Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/xdr.c
   4 *
   5 * Generic XDR support.
   6 *
   7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/slab.h>
  12#include <linux/types.h>
  13#include <linux/string.h>
  14#include <linux/kernel.h>
  15#include <linux/pagemap.h>
  16#include <linux/errno.h>
  17#include <linux/sunrpc/xdr.h>
  18#include <linux/sunrpc/msg_prot.h>
  19#include <linux/bvec.h>
  20#include <trace/events/sunrpc.h>
  21
 
 
 
  22/*
  23 * XDR functions for basic NFS types
  24 */
  25__be32 *
  26xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj)
  27{
  28	unsigned int	quadlen = XDR_QUADLEN(obj->len);
  29
  30	p[quadlen] = 0;		/* zero trailing bytes */
  31	*p++ = cpu_to_be32(obj->len);
  32	memcpy(p, obj->data, obj->len);
  33	return p + XDR_QUADLEN(obj->len);
  34}
  35EXPORT_SYMBOL_GPL(xdr_encode_netobj);
  36
  37__be32 *
  38xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj)
  39{
  40	unsigned int	len;
  41
  42	if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ)
  43		return NULL;
  44	obj->len  = len;
  45	obj->data = (u8 *) p;
  46	return p + XDR_QUADLEN(len);
  47}
  48EXPORT_SYMBOL_GPL(xdr_decode_netobj);
  49
  50/**
  51 * xdr_encode_opaque_fixed - Encode fixed length opaque data
  52 * @p: pointer to current position in XDR buffer.
  53 * @ptr: pointer to data to encode (or NULL)
  54 * @nbytes: size of data.
  55 *
  56 * Copy the array of data of length nbytes at ptr to the XDR buffer
  57 * at position p, then align to the next 32-bit boundary by padding
  58 * with zero bytes (see RFC1832).
  59 * Note: if ptr is NULL, only the padding is performed.
  60 *
  61 * Returns the updated current XDR buffer position
  62 *
  63 */
  64__be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes)
  65{
  66	if (likely(nbytes != 0)) {
  67		unsigned int quadlen = XDR_QUADLEN(nbytes);
  68		unsigned int padding = (quadlen << 2) - nbytes;
  69
  70		if (ptr != NULL)
  71			memcpy(p, ptr, nbytes);
  72		if (padding != 0)
  73			memset((char *)p + nbytes, 0, padding);
  74		p += quadlen;
  75	}
  76	return p;
  77}
  78EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed);
  79
  80/**
  81 * xdr_encode_opaque - Encode variable length opaque data
  82 * @p: pointer to current position in XDR buffer.
  83 * @ptr: pointer to data to encode (or NULL)
  84 * @nbytes: size of data.
  85 *
  86 * Returns the updated current XDR buffer position
  87 */
  88__be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes)
  89{
  90	*p++ = cpu_to_be32(nbytes);
  91	return xdr_encode_opaque_fixed(p, ptr, nbytes);
  92}
  93EXPORT_SYMBOL_GPL(xdr_encode_opaque);
  94
  95__be32 *
  96xdr_encode_string(__be32 *p, const char *string)
  97{
  98	return xdr_encode_array(p, string, strlen(string));
  99}
 100EXPORT_SYMBOL_GPL(xdr_encode_string);
 101
 102__be32 *
 103xdr_decode_string_inplace(__be32 *p, char **sp,
 104			  unsigned int *lenp, unsigned int maxlen)
 105{
 106	u32 len;
 107
 108	len = be32_to_cpu(*p++);
 109	if (len > maxlen)
 110		return NULL;
 111	*lenp = len;
 112	*sp = (char *) p;
 113	return p + XDR_QUADLEN(len);
 114}
 115EXPORT_SYMBOL_GPL(xdr_decode_string_inplace);
 116
 117/**
 118 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf
 119 * @buf: XDR buffer where string resides
 120 * @len: length of string, in bytes
 121 *
 122 */
 123void
 124xdr_terminate_string(struct xdr_buf *buf, const u32 len)
 125{
 126	char *kaddr;
 127
 128	kaddr = kmap_atomic(buf->pages[0]);
 129	kaddr[buf->page_base + len] = '\0';
 130	kunmap_atomic(kaddr);
 131}
 132EXPORT_SYMBOL_GPL(xdr_terminate_string);
 133
 134size_t
 135xdr_buf_pagecount(struct xdr_buf *buf)
 136{
 137	if (!buf->page_len)
 138		return 0;
 139	return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 140}
 141
 142int
 143xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp)
 144{
 145	size_t i, n = xdr_buf_pagecount(buf);
 146
 147	if (n != 0 && buf->bvec == NULL) {
 148		buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp);
 149		if (!buf->bvec)
 150			return -ENOMEM;
 151		for (i = 0; i < n; i++) {
 152			buf->bvec[i].bv_page = buf->pages[i];
 153			buf->bvec[i].bv_len = PAGE_SIZE;
 154			buf->bvec[i].bv_offset = 0;
 155		}
 156	}
 157	return 0;
 158}
 159
 160void
 161xdr_free_bvec(struct xdr_buf *buf)
 162{
 163	kfree(buf->bvec);
 164	buf->bvec = NULL;
 165}
 166
 167/**
 168 * xdr_inline_pages - Prepare receive buffer for a large reply
 169 * @xdr: xdr_buf into which reply will be placed
 170 * @offset: expected offset where data payload will start, in bytes
 171 * @pages: vector of struct page pointers
 172 * @base: offset in first page where receive should start, in bytes
 173 * @len: expected size of the upper layer data payload, in bytes
 174 *
 175 */
 176void
 177xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
 178		 struct page **pages, unsigned int base, unsigned int len)
 179{
 180	struct kvec *head = xdr->head;
 181	struct kvec *tail = xdr->tail;
 182	char *buf = (char *)head->iov_base;
 183	unsigned int buflen = head->iov_len;
 184
 185	head->iov_len  = offset;
 186
 187	xdr->pages = pages;
 188	xdr->page_base = base;
 189	xdr->page_len = len;
 190
 191	tail->iov_base = buf + offset;
 192	tail->iov_len = buflen - offset;
 193	if ((xdr->page_len & 3) == 0)
 194		tail->iov_len -= sizeof(__be32);
 195
 196	xdr->buflen += len;
 197}
 198EXPORT_SYMBOL_GPL(xdr_inline_pages);
 199
 200/*
 201 * Helper routines for doing 'memmove' like operations on a struct xdr_buf
 202 */
 203
 204/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205 * _shift_data_right_pages
 206 * @pages: vector of pages containing both the source and dest memory area.
 207 * @pgto_base: page vector address of destination
 208 * @pgfrom_base: page vector address of source
 209 * @len: number of bytes to copy
 210 *
 211 * Note: the addresses pgto_base and pgfrom_base are both calculated in
 212 *       the same way:
 213 *            if a memory area starts at byte 'base' in page 'pages[i]',
 214 *            then its address is given as (i << PAGE_SHIFT) + base
 215 * Also note: pgfrom_base must be < pgto_base, but the memory areas
 216 * 	they point to may overlap.
 217 */
 218static void
 219_shift_data_right_pages(struct page **pages, size_t pgto_base,
 220		size_t pgfrom_base, size_t len)
 221{
 222	struct page **pgfrom, **pgto;
 223	char *vfrom, *vto;
 224	size_t copy;
 225
 226	BUG_ON(pgto_base <= pgfrom_base);
 227
 
 
 
 228	pgto_base += len;
 229	pgfrom_base += len;
 230
 231	pgto = pages + (pgto_base >> PAGE_SHIFT);
 232	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
 233
 234	pgto_base &= ~PAGE_MASK;
 235	pgfrom_base &= ~PAGE_MASK;
 236
 237	do {
 238		/* Are any pointers crossing a page boundary? */
 239		if (pgto_base == 0) {
 240			pgto_base = PAGE_SIZE;
 241			pgto--;
 242		}
 243		if (pgfrom_base == 0) {
 244			pgfrom_base = PAGE_SIZE;
 245			pgfrom--;
 246		}
 247
 248		copy = len;
 249		if (copy > pgto_base)
 250			copy = pgto_base;
 251		if (copy > pgfrom_base)
 252			copy = pgfrom_base;
 253		pgto_base -= copy;
 254		pgfrom_base -= copy;
 255
 256		vto = kmap_atomic(*pgto);
 257		if (*pgto != *pgfrom) {
 258			vfrom = kmap_atomic(*pgfrom);
 259			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
 260			kunmap_atomic(vfrom);
 261		} else
 262			memmove(vto + pgto_base, vto + pgfrom_base, copy);
 263		flush_dcache_page(*pgto);
 264		kunmap_atomic(vto);
 265
 266	} while ((len -= copy) != 0);
 267}
 268
 269/**
 270 * _copy_to_pages
 271 * @pages: array of pages
 272 * @pgbase: page vector address of destination
 273 * @p: pointer to source data
 274 * @len: length
 275 *
 276 * Copies data from an arbitrary memory location into an array of pages
 277 * The copy is assumed to be non-overlapping.
 278 */
 279static void
 280_copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
 281{
 282	struct page **pgto;
 283	char *vto;
 284	size_t copy;
 285
 
 
 
 286	pgto = pages + (pgbase >> PAGE_SHIFT);
 287	pgbase &= ~PAGE_MASK;
 288
 289	for (;;) {
 290		copy = PAGE_SIZE - pgbase;
 291		if (copy > len)
 292			copy = len;
 293
 294		vto = kmap_atomic(*pgto);
 295		memcpy(vto + pgbase, p, copy);
 296		kunmap_atomic(vto);
 297
 298		len -= copy;
 299		if (len == 0)
 300			break;
 301
 302		pgbase += copy;
 303		if (pgbase == PAGE_SIZE) {
 304			flush_dcache_page(*pgto);
 305			pgbase = 0;
 306			pgto++;
 307		}
 308		p += copy;
 309	}
 310	flush_dcache_page(*pgto);
 311}
 312
 313/**
 314 * _copy_from_pages
 315 * @p: pointer to destination
 316 * @pages: array of pages
 317 * @pgbase: offset of source data
 318 * @len: length
 319 *
 320 * Copies data into an arbitrary memory location from an array of pages
 321 * The copy is assumed to be non-overlapping.
 322 */
 323void
 324_copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
 325{
 326	struct page **pgfrom;
 327	char *vfrom;
 328	size_t copy;
 329
 
 
 
 330	pgfrom = pages + (pgbase >> PAGE_SHIFT);
 331	pgbase &= ~PAGE_MASK;
 332
 333	do {
 334		copy = PAGE_SIZE - pgbase;
 335		if (copy > len)
 336			copy = len;
 337
 338		vfrom = kmap_atomic(*pgfrom);
 339		memcpy(p, vfrom + pgbase, copy);
 340		kunmap_atomic(vfrom);
 341
 342		pgbase += copy;
 343		if (pgbase == PAGE_SIZE) {
 344			pgbase = 0;
 345			pgfrom++;
 346		}
 347		p += copy;
 348
 349	} while ((len -= copy) != 0);
 350}
 351EXPORT_SYMBOL_GPL(_copy_from_pages);
 352
 
 
 
 
 
 
 
 
 
 
 353/**
 354 * xdr_shrink_bufhead
 355 * @buf: xdr_buf
 356 * @len: bytes to remove from buf->head[0]
 357 *
 358 * Shrinks XDR buffer's header kvec buf->head[0] by
 359 * 'len' bytes. The extra data is not lost, but is instead
 360 * moved into the inlined pages and/or the tail.
 361 */
 362static unsigned int
 363xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
 364{
 365	struct kvec *head, *tail;
 366	size_t copy, offs;
 367	unsigned int pglen = buf->page_len;
 368	unsigned int result;
 369
 370	result = 0;
 371	tail = buf->tail;
 372	head = buf->head;
 373
 374	WARN_ON_ONCE(len > head->iov_len);
 375	if (len > head->iov_len)
 376		len = head->iov_len;
 
 
 
 
 
 
 
 377
 378	/* Shift the tail first */
 379	if (tail->iov_len != 0) {
 380		if (tail->iov_len > len) {
 381			copy = tail->iov_len - len;
 382			memmove((char *)tail->iov_base + len,
 383					tail->iov_base, copy);
 384			result += copy;
 385		}
 386		/* Copy from the inlined pages into the tail */
 387		copy = len;
 388		if (copy > pglen)
 389			copy = pglen;
 390		offs = len - copy;
 391		if (offs >= tail->iov_len)
 392			copy = 0;
 393		else if (copy > tail->iov_len - offs)
 394			copy = tail->iov_len - offs;
 395		if (copy != 0) {
 396			_copy_from_pages((char *)tail->iov_base + offs,
 397					buf->pages,
 398					buf->page_base + pglen + offs - len,
 399					copy);
 400			result += copy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401		}
 402		/* Do we also need to copy data from the head into the tail ? */
 403		if (len > pglen) {
 404			offs = copy = len - pglen;
 405			if (copy > tail->iov_len)
 406				copy = tail->iov_len;
 407			memcpy(tail->iov_base,
 408					(char *)head->iov_base +
 409					head->iov_len - offs,
 410					copy);
 411			result += copy;
 412		}
 413	}
 414	/* Now handle pages */
 415	if (pglen != 0) {
 416		if (pglen > len)
 417			_shift_data_right_pages(buf->pages,
 418					buf->page_base + len,
 419					buf->page_base,
 420					pglen - len);
 421		copy = len;
 422		if (len > pglen)
 423			copy = pglen;
 424		_copy_to_pages(buf->pages, buf->page_base,
 425				(char *)head->iov_base + head->iov_len - len,
 426				copy);
 427		result += copy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	}
 429	head->iov_len -= len;
 430	buf->buflen -= len;
 431	/* Have we truncated the message? */
 432	if (buf->len > buf->buflen)
 433		buf->len = buf->buflen;
 
 
 
 
 
 
 
 
 434
 435	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438/**
 439 * xdr_shrink_pagelen
 440 * @buf: xdr_buf
 441 * @len: bytes to remove from buf->pages
 442 *
 443 * Shrinks XDR buffer's page array buf->pages by
 444 * 'len' bytes. The extra data is not lost, but is instead
 445 * moved into the tail.
 446 */
 447static unsigned int
 448xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
 449{
 450	struct kvec *tail;
 451	size_t copy;
 452	unsigned int pglen = buf->page_len;
 453	unsigned int tailbuf_len;
 454	unsigned int result;
 455
 456	result = 0;
 457	tail = buf->tail;
 458	BUG_ON (len > pglen);
 459
 460	tailbuf_len = buf->buflen - buf->head->iov_len - buf->page_len;
 461
 462	/* Shift the tail first */
 463	if (tailbuf_len != 0) {
 464		unsigned int free_space = tailbuf_len - tail->iov_len;
 465
 466		if (len < free_space)
 467			free_space = len;
 468		tail->iov_len += free_space;
 
 
 
 
 
 
 
 
 
 
 
