Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12#include <linux/kernel_stat.h>
13#include <linux/perf_event.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/debug.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/ptrace.h>
22#include <linux/mman.h>
23#include <linux/mm.h>
24#include <linux/compat.h>
25#include <linux/smp.h>
26#include <linux/kdebug.h>
27#include <linux/init.h>
28#include <linux/console.h>
29#include <linux/extable.h>
30#include <linux/hardirq.h>
31#include <linux/kprobes.h>
32#include <linux/uaccess.h>
33#include <linux/hugetlb.h>
34#include <asm/asm-offsets.h>
35#include <asm/diag.h>
36#include <asm/pgtable.h>
37#include <asm/gmap.h>
38#include <asm/irq.h>
39#include <asm/mmu_context.h>
40#include <asm/facility.h>
41#include "../kernel/entry.h"
42
43#define __FAIL_ADDR_MASK -4096L
44#define __SUBCODE_MASK 0x0600
45#define __PF_RES_FIELD 0x8000000000000000ULL
46
47#define VM_FAULT_BADCONTEXT 0x010000
48#define VM_FAULT_BADMAP 0x020000
49#define VM_FAULT_BADACCESS 0x040000
50#define VM_FAULT_SIGNAL 0x080000
51#define VM_FAULT_PFAULT 0x100000
52
53enum fault_type {
54 KERNEL_FAULT,
55 USER_FAULT,
56 VDSO_FAULT,
57 GMAP_FAULT,
58};
59
60static unsigned long store_indication __read_mostly;
61
62static int __init fault_init(void)
63{
64 if (test_facility(75))
65 store_indication = 0xc00;
66 return 0;
67}
68early_initcall(fault_init);
69
70/*
71 * Find out which address space caused the exception.
72 */
73static enum fault_type get_fault_type(struct pt_regs *regs)
74{
75 unsigned long trans_exc_code;
76
77 trans_exc_code = regs->int_parm_long & 3;
78 if (likely(trans_exc_code == 0)) {
79 /* primary space exception */
80 if (IS_ENABLED(CONFIG_PGSTE) &&
81 test_pt_regs_flag(regs, PIF_GUEST_FAULT))
82 return GMAP_FAULT;
83 if (current->thread.mm_segment == USER_DS)
84 return USER_FAULT;
85 return KERNEL_FAULT;
86 }
87 if (trans_exc_code == 2) {
88 /* secondary space exception */
89 if (current->thread.mm_segment & 1) {
90 if (current->thread.mm_segment == USER_DS_SACF)
91 return USER_FAULT;
92 return KERNEL_FAULT;
93 }
94 return VDSO_FAULT;
95 }
96 if (trans_exc_code == 1) {
97 /* access register mode, not used in the kernel */
98 return USER_FAULT;
99 }
100 /* home space exception -> access via kernel ASCE */
101 return KERNEL_FAULT;
102}
103
104static int bad_address(void *p)
105{
106 unsigned long dummy;
107
108 return probe_kernel_address((unsigned long *)p, dummy);
109}
110
111static void dump_pagetable(unsigned long asce, unsigned long address)
112{
113 unsigned long *table = __va(asce & _ASCE_ORIGIN);
114
115 pr_alert("AS:%016lx ", asce);
116 switch (asce & _ASCE_TYPE_MASK) {
117 case _ASCE_TYPE_REGION1:
118 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
119 if (bad_address(table))
120 goto bad;
121 pr_cont("R1:%016lx ", *table);
122 if (*table & _REGION_ENTRY_INVALID)
123 goto out;
124 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
125 /* fallthrough */
126 case _ASCE_TYPE_REGION2:
127 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
128 if (bad_address(table))
129 goto bad;
130 pr_cont("R2:%016lx ", *table);
131 if (*table & _REGION_ENTRY_INVALID)
132 goto out;
133 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
134 /* fallthrough */
135 case _ASCE_TYPE_REGION3:
136 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
137 if (bad_address(table))
138 goto bad;
139 pr_cont("R3:%016lx ", *table);
140 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
141 goto out;
142 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
143 /* fallthrough */
144 case _ASCE_TYPE_SEGMENT:
145 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
146 if (bad_address(table))
147 goto bad;
148 pr_cont("S:%016lx ", *table);
149 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
150 goto out;
151 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
152 }
153 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
154 if (bad_address(table))
155 goto bad;
156 pr_cont("P:%016lx ", *table);
157out:
158 pr_cont("\n");
159 return;
160bad:
161 pr_cont("BAD\n");
162}
163
164static void dump_fault_info(struct pt_regs *regs)
165{
166 unsigned long asce;
167
168 pr_alert("Failing address: %016lx TEID: %016lx\n",
169 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
170 pr_alert("Fault in ");
171 switch (regs->int_parm_long & 3) {
172 case 3:
173 pr_cont("home space ");
174 break;
175 case 2:
176 pr_cont("secondary space ");
177 break;
178 case 1:
179 pr_cont("access register ");
180 break;
181 case 0:
182 pr_cont("primary space ");
183 break;
184 }
185 pr_cont("mode while using ");
186 switch (get_fault_type(regs)) {
187 case USER_FAULT:
188 asce = S390_lowcore.user_asce;
189 pr_cont("user ");
190 break;
191 case VDSO_FAULT:
192 asce = S390_lowcore.vdso_asce;
193 pr_cont("vdso ");
194 break;
195 case GMAP_FAULT:
196 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
197 pr_cont("gmap ");
198 break;
199 case KERNEL_FAULT:
200 asce = S390_lowcore.kernel_asce;
201 pr_cont("kernel ");
202 break;
203 default:
204 unreachable();
205 }
206 pr_cont("ASCE.\n");
207 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
208}
209
210int show_unhandled_signals = 1;
211
212void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
213{
214 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
215 return;
216 if (!unhandled_signal(current, signr))
217 return;
218 if (!printk_ratelimit())
219 return;
220 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
221 regs->int_code & 0xffff, regs->int_code >> 17);
222 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
223 printk(KERN_CONT "\n");
224 if (is_mm_fault)
225 dump_fault_info(regs);
226 show_regs(regs);
227}
228
229/*
230 * Send SIGSEGV to task. This is an external routine
231 * to keep the stack usage of do_page_fault small.
