				     locked);
2975
2976	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2977		__ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2978				     NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2979				     locked);
2980	/* Also set the interrupt number for the NAPI */
2981	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2982}
2983
2984/**
2985 * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2986 * @q_vector: q_vector pointer
2987 *
2988 * Associate the q_vector napi with all the queue[s] on the vector
2989 */
2990void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
2991{
2992	struct ice_rx_ring *rx_ring;
2993	struct ice_tx_ring *tx_ring;
2994
2995	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2996		ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
2997				   NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
2998
2999	ice_for_each_tx_ring(tx_ring, q_vector->tx)
3000		ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
3001				   NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
3002	/* Also set the interrupt number for the NAPI */
3003	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
3004}
3005
3006/**
3007 * ice_vsi_set_napi_queues
3008 * @vsi: VSI pointer
3009 *
3010 * Associate queue[s] with napi for all vectors
3011 */
3012void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
3013{
3014	int i;
3015
3016	if (!vsi->netdev)
3017		return;
3018
3019	ice_for_each_q_vector(vsi, i)
3020		ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
3021}
3022
3023/**
3024 * ice_vsi_release - Delete a VSI and free its resources
3025 * @vsi: the VSI being removed
3026 *
3027 * Returns 0 on success or < 0 on error
3028 */
3029int ice_vsi_release(struct ice_vsi *vsi)
3030{
3031	struct ice_pf *pf;
3032
3033	if (!vsi->back)
3034		return -ENODEV;
3035	pf = vsi->back;
3036
 
 
 
 
 
 
 
 
 
3037	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3038		ice_rss_clean(vsi);
3039
 
 
 
3040	ice_vsi_close(vsi);
3041	ice_vsi_decfg(vsi);
3042
3043	/* retain SW VSI data structure since it is needed to unregister and
3044	 * free VSI netdev when PF is not in reset recovery pending state,\
3045	 * for ex: during rmmod.
 
3046	 */
3047	if (!ice_is_reset_in_progress(pf->state))
3048		ice_vsi_delete(vsi);
3049
3050	return 0;
3051}
3052
3053/**
3054 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3055 * @vsi: VSI connected with q_vectors
3056 * @coalesce: array of struct with stored coalesce
3057 *
3058 * Returns array size.
3059 */
3060static int
3061ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3062			     struct ice_coalesce_stored *coalesce)
3063{
3064	int i;
3065
3066	ice_for_each_q_vector(vsi, i) {
3067		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3068
3069		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3070		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3071		coalesce[i].intrl = q_vector->intrl;
3072
3073		if (i < vsi->num_txq)
3074			coalesce[i].tx_valid = true;
3075		if (i < vsi->num_rxq)
3076			coalesce[i].rx_valid = true;
3077	}
3078
3079	return vsi->num_q_vectors;
3080}
3081
3082/**
3083 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3084 * @vsi: VSI connected with q_vectors
3085 * @coalesce: pointer to array of struct with stored coalesce
3086 * @size: size of coalesce array
3087 *
3088 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3089 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3090 * to default value.
3091 */
3092static void
3093ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3094			     struct ice_coalesce_stored *coalesce, int size)
3095{
3096	struct ice_ring_container *rc;
3097	int i;
3098
3099	if ((size && !coalesce) || !vsi)
3100		return;
3101
3102	/* There are a couple of cases that have to be handled here:
3103	 *   1. The case where the number of queue vectors stays the same, but
3104	 *      the number of Tx or Rx rings changes (the first for loop)
3105	 *   2. The case where the number of queue vectors increased (the
3106	 *      second for loop)
3107	 */
3108	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3109		/* There are 2 cases to handle here and they are the same for
3110		 * both Tx and Rx:
3111		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3112		 *   and the loop variable is less than the number of rings
3113		 *   allocated, then write the previous values
3114		 *
3115		 *   if the entry was not valid previously, but the number of
3116		 *   rings is less than are allocated (this means the number of
3117		 *   rings increased from previously), then write out the
3118		 *   values in the first element
3119		 *
3120		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3121		 *   as there is no harm because the dynamic algorithm
3122		 *   will just overwrite.
3123		 */
3124		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3125			rc = &vsi->q_vectors[i]->rx;
3126			rc->itr_settings = coalesce[i].itr_rx;
3127			ice_write_itr(rc, rc->itr_setting);
3128		} else if (i < vsi->alloc_rxq) {
3129			rc = &vsi->q_vectors[i]->rx;
3130			rc->itr_settings = coalesce[0].itr_rx;
3131			ice_write_itr(rc, rc->itr_setting);
3132		}
3133
3134		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3135			rc = &vsi->q_vectors[i]->tx;
3136			rc->itr_settings = coalesce[i].itr_tx;
3137			ice_write_itr(rc, rc->itr_setting);
3138		} else if (i < vsi->alloc_txq) {
3139			rc = &vsi->q_vectors[i]->tx;
3140			rc->itr_settings = coalesce[0].itr_tx;
3141			ice_write_itr(rc, rc->itr_setting);
3142		}
3143
3144		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3145		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3146	}
3147
3148	/* the number of queue vectors increased so write whatever is in
3149	 * the first element
3150	 */
3151	for (; i < vsi->num_q_vectors; i++) {
3152		/* transmit */
3153		rc = &vsi->q_vectors[i]->tx;
3154		rc->itr_settings = coalesce[0].itr_tx;
3155		ice_write_itr(rc, rc->itr_setting);
3156
3157		/* receive */
3158		rc = &vsi->q_vectors[i]->rx;
3159		rc->itr_settings = coalesce[0].itr_rx;
3160		ice_write_itr(rc, rc->itr_setting);
3161
3162		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3163		ice_set_q_vector_intrl(vsi->q_vectors[i]);
 