 
 469
 470		copy = len;
 471		if (tail->iov_len > len) {
 472			char *p = (char *)tail->iov_base + len;
 473			memmove(p, tail->iov_base, tail->iov_len - len);
 474			result += tail->iov_len - len;
 475		} else
 476			copy = tail->iov_len;
 477		/* Copy from the inlined pages into the tail */
 478		_copy_from_pages((char *)tail->iov_base,
 479				buf->pages, buf->page_base + pglen - len,
 480				copy);
 481		result += copy;
 482	}
 483	buf->page_len -= len;
 484	buf->buflen -= len;
 485	/* Have we truncated the message? */
 486	if (buf->len > buf->buflen)
 487		buf->len = buf->buflen;
 488
 489	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490}
 491
 492void
 493xdr_shift_buf(struct xdr_buf *buf, size_t len)
 494{
 495	xdr_shrink_bufhead(buf, len);
 496}
 497EXPORT_SYMBOL_GPL(xdr_shift_buf);
 498
 499/**
 500 * xdr_stream_pos - Return the current offset from the start of the xdr_stream
 501 * @xdr: pointer to struct xdr_stream
 502 */
 503unsigned int xdr_stream_pos(const struct xdr_stream *xdr)
 504{
 505	return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2;
 506}
 507EXPORT_SYMBOL_GPL(xdr_stream_pos);
 508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509/**
 510 * xdr_init_encode - Initialize a struct xdr_stream for sending data.
 511 * @xdr: pointer to xdr_stream struct
 512 * @buf: pointer to XDR buffer in which to encode data
 513 * @p: current pointer inside XDR buffer
 514 * @rqst: pointer to controlling rpc_rqst, for debugging
 515 *
 516 * Note: at the moment the RPC client only passes the length of our
 517 *	 scratch buffer in the xdr_buf's header kvec. Previously this
 518 *	 meant we needed to call xdr_adjust_iovec() after encoding the
 519 *	 data. With the new scheme, the xdr_stream manages the details
 520 *	 of the buffer length, and takes care of adjusting the kvec
 521 *	 length for us.
 522 */
 523void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
 524		     struct rpc_rqst *rqst)
 525{
 526	struct kvec *iov = buf->head;
 527	int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
 528
 529	xdr_set_scratch_buffer(xdr, NULL, 0);
 530	BUG_ON(scratch_len < 0);
 531	xdr->buf = buf;
 532	xdr->iov = iov;
 533	xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len);
 534	xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len);
 535	BUG_ON(iov->iov_len > scratch_len);
 536
 537	if (p != xdr->p && p != NULL) {
 538		size_t len;
 539
 540		BUG_ON(p < xdr->p || p > xdr->end);
 541		len = (char *)p - (char *)xdr->p;
 542		xdr->p = p;
 543		buf->len += len;
 544		iov->iov_len += len;
 545	}
 546	xdr->rqst = rqst;
 547}
 548EXPORT_SYMBOL_GPL(xdr_init_encode);
 549
 550/**
 551 * xdr_commit_encode - Ensure all data is written to buffer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552 * @xdr: pointer to xdr_stream
 553 *
 554 * We handle encoding across page boundaries by giving the caller a
 555 * temporary location to write to, then later copying the data into
 556 * place; xdr_commit_encode does that copying.
 557 *
 558 * Normally the caller doesn't need to call this directly, as the
 559 * following xdr_reserve_space will do it.  But an explicit call may be
 560 * required at the end of encoding, or any other time when the xdr_buf
 561 * data might be read.
 562 */
 563inline void xdr_commit_encode(struct xdr_stream *xdr)
 564{
 565	int shift = xdr->scratch.iov_len;
 566	void *page;
 567
 568	if (shift == 0)
 569		return;
 570	page = page_address(*xdr->page_ptr);
 571	memcpy(xdr->scratch.iov_base, page, shift);
 572	memmove(page, page + shift, (void *)xdr->p - page);
 573	xdr->scratch.iov_len = 0;
 574}
 575EXPORT_SYMBOL_GPL(xdr_commit_encode);
 576
 577static __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr,
 578		size_t nbytes)
 
 
 
 
 
 579{
 580	__be32 *p;
 581	int space_left;
 582	int frag1bytes, frag2bytes;
 
 583
 584	if (nbytes > PAGE_SIZE)
 585		goto out_overflow; /* Bigger buffers require special handling */
 586	if (xdr->buf->len + nbytes > xdr->buf->buflen)
 587		goto out_overflow; /* Sorry, we're totally out of space */
 588	frag1bytes = (xdr->end - xdr->p) << 2;
 589	frag2bytes = nbytes - frag1bytes;
 590	if (xdr->iov)
 591		xdr->iov->iov_len += frag1bytes;
 592	else
 593		xdr->buf->page_len += frag1bytes;
 594	xdr->page_ptr++;
 595	xdr->iov = NULL;
 
 596	/*
 597	 * If the last encode didn't end exactly on a page boundary, the
 598	 * next one will straddle boundaries.  Encode into the next
 599	 * page, then copy it back later in xdr_commit_encode.  We use
 600	 * the "scratch" iov to track any temporarily unused fragment of
 601	 * space at the end of the previous buffer:
 602	 */
 603	xdr->scratch.iov_base = xdr->p;
 604	xdr->scratch.iov_len = frag1bytes;
 605	p = page_address(*xdr->page_ptr);
 606	/*
 607	 * Note this is where the next encode will start after we've
 608	 * shifted this one back:
 609	 */
 610	xdr->p = (void *)p + frag2bytes;
 
 611	space_left = xdr->buf->buflen - xdr->buf->len;
 612	xdr->end = (void *)p + min_t(int, space_left, PAGE_SIZE);
 
 
 
 
 613	xdr->buf->page_len += frag2bytes;
 614	xdr->buf->len += nbytes;
 615	return p;
 616out_overflow:
 617	trace_rpc_xdr_overflow(xdr, nbytes);
 618	return NULL;
 619}
 620
 621/**
 622 * xdr_reserve_space - Reserve buffer space for sending
 623 * @xdr: pointer to xdr_stream
 624 * @nbytes: number of bytes to reserve
 625 *
 626 * Checks that we have enough buffer space to encode 'nbytes' more
 627 * bytes of data. If so, update the total xdr_buf length, and
 628 * adjust the length of the current kvec.
 629 */
 630__be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
 631{
 632	__be32 *p = xdr->p;
 633	__be32 *q;
 634
 635	xdr_commit_encode(xdr);
 636	/* align nbytes on the next 32-bit boundary */
 637	nbytes += 3;
 638	nbytes &= ~3;
 639	q = p + (nbytes >> 2);
 640	if (unlikely(q > xdr->end || q < p))
 641		return xdr_get_next_encode_buffer(xdr, nbytes);
 642	xdr->p = q;
 643	if (xdr->iov)
 644		xdr->iov->iov_len += nbytes;
 645	else
 646		xdr->buf->page_len += nbytes;
 647	xdr->buf->len += nbytes;
 648	return p;
 649}
 650EXPORT_SYMBOL_GPL(xdr_reserve_space);
 651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652/**
 653 * xdr_truncate_encode - truncate an encode buffer
 654 * @xdr: pointer to xdr_stream
 655 * @len: new length of buffer
 656 *
 657 * Truncates the xdr stream, so that xdr->buf->len == len,
 658 * and xdr->p points at offset len from the start of the buffer, and
 659 * head, tail, and page lengths are adjusted to correspond.
 660 *
 661 * If this means moving xdr->p to a different buffer, we assume that
 662 * that the end pointer should be set to the end of the current page,
 663 * except in the case of the head buffer when we assume the head
 664 * buffer's current length represents the end of the available buffer.
 665 *
 666 * This is *not* safe to use on a buffer that already has inlined page
 667 * cache pages (as in a zero-copy server read reply), except for the
 668 * simple case of truncating from one position in the tail to another.
 669 *
 670 */
 671void xdr_truncate_encode(struct xdr_stream *xdr, size_t len)
 672{
 673	struct xdr_buf *buf = xdr->buf;
 674	struct kvec *head = buf->head;
 675	struct kvec *tail = buf->tail;
 676	int fraglen;
 677	int new;
 678
 679	if (len > buf->len) {
 680		WARN_ON_ONCE(1);
 681		return;
 682	}
 683	xdr_commit_encode(xdr);
 684
 685	fraglen = min_t(int, buf->len - len, tail->iov_len);
 686	tail->iov_len -= fraglen;
 687	buf->len -= fraglen;
 688	if (tail->iov_len) {
 689		xdr->p = tail->iov_base + tail->iov_len;
 690		WARN_ON_ONCE(!xdr->end);
 691		WARN_ON_ONCE(!xdr->iov);
 692		return;
 693	}
 694	WARN_ON_ONCE(fraglen);
 695	fraglen = min_t(int, buf->len - len, buf->page_len);
 696	buf->page_len -= fraglen;
 697	buf->len -= fraglen;
 698
 699	new = buf->page_base + buf->page_len;
 700
 701	xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT);
 702
 703	if (buf->page_len) {
 704		xdr->p = page_address(*xdr->page_ptr);
 705		xdr->end = (void *)xdr->p + PAGE_SIZE;
 706		xdr->p = (void *)xdr->p + (new % PAGE_SIZE);
 707		WARN_ON_ONCE(xdr->iov);
 708		return;
 709	}
 710	if (fraglen)
 711		xdr->end = head->iov_base + head->iov_len;
 712	/* (otherwise assume xdr->end is already set) */
 713	xdr->page_ptr--;
 714	head->iov_len = len;
 715	buf->len = len;
 716	xdr->p = head->iov_base + head->iov_len;
 717	xdr->iov = buf->head;
 718}
 719EXPORT_SYMBOL(xdr_truncate_encode);
 720
 721/**
 722 * xdr_restrict_buflen - decrease available buffer space
 723 * @xdr: pointer to xdr_stream
 724 * @newbuflen: new maximum number of bytes available
 725 *
 726 * Adjust our idea of how much space is available in the buffer.
 727 * If we've already used too much space in the buffer, returns -1.
 728 * If the available space is already smaller than newbuflen, returns 0
 729 * and does nothing.  Otherwise, adjusts xdr->buf->buflen to newbuflen
 730 * and ensures xdr->end is set at most offset newbuflen from the start
 731 * of the buffer.
 732 */
 733int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen)
 734{
 735	struct xdr_buf *buf = xdr->buf;
 736	int left_in_this_buf = (void *)xdr->end - (void *)xdr->p;
 737	int end_offset = buf->len + left_in_this_buf;
 738
 739	if (newbuflen < 0 || newbuflen < buf->len)
 740		return -1;
 741	if (newbuflen > buf->buflen)
 742		return 0;
 743	if (newbuflen < end_offset)
 744		xdr->end = (void *)xdr->end + newbuflen - end_offset;
 745	buf->buflen = newbuflen;
 746	return 0;
 747}
 748EXPORT_SYMBOL(xdr_restrict_buflen);
 749
 750/**
 751 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
 752 * @xdr: pointer to xdr_stream
 753 * @pages: list of pages
 754 * @base: offset of first byte
 755 * @len: length of data in bytes
 756 *
 
 
 
 757 */
 758void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
 759		 unsigned int len)
 760{
 761	struct xdr_buf *buf = xdr->buf;
 762	struct kvec *iov = buf->tail;
 
 763	buf->pages = pages;
 764	buf->page_base = base;
 765	buf->page_len = len;
 766
 767	iov->iov_base = (char *)xdr->p;
 768	iov->iov_len  = 0;
 769	xdr->iov = iov;
 770
 771	if (len & 3) {
 772		unsigned int pad = 4 - (len & 3);
 773
 774		BUG_ON(xdr->p >= xdr->end);
 775		iov->iov_base = (char *)xdr->p + (len & 3);
 776		iov->iov_len  += pad;
 777		len += pad;
 778		*xdr->p++ = 0;
 779	}
 780	buf->buflen += len;
 781	buf->len += len;
 782}
 783EXPORT_SYMBOL_GPL(xdr_write_pages);
 784
 785static void xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov,
 786		unsigned int len)
 787{
 788	if (len > iov->iov_len)
 789		len = iov->iov_len;
 790	xdr->p = (__be32*)iov->iov_base;
 
 
 791	xdr->end = (__be32*)(iov->iov_base + len);
 792	xdr->iov = iov;
 793	xdr->page_ptr = NULL;
 
 
 
 
 
 
 
 
 
 
 794}
 795
 796static int xdr_set_page_base(struct xdr_stream *xdr,
 797		unsigned int base, unsigned int len)
 798{
 799	unsigned int pgnr;
 800	unsigned int maxlen;
 801	unsigned int pgoff;
 802	unsigned int pgend;
 803	void *kaddr;
 804
 805	maxlen = xdr->buf->page_len;
 806	if (base >= maxlen)
 807		return -EINVAL;
 808	maxlen -= base;
 
 809	if (len > maxlen)
 810		len = maxlen;
 811
 
 812	base += xdr->buf->page_base;
 813
 814	pgnr = base >> PAGE_SHIFT;
 815	xdr->page_ptr = &xdr->buf->pages[pgnr];
 816	kaddr = page_address(*xdr->page_ptr);
 817
 818	pgoff = base & ~PAGE_MASK;
 819	xdr->p = (__be32*)(kaddr + pgoff);
 820
 821	pgend = pgoff + len;
 822	if (pgend > PAGE_SIZE)
 823		pgend = PAGE_SIZE;
 824	xdr->end = (__be32*)(kaddr + pgend);
 825	xdr->iov = NULL;
 826	return 0;
 
 
 
 
 
 
 
 
 
 827}
 828
 829static void xdr_set_next_page(struct xdr_stream *xdr)
 830{
 831	unsigned int newbase;
 832
 833	newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT;
 834	newbase -= xdr->buf->page_base;
 835
 836	if (xdr_set_page_base(xdr, newbase, PAGE_SIZE) < 0)
 837		xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2);
 
 838}
 839
 840static bool xdr_set_next_buffer(struct xdr_stream *xdr)
 841{
 842	if (xdr->page_ptr != NULL)
 843		xdr_set_next_page(xdr);
 844	else if (xdr->iov == xdr->buf->head) {
 845		if (xdr_set_page_base(xdr, 0, PAGE_SIZE) < 0)
 846			xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2);
 847	}
 848	return xdr->p != xdr->end;
 849}
 850
 851/**
 852 * xdr_init_decode - Initialize an xdr_stream for decoding data.
 853 * @xdr: pointer to xdr_stream struct
 854 * @buf: pointer to XDR buffer from which to decode data
 855 * @p: current pointer inside XDR buffer
 856 * @rqst: pointer to controlling rpc_rqst, for debugging
 857 */
 858void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
 859		     struct rpc_rqst *rqst)
 860{
 861	xdr->buf = buf;
 862	xdr->scratch.iov_base = NULL;
 863	xdr->scratch.iov_len = 0;
 864	xdr->nwords = XDR_QUADLEN(buf->len);
 865	if (buf->head[0].iov_len != 0)
 866		xdr_set_iov(xdr, buf->head, buf->len);
 867	else if (buf->page_len != 0)
 868		xdr_set_page_base(xdr, 0, buf->len);
 869	else
 870		xdr_set_iov(xdr, buf->head, buf->len);
 871	if (p != NULL && p > xdr->p && xdr->end >= p) {
 872		xdr->nwords -= p - xdr->p;
 873		xdr->p = p;
 874	}
 875	xdr->rqst = rqst;
 876}
 877EXPORT_SYMBOL_GPL(xdr_init_decode);
 878
 879/**
 880 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages
 881 * @xdr: pointer to xdr_stream struct
 882 * @buf: pointer to XDR buffer from which to decode data
 883 * @pages: list of pages to decode into
 884 * @len: length in bytes of buffer in pages
 885 */
 886void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
 887			   struct page **pages, unsigned int len)
 888{
 889	memset(buf, 0, sizeof(*buf));
 890	buf->pages =  pages;
 891	buf->page_len =  len;
 892	buf->buflen =  len;
 893	buf->len = len;
 894	xdr_init_decode(xdr, buf, NULL, NULL);
 895}
 896EXPORT_SYMBOL_GPL(xdr_init_decode_pages);
 897
 898static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
 899{
 900	unsigned int nwords = XDR_QUADLEN(nbytes);
 901	__be32 *p = xdr->p;
 902	__be32 *q = p + nwords;
 903
 904	if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p))
 905		return NULL;
 906	xdr->p = q;
 907	xdr->nwords -= nwords;
 908	return p;
 909}
 910
 911/**
 912 * xdr_set_scratch_buffer - Attach a scratch buffer for decoding data.
 913 * @xdr: pointer to xdr_stream struct
 914 * @buf: pointer to an empty buffer
 915 * @buflen: size of 'buf'
 916 *
 917 * The scratch buffer is used when decoding from an array of pages.
 918 * If an xdr_inline_decode() call spans across page boundaries, then
 919 * we copy the data into the scratch buffer in order to allow linear
 920 * access.
 921 */
 922void xdr_set_scratch_buffer(struct xdr_stream *xdr, void *buf, size_t buflen)
 923{
 924	xdr->scratch.iov_base = buf;
 925	xdr->scratch.iov_len = buflen;
 926}
 927EXPORT_SYMBOL_GPL(xdr_set_scratch_buffer);
 928
 929static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes)
 930{
 931	__be32 *p;
 932	char *cpdest = xdr->scratch.iov_base;
 933	size_t cplen = (char *)xdr->end - (char *)xdr->p;
 934
 935	if (nbytes > xdr->scratch.iov_len)
 936		goto out_overflow;
 937	p = __xdr_inline_decode(xdr, cplen);
 938	if (p == NULL)
 939		return NULL;
 940	memcpy(cpdest, p, cplen);
 941	if (!xdr_set_next_buffer(xdr))
 942		goto out_overflow;
 943	cpdest += cplen;
 944	nbytes -= cplen;
 945	p = __xdr_inline_decode(xdr, nbytes);
 946	if (p == NULL)
 947		return NULL;
 948	memcpy(cpdest, p, nbytes);
 949	return xdr->scratch.iov_base;
 950out_overflow:
 951	trace_rpc_xdr_overflow(xdr, nbytes);
 952	return NULL;
 953}
 954
 955/**
 956 * xdr_inline_decode - Retrieve XDR data to decode
 957 * @xdr: pointer to xdr_stream struct
 958 * @nbytes: number of bytes of data to decode
 959 *
 960 * Check if the input buffer is long enough to enable us to decode
 961 * 'nbytes' more bytes of data starting at the current position.
 962 * If so return the current pointer, then update the current
 963 * pointer position.
 964 */
 965__be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
 966{
 967	__be32 *p;
 968
 969	if (unlikely(nbytes == 0))
 970		return xdr->p;
 971	if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
 972		goto out_overflow;
 973	p = __xdr_inline_decode(xdr, nbytes);
 974	if (p != NULL)
 975		return p;
 976	return xdr_copy_to_scratch(xdr, nbytes);
 977out_overflow:
 978	trace_rpc_xdr_overflow(xdr, nbytes);
 979	return NULL;
 980}
 981EXPORT_SYMBOL_GPL(xdr_inline_decode);
 982
 983static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len)
 984{
 985	struct xdr_buf *buf = xdr->buf;
 986	struct kvec *iov;
 987	unsigned int nwords = XDR_QUADLEN(len);
 988	unsigned int cur = xdr_stream_pos(xdr);
 989	unsigned int copied, offset;
 990
 991	if (xdr->nwords == 0)
 992		return 0;
 993
 994	/* Realign pages to current pointer position */
 995	iov = buf->head;
 996	if (iov->iov_len > cur) {
 997		offset = iov->iov_len - cur;
 998		copied = xdr_shrink_bufhead(buf, offset);
 999		trace_rpc_xdr_alignment(xdr, offset, copied);
1000		xdr->nwords = XDR_QUADLEN(buf->len - cur);
1001	}
 
 
 
 
 
 
 
 
 
 
1002
 
1003	if (nwords > xdr->nwords) {
1004		nwords = xdr->nwords;
1005		len = nwords << 2;
1006	}
1007	if (buf->page_len <= len)
1008		len = buf->page_len;
1009	else if (nwords < xdr->nwords) {
1010		/* Truncate page data and move it into the tail */
1011		offset = buf->page_len - len;
1012		copied = xdr_shrink_pagelen(buf, offset);
1013		trace_rpc_xdr_alignment(xdr, offset, copied);
1014		xdr->nwords = XDR_QUADLEN(buf->len - cur);
1015	}
1016	return len;
1017}
1018
1019/**
1020 * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
1021 * @xdr: pointer to xdr_stream struct
1022 * @len: number of bytes of page data
1023 *
1024 * Moves data beyond the current pointer position from the XDR head[] buffer
1025 * into the page list. Any data that lies beyond current position + "len"
1026 * bytes is moved into the XDR tail[].
 