232 */
233static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
234{
235 report_user_fault(regs, SIGSEGV, 1);
236 force_sig_fault(SIGSEGV, si_code,
237 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
238}
239
240const struct exception_table_entry *s390_search_extables(unsigned long addr)
241{
242 const struct exception_table_entry *fixup;
243
244 fixup = search_extable(__start_dma_ex_table,
245 __stop_dma_ex_table - __start_dma_ex_table,
246 addr);
247 if (!fixup)
248 fixup = search_exception_tables(addr);
249 return fixup;
250}
251
252static noinline void do_no_context(struct pt_regs *regs)
253{
254 const struct exception_table_entry *fixup;
255
256 /* Are we prepared to handle this kernel fault? */
257 fixup = s390_search_extables(regs->psw.addr);
258 if (fixup) {
259 regs->psw.addr = extable_fixup(fixup);
260 return;
261 }
262
263 /*
264 * Oops. The kernel tried to access some bad page. We'll have to
265 * terminate things with extreme prejudice.
266 */
267 if (get_fault_type(regs) == KERNEL_FAULT)
268 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
269 " in virtual kernel address space\n");
270 else
271 printk(KERN_ALERT "Unable to handle kernel paging request"
272 " in virtual user address space\n");
273 dump_fault_info(regs);
274 die(regs, "Oops");
275 do_exit(SIGKILL);
276}
277
278static noinline void do_low_address(struct pt_regs *regs)
279{
280 /* Low-address protection hit in kernel mode means
281 NULL pointer write access in kernel mode. */
282 if (regs->psw.mask & PSW_MASK_PSTATE) {
283 /* Low-address protection hit in user mode 'cannot happen'. */
284 die (regs, "Low-address protection");
285 do_exit(SIGKILL);
286 }
287
288 do_no_context(regs);
289}
290
291static noinline void do_sigbus(struct pt_regs *regs)
292{
293 /*
294 * Send a sigbus, regardless of whether we were in kernel
295 * or user mode.
296 */
297 force_sig_fault(SIGBUS, BUS_ADRERR,
298 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
299}
300
301static noinline int signal_return(struct pt_regs *regs)
302{
303 u16 instruction;
304 int rc;
305
306 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
307 if (rc)
308 return rc;
309 if (instruction == 0x0a77) {
310 set_pt_regs_flag(regs, PIF_SYSCALL);
311 regs->int_code = 0x00040077;
312 return 0;
313 } else if (instruction == 0x0aad) {
314 set_pt_regs_flag(regs, PIF_SYSCALL);
315 regs->int_code = 0x000400ad;
316 return 0;
317 }
318 return -EACCES;
319}
320
321static noinline void do_fault_error(struct pt_regs *regs, int access,
322 vm_fault_t fault)
323{
324 int si_code;
325
326 switch (fault) {
327 case VM_FAULT_BADACCESS:
328 if (access == VM_EXEC && signal_return(regs) == 0)
329 break;
330 /* fallthrough */
331 case VM_FAULT_BADMAP:
332 /* Bad memory access. Check if it is kernel or user space. */
333 if (user_mode(regs)) {
334 /* User mode accesses just cause a SIGSEGV */
335 si_code = (fault == VM_FAULT_BADMAP) ?
336 SEGV_MAPERR : SEGV_ACCERR;
337 do_sigsegv(regs, si_code);
338 break;
339 }
340 /* fallthrough */
341 case VM_FAULT_BADCONTEXT:
342 /* fallthrough */
343 case VM_FAULT_PFAULT:
344 do_no_context(regs);
345 break;
346 case VM_FAULT_SIGNAL:
347 if (!user_mode(regs))
348 do_no_context(regs);
349 break;
350 default: /* fault & VM_FAULT_ERROR */
351 if (fault & VM_FAULT_OOM) {
352 if (!user_mode(regs))
353 do_no_context(regs);
354 else
355 pagefault_out_of_memory();
356 } else if (fault & VM_FAULT_SIGSEGV) {
357 /* Kernel mode? Handle exceptions or die */
358 if (!user_mode(regs))
359 do_no_context(regs);
360 else
361 do_sigsegv(regs, SEGV_MAPERR);
362 } else if (fault & VM_FAULT_SIGBUS) {
363 /* Kernel mode? Handle exceptions or die */
364 if (!user_mode(regs))
365 do_no_context(regs);
366 else
367 do_sigbus(regs);
368 } else
369 BUG();
370 break;
371 }
372}
373
374/*
375 * This routine handles page faults. It determines the address,
376 * and the problem, and then passes it off to one of the appropriate
377 * routines.