 
3164	}
3165}
3166
3167/**
3168 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3169 * @vsi: VSI pointer
3170 */
3171static int
3172ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3173{
3174	u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3175	u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3176	struct ice_ring_stats **tx_ring_stats;
3177	struct ice_ring_stats **rx_ring_stats;
3178	struct ice_vsi_stats *vsi_stat;
3179	struct ice_pf *pf = vsi->back;
3180	u16 prev_txq = vsi->alloc_txq;
3181	u16 prev_rxq = vsi->alloc_rxq;
3182	int i;
3183
3184	vsi_stat = pf->vsi_stats[vsi->idx];
3185
3186	if (req_txq < prev_txq) {
3187		for (i = req_txq; i < prev_txq; i++) {
3188			if (vsi_stat->tx_ring_stats[i]) {
3189				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3190				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3191			}
3192		}
3193	}
3194
3195	tx_ring_stats = vsi_stat->tx_ring_stats;
3196	vsi_stat->tx_ring_stats =
3197		krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3198			       sizeof(*vsi_stat->tx_ring_stats),
3199			       GFP_KERNEL | __GFP_ZERO);
3200	if (!vsi_stat->tx_ring_stats) {
3201		vsi_stat->tx_ring_stats = tx_ring_stats;
3202		return -ENOMEM;
3203	}
3204
3205	if (req_rxq < prev_rxq) {
3206		for (i = req_rxq; i < prev_rxq; i++) {
3207			if (vsi_stat->rx_ring_stats[i]) {
3208				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3209				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3210			}
3211		}
3212	}
3213
3214	rx_ring_stats = vsi_stat->rx_ring_stats;
3215	vsi_stat->rx_ring_stats =
3216		krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3217			       sizeof(*vsi_stat->rx_ring_stats),
3218			       GFP_KERNEL | __GFP_ZERO);
3219	if (!vsi_stat->rx_ring_stats) {
3220		vsi_stat->rx_ring_stats = rx_ring_stats;
3221		return -ENOMEM;
3222	}
3223
3224	return 0;
3225}
3226
3227/**
3228 * ice_vsi_rebuild - Rebuild VSI after reset
3229 * @vsi: VSI to be rebuild
3230 * @vsi_flags: flags used for VSI rebuild flow
3231 *
3232 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3233 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3234 *
3235 * Returns 0 on success and negative value on failure
3236 */
3237int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3238{
3239	struct ice_vsi_cfg_params params = {};
3240	struct ice_coalesce_stored *coalesce;
3241	int prev_num_q_vectors = 0;
3242	struct ice_pf *pf;
3243	int ret;
3244
3245	if (!vsi)
3246		return -EINVAL;
3247
3248	params = ice_vsi_to_params(vsi);
3249	params.flags = vsi_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3250
3251	pf = vsi->back;
3252	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3253		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254
3255	coalesce = kcalloc(vsi->num_q_vectors,
3256			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3257	if (!coalesce)
3258		return -ENOMEM;
3259
3260	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
 