1027 *
1028 * Returns the number of XDR encoded bytes now contained in the pages
1029 */
1030unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
1031{
1032	struct xdr_buf *buf = xdr->buf;
1033	struct kvec *iov;
1034	unsigned int nwords;
1035	unsigned int end;
1036	unsigned int padding;
1037
1038	len = xdr_align_pages(xdr, len);
1039	if (len == 0)
1040		return 0;
1041	nwords = XDR_QUADLEN(len);
1042	padding = (nwords << 2) - len;
1043	xdr->iov = iov = buf->tail;
1044	/* Compute remaining message length.  */
1045	end = ((xdr->nwords - nwords) << 2) + padding;
1046	if (end > iov->iov_len)
1047		end = iov->iov_len;
1048
1049	/*
1050	 * Position current pointer at beginning of tail, and
1051	 * set remaining message length.
1052	 */
1053	xdr->p = (__be32 *)((char *)iov->iov_base + padding);
1054	xdr->end = (__be32 *)((char *)iov->iov_base + end);
1055	xdr->page_ptr = NULL;
1056	xdr->nwords = XDR_QUADLEN(end - padding);
1057	return len;
1058}
1059EXPORT_SYMBOL_GPL(xdr_read_pages);
1060
1061/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062 * xdr_enter_page - decode data from the XDR page
1063 * @xdr: pointer to xdr_stream struct
1064 * @len: number of bytes of page data
1065 *
1066 * Moves data beyond the current pointer position from the XDR head[] buffer
1067 * into the page list. Any data that lies beyond current position + "len"
1068 * bytes is moved into the XDR tail[]. The current pointer is then
1069 * repositioned at the beginning of the first XDR page.
1070 */
1071void xdr_enter_page(struct xdr_stream *xdr, unsigned int len)
1072{
1073	len = xdr_align_pages(xdr, len);
1074	/*
1075	 * Position current pointer at beginning of tail, and
1076	 * set remaining message length.
1077	 */
1078	if (len != 0)
1079		xdr_set_page_base(xdr, 0, len);
1080}
1081EXPORT_SYMBOL_GPL(xdr_enter_page);
1082
1083static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
1084
1085void
1086xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
1087{
1088	buf->head[0] = *iov;
1089	buf->tail[0] = empty_iov;
1090	buf->page_len = 0;
1091	buf->buflen = buf->len = iov->iov_len;
1092}
1093EXPORT_SYMBOL_GPL(xdr_buf_from_iov);
1094
1095/**
1096 * xdr_buf_subsegment - set subbuf to a portion of buf
1097 * @buf: an xdr buffer
1098 * @subbuf: the result buffer
1099 * @base: beginning of range in bytes
1100 * @len: length of range in bytes
1101 *
1102 * sets @subbuf to an xdr buffer representing the portion of @buf of
1103 * length @len starting at offset @base.
1104 *
1105 * @buf and @subbuf may be pointers to the same struct xdr_buf.
1106 *
1107 * Returns -1 if base of length are out of bounds.
1108 */
1109int
1110xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
1111			unsigned int base, unsigned int len)
1112{
1113	subbuf->buflen = subbuf->len = len;
1114	if (base < buf->head[0].iov_len) {
1115		subbuf->head[0].iov_base = buf->head[0].iov_base + base;
1116		subbuf->head[0].iov_len = min_t(unsigned int, len,
1117						buf->head[0].iov_len - base);
1118		len -= subbuf->head[0].iov_len;
1119		base = 0;
1120	} else {
1121		base -= buf->head[0].iov_len;
 
1122		subbuf->head[0].iov_len = 0;
1123	}
1124
1125	if (base < buf->page_len) {
1126		subbuf->page_len = min(buf->page_len - base, len);
1127		base += buf->page_base;
1128		subbuf->page_base = base & ~PAGE_MASK;
1129		subbuf->pages = &buf->pages[base >> PAGE_SHIFT];
1130		len -= subbuf->page_len;
1131		base = 0;
1132	} else {
1133		base -= buf->page_len;
 
 
1134		subbuf->page_len = 0;
1135	}
1136
1137	if (base < buf->tail[0].iov_len) {
1138		subbuf->tail[0].iov_base = buf->tail[0].iov_base + base;
1139		subbuf->tail[0].iov_len = min_t(unsigned int, len,
1140						buf->tail[0].iov_len - base);
1141		len -= subbuf->tail[0].iov_len;
1142		base = 0;
1143	} else {
1144		base -= buf->tail[0].iov_len;
 
1145		subbuf->tail[0].iov_len = 0;
1146	}
1147
1148	if (base || len)
1149		return -1;
1150	return 0;
1151}
1152EXPORT_SYMBOL_GPL(xdr_buf_subsegment);
1153
1154static void __read_bytes_from_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155{
1156	unsigned int this_len;
1157
1158	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1159	memcpy(obj, subbuf->head[0].iov_base, this_len);
1160	len -= this_len;
1161	obj += this_len;
1162	this_len = min_t(unsigned int, len, subbuf->page_len);
1163	if (this_len)
1164		_copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len);
1165	len -= this_len;
1166	obj += this_len;
1167	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1168	memcpy(obj, subbuf->tail[0].iov_base, this_len);
1169}
1170
1171/* obj is assumed to point to allocated memory of size at least len: */
1172int read_bytes_from_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len)
 
1173{
1174	struct xdr_buf subbuf;
1175	int status;
1176
1177	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1178	if (status != 0)
1179		return status;
1180	__read_bytes_from_xdr_buf(&subbuf, obj, len);
1181	return 0;
1182}
1183EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf);
1184
1185static void __write_bytes_to_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len)
 
1186{
1187	unsigned int this_len;
1188
1189	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1190	memcpy(subbuf->head[0].iov_base, obj, this_len);
1191	len -= this_len;
1192	obj += this_len;
1193	this_len = min_t(unsigned int, len, subbuf->page_len);
1194	if (this_len)
1195		_copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len);
1196	len -= this_len;
1197	obj += this_len;
1198	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1199	memcpy(subbuf->tail[0].iov_base, obj, this_len);
1200}
1201
1202/* obj is assumed to point to allocated memory of size at least len: */
1203int write_bytes_to_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len)
 