378 *
379 * interruption code (int_code):
380 * 04 Protection -> Write-Protection (suprression)
381 * 10 Segment translation -> Not present (nullification)
382 * 11 Page translation -> Not present (nullification)
383 * 3b Region third trans. -> Not present (nullification)
384 */
385static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
386{
387 struct gmap *gmap;
388 struct task_struct *tsk;
389 struct mm_struct *mm;
390 struct vm_area_struct *vma;
391 enum fault_type type;
392 unsigned long trans_exc_code;
393 unsigned long address;
394 unsigned int flags;
395 vm_fault_t fault;
396
397 tsk = current;
398 /*
399 * The instruction that caused the program check has
400 * been nullified. Don't signal single step via SIGTRAP.
401 */
402 clear_pt_regs_flag(regs, PIF_PER_TRAP);
403
404 if (kprobe_page_fault(regs, 14))
405 return 0;
406
407 mm = tsk->mm;
408 trans_exc_code = regs->int_parm_long;
409
410 /*
411 * Verify that the fault happened in user space, that
412 * we are not in an interrupt and that there is a
413 * user context.
414 */
415 fault = VM_FAULT_BADCONTEXT;
416 type = get_fault_type(regs);
417 switch (type) {
418 case KERNEL_FAULT:
419 goto out;
420 case VDSO_FAULT:
421 fault = VM_FAULT_BADMAP;
422 goto out;
423 case USER_FAULT:
424 case GMAP_FAULT:
425 if (faulthandler_disabled() || !mm)
426 goto out;
427 break;
428 }
429
430 address = trans_exc_code & __FAIL_ADDR_MASK;
431 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
432 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
433 if (user_mode(regs))
434 flags |= FAULT_FLAG_USER;
435 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
436 flags |= FAULT_FLAG_WRITE;
437 down_read(&mm->mmap_sem);
438
439 gmap = NULL;
440 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
441 gmap = (struct gmap *) S390_lowcore.gmap;
442 current->thread.gmap_addr = address;
443 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
444 current->thread.gmap_int_code = regs->int_code & 0xffff;
445 address = __gmap_translate(gmap, address);
446 if (address == -EFAULT) {
447 fault = VM_FAULT_BADMAP;
448 goto out_up;
449 }
450 if (gmap->pfault_enabled)
451 flags |= FAULT_FLAG_RETRY_NOWAIT;
452 }
453
454retry:
455 fault = VM_FAULT_BADMAP;
456 vma = find_vma(mm, address);
457 if (!vma)
458 goto out_up;
459
460 if (unlikely(vma->vm_start > address)) {
461 if (!(vma->vm_flags & VM_GROWSDOWN))
462 goto out_up;
463 if (expand_stack(vma, address))
464 goto out_up;
465 }
466
467 /*
468 * Ok, we have a good vm_area for this memory access, so
469 * we can handle it..
470 */
471 fault = VM_FAULT_BADACCESS;
472 if (unlikely(!(vma->vm_flags & access)))
473 goto out_up;
474
475 if (is_vm_hugetlb_page(vma))
476 address &= HPAGE_MASK;
477 /*
478 * If for any reason at all we couldn't handle the fault,
479 * make sure we exit gracefully rather than endlessly redo
480 * the fault.
481 */
482 fault = handle_mm_fault(vma, address, flags);
483 /* No reason to continue if interrupted by SIGKILL. */
484 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
485 fault = VM_FAULT_SIGNAL;
486 if (flags & FAULT_FLAG_RETRY_NOWAIT)
487 goto out_up;
488 goto out;
489 }
490 if (unlikely(fault & VM_FAULT_ERROR))
491 goto out_up;
492
493 /*
494 * Major/minor page fault accounting is only done on the
495 * initial attempt. If we go through a retry, it is extremely
496 * likely that the page will be found in page cache at that point.
497 */
498 if (flags & FAULT_FLAG_ALLOW_RETRY) {
499 if (fault & VM_FAULT_MAJOR) {
500 tsk->maj_flt++;
501 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
502 regs, address);
503 } else {
504 tsk->min_flt++;
505 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
506 regs, address);
507 }
508 if (fault & VM_FAULT_RETRY) {
509 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
510 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
511 /* FAULT_FLAG_RETRY_NOWAIT has been set,
512 * mmap_sem has not been released */
513 current->thread.gmap_pfault = 1;
514 fault = VM_FAULT_PFAULT;
515 goto out_up;
516 }
517 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
518 * of starvation. */
519 flags &= ~(FAULT_FLAG_ALLOW_RETRY |
520 FAULT_FLAG_RETRY_NOWAIT);
521 flags |= FAULT_FLAG_TRIED;
522 down_read(&mm->mmap_sem);
523 goto retry;
524 }
525 }
526 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
527 address = __gmap_link(gmap, current->thread.gmap_addr,
528 address);
529 if (address == -EFAULT) {
530 fault = VM_FAULT_BADMAP;
531 goto out_up;
532 }
533 if (address == -ENOMEM) {
534 fault = VM_FAULT_OOM;
535 goto out_up;
536 }
537 }
538 fault = 0;
539out_up:
540 up_read(&mm->mmap_sem);
541out:
542 return fault;
543}
544
545void do_protection_exception(struct pt_regs *regs)
546{
547 unsigned long trans_exc_code;
548 int access;
549 vm_fault_t fault;
550
551 trans_exc_code = regs->int_parm_long;
552 /*
553 * Protection exceptions are suppressing, decrement psw address.
554 * The exception to this rule are aborted transactions, for these
555 * the PSW already points to the correct location.
556 */
557 if (!(regs->int_code & 0x200))
558 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
559 /*
560 * Check for low-address protection. This needs to be treated
561 * as a special case because the translation exception code
562 * field is not guaranteed to contain valid data in this case.
563 */
564 if (unlikely(!(trans_exc_code & 4))) {
565 do_low_address(regs);
566 return;
567 }
568 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
569 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
570 (regs->psw.addr & PAGE_MASK);
571 access = VM_EXEC;
572 fault = VM_FAULT_BADACCESS;
573 } else {
574 access = VM_WRITE;
575 fault = do_exception(regs, access);
576 }
577 if (unlikely(fault))
578 do_fault_error(regs, access, fault);
579}
580NOKPROBE_SYMBOL(do_protection_exception);
581
582void do_dat_exception(struct pt_regs *regs)
583{
584 int access;
585 vm_fault_t fault;
586
587 access = VM_READ | VM_EXEC | VM_WRITE;
588 fault = do_exception(regs, access);
589 if (unlikely(fault))
590 do_fault_error(regs, access, fault);
591}
592NOKPROBE_SYMBOL(do_dat_exception);
593
594#ifdef CONFIG_PFAULT
595/*
596 * 'pfault' pseudo page faults routines.
597 */
598static int pfault_disable;
599
600static int __init nopfault(char *str)
601{
602 pfault_disable = 1;
603 return 1;
604}
605
606__setup("nopfault", nopfault);
607
608struct pfault_refbk {
609 u16 refdiagc;
610 u16 reffcode;
611 u16 refdwlen;
612 u16 refversn;
613 u64 refgaddr;
614 u64 refselmk;
615 u64 refcmpmk;
616 u64 reserved;
617} __attribute__ ((packed, aligned(8)));
618
619static struct pfault_refbk pfault_init_refbk = {
620 .refdiagc = 0x258,
621 .reffcode = 0,
622 .refdwlen = 5,
623 .refversn = 2,
624 .refgaddr = __LC_LPP,
625 .refselmk = 1ULL << 48,
626 .refcmpmk = 1ULL << 48,
627 .reserved = __PF_RES_FIELD
628};
629
630int pfault_init(void)
631{
632 int rc;
633
634 if (pfault_disable)
635 return -1;
636 diag_stat_inc(DIAG_STAT_X258);
637 asm volatile(
638 " diag %1,%0,0x258\n"
639 "0: j 2f\n"
640 "1: la %0,8\n"
641 "2:\n"
642 EX_TABLE(0b,1b)
643 : "=d" (rc)
644 : "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
645 return rc;
646}
647
648static struct pfault_refbk pfault_fini_refbk = {
649 .refdiagc = 0x258,
650 .reffcode = 1,
651 .refdwlen = 5,
652 .refversn = 2,
653};
654
655void pfault_fini(void)
656{
657
658 if (pfault_disable)
659 return;
660 diag_stat_inc(DIAG_STAT_X258);
661 asm volatile(
662 " diag %0,0,0x258\n"
663 "0: nopr %%r7\n"
664 EX_TABLE(0b,0b)
665 : : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
666}
667
668static DEFINE_SPINLOCK(pfault_lock);
669static LIST_HEAD(pfault_list);
670
671#define PF_COMPLETE 0x0080
672
673/*
674 * The mechanism of our pfault code: if Linux is running as guest, runs a user
675 * space process and the user space process accesses a page that the host has
676 * paged out we get a pfault interrupt.
677 *
678 * This allows us, within the guest, to schedule a different process. Without
679 * this mechanism the host would have to suspend the whole virtual cpu until
680 * the page has been paged in.
681 *
682 * So when we get such an interrupt then we set the state of the current task
683 * to uninterruptible and also set the need_resched flag. Both happens within
684 * interrupt context(!). If we later on want to return to user space we
685 * recognize the need_resched flag and then call schedule(). It's not very
686 * obvious how this works...
687 *
688 * Of course we have a lot of additional fun with the completion interrupt (->
689 * host signals that a page of a process has been paged in and the process can
690 * continue to run). This interrupt can arrive on any cpu and, since we have
691 * virtual cpus, actually appear before the interrupt that signals that a page
692 * is missing.
693 */
694static void pfault_interrupt(struct ext_code ext_code,
695 unsigned int param32, unsigned long param64)
696{
697 struct task_struct *tsk;
698 __u16 subcode;
699 pid_t pid;
700
701 /*
702 * Get the external interruption subcode & pfault initial/completion
703 * signal bit. VM stores this in the 'cpu address' field associated
704 * with the external interrupt.
705 */
706 subcode = ext_code.subcode;
707 if ((subcode & 0xff00) != __SUBCODE_MASK)
708 return;
709 inc_irq_stat(IRQEXT_PFL);
710 /* Get the token (= pid of the affected task). */
711 pid = param64 & LPP_PID_MASK;
712 rcu_read_lock();
713 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
714 if (tsk)
715 get_task_struct(tsk);
716 rcu_read_unlock();
717 if (!tsk)
718 return;
719 spin_lock(&pfault_lock);
720 if (subcode & PF_COMPLETE) {
721 /* signal bit is set -> a page has been swapped in by VM */
722 if (tsk->thread.pfault_wait == 1) {
723 /* Initial interrupt was faster than the completion
724 * interrupt. pfault_wait is valid. Set pfault_wait
725 * back to zero and wake up the process. This can
726 * safely be done because the task is still sleeping
727 * and can't produce new pfaults. */
728 tsk->thread.pfault_wait = 0;
729 list_del(&tsk->thread.list);
730 wake_up_process(tsk);
731 put_task_struct(tsk);
732 } else {
733 /* Completion interrupt was faster than initial
734 * interrupt. Set pfault_wait to -1 so the initial
735 * interrupt doesn't put the task to sleep.
736 * If the task is not running, ignore the completion
737 * interrupt since it must be a leftover of a PFAULT
738 * CANCEL operation which didn't remove all pending
739 * completion interrupts. */
740 if (tsk->state == TASK_RUNNING)
741 tsk->thread.pfault_wait = -1;
742 }
743 } else {
744 /* signal bit not set -> a real page is missing. */
745 if (WARN_ON_ONCE(tsk != current))
746 goto out;
747 if (tsk->thread.pfault_wait == 1) {
748 /* Already on the list with a reference: put to sleep */
749 goto block;
750 } else if (tsk->thread.pfault_wait == -1) {
751 /* Completion interrupt was faster than the initial
752 * interrupt (pfault_wait == -1). Set pfault_wait
753 * back to zero and exit. */
754 tsk->thread.pfault_wait = 0;
755 } else {
756 /* Initial interrupt arrived before completion
757 * interrupt. Let the task sleep.
758 * An extra task reference is needed since a different
759 * cpu may set the task state to TASK_RUNNING again
760 * before the scheduler is reached. */
761 get_task_struct(tsk);
762 tsk->thread.pfault_wait = 1;
763 list_add(&tsk->thread.list, &pfault_list);
764block:
765 /* Since this must be a userspace fault, there
766 * is no kernel task state to trample. Rely on the
767 * return to userspace schedule() to block. */
768 __set_current_state(TASK_UNINTERRUPTIBLE);
769 set_tsk_need_resched(tsk);
770 set_preempt_need_resched();
771 }
772 }
773out:
774 spin_unlock(&pfault_lock);
775 put_task_struct(tsk);
776}
777
778static int pfault_cpu_dead(unsigned int cpu)
779{
780 struct thread_struct *thread, *next;
781 struct task_struct *tsk;
782
783 spin_lock_irq(&pfault_lock);
784 list_for_each_entry_safe(thread, next, &pfault_list, list) {
785 thread->pfault_wait = 0;
786 list_del(&thread->list);
787 tsk = container_of(thread, struct task_struct, thread);
788 wake_up_process(tsk);
789 put_task_struct(tsk);
790 }
791 spin_unlock_irq(&pfault_lock);
792 return 0;
793}
794
795static int __init pfault_irq_init(void)
796{
797 int rc;
798
799 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
800 if (rc)
801 goto out_extint;
802 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
803 if (rc)
804 goto out_pfault;
805 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
806 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
807 NULL, pfault_cpu_dead);
808 return 0;
809
810out_pfault:
811 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
812out_extint:
813 pfault_disable = 1;
814 return rc;
815}
816early_initcall(pfault_irq_init);
817
818#endif /* CONFIG_PFAULT */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12#include <linux/kernel_stat.h>
13#include <linux/mmu_context.h>
14#include <linux/perf_event.h>
15#include <linux/signal.h>
16#include <linux/sched.h>
17#include <linux/sched/debug.h>
18#include <linux/jump_label.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/compat.h>
27#include <linux/smp.h>
28#include <linux/kdebug.h>
29#include <linux/init.h>
30#include <linux/console.h>
31#include <linux/extable.h>
32#include <linux/hardirq.h>
33#include <linux/kprobes.h>
34#include <linux/uaccess.h>
35#include <linux/hugetlb.h>
36#include <linux/kfence.h>
37#include <asm/asm-extable.h>
38#include <asm/asm-offsets.h>
39#include <asm/ptrace.h>
40#include <asm/fault.h>
41#include <asm/diag.h>
42#include <asm/gmap.h>
43#include <asm/irq.h>
44#include <asm/facility.h>
45#include <asm/uv.h>
46#include "../kernel/entry.h"
47
48enum fault_type {
49 KERNEL_FAULT,
50 USER_FAULT,
51 GMAP_FAULT,
52};
53
54static DEFINE_STATIC_KEY_FALSE(have_store_indication);
55
56static int __init fault_init(void)
57{
58 if (test_facility(75))
59 static_branch_enable(&have_store_indication);
60 return 0;
61}
62early_initcall(fault_init);
63
64/*
65 * Find out which address space caused the exception.
66 */
67static enum fault_type get_fault_type(struct pt_regs *regs)
68{
69 union teid teid = { .val = regs->int_parm_long };
70
71 if (likely(teid.as == PSW_BITS_AS_PRIMARY)) {
72 if (user_mode(regs))
73 return USER_FAULT;
74 if (!IS_ENABLED(CONFIG_PGSTE))
75 return KERNEL_FAULT;
76 if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
77 return GMAP_FAULT;
78 return KERNEL_FAULT;
79 }
80 if (teid.as == PSW_BITS_AS_SECONDARY)
81 return USER_FAULT;
82 /* Access register mode, not used in the kernel */
83 if (teid.as == PSW_BITS_AS_ACCREG)
84 return USER_FAULT;
85 /* Home space -> access via kernel ASCE */
86 return KERNEL_FAULT;
87}
88
89static unsigned long get_fault_address(struct pt_regs *regs)
90{
91 union teid teid = { .val = regs->int_parm_long };
92
93 return teid.addr * PAGE_SIZE;
94}
95
96static __always_inline bool fault_is_write(struct pt_regs *regs)
97{
98 union teid teid = { .val = regs->int_parm_long };
99
100 if (static_branch_likely(&have_store_indication))
101 return teid.fsi == TEID_FSI_STORE;
102 return false;
103}
104
105static void dump_pagetable(unsigned long asce, unsigned long address)
106{
107 unsigned long entry, *table = __va(asce & _ASCE_ORIGIN);
108
109 pr_alert("AS:%016lx ", asce);
110 switch (asce & _ASCE_TYPE_MASK) {
111 case _ASCE_TYPE_REGION1:
112 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113 if (get_kernel_nofault(entry, table))
114 goto bad;
115 pr_cont("R1:%016lx ", entry);
116 if (entry & _REGION_ENTRY_INVALID)
117 goto out;
118 table = __va(entry & _REGION_ENTRY_ORIGIN);
119 fallthrough;
120 case _ASCE_TYPE_REGION2:
121 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122 if (get_kernel_nofault(entry, table))
123 goto bad;
124 pr_cont("R2:%016lx ", entry);
125 if (entry & _REGION_ENTRY_INVALID)
126 goto out;
127 table = __va(entry & _REGION_ENTRY_ORIGIN);
128 fallthrough;
129 case _ASCE_TYPE_REGION3:
130 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131 if (get_kernel_nofault(entry, table))
132 goto bad;
133 pr_cont("R3:%016lx ", entry);
134 if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135 goto out;
136 table = __va(entry & _REGION_ENTRY_ORIGIN);
137 fallthrough;
138 case _ASCE_TYPE_SEGMENT:
139 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140 if (get_kernel_nofault(entry, table))
141 goto bad;
142 pr_cont("S:%016lx ", entry);
143 if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144 goto out;
145 table = __va(entry & _SEGMENT_ENTRY_ORIGIN);
146 }
147 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148 if (get_kernel_nofault(entry, table))
149 goto bad;
150 pr_cont("P:%016lx ", entry);
151out:
152 pr_cont("\n");
153 return;
154bad:
155 pr_cont("BAD\n");
156}
157
158static void dump_fault_info(struct pt_regs *regs)
159{
160 union teid teid = { .val = regs->int_parm_long };
161 unsigned long asce;
162
163 pr_alert("Failing address: %016lx TEID: %016lx\n",
164 get_fault_address(regs), teid.val);
165 pr_alert("Fault in ");
166 switch (teid.as) {
167 case PSW_BITS_AS_HOME:
168 pr_cont("home space ");
169 break;
170 case PSW_BITS_AS_SECONDARY:
171 pr_cont("secondary space ");
172 break;
173 case PSW_BITS_AS_ACCREG:
174 pr_cont("access register ");
175 break;
176 case PSW_BITS_AS_PRIMARY:
177 pr_cont("primary space ");
178 break;
179 }
180 pr_cont("mode while using ");
181 switch (get_fault_type(regs)) {
182 case USER_FAULT:
183 asce = S390_lowcore.user_asce.val;
184 pr_cont("user ");
185 break;
186 case GMAP_FAULT:
187 asce = ((struct gmap *)S390_lowcore.gmap)->asce;
188 pr_cont("gmap ");
189 break;
190 case KERNEL_FAULT:
191 asce = S390_lowcore.kernel_asce.val;
192 pr_cont("kernel ");
193 break;
194 default:
195 unreachable();
196 }
197 pr_cont("ASCE.\n");
198 dump_pagetable(asce, get_fault_address(regs));
199}
200
201int show_unhandled_signals = 1;
202
203void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
204{
205 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
206
207 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
208 return;
209 if (!unhandled_signal(current, signr))
210 return;
211 if (!__ratelimit(&rs))
212 return;
213 pr_alert("User process fault: interruption code %04x ilc:%d ",
214 regs->int_code & 0xffff, regs->int_code >> 17);
215 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
216 pr_cont("\n");
217 if (is_mm_fault)
218 dump_fault_info(regs);
219 show_regs(regs);
220}
221
222static void do_sigsegv(struct pt_regs *regs, int si_code)
223{
224 report_user_fault(regs, SIGSEGV, 1);
225 force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs));
226}
227
228static void handle_fault_error_nolock(struct pt_regs *regs, int si_code)
229{
230 enum fault_type fault_type;
231 unsigned long address;
232 bool is_write;
233
234 if (user_mode(regs)) {
235 if (WARN_ON_ONCE(!si_code))
236 si_code = SEGV_MAPERR;
237 return do_sigsegv(regs, si_code);
238 }
239 if (fixup_exception(regs))
240 return;
241 fault_type = get_fault_type(regs);
242 if (fault_type == KERNEL_FAULT) {
243 address = get_fault_address(regs);
244 is_write = fault_is_write(regs);
245 if (kfence_handle_page_fault(address, is_write, regs))
246 return;
247 }
248 if (fault_type == KERNEL_FAULT)
249 pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n");
250 else
251 pr_alert("Unable to handle kernel paging request in virtual user address space\n");
252 dump_fault_info(regs);
253 die(regs, "Oops");
254}
255
256static void handle_fault_error(struct pt_regs *regs, int si_code)
257{
258 struct mm_struct *mm = current->mm;
259
260 mmap_read_unlock(mm);
261 handle_fault_error_nolock(regs, si_code);
262}
263
264static void do_sigbus(struct pt_regs *regs)
265{
266 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs));
267}
268
269/*
270 * This routine handles page faults. It determines the address,
271 * and the problem, and then passes it off to one of the appropriate
272 * routines.
273 *
274 * interruption code (int_code):
275 * 04 Protection -> Write-Protection (suppression)
276 * 10 Segment translation -> Not present (nullification)
277 * 11 Page translation -> Not present (nullification)
278 * 3b Region third trans. -> Not present (nullification)
279 */
280static void do_exception(struct pt_regs *regs, int access)
281{
282 struct vm_area_struct *vma;
283 unsigned long address;
284 struct mm_struct *mm;
285 enum fault_type type;
286 unsigned int flags;
287 struct gmap *gmap;
288 vm_fault_t fault;
289 bool is_write;
290
291 /*
292 * The instruction that caused the program check has
293 * been nullified. Don't signal single step via SIGTRAP.
294 */
295 clear_thread_flag(TIF_PER_TRAP);
296 if (kprobe_page_fault(regs, 14))
297 return;
298 mm = current->mm;
299 address = get_fault_address(regs);
300 is_write = fault_is_write(regs);
301 type = get_fault_type(regs);
302 switch (type) {
303 case KERNEL_FAULT:
304 return handle_fault_error_nolock(regs, 0);
305 case USER_FAULT:
306 case GMAP_FAULT:
307 if (faulthandler_disabled() || !mm)
308 return handle_fault_error_nolock(regs, 0);
309 break;
310 }
311 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
312 flags = FAULT_FLAG_DEFAULT;
313 if (user_mode(regs))
314 flags |= FAULT_FLAG_USER;
315 if (is_write)
316 access = VM_WRITE;
317 if (access == VM_WRITE)
318 flags |= FAULT_FLAG_WRITE;
319 if (!(flags & FAULT_FLAG_USER))
320 goto lock_mmap;
321 vma = lock_vma_under_rcu(mm, address);
322 if (!vma)
323 goto lock_mmap;
324 if (!(vma->vm_flags & access)) {
325 vma_end_read(vma);
326 goto lock_mmap;
327 }
328 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
329 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
330 vma_end_read(vma);
331 if (!(fault & VM_FAULT_RETRY)) {
332 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
333 if (unlikely(fault & VM_FAULT_ERROR))
334 goto error;
335 return;
336 }
337 count_vm_vma_lock_event(VMA_LOCK_RETRY);
338 if (fault & VM_FAULT_MAJOR)
339 flags |= FAULT_FLAG_TRIED;
340
341 /* Quick path to respond to signals */
342 if (fault_signal_pending(fault, regs)) {
343 if (!user_mode(regs))
344 handle_fault_error_nolock(regs, 0);
345 return;
346 }
347lock_mmap:
348 mmap_read_lock(mm);
349 gmap = NULL;
350 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
351 gmap = (struct gmap *)S390_lowcore.gmap;
352 current->thread.gmap_addr = address;
353 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
354 current->thread.gmap_int_code = regs->int_code & 0xffff;
355 address = __gmap_translate(gmap, address);
356 if (address == -EFAULT)
357 return handle_fault_error(regs, SEGV_MAPERR);
358 if (gmap->pfault_enabled)
359 flags |= FAULT_FLAG_RETRY_NOWAIT;
360 }
361retry:
362 vma = find_vma(mm, address);
363 if (!vma)
364 return handle_fault_error(regs, SEGV_MAPERR);
365 if (unlikely(vma->vm_start > address)) {
366 if (!(vma->vm_flags & VM_GROWSDOWN))
367 return handle_fault_error(regs, SEGV_MAPERR);
368 vma = expand_stack(mm, address);
369 if (!vma)
370 return handle_fault_error_nolock(regs, SEGV_MAPERR);
371 }
372 if (unlikely(!(vma->vm_flags & access)))
373 return handle_fault_error(regs, SEGV_ACCERR);
374 fault = handle_mm_fault(vma, address, flags, regs);
375 if (fault_signal_pending(fault, regs)) {
376 if (flags & FAULT_FLAG_RETRY_NOWAIT)
377 mmap_read_unlock(mm);
378 if (!user_mode(regs))
379 handle_fault_error_nolock(regs, 0);
380 return;
381 }
382 /* The fault is fully completed (including releasing mmap lock) */
383 if (fault & VM_FAULT_COMPLETED) {
384 if (gmap) {
385 mmap_read_lock(mm);
386 goto gmap;
387 }
388 return;
389 }
390 if (unlikely(fault & VM_FAULT_ERROR)) {
391 mmap_read_unlock(mm);
392 goto error;
393 }
394 if (fault & VM_FAULT_RETRY) {
395 if (IS_ENABLED(CONFIG_PGSTE) && gmap && (flags & FAULT_FLAG_RETRY_NOWAIT)) {
396 /*
397 * FAULT_FLAG_RETRY_NOWAIT has been set,
398 * mmap_lock has not been released
399 */
400 current->thread.gmap_pfault = 1;
401 return handle_fault_error(regs, 0);
402 }
403 flags &= ~FAULT_FLAG_RETRY_NOWAIT;
404 flags |= FAULT_FLAG_TRIED;
405 mmap_read_lock(mm);
406 goto retry;
407 }
408gmap:
409 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
410 address = __gmap_link(gmap, current->thread.gmap_addr,
411 address);
412 if (address == -EFAULT)
413 return handle_fault_error(regs, SEGV_MAPERR);
414 if (address == -ENOMEM) {
415 fault = VM_FAULT_OOM;
416 mmap_read_unlock(mm);
417 goto error;
418 }
419 }
420 mmap_read_unlock(mm);
421 return;
422error:
423 if (fault & VM_FAULT_OOM) {
424 if (!user_mode(regs))
425 handle_fault_error_nolock(regs, 0);
426 else
427 pagefault_out_of_memory();
428 } else if (fault & VM_FAULT_SIGSEGV) {
429 if (!user_mode(regs))
430 handle_fault_error_nolock(regs, 0);
431 else
432 do_sigsegv(regs, SEGV_MAPERR);
433 } else if (fault & VM_FAULT_SIGBUS) {
434 if (!user_mode(regs))
435 handle_fault_error_nolock(regs, 0);
436 else
437 do_sigbus(regs);
438 } else {
439 BUG();
440 }
441}
442
443void do_protection_exception(struct pt_regs *regs)
444{
445 union teid teid = { .val = regs->int_parm_long };
446
447 /*
448 * Protection exceptions are suppressing, decrement psw address.
449 * The exception to this rule are aborted transactions, for these
450 * the PSW already points to the correct location.
451 */
452 if (!(regs->int_code & 0x200))
453 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
454 /*
455 * Check for low-address protection. This needs to be treated
456 * as a special case because the translation exception code
457 * field is not guaranteed to contain valid data in this case.
458 */
459 if (unlikely(!teid.b61)) {
460 if (user_mode(regs)) {
461 /* Low-address protection in user mode: cannot happen */
462 die(regs, "Low-address protection");
463 }
464 /*
465 * Low-address protection in kernel mode means
466 * NULL pointer write access in kernel mode.
467 */
468 return handle_fault_error_nolock(regs, 0);
469 }
470 if (unlikely(MACHINE_HAS_NX && teid.b56)) {
471 regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK);
472 return handle_fault_error_nolock(regs, SEGV_ACCERR);
473 }
474 do_exception(regs, VM_WRITE);
475}
476NOKPROBE_SYMBOL(do_protection_exception);
477
478void do_dat_exception(struct pt_regs *regs)
479{
480 do_exception(regs, VM_ACCESS_FLAGS);
481}
482NOKPROBE_SYMBOL(do_dat_exception);
483
484#if IS_ENABLED(CONFIG_PGSTE)
485
486void do_secure_storage_access(struct pt_regs *regs)
487{
488 union teid teid = { .val = regs->int_parm_long };
489 unsigned long addr = get_fault_address(regs);
490 struct vm_area_struct *vma;
491 struct mm_struct *mm;
492 struct page *page;
493 struct gmap *gmap;
494 int rc;
495
496 /*
497 * Bit 61 indicates if the address is valid, if it is not the
498 * kernel should be stopped or SIGSEGV should be sent to the
499 * process. Bit 61 is not reliable without the misc UV feature,
500 * therefore this needs to be checked too.
501 */
502 if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) {
503 /*
504 * When this happens, userspace did something that it
505 * was not supposed to do, e.g. branching into secure
506 * memory. Trigger a segmentation fault.
507 */
508 if (user_mode(regs)) {
509 send_sig(SIGSEGV, current, 0);
510 return;
511 }
512 /*
513 * The kernel should never run into this case and
514 * there is no way out of this situation.
515 */
516 panic("Unexpected PGM 0x3d with TEID bit 61=0");
517 }
518 switch (get_fault_type(regs)) {
519 case GMAP_FAULT:
520 mm = current->mm;
521 gmap = (struct gmap *)S390_lowcore.gmap;
522 mmap_read_lock(mm);
523 addr = __gmap_translate(gmap, addr);
524 mmap_read_unlock(mm);
525 if (IS_ERR_VALUE(addr))
526 return handle_fault_error_nolock(regs, SEGV_MAPERR);
527 fallthrough;
528 case USER_FAULT:
529 mm = current->mm;
530 mmap_read_lock(mm);
531 vma = find_vma(mm, addr);
532 if (!vma)
533 return handle_fault_error(regs, SEGV_MAPERR);
534 page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
535 if (IS_ERR_OR_NULL(page)) {
536 mmap_read_unlock(mm);
537 break;
538 }
539 if (arch_make_page_accessible(page))
540 send_sig(SIGSEGV, current, 0);
541 put_page(page);
542 mmap_read_unlock(mm);
543 break;
544 case KERNEL_FAULT:
545 page = phys_to_page(addr);
546 if (unlikely(!try_get_page(page)))
547 break;
548 rc = arch_make_page_accessible(page);
549 put_page(page);
550 if (rc)
551 BUG();
552 break;
553 default:
554 unreachable();
555 }
556}
557NOKPROBE_SYMBOL(do_secure_storage_access);
558
559void do_non_secure_storage_access(struct pt_regs *regs)
560{
561 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
562 unsigned long gaddr = get_fault_address(regs);
563
564 if (WARN_ON_ONCE(get_fault_type(regs) != GMAP_FAULT))
565 return handle_fault_error_nolock(regs, SEGV_MAPERR);
566 if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
567 send_sig(SIGSEGV, current, 0);
568}
569NOKPROBE_SYMBOL(do_non_secure_storage_access);
570
571void do_secure_storage_violation(struct pt_regs *regs)
572{
573 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
574 unsigned long gaddr = get_fault_address(regs);
575
576 /*
577 * If the VM has been rebooted, its address space might still contain
578 * secure pages from the previous boot.
579 * Clear the page so it can be reused.
580 */
581 if (!gmap_destroy_page(gmap, gaddr))
582 return;
583 /*
584 * Either KVM messed up the secure guest mapping or the same
585 * page is mapped into multiple secure guests.
586 *
587 * This exception is only triggered when a guest 2 is running
588 * and can therefore never occur in kernel context.
589 */
590 pr_warn_ratelimited("Secure storage violation in task: %s, pid %d\n",
591 current->comm, current->pid);
592 send_sig(SIGSEGV, current, 0);
593}
594
595#endif /* CONFIG_PGSTE */