 
3261
3262	ret = ice_vsi_realloc_stat_arrays(vsi);
3263	if (ret)
3264		goto err_vsi_cfg;
 
 
 
 
 
 
 
 
 
3265
3266	ice_vsi_decfg(vsi);
3267	ret = ice_vsi_cfg_def(vsi, &params);
3268	if (ret)
3269		goto err_vsi_cfg;
3270
3271	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3272	if (ret) {
3273		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3274			ret = -EIO;
3275			goto err_vsi_cfg_tc_lan;
3276		}
3277
3278		kfree(coalesce);
3279		return ice_schedule_reset(pf, ICE_RESET_PFR);
 
3280	}
3281
3282	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3283	kfree(coalesce);
 
3284
 
 
 
 
 
 
 
 
3285	return 0;
3286
3287err_vsi_cfg_tc_lan:
3288	ice_vsi_decfg(vsi);
3289err_vsi_cfg:
3290	kfree(coalesce);
 
 
 
 
 
 
 
 
3291	return ret;
3292}
3293
3294/**
3295 * ice_is_reset_in_progress - check for a reset in progress
3296 * @state: PF state field
3297 */
3298bool ice_is_reset_in_progress(unsigned long *state)
3299{
3300	return test_bit(ICE_RESET_OICR_RECV, state) ||
3301	       test_bit(ICE_PFR_REQ, state) ||
3302	       test_bit(ICE_CORER_REQ, state) ||
3303	       test_bit(ICE_GLOBR_REQ, state);
3304}
3305
3306/**
3307 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3308 * @pf: pointer to the PF structure
3309 * @timeout: length of time to wait, in jiffies
3310 *
3311 * Wait (sleep) for a short time until the driver finishes cleaning up from
3312 * a device reset. The caller must be able to sleep. Use this to delay
3313 * operations that could fail while the driver is cleaning up after a device
3314 * reset.
3315 *
3316 * Returns 0 on success, -EBUSY if the reset is not finished within the
3317 * timeout, and -ERESTARTSYS if the thread was interrupted.
3318 */
3319int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3320{
3321	long ret;
3322
3323	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3324					       !ice_is_reset_in_progress(pf->state),
3325					       timeout);
3326	if (ret < 0)
3327		return ret;
3328	else if (!ret)
3329		return -EBUSY;
3330	else
3331		return 0;
3332}
3333
 