1204{
1205	struct xdr_buf subbuf;
1206	int status;
1207
1208	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1209	if (status != 0)
1210		return status;
1211	__write_bytes_to_xdr_buf(&subbuf, obj, len);
1212	return 0;
1213}
1214EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf);
1215
1216int
1217xdr_decode_word(struct xdr_buf *buf, unsigned int base, u32 *obj)
1218{
1219	__be32	raw;
1220	int	status;
1221
1222	status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
1223	if (status)
1224		return status;
1225	*obj = be32_to_cpu(raw);
1226	return 0;
1227}
1228EXPORT_SYMBOL_GPL(xdr_decode_word);
1229
1230int
1231xdr_encode_word(struct xdr_buf *buf, unsigned int base, u32 obj)
1232{
1233	__be32	raw = cpu_to_be32(obj);
1234
1235	return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
1236}
1237EXPORT_SYMBOL_GPL(xdr_encode_word);
1238
1239/**
1240 * xdr_buf_read_mic() - obtain the address of the GSS mic from xdr buf
1241 * @buf: pointer to buffer containing a mic
1242 * @mic: on success, returns the address of the mic
1243 * @offset: the offset in buf where mic may be found
1244 *
1245 * This function may modify the xdr buf if the mic is found to be straddling
1246 * a boundary between head, pages, and tail.  On success the mic can be read
1247 * from the address returned.  There is no need to free the mic.
1248 *
1249 * Return: Success returns 0, otherwise an integer error.
1250 */
1251int xdr_buf_read_mic(struct xdr_buf *buf, struct xdr_netobj *mic, unsigned int offset)
1252{
1253	struct xdr_buf subbuf;
1254	unsigned int boundary;
1255
1256	if (xdr_decode_word(buf, offset, &mic->len))
1257		return -EFAULT;
1258	offset += 4;
1259
1260	/* Is the mic partially in the head? */
1261	boundary = buf->head[0].iov_len;
1262	if (offset < boundary && (offset + mic->len) > boundary)
1263		xdr_shift_buf(buf, boundary - offset);
1264
1265	/* Is the mic partially in the pages? */
1266	boundary += buf->page_len;
1267	if (offset < boundary && (offset + mic->len) > boundary)
1268		xdr_shrink_pagelen(buf, boundary - offset);
1269
1270	if (xdr_buf_subsegment(buf, &subbuf, offset, mic->len))
1271		return -EFAULT;
1272
1273	/* Is the mic contained entirely in the head? */
1274	mic->data = subbuf.head[0].iov_base;
1275	if (subbuf.head[0].iov_len == mic->len)
1276		return 0;
1277	/* ..or is the mic contained entirely in the tail? */
1278	mic->data = subbuf.tail[0].iov_base;
1279	if (subbuf.tail[0].iov_len == mic->len)
1280		return 0;
1281
1282	/* Find a contiguous area in @buf to hold all of @mic */
1283	if (mic->len > buf->buflen - buf->len)
1284		return -ENOMEM;
1285	if (buf->tail[0].iov_len != 0)
1286		mic->data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1287	else
1288		mic->data = buf->head[0].iov_base + buf->head[0].iov_len;
1289	__read_bytes_from_xdr_buf(&subbuf, mic->data, mic->len);
1290	return 0;
1291}
1292EXPORT_SYMBOL_GPL(xdr_buf_read_mic);
1293
1294/* Returns 0 on success, or else a negative error code. */
1295static int
1296xdr_xcode_array2(struct xdr_buf *buf, unsigned int base,
1297		 struct xdr_array2_desc *desc, int encode)
1298{
1299	char *elem = NULL, *c;
1300	unsigned int copied = 0, todo, avail_here;
1301	struct page **ppages = NULL;
1302	int err;
1303
1304	if (encode) {
1305		if (xdr_encode_word(buf, base, desc->array_len) != 0)
1306			return -EINVAL;
1307	} else {
1308		if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
1309		    desc->array_len > desc->array_maxlen ||
1310		    (unsigned long) base + 4 + desc->array_len *
1311				    desc->elem_size > buf->len)
1312			return -EINVAL;
1313	}
1314	base += 4;
1315
1316	if (!desc->xcode)
1317		return 0;
1318
1319	todo = desc->array_len * desc->elem_size;
1320
1321	/* process head */
1322	if (todo && base < buf->head->iov_len) {
1323		c = buf->head->iov_base + base;
1324		avail_here = min_t(unsigned int, todo,
1325				   buf->head->iov_len - base);
1326		todo -= avail_here;
1327
1328		while (avail_here >= desc->elem_size) {
1329			err = desc->xcode(desc, c);
1330			if (err)
1331				goto out;
1332			c += desc->elem_size;
1333			avail_here -= desc->elem_size;
1334		}
1335		if (avail_here) {
1336			if (!elem) {
1337				elem = kmalloc(desc->elem_size, GFP_KERNEL);
1338				err = -ENOMEM;
1339				if (!elem)
1340					goto out;
1341			}
1342			if (encode) {
1343				err = desc->xcode(desc, elem);
1344				if (err)
1345					goto out;
1346				memcpy(c, elem, avail_here);
1347			} else
1348				memcpy(elem, c, avail_here);
1349			copied = avail_here;
1350		}
1351		base = buf->head->iov_len;  /* align to start of pages */
1352	}
1353
1354	/* process pages array */
1355	base -= buf->head->iov_len;
1356	if (todo && base < buf->page_len) {
1357		unsigned int avail_page;
1358
1359		avail_here = min(todo, buf->page_len - base);
1360		todo -= avail_here;
1361
1362		base += buf->page_base;
1363		ppages = buf->pages + (base >> PAGE_SHIFT);
1364		base &= ~PAGE_MASK;
1365		avail_page = min_t(unsigned int, PAGE_SIZE - base,
1366					avail_here);
1367		c = kmap(*ppages) + base;
1368
1369		while (avail_here) {
1370			avail_here -= avail_page;
1371			if (copied || avail_page < desc->elem_size) {
1372				unsigned int l = min(avail_page,
1373					desc->elem_size - copied);
1374				if (!elem) {
1375					elem = kmalloc(desc->elem_size,
1376						       GFP_KERNEL);
1377					err = -ENOMEM;
1378					if (!elem)
1379						goto out;
1380				}
1381				if (encode) {
1382					if (!copied) {
1383						err = desc->xcode(desc, elem);
1384						if (err)
1385							goto out;
1386					}
1387					memcpy(c, elem + copied, l);
1388					copied += l;
1389					if (copied == desc->elem_size)
1390						copied = 0;
1391				} else {
1392					memcpy(elem + copied, c, l);
1393					copied += l;
1394					if (copied == desc->elem_size) {
1395						err = desc->xcode(desc, elem);
1396						if (err)
1397							goto out;
1398						copied = 0;
1399					}
1400				}
1401				avail_page -= l;
1402				c += l;
1403			}
1404			while (avail_page >= desc->elem_size) {
1405				err = desc->xcode(desc, c);
1406				if (err)
1407					goto out;
1408				c += desc->elem_size;
1409				avail_page -= desc->elem_size;
1410			}
1411			if (avail_page) {
1412				unsigned int l = min(avail_page,
1413					    desc->elem_size - copied);
1414				if (!elem) {
1415					elem = kmalloc(desc->elem_size,
1416						       GFP_KERNEL);
1417					err = -ENOMEM;
1418					if (!elem)
1419						goto out;
1420				}
1421				if (encode) {
1422					if (!copied) {
1423						err = desc->xcode(desc, elem);
1424						if (err)
1425							goto out;
1426					}
1427					memcpy(c, elem + copied, l);
1428					copied += l;
1429					if (copied == desc->elem_size)
1430						copied = 0;
1431				} else {
1432					memcpy(elem + copied, c, l);
1433					copied += l;
1434					if (copied == desc->elem_size) {
1435						err = desc->xcode(desc, elem);
1436						if (err)
1437							goto out;
1438						copied = 0;
1439					}
1440				}
1441			}
1442			if (avail_here) {
1443				kunmap(*ppages);
1444				ppages++;
1445				c = kmap(*ppages);
1446			}
1447
1448			avail_page = min(avail_here,
1449				 (unsigned int) PAGE_SIZE);
1450		}
1451		base = buf->page_len;  /* align to start of tail */
1452	}
1453
1454	/* process tail */
1455	base -= buf->page_len;
1456	if (todo) {
1457		c = buf->tail->iov_base + base;
1458		if (copied) {
1459			unsigned int l = desc->elem_size - copied;
1460
1461			if (encode)
1462				memcpy(c, elem + copied, l);
1463			else {
1464				memcpy(elem + copied, c, l);
1465				err = desc->xcode(desc, elem);
1466				if (err)
1467					goto out;
1468			}
1469			todo -= l;
1470			c += l;
1471		}
1472		while (todo) {
1473			err = desc->xcode(desc, c);
1474			if (err)
1475				goto out;
1476			c += desc->elem_size;
1477			todo -= desc->elem_size;
1478		}
1479	}
1480	err = 0;
1481
1482out:
1483	kfree(elem);
1484	if (ppages)
1485		kunmap(*ppages);
1486	return err;
1487}
1488
1489int
1490xdr_decode_array2(struct xdr_buf *buf, unsigned int base,
1491		  struct xdr_array2_desc *desc)
1492{
1493	if (base >= buf->len)
1494		return -EINVAL;
1495
1496	return xdr_xcode_array2(buf, base, desc, 0);
1497}
1498EXPORT_SYMBOL_GPL(xdr_decode_array2);
1499
1500int
1501xdr_encode_array2(struct xdr_buf *buf, unsigned int base,
1502		  struct xdr_array2_desc *desc)
1503{
1504	if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
1505	    buf->head->iov_len + buf->page_len + buf->tail->iov_len)
1506		return -EINVAL;
1507
1508	return xdr_xcode_array2(buf, base, desc, 1);
1509}
1510EXPORT_SYMBOL_GPL(xdr_encode_array2);
1511
1512int
1513xdr_process_buf(struct xdr_buf *buf, unsigned int offset, unsigned int len,
1514		int (*actor)(struct scatterlist *, void *), void *data)
1515{
1516	int i, ret = 0;
1517	unsigned int page_len, thislen, page_offset;
1518	struct scatterlist      sg[1];
1519
1520	sg_init_table(sg, 1);
1521
1522	if (offset >= buf->head[0].iov_len) {
1523		offset -= buf->head[0].iov_len;
1524	} else {
1525		thislen = buf->head[0].iov_len - offset;
1526		if (thislen > len)
1527			thislen = len;
1528		sg_set_buf(sg, buf->head[0].iov_base + offset, thislen);
1529		ret = actor(sg, data);
1530		if (ret)
1531			goto out;
1532		offset = 0;
1533		len -= thislen;
1534	}
1535	if (len == 0)
1536		goto out;
1537
1538	if (offset >= buf->page_len) {
1539		offset -= buf->page_len;
1540	} else {
1541		page_len = buf->page_len - offset;
1542		if (page_len > len)
1543			page_len = len;
1544		len -= page_len;
1545		page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1);
1546		i = (offset + buf->page_base) >> PAGE_SHIFT;
1547		thislen = PAGE_SIZE - page_offset;
1548		do {
1549			if (thislen > page_len)
1550				thislen = page_len;
1551			sg_set_page(sg, buf->pages[i], thislen, page_offset);
1552			ret = actor(sg, data);
1553			if (ret)
1554				goto out;
1555			page_len -= thislen;
1556			i++;
1557			page_offset = 0;
1558			thislen = PAGE_SIZE;
1559		} while (page_len != 0);
1560		offset = 0;
1561	}
1562	if (len == 0)
1563		goto out;
1564	if (offset < buf->tail[0].iov_len) {
1565		thislen = buf->tail[0].iov_len - offset;
1566		if (thislen > len)
1567			thislen = len;
1568		sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen);
1569		ret = actor(sg, data);
1570		len -= thislen;
1571	}
1572	if (len != 0)
1573		ret = -EINVAL;
1574out:
1575	return ret;
1576}
1577EXPORT_SYMBOL_GPL(xdr_process_buf);
1578
1579/**
1580 * xdr_stream_decode_opaque - Decode variable length opaque
1581 * @xdr: pointer to xdr_stream
1582 * @ptr: location to store opaque data
1583 * @size: size of storage buffer @ptr
1584 *
1585 * Return values:
1586 *   On success, returns size of object stored in *@ptr
1587 *   %-EBADMSG on XDR buffer overflow
1588 *   %-EMSGSIZE on overflow of storage buffer @ptr
1589 */
1590ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size)
1591{
1592	ssize_t ret;
1593	void *p;
1594
1595	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
1596	if (ret <= 0)
1597		return ret;
1598	memcpy(ptr, p, ret);
1599	return ret;
1600}
1601EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque);
1602
1603/**
1604 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque
1605 * @xdr: pointer to xdr_stream
1606 * @ptr: location to store pointer to opaque data
1607 * @maxlen: maximum acceptable object size
1608 * @gfp_flags: GFP mask to use
1609 *
1610 * Return values:
1611 *   On success, returns size of object stored in *@ptr
1612 *   %-EBADMSG on XDR buffer overflow
1613 *   %-EMSGSIZE if the size of the object would exceed @maxlen
1614 *   %-ENOMEM on memory allocation failure
1615 */
1616ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr,
1617		size_t maxlen, gfp_t gfp_flags)
1618{
1619	ssize_t ret;
1620	void *p;
1621
1622	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
1623	if (ret > 0) {
1624		*ptr = kmemdup(p, ret, gfp_flags);
1625		if (*ptr != NULL)
1626			return ret;
1627		ret = -ENOMEM;
1628	}
1629	*ptr = NULL;
1630	return ret;
1631}
1632EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup);
1633
1634/**
1635 * xdr_stream_decode_string - Decode variable length string
1636 * @xdr: pointer to xdr_stream
1637 * @str: location to store string
1638 * @size: size of storage buffer @str
1639 *
1640 * Return values:
1641 *   On success, returns length of NUL-terminated string stored in *@str
1642 *   %-EBADMSG on XDR buffer overflow
1643 *   %-EMSGSIZE on overflow of storage buffer @str
1644 */
1645ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size)
1646{
1647	ssize_t ret;
1648	void *p;
1649
1650	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
1651	if (ret > 0) {
1652		memcpy(str, p, ret);
1653		str[ret] = '\0';
1654		return strlen(str);
1655	}
1656	*str = '\0';
1657	return ret;
1658}
1659EXPORT_SYMBOL_GPL(xdr_stream_decode_string);
1660
1661/**
1662 * xdr_stream_decode_string_dup - Decode and duplicate variable length string
1663 * @xdr: pointer to xdr_stream
1664 * @str: location to store pointer to string
1665 * @maxlen: maximum acceptable string length
1666 * @gfp_flags: GFP mask to use
1667 *
1668 * Return values:
1669 *   On success, returns length of NUL-terminated string stored in *@ptr
1670 *   %-EBADMSG on XDR buffer overflow
1671 *   %-EMSGSIZE if the size of the string would exceed @maxlen
1672 *   %-ENOMEM on memory allocation failure
1673 */
1674ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str,
1675		size_t maxlen, gfp_t gfp_flags)
1676{
1677	void *p;
1678	ssize_t ret;
1679
1680	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
1681	if (ret > 0) {
1682		char *s = kmalloc(ret + 1, gfp_flags);
1683		if (s != NULL) {
1684			memcpy(s, p, ret);
1685			s[ret] = '\0';
1686			*str = s;
1687			return strlen(s);
1688		}
1689		ret = -ENOMEM;
1690	}
1691	*str = NULL;
1692	return ret;
1693}
1694EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/xdr.c
   4 *
   5 * Generic XDR support.
   6 *
   7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/slab.h>
  12#include <linux/types.h>
  13#include <linux/string.h>
  14#include <linux/kernel.h>
  15#include <linux/pagemap.h>
  16#include <linux/errno.h>
  17#include <linux/sunrpc/xdr.h>
  18#include <linux/sunrpc/msg_prot.h>
  19#include <linux/bvec.h>
  20#include <trace/events/sunrpc.h>
  21
  22static void _copy_to_pages(struct page **, size_t, const char *, size_t);
  23
  24
  25/*
  26 * XDR functions for basic NFS types
  27 */
  28__be32 *
  29xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj)
  30{
  31	unsigned int	quadlen = XDR_QUADLEN(obj->len);
  32
  33	p[quadlen] = 0;		/* zero trailing bytes */
  34	*p++ = cpu_to_be32(obj->len);
  35	memcpy(p, obj->data, obj->len);
  36	return p + XDR_QUADLEN(obj->len);
  37}
  38EXPORT_SYMBOL_GPL(xdr_encode_netobj);
  39
  40__be32 *
  41xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj)
  42{
  43	unsigned int	len;
  44
  45	if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ)
  46		return NULL;
  47	obj->len  = len;
  48	obj->data = (u8 *) p;
  49	return p + XDR_QUADLEN(len);
  50}
  51EXPORT_SYMBOL_GPL(xdr_decode_netobj);
  52
  53/**
  54 * xdr_encode_opaque_fixed - Encode fixed length opaque data
  55 * @p: pointer to current position in XDR buffer.
  56 * @ptr: pointer to data to encode (or NULL)
  57 * @nbytes: size of data.
  58 *
  59 * Copy the array of data of length nbytes at ptr to the XDR buffer
  60 * at position p, then align to the next 32-bit boundary by padding
  61 * with zero bytes (see RFC1832).
  62 * Note: if ptr is NULL, only the padding is performed.
  63 *
  64 * Returns the updated current XDR buffer position
  65 *
  66 */
  67__be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes)
  68{
  69	if (likely(nbytes != 0)) {
  70		unsigned int quadlen = XDR_QUADLEN(nbytes);
  71		unsigned int padding = (quadlen << 2) - nbytes;
  72
  73		if (ptr != NULL)
  74			memcpy(p, ptr, nbytes);
  75		if (padding != 0)
  76			memset((char *)p + nbytes, 0, padding);
  77		p += quadlen;
  78	}
  79	return p;
  80}
  81EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed);
  82
  83/**
  84 * xdr_encode_opaque - Encode variable length opaque data
  85 * @p: pointer to current position in XDR buffer.
  86 * @ptr: pointer to data to encode (or NULL)
  87 * @nbytes: size of data.
  88 *
  89 * Returns the updated current XDR buffer position
  90 */
  91__be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes)
  92{
  93	*p++ = cpu_to_be32(nbytes);
  94	return xdr_encode_opaque_fixed(p, ptr, nbytes);
  95}
  96EXPORT_SYMBOL_GPL(xdr_encode_opaque);
  97
  98__be32 *
  99xdr_encode_string(__be32 *p, const char *string)
 100{
 101	return xdr_encode_array(p, string, strlen(string));
 102}
 103EXPORT_SYMBOL_GPL(xdr_encode_string);
 104
 105__be32 *
 106xdr_decode_string_inplace(__be32 *p, char **sp,
 107			  unsigned int *lenp, unsigned int maxlen)
 108{
 109	u32 len;
 110
 111	len = be32_to_cpu(*p++);
 112	if (len > maxlen)
 113		return NULL;
 114	*lenp = len;
 115	*sp = (char *) p;
 116	return p + XDR_QUADLEN(len);
 117}
 118EXPORT_SYMBOL_GPL(xdr_decode_string_inplace);
 119
 120/**
 121 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf
 122 * @buf: XDR buffer where string resides
 123 * @len: length of string, in bytes
 124 *
 125 */
 126void xdr_terminate_string(const struct xdr_buf *buf, const u32 len)
 
 127{
 128	char *kaddr;
 129
 130	kaddr = kmap_atomic(buf->pages[0]);
 131	kaddr[buf->page_base + len] = '\0';
 132	kunmap_atomic(kaddr);
 133}
 134EXPORT_SYMBOL_GPL(xdr_terminate_string);
 135
 136size_t xdr_buf_pagecount(const struct xdr_buf *buf)
 
 137{
 138	if (!buf->page_len)
 139		return 0;
 140	return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 141}
 142
 143int
 144xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp)
 145{
 146	size_t i, n = xdr_buf_pagecount(buf);
 147
 148	if (n != 0 && buf->bvec == NULL) {
 149		buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp);
 150		if (!buf->bvec)
 151			return -ENOMEM;
 152		for (i = 0; i < n; i++) {
 153			buf->bvec[i].bv_page = buf->pages[i];
 154			buf->bvec[i].bv_len = PAGE_SIZE;
 155			buf->bvec[i].bv_offset = 0;
 156		}
 157	}
 158	return 0;
 159}
 160
 161void
 162xdr_free_bvec(struct xdr_buf *buf)
 163{
 164	kfree(buf->bvec);
 165	buf->bvec = NULL;
 166}
 167
 168/**
 169 * xdr_inline_pages - Prepare receive buffer for a large reply
 170 * @xdr: xdr_buf into which reply will be placed
 171 * @offset: expected offset where data payload will start, in bytes
 172 * @pages: vector of struct page pointers
 173 * @base: offset in first page where receive should start, in bytes
 174 * @len: expected size of the upper layer data payload, in bytes
 175 *
 176 */
 177void
 178xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
 179		 struct page **pages, unsigned int base, unsigned int len)
 180{
 181	struct kvec *head = xdr->head;
 182	struct kvec *tail = xdr->tail;
 183	char *buf = (char *)head->iov_base;
 184	unsigned int buflen = head->iov_len;
 185
 186	head->iov_len  = offset;
 187
 188	xdr->pages = pages;
 189	xdr->page_base = base;
 190	xdr->page_len = len;
 191
 192	tail->iov_base = buf + offset;
 193	tail->iov_len = buflen - offset;
 
 
 
 194	xdr->buflen += len;
 195}
 196EXPORT_SYMBOL_GPL(xdr_inline_pages);
 197
 198/*
 199 * Helper routines for doing 'memmove' like operations on a struct xdr_buf
 200 */
 201
 202/**
 203 * _shift_data_left_pages
 204 * @pages: vector of pages containing both the source and dest memory area.
 205 * @pgto_base: page vector address of destination
 206 * @pgfrom_base: page vector address of source
 207 * @len: number of bytes to copy
 208 *
 209 * Note: the addresses pgto_base and pgfrom_base are both calculated in
 210 *       the same way:
 211 *            if a memory area starts at byte 'base' in page 'pages[i]',
 212 *            then its address is given as (i << PAGE_CACHE_SHIFT) + base
 213 * Alse note: pgto_base must be < pgfrom_base, but the memory areas
 214 * 	they point to may overlap.
 215 */
 216static void
 217_shift_data_left_pages(struct page **pages, size_t pgto_base,
 218			size_t pgfrom_base, size_t len)
 219{
 220	struct page **pgfrom, **pgto;
 221	char *vfrom, *vto;
 222	size_t copy;
 223
 224	BUG_ON(pgfrom_base <= pgto_base);
 225
 226	if (!len)
 227		return;
 228
 229	pgto = pages + (pgto_base >> PAGE_SHIFT);
 230	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
 231
 232	pgto_base &= ~PAGE_MASK;
 233	pgfrom_base &= ~PAGE_MASK;
 234
 235	do {
 236		if (pgto_base >= PAGE_SIZE) {
 237			pgto_base = 0;
 238			pgto++;
 239		}
 240		if (pgfrom_base >= PAGE_SIZE){
 241			pgfrom_base = 0;
 242			pgfrom++;
 243		}
 244
 245		copy = len;
 246		if (copy > (PAGE_SIZE - pgto_base))
 247			copy = PAGE_SIZE - pgto_base;
 248		if (copy > (PAGE_SIZE - pgfrom_base))
 249			copy = PAGE_SIZE - pgfrom_base;
 250
 251		vto = kmap_atomic(*pgto);
 252		if (*pgto != *pgfrom) {
 253			vfrom = kmap_atomic(*pgfrom);
 254			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
 255			kunmap_atomic(vfrom);
 256		} else
 257			memmove(vto + pgto_base, vto + pgfrom_base, copy);
 258		flush_dcache_page(*pgto);
 259		kunmap_atomic(vto);
 260
 261		pgto_base += copy;
 262		pgfrom_base += copy;
 263
 264	} while ((len -= copy) != 0);
 265}
 266
 267/**
 268 * _shift_data_right_pages
 269 * @pages: vector of pages containing both the source and dest memory area.
 270 * @pgto_base: page vector address of destination
 271 * @pgfrom_base: page vector address of source
 272 * @len: number of bytes to copy
 273 *
 274 * Note: the addresses pgto_base and pgfrom_base are both calculated in
 275 *       the same way:
 276 *            if a memory area starts at byte 'base' in page 'pages[i]',
 277 *            then its address is given as (i << PAGE_SHIFT) + base
 278 * Also note: pgfrom_base must be < pgto_base, but the memory areas
 279 * 	they point to may overlap.
 280 */
 281static void
 282_shift_data_right_pages(struct page **pages, size_t pgto_base,
 283		size_t pgfrom_base, size_t len)
 284{
 285	struct page **pgfrom, **pgto;
 286	char *vfrom, *vto;
 287	size_t copy;
 288
 289	BUG_ON(pgto_base <= pgfrom_base);
 290
 291	if (!len)
 292		return;
 293
 294	pgto_base += len;
 295	pgfrom_base += len;
 296
 297	pgto = pages + (pgto_base >> PAGE_SHIFT);
 298	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
 299
 300	pgto_base &= ~PAGE_MASK;
 301	pgfrom_base &= ~PAGE_MASK;
 302
 303	do {
 304		/* Are any pointers crossing a page boundary? */
 305		if (pgto_base == 0) {
 306			pgto_base = PAGE_SIZE;
 307			pgto--;
 308		}
 309		if (pgfrom_base == 0) {
 310			pgfrom_base = PAGE_SIZE;
 311			pgfrom--;
 312		}
 313
 314		copy = len;
 315		if (copy > pgto_base)
 316			copy = pgto_base;
 317		if (copy > pgfrom_base)
 318			copy = pgfrom_base;
 319		pgto_base -= copy;
 320		pgfrom_base -= copy;
 321
 322		vto = kmap_atomic(*pgto);
 323		if (*pgto != *pgfrom) {
 324			vfrom = kmap_atomic(*pgfrom);
 325			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
 326			kunmap_atomic(vfrom);
 327		} else
 328			memmove(vto + pgto_base, vto + pgfrom_base, copy);
 329		flush_dcache_page(*pgto);
 330		kunmap_atomic(vto);
 331
 332	} while ((len -= copy) != 0);
 333}
 334
 335/**
 336 * _copy_to_pages
 337 * @pages: array of pages
 338 * @pgbase: page vector address of destination
 339 * @p: pointer to source data
 340 * @len: length
 341 *
 342 * Copies data from an arbitrary memory location into an array of pages
 343 * The copy is assumed to be non-overlapping.
 344 */
 345static void
 346_copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
 347{
 348	struct page **pgto;
 349	char *vto;
 350	size_t copy;
 351
 352	if (!len)
 353		return;
 354
 355	pgto = pages + (pgbase >> PAGE_SHIFT);
 356	pgbase &= ~PAGE_MASK;
 357
 358	for (;;) {
 359		copy = PAGE_SIZE - pgbase;
 360		if (copy > len)
 361			copy = len;
 362
 363		vto = kmap_atomic(*pgto);
 364		memcpy(vto + pgbase, p, copy);
 365		kunmap_atomic(vto);
 366
 367		len -= copy;
 368		if (len == 0)
 369			break;
 370
 371		pgbase += copy;
 372		if (pgbase == PAGE_SIZE) {
 373			flush_dcache_page(*pgto);
 374			pgbase = 0;
 375			pgto++;
 376		}
 377		p += copy;
 378	}
 379	flush_dcache_page(*pgto);
 380}
 381
 382/**
 383 * _copy_from_pages
 384 * @p: pointer to destination
 385 * @pages: array of pages
 386 * @pgbase: offset of source data
 387 * @len: length
 388 *
 389 * Copies data into an arbitrary memory location from an array of pages
 390 * The copy is assumed to be non-overlapping.
 391 */
 392void
 393_copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
 394{
 395	struct page **pgfrom;
 396	char *vfrom;
 397	size_t copy;
 398
 399	if (!len)
 400		return;
 401
 402	pgfrom = pages + (pgbase >> PAGE_SHIFT);
 403	pgbase &= ~PAGE_MASK;
 404
 405	do {
 406		copy = PAGE_SIZE - pgbase;
 407		if (copy > len)
 408			copy = len;
 409
 410		vfrom = kmap_atomic(*pgfrom);
 411		memcpy(p, vfrom + pgbase, copy);
 412		kunmap_atomic(vfrom);
 413
 414		pgbase += copy;
 415		if (pgbase == PAGE_SIZE) {
 416			pgbase = 0;
 417			pgfrom++;
 418		}
 419		p += copy;
 420
 421	} while ((len -= copy) != 0);
 422}
 423EXPORT_SYMBOL_GPL(_copy_from_pages);
 424
 425static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base,
 426			     unsigned int len)
 427{
 428	if (base >= iov->iov_len)
 429		return;
 430	if (len > iov->iov_len - base)
 431		len = iov->iov_len - base;
 432	memset(iov->iov_base + base, 0, len);
 433}
 434
 435/**
 436 * xdr_buf_pages_zero
 437 * @buf: xdr_buf
 438 * @pgbase: beginning offset
 439 * @len: length
 
 
 
 440 */
 441static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase,
 442			       unsigned int len)
 443{
 444	struct page **pages = buf->pages;
 445	struct page **page;
 446	char *vpage;
 447	unsigned int zero;
 
 
 
 
 448
 449	if (!len)
 450		return;
 451	if (pgbase >= buf->page_len) {
 452		xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len);
 453		return;
 454	}
 455	if (pgbase + len > buf->page_len) {
 456		xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len);
 457		len = buf->page_len - pgbase;
 458	}
 459
 460	pgbase += buf->page_base;
 461
 462	page = pages + (pgbase >> PAGE_SHIFT);
 463	pgbase &= ~PAGE_MASK;
 464
 465	do {
 466		zero = PAGE_SIZE - pgbase;
 467		if (zero > len)
 468			zero = len;
 469
 470		vpage = kmap_atomic(*page);
 471		memset(vpage + pgbase, 0, zero);
 472		kunmap_atomic(vpage);
 473
 474		flush_dcache_page(*page);
 475		pgbase = 0;
 476		page++;
 477
 478	} while ((len -= zero) != 0);
 479}
 480
 481static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf,
 482					      unsigned int buflen, gfp_t gfp)
 483{
 484	unsigned int i, npages, pagelen;
 485
 486	if (!(buf->flags & XDRBUF_SPARSE_PAGES))
 487		return buflen;
 488	if (buflen <= buf->head->iov_len)
 489		return buflen;
 490	pagelen = buflen - buf->head->iov_len;
 491	if (pagelen > buf->page_len)
 492		pagelen = buf->page_len;
 493	npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT;
 494	for (i = 0; i < npages; i++) {
 495		if (!buf->pages[i])
 496			continue;
 497		buf->pages[i] = alloc_page(gfp);
 498		if (likely(buf->pages[i]))
 499			continue;
 500		buflen -= pagelen;
 501		pagelen = i << PAGE_SHIFT;
 502		if (pagelen > buf->page_base)
 503			buflen += pagelen - buf->page_base;
 504		break;
 505	}
 506	return buflen;
 507}
 508
 509static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len)
 510{
 511	struct kvec *head = buf->head;
 512	struct kvec *tail = buf->tail;
 513	unsigned int sum = head->iov_len + buf->page_len + tail->iov_len;
 514	unsigned int free_space, newlen;
 515
 516	if (sum > buf->len) {
 517		free_space = min_t(unsigned int, sum - buf->len, len);
 518		newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space,
 519						   GFP_KERNEL);
 520		free_space = newlen - buf->len;
 521		buf->len = newlen;
 522		len -= free_space;
 523		if (!len)
 524			return;
 525	}
 526
 527	if (buf->buflen > sum) {
 528		/* Expand the tail buffer */
 529		free_space = min_t(unsigned int, buf->buflen - sum, len);
 530		tail->iov_len += free_space;
 531		buf->len += free_space;
 532	}
 533}
 534
 535static void xdr_buf_tail_copy_right(const struct xdr_buf *buf,
 536				    unsigned int base, unsigned int len,
 537				    unsigned int shift)
 538{
 539	const struct kvec *tail = buf->tail;
 540	unsigned int to = base + shift;
 541
 542	if (to >= tail->iov_len)
 543		return;
 544	if (len + to > tail->iov_len)
 545		len = tail->iov_len - to;
 546	memmove(tail->iov_base + to, tail->iov_base + base, len);
 547}
 548
 549static void xdr_buf_pages_copy_right(const struct xdr_buf *buf,
 550				     unsigned int base, unsigned int len,
 551				     unsigned int shift)
 552{
 553	const struct kvec *tail = buf->tail;
 554	unsigned int to = base + shift;
 555	unsigned int pglen = 0;
 556	unsigned int talen = 0, tato = 0;
 557
 558	if (base >= buf->page_len)
 559		return;
 560	if (len > buf->page_len - base)
 561		len = buf->page_len - base;
 562	if (to >= buf->page_len) {
 563		tato = to - buf->page_len;
 564		if (tail->iov_len >= len + tato)
 565			talen = len;
 566		else if (tail->iov_len > tato)
 567			talen = tail->iov_len - tato;
 568	} else if (len + to >= buf->page_len) {
 569		pglen = buf->page_len - to;
 570		talen = len - pglen;
 571		if (talen > tail->iov_len)
 572			talen = tail->iov_len;
 573	} else
 574		pglen = len;
 575
 576	_copy_from_pages(tail->iov_base + tato, buf->pages,
 577			 buf->page_base + base + pglen, talen);
 578	_shift_data_right_pages(buf->pages, buf->page_base + to,
 579				buf->page_base + base, pglen);
 580}
 581
 582static void xdr_buf_head_copy_right(const struct xdr_buf *buf,
 583				    unsigned int base, unsigned int len,
 584				    unsigned int shift)
 585{
 586	const struct kvec *head = buf->head;
 587	const struct kvec *tail = buf->tail;
 588	unsigned int to = base + shift;
 589	unsigned int pglen = 0, pgto = 0;
 590	unsigned int talen = 0, tato = 0;
 591
 592	if (base >= head->iov_len)
 593		return;
 594	if (len > head->iov_len - base)
 595		len = head->iov_len - base;
 596	if (to >= buf->page_len + head->iov_len) {
 597		tato = to - buf->page_len - head->iov_len;
 598		talen = len;
 599	} else if (to >= head->iov_len) {
 600		pgto = to - head->iov_len;
 601		pglen = len;
 602		if (pgto + pglen > buf->page_len) {
 603			talen = pgto + pglen - buf->page_len;
 604			pglen -= talen;
 605		}
 606	} else {
 607		pglen = len - to;
 608		if (pglen > buf->page_len) {
 609			talen = pglen - buf->page_len;
 610			pglen = buf->page_len;
 
 
 
 
 
 611		}
 612	}
 613
 614	len -= talen;
 615	base += len;
 616	if (talen + tato > tail->iov_len)
 617		talen = tail->iov_len > tato ? tail->iov_len - tato : 0;
 618	memcpy(tail->iov_base + tato, head->iov_base + base, talen);
 619
 620	len -= pglen;
 621	base -= pglen;
 622	_copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base,
 623		       pglen);
 624
 625	base -= len;
 626	memmove(head->iov_base + to, head->iov_base + base, len);
 627}
 628
 629static void xdr_buf_tail_shift_right(const struct xdr_buf *buf,
 630				     unsigned int base, unsigned int len,
 631				     unsigned int shift)
 632{
 633	const struct kvec *tail = buf->tail;
 634
 635	if (base >= tail->iov_len || !shift || !len)
 636		return;
 637	xdr_buf_tail_copy_right(buf, base, len, shift);
 638}
 639
 640static void xdr_buf_pages_shift_right(const struct xdr_buf *buf,
 641				      unsigned int base, unsigned int len,
 642				      unsigned int shift)
 643{
 644	if (!shift || !len)
 645		return;
 646	if (base >= buf->page_len) {
 647		xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift);
 648		return;
 649	}
 650	if (base + len > buf->page_len)
 651		xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len,
 652					 shift);
 653	xdr_buf_pages_copy_right(buf, base, len, shift);
 654}
 655
 656static void xdr_buf_head_shift_right(const struct xdr_buf *buf,
 657				     unsigned int base, unsigned int len,
 658				     unsigned int shift)
 659{
 660	const struct kvec *head = buf->head;
 661
 662	if (!shift)
 663		return;
 664	if (base >= head->iov_len) {
 665		xdr_buf_pages_shift_right(buf, head->iov_len - base, len,
 666					  shift);
 667		return;
 668	}
 669	if (base + len > head->iov_len)
 670		xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len,
 671					  shift);
 672	xdr_buf_head_copy_right(buf, base, len, shift);
 673}
 674
 675static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base,
 676				   unsigned int len, unsigned int shift)
 677{
 678	const struct kvec *tail = buf->tail;
 679
 680	if (base >= tail->iov_len)
 681		return;
 682	if (len > tail->iov_len - base)
 683		len = tail->iov_len - base;
 684	/* Shift data into head */
 685	if (shift > buf->page_len + base) {
 686		const struct kvec *head = buf->head;
 687		unsigned int hdto =
 688			head->iov_len + buf->page_len + base - shift;
 689		unsigned int hdlen = len;
 690
 691		if (WARN_ONCE(shift > head->iov_len + buf->page_len + base,
 692			      "SUNRPC: Misaligned data.\n"))
 693			return;
 694		if (hdto + hdlen > head->iov_len)
 695			hdlen = head->iov_len - hdto;
 696		memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen);
 697		base += hdlen;
 698		len -= hdlen;
 699		if (!len)
 700			return;
 701	}
 702	/* Shift data into pages */
 703	if (shift > base) {
 704		unsigned int pgto = buf->page_len + base - shift;
 705		unsigned int pglen = len;
 706
 707		if (pgto + pglen > buf->page_len)
 708			pglen = buf->page_len - pgto;
 709		_copy_to_pages(buf->pages, buf->page_base + pgto,
 710			       tail->iov_base + base, pglen);
 711		base += pglen;
 712		len -= pglen;
 713		if (!len)
 714			return;
 715	}
 716	memmove(tail->iov_base + base - shift, tail->iov_base + base, len);
 717}
 718
 719static void xdr_buf_pages_copy_left(const struct xdr_buf *buf,
 720				    unsigned int base, unsigned int len,
 721				    unsigned int shift)
 722{
 723	unsigned int pgto;
 724
 725	if (base >= buf->page_len)
 726		return;
 727	if (len > buf->page_len - base)
 728		len = buf->page_len - base;
 729	/* Shift data into head */
 730	if (shift > base) {
 731		const struct kvec *head = buf->head;
 732		unsigned int hdto = head->iov_len + base - shift;
 733		unsigned int hdlen = len;
 734
 735		if (WARN_ONCE(shift > head->iov_len + base,
 736			      "SUNRPC: Misaligned data.\n"))
 737			return;
 738		if (hdto + hdlen > head->iov_len)
 739			hdlen = head->iov_len - hdto;
 740		_copy_from_pages(head->iov_base + hdto, buf->pages,
 741				 buf->page_base + base, hdlen);
 742		base += hdlen;
 743		len -= hdlen;
 744		if (!len)
 745			return;
 746	}
 747	pgto = base - shift;
 748	_shift_data_left_pages(buf->pages, buf->page_base + pgto,
 749			       buf->page_base + base, len);
 750}
 751
 752static void xdr_buf_tail_shift_left(const struct xdr_buf *buf,
 753				    unsigned int base, unsigned int len,
 754				    unsigned int shift)
 755{
 756	if (!shift || !len)
 757		return;
 758	xdr_buf_tail_copy_left(buf, base, len, shift);
 759}
 760
 761static void xdr_buf_pages_shift_left(const struct xdr_buf *buf,
 762				     unsigned int base, unsigned int len,
 763				     unsigned int shift)
 764{
 765	if (!shift || !len)
 766		return;
 767	if (base >= buf->page_len) {
 768		xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift);
 769		return;
 770	}
 771	xdr_buf_pages_copy_left(buf, base, len, shift);
 772	len += base;
 773	if (len <= buf->page_len)
 774		return;
 775	xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift);
 776}
 777
 778static void xdr_buf_head_shift_left(const struct xdr_buf *buf,
 779				    unsigned int base, unsigned int len,
 780				    unsigned int shift)
 781{
 782	const struct kvec *head = buf->head;
 783	unsigned int bytes;
 784
 785	if (!shift || !len)
 786		return;
 787
 788	if (shift > base) {
 789		bytes = (shift - base);
 790		if (bytes >= len)
 791			return;
 792		base += bytes;
 793		len -= bytes;
 794	}
 795
 796	if (base < head->iov_len) {
 797		bytes = min_t(unsigned int, len, head->iov_len - base);
 798		memmove(head->iov_base + (base - shift),
 799			head->iov_base + base, bytes);
 800		base += bytes;
 801		len -= bytes;
 802	}
 803	xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift);
 804}
 805
 806/**
 807 * xdr_shrink_bufhead
 808 * @buf: xdr_buf
 809 * @len: new length of buf->head[0]
 810 *
 811 * Shrinks XDR buffer's header kvec buf->head[0], setting it to
 812 * 'len' bytes. The extra data is not lost, but is instead
 813 * moved into the inlined pages and/or the tail.
 814 */
 815static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len)
 