3334/**
3335 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3336 * @vsi: VSI being configured
3337 * @ctx: the context buffer returned from AQ VSI update command
3338 */
3339static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3340{
3341	vsi->info.mapping_flags = ctx->info.mapping_flags;
3342	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3343	       sizeof(vsi->info.q_mapping));
3344	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3345	       sizeof(vsi->info.tc_mapping));
3346}
3347
3348/**
3349 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3350 * @vsi: the VSI being configured
3351 * @ena_tc: TC map to be enabled
3352 */
3353void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3354{
3355	struct net_device *netdev = vsi->netdev;
3356	struct ice_pf *pf = vsi->back;
3357	int numtc = vsi->tc_cfg.numtc;
3358	struct ice_dcbx_cfg *dcbcfg;
3359	u8 netdev_tc;
3360	int i;
3361
3362	if (!netdev)
3363		return;
3364
3365	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3366	if (vsi->type == ICE_VSI_CHNL)
3367		return;
3368
3369	if (!ena_tc) {
3370		netdev_reset_tc(netdev);
3371		return;
3372	}
3373
3374	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3375		numtc = vsi->all_numtc;
3376
3377	if (netdev_set_num_tc(netdev, numtc))
3378		return;
3379
3380	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3381
3382	ice_for_each_traffic_class(i)
3383		if (vsi->tc_cfg.ena_tc & BIT(i))
3384			netdev_set_tc_queue(netdev,
3385					    vsi->tc_cfg.tc_info[i].netdev_tc,
3386					    vsi->tc_cfg.tc_info[i].qcount_tx,
3387					    vsi->tc_cfg.tc_info[i].qoffset);
3388	/* setup TC queue map for CHNL TCs */
3389	ice_for_each_chnl_tc(i) {
3390		if (!(vsi->all_enatc & BIT(i)))
3391			break;
3392		if (!vsi->mqprio_qopt.qopt.count[i])
3393			break;
3394		netdev_set_tc_queue(netdev, i,
3395				    vsi->mqprio_qopt.qopt.count[i],
3396				    vsi->mqprio_qopt.qopt.offset[i]);
3397	}
3398
3399	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3400		return;
3401
3402	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3403		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3404
3405		/* Get the mapped netdev TC# for the UP */
3406		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3407		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3408	}
3409}
3410
3411/**
3412 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3413 * @vsi: the VSI being configured,
3414 * @ctxt: VSI context structure
3415 * @ena_tc: number of traffic classes to enable
3416 *
3417 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3418 */
3419static int
3420ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3421			   u8 ena_tc)
3422{
3423	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3424	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3425	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3426	u16 new_txq, new_rxq;
3427	u8 netdev_tc = 0;
3428	int i;
3429
3430	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3431
3432	pow = order_base_2(tc0_qcount);
3433	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3434	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3435
3436	ice_for_each_traffic_class(i) {
3437		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3438			/* TC is not enabled */
3439			vsi->tc_cfg.tc_info[i].qoffset = 0;
3440			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3441			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3442			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3443			ctxt->info.tc_mapping[i] = 0;
3444			continue;
3445		}
3446
3447		offset = vsi->mqprio_qopt.qopt.offset[i];
3448		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3449		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3450		vsi->tc_cfg.tc_info[i].qoffset = offset;
3451		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3452		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3453		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3454	}
3455
3456	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3457		ice_for_each_chnl_tc(i) {
3458			if (!(vsi->all_enatc & BIT(i)))
3459				continue;
3460			offset = vsi->mqprio_qopt.qopt.offset[i];
3461			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3462			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3463		}
3464	}
3465
3466	new_txq = offset + qcount_tx;
3467	if (new_txq > vsi->alloc_txq) {
3468		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3469			new_txq, vsi->alloc_txq);
3470		return -EINVAL;
3471	}
3472
3473	new_rxq = offset + qcount_rx;
3474	if (new_rxq > vsi->alloc_rxq) {
3475		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3476			new_rxq, vsi->alloc_rxq);
3477		return -EINVAL;
3478	}
3479
3480	/* Set actual Tx/Rx queue pairs */
3481	vsi->num_txq = new_txq;
3482	vsi->num_rxq = new_rxq;
3483
3484	/* Setup queue TC[0].qmap for given VSI context */
3485	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3486	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3487	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3488
3489	/* Find queue count available for channel VSIs and starting offset
3490	 * for channel VSIs
3491	 */
3492	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3493		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3494		vsi->next_base_q = tc0_qcount;
3495	}
3496	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3497	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3498	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3499		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3500
3501	return 0;
3502}
3503
3504/**
3505 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3506 * @vsi: VSI to be configured
3507 * @ena_tc: TC bitmap
3508 *
3509 * VSI queues expected to be quiesced before calling this function
3510 */
3511int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3512{
3513	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
 
3514	struct ice_pf *pf = vsi->back;
3515	struct ice_tc_cfg old_tc_cfg;
3516	struct ice_vsi_ctx *ctx;
3517	struct device *dev;
3518	int i, ret = 0;
3519	u8 num_tc = 0;
3520
3521	dev = ice_pf_to_dev(pf);
3522	if (vsi->tc_cfg.ena_tc == ena_tc &&
3523	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3524		return 0;
3525
3526	ice_for_each_traffic_class(i) {
3527		/* build bitmap of enabled TCs */
3528		if (ena_tc & BIT(i))
3529			num_tc++;
3530		/* populate max_txqs per TC */
3531		max_txqs[i] = vsi->alloc_txq;
3532		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3533		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3534		 */
3535		if (vsi->type == ICE_VSI_CHNL &&
3536		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3537			max_txqs[i] = vsi->num_txq;
3538	}
3539
3540	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3541	vsi->tc_cfg.ena_tc = ena_tc;
3542	vsi->tc_cfg.numtc = num_tc;
3543
3544	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3545	if (!ctx)
3546		return -ENOMEM;
3547
3548	ctx->vf_num = 0;
3549	ctx->info = vsi->info;
3550
3551	if (vsi->type == ICE_VSI_PF &&
3552	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3553		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3554	else
3555		ret = ice_vsi_setup_q_map(vsi, ctx);
3556
3557	if (ret) {
3558		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3559		goto out;
3560	}
3561
3562	/* must to indicate which section of VSI context are being modified */
3563	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3564	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3565	if (ret) {
3566		dev_info(dev, "Failed VSI Update\n");
 