 816{
 817	struct kvec *head = buf->head;
 818	unsigned int shift, buflen = max(buf->len, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 819
 820	WARN_ON_ONCE(len > head->iov_len);
 821	if (head->iov_len > buflen) {
 822		buf->buflen -= head->iov_len - buflen;
 823		head->iov_len = buflen;
 824	}
 825	if (len >= head->iov_len)
 826		return 0;
 827	shift = head->iov_len - len;
 828	xdr_buf_try_expand(buf, shift);
 829	xdr_buf_head_shift_right(buf, len, buflen - len, shift);
 830	head->iov_len = len;
 831	buf->buflen -= shift;
 832	buf->len -= shift;
 833	return shift;
 834}
 835
 836/**
 837 * xdr_shrink_pagelen - shrinks buf->pages to @len bytes
 838 * @buf: xdr_buf
 839 * @len: new page buffer length
 840 *
 841 * The extra data is not lost, but is instead moved into buf->tail.
 842 * Returns the actual number of bytes moved.
 843 */
 844static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len)
 845{
 846	unsigned int shift, buflen = buf->len - buf->head->iov_len;
 
 
 
 
 
 
 
 847
 848	WARN_ON_ONCE(len > buf->page_len);
 849	if (buf->head->iov_len >= buf->len || len > buflen)
 850		buflen = len;
 851	if (buf->page_len > buflen) {
 852		buf->buflen -= buf->page_len - buflen;
 853		buf->page_len = buflen;
 854	}
 855	if (len >= buf->page_len)
 856		return 0;
 857	shift = buf->page_len - len;
 858	xdr_buf_try_expand(buf, shift);
 859	xdr_buf_pages_shift_right(buf, len, buflen - len, shift);
 860	buf->page_len = len;
 861	buf->len -= shift;
 862	buf->buflen -= shift;
 863	return shift;
 864}
 865
 866void
 867xdr_shift_buf(struct xdr_buf *buf, size_t len)
 868{
 869	xdr_shrink_bufhead(buf, buf->head->iov_len - len);
 870}
 871EXPORT_SYMBOL_GPL(xdr_shift_buf);
 872
 873/**
 874 * xdr_stream_pos - Return the current offset from the start of the xdr_stream
 875 * @xdr: pointer to struct xdr_stream
 876 */
 877unsigned int xdr_stream_pos(const struct xdr_stream *xdr)
 878{
 879	return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2;
 880}
 881EXPORT_SYMBOL_GPL(xdr_stream_pos);
 882
 883static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos)
 884{
 885	unsigned int blen = xdr->buf->len;
 886
 887	xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0;
 888}
 889
 890static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos)
 891{
 892	xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len);
 893}
 894
 895/**
 896 * xdr_page_pos - Return the current offset from the start of the xdr pages
 897 * @xdr: pointer to struct xdr_stream
 898 */
 899unsigned int xdr_page_pos(const struct xdr_stream *xdr)
 900{
 901	unsigned int pos = xdr_stream_pos(xdr);
 902
 903	WARN_ON(pos < xdr->buf->head[0].iov_len);
 904	return pos - xdr->buf->head[0].iov_len;
 905}
 906EXPORT_SYMBOL_GPL(xdr_page_pos);
 907
 908/**
 909 * xdr_init_encode - Initialize a struct xdr_stream for sending data.
 910 * @xdr: pointer to xdr_stream struct
 911 * @buf: pointer to XDR buffer in which to encode data
 912 * @p: current pointer inside XDR buffer
 913 * @rqst: pointer to controlling rpc_rqst, for debugging
 914 *
 915 * Note: at the moment the RPC client only passes the length of our
 916 *	 scratch buffer in the xdr_buf's header kvec. Previously this
 917 *	 meant we needed to call xdr_adjust_iovec() after encoding the
 918 *	 data. With the new scheme, the xdr_stream manages the details
 919 *	 of the buffer length, and takes care of adjusting the kvec
 920 *	 length for us.
 921 */
 922void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
 923		     struct rpc_rqst *rqst)
 924{
 925	struct kvec *iov = buf->head;
 926	int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
 927
 928	xdr_reset_scratch_buffer(xdr);
 929	BUG_ON(scratch_len < 0);
 930	xdr->buf = buf;
 931	xdr->iov = iov;
 932	xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len);
 933	xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len);
 934	BUG_ON(iov->iov_len > scratch_len);
 935
 936	if (p != xdr->p && p != NULL) {
 937		size_t len;
 938
 939		BUG_ON(p < xdr->p || p > xdr->end);
 940		len = (char *)p - (char *)xdr->p;
 941		xdr->p = p;
 942		buf->len += len;
 943		iov->iov_len += len;
 944	}
 945	xdr->rqst = rqst;
 946}
 947EXPORT_SYMBOL_GPL(xdr_init_encode);
 948
 949/**
 950 * xdr_init_encode_pages - Initialize an xdr_stream for encoding into pages
 951 * @xdr: pointer to xdr_stream struct
 952 * @buf: pointer to XDR buffer into which to encode data
 953 * @pages: list of pages to decode into
 954 * @rqst: pointer to controlling rpc_rqst, for debugging
 955 *
 956 */
 957void xdr_init_encode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
 958			   struct page **pages, struct rpc_rqst *rqst)
 959{
 960	xdr_reset_scratch_buffer(xdr);
 961
 962	xdr->buf = buf;
 963	xdr->page_ptr = pages;
 964	xdr->iov = NULL;
 965	xdr->p = page_address(*pages);
 966	xdr->end = (void *)xdr->p + min_t(u32, buf->buflen, PAGE_SIZE);
 967	xdr->rqst = rqst;
 968}
 969EXPORT_SYMBOL_GPL(xdr_init_encode_pages);
 970
 971/**
 972 * __xdr_commit_encode - Ensure all data is written to buffer
 973 * @xdr: pointer to xdr_stream
 974 *
 975 * We handle encoding across page boundaries by giving the caller a
 976 * temporary location to write to, then later copying the data into
 977 * place; xdr_commit_encode does that copying.
 978 *
 979 * Normally the caller doesn't need to call this directly, as the
 980 * following xdr_reserve_space will do it.  But an explicit call may be
 981 * required at the end of encoding, or any other time when the xdr_buf
 982 * data might be read.
 983 */
 984void __xdr_commit_encode(struct xdr_stream *xdr)
 985{
 986	size_t shift = xdr->scratch.iov_len;
 987	void *page;
 988
 
 
 989	page = page_address(*xdr->page_ptr);
 990	memcpy(xdr->scratch.iov_base, page, shift);
 991	memmove(page, page + shift, (void *)xdr->p - page);
 992	xdr_reset_scratch_buffer(xdr);
 993}
 994EXPORT_SYMBOL_GPL(__xdr_commit_encode);
 995
 996/*
 997 * The buffer space to be reserved crosses the boundary between
 998 * xdr->buf->head and xdr->buf->pages, or between two pages
 999 * in xdr->buf->pages.
1000 */
1001static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr,
1002						   size_t nbytes)
1003{
 
1004	int space_left;
1005	int frag1bytes, frag2bytes;
1006	void *p;
1007
1008	if (nbytes > PAGE_SIZE)
1009		goto out_overflow; /* Bigger buffers require special handling */
1010	if (xdr->buf->len + nbytes > xdr->buf->buflen)
1011		goto out_overflow; /* Sorry, we're totally out of space */
1012	frag1bytes = (xdr->end - xdr->p) << 2;
1013	frag2bytes = nbytes - frag1bytes;
1014	if (xdr->iov)
1015		xdr->iov->iov_len += frag1bytes;
1016	else
1017		xdr->buf->page_len += frag1bytes;
1018	xdr->page_ptr++;
1019	xdr->iov = NULL;
1020
1021	/*
1022	 * If the last encode didn't end exactly on a page boundary, the
1023	 * next one will straddle boundaries.  Encode into the next
1024	 * page, then copy it back later in xdr_commit_encode.  We use
1025	 * the "scratch" iov to track any temporarily unused fragment of
1026	 * space at the end of the previous buffer:
1027	 */
1028	xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes);
1029
 
1030	/*
1031	 * xdr->p is where the next encode will start after
1032	 * xdr_commit_encode() has shifted this one back:
1033	 */
1034	p = page_address(*xdr->page_ptr);
1035	xdr->p = p + frag2bytes;
1036	space_left = xdr->buf->buflen - xdr->buf->len;
1037	if (space_left - frag1bytes >= PAGE_SIZE)
1038		xdr->end = p + PAGE_SIZE;
1039	else
1040		xdr->end = p + space_left - frag1bytes;
1041
1042	xdr->buf->page_len += frag2bytes;
1043	xdr->buf->len += nbytes;
1044	return p;
1045out_overflow:
1046	trace_rpc_xdr_overflow(xdr, nbytes);
1047	return NULL;
1048}
1049
1050/**
1051 * xdr_reserve_space - Reserve buffer space for sending
1052 * @xdr: pointer to xdr_stream
1053 * @nbytes: number of bytes to reserve
1054 *
1055 * Checks that we have enough buffer space to encode 'nbytes' more
1056 * bytes of data. If so, update the total xdr_buf length, and
1057 * adjust the length of the current kvec.
1058 */
1059__be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
1060{
1061	__be32 *p = xdr->p;
1062	__be32 *q;
1063
1064	xdr_commit_encode(xdr);
1065	/* align nbytes on the next 32-bit boundary */
1066	nbytes += 3;
1067	nbytes &= ~3;
1068	q = p + (nbytes >> 2);
1069	if (unlikely(q > xdr->end || q < p))
1070		return xdr_get_next_encode_buffer(xdr, nbytes);
1071	xdr->p = q;
1072	if (xdr->iov)
1073		xdr->iov->iov_len += nbytes;
1074	else
1075		xdr->buf->page_len += nbytes;
1076	xdr->buf->len += nbytes;
1077	return p;
1078}
1079EXPORT_SYMBOL_GPL(xdr_reserve_space);
1080
1081
1082/**
1083 * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending
1084 * @xdr: pointer to xdr_stream
1085 * @vec: pointer to a kvec array
1086 * @nbytes: number of bytes to reserve
1087 *
1088 * Reserves enough buffer space to encode 'nbytes' of data and stores the
1089 * pointers in 'vec'. The size argument passed to xdr_reserve_space() is
1090 * determined based on the number of bytes remaining in the current page to
1091 * avoid invalidating iov_base pointers when xdr_commit_encode() is called.
1092 */
1093int xdr_reserve_space_vec(struct xdr_stream *xdr, struct kvec *vec, size_t nbytes)
1094{
1095	int thislen;
1096	int v = 0;
1097	__be32 *p;
1098
1099	/*
1100	 * svcrdma requires every READ payload to start somewhere
1101	 * in xdr->pages.
1102	 */
1103	if (xdr->iov == xdr->buf->head) {
1104		xdr->iov = NULL;
1105		xdr->end = xdr->p;
1106	}
1107
1108	while (nbytes) {
1109		thislen = xdr->buf->page_len % PAGE_SIZE;
1110		thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen);
1111
1112		p = xdr_reserve_space(xdr, thislen);
1113		if (!p)
1114			return -EIO;
1115
1116		vec[v].iov_base = p;
1117		vec[v].iov_len = thislen;
1118		v++;
1119		nbytes -= thislen;
1120	}
1121
1122	return v;
1123}
1124EXPORT_SYMBOL_GPL(xdr_reserve_space_vec);
1125
1126/**
1127 * xdr_truncate_encode - truncate an encode buffer
1128 * @xdr: pointer to xdr_stream
1129 * @len: new length of buffer
1130 *
1131 * Truncates the xdr stream, so that xdr->buf->len == len,
1132 * and xdr->p points at offset len from the start of the buffer, and
1133 * head, tail, and page lengths are adjusted to correspond.
1134 *
1135 * If this means moving xdr->p to a different buffer, we assume that
1136 * the end pointer should be set to the end of the current page,
1137 * except in the case of the head buffer when we assume the head
1138 * buffer's current length represents the end of the available buffer.
1139 *
1140 * This is *not* safe to use on a buffer that already has inlined page
1141 * cache pages (as in a zero-copy server read reply), except for the
1142 * simple case of truncating from one position in the tail to another.
1143 *
1144 */
1145void xdr_truncate_encode(struct xdr_stream *xdr, size_t len)
1146{
1147	struct xdr_buf *buf = xdr->buf;
1148	struct kvec *head = buf->head;
1149	struct kvec *tail = buf->tail;
1150	int fraglen;
1151	int new;
1152
1153	if (len > buf->len) {
1154		WARN_ON_ONCE(1);
1155		return;
1156	}
1157	xdr_commit_encode(xdr);
1158
1159	fraglen = min_t(int, buf->len - len, tail->iov_len);
1160	tail->iov_len -= fraglen;
1161	buf->len -= fraglen;
1162	if (tail->iov_len) {
1163		xdr->p = tail->iov_base + tail->iov_len;
1164		WARN_ON_ONCE(!xdr->end);
1165		WARN_ON_ONCE(!xdr->iov);
1166		return;
1167	}
1168	WARN_ON_ONCE(fraglen);
1169	fraglen = min_t(int, buf->len - len, buf->page_len);
1170	buf->page_len -= fraglen;
1171	buf->len -= fraglen;
1172
1173	new = buf->page_base + buf->page_len;
1174
1175	xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT);
1176
1177	if (buf->page_len) {
1178		xdr->p = page_address(*xdr->page_ptr);
1179		xdr->end = (void *)xdr->p + PAGE_SIZE;
1180		xdr->p = (void *)xdr->p + (new % PAGE_SIZE);
1181		WARN_ON_ONCE(xdr->iov);
1182		return;
1183	}
1184	if (fraglen)
1185		xdr->end = head->iov_base + head->iov_len;
1186	/* (otherwise assume xdr->end is already set) */
1187	xdr->page_ptr--;
1188	head->iov_len = len;
1189	buf->len = len;
1190	xdr->p = head->iov_base + head->iov_len;
1191	xdr->iov = buf->head;
1192}
1193EXPORT_SYMBOL(xdr_truncate_encode);
1194
1195/**
1196 * xdr_restrict_buflen - decrease available buffer space
1197 * @xdr: pointer to xdr_stream
1198 * @newbuflen: new maximum number of bytes available
1199 *
1200 * Adjust our idea of how much space is available in the buffer.
1201 * If we've already used too much space in the buffer, returns -1.
1202 * If the available space is already smaller than newbuflen, returns 0
1203 * and does nothing.  Otherwise, adjusts xdr->buf->buflen to newbuflen
1204 * and ensures xdr->end is set at most offset newbuflen from the start
1205 * of the buffer.
1206 */
1207int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen)
1208{
1209	struct xdr_buf *buf = xdr->buf;
1210	int left_in_this_buf = (void *)xdr->end - (void *)xdr->p;
1211	int end_offset = buf->len + left_in_this_buf;
1212
1213	if (newbuflen < 0 || newbuflen < buf->len)
1214		return -1;
1215	if (newbuflen > buf->buflen)
1216		return 0;
1217	if (newbuflen < end_offset)
1218		xdr->end = (void *)xdr->end + newbuflen - end_offset;
1219	buf->buflen = newbuflen;
1220	return 0;
1221}
1222EXPORT_SYMBOL(xdr_restrict_buflen);
1223
1224/**
1225 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
1226 * @xdr: pointer to xdr_stream
1227 * @pages: array of pages to insert
1228 * @base: starting offset of first data byte in @pages
1229 * @len: number of data bytes in @pages to insert
1230 *
1231 * After the @pages are added, the tail iovec is instantiated pointing to
1232 * end of the head buffer, and the stream is set up to encode subsequent
1233 * items into the tail.
1234 */
1235void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
1236		 unsigned int len)
1237{
1238	struct xdr_buf *buf = xdr->buf;
1239	struct kvec *tail = buf->tail;
1240
1241	buf->pages = pages;
1242	buf->page_base = base;
1243	buf->page_len = len;
1244
1245	tail->iov_base = xdr->p;
1246	tail->iov_len = 0;
1247	xdr->iov = tail;
1248
1249	if (len & 3) {
1250		unsigned int pad = 4 - (len & 3);
1251
1252		BUG_ON(xdr->p >= xdr->end);
1253		tail->iov_base = (char *)xdr->p + (len & 3);
1254		tail->iov_len += pad;
1255		len += pad;
1256		*xdr->p++ = 0;
1257	}
1258	buf->buflen += len;
1259	buf->len += len;
1260}
1261EXPORT_SYMBOL_GPL(xdr_write_pages);
1262
1263static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov,
1264				unsigned int base, unsigned int len)
1265{
1266	if (len > iov->iov_len)
1267		len = iov->iov_len;
1268	if (unlikely(base > len))
1269		base = len;
1270	xdr->p = (__be32*)(iov->iov_base + base);
1271	xdr->end = (__be32*)(iov->iov_base + len);
1272	xdr->iov = iov;
1273	xdr->page_ptr = NULL;
1274	return len - base;
1275}
1276
1277static unsigned int xdr_set_tail_base(struct xdr_stream *xdr,
1278				      unsigned int base, unsigned int len)
1279{
1280	struct xdr_buf *buf = xdr->buf;
1281
1282	xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len);
1283	return xdr_set_iov(xdr, buf->tail, base, len);
1284}
1285
1286static unsigned int xdr_set_page_base(struct xdr_stream *xdr,
1287				      unsigned int base, unsigned int len)
1288{
1289	unsigned int pgnr;
1290	unsigned int maxlen;
1291	unsigned int pgoff;
1292	unsigned int pgend;
1293	void *kaddr;
1294
1295	maxlen = xdr->buf->page_len;
1296	if (base >= maxlen)
1297		return 0;
1298	else
1299		maxlen -= base;
1300	if (len > maxlen)
1301		len = maxlen;
1302
1303	xdr_stream_page_set_pos(xdr, base);
1304	base += xdr->buf->page_base;
1305
1306	pgnr = base >> PAGE_SHIFT;
1307	xdr->page_ptr = &xdr->buf->pages[pgnr];
1308	kaddr = page_address(*xdr->page_ptr);
1309
1310	pgoff = base & ~PAGE_MASK;
1311	xdr->p = (__be32*)(kaddr + pgoff);
1312
1313	pgend = pgoff + len;
1314	if (pgend > PAGE_SIZE)
1315		pgend = PAGE_SIZE;
1316	xdr->end = (__be32*)(kaddr + pgend);
1317	xdr->iov = NULL;
1318	return len;
1319}
1320
1321static void xdr_set_page(struct xdr_stream *xdr, unsigned int base,
1322			 unsigned int len)
1323{
1324	if (xdr_set_page_base(xdr, base, len) == 0) {
1325		base -= xdr->buf->page_len;
1326		xdr_set_tail_base(xdr, base, len);
1327	}
1328}
1329
1330static void xdr_set_next_page(struct xdr_stream *xdr)
1331{
1332	unsigned int newbase;
1333
1334	newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT;
1335	newbase -= xdr->buf->page_base;
1336	if (newbase < xdr->buf->page_len)
1337		xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr));
1338	else
1339		xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr));
1340}
1341
1342static bool xdr_set_next_buffer(struct xdr_stream *xdr)
1343{
1344	if (xdr->page_ptr != NULL)
1345		xdr_set_next_page(xdr);
1346	else if (xdr->iov == xdr->buf->head)
1347		xdr_set_page(xdr, 0, xdr_stream_remaining(xdr));
 
 
1348	return xdr->p != xdr->end;
1349}
1350
1351/**
1352 * xdr_init_decode - Initialize an xdr_stream for decoding data.
1353 * @xdr: pointer to xdr_stream struct
1354 * @buf: pointer to XDR buffer from which to decode data
1355 * @p: current pointer inside XDR buffer
1356 * @rqst: pointer to controlling rpc_rqst, for debugging
1357 */
1358void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
1359		     struct rpc_rqst *rqst)
1360{
1361	xdr->buf = buf;
1362	xdr_reset_scratch_buffer(xdr);
 
1363	xdr->nwords = XDR_QUADLEN(buf->len);
1364	if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 &&
1365	    xdr_set_page_base(xdr, 0, buf->len) == 0)
1366		xdr_set_iov(xdr, buf->tail, 0, buf->len);
 
 
 
1367	if (p != NULL && p > xdr->p && xdr->end >= p) {
1368		xdr->nwords -= p - xdr->p;
1369		xdr->p = p;
1370	}
1371	xdr->rqst = rqst;
1372}
1373EXPORT_SYMBOL_GPL(xdr_init_decode);
1374
1375/**
1376 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages
1377 * @xdr: pointer to xdr_stream struct
1378 * @buf: pointer to XDR buffer from which to decode data
1379 * @pages: list of pages to decode into
1380 * @len: length in bytes of buffer in pages
1381 */
1382void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
1383			   struct page **pages, unsigned int len)
1384{
1385	memset(buf, 0, sizeof(*buf));
1386	buf->pages =  pages;
1387	buf->page_len =  len;
1388	buf->buflen =  len;
1389	buf->len = len;
1390	xdr_init_decode(xdr, buf, NULL, NULL);
1391}
1392EXPORT_SYMBOL_GPL(xdr_init_decode_pages);
1393
1394static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1395{
1396	unsigned int nwords = XDR_QUADLEN(nbytes);
1397	__be32 *p = xdr->p;
1398	__be32 *q = p + nwords;
1399
1400	if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p))
1401		return NULL;
1402	xdr->p = q;
1403	xdr->nwords -= nwords;
1404	return p;
1405}
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes)
1408{
1409	__be32 *p;
1410	char *cpdest = xdr->scratch.iov_base;
1411	size_t cplen = (char *)xdr->end - (char *)xdr->p;
1412
1413	if (nbytes > xdr->scratch.iov_len)
1414		goto out_overflow;
1415	p = __xdr_inline_decode(xdr, cplen);
1416	if (p == NULL)
1417		return NULL;
1418	memcpy(cpdest, p, cplen);
1419	if (!xdr_set_next_buffer(xdr))
1420		goto out_overflow;
1421	cpdest += cplen;
1422	nbytes -= cplen;
1423	p = __xdr_inline_decode(xdr, nbytes);
1424	if (p == NULL)
1425		return NULL;
1426	memcpy(cpdest, p, nbytes);
1427	return xdr->scratch.iov_base;
1428out_overflow:
1429	trace_rpc_xdr_overflow(xdr, nbytes);
1430	return NULL;
1431}
1432
1433/**
1434 * xdr_inline_decode - Retrieve XDR data to decode
1435 * @xdr: pointer to xdr_stream struct
1436 * @nbytes: number of bytes of data to decode
1437 *
1438 * Check if the input buffer is long enough to enable us to decode
1439 * 'nbytes' more bytes of data starting at the current position.
1440 * If so return the current pointer, then update the current
1441 * pointer position.
1442 */
1443__be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1444{
1445	__be32 *p;
1446
1447	if (unlikely(nbytes == 0))
1448		return xdr->p;
1449	if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1450		goto out_overflow;
1451	p = __xdr_inline_decode(xdr, nbytes);
1452	if (p != NULL)
1453		return p;
1454	return xdr_copy_to_scratch(xdr, nbytes);
1455out_overflow:
1456	trace_rpc_xdr_overflow(xdr, nbytes);
1457	return NULL;
1458}
1459EXPORT_SYMBOL_GPL(xdr_inline_decode);
1460
1461static void xdr_realign_pages(struct xdr_stream *xdr)
1462{
1463	struct xdr_buf *buf = xdr->buf;
1464	struct kvec *iov = buf->head;
 
1465	unsigned int cur = xdr_stream_pos(xdr);
1466	unsigned int copied;
 
 
 
1467
1468	/* Realign pages to current pointer position */
 
1469	if (iov->iov_len > cur) {
1470		copied = xdr_shrink_bufhead(buf, cur);
1471		trace_rpc_xdr_alignment(xdr, cur, copied);
1472		xdr_set_page(xdr, 0, buf->page_len);
 
1473	}
1474}
1475
1476static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len)
1477{
1478	struct xdr_buf *buf = xdr->buf;
1479	unsigned int nwords = XDR_QUADLEN(len);
1480	unsigned int copied;
1481
1482	if (xdr->nwords == 0)
1483		return 0;
1484
1485	xdr_realign_pages(xdr);
1486	if (nwords > xdr->nwords) {
1487		nwords = xdr->nwords;
1488		len = nwords << 2;
1489	}
1490	if (buf->page_len <= len)
1491		len = buf->page_len;
1492	else if (nwords < xdr->nwords) {
1493		/* Truncate page data and move it into the tail */
1494		copied = xdr_shrink_pagelen(buf, len);
1495		trace_rpc_xdr_alignment(xdr, len, copied);
 
 
1496	}
1497	return len;
1498}
1499
1500/**
1501 * xdr_read_pages - align page-based XDR data to current pointer position
1502 * @xdr: pointer to xdr_stream struct
1503 * @len: number of bytes of page data
1504 *
1505 * Moves data beyond the current pointer position from the XDR head[] buffer
1506 * into the page list. Any data that lies beyond current position + @len
1507 * bytes is moved into the XDR tail[]. The xdr_stream current position is
1508 * then advanced past that data to align to the next XDR object in the tail.
1509 *
1510 * Returns the number of XDR encoded bytes now contained in the pages
1511 */
1512unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
1513{
1514	unsigned int nwords = XDR_QUADLEN(len);
1515	unsigned int base, end, pglen;
 
 
 
1516
1517	pglen = xdr_align_pages(xdr, nwords << 2);
1518	if (pglen == 0)
1519		return 0;
 
 
 
 
 
 
 
1520
1521	base = (nwords << 2) - pglen;
1522	end = xdr_stream_remaining(xdr) - pglen;
1523
1524	xdr_set_tail_base(xdr, base, end);
1525	return len <= pglen ? len : pglen;
 
 
 
 
1526}
1527EXPORT_SYMBOL_GPL(xdr_read_pages);
1528
1529/**
1530 * xdr_set_pagelen - Sets the length of the XDR pages
1531 * @xdr: pointer to xdr_stream struct
1532 * @len: new length of the XDR page data
1533 *
1534 * Either grows or shrinks the length of the xdr pages by setting pagelen to
1535 * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas
1536 * when growing any data beyond the current pointer is moved into the tail.
1537 *
1538 * Returns True if the operation was successful, and False otherwise.
1539 */
1540void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len)
1541{
1542	struct xdr_buf *buf = xdr->buf;
1543	size_t remaining = xdr_stream_remaining(xdr);
1544	size_t base = 0;
1545
1546	if (len < buf->page_len) {
1547		base = buf->page_len - len;
1548		xdr_shrink_pagelen(buf, len);
1549	} else {
1550		xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr),
1551					 buf->page_len, remaining);
1552		if (len > buf->page_len)
1553			xdr_buf_try_expand(buf, len - buf->page_len);
1554	}
1555	xdr_set_tail_base(xdr, base, remaining);
1556}
1557EXPORT_SYMBOL_GPL(xdr_set_pagelen);
1558
1559/**
1560 * xdr_enter_page - decode data from the XDR page
1561 * @xdr: pointer to xdr_stream struct
1562 * @len: number of bytes of page data
1563 *
1564 * Moves data beyond the current pointer position from the XDR head[] buffer
1565 * into the page list. Any data that lies beyond current position + "len"
1566 * bytes is moved into the XDR tail[]. The current pointer is then
1567 * repositioned at the beginning of the first XDR page.
1568 */
1569void xdr_enter_page(struct xdr_stream *xdr, unsigned int len)
1570{
1571	len = xdr_align_pages(xdr, len);
1572	/*
1573	 * Position current pointer at beginning of tail, and
1574	 * set remaining message length.
1575	 */
1576	if (len != 0)
1577		xdr_set_page_base(xdr, 0, len);
1578}
1579EXPORT_SYMBOL_GPL(xdr_enter_page);
1580
1581static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
1582
1583void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf)
 
1584{
1585	buf->head[0] = *iov;
1586	buf->tail[0] = empty_iov;
1587	buf->page_len = 0;
1588	buf->buflen = buf->len = iov->iov_len;
1589}
1590EXPORT_SYMBOL_GPL(xdr_buf_from_iov);
1591
1592/**
1593 * xdr_buf_subsegment - set subbuf to a portion of buf
1594 * @buf: an xdr buffer
1595 * @subbuf: the result buffer
1596 * @base: beginning of range in bytes
1597 * @len: length of range in bytes
1598 *
1599 * sets @subbuf to an xdr buffer representing the portion of @buf of
1600 * length @len starting at offset @base.
1601 *
1602 * @buf and @subbuf may be pointers to the same struct xdr_buf.
1603 *
1604 * Returns -1 if base or length are out of bounds.
1605 */
1606int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf,
1607		       unsigned int base, unsigned int len)
 
1608{
1609	subbuf->buflen = subbuf->len = len;
1610	if (base < buf->head[0].iov_len) {
1611		subbuf->head[0].iov_base = buf->head[0].iov_base + base;
1612		subbuf->head[0].iov_len = min_t(unsigned int, len,
1613						buf->head[0].iov_len - base);
1614		len -= subbuf->head[0].iov_len;
1615		base = 0;
1616	} else {
1617		base -= buf->head[0].iov_len;
1618		subbuf->head[0].iov_base = buf->head[0].iov_base;
1619		subbuf->head[0].iov_len = 0;
1620	}
1621
1622	if (base < buf->page_len) {
1623		subbuf->page_len = min(buf->page_len - base, len);
1624		base += buf->page_base;
1625		subbuf->page_base = base & ~PAGE_MASK;
1626		subbuf->pages = &buf->pages[base >> PAGE_SHIFT];
1627		len -= subbuf->page_len;
1628		base = 0;
1629	} else {
1630		base -= buf->page_len;
1631		subbuf->pages = buf->pages;
1632		subbuf->page_base = 0;
1633		subbuf->page_len = 0;
1634	}
1635
1636	if (base < buf->tail[0].iov_len) {
1637		subbuf->tail[0].iov_base = buf->tail[0].iov_base + base;
1638		subbuf->tail[0].iov_len = min_t(unsigned int, len,
1639						buf->tail[0].iov_len - base);
1640		len -= subbuf->tail[0].iov_len;
1641		base = 0;
1642	} else {
1643		base -= buf->tail[0].iov_len;
1644		subbuf->tail[0].iov_base = buf->tail[0].iov_base;
1645		subbuf->tail[0].iov_len = 0;
1646	}
1647
1648	if (base || len)
1649		return -1;
1650	return 0;
1651}
1652EXPORT_SYMBOL_GPL(xdr_buf_subsegment);
1653
1654/**
1655 * xdr_stream_subsegment - set @subbuf to a portion of @xdr
1656 * @xdr: an xdr_stream set up for decoding
1657 * @subbuf: the result buffer
1658 * @nbytes: length of @xdr to extract, in bytes
1659 *
1660 * Sets up @subbuf to represent a portion of @xdr. The portion
1661 * starts at the current offset in @xdr, and extends for a length
1662 * of @nbytes. If this is successful, @xdr is advanced to the next
1663 * XDR data item following that portion.
1664 *
1665 * Return values:
1666 *   %true: @subbuf has been initialized, and @xdr has been advanced.
1667 *   %false: a bounds error has occurred
1668 */
1669bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf,
1670			   unsigned int nbytes)
1671{
1672	unsigned int start = xdr_stream_pos(xdr);
1673	unsigned int remaining, len;
1674
1675	/* Extract @subbuf and bounds-check the fn arguments */
1676	if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes))
1677		return false;
1678
1679	/* Advance @xdr by @nbytes */
1680	for (remaining = nbytes; remaining;) {
1681		if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1682			return false;
1683
1684		len = (char *)xdr->end - (char *)xdr->p;
1685		if (remaining <= len) {
1686			xdr->p = (__be32 *)((char *)xdr->p +
1687					(remaining + xdr_pad_size(nbytes)));
1688			break;
1689		}
1690
1691		xdr->p = (__be32 *)((char *)xdr->p + len);
1692		xdr->end = xdr->p;
1693		remaining -= len;
1694	}
1695
1696	xdr_stream_set_pos(xdr, start + nbytes);
1697	return true;
1698}
1699EXPORT_SYMBOL_GPL(xdr_stream_subsegment);
1700
1701/**
1702 * xdr_stream_move_subsegment - Move part of a stream to another position
1703 * @xdr: the source xdr_stream
1704 * @offset: the source offset of the segment
1705 * @target: the target offset of the segment
1706 * @length: the number of bytes to move
1707 *
1708 * Moves @length bytes from @offset to @target in the xdr_stream, overwriting
1709 * anything in its space. Returns the number of bytes in the segment.
1710 */
1711unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset,
1712					unsigned int target, unsigned int length)
1713{
1714	struct xdr_buf buf;
1715	unsigned int shift;
1716
1717	if (offset < target) {
1718		shift = target - offset;
1719		if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0)
1720			return 0;
1721		xdr_buf_head_shift_right(&buf, 0, length, shift);
1722	} else if (offset > target) {
1723		shift = offset - target;
1724		if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0)
1725			return 0;
1726		xdr_buf_head_shift_left(&buf, shift, length, shift);
1727	}
1728	return length;
1729}
1730EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment);
1731
1732/**
1733 * xdr_stream_zero - zero out a portion of an xdr_stream
1734 * @xdr: an xdr_stream to zero out
1735 * @offset: the starting point in the stream
1736 * @length: the number of bytes to zero
1737 */
1738unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset,
1739			     unsigned int length)
1740{
1741	struct xdr_buf buf;
1742
1743	if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0)
1744		return 0;
1745	if (buf.head[0].iov_len)
1746		xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len);
1747	if (buf.page_len > 0)
1748		xdr_buf_pages_zero(&buf, 0, buf.page_len);
1749	if (buf.tail[0].iov_len)
1750		xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len);
1751	return length;
1752}
1753EXPORT_SYMBOL_GPL(xdr_stream_zero);
1754
1755/**
1756 * xdr_buf_trim - lop at most "len" bytes off the end of "buf"
1757 * @buf: buf to be trimmed
1758 * @len: number of bytes to reduce "buf" by
1759 *
1760 * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note
1761 * that it's possible that we'll trim less than that amount if the xdr_buf is
1762 * too small, or if (for instance) it's all in the head and the parser has
1763 * already read too far into it.
1764 */
1765void xdr_buf_trim(struct xdr_buf *buf, unsigned int len)
1766{
1767	size_t cur;
1768	unsigned int trim = len;
1769
1770	if (buf->tail[0].iov_len) {
1771		cur = min_t(size_t, buf->tail[0].iov_len, trim);
1772		buf->tail[0].iov_len -= cur;
1773		trim -= cur;
1774		if (!trim)
1775			goto fix_len;
1776	}
1777
1778	if (buf->page_len) {
1779		cur = min_t(unsigned int, buf->page_len, trim);
1780		buf->page_len -= cur;
1781		trim -= cur;
1782		if (!trim)
1783			goto fix_len;
1784	}
1785
1786	if (buf->head[0].iov_len) {
1787		cur = min_t(size_t, buf->head[0].iov_len, trim);
1788		buf->head[0].iov_len -= cur;
1789		trim -= cur;
1790	}
1791fix_len:
1792	buf->len -= (len - trim);
1793}
1794EXPORT_SYMBOL_GPL(xdr_buf_trim);
1795
1796static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf,
1797				      void *obj, unsigned int len)
1798{
1799	unsigned int this_len;
1800
1801	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1802	memcpy(obj, subbuf->head[0].iov_base, this_len);
1803	len -= this_len;
1804	obj += this_len;
1805	this_len = min_t(unsigned int, len, subbuf->page_len);
1806	_copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len);
 