3567		goto out;
3568	}
3569
3570	if (vsi->type == ICE_VSI_PF &&
3571	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3572		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3573	else
3574		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3575				      vsi->tc_cfg.ena_tc, max_txqs);
3576
3577	if (ret) {
3578		dev_err(dev, "VSI %d failed TC config, error %d\n",
3579			vsi->vsi_num, ret);
 
 
3580		goto out;
3581	}
3582	ice_vsi_update_q_map(vsi, ctx);
3583	vsi->info.valid_sections = 0;
3584
3585	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3586out:
3587	kfree(ctx);
3588	return ret;
3589}
 
3590
3591/**
3592 * ice_update_ring_stats - Update ring statistics
3593 * @stats: stats to be updated
3594 * @pkts: number of processed packets
3595 * @bytes: number of processed bytes
3596 *
3597 * This function assumes that caller has acquired a u64_stats_sync lock.
3598 */
3599static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3600{
3601	stats->bytes += bytes;
3602	stats->pkts += pkts;
3603}
3604
3605/**
3606 * ice_update_tx_ring_stats - Update Tx ring specific counters
3607 * @tx_ring: ring to update
3608 * @pkts: number of processed packets
3609 * @bytes: number of processed bytes
3610 */
3611void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3612{
3613	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3614	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3615	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3616}
3617
3618/**
3619 * ice_update_rx_ring_stats - Update Rx ring specific counters
3620 * @rx_ring: ring to update
3621 * @pkts: number of processed packets
3622 * @bytes: number of processed bytes
3623 */
3624void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3625{
3626	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3627	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3628	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3629}
3630
3631/**
3632 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3633 * @pi: port info of the switch with default VSI
3634 *
3635 * Return true if the there is a single VSI in default forwarding VSI list
3636 */
3637bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3638{
3639	bool exists = false;
3640
3641	ice_check_if_dflt_vsi(pi, 0, &exists);
3642	return exists;
3643}
3644
3645/**
3646 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3647 * @vsi: VSI to compare against default forwarding VSI
3648 *
3649 * If this VSI passed in is the default forwarding VSI then return true, else
3650 * return false
3651 */
3652bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3653{
3654	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3655}
3656
3657/**
3658 * ice_set_dflt_vsi - set the default forwarding VSI
3659 * @vsi: VSI getting set as the default forwarding VSI on the switch
3660 *
3661 * If the VSI passed in is already the default VSI and it's enabled just return
3662 * success.
3663 *
3664 * Otherwise try to set the VSI passed in as the switch's default VSI and
3665 * return the result.
3666 */
3667int ice_set_dflt_vsi(struct ice_vsi *vsi)
3668{
3669	struct device *dev;
3670	int status;
3671
3672	if (!vsi)
3673		return -EINVAL;
3674
3675	dev = ice_pf_to_dev(vsi->back);
3676
3677	if (ice_lag_is_switchdev_running(vsi->back)) {
3678		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3679			vsi->vsi_num);
3680		return 0;
3681	}
3682
3683	/* the VSI passed in is already the default VSI */
3684	if (ice_is_vsi_dflt_vsi(vsi)) {
3685		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3686			vsi->vsi_num);
3687		return 0;
3688	}
3689
3690	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3691	if (status) {
3692		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3693			vsi->vsi_num, status);
3694		return status;
3695	}
3696
3697	return 0;
3698}
3699
3700/**
3701 * ice_clear_dflt_vsi - clear the default forwarding VSI
3702 * @vsi: VSI to remove from filter list
3703 *
3704 * If the switch has no default VSI or it's not enabled then return error.
3705 *
3706 * Otherwise try to clear the default VSI and return the result.
3707 */
3708int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3709{
3710	struct device *dev;
3711	int status;
3712
3713	if (!vsi)
3714		return -EINVAL;
3715
3716	dev = ice_pf_to_dev(vsi->back);
3717
3718	/* there is no default VSI configured */
3719	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3720		return -ENODEV;
3721
3722	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3723				  ICE_FLTR_RX);
3724	if (status) {
3725		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3726			vsi->vsi_num, status);
3727		return -EIO;
3728	}
3729
3730	return 0;
3731}
3732
3733/**
3734 * ice_get_link_speed_mbps - get link speed in Mbps
3735 * @vsi: the VSI whose link speed is being queried
3736 *
3737 * Return current VSI link speed and 0 if the speed is unknown.
3738 */
3739int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3740{
3741	unsigned int link_speed;
3742
3743	link_speed = vsi->port_info->phy.link_info.link_speed;
3744
3745	return (int)ice_get_link_speed(fls(link_speed) - 1);
3746}
3747
3748/**
3749 * ice_get_link_speed_kbps - get link speed in Kbps
3750 * @vsi: the VSI whose link speed is being queried
3751 *
3752 * Return current VSI link speed and 0 if the speed is unknown.
3753 */
3754int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3755{
3756	int speed_mbps;
3757
3758	speed_mbps = ice_get_link_speed_mbps(vsi);
 
3759
3760	return speed_mbps * 1000;
3761}
3762
3763/**
3764 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3765 * @vsi: VSI to be configured
3766 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
 
3767 *
3768 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3769 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3770 * on TC 0.
3771 */
3772int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
 
3773{
3774	struct ice_pf *pf = vsi->back;
3775	struct device *dev;
3776	int status;
3777	int speed;
3778
3779	dev = ice_pf_to_dev(pf);
3780	if (!vsi->port_info) {
3781		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3782			vsi->idx, vsi->type);
3783		return -EINVAL;
3784	}
3785
3786	speed = ice_get_link_speed_kbps(vsi);
3787	if (min_tx_rate > (u64)speed) {
3788		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3789			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3790			speed);
3791		return -EINVAL;
3792	}
3793
3794	/* Configure min BW for VSI limit */
3795	if (min_tx_rate) {
3796		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3797						   ICE_MIN_BW, min_tx_rate);
3798		if (status) {
3799			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3800				min_tx_rate, ice_vsi_type_str(vsi->type),
3801				vsi->idx);
3802			return status;
3803		}
3804
3805		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3806			min_tx_rate, ice_vsi_type_str(vsi->type));
3807	} else {
3808		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3809							vsi->idx, 0,
3810							ICE_MIN_BW);
3811		if (status) {
3812			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3813				ice_vsi_type_str(vsi->type), vsi->idx);
3814			return status;
3815		}
3816
3817		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3818			ice_vsi_type_str(vsi->type), vsi->idx);
3819	}
3820
3821	return 0;
3822}
3823
3824/**
3825 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3826 * @vsi: VSI to be configured
3827 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3828 *
3829 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3830 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3831 * on TC 0.
3832 */
3833int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3834{
3835	struct ice_pf *pf = vsi->back;
3836	struct device *dev;
3837	int status;
3838	int speed;
3839
3840	dev = ice_pf_to_dev(pf);
3841	if (!vsi->port_info) {
3842		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3843			vsi->idx, vsi->type);
3844		return -EINVAL;
3845	}
3846
3847	speed = ice_get_link_speed_kbps(vsi);
3848	if (max_tx_rate > (u64)speed) {
3849		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3850			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3851			speed);
3852		return -EINVAL;
3853	}
3854
3855	/* Configure max BW for VSI limit */
3856	if (max_tx_rate) {
3857		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3858						   ICE_MAX_BW, max_tx_rate);
3859		if (status) {
3860			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3861				max_tx_rate, ice_vsi_type_str(vsi->type),
3862				vsi->idx);
3863			return status;
3864		}
3865
3866		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3867			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3868	} else {
3869		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3870							vsi->idx, 0,
3871							ICE_MAX_BW);
3872		if (status) {
3873			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3874				ice_vsi_type_str(vsi->type), vsi->idx);
3875			return status;
3876		}
3877
3878		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3879			ice_vsi_type_str(vsi->type), vsi->idx);
3880	}
3881
3882	return 0;
3883}
3884
3885/**
3886 * ice_set_link - turn on/off physical link
3887 * @vsi: VSI to modify physical link on
3888 * @ena: turn on/off physical link
3889 */
3890int ice_set_link(struct ice_vsi *vsi, bool ena)
3891{
3892	struct device *dev = ice_pf_to_dev(vsi->back);
3893	struct ice_port_info *pi = vsi->port_info;
3894	struct ice_hw *hw = pi->hw;
3895	int status;
3896
3897	if (vsi->type != ICE_VSI_PF)
3898		return -EINVAL;
3899
3900	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3901
3902	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3903	 * this is not a fatal error, so print a warning message and return
3904	 * a success code. Return an error if FW returns an error code other
3905	 * than ICE_AQ_RC_EMODE
3906	 */
3907	if (status == -EIO) {
3908		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3909			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3910				(ena ? "ON" : "OFF"), status,
3911				ice_aq_str(hw->adminq.sq_last_status));
3912	} else if (status) {
3913		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3914			(ena ? "ON" : "OFF"), status,
3915			ice_aq_str(hw->adminq.sq_last_status));
3916		return status;
3917	}
3918
3919	return 0;
3920}
3921
3922/**
3923 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3924 * @vsi: VSI used to add VLAN filters
3925 *
3926 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3927 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3928 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3929 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3930 *
3931 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3932 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3933 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3934 *
3935 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3936 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3937 * part of filtering.
3938 */
3939int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3940{
3941	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3942	struct ice_vlan vlan;
3943	int err;
3944
3945	vlan = ICE_VLAN(0, 0, 0);
3946	err = vlan_ops->add_vlan(vsi, &vlan);
3947	if (err && err != -EEXIST)
3948		return err;
3949
3950	/* in SVM both VLAN 0 filters are identical */
3951	if (!ice_is_dvm_ena(&vsi->back->hw))
3952		return 0;
3953
3954	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3955	err = vlan_ops->add_vlan(vsi, &vlan);
3956	if (err && err != -EEXIST)
3957		return err;
3958
3959	return 0;
3960}
3961
3962/**
3963 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3964 * @vsi: VSI used to add VLAN filters
3965 *
3966 * Delete the VLAN 0 filters in the same manner that they were added in
3967 * ice_vsi_add_vlan_zero.
3968 */
3969int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3970{
3971	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3972	struct ice_vlan vlan;
3973	int err;
3974
3975	vlan = ICE_VLAN(0, 0, 0);
3976	err = vlan_ops->del_vlan(vsi, &vlan);
3977	if (err && err != -EEXIST)
3978		return err;
3979
3980	/* in SVM both VLAN 0 filters are identical */
3981	if (!ice_is_dvm_ena(&vsi->back->hw))
3982		return 0;
3983
3984	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3985	err = vlan_ops->del_vlan(vsi, &vlan);
3986	if (err && err != -EEXIST)
3987		return err;
3988
3989	/* when deleting the last VLAN filter, make sure to disable the VLAN
3990	 * promisc mode so the filter isn't left by accident
3991	 */
3992	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3993				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3994}
3995
3996/**
3997 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3998 * @vsi: VSI used to get the VLAN mode
3999 *
4000 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4001 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4002 */
4003static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4004{
4005#define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
4006#define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
4007	/* no VLAN 0 filter is created when a port VLAN is active */
4008	if (vsi->type == ICE_VSI_VF) {
4009		if (WARN_ON(!vsi->vf))
4010			return 0;
4011
4012		if (ice_vf_is_port_vlan_ena(vsi->vf))
4013			return 0;
4014	}
4015
4016	if (ice_is_dvm_ena(&vsi->back->hw))
4017		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4018	else
4019		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4020}
4021
4022/**
4023 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4024 * @vsi: VSI used to determine if any non-zero VLANs have been added
4025 */
4026bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4027{
4028	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4029}
4030
4031/**
4032 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4033 * @vsi: VSI used to get the number of non-zero VLANs added
4034 */
4035u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4036{
4037	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4038}
4039
4040/**
4041 * ice_is_feature_supported
4042 * @pf: pointer to the struct ice_pf instance
4043 * @f: feature enum to be checked
4044 *
4045 * returns true if feature is supported, false otherwise
4046 */
4047bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4048{
4049	if (f < 0 || f >= ICE_F_MAX)
4050		return false;
4051
4052	return test_bit(f, pf->features);
4053}
4054
4055/**
4056 * ice_set_feature_support
4057 * @pf: pointer to the struct ice_pf instance
4058 * @f: feature enum to set
4059 */
4060void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4061{
4062	if (f < 0 || f >= ICE_F_MAX)
4063		return;
4064
4065	set_bit(f, pf->features);
4066}
4067
4068/**
4069 * ice_clear_feature_support
4070 * @pf: pointer to the struct ice_pf instance
4071 * @f: feature enum to clear
4072 */
4073void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4074{
4075	if (f < 0 || f >= ICE_F_MAX)
4076		return;
4077
4078	clear_bit(f, pf->features);
4079}
4080
4081/**
4082 * ice_init_feature_support
4083 * @pf: pointer to the struct ice_pf instance
4084 *
4085 * called during init to setup supported feature
4086 */
4087void ice_init_feature_support(struct ice_pf *pf)
4088{
4089	switch (pf->hw.device_id) {
4090	case ICE_DEV_ID_E810C_BACKPLANE:
4091	case ICE_DEV_ID_E810C_QSFP:
4092	case ICE_DEV_ID_E810C_SFP:
4093	case ICE_DEV_ID_E810_XXV_BACKPLANE:
4094	case ICE_DEV_ID_E810_XXV_QSFP:
4095	case ICE_DEV_ID_E810_XXV_SFP:
4096		ice_set_feature_support(pf, ICE_F_DSCP);
4097		if (ice_is_phy_rclk_in_netlist(&pf->hw))
4098			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
4099		/* If we don't own the timer - don't enable other caps */
4100		if (!ice_pf_src_tmr_owned(pf))
4101			break;
4102		if (ice_is_cgu_in_netlist(&pf->hw))
4103			ice_set_feature_support(pf, ICE_F_CGU);
4104		if (ice_is_clock_mux_in_netlist(&pf->hw))
4105			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4106		if (ice_gnss_is_gps_present(&pf->hw))
4107			ice_set_feature_support(pf, ICE_F_GNSS);
4108		break;
4109	default:
4110		break;
4111	}
4112}
4113
4114/**
4115 * ice_vsi_update_security - update security block in VSI
4116 * @vsi: pointer to VSI structure
4117 * @fill: function pointer to fill ctx
4118 */
4119int
4120ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4121{
4122	struct ice_vsi_ctx ctx = { 0 };
4123
4124	ctx.info = vsi->info;
4125	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4126	fill(&ctx);
4127
4128	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4129		return -ENODEV;
4130
4131	vsi->info = ctx.info;
4132	return 0;
4133}
4134
4135/**
4136 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4137 * @ctx: pointer to VSI ctx structure
4138 */
4139void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4140{
4141	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4142			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4143				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4144}
4145
4146/**
4147 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4148 * @ctx: pointer to VSI ctx structure
4149 */
4150void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4151{
4152	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4153			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4154				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4155}
4156
4157/**
4158 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4159 * @ctx: pointer to VSI ctx structure
4160 */
4161void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4162{
4163	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4164}
4165
4166/**
4167 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4168 * @ctx: pointer to VSI ctx structure
4169 */
4170void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4171{
4172	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4173}
4174
4175/**
4176 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4177 * @vsi: pointer to VSI structure
4178 * @set: set or unset the bit
4179 */
4180int
4181ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4182{
4183	struct ice_vsi_ctx ctx = {
4184		.info	= vsi->info,
4185	};
4186
4187	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4188	if (set)
4189		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4190	else
4191		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4192
4193	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4194		return -ENODEV;
4195
4196	vsi->info = ctx.info;
4197	return 0;
4198}