1807	len -= this_len;
1808	obj += this_len;
1809	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1810	memcpy(obj, subbuf->tail[0].iov_base, this_len);
1811}
1812
1813/* obj is assumed to point to allocated memory of size at least len: */
1814int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1815			    void *obj, unsigned int len)
1816{
1817	struct xdr_buf subbuf;
1818	int status;
1819
1820	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1821	if (status != 0)
1822		return status;
1823	__read_bytes_from_xdr_buf(&subbuf, obj, len);
1824	return 0;
1825}
1826EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf);
1827
1828static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf,
1829				     void *obj, unsigned int len)
1830{
1831	unsigned int this_len;
1832
1833	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1834	memcpy(subbuf->head[0].iov_base, obj, this_len);
1835	len -= this_len;
1836	obj += this_len;
1837	this_len = min_t(unsigned int, len, subbuf->page_len);
1838	_copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len);
 
1839	len -= this_len;
1840	obj += this_len;
1841	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1842	memcpy(subbuf->tail[0].iov_base, obj, this_len);
1843}
1844
1845/* obj is assumed to point to allocated memory of size at least len: */
1846int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1847			   void *obj, unsigned int len)
1848{
1849	struct xdr_buf subbuf;
1850	int status;
1851
1852	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1853	if (status != 0)
1854		return status;
1855	__write_bytes_to_xdr_buf(&subbuf, obj, len);
1856	return 0;
1857}
1858EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf);
1859
1860int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj)
 
1861{
1862	__be32	raw;
1863	int	status;
1864
1865	status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
1866	if (status)
1867		return status;
1868	*obj = be32_to_cpu(raw);
1869	return 0;
1870}
1871EXPORT_SYMBOL_GPL(xdr_decode_word);
1872
1873int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj)
 
1874{
1875	__be32	raw = cpu_to_be32(obj);
1876
1877	return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
1878}
1879EXPORT_SYMBOL_GPL(xdr_encode_word);
1880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881/* Returns 0 on success, or else a negative error code. */
1882static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base,
1883			    struct xdr_array2_desc *desc, int encode)
 
1884{
1885	char *elem = NULL, *c;
1886	unsigned int copied = 0, todo, avail_here;
1887	struct page **ppages = NULL;
1888	int err;
1889
1890	if (encode) {
1891		if (xdr_encode_word(buf, base, desc->array_len) != 0)
1892			return -EINVAL;
1893	} else {
1894		if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
1895		    desc->array_len > desc->array_maxlen ||
1896		    (unsigned long) base + 4 + desc->array_len *
1897				    desc->elem_size > buf->len)
1898			return -EINVAL;
1899	}
1900	base += 4;
1901
1902	if (!desc->xcode)
1903		return 0;
1904
1905	todo = desc->array_len * desc->elem_size;
1906
1907	/* process head */
1908	if (todo && base < buf->head->iov_len) {
1909		c = buf->head->iov_base + base;
1910		avail_here = min_t(unsigned int, todo,
1911				   buf->head->iov_len - base);
1912		todo -= avail_here;
1913
1914		while (avail_here >= desc->elem_size) {
1915			err = desc->xcode(desc, c);
1916			if (err)
1917				goto out;
1918			c += desc->elem_size;
1919			avail_here -= desc->elem_size;
1920		}
1921		if (avail_here) {
1922			if (!elem) {
1923				elem = kmalloc(desc->elem_size, GFP_KERNEL);
1924				err = -ENOMEM;
1925				if (!elem)
1926					goto out;
1927			}
1928			if (encode) {
1929				err = desc->xcode(desc, elem);
1930				if (err)
1931					goto out;
1932				memcpy(c, elem, avail_here);
1933			} else
1934				memcpy(elem, c, avail_here);
1935			copied = avail_here;
1936		}
1937		base = buf->head->iov_len;  /* align to start of pages */
1938	}
1939
1940	/* process pages array */
1941	base -= buf->head->iov_len;
1942	if (todo && base < buf->page_len) {
1943		unsigned int avail_page;
1944
1945		avail_here = min(todo, buf->page_len - base);
1946		todo -= avail_here;
1947
1948		base += buf->page_base;
1949		ppages = buf->pages + (base >> PAGE_SHIFT);
1950		base &= ~PAGE_MASK;
1951		avail_page = min_t(unsigned int, PAGE_SIZE - base,
1952					avail_here);
1953		c = kmap(*ppages) + base;
1954
1955		while (avail_here) {
1956			avail_here -= avail_page;
1957			if (copied || avail_page < desc->elem_size) {
1958				unsigned int l = min(avail_page,
1959					desc->elem_size - copied);
1960				if (!elem) {
1961					elem = kmalloc(desc->elem_size,
1962						       GFP_KERNEL);
1963					err = -ENOMEM;
1964					if (!elem)
1965						goto out;
1966				}
1967				if (encode) {
1968					if (!copied) {
1969						err = desc->xcode(desc, elem);
1970						if (err)
1971							goto out;
1972					}
1973					memcpy(c, elem + copied, l);
1974					copied += l;
1975					if (copied == desc->elem_size)
1976						copied = 0;
1977				} else {
1978					memcpy(elem + copied, c, l);
1979					copied += l;
1980					if (copied == desc->elem_size) {
1981						err = desc->xcode(desc, elem);
1982						if (err)
1983							goto out;
1984						copied = 0;
1985					}
1986				}
1987				avail_page -= l;
1988				c += l;
1989			}
1990			while (avail_page >= desc->elem_size) {
1991				err = desc->xcode(desc, c);
1992				if (err)
1993					goto out;
1994				c += desc->elem_size;
1995				avail_page -= desc->elem_size;
1996			}
1997			if (avail_page) {
1998				unsigned int l = min(avail_page,
1999					    desc->elem_size - copied);
2000				if (!elem) {
2001					elem = kmalloc(desc->elem_size,
2002						       GFP_KERNEL);
2003					err = -ENOMEM;
2004					if (!elem)
2005						goto out;
2006				}
2007				if (encode) {
2008					if (!copied) {
2009						err = desc->xcode(desc, elem);
2010						if (err)
2011							goto out;
2012					}
2013					memcpy(c, elem + copied, l);
2014					copied += l;
2015					if (copied == desc->elem_size)
2016						copied = 0;
2017				} else {
2018					memcpy(elem + copied, c, l);
2019					copied += l;
2020					if (copied == desc->elem_size) {
2021						err = desc->xcode(desc, elem);
2022						if (err)
2023							goto out;
2024						copied = 0;
2025					}
2026				}
2027			}
2028			if (avail_here) {
2029				kunmap(*ppages);
2030				ppages++;
2031				c = kmap(*ppages);
2032			}
2033
2034			avail_page = min(avail_here,
2035				 (unsigned int) PAGE_SIZE);
2036		}
2037		base = buf->page_len;  /* align to start of tail */
2038	}
2039
2040	/* process tail */
2041	base -= buf->page_len;
2042	if (todo) {
2043		c = buf->tail->iov_base + base;
2044		if (copied) {
2045			unsigned int l = desc->elem_size - copied;
2046
2047			if (encode)
2048				memcpy(c, elem + copied, l);
2049			else {
2050				memcpy(elem + copied, c, l);
2051				err = desc->xcode(desc, elem);
2052				if (err)
2053					goto out;
2054			}
2055			todo -= l;
2056			c += l;
2057		}
2058		while (todo) {
2059			err = desc->xcode(desc, c);
2060			if (err)
2061				goto out;
2062			c += desc->elem_size;
2063			todo -= desc->elem_size;
2064		}
2065	}
2066	err = 0;
2067
2068out:
2069	kfree(elem);
2070	if (ppages)
2071		kunmap(*ppages);
2072	return err;
2073}
2074
2075int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base,
2076		      struct xdr_array2_desc *desc)
 
2077{
2078	if (base >= buf->len)
2079		return -EINVAL;
2080
2081	return xdr_xcode_array2(buf, base, desc, 0);
2082}
2083EXPORT_SYMBOL_GPL(xdr_decode_array2);
2084
2085int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base,
2086		      struct xdr_array2_desc *desc)
 
2087{
2088	if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
2089	    buf->head->iov_len + buf->page_len + buf->tail->iov_len)
2090		return -EINVAL;
2091
2092	return xdr_xcode_array2(buf, base, desc, 1);
2093}
2094EXPORT_SYMBOL_GPL(xdr_encode_array2);
2095
2096int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset,
2097		    unsigned int len,
2098		    int (*actor)(struct scatterlist *, void *), void *data)
2099{
2100	int i, ret = 0;
2101	unsigned int page_len, thislen, page_offset;
2102	struct scatterlist      sg[1];
2103
2104	sg_init_table(sg, 1);
2105
2106	if (offset >= buf->head[0].iov_len) {
2107		offset -= buf->head[0].iov_len;
2108	} else {
2109		thislen = buf->head[0].iov_len - offset;
2110		if (thislen > len)
2111			thislen = len;
2112		sg_set_buf(sg, buf->head[0].iov_base + offset, thislen);
2113		ret = actor(sg, data);
2114		if (ret)
2115			goto out;
2116		offset = 0;
2117		len -= thislen;
2118	}
2119	if (len == 0)
2120		goto out;
2121
2122	if (offset >= buf->page_len) {
2123		offset -= buf->page_len;
2124	} else {
2125		page_len = buf->page_len - offset;
2126		if (page_len > len)
2127			page_len = len;
2128		len -= page_len;
2129		page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1);
2130		i = (offset + buf->page_base) >> PAGE_SHIFT;
2131		thislen = PAGE_SIZE - page_offset;
2132		do {
2133			if (thislen > page_len)
2134				thislen = page_len;
2135			sg_set_page(sg, buf->pages[i], thislen, page_offset);
2136			ret = actor(sg, data);
2137			if (ret)
2138				goto out;
2139			page_len -= thislen;
2140			i++;
2141			page_offset = 0;
2142			thislen = PAGE_SIZE;
2143		} while (page_len != 0);
2144		offset = 0;
2145	}
2146	if (len == 0)
2147		goto out;
2148	if (offset < buf->tail[0].iov_len) {
2149		thislen = buf->tail[0].iov_len - offset;
2150		if (thislen > len)
2151			thislen = len;
2152		sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen);
2153		ret = actor(sg, data);
2154		len -= thislen;
2155	}
2156	if (len != 0)
2157		ret = -EINVAL;
2158out:
2159	return ret;
2160}
2161EXPORT_SYMBOL_GPL(xdr_process_buf);
2162
2163/**
2164 * xdr_stream_decode_opaque - Decode variable length opaque
2165 * @xdr: pointer to xdr_stream
2166 * @ptr: location to store opaque data
2167 * @size: size of storage buffer @ptr
2168 *
2169 * Return values:
2170 *   On success, returns size of object stored in *@ptr
2171 *   %-EBADMSG on XDR buffer overflow
2172 *   %-EMSGSIZE on overflow of storage buffer @ptr
2173 */
2174ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size)
2175{
2176	ssize_t ret;
2177	void *p;
2178
2179	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2180	if (ret <= 0)
2181		return ret;
2182	memcpy(ptr, p, ret);
2183	return ret;
2184}
2185EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque);
2186
2187/**
2188 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque
2189 * @xdr: pointer to xdr_stream
2190 * @ptr: location to store pointer to opaque data
2191 * @maxlen: maximum acceptable object size
2192 * @gfp_flags: GFP mask to use
2193 *
2194 * Return values:
2195 *   On success, returns size of object stored in *@ptr
2196 *   %-EBADMSG on XDR buffer overflow
2197 *   %-EMSGSIZE if the size of the object would exceed @maxlen
2198 *   %-ENOMEM on memory allocation failure
2199 */
2200ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr,
2201		size_t maxlen, gfp_t gfp_flags)
2202{
2203	ssize_t ret;
2204	void *p;
2205
2206	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2207	if (ret > 0) {
2208		*ptr = kmemdup(p, ret, gfp_flags);
2209		if (*ptr != NULL)
2210			return ret;
2211		ret = -ENOMEM;
2212	}
2213	*ptr = NULL;
2214	return ret;
2215}
2216EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup);
2217
2218/**
2219 * xdr_stream_decode_string - Decode variable length string
2220 * @xdr: pointer to xdr_stream
2221 * @str: location to store string
2222 * @size: size of storage buffer @str
2223 *
2224 * Return values:
2225 *   On success, returns length of NUL-terminated string stored in *@str
2226 *   %-EBADMSG on XDR buffer overflow
2227 *   %-EMSGSIZE on overflow of storage buffer @str
2228 */
2229ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size)
2230{
2231	ssize_t ret;
2232	void *p;
2233
2234	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2235	if (ret > 0) {
2236		memcpy(str, p, ret);
2237		str[ret] = '\0';
2238		return strlen(str);
2239	}
2240	*str = '\0';
2241	return ret;
2242}
2243EXPORT_SYMBOL_GPL(xdr_stream_decode_string);
2244
2245/**
2246 * xdr_stream_decode_string_dup - Decode and duplicate variable length string
2247 * @xdr: pointer to xdr_stream
2248 * @str: location to store pointer to string
2249 * @maxlen: maximum acceptable string length
2250 * @gfp_flags: GFP mask to use
2251 *
2252 * Return values:
2253 *   On success, returns length of NUL-terminated string stored in *@ptr
2254 *   %-EBADMSG on XDR buffer overflow
2255 *   %-EMSGSIZE if the size of the string would exceed @maxlen
2256 *   %-ENOMEM on memory allocation failure
2257 */
2258ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str,
2259		size_t maxlen, gfp_t gfp_flags)
2260{
2261	void *p;
2262	ssize_t ret;
2263
2264	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2265	if (ret > 0) {
2266		char *s = kmemdup_nul(p, ret, gfp_flags);
2267		if (s != NULL) {
 
 
2268			*str = s;
2269			return strlen(s);
2270		}
2271		ret = -ENOMEM;
2272	}
2273	*str = NULL;
2274	return ret;
2275}
2276EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup);