Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 
 103#include	<linux/cpu.h>
 104#include	<linux/__KEEPIDENTS__BD.h>
 105#include	<linux/__KEEPIDENTS__BE.h>
 106#include	<linux/rcupdate.h>
 107#include	<linux/__KEEPIDENTS__BF.h>
 108#include	<linux/__KEEPIDENTS__BG.h>
 109#include	<linux/__KEEPIDENTS__BH.h>
 110#include	<linux/kmemleak.h>
 111#include	<linux/__KEEPIDENTS__BI.h>
 112#include	<linux/__KEEPIDENTS__BJ.h>
 113#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 114#include	<linux/__KEEPIDENTS__CC.h>
 115#include	<linux/reciprocal_div.h>
 116#include	<linux/debugobjects.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 119#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 120
 121#include	<net/__KEEPIDENTS__CG.h>
 122
 123#include	<asm/cacheflush.h>
 124#include	<asm/tlbflush.h>
 125#include	<asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include	"internal.h"
 130
 131#include	"slab.h"
 132
 133/*
 134 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *		  0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS	- 1 to collect stats for /proc/slabinfo.
 138 *		  0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define	DEBUG		1
 145#define	STATS		1
 146#define	FORCED_DEBUG	1
 147#else
 148#define	DEBUG		0
 149#define	STATS		0
 150#define	FORCED_DEBUG	0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define	BYTES_PER_WORD		sizeof(void *)
 155#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 166#else
 167typedef unsigned short freelist_idx_t;
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185	unsigned int avail;
 186	unsigned int limit;
 187	unsigned int batchcount;
 188	unsigned int touched;
 189	void *entry[];	/*
 190			 * Must have this definition in here for the proper
 191			 * alignment of array_cache. Also simplifies accessing
 192			 * the entries.
 193			 */
 194};
 195
 196struct alien_cache {
 197	spinlock_t lock;
 198	struct array_cache ac;
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define	CACHE_CACHE 0
 207#define	SIZE_NODE (MAX_NUMNODES)
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210			struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212			int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218						void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220				struct kmem_cache_node *n, struct page *page,
 221				void **list);
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228	INIT_LIST_HEAD(&parent->slabs_full);
 229	INIT_LIST_HEAD(&parent->slabs_partial);
 230	INIT_LIST_HEAD(&parent->slabs_free);
 231	parent->total_slabs = 0;
 232	parent->free_slabs = 0;
 233	parent->shared = NULL;
 234	parent->alien = NULL;
 235	parent->colour_next = 0;
 236	spin_lock_init(&parent->list_lock);
 237	parent->free_objects = 0;
 238	parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 242	do {								\
 243		INIT_LIST_HEAD(listp);					\
 244		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 245	} while (0)
 246
 247#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 248	do {								\
 249	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 252	} while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 255#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 256#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT	16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC		(2*HZ)
 268#define REAPTIMEOUT_NODE	(4*HZ)
 269
 270#if STATS
 271#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 272#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 273#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 274#define	STATS_INC_GROWN(x)	((x)->grown++)
 275#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 276#define	STATS_SET_HIGH(x)						\
 277	do {								\
 278		if ((x)->num_active > (x)->high_mark)			\
 279			(x)->high_mark = (x)->num_active;		\
 280	} while (0)
 281#define	STATS_INC_ERR(x)	((x)->errors++)
 282#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 283#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define	STATS_SET_FREEABLE(x, i)					\
 286	do {								\
 287		if ((x)->max_freeable < i)				\
 288			(x)->max_freeable = i;				\
 289	} while (0)
 290#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 294#else
 295#define	STATS_INC_ACTIVE(x)	do { } while (0)
 296#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 297#define	STATS_INC_ALLOCED(x)	do { } while (0)
 298#define	STATS_INC_GROWN(x)	do { } while (0)
 299#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 300#define	STATS_SET_HIGH(x)	do { } while (0)
 301#define	STATS_INC_ERR(x)	do { } while (0)
 302#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 303#define	STATS_INC_NODEFREES(x)	do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 308#define STATS_INC_FREEHIT(x)	do { } while (0)
 309#define STATS_INC_FREEMISS(x)	do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0		: objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 * 		the end of an object is aligned with the end of the real
 319 * 		allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 * 		redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *					[BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329	return cachep->obj_offset;
 330}
 331
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335	return (unsigned long long*) (objp + obj_offset(cachep) -
 336				      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342	if (cachep->flags & SLAB_STORE_USER)
 343		return (unsigned long long *)(objp + cachep->size -
 344					      sizeof(unsigned long long) -
 345					      REDZONE_ALIGN);
 346	return (unsigned long long *) (objp + cachep->size -
 347				       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)			0
 359#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365/*
 366 * Do not go above this order unless 0 objects fit into the slab or
 367 * overridden on the command line.
 368 */
 369#define	SLAB_MAX_ORDER_HI	1
 370#define	SLAB_MAX_ORDER_LO	0
 371static int slab_max_order = SLAB_MAX_ORDER_LO;
 372static bool slab_max_order_set __initdata;
 373
 374static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 375				 unsigned int idx)
 376{
 377	return page->s_mem + cache->size * idx;
 378}
 379
 380#define BOOT_CPUCACHE_ENTRIES	1
 381/* internal cache of cache description objs */
 382static struct kmem_cache kmem_cache_boot = {
 383	.batchcount = 1,
 384	.limit = BOOT_CPUCACHE_ENTRIES,
 385	.shared = 1,
 386	.size = sizeof(struct kmem_cache),
 387	.name = "kmem_cache",
 388};
 389
 390static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 391
 392static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 393{
 394	return this_cpu_ptr(cachep->cpu_cache);
 395}
 396
 397/*
 398 * Calculate the number of objects and left-over bytes for a given buffer size.
 399 */
 400static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 401		slab_flags_t flags, size_t *left_over)
 402{
 403	unsigned int num;
 404	size_t slab_size = PAGE_SIZE << gfporder;
 405
 406	/*
 407	 * The slab management structure can be either off the slab or
 408	 * on it. For the latter case, the memory allocated for a
 409	 * slab is used for:
 410	 *
 411	 * - @buffer_size bytes for each object
 412	 * - One freelist_idx_t for each object
 413	 *
 414	 * We don't need to consider alignment of freelist because
 415	 * freelist will be at the end of slab page. The objects will be
 416	 * at the correct alignment.
 417	 *
 418	 * If the slab management structure is off the slab, then the
 419	 * alignment will already be calculated into the size. Because
 420	 * the slabs are all pages aligned, the objects will be at the
 421	 * correct alignment when allocated.
 422	 */
 423	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 424		num = slab_size / buffer_size;
 425		*left_over = slab_size % buffer_size;
 426	} else {
 427		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 428		*left_over = slab_size %
 429			(buffer_size + sizeof(freelist_idx_t));
 430	}
 431
 432	return num;
 433}
 434
 435#if DEBUG
 436#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 437
 438static void __slab_error(const char *function, struct kmem_cache *cachep,
 439			char *msg)
 440{
 441	pr_err("slab error in %s(): cache `%s': %s\n",
 442	       function, cachep->name, msg);
 443	dump_stack();
 444	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 445}
 446#endif
 447
 448/*
 449 * By default on NUMA we use alien caches to stage the freeing of
 450 * objects allocated from other nodes. This causes massive memory
 451 * inefficiencies when using fake NUMA setup to split memory into a
 452 * large number of small nodes, so it can be disabled on the command
 453 * line
 454  */
 455
 456static int use_alien_caches __read_mostly = 1;
 457static int __init noaliencache_setup(char *s)
 458{
 459	use_alien_caches = 0;
 460	return 1;
 461}
 462__setup("noaliencache", noaliencache_setup);
 463
 464static int __init slab_max_order_setup(char *str)
 465{
 466	get_option(&str, &slab_max_order);
 467	slab_max_order = slab_max_order < 0 ? 0 :
 468				min(slab_max_order, MAX_ORDER - 1);
 469	slab_max_order_set = true;
 470
 471	return 1;
 472}
 473__setup("slab_max_order=", slab_max_order_setup);
 474
 475#ifdef CONFIG_NUMA
 476/*
 477 * Special reaping functions for NUMA systems called from cache_reap().
 478 * These take care of doing round robin flushing of alien caches (containing
 479 * objects freed on different nodes from which they were allocated) and the
 480 * flushing of remote pcps by calling drain_node_pages.
 481 */
 482static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 483
 484static void init_reap_node(int cpu)
 485{
 486	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 487						    node_online_map);
 488}
 489
 490static void next_reap_node(void)
 491{
 492	int node = __this_cpu_read(slab_reap_node);
 493
 494	node = next_node_in(node, node_online_map);
 495	__this_cpu_write(slab_reap_node, node);
 496}
 497
 498#else
 499#define init_reap_node(cpu) do { } while (0)
 500#define next_reap_node(void) do { } while (0)
 501#endif
 502
 503/*
 504 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 505 * via the workqueue/eventd.
 506 * Add the CPU number into the expiration time to minimize the possibility of
 507 * the CPUs getting into lockstep and contending for the global cache chain
 508 * lock.
 509 */
 510static void start_cpu_timer(int cpu)
 511{
 512	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 513
 514	if (reap_work->work.func == NULL) {
 515		init_reap_node(cpu);
 516		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 517		schedule_delayed_work_on(cpu, reap_work,
 518					__round_jiffies_relative(HZ, cpu));
 519	}
 520}
 521
 522static void init_arraycache(struct array_cache *ac, int limit, int batch)
 523{
 524	if (ac) {
 525		ac->avail = 0;
 526		ac->limit = limit;
 527		ac->batchcount = batch;
 528		ac->touched = 0;
 529	}
 530}
 531
 532static struct array_cache *alloc_arraycache(int node, int entries,
 533					    int batchcount, gfp_t gfp)
 534{
 535	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 536	struct array_cache *ac = NULL;
 537
 538	ac = kmalloc_node(memsize, gfp, node);
 539	/*
 540	 * The array_cache structures contain pointers to free object.
 541	 * However, when such objects are allocated or transferred to another
 542	 * cache the pointers are not cleared and they could be counted as
 543	 * valid references during a kmemleak scan. Therefore, kmemleak must
 544	 * not scan such objects.
 545	 */
 546	kmemleak_no_scan(ac);
 547	init_arraycache(ac, entries, batchcount);
 548	return ac;
 549}
 550
 551static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 552					struct page *page, void *objp)
 553{
 554	struct kmem_cache_node *n;
 555	int page_node;
 556	LIST_HEAD(list);
 557
 558	page_node = page_to_nid(page);
 559	n = get_node(cachep, page_node);
 560
 561	spin_lock(&n->list_lock);
 562	free_block(cachep, &objp, 1, page_node, &list);
 563	spin_unlock(&n->list_lock);
 564
 565	slabs_destroy(cachep, &list);
 566}
 567
 568/*
 569 * Transfer objects in one arraycache to another.
 570 * Locking must be handled by the caller.
 571 *
 572 * Return the number of entries transferred.
 573 */
 574static int transfer_objects(struct array_cache *to,
 575		struct array_cache *from, unsigned int max)
 576{
 577	/* Figure out how many entries to transfer */
 578	int nr = min3(from->avail, max, to->limit - to->avail);
 579
 580	if (!nr)
 581		return 0;
 582
 583	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 584			sizeof(void *) *nr);
 585
 586	from->avail -= nr;
 587	to->avail += nr;
 588	return nr;
 589}
 590
 
 
 
 
 
 
 
 
 
 
 591#ifndef CONFIG_NUMA
 592
 593#define drain_alien_cache(cachep, alien) do { } while (0)
 594#define reap_alien(cachep, n) do { } while (0)
 595
 596static inline struct alien_cache **alloc_alien_cache(int node,
 597						int limit, gfp_t gfp)
 598{
 599	return NULL;
 600}
 601
 602static inline void free_alien_cache(struct alien_cache **ac_ptr)
 603{
 604}
 605
 606static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 607{
 608	return 0;
 609}
 610
 611static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 612		gfp_t flags)
 613{
 614	return NULL;
 615}
 616
 617static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 618		 gfp_t flags, int nodeid)
 619{
 620	return NULL;
 621}
 622
 623static inline gfp_t gfp_exact_node(gfp_t flags)
 624{
 625	return flags & ~__GFP_NOFAIL;
 626}
 627
 628#else	/* CONFIG_NUMA */
 629
 630static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 631static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 632
 633static struct alien_cache *__alloc_alien_cache(int node, int entries,
 634						int batch, gfp_t gfp)
 635{
 636	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 637	struct alien_cache *alc = NULL;
 638
 639	alc = kmalloc_node(memsize, gfp, node);
 640	if (alc) {
 641		kmemleak_no_scan(alc);
 642		init_arraycache(&alc->ac, entries, batch);
 643		spin_lock_init(&alc->lock);
 644	}
 645	return alc;
 646}
 647
 648static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 649{
 650	struct alien_cache **alc_ptr;
 651	int i;
 652
 653	if (limit > 1)
 654		limit = 12;
 655	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 656	if (!alc_ptr)
 657		return NULL;
 658
 659	for_each_node(i) {
 660		if (i == node || !node_online(i))
 661			continue;
 662		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 663		if (!alc_ptr[i]) {
 664			for (i--; i >= 0; i--)
 665				kfree(alc_ptr[i]);
 666			kfree(alc_ptr);
 667			return NULL;
 668		}
 669	}
 670	return alc_ptr;
 671}
 672
 673static void free_alien_cache(struct alien_cache **alc_ptr)
 674{
 675	int i;
 676
 677	if (!alc_ptr)
 678		return;
 679	for_each_node(i)
 680	    kfree(alc_ptr[i]);
 681	kfree(alc_ptr);
 682}
 683
 684static void __drain_alien_cache(struct kmem_cache *cachep,
 685				struct array_cache *ac, int node,
 686				struct list_head *list)
 687{
 688	struct kmem_cache_node *n = get_node(cachep, node);
 689
 690	if (ac->avail) {
 691		spin_lock(&n->list_lock);
 692		/*
 693		 * Stuff objects into the remote nodes shared array first.
 694		 * That way we could avoid the overhead of putting the objects
 695		 * into the free lists and getting them back later.
 696		 */
 697		if (n->shared)
 698			transfer_objects(n->shared, ac, ac->limit);
 699
 700		free_block(cachep, ac->entry, ac->avail, node, list);
 701		ac->avail = 0;
 702		spin_unlock(&n->list_lock);
 703	}
 704}
 705
 706/*
 707 * Called from cache_reap() to regularly drain alien caches round robin.
 708 */
 709static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 710{
 711	int node = __this_cpu_read(slab_reap_node);
 712
 713	if (n->alien) {
 714		struct alien_cache *alc = n->alien[node];
 715		struct array_cache *ac;
 716
 717		if (alc) {
 718			ac = &alc->ac;
 719			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 720				LIST_HEAD(list);
 721
 722				__drain_alien_cache(cachep, ac, node, &list);
 723				spin_unlock_irq(&alc->lock);
 724				slabs_destroy(cachep, &list);
 725			}
 726		}
 727	}
 728}
 729
 730static void drain_alien_cache(struct kmem_cache *cachep,
 731				struct alien_cache **alien)
 732{
 733	int i = 0;
 734	struct alien_cache *alc;
 735	struct array_cache *ac;
 736	unsigned long flags;
 737
 738	for_each_online_node(i) {
 739		alc = alien[i];
 740		if (alc) {
 741			LIST_HEAD(list);
 742
 743			ac = &alc->ac;
 744			spin_lock_irqsave(&alc->lock, flags);
 745			__drain_alien_cache(cachep, ac, i, &list);
 746			spin_unlock_irqrestore(&alc->lock, flags);
 747			slabs_destroy(cachep, &list);
 748		}
 749	}
 750}
 751
 752static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 753				int node, int page_node)
 754{
 755	struct kmem_cache_node *n;
 756	struct alien_cache *alien = NULL;
 757	struct array_cache *ac;
 758	LIST_HEAD(list);
 759
 760	n = get_node(cachep, node);
 761	STATS_INC_NODEFREES(cachep);
 762	if (n->alien && n->alien[page_node]) {
 763		alien = n->alien[page_node];
 764		ac = &alien->ac;
 765		spin_lock(&alien->lock);
 766		if (unlikely(ac->avail == ac->limit)) {
 767			STATS_INC_ACOVERFLOW(cachep);
 768			__drain_alien_cache(cachep, ac, page_node, &list);
 769		}
 770		ac->entry[ac->avail++] = objp;
 771		spin_unlock(&alien->lock);
 772		slabs_destroy(cachep, &list);
 773	} else {
 774		n = get_node(cachep, page_node);
 775		spin_lock(&n->list_lock);
 776		free_block(cachep, &objp, 1, page_node, &list);
 777		spin_unlock(&n->list_lock);
 778		slabs_destroy(cachep, &list);
 779	}
 780	return 1;
 781}
 782
 783static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 784{
 785	int page_node = page_to_nid(virt_to_page(objp));
 786	int node = numa_mem_id();
 787	/*
 788	 * Make sure we are not freeing a object from another node to the array
 789	 * cache on this cpu.
 790	 */
 791	if (likely(node == page_node))
 792		return 0;
 793
 794	return __cache_free_alien(cachep, objp, node, page_node);
 795}
 796
 797/*
 798 * Construct gfp mask to allocate from a specific node but do not reclaim or
 799 * warn about failures.
 800 */
 801static inline gfp_t gfp_exact_node(gfp_t flags)
 802{
 803	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 804}
 805#endif
 806
 807static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 808{
 809	struct kmem_cache_node *n;
 810
 811	/*
 812	 * Set up the kmem_cache_node for cpu before we can
 813	 * begin anything. Make sure some other cpu on this
 814	 * node has not already allocated this
 815	 */
 816	n = get_node(cachep, node);
 817	if (n) {
 818		spin_lock_irq(&n->list_lock);
 819		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 820				cachep->num;
 821		spin_unlock_irq(&n->list_lock);
 822
 823		return 0;
 824	}
 825
 826	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 827	if (!n)
 828		return -ENOMEM;
 829
 830	kmem_cache_node_init(n);
 831	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 832		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 833
 834	n->free_limit =
 835		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 836
 837	/*
 838	 * The kmem_cache_nodes don't come and go as CPUs
 839	 * come and go.  slab_mutex is sufficient
 840	 * protection here.
 841	 */
 842	cachep->node[node] = n;
 843
 844	return 0;
 845}
 846
 847#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 848/*
 849 * Allocates and initializes node for a node on each slab cache, used for
 850 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 851 * will be allocated off-node since memory is not yet online for the new node.
 852 * When hotplugging memory or a cpu, existing node are not replaced if
 853 * already in use.
 854 *
 855 * Must hold slab_mutex.
 856 */
 857static int init_cache_node_node(int node)
 858{
 859	int ret;
 860	struct kmem_cache *cachep;
 861
 862	list_for_each_entry(cachep, &slab_caches, list) {
 863		ret = init_cache_node(cachep, node, GFP_KERNEL);
 864		if (ret)
 865			return ret;
 866	}
 867
 868	return 0;
 869}
 870#endif
 871
 872static int setup_kmem_cache_node(struct kmem_cache *cachep,
 873				int node, gfp_t gfp, bool force_change)
 874{
 875	int ret = -ENOMEM;
 876	struct kmem_cache_node *n;
 877	struct array_cache *old_shared = NULL;
 878	struct array_cache *new_shared = NULL;
 879	struct alien_cache **new_alien = NULL;
 880	LIST_HEAD(list);
 881
 882	if (use_alien_caches) {
 883		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 884		if (!new_alien)
 885			goto fail;
 886	}
 887
 888	if (cachep->shared) {
 889		new_shared = alloc_arraycache(node,
 890			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 891		if (!new_shared)
 892			goto fail;
 893	}
 894
 895	ret = init_cache_node(cachep, node, gfp);
 896	if (ret)
 897		goto fail;
 898
 899	n = get_node(cachep, node);
 900	spin_lock_irq(&n->list_lock);
 901	if (n->shared && force_change) {
 902		free_block(cachep, n->shared->entry,
 903				n->shared->avail, node, &list);
 904		n->shared->avail = 0;
 905	}
 906
 907	if (!n->shared || force_change) {
 908		old_shared = n->shared;
 909		n->shared = new_shared;
 910		new_shared = NULL;
 911	}
 912
 913	if (!n->alien) {
 914		n->alien = new_alien;
 915		new_alien = NULL;
 916	}
 917
 918	spin_unlock_irq(&n->list_lock);
 919	slabs_destroy(cachep, &list);
 920
 921	/*
 922	 * To protect lockless access to n->shared during irq disabled context.
 923	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 924	 * guaranteed to be valid until irq is re-enabled, because it will be
 925	 * freed after synchronize_rcu().
 926	 */
 927	if (old_shared && force_change)
 928		synchronize_rcu();
 929
 930fail:
 931	kfree(old_shared);
 932	kfree(new_shared);
 933	free_alien_cache(new_alien);
 934
 935	return ret;
 936}
 937
 938#ifdef CONFIG_SMP
 939
 940static void cpuup_canceled(long cpu)
 941{
 942	struct kmem_cache *cachep;
 943	struct kmem_cache_node *n = NULL;
 944	int node = cpu_to_mem(cpu);
 945	const struct cpumask *mask = cpumask_of_node(node);
 946
 947	list_for_each_entry(cachep, &slab_caches, list) {
 948		struct array_cache *nc;
 949		struct array_cache *shared;
 950		struct alien_cache **alien;
 951		LIST_HEAD(list);
 952
 953		n = get_node(cachep, node);
 954		if (!n)
 955			continue;
 956
 957		spin_lock_irq(&n->list_lock);
 958
 959		/* Free limit for this kmem_cache_node */
 960		n->free_limit -= cachep->batchcount;
 961
 962		/* cpu is dead; no one can alloc from it. */
 963		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 964		free_block(cachep, nc->entry, nc->avail, node, &list);
 965		nc->avail = 0;
 966
 967		if (!cpumask_empty(mask)) {
 968			spin_unlock_irq(&n->list_lock);
 969			goto free_slab;
 970		}
 971
 972		shared = n->shared;
 973		if (shared) {
 974			free_block(cachep, shared->entry,
 975				   shared->avail, node, &list);
 976			n->shared = NULL;
 977		}
 978
 979		alien = n->alien;
 980		n->alien = NULL;
 981
 982		spin_unlock_irq(&n->list_lock);
 983
 984		kfree(shared);
 985		if (alien) {
 986			drain_alien_cache(cachep, alien);
 987			free_alien_cache(alien);
 988		}
 989
 990free_slab:
 991		slabs_destroy(cachep, &list);
 992	}
 993	/*
 994	 * In the previous loop, all the objects were freed to
 995	 * the respective cache's slabs,  now we can go ahead and
 996	 * shrink each nodelist to its limit.
 997	 */
 998	list_for_each_entry(cachep, &slab_caches, list) {
 999		n = get_node(cachep, node);
1000		if (!n)
1001			continue;
1002		drain_freelist(cachep, n, INT_MAX);
1003	}
1004}
1005
1006static int cpuup_prepare(long cpu)
1007{
1008	struct kmem_cache *cachep;
1009	int node = cpu_to_mem(cpu);
1010	int err;
1011
1012	/*
1013	 * We need to do this right in the beginning since
1014	 * alloc_arraycache's are going to use this list.
1015	 * kmalloc_node allows us to add the slab to the right
1016	 * kmem_cache_node and not this cpu's kmem_cache_node
1017	 */
1018	err = init_cache_node_node(node);
1019	if (err < 0)
1020		goto bad;
1021
1022	/*
1023	 * Now we can go ahead with allocating the shared arrays and
1024	 * array caches
1025	 */
1026	list_for_each_entry(cachep, &slab_caches, list) {
1027		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1028		if (err)
1029			goto bad;
1030	}
1031
1032	return 0;
1033bad:
1034	cpuup_canceled(cpu);
1035	return -ENOMEM;
1036}
1037
1038int slab_prepare_cpu(unsigned int cpu)
1039{
1040	int err;
1041
1042	mutex_lock(&slab_mutex);
1043	err = cpuup_prepare(cpu);
1044	mutex_unlock(&slab_mutex);
1045	return err;
1046}
1047
1048/*
1049 * This is called for a failed online attempt and for a successful
1050 * offline.
1051 *
1052 * Even if all the cpus of a node are down, we don't free the
1053 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1054 * a kmalloc allocation from another cpu for memory from the node of
1055 * the cpu going down.  The list3 structure is usually allocated from
1056 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1057 */
1058int slab_dead_cpu(unsigned int cpu)
1059{
1060	mutex_lock(&slab_mutex);
1061	cpuup_canceled(cpu);
1062	mutex_unlock(&slab_mutex);
1063	return 0;
1064}
1065#endif
1066
1067static int slab_online_cpu(unsigned int cpu)
1068{
1069	start_cpu_timer(cpu);
1070	return 0;
1071}
1072
1073static int slab_offline_cpu(unsigned int cpu)
1074{
1075	/*
1076	 * Shutdown cache reaper. Note that the slab_mutex is held so
1077	 * that if cache_reap() is invoked it cannot do anything
1078	 * expensive but will only modify reap_work and reschedule the
1079	 * timer.
1080	 */
1081	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1082	/* Now the cache_reaper is guaranteed to be not running. */
1083	per_cpu(slab_reap_work, cpu).work.func = NULL;
1084	return 0;
1085}
1086
1087#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1088/*
1089 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1090 * Returns -EBUSY if all objects cannot be drained so that the node is not
1091 * removed.
1092 *
1093 * Must hold slab_mutex.
1094 */
1095static int __meminit drain_cache_node_node(int node)
1096{
1097	struct kmem_cache *cachep;
1098	int ret = 0;
1099
1100	list_for_each_entry(cachep, &slab_caches, list) {
1101		struct kmem_cache_node *n;
1102
1103		n = get_node(cachep, node);
1104		if (!n)
1105			continue;
1106
1107		drain_freelist(cachep, n, INT_MAX);
1108
1109		if (!list_empty(&n->slabs_full) ||
1110		    !list_empty(&n->slabs_partial)) {
1111			ret = -EBUSY;
1112			break;
1113		}
1114	}
1115	return ret;
1116}
1117
1118static int __meminit slab_memory_callback(struct notifier_block *self,
1119					unsigned long action, void *arg)
1120{
1121	struct memory_notify *mnb = arg;
1122	int ret = 0;
1123	int nid;
1124
1125	nid = mnb->status_change_nid;
1126	if (nid < 0)
1127		goto out;
1128
1129	switch (action) {
1130	case MEM_GOING_ONLINE:
1131		mutex_lock(&slab_mutex);
1132		ret = init_cache_node_node(nid);
1133		mutex_unlock(&slab_mutex);
1134		break;
1135	case MEM_GOING_OFFLINE:
1136		mutex_lock(&slab_mutex);
1137		ret = drain_cache_node_node(nid);
1138		mutex_unlock(&slab_mutex);
1139		break;
1140	case MEM_ONLINE:
1141	case MEM_OFFLINE:
1142	case MEM_CANCEL_ONLINE:
1143	case MEM_CANCEL_OFFLINE:
1144		break;
1145	}
1146out:
1147	return notifier_from_errno(ret);
1148}
1149#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1150
1151/*
1152 * swap the static kmem_cache_node with kmalloced memory
1153 */
1154static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1155				int nodeid)
1156{
1157	struct kmem_cache_node *ptr;
1158
1159	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1160	BUG_ON(!ptr);
1161
1162	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1163	/*
1164	 * Do not assume that spinlocks can be initialized via memcpy:
1165	 */
1166	spin_lock_init(&ptr->list_lock);
1167
1168	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1169	cachep->node[nodeid] = ptr;
1170}
1171
1172/*
1173 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1174 * size of kmem_cache_node.
1175 */
1176static void __init set_up_node(struct kmem_cache *cachep, int index)
1177{
1178	int node;
1179
1180	for_each_online_node(node) {
1181		cachep->node[node] = &init_kmem_cache_node[index + node];
1182		cachep->node[node]->next_reap = jiffies +
1183		    REAPTIMEOUT_NODE +
1184		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1185	}
1186}
1187
1188/*
1189 * Initialisation.  Called after the page allocator have been initialised and
1190 * before smp_init().
1191 */
1192void __init kmem_cache_init(void)
1193{
1194	int i;
1195
1196	kmem_cache = &kmem_cache_boot;
1197
1198	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1199		use_alien_caches = 0;
1200
1201	for (i = 0; i < NUM_INIT_LISTS; i++)
1202		kmem_cache_node_init(&init_kmem_cache_node[i]);
1203
1204	/*
1205	 * Fragmentation resistance on low memory - only use bigger
1206	 * page orders on machines with more than 32MB of memory if
1207	 * not overridden on the command line.
1208	 */
1209	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1210		slab_max_order = SLAB_MAX_ORDER_HI;
1211
1212	/* Bootstrap is tricky, because several objects are allocated
1213	 * from caches that do not exist yet:
1214	 * 1) initialize the kmem_cache cache: it contains the struct
1215	 *    kmem_cache structures of all caches, except kmem_cache itself:
1216	 *    kmem_cache is statically allocated.
1217	 *    Initially an __init data area is used for the head array and the
1218	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1219	 *    array at the end of the bootstrap.
1220	 * 2) Create the first kmalloc cache.
1221	 *    The struct kmem_cache for the new cache is allocated normally.
1222	 *    An __init data area is used for the head array.
1223	 * 3) Create the remaining kmalloc caches, with minimally sized
1224	 *    head arrays.
1225	 * 4) Replace the __init data head arrays for kmem_cache and the first
1226	 *    kmalloc cache with kmalloc allocated arrays.
1227	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1228	 *    the other cache's with kmalloc allocated memory.
1229	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1230	 */
1231
1232	/* 1) create the kmem_cache */
1233
1234	/*
1235	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1236	 */
1237	create_boot_cache(kmem_cache, "kmem_cache",
1238		offsetof(struct kmem_cache, node) +
1239				  nr_node_ids * sizeof(struct kmem_cache_node *),
1240				  SLAB_HWCACHE_ALIGN, 0, 0);
1241	list_add(&kmem_cache->list, &slab_caches);
1242	memcg_link_cache(kmem_cache, NULL);
1243	slab_state = PARTIAL;
1244
1245	/*
1246	 * Initialize the caches that provide memory for the  kmem_cache_node
1247	 * structures first.  Without this, further allocations will bug.
1248	 */
1249	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1250				kmalloc_info[INDEX_NODE].name,
1251				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1252				0, kmalloc_size(INDEX_NODE));
 
1253	slab_state = PARTIAL_NODE;
1254	setup_kmalloc_cache_index_table();
1255
1256	slab_early_init = 0;
1257
1258	/* 5) Replace the bootstrap kmem_cache_node */
1259	{
1260		int nid;
1261
1262		for_each_online_node(nid) {
1263			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1264
1265			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1266					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1267		}
1268	}
1269
1270	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1271}
1272
1273void __init kmem_cache_init_late(void)
1274{
1275	struct kmem_cache *cachep;
1276
1277	/* 6) resize the head arrays to their final sizes */
1278	mutex_lock(&slab_mutex);
1279	list_for_each_entry(cachep, &slab_caches, list)
1280		if (enable_cpucache(cachep, GFP_NOWAIT))
1281			BUG();
1282	mutex_unlock(&slab_mutex);
1283
1284	/* Done! */
1285	slab_state = FULL;
1286
1287#ifdef CONFIG_NUMA
1288	/*
1289	 * Register a memory hotplug callback that initializes and frees
1290	 * node.
1291	 */
1292	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1293#endif
1294
1295	/*
1296	 * The reap timers are started later, with a module init call: That part
1297	 * of the kernel is not yet operational.
1298	 */
1299}
1300
1301static int __init cpucache_init(void)
1302{
1303	int ret;
1304
1305	/*
1306	 * Register the timers that return unneeded pages to the page allocator
1307	 */
1308	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1309				slab_online_cpu, slab_offline_cpu);
1310	WARN_ON(ret < 0);
1311
1312	return 0;
1313}
1314__initcall(cpucache_init);
1315
1316static noinline void
1317slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1318{
1319#if DEBUG
1320	struct kmem_cache_node *n;
1321	unsigned long flags;
1322	int node;
1323	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1324				      DEFAULT_RATELIMIT_BURST);
1325
1326	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1327		return;
1328
1329	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1330		nodeid, gfpflags, &gfpflags);
1331	pr_warn("  cache: %s, object size: %d, order: %d\n",
1332		cachep->name, cachep->size, cachep->gfporder);
1333
1334	for_each_kmem_cache_node(cachep, node, n) {
1335		unsigned long total_slabs, free_slabs, free_objs;
1336
1337		spin_lock_irqsave(&n->list_lock, flags);
1338		total_slabs = n->total_slabs;
1339		free_slabs = n->free_slabs;
1340		free_objs = n->free_objects;
1341		spin_unlock_irqrestore(&n->list_lock, flags);
1342
1343		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1344			node, total_slabs - free_slabs, total_slabs,
1345			(total_slabs * cachep->num) - free_objs,
1346			total_slabs * cachep->num);
1347	}
1348#endif
1349}
1350
1351/*
1352 * Interface to system's page allocator. No need to hold the
1353 * kmem_cache_node ->list_lock.
1354 *
1355 * If we requested dmaable memory, we will get it. Even if we
1356 * did not request dmaable memory, we might get it, but that
1357 * would be relatively rare and ignorable.
1358 */
1359static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1360								int nodeid)
1361{
1362	struct page *page;
 
1363
1364	flags |= cachep->allocflags;
1365
1366	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1367	if (!page) {
1368		slab_out_of_memory(cachep, flags, nodeid);
1369		return NULL;
1370	}
1371
1372	if (charge_slab_page(page, flags, cachep->gfporder, cachep)) {
1373		__free_pages(page, cachep->gfporder);
1374		return NULL;
1375	}
1376
1377	__SetPageSlab(page);
 
 
 
1378	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1379	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1380		SetPageSlabPfmemalloc(page);
1381
1382	return page;
1383}
1384
1385/*
1386 * Interface to system's page release.
1387 */
1388static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1389{
1390	int order = cachep->gfporder;
 
1391
1392	BUG_ON(!PageSlab(page));
1393	__ClearPageSlabPfmemalloc(page);
1394	__ClearPageSlab(page);
1395	page_mapcount_reset(page);
1396	page->mapping = NULL;
 
 
1397
1398	if (current->reclaim_state)
1399		current->reclaim_state->reclaimed_slab += 1 << order;
1400	uncharge_slab_page(page, order, cachep);
1401	__free_pages(page, order);
1402}
1403
1404static void kmem_rcu_free(struct rcu_head *head)
1405{
1406	struct kmem_cache *cachep;
1407	struct page *page;
1408
1409	page = container_of(head, struct page, rcu_head);
1410	cachep = page->slab_cache;
1411
1412	kmem_freepages(cachep, page);
1413}
1414
1415#if DEBUG
1416static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1417{
1418	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1419		(cachep->size % PAGE_SIZE) == 0)
1420		return true;
1421
1422	return false;
1423}
1424
1425#ifdef CONFIG_DEBUG_PAGEALLOC
1426static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1427{
1428	if (!is_debug_pagealloc_cache(cachep))
1429		return;
1430
1431	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1432}
1433
1434#else
1435static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1436				int map) {}
1437
1438#endif
1439
1440static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1441{
1442	int size = cachep->object_size;
1443	addr = &((char *)addr)[obj_offset(cachep)];
1444
1445	memset(addr, val, size);
1446	*(unsigned char *)(addr + size - 1) = POISON_END;
1447}
1448
1449static void dump_line(char *data, int offset, int limit)
1450{
1451	int i;
1452	unsigned char error = 0;
1453	int bad_count = 0;
1454
1455	pr_err("%03x: ", offset);
1456	for (i = 0; i < limit; i++) {
1457		if (data[offset + i] != POISON_FREE) {
1458			error = data[offset + i];
1459			bad_count++;
1460		}
1461	}
1462	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1463			&data[offset], limit, 1);
1464
1465	if (bad_count == 1) {
1466		error ^= POISON_FREE;
1467		if (!(error & (error - 1))) {
1468			pr_err("Single bit error detected. Probably bad RAM.\n");
1469#ifdef CONFIG_X86
1470			pr_err("Run memtest86+ or a similar memory test tool.\n");
1471#else
1472			pr_err("Run a memory test tool.\n");
1473#endif
1474		}
1475	}
1476}
1477#endif
1478
1479#if DEBUG
1480
1481static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1482{
1483	int i, size;
1484	char *realobj;
1485
1486	if (cachep->flags & SLAB_RED_ZONE) {
1487		pr_err("Redzone: 0x%llx/0x%llx\n",
1488		       *dbg_redzone1(cachep, objp),
1489		       *dbg_redzone2(cachep, objp));
1490	}
1491
1492	if (cachep->flags & SLAB_STORE_USER)
1493		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1494	realobj = (char *)objp + obj_offset(cachep);
1495	size = cachep->object_size;
1496	for (i = 0; i < size && lines; i += 16, lines--) {
1497		int limit;
1498		limit = 16;
1499		if (i + limit > size)
1500			limit = size - i;
1501		dump_line(realobj, i, limit);
1502	}
1503}
1504
1505static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1506{
1507	char *realobj;
1508	int size, i;
1509	int lines = 0;
1510
1511	if (is_debug_pagealloc_cache(cachep))
1512		return;
1513
1514	realobj = (char *)objp + obj_offset(cachep);
1515	size = cachep->object_size;
1516
1517	for (i = 0; i < size; i++) {
1518		char exp = POISON_FREE;
1519		if (i == size - 1)
1520			exp = POISON_END;
1521		if (realobj[i] != exp) {
1522			int limit;
1523			/* Mismatch ! */
1524			/* Print header */
1525			if (lines == 0) {
1526				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1527				       print_tainted(), cachep->name,
1528				       realobj, size);
1529				print_objinfo(cachep, objp, 0);
1530			}
1531			/* Hexdump the affected line */
1532			i = (i / 16) * 16;
1533			limit = 16;
1534			if (i + limit > size)
1535				limit = size - i;
1536			dump_line(realobj, i, limit);
1537			i += 16;
1538			lines++;
1539			/* Limit to 5 lines */
1540			if (lines > 5)
1541				break;
1542		}
1543	}
1544	if (lines != 0) {
1545		/* Print some data about the neighboring objects, if they
1546		 * exist:
1547		 */
1548		struct page *page = virt_to_head_page(objp);
1549		unsigned int objnr;
1550
1551		objnr = obj_to_index(cachep, page, objp);
1552		if (objnr) {
1553			objp = index_to_obj(cachep, page, objnr - 1);
1554			realobj = (char *)objp + obj_offset(cachep);
1555			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1556			print_objinfo(cachep, objp, 2);
1557		}
1558		if (objnr + 1 < cachep->num) {
1559			objp = index_to_obj(cachep, page, objnr + 1);
1560			realobj = (char *)objp + obj_offset(cachep);
1561			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1562			print_objinfo(cachep, objp, 2);
1563		}
1564	}
1565}
1566#endif
1567
1568#if DEBUG
1569static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1570						struct page *page)
1571{
1572	int i;
1573
1574	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1575		poison_obj(cachep, page->freelist - obj_offset(cachep),
1576			POISON_FREE);
1577	}
1578
1579	for (i = 0; i < cachep->num; i++) {
1580		void *objp = index_to_obj(cachep, page, i);
1581
1582		if (cachep->flags & SLAB_POISON) {
1583			check_poison_obj(cachep, objp);
1584			slab_kernel_map(cachep, objp, 1);
1585		}
1586		if (cachep->flags & SLAB_RED_ZONE) {
1587			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1588				slab_error(cachep, "start of a freed object was overwritten");
1589			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1590				slab_error(cachep, "end of a freed object was overwritten");
1591		}
1592	}
1593}
1594#else
1595static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1596						struct page *page)
1597{
1598}
1599#endif
1600
1601/**
1602 * slab_destroy - destroy and release all objects in a slab
1603 * @cachep: cache pointer being destroyed
1604 * @page: page pointer being destroyed
1605 *
1606 * Destroy all the objs in a slab page, and release the mem back to the system.
1607 * Before calling the slab page must have been unlinked from the cache. The
1608 * kmem_cache_node ->list_lock is not held/needed.
1609 */
1610static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1611{
1612	void *freelist;
1613
1614	freelist = page->freelist;
1615	slab_destroy_debugcheck(cachep, page);
1616	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1617		call_rcu(&page->rcu_head, kmem_rcu_free);
1618	else
1619		kmem_freepages(cachep, page);
1620
1621	/*
1622	 * From now on, we don't use freelist
1623	 * although actual page can be freed in rcu context
1624	 */
1625	if (OFF_SLAB(cachep))
1626		kmem_cache_free(cachep->freelist_cache, freelist);
1627}
1628
 
 
 
 
1629static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1630{
1631	struct page *page, *n;
1632
1633	list_for_each_entry_safe(page, n, list, slab_list) {
1634		list_del(&page->slab_list);
1635		slab_destroy(cachep, page);
1636	}
1637}
1638
1639/**
1640 * calculate_slab_order - calculate size (page order) of slabs
1641 * @cachep: pointer to the cache that is being created
1642 * @size: size of objects to be created in this cache.
1643 * @flags: slab allocation flags
1644 *
1645 * Also calculates the number of objects per slab.
1646 *
1647 * This could be made much more intelligent.  For now, try to avoid using
1648 * high order pages for slabs.  When the gfp() functions are more friendly
1649 * towards high-order requests, this should be changed.
1650 *
1651 * Return: number of left-over bytes in a slab
1652 */
1653static size_t calculate_slab_order(struct kmem_cache *cachep,
1654				size_t size, slab_flags_t flags)
1655{
1656	size_t left_over = 0;
1657	int gfporder;
1658
1659	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1660		unsigned int num;
1661		size_t remainder;
1662
1663		num = cache_estimate(gfporder, size, flags, &remainder);
1664		if (!num)
1665			continue;
1666
1667		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1668		if (num > SLAB_OBJ_MAX_NUM)
1669			break;
1670
1671		if (flags & CFLGS_OFF_SLAB) {
1672			struct kmem_cache *freelist_cache;
1673			size_t freelist_size;
 
1674
1675			freelist_size = num * sizeof(freelist_idx_t);
1676			freelist_cache = kmalloc_slab(freelist_size, 0u);
1677			if (!freelist_cache)
1678				continue;
1679
1680			/*
1681			 * Needed to avoid possible looping condition
1682			 * in cache_grow_begin()
1683			 */
1684			if (OFF_SLAB(freelist_cache))
1685				continue;
 
 
 
 
 
1686
1687			/* check if off slab has enough benefit */
1688			if (freelist_cache->size > cachep->size / 2)
1689				continue;
1690		}
1691
1692		/* Found something acceptable - save it away */
1693		cachep->num = num;
1694		cachep->gfporder = gfporder;
1695		left_over = remainder;
1696
1697		/*
1698		 * A VFS-reclaimable slab tends to have most allocations
1699		 * as GFP_NOFS and we really don't want to have to be allocating
1700		 * higher-order pages when we are unable to shrink dcache.
1701		 */
1702		if (flags & SLAB_RECLAIM_ACCOUNT)
1703			break;
1704
1705		/*
1706		 * Large number of objects is good, but very large slabs are
1707		 * currently bad for the gfp()s.
1708		 */
1709		if (gfporder >= slab_max_order)
1710			break;
1711
1712		/*
1713		 * Acceptable internal fragmentation?
1714		 */
1715		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1716			break;
1717	}
1718	return left_over;
1719}
1720
1721static struct array_cache __percpu *alloc_kmem_cache_cpus(
1722		struct kmem_cache *cachep, int entries, int batchcount)
1723{
1724	int cpu;
1725	size_t size;
1726	struct array_cache __percpu *cpu_cache;
1727
1728	size = sizeof(void *) * entries + sizeof(struct array_cache);
1729	cpu_cache = __alloc_percpu(size, sizeof(void *));
1730
1731	if (!cpu_cache)
1732		return NULL;
1733
1734	for_each_possible_cpu(cpu) {
1735		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1736				entries, batchcount);
1737	}
1738
1739	return cpu_cache;
1740}
1741
1742static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1743{
1744	if (slab_state >= FULL)
1745		return enable_cpucache(cachep, gfp);
1746
1747	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1748	if (!cachep->cpu_cache)
1749		return 1;
1750
1751	if (slab_state == DOWN) {
1752		/* Creation of first cache (kmem_cache). */
1753		set_up_node(kmem_cache, CACHE_CACHE);
1754	} else if (slab_state == PARTIAL) {
1755		/* For kmem_cache_node */
1756		set_up_node(cachep, SIZE_NODE);
1757	} else {
1758		int node;
1759
1760		for_each_online_node(node) {
1761			cachep->node[node] = kmalloc_node(
1762				sizeof(struct kmem_cache_node), gfp, node);
1763			BUG_ON(!cachep->node[node]);
1764			kmem_cache_node_init(cachep->node[node]);
1765		}
1766	}
1767
1768	cachep->node[numa_mem_id()]->next_reap =
1769			jiffies + REAPTIMEOUT_NODE +
1770			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1771
1772	cpu_cache_get(cachep)->avail = 0;
1773	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1774	cpu_cache_get(cachep)->batchcount = 1;
1775	cpu_cache_get(cachep)->touched = 0;
1776	cachep->batchcount = 1;
1777	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1778	return 0;
1779}
1780
1781slab_flags_t kmem_cache_flags(unsigned int object_size,
1782	slab_flags_t flags, const char *name,
1783	void (*ctor)(void *))
1784{
1785	return flags;
1786}
1787
1788struct kmem_cache *
1789__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1790		   slab_flags_t flags, void (*ctor)(void *))
1791{
1792	struct kmem_cache *cachep;
1793
1794	cachep = find_mergeable(size, align, flags, name, ctor);
1795	if (cachep) {
1796		cachep->refcount++;
1797
1798		/*
1799		 * Adjust the object sizes so that we clear
1800		 * the complete object on kzalloc.
1801		 */
1802		cachep->object_size = max_t(int, cachep->object_size, size);
1803	}
1804	return cachep;
1805}
1806
1807static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1808			size_t size, slab_flags_t flags)
1809{
1810	size_t left;
1811
1812	cachep->num = 0;
1813
1814	/*
1815	 * If slab auto-initialization on free is enabled, store the freelist
1816	 * off-slab, so that its contents don't end up in one of the allocated
1817	 * objects.
1818	 */
1819	if (unlikely(slab_want_init_on_free(cachep)))
1820		return false;
1821
1822	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1823		return false;
1824
1825	left = calculate_slab_order(cachep, size,
1826			flags | CFLGS_OBJFREELIST_SLAB);
1827	if (!cachep->num)
1828		return false;
1829
1830	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1831		return false;
1832
1833	cachep->colour = left / cachep->colour_off;
1834
1835	return true;
1836}
1837
1838static bool set_off_slab_cache(struct kmem_cache *cachep,
1839			size_t size, slab_flags_t flags)
1840{
1841	size_t left;
1842
1843	cachep->num = 0;
1844
1845	/*
1846	 * Always use on-slab management when SLAB_NOLEAKTRACE
1847	 * to avoid recursive calls into kmemleak.
1848	 */
1849	if (flags & SLAB_NOLEAKTRACE)
1850		return false;
1851
1852	/*
1853	 * Size is large, assume best to place the slab management obj
1854	 * off-slab (should allow better packing of objs).
1855	 */
1856	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1857	if (!cachep->num)
1858		return false;
1859
1860	/*
1861	 * If the slab has been placed off-slab, and we have enough space then
1862	 * move it on-slab. This is at the expense of any extra colouring.
1863	 */
1864	if (left >= cachep->num * sizeof(freelist_idx_t))
1865		return false;
1866
1867	cachep->colour = left / cachep->colour_off;
1868
1869	return true;
1870}
1871
1872static bool set_on_slab_cache(struct kmem_cache *cachep,
1873			size_t size, slab_flags_t flags)
1874{
1875	size_t left;
1876
1877	cachep->num = 0;
1878
1879	left = calculate_slab_order(cachep, size, flags);
1880	if (!cachep->num)
1881		return false;
1882
1883	cachep->colour = left / cachep->colour_off;
1884
1885	return true;
1886}
1887
1888/**
1889 * __kmem_cache_create - Create a cache.
1890 * @cachep: cache management descriptor
1891 * @flags: SLAB flags
1892 *
1893 * Returns a ptr to the cache on success, NULL on failure.
1894 * Cannot be called within a int, but can be interrupted.
1895 * The @ctor is run when new pages are allocated by the cache.
1896 *
1897 * The flags are
1898 *
1899 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1900 * to catch references to uninitialised memory.
1901 *
1902 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1903 * for buffer overruns.
1904 *
1905 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1906 * cacheline.  This can be beneficial if you're counting cycles as closely
1907 * as davem.
1908 *
1909 * Return: a pointer to the created cache or %NULL in case of error
1910 */
1911int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1912{
1913	size_t ralign = BYTES_PER_WORD;
1914	gfp_t gfp;
1915	int err;
1916	unsigned int size = cachep->size;
1917
1918#if DEBUG
1919#if FORCED_DEBUG
1920	/*
1921	 * Enable redzoning and last user accounting, except for caches with
1922	 * large objects, if the increased size would increase the object size
1923	 * above the next power of two: caches with object sizes just above a
1924	 * power of two have a significant amount of internal fragmentation.
1925	 */
1926	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1927						2 * sizeof(unsigned long long)))
1928		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1929	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1930		flags |= SLAB_POISON;
1931#endif
1932#endif
1933
1934	/*
1935	 * Check that size is in terms of words.  This is needed to avoid
1936	 * unaligned accesses for some archs when redzoning is used, and makes
1937	 * sure any on-slab bufctl's are also correctly aligned.
1938	 */
1939	size = ALIGN(size, BYTES_PER_WORD);
1940
1941	if (flags & SLAB_RED_ZONE) {
1942		ralign = REDZONE_ALIGN;
1943		/* If redzoning, ensure that the second redzone is suitably
1944		 * aligned, by adjusting the object size accordingly. */
1945		size = ALIGN(size, REDZONE_ALIGN);
1946	}
1947
1948	/* 3) caller mandated alignment */
1949	if (ralign < cachep->align) {
1950		ralign = cachep->align;
1951	}
1952	/* disable debug if necessary */
1953	if (ralign > __alignof__(unsigned long long))
1954		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1955	/*
1956	 * 4) Store it.
1957	 */
1958	cachep->align = ralign;
1959	cachep->colour_off = cache_line_size();
1960	/* Offset must be a multiple of the alignment. */
1961	if (cachep->colour_off < cachep->align)
1962		cachep->colour_off = cachep->align;
1963
1964	if (slab_is_available())
1965		gfp = GFP_KERNEL;
1966	else
1967		gfp = GFP_NOWAIT;
1968
1969#if DEBUG
1970
1971	/*
1972	 * Both debugging options require word-alignment which is calculated
1973	 * into align above.
1974	 */
1975	if (flags & SLAB_RED_ZONE) {
1976		/* add space for red zone words */
1977		cachep->obj_offset += sizeof(unsigned long long);
1978		size += 2 * sizeof(unsigned long long);
1979	}
1980	if (flags & SLAB_STORE_USER) {
1981		/* user store requires one word storage behind the end of
1982		 * the real object. But if the second red zone needs to be
1983		 * aligned to 64 bits, we must allow that much space.
1984		 */
1985		if (flags & SLAB_RED_ZONE)
1986			size += REDZONE_ALIGN;
1987		else
1988			size += BYTES_PER_WORD;
1989	}
1990#endif
1991
1992	kasan_cache_create(cachep, &size, &flags);
1993
1994	size = ALIGN(size, cachep->align);
1995	/*
1996	 * We should restrict the number of objects in a slab to implement
1997	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
1998	 */
1999	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2000		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2001
2002#if DEBUG
2003	/*
2004	 * To activate debug pagealloc, off-slab management is necessary
2005	 * requirement. In early phase of initialization, small sized slab
2006	 * doesn't get initialized so it would not be possible. So, we need
2007	 * to check size >= 256. It guarantees that all necessary small
2008	 * sized slab is initialized in current slab initialization sequence.
2009	 */
2010	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2011		size >= 256 && cachep->object_size > cache_line_size()) {
2012		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2013			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2014
2015			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2016				flags |= CFLGS_OFF_SLAB;
2017				cachep->obj_offset += tmp_size - size;
2018				size = tmp_size;
2019				goto done;
2020			}
2021		}
2022	}
2023#endif
2024
2025	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2026		flags |= CFLGS_OBJFREELIST_SLAB;
2027		goto done;
2028	}
2029
2030	if (set_off_slab_cache(cachep, size, flags)) {
2031		flags |= CFLGS_OFF_SLAB;
2032		goto done;
2033	}
2034
2035	if (set_on_slab_cache(cachep, size, flags))
2036		goto done;
2037
2038	return -E2BIG;
2039
2040done:
2041	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2042	cachep->flags = flags;
2043	cachep->allocflags = __GFP_COMP;
2044	if (flags & SLAB_CACHE_DMA)
2045		cachep->allocflags |= GFP_DMA;
2046	if (flags & SLAB_CACHE_DMA32)
2047		cachep->allocflags |= GFP_DMA32;
2048	if (flags & SLAB_RECLAIM_ACCOUNT)
2049		cachep->allocflags |= __GFP_RECLAIMABLE;
2050	cachep->size = size;
2051	cachep->reciprocal_buffer_size = reciprocal_value(size);
2052
2053#if DEBUG
2054	/*
2055	 * If we're going to use the generic kernel_map_pages()
2056	 * poisoning, then it's going to smash the contents of
2057	 * the redzone and userword anyhow, so switch them off.
2058	 */
2059	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2060		(cachep->flags & SLAB_POISON) &&
2061		is_debug_pagealloc_cache(cachep))
2062		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063#endif
2064
2065	if (OFF_SLAB(cachep)) {
2066		cachep->freelist_cache =
2067			kmalloc_slab(cachep->freelist_size, 0u);
2068	}
2069
2070	err = setup_cpu_cache(cachep, gfp);
2071	if (err) {
2072		__kmem_cache_release(cachep);
2073		return err;
2074	}
2075
2076	return 0;
2077}
2078
2079#if DEBUG
2080static void check_irq_off(void)
2081{
2082	BUG_ON(!irqs_disabled());
2083}
2084
2085static void check_irq_on(void)
2086{
2087	BUG_ON(irqs_disabled());
2088}
2089
2090static void check_mutex_acquired(void)
2091{
2092	BUG_ON(!mutex_is_locked(&slab_mutex));
2093}
2094
2095static void check_spinlock_acquired(struct kmem_cache *cachep)
2096{
2097#ifdef CONFIG_SMP
2098	check_irq_off();
2099	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2100#endif
2101}
2102
2103static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2104{
2105#ifdef CONFIG_SMP
2106	check_irq_off();
2107	assert_spin_locked(&get_node(cachep, node)->list_lock);
2108#endif
2109}
2110
2111#else
2112#define check_irq_off()	do { } while(0)
2113#define check_irq_on()	do { } while(0)
2114#define check_mutex_acquired()	do { } while(0)
2115#define check_spinlock_acquired(x) do { } while(0)
2116#define check_spinlock_acquired_node(x, y) do { } while(0)
2117#endif
2118
2119static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2120				int node, bool free_all, struct list_head *list)
2121{
2122	int tofree;
2123
2124	if (!ac || !ac->avail)
2125		return;
2126
2127	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2128	if (tofree > ac->avail)
2129		tofree = (ac->avail + 1) / 2;
2130
2131	free_block(cachep, ac->entry, tofree, node, list);
2132	ac->avail -= tofree;
2133	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2134}
2135
2136static void do_drain(void *arg)
2137{
2138	struct kmem_cache *cachep = arg;
2139	struct array_cache *ac;
2140	int node = numa_mem_id();
2141	struct kmem_cache_node *n;
2142	LIST_HEAD(list);
2143
2144	check_irq_off();
2145	ac = cpu_cache_get(cachep);
2146	n = get_node(cachep, node);
2147	spin_lock(&n->list_lock);
2148	free_block(cachep, ac->entry, ac->avail, node, &list);
2149	spin_unlock(&n->list_lock);
2150	slabs_destroy(cachep, &list);
2151	ac->avail = 0;
 
2152}
2153
2154static void drain_cpu_caches(struct kmem_cache *cachep)
2155{
2156	struct kmem_cache_node *n;
2157	int node;
2158	LIST_HEAD(list);
2159
2160	on_each_cpu(do_drain, cachep, 1);
2161	check_irq_on();
2162	for_each_kmem_cache_node(cachep, node, n)
2163		if (n->alien)
2164			drain_alien_cache(cachep, n->alien);
2165
2166	for_each_kmem_cache_node(cachep, node, n) {
2167		spin_lock_irq(&n->list_lock);
2168		drain_array_locked(cachep, n->shared, node, true, &list);
2169		spin_unlock_irq(&n->list_lock);
2170
2171		slabs_destroy(cachep, &list);
2172	}
2173}
2174
2175/*
2176 * Remove slabs from the list of free slabs.
2177 * Specify the number of slabs to drain in tofree.
2178 *
2179 * Returns the actual number of slabs released.
2180 */
2181static int drain_freelist(struct kmem_cache *cache,
2182			struct kmem_cache_node *n, int tofree)
2183{
2184	struct list_head *p;
2185	int nr_freed;
2186	struct page *page;
2187
2188	nr_freed = 0;
2189	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2190
2191		spin_lock_irq(&n->list_lock);
2192		p = n->slabs_free.prev;
2193		if (p == &n->slabs_free) {
2194			spin_unlock_irq(&n->list_lock);
2195			goto out;
2196		}
2197
2198		page = list_entry(p, struct page, slab_list);
2199		list_del(&page->slab_list);
2200		n->free_slabs--;
2201		n->total_slabs--;
2202		/*
2203		 * Safe to drop the lock. The slab is no longer linked
2204		 * to the cache.
2205		 */
2206		n->free_objects -= cache->num;
2207		spin_unlock_irq(&n->list_lock);
2208		slab_destroy(cache, page);
2209		nr_freed++;
 
 
2210	}
2211out:
2212	return nr_freed;
2213}
2214
2215bool __kmem_cache_empty(struct kmem_cache *s)
2216{
2217	int node;
2218	struct kmem_cache_node *n;
2219
2220	for_each_kmem_cache_node(s, node, n)
2221		if (!list_empty(&n->slabs_full) ||
2222		    !list_empty(&n->slabs_partial))
2223			return false;
2224	return true;
2225}
2226
2227int __kmem_cache_shrink(struct kmem_cache *cachep)
2228{
2229	int ret = 0;
2230	int node;
2231	struct kmem_cache_node *n;
2232
2233	drain_cpu_caches(cachep);
2234
2235	check_irq_on();
2236	for_each_kmem_cache_node(cachep, node, n) {
2237		drain_freelist(cachep, n, INT_MAX);
2238
2239		ret += !list_empty(&n->slabs_full) ||
2240			!list_empty(&n->slabs_partial);
2241	}
2242	return (ret ? 1 : 0);
2243}
2244
2245#ifdef CONFIG_MEMCG
2246void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2247{
2248	__kmem_cache_shrink(cachep);
2249}
2250
2251void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
2252{
2253}
2254#endif
2255
2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257{
2258	return __kmem_cache_shrink(cachep);
2259}
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
2262{
2263	int i;
2264	struct kmem_cache_node *n;
2265
2266	cache_random_seq_destroy(cachep);
2267
2268	free_percpu(cachep->cpu_cache);
2269
2270	/* NUMA: free the node structures */
2271	for_each_kmem_cache_node(cachep, i, n) {
2272		kfree(n->shared);
2273		free_alien_cache(n->alien);
2274		kfree(n);
2275		cachep->node[i] = NULL;
2276	}
2277}
2278
2279/*
2280 * Get the memory for a slab management obj.
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2292 */
2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294				   struct page *page, int colour_off,
2295				   gfp_t local_flags, int nodeid)
2296{
2297	void *freelist;
2298	void *addr = page_address(page);
2299
2300	page->s_mem = addr + colour_off;
2301	page->active = 0;
2302
2303	if (OBJFREELIST_SLAB(cachep))
2304		freelist = NULL;
2305	else if (OFF_SLAB(cachep)) {
2306		/* Slab management obj is off-slab. */
2307		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308					      local_flags, nodeid);
2309		if (!freelist)
2310			return NULL;
2311	} else {
2312		/* We will use last bytes at the slab for freelist */
2313		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2314				cachep->freelist_size;
2315	}
2316
2317	return freelist;
2318}
2319
2320static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2321{
2322	return ((freelist_idx_t *)page->freelist)[idx];
2323}
2324
2325static inline void set_free_obj(struct page *page,
2326					unsigned int idx, freelist_idx_t val)
2327{
2328	((freelist_idx_t *)(page->freelist))[idx] = val;
2329}
2330
2331static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2332{
2333#if DEBUG
2334	int i;
2335
2336	for (i = 0; i < cachep->num; i++) {
2337		void *objp = index_to_obj(cachep, page, i);
2338
2339		if (cachep->flags & SLAB_STORE_USER)
2340			*dbg_userword(cachep, objp) = NULL;
2341
2342		if (cachep->flags & SLAB_RED_ZONE) {
2343			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2344			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2345		}
2346		/*
2347		 * Constructors are not allowed to allocate memory from the same
2348		 * cache which they are a constructor for.  Otherwise, deadlock.
2349		 * They must also be threaded.
2350		 */
2351		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2352			kasan_unpoison_object_data(cachep,
2353						   objp + obj_offset(cachep));
2354			cachep->ctor(objp + obj_offset(cachep));
2355			kasan_poison_object_data(
2356				cachep, objp + obj_offset(cachep));
2357		}
2358
2359		if (cachep->flags & SLAB_RED_ZONE) {
2360			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2361				slab_error(cachep, "constructor overwrote the end of an object");
2362			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2363				slab_error(cachep, "constructor overwrote the start of an object");
2364		}
2365		/* need to poison the objs? */
2366		if (cachep->flags & SLAB_POISON) {
2367			poison_obj(cachep, objp, POISON_FREE);
2368			slab_kernel_map(cachep, objp, 0);
2369		}
2370	}
2371#endif
2372}
2373
2374#ifdef CONFIG_SLAB_FREELIST_RANDOM
2375/* Hold information during a freelist initialization */
2376union freelist_init_state {
2377	struct {
2378		unsigned int pos;
2379		unsigned int *list;
2380		unsigned int count;
2381	};
2382	struct rnd_state rnd_state;
2383};
2384
2385/*
2386 * Initialize the state based on the randomization methode available.
2387 * return true if the pre-computed list is available, false otherwize.
2388 */
2389static bool freelist_state_initialize(union freelist_init_state *state,
2390				struct kmem_cache *cachep,
2391				unsigned int count)
2392{
2393	bool ret;
2394	unsigned int rand;
2395
2396	/* Use best entropy available to define a random shift */
2397	rand = get_random_int();
2398
2399	/* Use a random state if the pre-computed list is not available */
2400	if (!cachep->random_seq) {
2401		prandom_seed_state(&state->rnd_state, rand);
2402		ret = false;
2403	} else {
2404		state->list = cachep->random_seq;
2405		state->count = count;
2406		state->pos = rand % count;
2407		ret = true;
2408	}
2409	return ret;
2410}
2411
2412/* Get the next entry on the list and randomize it using a random shift */
2413static freelist_idx_t next_random_slot(union freelist_init_state *state)
2414{
2415	if (state->pos >= state->count)
2416		state->pos = 0;
2417	return state->list[state->pos++];
2418}
2419
2420/* Swap two freelist entries */
2421static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2422{
2423	swap(((freelist_idx_t *)page->freelist)[a],
2424		((freelist_idx_t *)page->freelist)[b]);
2425}
2426
2427/*
2428 * Shuffle the freelist initialization state based on pre-computed lists.
2429 * return true if the list was successfully shuffled, false otherwise.
2430 */
2431static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2432{
2433	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2434	union freelist_init_state state;
2435	bool precomputed;
2436
2437	if (count < 2)
2438		return false;
2439
2440	precomputed = freelist_state_initialize(&state, cachep, count);
2441
2442	/* Take a random entry as the objfreelist */
2443	if (OBJFREELIST_SLAB(cachep)) {
2444		if (!precomputed)
2445			objfreelist = count - 1;
2446		else
2447			objfreelist = next_random_slot(&state);
2448		page->freelist = index_to_obj(cachep, page, objfreelist) +
2449						obj_offset(cachep);
2450		count--;
2451	}
2452
2453	/*
2454	 * On early boot, generate the list dynamically.
2455	 * Later use a pre-computed list for speed.
2456	 */
2457	if (!precomputed) {
2458		for (i = 0; i < count; i++)
2459			set_free_obj(page, i, i);
2460
2461		/* Fisher-Yates shuffle */
2462		for (i = count - 1; i > 0; i--) {
2463			rand = prandom_u32_state(&state.rnd_state);
2464			rand %= (i + 1);
2465			swap_free_obj(page, i, rand);
2466		}
2467	} else {
2468		for (i = 0; i < count; i++)
2469			set_free_obj(page, i, next_random_slot(&state));
2470	}
2471
2472	if (OBJFREELIST_SLAB(cachep))
2473		set_free_obj(page, cachep->num - 1, objfreelist);
2474
2475	return true;
2476}
2477#else
2478static inline bool shuffle_freelist(struct kmem_cache *cachep,
2479				struct page *page)
2480{
2481	return false;
2482}
2483#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2484
2485static void cache_init_objs(struct kmem_cache *cachep,
2486			    struct page *page)
2487{
2488	int i;
2489	void *objp;
2490	bool shuffled;
2491
2492	cache_init_objs_debug(cachep, page);
2493
2494	/* Try to randomize the freelist if enabled */
2495	shuffled = shuffle_freelist(cachep, page);
2496
2497	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2498		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2499						obj_offset(cachep);
2500	}
2501
2502	for (i = 0; i < cachep->num; i++) {
2503		objp = index_to_obj(cachep, page, i);
2504		objp = kasan_init_slab_obj(cachep, objp);
2505
2506		/* constructor could break poison info */
2507		if (DEBUG == 0 && cachep->ctor) {
2508			kasan_unpoison_object_data(cachep, objp);
2509			cachep->ctor(objp);
2510			kasan_poison_object_data(cachep, objp);
2511		}
2512
2513		if (!shuffled)
2514			set_free_obj(page, i, i);
2515	}
2516}
2517
2518static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2519{
2520	void *objp;
2521
2522	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2523	page->active++;
2524
2525	return objp;
2526}
2527
2528static void slab_put_obj(struct kmem_cache *cachep,
2529			struct page *page, void *objp)
2530{
2531	unsigned int objnr = obj_to_index(cachep, page, objp);
2532#if DEBUG
2533	unsigned int i;
2534
2535	/* Verify double free bug */
2536	for (i = page->active; i < cachep->num; i++) {
2537		if (get_free_obj(page, i) == objnr) {
2538			pr_err("slab: double free detected in cache '%s', objp %px\n",
2539			       cachep->name, objp);
2540			BUG();
2541		}
2542	}
2543#endif
2544	page->active--;
2545	if (!page->freelist)
2546		page->freelist = objp + obj_offset(cachep);
2547
2548	set_free_obj(page, page->active, objnr);
2549}
2550
2551/*
2552 * Map pages beginning at addr to the given cache and slab. This is required
2553 * for the slab allocator to be able to lookup the cache and slab of a
2554 * virtual address for kfree, ksize, and slab debugging.
2555 */
2556static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2557			   void *freelist)
2558{
2559	page->slab_cache = cache;
2560	page->freelist = freelist;
2561}
2562
2563/*
2564 * Grow (by 1) the number of slabs within a cache.  This is called by
2565 * kmem_cache_alloc() when there are no active objs left in a cache.
2566 */
2567static struct page *cache_grow_begin(struct kmem_cache *cachep,
2568				gfp_t flags, int nodeid)
2569{
2570	void *freelist;
2571	size_t offset;
2572	gfp_t local_flags;
2573	int page_node;
2574	struct kmem_cache_node *n;
2575	struct page *page;
2576
2577	/*
2578	 * Be lazy and only check for valid flags here,  keeping it out of the
2579	 * critical path in kmem_cache_alloc().
2580	 */
2581	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2582		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2583		flags &= ~GFP_SLAB_BUG_MASK;
2584		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2585				invalid_mask, &invalid_mask, flags, &flags);
2586		dump_stack();
2587	}
2588	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2589	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2590
2591	check_irq_off();
2592	if (gfpflags_allow_blocking(local_flags))
2593		local_irq_enable();
2594
2595	/*
2596	 * Get mem for the objs.  Attempt to allocate a physical page from
2597	 * 'nodeid'.
2598	 */
2599	page = kmem_getpages(cachep, local_flags, nodeid);
2600	if (!page)
2601		goto failed;
2602
2603	page_node = page_to_nid(page);
2604	n = get_node(cachep, page_node);
2605
2606	/* Get colour for the slab, and cal the next value. */
2607	n->colour_next++;
2608	if (n->colour_next >= cachep->colour)
2609		n->colour_next = 0;
2610
2611	offset = n->colour_next;
2612	if (offset >= cachep->colour)
2613		offset = 0;
2614
2615	offset *= cachep->colour_off;
2616
2617	/*
2618	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2619	 * page_address() in the latter returns a non-tagged pointer,
2620	 * as it should be for slab pages.
2621	 */
2622	kasan_poison_slab(page);
2623
2624	/* Get slab management. */
2625	freelist = alloc_slabmgmt(cachep, page, offset,
2626			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2627	if (OFF_SLAB(cachep) && !freelist)
2628		goto opps1;
2629
2630	slab_map_pages(cachep, page, freelist);
 
2631
2632	cache_init_objs(cachep, page);
2633
2634	if (gfpflags_allow_blocking(local_flags))
2635		local_irq_disable();
2636
2637	return page;
2638
2639opps1:
2640	kmem_freepages(cachep, page);
2641failed:
2642	if (gfpflags_allow_blocking(local_flags))
2643		local_irq_disable();
2644	return NULL;
2645}
2646
2647static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2648{
2649	struct kmem_cache_node *n;
2650	void *list = NULL;
2651
2652	check_irq_off();
2653
2654	if (!page)
2655		return;
2656
2657	INIT_LIST_HEAD(&page->slab_list);
2658	n = get_node(cachep, page_to_nid(page));
2659
2660	spin_lock(&n->list_lock);
2661	n->total_slabs++;
2662	if (!page->active) {
2663		list_add_tail(&page->slab_list, &n->slabs_free);
2664		n->free_slabs++;
2665	} else
2666		fixup_slab_list(cachep, n, page, &list);
2667
2668	STATS_INC_GROWN(cachep);
2669	n->free_objects += cachep->num - page->active;
2670	spin_unlock(&n->list_lock);
2671
2672	fixup_objfreelist_debug(cachep, &list);
2673}
2674
2675#if DEBUG
2676
2677/*
2678 * Perform extra freeing checks:
2679 * - detect bad pointers.
2680 * - POISON/RED_ZONE checking
2681 */
2682static void kfree_debugcheck(const void *objp)
2683{
2684	if (!virt_addr_valid(objp)) {
2685		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2686		       (unsigned long)objp);
2687		BUG();
2688	}
2689}
2690
2691static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2692{
2693	unsigned long long redzone1, redzone2;
2694
2695	redzone1 = *dbg_redzone1(cache, obj);
2696	redzone2 = *dbg_redzone2(cache, obj);
2697
2698	/*
2699	 * Redzone is ok.
2700	 */
2701	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2702		return;
2703
2704	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2705		slab_error(cache, "double free detected");
2706	else
2707		slab_error(cache, "memory outside object was overwritten");
2708
2709	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2710	       obj, redzone1, redzone2);
2711}
2712
2713static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2714				   unsigned long caller)
2715{
2716	unsigned int objnr;
2717	struct page *page;
2718
2719	BUG_ON(virt_to_cache(objp) != cachep);
2720
2721	objp -= obj_offset(cachep);
2722	kfree_debugcheck(objp);
2723	page = virt_to_head_page(objp);
2724
2725	if (cachep->flags & SLAB_RED_ZONE) {
2726		verify_redzone_free(cachep, objp);
2727		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2728		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2729	}
2730	if (cachep->flags & SLAB_STORE_USER)
2731		*dbg_userword(cachep, objp) = (void *)caller;
2732
2733	objnr = obj_to_index(cachep, page, objp);
2734
2735	BUG_ON(objnr >= cachep->num);
2736	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2737
2738	if (cachep->flags & SLAB_POISON) {
2739		poison_obj(cachep, objp, POISON_FREE);
2740		slab_kernel_map(cachep, objp, 0);
2741	}
2742	return objp;
2743}
2744
2745#else
2746#define kfree_debugcheck(x) do { } while(0)
2747#define cache_free_debugcheck(x,objp,z) (objp)
2748#endif
2749
2750static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2751						void **list)
2752{
2753#if DEBUG
2754	void *next = *list;
2755	void *objp;
2756
2757	while (next) {
2758		objp = next - obj_offset(cachep);
2759		next = *(void **)next;
2760		poison_obj(cachep, objp, POISON_FREE);
2761	}
2762#endif
2763}
2764
2765static inline void fixup_slab_list(struct kmem_cache *cachep,
2766				struct kmem_cache_node *n, struct page *page,
2767				void **list)
2768{
2769	/* move slabp to correct slabp list: */
2770	list_del(&page->slab_list);
2771	if (page->active == cachep->num) {
2772		list_add(&page->slab_list, &n->slabs_full);
2773		if (OBJFREELIST_SLAB(cachep)) {
2774#if DEBUG
2775			/* Poisoning will be done without holding the lock */
2776			if (cachep->flags & SLAB_POISON) {
2777				void **objp = page->freelist;
2778
2779				*objp = *list;
2780				*list = objp;
2781			}
2782#endif
2783			page->freelist = NULL;
2784		}
2785	} else
2786		list_add(&page->slab_list, &n->slabs_partial);
2787}
2788
2789/* Try to find non-pfmemalloc slab if needed */
2790static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2791					struct page *page, bool pfmemalloc)
2792{
2793	if (!page)
2794		return NULL;
2795
2796	if (pfmemalloc)
2797		return page;
2798
2799	if (!PageSlabPfmemalloc(page))
2800		return page;
2801
2802	/* No need to keep pfmemalloc slab if we have enough free objects */
2803	if (n->free_objects > n->free_limit) {
2804		ClearPageSlabPfmemalloc(page);
2805		return page;
2806	}
2807
2808	/* Move pfmemalloc slab to the end of list to speed up next search */
2809	list_del(&page->slab_list);
2810	if (!page->active) {
2811		list_add_tail(&page->slab_list, &n->slabs_free);
2812		n->free_slabs++;
2813	} else
2814		list_add_tail(&page->slab_list, &n->slabs_partial);
2815
2816	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2817		if (!PageSlabPfmemalloc(page))
2818			return page;
2819	}
2820
2821	n->free_touched = 1;
2822	list_for_each_entry(page, &n->slabs_free, slab_list) {
2823		if (!PageSlabPfmemalloc(page)) {
2824			n->free_slabs--;
2825			return page;
2826		}
2827	}
2828
2829	return NULL;
2830}
2831
2832static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2833{
2834	struct page *page;
2835
2836	assert_spin_locked(&n->list_lock);
2837	page = list_first_entry_or_null(&n->slabs_partial, struct page,
2838					slab_list);
2839	if (!page) {
2840		n->free_touched = 1;
2841		page = list_first_entry_or_null(&n->slabs_free, struct page,
2842						slab_list);
2843		if (page)
2844			n->free_slabs--;
2845	}
2846
2847	if (sk_memalloc_socks())
2848		page = get_valid_first_slab(n, page, pfmemalloc);
2849
2850	return page;
2851}
2852
2853static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2854				struct kmem_cache_node *n, gfp_t flags)
2855{
2856	struct page *page;
2857	void *obj;
2858	void *list = NULL;
2859
2860	if (!gfp_pfmemalloc_allowed(flags))
2861		return NULL;
2862
2863	spin_lock(&n->list_lock);
2864	page = get_first_slab(n, true);
2865	if (!page) {
2866		spin_unlock(&n->list_lock);
2867		return NULL;
2868	}
2869
2870	obj = slab_get_obj(cachep, page);
2871	n->free_objects--;
2872
2873	fixup_slab_list(cachep, n, page, &list);
2874
2875	spin_unlock(&n->list_lock);
2876	fixup_objfreelist_debug(cachep, &list);
2877
2878	return obj;
2879}
2880
2881/*
2882 * Slab list should be fixed up by fixup_slab_list() for existing slab
2883 * or cache_grow_end() for new slab
2884 */
2885static __always_inline int alloc_block(struct kmem_cache *cachep,
2886		struct array_cache *ac, struct page *page, int batchcount)
2887{
2888	/*
2889	 * There must be at least one object available for
2890	 * allocation.
2891	 */
2892	BUG_ON(page->active >= cachep->num);
2893
2894	while (page->active < cachep->num && batchcount--) {
2895		STATS_INC_ALLOCED(cachep);
2896		STATS_INC_ACTIVE(cachep);
2897		STATS_SET_HIGH(cachep);
2898
2899		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2900	}
2901
2902	return batchcount;
2903}
2904
2905static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2906{
2907	int batchcount;
2908	struct kmem_cache_node *n;
2909	struct array_cache *ac, *shared;
2910	int node;
2911	void *list = NULL;
2912	struct page *page;
2913
2914	check_irq_off();
2915	node = numa_mem_id();
2916
2917	ac = cpu_cache_get(cachep);
2918	batchcount = ac->batchcount;
2919	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2920		/*
2921		 * If there was little recent activity on this cache, then
2922		 * perform only a partial refill.  Otherwise we could generate
2923		 * refill bouncing.
2924		 */
2925		batchcount = BATCHREFILL_LIMIT;
2926	}
2927	n = get_node(cachep, node);
2928
2929	BUG_ON(ac->avail > 0 || !n);
2930	shared = READ_ONCE(n->shared);
2931	if (!n->free_objects && (!shared || !shared->avail))
2932		goto direct_grow;
2933
2934	spin_lock(&n->list_lock);
2935	shared = READ_ONCE(n->shared);
2936
2937	/* See if we can refill from the shared array */
2938	if (shared && transfer_objects(ac, shared, batchcount)) {
2939		shared->touched = 1;
2940		goto alloc_done;
2941	}
2942
2943	while (batchcount > 0) {
2944		/* Get slab alloc is to come from. */
2945		page = get_first_slab(n, false);
2946		if (!page)
2947			goto must_grow;
2948
2949		check_spinlock_acquired(cachep);
2950
2951		batchcount = alloc_block(cachep, ac, page, batchcount);
2952		fixup_slab_list(cachep, n, page, &list);
2953	}
2954
2955must_grow:
2956	n->free_objects -= ac->avail;
2957alloc_done:
2958	spin_unlock(&n->list_lock);
2959	fixup_objfreelist_debug(cachep, &list);
2960
2961direct_grow:
2962	if (unlikely(!ac->avail)) {
2963		/* Check if we can use obj in pfmemalloc slab */
2964		if (sk_memalloc_socks()) {
2965			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2966
2967			if (obj)
2968				return obj;
2969		}
2970
2971		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2972
2973		/*
2974		 * cache_grow_begin() can reenable interrupts,
2975		 * then ac could change.
2976		 */
2977		ac = cpu_cache_get(cachep);
2978		if (!ac->avail && page)
2979			alloc_block(cachep, ac, page, batchcount);
2980		cache_grow_end(cachep, page);
2981
2982		if (!ac->avail)
2983			return NULL;
2984	}
2985	ac->touched = 1;
2986
2987	return ac->entry[--ac->avail];
2988}
2989
2990static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2991						gfp_t flags)
2992{
2993	might_sleep_if(gfpflags_allow_blocking(flags));
2994}
2995
2996#if DEBUG
2997static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2998				gfp_t flags, void *objp, unsigned long caller)
2999{
3000	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3001	if (!objp)
3002		return objp;
3003	if (cachep->flags & SLAB_POISON) {
3004		check_poison_obj(cachep, objp);
3005		slab_kernel_map(cachep, objp, 1);
3006		poison_obj(cachep, objp, POISON_INUSE);
3007	}
3008	if (cachep->flags & SLAB_STORE_USER)
3009		*dbg_userword(cachep, objp) = (void *)caller;
3010
3011	if (cachep->flags & SLAB_RED_ZONE) {
3012		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3013				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3014			slab_error(cachep, "double free, or memory outside object was overwritten");
3015			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3016			       objp, *dbg_redzone1(cachep, objp),
3017			       *dbg_redzone2(cachep, objp));
3018		}
3019		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3020		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3021	}
3022
3023	objp += obj_offset(cachep);
3024	if (cachep->ctor && cachep->flags & SLAB_POISON)
3025		cachep->ctor(objp);
3026	if (ARCH_SLAB_MINALIGN &&
3027	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3028		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3029		       objp, (int)ARCH_SLAB_MINALIGN);
3030	}
3031	return objp;
3032}
3033#else
3034#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3035#endif
3036
3037static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3038{
3039	void *objp;
3040	struct array_cache *ac;
3041
3042	check_irq_off();
3043
3044	ac = cpu_cache_get(cachep);
3045	if (likely(ac->avail)) {
3046		ac->touched = 1;
3047		objp = ac->entry[--ac->avail];
3048
3049		STATS_INC_ALLOCHIT(cachep);
3050		goto out;
3051	}
3052
3053	STATS_INC_ALLOCMISS(cachep);
3054	objp = cache_alloc_refill(cachep, flags);
3055	/*
3056	 * the 'ac' may be updated by cache_alloc_refill(),
3057	 * and kmemleak_erase() requires its correct value.
3058	 */
3059	ac = cpu_cache_get(cachep);
3060
3061out:
3062	/*
3063	 * To avoid a false negative, if an object that is in one of the
3064	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3065	 * treat the array pointers as a reference to the object.
3066	 */
3067	if (objp)
3068		kmemleak_erase(&ac->entry[ac->avail]);
3069	return objp;
3070}
3071
3072#ifdef CONFIG_NUMA
 
 
3073/*
3074 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3075 *
3076 * If we are in_interrupt, then process context, including cpusets and
3077 * mempolicy, may not apply and should not be used for allocation policy.
3078 */
3079static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3080{
3081	int nid_alloc, nid_here;
3082
3083	if (in_interrupt() || (flags & __GFP_THISNODE))
3084		return NULL;
3085	nid_alloc = nid_here = numa_mem_id();
3086	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3087		nid_alloc = cpuset_slab_spread_node();
3088	else if (current->mempolicy)
3089		nid_alloc = mempolicy_slab_node();
3090	if (nid_alloc != nid_here)
3091		return ____cache_alloc_node(cachep, flags, nid_alloc);
3092	return NULL;
3093}
3094
3095/*
3096 * Fallback function if there was no memory available and no objects on a
3097 * certain node and fall back is permitted. First we scan all the
3098 * available node for available objects. If that fails then we
3099 * perform an allocation without specifying a node. This allows the page
3100 * allocator to do its reclaim / fallback magic. We then insert the
3101 * slab into the proper nodelist and then allocate from it.
3102 */
3103static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3104{
3105	struct zonelist *zonelist;
3106	struct zoneref *z;
3107	struct zone *zone;
3108	enum zone_type high_zoneidx = gfp_zone(flags);
3109	void *obj = NULL;
3110	struct page *page;
3111	int nid;
3112	unsigned int cpuset_mems_cookie;
3113
3114	if (flags & __GFP_THISNODE)
3115		return NULL;
3116
3117retry_cpuset:
3118	cpuset_mems_cookie = read_mems_allowed_begin();
3119	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3120
3121retry:
3122	/*
3123	 * Look through allowed nodes for objects available
3124	 * from existing per node queues.
3125	 */
3126	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3127		nid = zone_to_nid(zone);
3128
3129		if (cpuset_zone_allowed(zone, flags) &&
3130			get_node(cache, nid) &&
3131			get_node(cache, nid)->free_objects) {
3132				obj = ____cache_alloc_node(cache,
3133					gfp_exact_node(flags), nid);
3134				if (obj)
3135					break;
3136		}
3137	}
3138
3139	if (!obj) {
3140		/*
3141		 * This allocation will be performed within the constraints
3142		 * of the current cpuset / memory policy requirements.
3143		 * We may trigger various forms of reclaim on the allowed
3144		 * set and go into memory reserves if necessary.
3145		 */
3146		page = cache_grow_begin(cache, flags, numa_mem_id());
3147		cache_grow_end(cache, page);
3148		if (page) {
3149			nid = page_to_nid(page);
3150			obj = ____cache_alloc_node(cache,
3151				gfp_exact_node(flags), nid);
3152
3153			/*
3154			 * Another processor may allocate the objects in
3155			 * the slab since we are not holding any locks.
3156			 */
3157			if (!obj)
3158				goto retry;
3159		}
3160	}
3161
3162	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3163		goto retry_cpuset;
3164	return obj;
3165}
3166
3167/*
3168 * A interface to enable slab creation on nodeid
3169 */
3170static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3171				int nodeid)
3172{
3173	struct page *page;
3174	struct kmem_cache_node *n;
3175	void *obj = NULL;
3176	void *list = NULL;
3177
3178	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3179	n = get_node(cachep, nodeid);
3180	BUG_ON(!n);
3181
3182	check_irq_off();
3183	spin_lock(&n->list_lock);
3184	page = get_first_slab(n, false);
3185	if (!page)
3186		goto must_grow;
3187
3188	check_spinlock_acquired_node(cachep, nodeid);
3189
3190	STATS_INC_NODEALLOCS(cachep);
3191	STATS_INC_ACTIVE(cachep);
3192	STATS_SET_HIGH(cachep);
3193
3194	BUG_ON(page->active == cachep->num);
3195
3196	obj = slab_get_obj(cachep, page);
3197	n->free_objects--;
3198
3199	fixup_slab_list(cachep, n, page, &list);
3200
3201	spin_unlock(&n->list_lock);
3202	fixup_objfreelist_debug(cachep, &list);
3203	return obj;
3204
3205must_grow:
3206	spin_unlock(&n->list_lock);
3207	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3208	if (page) {
3209		/* This slab isn't counted yet so don't update free_objects */
3210		obj = slab_get_obj(cachep, page);
3211	}
3212	cache_grow_end(cachep, page);
3213
3214	return obj ? obj : fallback_alloc(cachep, flags);
3215}
3216
3217static __always_inline void *
3218slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3219		   unsigned long caller)
3220{
3221	unsigned long save_flags;
3222	void *ptr;
3223	int slab_node = numa_mem_id();
3224
3225	flags &= gfp_allowed_mask;
3226	cachep = slab_pre_alloc_hook(cachep, flags);
3227	if (unlikely(!cachep))
3228		return NULL;
3229
3230	cache_alloc_debugcheck_before(cachep, flags);
3231	local_irq_save(save_flags);
3232
3233	if (nodeid == NUMA_NO_NODE)
3234		nodeid = slab_node;
3235
3236	if (unlikely(!get_node(cachep, nodeid))) {
3237		/* Node not bootstrapped yet */
3238		ptr = fallback_alloc(cachep, flags);
3239		goto out;
3240	}
3241
3242	if (nodeid == slab_node) {
3243		/*
3244		 * Use the locally cached objects if possible.
3245		 * However ____cache_alloc does not allow fallback
3246		 * to other nodes. It may fail while we still have
3247		 * objects on other nodes available.
3248		 */
3249		ptr = ____cache_alloc(cachep, flags);
3250		if (ptr)
3251			goto out;
3252	}
3253	/* ___cache_alloc_node can fall back to other nodes */
3254	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3255  out:
3256	local_irq_restore(save_flags);
3257	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3258
3259	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3260		memset(ptr, 0, cachep->object_size);
3261
3262	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3263	return ptr;
3264}
3265
3266static __always_inline void *
3267__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3268{
3269	void *objp;
3270
3271	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3272		objp = alternate_node_alloc(cache, flags);
3273		if (objp)
3274			goto out;
3275	}
3276	objp = ____cache_alloc(cache, flags);
3277
3278	/*
3279	 * We may just have run out of memory on the local node.
3280	 * ____cache_alloc_node() knows how to locate memory on other nodes
3281	 */
3282	if (!objp)
3283		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3284
3285  out:
3286	return objp;
3287}
3288#else
3289
3290static __always_inline void *
3291__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3292{
3293	return ____cache_alloc(cachep, flags);
3294}
3295
3296#endif /* CONFIG_NUMA */
3297
3298static __always_inline void *
3299slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
 
3300{
3301	unsigned long save_flags;
3302	void *objp;
 
 
3303
3304	flags &= gfp_allowed_mask;
3305	cachep = slab_pre_alloc_hook(cachep, flags);
3306	if (unlikely(!cachep))
3307		return NULL;
3308
3309	cache_alloc_debugcheck_before(cachep, flags);
 
 
 
3310	local_irq_save(save_flags);
3311	objp = __do_cache_alloc(cachep, flags);
3312	local_irq_restore(save_flags);
3313	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3314	prefetchw(objp);
 
3315
3316	if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3317		memset(objp, 0, cachep->object_size);
3318
3319	slab_post_alloc_hook(cachep, flags, 1, &objp);
3320	return objp;
3321}
3322
 
 
 
 
 
 
 
 
3323/*
3324 * Caller needs to acquire correct kmem_cache_node's list_lock
3325 * @list: List of detached free slabs should be freed by caller
3326 */
3327static void free_block(struct kmem_cache *cachep, void **objpp,
3328			int nr_objects, int node, struct list_head *list)
3329{
3330	int i;
3331	struct kmem_cache_node *n = get_node(cachep, node);
3332	struct page *page;
3333
3334	n->free_objects += nr_objects;
3335
3336	for (i = 0; i < nr_objects; i++) {
3337		void *objp;
3338		struct page *page;
3339
3340		objp = objpp[i];
3341
3342		page = virt_to_head_page(objp);
3343		list_del(&page->slab_list);
3344		check_spinlock_acquired_node(cachep, node);
3345		slab_put_obj(cachep, page, objp);
3346		STATS_DEC_ACTIVE(cachep);
3347
3348		/* fixup slab chains */
3349		if (page->active == 0) {
3350			list_add(&page->slab_list, &n->slabs_free);
3351			n->free_slabs++;
3352		} else {
3353			/* Unconditionally move a slab to the end of the
3354			 * partial list on free - maximum time for the
3355			 * other objects to be freed, too.
3356			 */
3357			list_add_tail(&page->slab_list, &n->slabs_partial);
3358		}
3359	}
3360
3361	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3362		n->free_objects -= cachep->num;
3363
3364		page = list_last_entry(&n->slabs_free, struct page, slab_list);
3365		list_move(&page->slab_list, list);
3366		n->free_slabs--;
3367		n->total_slabs--;
3368	}
3369}
3370
3371static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3372{
3373	int batchcount;
3374	struct kmem_cache_node *n;
3375	int node = numa_mem_id();
3376	LIST_HEAD(list);
3377
3378	batchcount = ac->batchcount;
3379
3380	check_irq_off();
3381	n = get_node(cachep, node);
3382	spin_lock(&n->list_lock);
3383	if (n->shared) {
3384		struct array_cache *shared_array = n->shared;
3385		int max = shared_array->limit - shared_array->avail;
3386		if (max) {
3387			if (batchcount > max)
3388				batchcount = max;
3389			memcpy(&(shared_array->entry[shared_array->avail]),
3390			       ac->entry, sizeof(void *) * batchcount);
3391			shared_array->avail += batchcount;
3392			goto free_done;
3393		}
3394	}
3395
3396	free_block(cachep, ac->entry, batchcount, node, &list);
3397free_done:
3398#if STATS
3399	{
3400		int i = 0;
3401		struct page *page;
3402
3403		list_for_each_entry(page, &n->slabs_free, slab_list) {
3404			BUG_ON(page->active);
3405
3406			i++;
3407		}
3408		STATS_SET_FREEABLE(cachep, i);
3409	}
3410#endif
3411	spin_unlock(&n->list_lock);
3412	slabs_destroy(cachep, &list);
3413	ac->avail -= batchcount;
3414	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 
3415}
3416
3417/*
3418 * Release an obj back to its cache. If the obj has a constructed state, it must
3419 * be in this state _before_ it is released.  Called with disabled ints.
3420 */
3421static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3422					 unsigned long caller)
3423{
3424	/* Put the object into the quarantine, don't touch it for now. */
3425	if (kasan_slab_free(cachep, objp, _RET_IP_))
 
 
 
 
 
3426		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427
3428	___cache_free(cachep, objp, caller);
3429}
3430
3431void ___cache_free(struct kmem_cache *cachep, void *objp,
3432		unsigned long caller)
3433{
3434	struct array_cache *ac = cpu_cache_get(cachep);
3435
3436	check_irq_off();
3437	if (unlikely(slab_want_init_on_free(cachep)))
3438		memset(objp, 0, cachep->object_size);
3439	kmemleak_free_recursive(objp, cachep->flags);
3440	objp = cache_free_debugcheck(cachep, objp, caller);
3441
3442	/*
3443	 * Skip calling cache_free_alien() when the platform is not numa.
3444	 * This will avoid cache misses that happen while accessing slabp (which
3445	 * is per page memory  reference) to get nodeid. Instead use a global
3446	 * variable to skip the call, which is mostly likely to be present in
3447	 * the cache.
3448	 */
3449	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3450		return;
3451
3452	if (ac->avail < ac->limit) {
3453		STATS_INC_FREEHIT(cachep);
3454	} else {
3455		STATS_INC_FREEMISS(cachep);
3456		cache_flusharray(cachep, ac);
3457	}
3458
3459	if (sk_memalloc_socks()) {
3460		struct page *page = virt_to_head_page(objp);
3461
3462		if (unlikely(PageSlabPfmemalloc(page))) {
3463			cache_free_pfmemalloc(cachep, page, objp);
3464			return;
3465		}
3466	}
3467
3468	ac->entry[ac->avail++] = objp;
3469}
3470
3471/**
3472 * kmem_cache_alloc - Allocate an object
3473 * @cachep: The cache to allocate from.
3474 * @flags: See kmalloc().
3475 *
3476 * Allocate an object from this cache.  The flags are only relevant
3477 * if the cache has no available objects.
3478 *
3479 * Return: pointer to the new object or %NULL in case of error
3480 */
3481void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3482{
3483	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3484
3485	trace_kmem_cache_alloc(_RET_IP_, ret,
3486			       cachep->object_size, cachep->size, flags);
3487
3488	return ret;
3489}
 
 
 
 
 
3490EXPORT_SYMBOL(kmem_cache_alloc);
3491
 
 
 
 
 
 
 
3492static __always_inline void
3493cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3494				  size_t size, void **p, unsigned long caller)
3495{
3496	size_t i;
3497
3498	for (i = 0; i < size; i++)
3499		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3500}
3501
3502int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3503			  void **p)
3504{
3505	size_t i;
 
3506
3507	s = slab_pre_alloc_hook(s, flags);
3508	if (!s)
3509		return 0;
3510
3511	cache_alloc_debugcheck_before(s, flags);
3512
3513	local_irq_disable();
3514	for (i = 0; i < size; i++) {
3515		void *objp = __do_cache_alloc(s, flags);
 
3516
3517		if (unlikely(!objp))
3518			goto error;
3519		p[i] = objp;
3520	}
3521	local_irq_enable();
3522
3523	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3524
3525	/* Clear memory outside IRQ disabled section */
3526	if (unlikely(slab_want_init_on_alloc(flags, s)))
3527		for (i = 0; i < size; i++)
3528			memset(p[i], 0, s->object_size);
3529
3530	slab_post_alloc_hook(s, flags, size, p);
3531	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3532	return size;
3533error:
3534	local_irq_enable();
3535	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3536	slab_post_alloc_hook(s, flags, i, p);
3537	__kmem_cache_free_bulk(s, i, p);
3538	return 0;
3539}
3540EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3541
3542#ifdef CONFIG_TRACING
3543void *
3544kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3545{
3546	void *ret;
3547
3548	ret = slab_alloc(cachep, flags, _RET_IP_);
3549
3550	ret = kasan_kmalloc(cachep, ret, size, flags);
3551	trace_kmalloc(_RET_IP_, ret,
3552		      size, cachep->size, flags);
3553	return ret;
3554}
3555EXPORT_SYMBOL(kmem_cache_alloc_trace);
3556#endif
3557
3558#ifdef CONFIG_NUMA
3559/**
3560 * kmem_cache_alloc_node - Allocate an object on the specified node
3561 * @cachep: The cache to allocate from.
3562 * @flags: See kmalloc().
3563 * @nodeid: node number of the target node.
3564 *
3565 * Identical to kmem_cache_alloc but it will allocate memory on the given
3566 * node, which can improve the performance for cpu bound structures.
3567 *
3568 * Fallback to other node is possible if __GFP_THISNODE is not set.
3569 *
3570 * Return: pointer to the new object or %NULL in case of error
3571 */
3572void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3573{
3574	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3575
3576	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3577				    cachep->object_size, cachep->size,
3578				    flags, nodeid);
3579
3580	return ret;
3581}
3582EXPORT_SYMBOL(kmem_cache_alloc_node);
3583
3584#ifdef CONFIG_TRACING
3585void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3586				  gfp_t flags,
3587				  int nodeid,
3588				  size_t size)
3589{
3590	void *ret;
3591
3592	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3593
3594	ret = kasan_kmalloc(cachep, ret, size, flags);
3595	trace_kmalloc_node(_RET_IP_, ret,
3596			   size, cachep->size,
3597			   flags, nodeid);
3598	return ret;
3599}
3600EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3601#endif
3602
3603static __always_inline void *
3604__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3605{
3606	struct kmem_cache *cachep;
3607	void *ret;
3608
3609	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3610		return NULL;
3611	cachep = kmalloc_slab(size, flags);
3612	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3613		return cachep;
3614	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3615	ret = kasan_kmalloc(cachep, ret, size, flags);
3616
3617	return ret;
3618}
3619
3620void *__kmalloc_node(size_t size, gfp_t flags, int node)
3621{
3622	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3623}
3624EXPORT_SYMBOL(__kmalloc_node);
3625
3626void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3627		int node, unsigned long caller)
3628{
3629	return __do_kmalloc_node(size, flags, node, caller);
3630}
3631EXPORT_SYMBOL(__kmalloc_node_track_caller);
3632#endif /* CONFIG_NUMA */
3633
3634/**
3635 * __do_kmalloc - allocate memory
3636 * @size: how many bytes of memory are required.
3637 * @flags: the type of memory to allocate (see kmalloc).
3638 * @caller: function caller for debug tracking of the caller
3639 *
3640 * Return: pointer to the allocated memory or %NULL in case of error
3641 */
3642static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3643					  unsigned long caller)
3644{
3645	struct kmem_cache *cachep;
3646	void *ret;
3647
3648	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3649		return NULL;
3650	cachep = kmalloc_slab(size, flags);
3651	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3652		return cachep;
3653	ret = slab_alloc(cachep, flags, caller);
3654
3655	ret = kasan_kmalloc(cachep, ret, size, flags);
3656	trace_kmalloc(caller, ret,
3657		      size, cachep->size, flags);
3658
3659	return ret;
 
 
 
 
 
 
 
 
 
 
 
3660}
 
3661
3662void *__kmalloc(size_t size, gfp_t flags)
 
 
3663{
3664	return __do_kmalloc(size, flags, _RET_IP_);
 
 
 
 
 
 
 
3665}
3666EXPORT_SYMBOL(__kmalloc);
3667
3668void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
 
3669{
3670	return __do_kmalloc(size, flags, caller);
3671}
3672EXPORT_SYMBOL(__kmalloc_track_caller);
3673
3674/**
3675 * kmem_cache_free - Deallocate an object
3676 * @cachep: The cache the allocation was from.
3677 * @objp: The previously allocated object.
3678 *
3679 * Free an object which was previously allocated from this
3680 * cache.
3681 */
3682void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3683{
3684	unsigned long flags;
3685	cachep = cache_from_obj(cachep, objp);
3686	if (!cachep)
3687		return;
3688
3689	local_irq_save(flags);
3690	debug_check_no_locks_freed(objp, cachep->object_size);
3691	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3692		debug_check_no_obj_freed(objp, cachep->object_size);
3693	__cache_free(cachep, objp, _RET_IP_);
3694	local_irq_restore(flags);
3695
3696	trace_kmem_cache_free(_RET_IP_, objp);
3697}
3698EXPORT_SYMBOL(kmem_cache_free);
3699
3700void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3701{
3702	struct kmem_cache *s;
3703	size_t i;
3704
3705	local_irq_disable();
3706	for (i = 0; i < size; i++) {
3707		void *objp = p[i];
 
3708
3709		if (!orig_s) /* called via kfree_bulk */
3710			s = virt_to_cache(objp);
3711		else
 
 
 
 
 
 
 
 
 
3712			s = cache_from_obj(orig_s, objp);
 
 
3713		if (!s)
3714			continue;
3715
3716		debug_check_no_locks_freed(objp, s->object_size);
3717		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3718			debug_check_no_obj_freed(objp, s->object_size);
3719
3720		__cache_free(s, objp, _RET_IP_);
3721	}
3722	local_irq_enable();
3723
3724	/* FIXME: add tracing */
3725}
3726EXPORT_SYMBOL(kmem_cache_free_bulk);
3727
3728/**
3729 * kfree - free previously allocated memory
3730 * @objp: pointer returned by kmalloc.
3731 *
3732 * If @objp is NULL, no operation is performed.
3733 *
3734 * Don't free memory not originally allocated by kmalloc()
3735 * or you will run into trouble.
3736 */
3737void kfree(const void *objp)
3738{
3739	struct kmem_cache *c;
3740	unsigned long flags;
3741
3742	trace_kfree(_RET_IP_, objp);
3743
3744	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3745		return;
3746	local_irq_save(flags);
3747	kfree_debugcheck(objp);
3748	c = virt_to_cache(objp);
3749	if (!c) {
3750		local_irq_restore(flags);
3751		return;
3752	}
3753	debug_check_no_locks_freed(objp, c->object_size);
3754
3755	debug_check_no_obj_freed(objp, c->object_size);
3756	__cache_free(c, (void *)objp, _RET_IP_);
3757	local_irq_restore(flags);
3758}
3759EXPORT_SYMBOL(kfree);
3760
3761/*
3762 * This initializes kmem_cache_node or resizes various caches for all nodes.
3763 */
3764static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3765{
3766	int ret;
3767	int node;
3768	struct kmem_cache_node *n;
3769
3770	for_each_online_node(node) {
3771		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3772		if (ret)
3773			goto fail;
3774
3775	}
3776
3777	return 0;
3778
3779fail:
3780	if (!cachep->list.next) {
3781		/* Cache is not active yet. Roll back what we did */
3782		node--;
3783		while (node >= 0) {
3784			n = get_node(cachep, node);
3785			if (n) {
3786				kfree(n->shared);
3787				free_alien_cache(n->alien);
3788				kfree(n);
3789				cachep->node[node] = NULL;
3790			}
3791			node--;
3792		}
3793	}
3794	return -ENOMEM;
3795}
3796
3797/* Always called with the slab_mutex held */
3798static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3799				int batchcount, int shared, gfp_t gfp)
3800{
3801	struct array_cache __percpu *cpu_cache, *prev;
3802	int cpu;
3803
3804	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3805	if (!cpu_cache)
3806		return -ENOMEM;
3807
3808	prev = cachep->cpu_cache;
3809	cachep->cpu_cache = cpu_cache;
3810	/*
3811	 * Without a previous cpu_cache there's no need to synchronize remote
3812	 * cpus, so skip the IPIs.
3813	 */
3814	if (prev)
3815		kick_all_cpus_sync();
3816
3817	check_irq_on();
3818	cachep->batchcount = batchcount;
3819	cachep->limit = limit;
3820	cachep->shared = shared;
3821
3822	if (!prev)
3823		goto setup_node;
3824
3825	for_each_online_cpu(cpu) {
3826		LIST_HEAD(list);
3827		int node;
3828		struct kmem_cache_node *n;
3829		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3830
3831		node = cpu_to_mem(cpu);
3832		n = get_node(cachep, node);
3833		spin_lock_irq(&n->list_lock);
3834		free_block(cachep, ac->entry, ac->avail, node, &list);
3835		spin_unlock_irq(&n->list_lock);
3836		slabs_destroy(cachep, &list);
3837	}
3838	free_percpu(prev);
3839
3840setup_node:
3841	return setup_kmem_cache_nodes(cachep, gfp);
3842}
3843
3844static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3845				int batchcount, int shared, gfp_t gfp)
3846{
3847	int ret;
3848	struct kmem_cache *c;
3849
3850	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3851
3852	if (slab_state < FULL)
3853		return ret;
3854
3855	if ((ret < 0) || !is_root_cache(cachep))
3856		return ret;
3857
3858	lockdep_assert_held(&slab_mutex);
3859	for_each_memcg_cache(c, cachep) {
3860		/* return value determined by the root cache only */
3861		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3862	}
3863
3864	return ret;
3865}
3866
3867/* Called with slab_mutex held always */
3868static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3869{
3870	int err;
3871	int limit = 0;
3872	int shared = 0;
3873	int batchcount = 0;
3874
3875	err = cache_random_seq_create(cachep, cachep->num, gfp);
3876	if (err)
3877		goto end;
3878
3879	if (!is_root_cache(cachep)) {
3880		struct kmem_cache *root = memcg_root_cache(cachep);
3881		limit = root->limit;
3882		shared = root->shared;
3883		batchcount = root->batchcount;
3884	}
3885
3886	if (limit && shared && batchcount)
3887		goto skip_setup;
3888	/*
3889	 * The head array serves three purposes:
3890	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3891	 * - reduce the number of spinlock operations.
3892	 * - reduce the number of linked list operations on the slab and
3893	 *   bufctl chains: array operations are cheaper.
3894	 * The numbers are guessed, we should auto-tune as described by
3895	 * Bonwick.
3896	 */
3897	if (cachep->size > 131072)
3898		limit = 1;
3899	else if (cachep->size > PAGE_SIZE)
3900		limit = 8;
3901	else if (cachep->size > 1024)
3902		limit = 24;
3903	else if (cachep->size > 256)
3904		limit = 54;
3905	else
3906		limit = 120;
3907
3908	/*
3909	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3910	 * allocation behaviour: Most allocs on one cpu, most free operations
3911	 * on another cpu. For these cases, an efficient object passing between
3912	 * cpus is necessary. This is provided by a shared array. The array
3913	 * replaces Bonwick's magazine layer.
3914	 * On uniprocessor, it's functionally equivalent (but less efficient)
3915	 * to a larger limit. Thus disabled by default.
3916	 */
3917	shared = 0;
3918	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3919		shared = 8;
3920
3921#if DEBUG
3922	/*
3923	 * With debugging enabled, large batchcount lead to excessively long
3924	 * periods with disabled local interrupts. Limit the batchcount
3925	 */
3926	if (limit > 32)
3927		limit = 32;
3928#endif
3929	batchcount = (limit + 1) / 2;
3930skip_setup:
3931	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3932end:
3933	if (err)
3934		pr_err("enable_cpucache failed for %s, error %d\n",
3935		       cachep->name, -err);
3936	return err;
3937}
3938
3939/*
3940 * Drain an array if it contains any elements taking the node lock only if
3941 * necessary. Note that the node listlock also protects the array_cache
3942 * if drain_array() is used on the shared array.
3943 */
3944static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3945			 struct array_cache *ac, int node)
3946{
3947	LIST_HEAD(list);
3948
3949	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3950	check_mutex_acquired();
3951
3952	if (!ac || !ac->avail)
3953		return;
3954
3955	if (ac->touched) {
3956		ac->touched = 0;
3957		return;
3958	}
3959
3960	spin_lock_irq(&n->list_lock);
3961	drain_array_locked(cachep, ac, node, false, &list);
3962	spin_unlock_irq(&n->list_lock);
3963
3964	slabs_destroy(cachep, &list);
3965}
3966
3967/**
3968 * cache_reap - Reclaim memory from caches.
3969 * @w: work descriptor
3970 *
3971 * Called from workqueue/eventd every few seconds.
3972 * Purpose:
3973 * - clear the per-cpu caches for this CPU.
3974 * - return freeable pages to the main free memory pool.
3975 *
3976 * If we cannot acquire the cache chain mutex then just give up - we'll try
3977 * again on the next iteration.
3978 */
3979static void cache_reap(struct work_struct *w)
3980{
3981	struct kmem_cache *searchp;
3982	struct kmem_cache_node *n;
3983	int node = numa_mem_id();
3984	struct delayed_work *work = to_delayed_work(w);
3985
3986	if (!mutex_trylock(&slab_mutex))
3987		/* Give up. Setup the next iteration. */
3988		goto out;
3989
3990	list_for_each_entry(searchp, &slab_caches, list) {
3991		check_irq_on();
3992
3993		/*
3994		 * We only take the node lock if absolutely necessary and we
3995		 * have established with reasonable certainty that
3996		 * we can do some work if the lock was obtained.
3997		 */
3998		n = get_node(searchp, node);
3999
4000		reap_alien(searchp, n);
4001
4002		drain_array(searchp, n, cpu_cache_get(searchp), node);
4003
4004		/*
4005		 * These are racy checks but it does not matter
4006		 * if we skip one check or scan twice.
4007		 */
4008		if (time_after(n->next_reap, jiffies))
4009			goto next;
4010
4011		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4012
4013		drain_array(searchp, n, n->shared, node);
4014
4015		if (n->free_touched)
4016			n->free_touched = 0;
4017		else {
4018			int freed;
4019
4020			freed = drain_freelist(searchp, n, (n->free_limit +
4021				5 * searchp->num - 1) / (5 * searchp->num));
4022			STATS_ADD_REAPED(searchp, freed);
4023		}
4024next:
4025		cond_resched();
4026	}
4027	check_irq_on();
4028	mutex_unlock(&slab_mutex);
4029	next_reap_node();
4030out:
4031	/* Set up the next iteration */
4032	schedule_delayed_work_on(smp_processor_id(), work,
4033				round_jiffies_relative(REAPTIMEOUT_AC));
4034}
4035
4036void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4037{
4038	unsigned long active_objs, num_objs, active_slabs;
4039	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4040	unsigned long free_slabs = 0;
4041	int node;
4042	struct kmem_cache_node *n;
4043
4044	for_each_kmem_cache_node(cachep, node, n) {
4045		check_irq_on();
4046		spin_lock_irq(&n->list_lock);
4047
4048		total_slabs += n->total_slabs;
4049		free_slabs += n->free_slabs;
4050		free_objs += n->free_objects;
4051
4052		if (n->shared)
4053			shared_avail += n->shared->avail;
4054
4055		spin_unlock_irq(&n->list_lock);
4056	}
4057	num_objs = total_slabs * cachep->num;
4058	active_slabs = total_slabs - free_slabs;
4059	active_objs = num_objs - free_objs;
4060
4061	sinfo->active_objs = active_objs;
4062	sinfo->num_objs = num_objs;
4063	sinfo->active_slabs = active_slabs;
4064	sinfo->num_slabs = total_slabs;
4065	sinfo->shared_avail = shared_avail;
4066	sinfo->limit = cachep->limit;
4067	sinfo->batchcount = cachep->batchcount;
4068	sinfo->shared = cachep->shared;
4069	sinfo->objects_per_slab = cachep->num;
4070	sinfo->cache_order = cachep->gfporder;
4071}
4072
4073void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4074{
4075#if STATS
4076	{			/* node stats */
4077		unsigned long high = cachep->high_mark;
4078		unsigned long allocs = cachep->num_allocations;
4079		unsigned long grown = cachep->grown;
4080		unsigned long reaped = cachep->reaped;
4081		unsigned long errors = cachep->errors;
4082		unsigned long max_freeable = cachep->max_freeable;
4083		unsigned long node_allocs = cachep->node_allocs;
4084		unsigned long node_frees = cachep->node_frees;
4085		unsigned long overflows = cachep->node_overflow;
4086
4087		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4088			   allocs, high, grown,
4089			   reaped, errors, max_freeable, node_allocs,
4090			   node_frees, overflows);
4091	}
4092	/* cpu stats */
4093	{
4094		unsigned long allochit = atomic_read(&cachep->allochit);
4095		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4096		unsigned long freehit = atomic_read(&cachep->freehit);
4097		unsigned long freemiss = atomic_read(&cachep->freemiss);
4098
4099		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4100			   allochit, allocmiss, freehit, freemiss);
4101	}
4102#endif
4103}
4104
4105#define MAX_SLABINFO_WRITE 128
4106/**
4107 * slabinfo_write - Tuning for the slab allocator
4108 * @file: unused
4109 * @buffer: user buffer
4110 * @count: data length
4111 * @ppos: unused
4112 *
4113 * Return: %0 on success, negative error code otherwise.
4114 */
4115ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4116		       size_t count, loff_t *ppos)
4117{
4118	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4119	int limit, batchcount, shared, res;
4120	struct kmem_cache *cachep;
4121
4122	if (count > MAX_SLABINFO_WRITE)
4123		return -EINVAL;
4124	if (copy_from_user(&kbuf, buffer, count))
4125		return -EFAULT;
4126	kbuf[MAX_SLABINFO_WRITE] = '\0';
4127
4128	tmp = strchr(kbuf, ' ');
4129	if (!tmp)
4130		return -EINVAL;
4131	*tmp = '\0';
4132	tmp++;
4133	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4134		return -EINVAL;
4135
4136	/* Find the cache in the chain of caches. */
4137	mutex_lock(&slab_mutex);
4138	res = -EINVAL;
4139	list_for_each_entry(cachep, &slab_caches, list) {
4140		if (!strcmp(cachep->name, kbuf)) {
4141			if (limit < 1 || batchcount < 1 ||
4142					batchcount > limit || shared < 0) {
4143				res = 0;
4144			} else {
4145				res = do_tune_cpucache(cachep, limit,
4146						       batchcount, shared,
4147						       GFP_KERNEL);
4148			}
4149			break;
4150		}
4151	}
4152	mutex_unlock(&slab_mutex);
4153	if (res >= 0)
4154		res = count;
4155	return res;
4156}
4157
4158#ifdef CONFIG_HARDENED_USERCOPY
4159/*
4160 * Rejects incorrectly sized objects and objects that are to be copied
4161 * to/from userspace but do not fall entirely within the containing slab
4162 * cache's usercopy region.
4163 *
4164 * Returns NULL if check passes, otherwise const char * to name of cache
4165 * to indicate an error.
4166 */
4167void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4168			 bool to_user)
4169{
4170	struct kmem_cache *cachep;
4171	unsigned int objnr;
4172	unsigned long offset;
4173
4174	ptr = kasan_reset_tag(ptr);
4175
4176	/* Find and validate object. */
4177	cachep = page->slab_cache;
4178	objnr = obj_to_index(cachep, page, (void *)ptr);
4179	BUG_ON(objnr >= cachep->num);
4180
4181	/* Find offset within object. */
4182	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
 
 
 
4183
4184	/* Allow address range falling entirely within usercopy region. */
4185	if (offset >= cachep->useroffset &&
4186	    offset - cachep->useroffset <= cachep->usersize &&
4187	    n <= cachep->useroffset - offset + cachep->usersize)
4188		return;
4189
4190	/*
4191	 * If the copy is still within the allocated object, produce
4192	 * a warning instead of rejecting the copy. This is intended
4193	 * to be a temporary method to find any missing usercopy
4194	 * whitelists.
4195	 */
4196	if (usercopy_fallback &&
4197	    offset <= cachep->object_size &&
4198	    n <= cachep->object_size - offset) {
4199		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4200		return;
4201	}
4202
4203	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4204}
4205#endif /* CONFIG_HARDENED_USERCOPY */
4206
4207/**
4208 * __ksize -- Uninstrumented ksize.
4209 * @objp: pointer to the object
4210 *
4211 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4212 * safety checks as ksize() with KASAN instrumentation enabled.
4213 *
4214 * Return: size of the actual memory used by @objp in bytes
4215 */
4216size_t __ksize(const void *objp)
4217{
4218	struct kmem_cache *c;
4219	size_t size;
4220
4221	BUG_ON(!objp);
4222	if (unlikely(objp == ZERO_SIZE_PTR))
4223		return 0;
4224
4225	c = virt_to_cache(objp);
4226	size = c ? c->object_size : 0;
4227
4228	return size;
4229}
4230EXPORT_SYMBOL(__ksize);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 103#include	<linux/kfence.h>
 104#include	<linux/cpu.h>
 105#include	<linux/__KEEPIDENTS__BD.h>
 106#include	<linux/__KEEPIDENTS__BE.h>
 107#include	<linux/rcupdate.h>
 108#include	<linux/__KEEPIDENTS__BF.h>
 109#include	<linux/__KEEPIDENTS__BG.h>
 110#include	<linux/__KEEPIDENTS__BH.h>
 111#include	<linux/kmemleak.h>
 112#include	<linux/__KEEPIDENTS__BI.h>
 113#include	<linux/__KEEPIDENTS__BJ.h>
 114#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 115#include	<linux/__KEEPIDENTS__CC.h>
 116#include	<linux/reciprocal_div.h>
 117#include	<linux/debugobjects.h>
 118#include	<linux/__KEEPIDENTS__CD.h>
 119#include	<linux/__KEEPIDENTS__CE.h>
 120#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 121
 122#include	<net/__KEEPIDENTS__CG.h>
 123
 124#include	<asm/cacheflush.h>
 125#include	<asm/tlbflush.h>
 126#include	<asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include	"internal.h"
 131
 132#include	"slab.h"
 133
 134/*
 135 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *		  0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS	- 1 to collect stats for /proc/slabinfo.
 139 *		  0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define	DEBUG		1
 146#define	STATS		1
 147#define	FORCED_DEBUG	1
 148#else
 149#define	DEBUG		0
 150#define	STATS		0
 151#define	FORCED_DEBUG	0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define	BYTES_PER_WORD		sizeof(void *)
 156#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 167#else
 168typedef unsigned short freelist_idx_t;
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186	unsigned int avail;
 187	unsigned int limit;
 188	unsigned int batchcount;
 189	unsigned int touched;
 190	void *entry[];	/*
 191			 * Must have this definition in here for the proper
 192			 * alignment of array_cache. Also simplifies accessing
 193			 * the entries.
 194			 */
 195};
 196
 197struct alien_cache {
 198	spinlock_t lock;
 199	struct array_cache ac;
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define	CACHE_CACHE 0
 208#define	SIZE_NODE (MAX_NUMNODES)
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211			struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213			int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219						void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221				struct kmem_cache_node *n, struct slab *slab,
 222				void **list);
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229	INIT_LIST_HEAD(&parent->slabs_full);
 230	INIT_LIST_HEAD(&parent->slabs_partial);
 231	INIT_LIST_HEAD(&parent->slabs_free);
 232	parent->total_slabs = 0;
 233	parent->free_slabs = 0;
 234	parent->shared = NULL;
 235	parent->alien = NULL;
 236	parent->colour_next = 0;
 237	raw_spin_lock_init(&parent->list_lock);
 238	parent->free_objects = 0;
 239	parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 243	do {								\
 244		INIT_LIST_HEAD(listp);					\
 245		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 246	} while (0)
 247
 248#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 249	do {								\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 251	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 253	} while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 256#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 257#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT	16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnecessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC		(2*HZ)
 269#define REAPTIMEOUT_NODE	(4*HZ)
 270
 271#if STATS
 272#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 273#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 274#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 275#define	STATS_INC_GROWN(x)	((x)->grown++)
 276#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
 277#define	STATS_SET_HIGH(x)						\
 278	do {								\
 279		if ((x)->num_active > (x)->high_mark)			\
 280			(x)->high_mark = (x)->num_active;		\
 281	} while (0)
 282#define	STATS_INC_ERR(x)	((x)->errors++)
 283#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 284#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define	STATS_SET_FREEABLE(x, i)					\
 287	do {								\
 288		if ((x)->max_freeable < i)				\
 289			(x)->max_freeable = i;				\
 290	} while (0)
 291#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 295#else
 296#define	STATS_INC_ACTIVE(x)	do { } while (0)
 297#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 298#define	STATS_INC_ALLOCED(x)	do { } while (0)
 299#define	STATS_INC_GROWN(x)	do { } while (0)
 300#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
 301#define	STATS_SET_HIGH(x)	do { } while (0)
 302#define	STATS_INC_ERR(x)	do { } while (0)
 303#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 304#define	STATS_INC_NODEFREES(x)	do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 309#define STATS_INC_FREEHIT(x)	do { } while (0)
 310#define STATS_INC_FREEMISS(x)	do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0		: objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 * 		the end of an object is aligned with the end of the real
 320 * 		allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 * 		redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *					[BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330	return cachep->obj_offset;
 331}
 332
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336	return (unsigned long long *) (objp + obj_offset(cachep) -
 337				      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343	if (cachep->flags & SLAB_STORE_USER)
 344		return (unsigned long long *)(objp + cachep->size -
 345					      sizeof(unsigned long long) -
 346					      REDZONE_ALIGN);
 347	return (unsigned long long *) (objp + cachep->size -
 348				       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)			0
 360#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 363
 364#endif
 365
 366/*
 367 * Do not go above this order unless 0 objects fit into the slab or
 368 * overridden on the command line.
 369 */
 370#define	SLAB_MAX_ORDER_HI	1
 371#define	SLAB_MAX_ORDER_LO	0
 372static int slab_max_order = SLAB_MAX_ORDER_LO;
 373static bool slab_max_order_set __initdata;
 374
 375static inline void *index_to_obj(struct kmem_cache *cache,
 376				 const struct slab *slab, unsigned int idx)
 377{
 378	return slab->s_mem + cache->size * idx;
 379}
 380
 381#define BOOT_CPUCACHE_ENTRIES	1
 382/* internal cache of cache description objs */
 383static struct kmem_cache kmem_cache_boot = {
 384	.batchcount = 1,
 385	.limit = BOOT_CPUCACHE_ENTRIES,
 386	.shared = 1,
 387	.size = sizeof(struct kmem_cache),
 388	.name = "kmem_cache",
 389};
 390
 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 392
 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 394{
 395	return this_cpu_ptr(cachep->cpu_cache);
 396}
 397
 398/*
 399 * Calculate the number of objects and left-over bytes for a given buffer size.
 400 */
 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 402		slab_flags_t flags, size_t *left_over)
 403{
 404	unsigned int num;
 405	size_t slab_size = PAGE_SIZE << gfporder;
 406
 407	/*
 408	 * The slab management structure can be either off the slab or
 409	 * on it. For the latter case, the memory allocated for a
 410	 * slab is used for:
 411	 *
 412	 * - @buffer_size bytes for each object
 413	 * - One freelist_idx_t for each object
 414	 *
 415	 * We don't need to consider alignment of freelist because
 416	 * freelist will be at the end of slab page. The objects will be
 417	 * at the correct alignment.
 418	 *
 419	 * If the slab management structure is off the slab, then the
 420	 * alignment will already be calculated into the size. Because
 421	 * the slabs are all pages aligned, the objects will be at the
 422	 * correct alignment when allocated.
 423	 */
 424	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 425		num = slab_size / buffer_size;
 426		*left_over = slab_size % buffer_size;
 427	} else {
 428		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 429		*left_over = slab_size %
 430			(buffer_size + sizeof(freelist_idx_t));
 431	}
 432
 433	return num;
 434}
 435
 436#if DEBUG
 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 438
 439static void __slab_error(const char *function, struct kmem_cache *cachep,
 440			char *msg)
 441{
 442	pr_err("slab error in %s(): cache `%s': %s\n",
 443	       function, cachep->name, msg);
 444	dump_stack();
 445	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 446}
 447#endif
 448
 449/*
 450 * By default on NUMA we use alien caches to stage the freeing of
 451 * objects allocated from other nodes. This causes massive memory
 452 * inefficiencies when using fake NUMA setup to split memory into a
 453 * large number of small nodes, so it can be disabled on the command
 454 * line
 455  */
 456
 457static int use_alien_caches __read_mostly = 1;
 458static int __init noaliencache_setup(char *s)
 459{
 460	use_alien_caches = 0;
 461	return 1;
 462}
 463__setup("noaliencache", noaliencache_setup);
 464
 465static int __init slab_max_order_setup(char *str)
 466{
 467	get_option(&str, &slab_max_order);
 468	slab_max_order = slab_max_order < 0 ? 0 :
 469				min(slab_max_order, MAX_ORDER - 1);
 470	slab_max_order_set = true;
 471
 472	return 1;
 473}
 474__setup("slab_max_order=", slab_max_order_setup);
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * Special reaping functions for NUMA systems called from cache_reap().
 479 * These take care of doing round robin flushing of alien caches (containing
 480 * objects freed on different nodes from which they were allocated) and the
 481 * flushing of remote pcps by calling drain_node_pages.
 482 */
 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 484
 485static void init_reap_node(int cpu)
 486{
 487	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 488						    node_online_map);
 489}
 490
 491static void next_reap_node(void)
 492{
 493	int node = __this_cpu_read(slab_reap_node);
 494
 495	node = next_node_in(node, node_online_map);
 496	__this_cpu_write(slab_reap_node, node);
 497}
 498
 499#else
 500#define init_reap_node(cpu) do { } while (0)
 501#define next_reap_node(void) do { } while (0)
 502#endif
 503
 504/*
 505 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 506 * via the workqueue/eventd.
 507 * Add the CPU number into the expiration time to minimize the possibility of
 508 * the CPUs getting into lockstep and contending for the global cache chain
 509 * lock.
 510 */
 511static void start_cpu_timer(int cpu)
 512{
 513	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 514
 515	if (reap_work->work.func == NULL) {
 516		init_reap_node(cpu);
 517		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 518		schedule_delayed_work_on(cpu, reap_work,
 519					__round_jiffies_relative(HZ, cpu));
 520	}
 521}
 522
 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
 524{
 525	if (ac) {
 526		ac->avail = 0;
 527		ac->limit = limit;
 528		ac->batchcount = batch;
 529		ac->touched = 0;
 530	}
 531}
 532
 533static struct array_cache *alloc_arraycache(int node, int entries,
 534					    int batchcount, gfp_t gfp)
 535{
 536	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 537	struct array_cache *ac = NULL;
 538
 539	ac = kmalloc_node(memsize, gfp, node);
 540	/*
 541	 * The array_cache structures contain pointers to free object.
 542	 * However, when such objects are allocated or transferred to another
 543	 * cache the pointers are not cleared and they could be counted as
 544	 * valid references during a kmemleak scan. Therefore, kmemleak must
 545	 * not scan such objects.
 546	 */
 547	kmemleak_no_scan(ac);
 548	init_arraycache(ac, entries, batchcount);
 549	return ac;
 550}
 551
 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 553					struct slab *slab, void *objp)
 554{
 555	struct kmem_cache_node *n;
 556	int slab_node;
 557	LIST_HEAD(list);
 558
 559	slab_node = slab_nid(slab);
 560	n = get_node(cachep, slab_node);
 561
 562	raw_spin_lock(&n->list_lock);
 563	free_block(cachep, &objp, 1, slab_node, &list);
 564	raw_spin_unlock(&n->list_lock);
 565
 566	slabs_destroy(cachep, &list);
 567}
 568
 569/*
 570 * Transfer objects in one arraycache to another.
 571 * Locking must be handled by the caller.
 572 *
 573 * Return the number of entries transferred.
 574 */
 575static int transfer_objects(struct array_cache *to,
 576		struct array_cache *from, unsigned int max)
 577{
 578	/* Figure out how many entries to transfer */
 579	int nr = min3(from->avail, max, to->limit - to->avail);
 580
 581	if (!nr)
 582		return 0;
 583
 584	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 585			sizeof(void *) *nr);
 586
 587	from->avail -= nr;
 588	to->avail += nr;
 589	return nr;
 590}
 591
 592/* &alien->lock must be held by alien callers. */
 593static __always_inline void __free_one(struct array_cache *ac, void *objp)
 594{
 595	/* Avoid trivial double-free. */
 596	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 597	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 598		return;
 599	ac->entry[ac->avail++] = objp;
 600}
 601
 602#ifndef CONFIG_NUMA
 603
 604#define drain_alien_cache(cachep, alien) do { } while (0)
 605#define reap_alien(cachep, n) do { } while (0)
 606
 607static inline struct alien_cache **alloc_alien_cache(int node,
 608						int limit, gfp_t gfp)
 609{
 610	return NULL;
 611}
 612
 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
 614{
 615}
 616
 617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 618{
 619	return 0;
 620}
 621
 
 
 
 
 
 
 
 
 
 
 
 
 622static inline gfp_t gfp_exact_node(gfp_t flags)
 623{
 624	return flags & ~__GFP_NOFAIL;
 625}
 626
 627#else	/* CONFIG_NUMA */
 628
 
 
 
 629static struct alien_cache *__alloc_alien_cache(int node, int entries,
 630						int batch, gfp_t gfp)
 631{
 632	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 633	struct alien_cache *alc = NULL;
 634
 635	alc = kmalloc_node(memsize, gfp, node);
 636	if (alc) {
 637		kmemleak_no_scan(alc);
 638		init_arraycache(&alc->ac, entries, batch);
 639		spin_lock_init(&alc->lock);
 640	}
 641	return alc;
 642}
 643
 644static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 645{
 646	struct alien_cache **alc_ptr;
 647	int i;
 648
 649	if (limit > 1)
 650		limit = 12;
 651	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 652	if (!alc_ptr)
 653		return NULL;
 654
 655	for_each_node(i) {
 656		if (i == node || !node_online(i))
 657			continue;
 658		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 659		if (!alc_ptr[i]) {
 660			for (i--; i >= 0; i--)
 661				kfree(alc_ptr[i]);
 662			kfree(alc_ptr);
 663			return NULL;
 664		}
 665	}
 666	return alc_ptr;
 667}
 668
 669static void free_alien_cache(struct alien_cache **alc_ptr)
 670{
 671	int i;
 672
 673	if (!alc_ptr)
 674		return;
 675	for_each_node(i)
 676	    kfree(alc_ptr[i]);
 677	kfree(alc_ptr);
 678}
 679
 680static void __drain_alien_cache(struct kmem_cache *cachep,
 681				struct array_cache *ac, int node,
 682				struct list_head *list)
 683{
 684	struct kmem_cache_node *n = get_node(cachep, node);
 685
 686	if (ac->avail) {
 687		raw_spin_lock(&n->list_lock);
 688		/*
 689		 * Stuff objects into the remote nodes shared array first.
 690		 * That way we could avoid the overhead of putting the objects
 691		 * into the free lists and getting them back later.
 692		 */
 693		if (n->shared)
 694			transfer_objects(n->shared, ac, ac->limit);
 695
 696		free_block(cachep, ac->entry, ac->avail, node, list);
 697		ac->avail = 0;
 698		raw_spin_unlock(&n->list_lock);
 699	}
 700}
 701
 702/*
 703 * Called from cache_reap() to regularly drain alien caches round robin.
 704 */
 705static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 706{
 707	int node = __this_cpu_read(slab_reap_node);
 708
 709	if (n->alien) {
 710		struct alien_cache *alc = n->alien[node];
 711		struct array_cache *ac;
 712
 713		if (alc) {
 714			ac = &alc->ac;
 715			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 716				LIST_HEAD(list);
 717
 718				__drain_alien_cache(cachep, ac, node, &list);
 719				spin_unlock_irq(&alc->lock);
 720				slabs_destroy(cachep, &list);
 721			}
 722		}
 723	}
 724}
 725
 726static void drain_alien_cache(struct kmem_cache *cachep,
 727				struct alien_cache **alien)
 728{
 729	int i = 0;
 730	struct alien_cache *alc;
 731	struct array_cache *ac;
 732	unsigned long flags;
 733
 734	for_each_online_node(i) {
 735		alc = alien[i];
 736		if (alc) {
 737			LIST_HEAD(list);
 738
 739			ac = &alc->ac;
 740			spin_lock_irqsave(&alc->lock, flags);
 741			__drain_alien_cache(cachep, ac, i, &list);
 742			spin_unlock_irqrestore(&alc->lock, flags);
 743			slabs_destroy(cachep, &list);
 744		}
 745	}
 746}
 747
 748static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 749				int node, int slab_node)
 750{
 751	struct kmem_cache_node *n;
 752	struct alien_cache *alien = NULL;
 753	struct array_cache *ac;
 754	LIST_HEAD(list);
 755
 756	n = get_node(cachep, node);
 757	STATS_INC_NODEFREES(cachep);
 758	if (n->alien && n->alien[slab_node]) {
 759		alien = n->alien[slab_node];
 760		ac = &alien->ac;
 761		spin_lock(&alien->lock);
 762		if (unlikely(ac->avail == ac->limit)) {
 763			STATS_INC_ACOVERFLOW(cachep);
 764			__drain_alien_cache(cachep, ac, slab_node, &list);
 765		}
 766		__free_one(ac, objp);
 767		spin_unlock(&alien->lock);
 768		slabs_destroy(cachep, &list);
 769	} else {
 770		n = get_node(cachep, slab_node);
 771		raw_spin_lock(&n->list_lock);
 772		free_block(cachep, &objp, 1, slab_node, &list);
 773		raw_spin_unlock(&n->list_lock);
 774		slabs_destroy(cachep, &list);
 775	}
 776	return 1;
 777}
 778
 779static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 780{
 781	int slab_node = slab_nid(virt_to_slab(objp));
 782	int node = numa_mem_id();
 783	/*
 784	 * Make sure we are not freeing an object from another node to the array
 785	 * cache on this cpu.
 786	 */
 787	if (likely(node == slab_node))
 788		return 0;
 789
 790	return __cache_free_alien(cachep, objp, node, slab_node);
 791}
 792
 793/*
 794 * Construct gfp mask to allocate from a specific node but do not reclaim or
 795 * warn about failures.
 796 */
 797static inline gfp_t gfp_exact_node(gfp_t flags)
 798{
 799	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 800}
 801#endif
 802
 803static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 804{
 805	struct kmem_cache_node *n;
 806
 807	/*
 808	 * Set up the kmem_cache_node for cpu before we can
 809	 * begin anything. Make sure some other cpu on this
 810	 * node has not already allocated this
 811	 */
 812	n = get_node(cachep, node);
 813	if (n) {
 814		raw_spin_lock_irq(&n->list_lock);
 815		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 816				cachep->num;
 817		raw_spin_unlock_irq(&n->list_lock);
 818
 819		return 0;
 820	}
 821
 822	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 823	if (!n)
 824		return -ENOMEM;
 825
 826	kmem_cache_node_init(n);
 827	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 828		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 829
 830	n->free_limit =
 831		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 832
 833	/*
 834	 * The kmem_cache_nodes don't come and go as CPUs
 835	 * come and go.  slab_mutex provides sufficient
 836	 * protection here.
 837	 */
 838	cachep->node[node] = n;
 839
 840	return 0;
 841}
 842
 843#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 844/*
 845 * Allocates and initializes node for a node on each slab cache, used for
 846 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 847 * will be allocated off-node since memory is not yet online for the new node.
 848 * When hotplugging memory or a cpu, existing nodes are not replaced if
 849 * already in use.
 850 *
 851 * Must hold slab_mutex.
 852 */
 853static int init_cache_node_node(int node)
 854{
 855	int ret;
 856	struct kmem_cache *cachep;
 857
 858	list_for_each_entry(cachep, &slab_caches, list) {
 859		ret = init_cache_node(cachep, node, GFP_KERNEL);
 860		if (ret)
 861			return ret;
 862	}
 863
 864	return 0;
 865}
 866#endif
 867
 868static int setup_kmem_cache_node(struct kmem_cache *cachep,
 869				int node, gfp_t gfp, bool force_change)
 870{
 871	int ret = -ENOMEM;
 872	struct kmem_cache_node *n;
 873	struct array_cache *old_shared = NULL;
 874	struct array_cache *new_shared = NULL;
 875	struct alien_cache **new_alien = NULL;
 876	LIST_HEAD(list);
 877
 878	if (use_alien_caches) {
 879		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 880		if (!new_alien)
 881			goto fail;
 882	}
 883
 884	if (cachep->shared) {
 885		new_shared = alloc_arraycache(node,
 886			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 887		if (!new_shared)
 888			goto fail;
 889	}
 890
 891	ret = init_cache_node(cachep, node, gfp);
 892	if (ret)
 893		goto fail;
 894
 895	n = get_node(cachep, node);
 896	raw_spin_lock_irq(&n->list_lock);
 897	if (n->shared && force_change) {
 898		free_block(cachep, n->shared->entry,
 899				n->shared->avail, node, &list);
 900		n->shared->avail = 0;
 901	}
 902
 903	if (!n->shared || force_change) {
 904		old_shared = n->shared;
 905		n->shared = new_shared;
 906		new_shared = NULL;
 907	}
 908
 909	if (!n->alien) {
 910		n->alien = new_alien;
 911		new_alien = NULL;
 912	}
 913
 914	raw_spin_unlock_irq(&n->list_lock);
 915	slabs_destroy(cachep, &list);
 916
 917	/*
 918	 * To protect lockless access to n->shared during irq disabled context.
 919	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 920	 * guaranteed to be valid until irq is re-enabled, because it will be
 921	 * freed after synchronize_rcu().
 922	 */
 923	if (old_shared && force_change)
 924		synchronize_rcu();
 925
 926fail:
 927	kfree(old_shared);
 928	kfree(new_shared);
 929	free_alien_cache(new_alien);
 930
 931	return ret;
 932}
 933
 934#ifdef CONFIG_SMP
 935
 936static void cpuup_canceled(long cpu)
 937{
 938	struct kmem_cache *cachep;
 939	struct kmem_cache_node *n = NULL;
 940	int node = cpu_to_mem(cpu);
 941	const struct cpumask *mask = cpumask_of_node(node);
 942
 943	list_for_each_entry(cachep, &slab_caches, list) {
 944		struct array_cache *nc;
 945		struct array_cache *shared;
 946		struct alien_cache **alien;
 947		LIST_HEAD(list);
 948
 949		n = get_node(cachep, node);
 950		if (!n)
 951			continue;
 952
 953		raw_spin_lock_irq(&n->list_lock);
 954
 955		/* Free limit for this kmem_cache_node */
 956		n->free_limit -= cachep->batchcount;
 957
 958		/* cpu is dead; no one can alloc from it. */
 959		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 960		free_block(cachep, nc->entry, nc->avail, node, &list);
 961		nc->avail = 0;
 962
 963		if (!cpumask_empty(mask)) {
 964			raw_spin_unlock_irq(&n->list_lock);
 965			goto free_slab;
 966		}
 967
 968		shared = n->shared;
 969		if (shared) {
 970			free_block(cachep, shared->entry,
 971				   shared->avail, node, &list);
 972			n->shared = NULL;
 973		}
 974
 975		alien = n->alien;
 976		n->alien = NULL;
 977
 978		raw_spin_unlock_irq(&n->list_lock);
 979
 980		kfree(shared);
 981		if (alien) {
 982			drain_alien_cache(cachep, alien);
 983			free_alien_cache(alien);
 984		}
 985
 986free_slab:
 987		slabs_destroy(cachep, &list);
 988	}
 989	/*
 990	 * In the previous loop, all the objects were freed to
 991	 * the respective cache's slabs,  now we can go ahead and
 992	 * shrink each nodelist to its limit.
 993	 */
 994	list_for_each_entry(cachep, &slab_caches, list) {
 995		n = get_node(cachep, node);
 996		if (!n)
 997			continue;
 998		drain_freelist(cachep, n, INT_MAX);
 999	}
1000}
1001
1002static int cpuup_prepare(long cpu)
1003{
1004	struct kmem_cache *cachep;
1005	int node = cpu_to_mem(cpu);
1006	int err;
1007
1008	/*
1009	 * We need to do this right in the beginning since
1010	 * alloc_arraycache's are going to use this list.
1011	 * kmalloc_node allows us to add the slab to the right
1012	 * kmem_cache_node and not this cpu's kmem_cache_node
1013	 */
1014	err = init_cache_node_node(node);
1015	if (err < 0)
1016		goto bad;
1017
1018	/*
1019	 * Now we can go ahead with allocating the shared arrays and
1020	 * array caches
1021	 */
1022	list_for_each_entry(cachep, &slab_caches, list) {
1023		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1024		if (err)
1025			goto bad;
1026	}
1027
1028	return 0;
1029bad:
1030	cpuup_canceled(cpu);
1031	return -ENOMEM;
1032}
1033
1034int slab_prepare_cpu(unsigned int cpu)
1035{
1036	int err;
1037
1038	mutex_lock(&slab_mutex);
1039	err = cpuup_prepare(cpu);
1040	mutex_unlock(&slab_mutex);
1041	return err;
1042}
1043
1044/*
1045 * This is called for a failed online attempt and for a successful
1046 * offline.
1047 *
1048 * Even if all the cpus of a node are down, we don't free the
1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1050 * a kmalloc allocation from another cpu for memory from the node of
1051 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1053 */
1054int slab_dead_cpu(unsigned int cpu)
1055{
1056	mutex_lock(&slab_mutex);
1057	cpuup_canceled(cpu);
1058	mutex_unlock(&slab_mutex);
1059	return 0;
1060}
1061#endif
1062
1063static int slab_online_cpu(unsigned int cpu)
1064{
1065	start_cpu_timer(cpu);
1066	return 0;
1067}
1068
1069static int slab_offline_cpu(unsigned int cpu)
1070{
1071	/*
1072	 * Shutdown cache reaper. Note that the slab_mutex is held so
1073	 * that if cache_reap() is invoked it cannot do anything
1074	 * expensive but will only modify reap_work and reschedule the
1075	 * timer.
1076	 */
1077	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1078	/* Now the cache_reaper is guaranteed to be not running. */
1079	per_cpu(slab_reap_work, cpu).work.func = NULL;
1080	return 0;
1081}
1082
1083#if defined(CONFIG_NUMA)
1084/*
1085 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1086 * Returns -EBUSY if all objects cannot be drained so that the node is not
1087 * removed.
1088 *
1089 * Must hold slab_mutex.
1090 */
1091static int __meminit drain_cache_node_node(int node)
1092{
1093	struct kmem_cache *cachep;
1094	int ret = 0;
1095
1096	list_for_each_entry(cachep, &slab_caches, list) {
1097		struct kmem_cache_node *n;
1098
1099		n = get_node(cachep, node);
1100		if (!n)
1101			continue;
1102
1103		drain_freelist(cachep, n, INT_MAX);
1104
1105		if (!list_empty(&n->slabs_full) ||
1106		    !list_empty(&n->slabs_partial)) {
1107			ret = -EBUSY;
1108			break;
1109		}
1110	}
1111	return ret;
1112}
1113
1114static int __meminit slab_memory_callback(struct notifier_block *self,
1115					unsigned long action, void *arg)
1116{
1117	struct memory_notify *mnb = arg;
1118	int ret = 0;
1119	int nid;
1120
1121	nid = mnb->status_change_nid;
1122	if (nid < 0)
1123		goto out;
1124
1125	switch (action) {
1126	case MEM_GOING_ONLINE:
1127		mutex_lock(&slab_mutex);
1128		ret = init_cache_node_node(nid);
1129		mutex_unlock(&slab_mutex);
1130		break;
1131	case MEM_GOING_OFFLINE:
1132		mutex_lock(&slab_mutex);
1133		ret = drain_cache_node_node(nid);
1134		mutex_unlock(&slab_mutex);
1135		break;
1136	case MEM_ONLINE:
1137	case MEM_OFFLINE:
1138	case MEM_CANCEL_ONLINE:
1139	case MEM_CANCEL_OFFLINE:
1140		break;
1141	}
1142out:
1143	return notifier_from_errno(ret);
1144}
1145#endif /* CONFIG_NUMA */
1146
1147/*
1148 * swap the static kmem_cache_node with kmalloced memory
1149 */
1150static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1151				int nodeid)
1152{
1153	struct kmem_cache_node *ptr;
1154
1155	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1156	BUG_ON(!ptr);
1157
1158	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1159	/*
1160	 * Do not assume that spinlocks can be initialized via memcpy:
1161	 */
1162	raw_spin_lock_init(&ptr->list_lock);
1163
1164	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1165	cachep->node[nodeid] = ptr;
1166}
1167
1168/*
1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1170 * size of kmem_cache_node.
1171 */
1172static void __init set_up_node(struct kmem_cache *cachep, int index)
1173{
1174	int node;
1175
1176	for_each_online_node(node) {
1177		cachep->node[node] = &init_kmem_cache_node[index + node];
1178		cachep->node[node]->next_reap = jiffies +
1179		    REAPTIMEOUT_NODE +
1180		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1181	}
1182}
1183
1184/*
1185 * Initialisation.  Called after the page allocator have been initialised and
1186 * before smp_init().
1187 */
1188void __init kmem_cache_init(void)
1189{
1190	int i;
1191
1192	kmem_cache = &kmem_cache_boot;
1193
1194	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1195		use_alien_caches = 0;
1196
1197	for (i = 0; i < NUM_INIT_LISTS; i++)
1198		kmem_cache_node_init(&init_kmem_cache_node[i]);
1199
1200	/*
1201	 * Fragmentation resistance on low memory - only use bigger
1202	 * page orders on machines with more than 32MB of memory if
1203	 * not overridden on the command line.
1204	 */
1205	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1206		slab_max_order = SLAB_MAX_ORDER_HI;
1207
1208	/* Bootstrap is tricky, because several objects are allocated
1209	 * from caches that do not exist yet:
1210	 * 1) initialize the kmem_cache cache: it contains the struct
1211	 *    kmem_cache structures of all caches, except kmem_cache itself:
1212	 *    kmem_cache is statically allocated.
1213	 *    Initially an __init data area is used for the head array and the
1214	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1215	 *    array at the end of the bootstrap.
1216	 * 2) Create the first kmalloc cache.
1217	 *    The struct kmem_cache for the new cache is allocated normally.
1218	 *    An __init data area is used for the head array.
1219	 * 3) Create the remaining kmalloc caches, with minimally sized
1220	 *    head arrays.
1221	 * 4) Replace the __init data head arrays for kmem_cache and the first
1222	 *    kmalloc cache with kmalloc allocated arrays.
1223	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1224	 *    the other cache's with kmalloc allocated memory.
1225	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1226	 */
1227
1228	/* 1) create the kmem_cache */
1229
1230	/*
1231	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1232	 */
1233	create_boot_cache(kmem_cache, "kmem_cache",
1234		offsetof(struct kmem_cache, node) +
1235				  nr_node_ids * sizeof(struct kmem_cache_node *),
1236				  SLAB_HWCACHE_ALIGN, 0, 0);
1237	list_add(&kmem_cache->list, &slab_caches);
 
1238	slab_state = PARTIAL;
1239
1240	/*
1241	 * Initialize the caches that provide memory for the  kmem_cache_node
1242	 * structures first.  Without this, further allocations will bug.
1243	 */
1244	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1245				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1246				kmalloc_info[INDEX_NODE].size,
1247				ARCH_KMALLOC_FLAGS, 0,
1248				kmalloc_info[INDEX_NODE].size);
1249	slab_state = PARTIAL_NODE;
1250	setup_kmalloc_cache_index_table();
1251
1252	slab_early_init = 0;
1253
1254	/* 5) Replace the bootstrap kmem_cache_node */
1255	{
1256		int nid;
1257
1258		for_each_online_node(nid) {
1259			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1260
1261			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1262					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1263		}
1264	}
1265
1266	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1267}
1268
1269void __init kmem_cache_init_late(void)
1270{
1271	struct kmem_cache *cachep;
1272
1273	/* 6) resize the head arrays to their final sizes */
1274	mutex_lock(&slab_mutex);
1275	list_for_each_entry(cachep, &slab_caches, list)
1276		if (enable_cpucache(cachep, GFP_NOWAIT))
1277			BUG();
1278	mutex_unlock(&slab_mutex);
1279
1280	/* Done! */
1281	slab_state = FULL;
1282
1283#ifdef CONFIG_NUMA
1284	/*
1285	 * Register a memory hotplug callback that initializes and frees
1286	 * node.
1287	 */
1288	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1289#endif
1290
1291	/*
1292	 * The reap timers are started later, with a module init call: That part
1293	 * of the kernel is not yet operational.
1294	 */
1295}
1296
1297static int __init cpucache_init(void)
1298{
1299	int ret;
1300
1301	/*
1302	 * Register the timers that return unneeded pages to the page allocator
1303	 */
1304	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1305				slab_online_cpu, slab_offline_cpu);
1306	WARN_ON(ret < 0);
1307
1308	return 0;
1309}
1310__initcall(cpucache_init);
1311
1312static noinline void
1313slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1314{
1315#if DEBUG
1316	struct kmem_cache_node *n;
1317	unsigned long flags;
1318	int node;
1319	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1320				      DEFAULT_RATELIMIT_BURST);
1321
1322	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1323		return;
1324
1325	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1326		nodeid, gfpflags, &gfpflags);
1327	pr_warn("  cache: %s, object size: %d, order: %d\n",
1328		cachep->name, cachep->size, cachep->gfporder);
1329
1330	for_each_kmem_cache_node(cachep, node, n) {
1331		unsigned long total_slabs, free_slabs, free_objs;
1332
1333		raw_spin_lock_irqsave(&n->list_lock, flags);
1334		total_slabs = n->total_slabs;
1335		free_slabs = n->free_slabs;
1336		free_objs = n->free_objects;
1337		raw_spin_unlock_irqrestore(&n->list_lock, flags);
1338
1339		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1340			node, total_slabs - free_slabs, total_slabs,
1341			(total_slabs * cachep->num) - free_objs,
1342			total_slabs * cachep->num);
1343	}
1344#endif
1345}
1346
1347/*
1348 * Interface to system's page allocator. No need to hold the
1349 * kmem_cache_node ->list_lock.
1350 *
1351 * If we requested dmaable memory, we will get it. Even if we
1352 * did not request dmaable memory, we might get it, but that
1353 * would be relatively rare and ignorable.
1354 */
1355static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1356								int nodeid)
1357{
1358	struct folio *folio;
1359	struct slab *slab;
1360
1361	flags |= cachep->allocflags;
1362
1363	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1364	if (!folio) {
1365		slab_out_of_memory(cachep, flags, nodeid);
1366		return NULL;
1367	}
1368
1369	slab = folio_slab(folio);
 
 
 
1370
1371	account_slab(slab, cachep->gfporder, cachep, flags);
1372	__folio_set_slab(folio);
1373	/* Make the flag visible before any changes to folio->mapping */
1374	smp_wmb();
1375	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1376	if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1377		slab_set_pfmemalloc(slab);
1378
1379	return slab;
1380}
1381
1382/*
1383 * Interface to system's page release.
1384 */
1385static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1386{
1387	int order = cachep->gfporder;
1388	struct folio *folio = slab_folio(slab);
1389
1390	BUG_ON(!folio_test_slab(folio));
1391	__slab_clear_pfmemalloc(slab);
1392	page_mapcount_reset(folio_page(folio, 0));
1393	folio->mapping = NULL;
1394	/* Make the mapping reset visible before clearing the flag */
1395	smp_wmb();
1396	__folio_clear_slab(folio);
1397
1398	if (current->reclaim_state)
1399		current->reclaim_state->reclaimed_slab += 1 << order;
1400	unaccount_slab(slab, order, cachep);
1401	__free_pages(folio_page(folio, 0), order);
1402}
1403
1404static void kmem_rcu_free(struct rcu_head *head)
1405{
1406	struct kmem_cache *cachep;
1407	struct slab *slab;
1408
1409	slab = container_of(head, struct slab, rcu_head);
1410	cachep = slab->slab_cache;
1411
1412	kmem_freepages(cachep, slab);
1413}
1414
1415#if DEBUG
1416static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1417{
1418	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1419		(cachep->size % PAGE_SIZE) == 0)
1420		return true;
1421
1422	return false;
1423}
1424
1425#ifdef CONFIG_DEBUG_PAGEALLOC
1426static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1427{
1428	if (!is_debug_pagealloc_cache(cachep))
1429		return;
1430
1431	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1432}
1433
1434#else
1435static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1436				int map) {}
1437
1438#endif
1439
1440static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1441{
1442	int size = cachep->object_size;
1443	addr = &((char *)addr)[obj_offset(cachep)];
1444
1445	memset(addr, val, size);
1446	*(unsigned char *)(addr + size - 1) = POISON_END;
1447}
1448
1449static void dump_line(char *data, int offset, int limit)
1450{
1451	int i;
1452	unsigned char error = 0;
1453	int bad_count = 0;
1454
1455	pr_err("%03x: ", offset);
1456	for (i = 0; i < limit; i++) {
1457		if (data[offset + i] != POISON_FREE) {
1458			error = data[offset + i];
1459			bad_count++;
1460		}
1461	}
1462	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1463			&data[offset], limit, 1);
1464
1465	if (bad_count == 1) {
1466		error ^= POISON_FREE;
1467		if (!(error & (error - 1))) {
1468			pr_err("Single bit error detected. Probably bad RAM.\n");
1469#ifdef CONFIG_X86
1470			pr_err("Run memtest86+ or a similar memory test tool.\n");
1471#else
1472			pr_err("Run a memory test tool.\n");
1473#endif
1474		}
1475	}
1476}
1477#endif
1478
1479#if DEBUG
1480
1481static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1482{
1483	int i, size;
1484	char *realobj;
1485
1486	if (cachep->flags & SLAB_RED_ZONE) {
1487		pr_err("Redzone: 0x%llx/0x%llx\n",
1488		       *dbg_redzone1(cachep, objp),
1489		       *dbg_redzone2(cachep, objp));
1490	}
1491
1492	if (cachep->flags & SLAB_STORE_USER)
1493		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1494	realobj = (char *)objp + obj_offset(cachep);
1495	size = cachep->object_size;
1496	for (i = 0; i < size && lines; i += 16, lines--) {
1497		int limit;
1498		limit = 16;
1499		if (i + limit > size)
1500			limit = size - i;
1501		dump_line(realobj, i, limit);
1502	}
1503}
1504
1505static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1506{
1507	char *realobj;
1508	int size, i;
1509	int lines = 0;
1510
1511	if (is_debug_pagealloc_cache(cachep))
1512		return;
1513
1514	realobj = (char *)objp + obj_offset(cachep);
1515	size = cachep->object_size;
1516
1517	for (i = 0; i < size; i++) {
1518		char exp = POISON_FREE;
1519		if (i == size - 1)
1520			exp = POISON_END;
1521		if (realobj[i] != exp) {
1522			int limit;
1523			/* Mismatch ! */
1524			/* Print header */
1525			if (lines == 0) {
1526				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1527				       print_tainted(), cachep->name,
1528				       realobj, size);
1529				print_objinfo(cachep, objp, 0);
1530			}
1531			/* Hexdump the affected line */
1532			i = (i / 16) * 16;
1533			limit = 16;
1534			if (i + limit > size)
1535				limit = size - i;
1536			dump_line(realobj, i, limit);
1537			i += 16;
1538			lines++;
1539			/* Limit to 5 lines */
1540			if (lines > 5)
1541				break;
1542		}
1543	}
1544	if (lines != 0) {
1545		/* Print some data about the neighboring objects, if they
1546		 * exist:
1547		 */
1548		struct slab *slab = virt_to_slab(objp);
1549		unsigned int objnr;
1550
1551		objnr = obj_to_index(cachep, slab, objp);
1552		if (objnr) {
1553			objp = index_to_obj(cachep, slab, objnr - 1);
1554			realobj = (char *)objp + obj_offset(cachep);
1555			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1556			print_objinfo(cachep, objp, 2);
1557		}
1558		if (objnr + 1 < cachep->num) {
1559			objp = index_to_obj(cachep, slab, objnr + 1);
1560			realobj = (char *)objp + obj_offset(cachep);
1561			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1562			print_objinfo(cachep, objp, 2);
1563		}
1564	}
1565}
1566#endif
1567
1568#if DEBUG
1569static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1570						struct slab *slab)
1571{
1572	int i;
1573
1574	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1575		poison_obj(cachep, slab->freelist - obj_offset(cachep),
1576			POISON_FREE);
1577	}
1578
1579	for (i = 0; i < cachep->num; i++) {
1580		void *objp = index_to_obj(cachep, slab, i);
1581
1582		if (cachep->flags & SLAB_POISON) {
1583			check_poison_obj(cachep, objp);
1584			slab_kernel_map(cachep, objp, 1);
1585		}
1586		if (cachep->flags & SLAB_RED_ZONE) {
1587			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1588				slab_error(cachep, "start of a freed object was overwritten");
1589			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1590				slab_error(cachep, "end of a freed object was overwritten");
1591		}
1592	}
1593}
1594#else
1595static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1596						struct slab *slab)
1597{
1598}
1599#endif
1600
1601/**
1602 * slab_destroy - destroy and release all objects in a slab
1603 * @cachep: cache pointer being destroyed
1604 * @slab: slab being destroyed
1605 *
1606 * Destroy all the objs in a slab, and release the mem back to the system.
1607 * Before calling the slab must have been unlinked from the cache. The
1608 * kmem_cache_node ->list_lock is not held/needed.
1609 */
1610static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1611{
1612	void *freelist;
1613
1614	freelist = slab->freelist;
1615	slab_destroy_debugcheck(cachep, slab);
1616	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1617		call_rcu(&slab->rcu_head, kmem_rcu_free);
1618	else
1619		kmem_freepages(cachep, slab);
1620
1621	/*
1622	 * From now on, we don't use freelist
1623	 * although actual page can be freed in rcu context
1624	 */
1625	if (OFF_SLAB(cachep))
1626		kfree(freelist);
1627}
1628
1629/*
1630 * Update the size of the caches before calling slabs_destroy as it may
1631 * recursively call kfree.
1632 */
1633static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1634{
1635	struct slab *slab, *n;
1636
1637	list_for_each_entry_safe(slab, n, list, slab_list) {
1638		list_del(&slab->slab_list);
1639		slab_destroy(cachep, slab);
1640	}
1641}
1642
1643/**
1644 * calculate_slab_order - calculate size (page order) of slabs
1645 * @cachep: pointer to the cache that is being created
1646 * @size: size of objects to be created in this cache.
1647 * @flags: slab allocation flags
1648 *
1649 * Also calculates the number of objects per slab.
1650 *
1651 * This could be made much more intelligent.  For now, try to avoid using
1652 * high order pages for slabs.  When the gfp() functions are more friendly
1653 * towards high-order requests, this should be changed.
1654 *
1655 * Return: number of left-over bytes in a slab
1656 */
1657static size_t calculate_slab_order(struct kmem_cache *cachep,
1658				size_t size, slab_flags_t flags)
1659{
1660	size_t left_over = 0;
1661	int gfporder;
1662
1663	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1664		unsigned int num;
1665		size_t remainder;
1666
1667		num = cache_estimate(gfporder, size, flags, &remainder);
1668		if (!num)
1669			continue;
1670
1671		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1672		if (num > SLAB_OBJ_MAX_NUM)
1673			break;
1674
1675		if (flags & CFLGS_OFF_SLAB) {
1676			struct kmem_cache *freelist_cache;
1677			size_t freelist_size;
1678			size_t freelist_cache_size;
1679
1680			freelist_size = num * sizeof(freelist_idx_t);
1681			if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
1682				freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
1683			} else {
1684				freelist_cache = kmalloc_slab(freelist_size, 0u);
1685				if (!freelist_cache)
1686					continue;
1687				freelist_cache_size = freelist_cache->size;
1688
1689				/*
1690				 * Needed to avoid possible looping condition
1691				 * in cache_grow_begin()
1692				 */
1693				if (OFF_SLAB(freelist_cache))
1694					continue;
1695			}
1696
1697			/* check if off slab has enough benefit */
1698			if (freelist_cache_size > cachep->size / 2)
1699				continue;
1700		}
1701
1702		/* Found something acceptable - save it away */
1703		cachep->num = num;
1704		cachep->gfporder = gfporder;
1705		left_over = remainder;
1706
1707		/*
1708		 * A VFS-reclaimable slab tends to have most allocations
1709		 * as GFP_NOFS and we really don't want to have to be allocating
1710		 * higher-order pages when we are unable to shrink dcache.
1711		 */
1712		if (flags & SLAB_RECLAIM_ACCOUNT)
1713			break;
1714
1715		/*
1716		 * Large number of objects is good, but very large slabs are
1717		 * currently bad for the gfp()s.
1718		 */
1719		if (gfporder >= slab_max_order)
1720			break;
1721
1722		/*
1723		 * Acceptable internal fragmentation?
1724		 */
1725		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1726			break;
1727	}
1728	return left_over;
1729}
1730
1731static struct array_cache __percpu *alloc_kmem_cache_cpus(
1732		struct kmem_cache *cachep, int entries, int batchcount)
1733{
1734	int cpu;
1735	size_t size;
1736	struct array_cache __percpu *cpu_cache;
1737
1738	size = sizeof(void *) * entries + sizeof(struct array_cache);
1739	cpu_cache = __alloc_percpu(size, sizeof(void *));
1740
1741	if (!cpu_cache)
1742		return NULL;
1743
1744	for_each_possible_cpu(cpu) {
1745		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1746				entries, batchcount);
1747	}
1748
1749	return cpu_cache;
1750}
1751
1752static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1753{
1754	if (slab_state >= FULL)
1755		return enable_cpucache(cachep, gfp);
1756
1757	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1758	if (!cachep->cpu_cache)
1759		return 1;
1760
1761	if (slab_state == DOWN) {
1762		/* Creation of first cache (kmem_cache). */
1763		set_up_node(kmem_cache, CACHE_CACHE);
1764	} else if (slab_state == PARTIAL) {
1765		/* For kmem_cache_node */
1766		set_up_node(cachep, SIZE_NODE);
1767	} else {
1768		int node;
1769
1770		for_each_online_node(node) {
1771			cachep->node[node] = kmalloc_node(
1772				sizeof(struct kmem_cache_node), gfp, node);
1773			BUG_ON(!cachep->node[node]);
1774			kmem_cache_node_init(cachep->node[node]);
1775		}
1776	}
1777
1778	cachep->node[numa_mem_id()]->next_reap =
1779			jiffies + REAPTIMEOUT_NODE +
1780			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1781
1782	cpu_cache_get(cachep)->avail = 0;
1783	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1784	cpu_cache_get(cachep)->batchcount = 1;
1785	cpu_cache_get(cachep)->touched = 0;
1786	cachep->batchcount = 1;
1787	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1788	return 0;
1789}
1790
1791slab_flags_t kmem_cache_flags(unsigned int object_size,
1792	slab_flags_t flags, const char *name)
 
1793{
1794	return flags;
1795}
1796
1797struct kmem_cache *
1798__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1799		   slab_flags_t flags, void (*ctor)(void *))
1800{
1801	struct kmem_cache *cachep;
1802
1803	cachep = find_mergeable(size, align, flags, name, ctor);
1804	if (cachep) {
1805		cachep->refcount++;
1806
1807		/*
1808		 * Adjust the object sizes so that we clear
1809		 * the complete object on kzalloc.
1810		 */
1811		cachep->object_size = max_t(int, cachep->object_size, size);
1812	}
1813	return cachep;
1814}
1815
1816static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1817			size_t size, slab_flags_t flags)
1818{
1819	size_t left;
1820
1821	cachep->num = 0;
1822
1823	/*
1824	 * If slab auto-initialization on free is enabled, store the freelist
1825	 * off-slab, so that its contents don't end up in one of the allocated
1826	 * objects.
1827	 */
1828	if (unlikely(slab_want_init_on_free(cachep)))
1829		return false;
1830
1831	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1832		return false;
1833
1834	left = calculate_slab_order(cachep, size,
1835			flags | CFLGS_OBJFREELIST_SLAB);
1836	if (!cachep->num)
1837		return false;
1838
1839	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1840		return false;
1841
1842	cachep->colour = left / cachep->colour_off;
1843
1844	return true;
1845}
1846
1847static bool set_off_slab_cache(struct kmem_cache *cachep,
1848			size_t size, slab_flags_t flags)
1849{
1850	size_t left;
1851
1852	cachep->num = 0;
1853
1854	/*
1855	 * Always use on-slab management when SLAB_NOLEAKTRACE
1856	 * to avoid recursive calls into kmemleak.
1857	 */
1858	if (flags & SLAB_NOLEAKTRACE)
1859		return false;
1860
1861	/*
1862	 * Size is large, assume best to place the slab management obj
1863	 * off-slab (should allow better packing of objs).
1864	 */
1865	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1866	if (!cachep->num)
1867		return false;
1868
1869	/*
1870	 * If the slab has been placed off-slab, and we have enough space then
1871	 * move it on-slab. This is at the expense of any extra colouring.
1872	 */
1873	if (left >= cachep->num * sizeof(freelist_idx_t))
1874		return false;
1875
1876	cachep->colour = left / cachep->colour_off;
1877
1878	return true;
1879}
1880
1881static bool set_on_slab_cache(struct kmem_cache *cachep,
1882			size_t size, slab_flags_t flags)
1883{
1884	size_t left;
1885
1886	cachep->num = 0;
1887
1888	left = calculate_slab_order(cachep, size, flags);
1889	if (!cachep->num)
1890		return false;
1891
1892	cachep->colour = left / cachep->colour_off;
1893
1894	return true;
1895}
1896
1897/**
1898 * __kmem_cache_create - Create a cache.
1899 * @cachep: cache management descriptor
1900 * @flags: SLAB flags
1901 *
1902 * Returns a ptr to the cache on success, NULL on failure.
1903 * Cannot be called within an int, but can be interrupted.
1904 * The @ctor is run when new pages are allocated by the cache.
1905 *
1906 * The flags are
1907 *
1908 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1909 * to catch references to uninitialised memory.
1910 *
1911 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1912 * for buffer overruns.
1913 *
1914 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1915 * cacheline.  This can be beneficial if you're counting cycles as closely
1916 * as davem.
1917 *
1918 * Return: a pointer to the created cache or %NULL in case of error
1919 */
1920int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1921{
1922	size_t ralign = BYTES_PER_WORD;
1923	gfp_t gfp;
1924	int err;
1925	unsigned int size = cachep->size;
1926
1927#if DEBUG
1928#if FORCED_DEBUG
1929	/*
1930	 * Enable redzoning and last user accounting, except for caches with
1931	 * large objects, if the increased size would increase the object size
1932	 * above the next power of two: caches with object sizes just above a
1933	 * power of two have a significant amount of internal fragmentation.
1934	 */
1935	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1936						2 * sizeof(unsigned long long)))
1937		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1938	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1939		flags |= SLAB_POISON;
1940#endif
1941#endif
1942
1943	/*
1944	 * Check that size is in terms of words.  This is needed to avoid
1945	 * unaligned accesses for some archs when redzoning is used, and makes
1946	 * sure any on-slab bufctl's are also correctly aligned.
1947	 */
1948	size = ALIGN(size, BYTES_PER_WORD);
1949
1950	if (flags & SLAB_RED_ZONE) {
1951		ralign = REDZONE_ALIGN;
1952		/* If redzoning, ensure that the second redzone is suitably
1953		 * aligned, by adjusting the object size accordingly. */
1954		size = ALIGN(size, REDZONE_ALIGN);
1955	}
1956
1957	/* 3) caller mandated alignment */
1958	if (ralign < cachep->align) {
1959		ralign = cachep->align;
1960	}
1961	/* disable debug if necessary */
1962	if (ralign > __alignof__(unsigned long long))
1963		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1964	/*
1965	 * 4) Store it.
1966	 */
1967	cachep->align = ralign;
1968	cachep->colour_off = cache_line_size();
1969	/* Offset must be a multiple of the alignment. */
1970	if (cachep->colour_off < cachep->align)
1971		cachep->colour_off = cachep->align;
1972
1973	if (slab_is_available())
1974		gfp = GFP_KERNEL;
1975	else
1976		gfp = GFP_NOWAIT;
1977
1978#if DEBUG
1979
1980	/*
1981	 * Both debugging options require word-alignment which is calculated
1982	 * into align above.
1983	 */
1984	if (flags & SLAB_RED_ZONE) {
1985		/* add space for red zone words */
1986		cachep->obj_offset += sizeof(unsigned long long);
1987		size += 2 * sizeof(unsigned long long);
1988	}
1989	if (flags & SLAB_STORE_USER) {
1990		/* user store requires one word storage behind the end of
1991		 * the real object. But if the second red zone needs to be
1992		 * aligned to 64 bits, we must allow that much space.
1993		 */
1994		if (flags & SLAB_RED_ZONE)
1995			size += REDZONE_ALIGN;
1996		else
1997			size += BYTES_PER_WORD;
1998	}
1999#endif
2000
2001	kasan_cache_create(cachep, &size, &flags);
2002
2003	size = ALIGN(size, cachep->align);
2004	/*
2005	 * We should restrict the number of objects in a slab to implement
2006	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2007	 */
2008	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2009		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2010
2011#if DEBUG
2012	/*
2013	 * To activate debug pagealloc, off-slab management is necessary
2014	 * requirement. In early phase of initialization, small sized slab
2015	 * doesn't get initialized so it would not be possible. So, we need
2016	 * to check size >= 256. It guarantees that all necessary small
2017	 * sized slab is initialized in current slab initialization sequence.
2018	 */
2019	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2020		size >= 256 && cachep->object_size > cache_line_size()) {
2021		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2022			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2023
2024			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2025				flags |= CFLGS_OFF_SLAB;
2026				cachep->obj_offset += tmp_size - size;
2027				size = tmp_size;
2028				goto done;
2029			}
2030		}
2031	}
2032#endif
2033
2034	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2035		flags |= CFLGS_OBJFREELIST_SLAB;
2036		goto done;
2037	}
2038
2039	if (set_off_slab_cache(cachep, size, flags)) {
2040		flags |= CFLGS_OFF_SLAB;
2041		goto done;
2042	}
2043
2044	if (set_on_slab_cache(cachep, size, flags))
2045		goto done;
2046
2047	return -E2BIG;
2048
2049done:
2050	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2051	cachep->flags = flags;
2052	cachep->allocflags = __GFP_COMP;
2053	if (flags & SLAB_CACHE_DMA)
2054		cachep->allocflags |= GFP_DMA;
2055	if (flags & SLAB_CACHE_DMA32)
2056		cachep->allocflags |= GFP_DMA32;
2057	if (flags & SLAB_RECLAIM_ACCOUNT)
2058		cachep->allocflags |= __GFP_RECLAIMABLE;
2059	cachep->size = size;
2060	cachep->reciprocal_buffer_size = reciprocal_value(size);
2061
2062#if DEBUG
2063	/*
2064	 * If we're going to use the generic kernel_map_pages()
2065	 * poisoning, then it's going to smash the contents of
2066	 * the redzone and userword anyhow, so switch them off.
2067	 */
2068	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2069		(cachep->flags & SLAB_POISON) &&
2070		is_debug_pagealloc_cache(cachep))
2071		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2072#endif
2073
 
 
 
 
 
2074	err = setup_cpu_cache(cachep, gfp);
2075	if (err) {
2076		__kmem_cache_release(cachep);
2077		return err;
2078	}
2079
2080	return 0;
2081}
2082
2083#if DEBUG
2084static void check_irq_off(void)
2085{
2086	BUG_ON(!irqs_disabled());
2087}
2088
2089static void check_irq_on(void)
2090{
2091	BUG_ON(irqs_disabled());
2092}
2093
2094static void check_mutex_acquired(void)
2095{
2096	BUG_ON(!mutex_is_locked(&slab_mutex));
2097}
2098
2099static void check_spinlock_acquired(struct kmem_cache *cachep)
2100{
2101#ifdef CONFIG_SMP
2102	check_irq_off();
2103	assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2104#endif
2105}
2106
2107static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2108{
2109#ifdef CONFIG_SMP
2110	check_irq_off();
2111	assert_raw_spin_locked(&get_node(cachep, node)->list_lock);
2112#endif
2113}
2114
2115#else
2116#define check_irq_off()	do { } while(0)
2117#define check_irq_on()	do { } while(0)
2118#define check_mutex_acquired()	do { } while(0)
2119#define check_spinlock_acquired(x) do { } while(0)
2120#define check_spinlock_acquired_node(x, y) do { } while(0)
2121#endif
2122
2123static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2124				int node, bool free_all, struct list_head *list)
2125{
2126	int tofree;
2127
2128	if (!ac || !ac->avail)
2129		return;
2130
2131	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2132	if (tofree > ac->avail)
2133		tofree = (ac->avail + 1) / 2;
2134
2135	free_block(cachep, ac->entry, tofree, node, list);
2136	ac->avail -= tofree;
2137	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2138}
2139
2140static void do_drain(void *arg)
2141{
2142	struct kmem_cache *cachep = arg;
2143	struct array_cache *ac;
2144	int node = numa_mem_id();
2145	struct kmem_cache_node *n;
2146	LIST_HEAD(list);
2147
2148	check_irq_off();
2149	ac = cpu_cache_get(cachep);
2150	n = get_node(cachep, node);
2151	raw_spin_lock(&n->list_lock);
2152	free_block(cachep, ac->entry, ac->avail, node, &list);
2153	raw_spin_unlock(&n->list_lock);
 
2154	ac->avail = 0;
2155	slabs_destroy(cachep, &list);
2156}
2157
2158static void drain_cpu_caches(struct kmem_cache *cachep)
2159{
2160	struct kmem_cache_node *n;
2161	int node;
2162	LIST_HEAD(list);
2163
2164	on_each_cpu(do_drain, cachep, 1);
2165	check_irq_on();
2166	for_each_kmem_cache_node(cachep, node, n)
2167		if (n->alien)
2168			drain_alien_cache(cachep, n->alien);
2169
2170	for_each_kmem_cache_node(cachep, node, n) {
2171		raw_spin_lock_irq(&n->list_lock);
2172		drain_array_locked(cachep, n->shared, node, true, &list);
2173		raw_spin_unlock_irq(&n->list_lock);
2174
2175		slabs_destroy(cachep, &list);
2176	}
2177}
2178
2179/*
2180 * Remove slabs from the list of free slabs.
2181 * Specify the number of slabs to drain in tofree.
2182 *
2183 * Returns the actual number of slabs released.
2184 */
2185static int drain_freelist(struct kmem_cache *cache,
2186			struct kmem_cache_node *n, int tofree)
2187{
2188	struct list_head *p;
2189	int nr_freed;
2190	struct slab *slab;
2191
2192	nr_freed = 0;
2193	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2194
2195		raw_spin_lock_irq(&n->list_lock);
2196		p = n->slabs_free.prev;
2197		if (p == &n->slabs_free) {
2198			raw_spin_unlock_irq(&n->list_lock);
2199			goto out;
2200		}
2201
2202		slab = list_entry(p, struct slab, slab_list);
2203		list_del(&slab->slab_list);
2204		n->free_slabs--;
2205		n->total_slabs--;
2206		/*
2207		 * Safe to drop the lock. The slab is no longer linked
2208		 * to the cache.
2209		 */
2210		n->free_objects -= cache->num;
2211		raw_spin_unlock_irq(&n->list_lock);
2212		slab_destroy(cache, slab);
2213		nr_freed++;
2214
2215		cond_resched();
2216	}
2217out:
2218	return nr_freed;
2219}
2220
2221bool __kmem_cache_empty(struct kmem_cache *s)
2222{
2223	int node;
2224	struct kmem_cache_node *n;
2225
2226	for_each_kmem_cache_node(s, node, n)
2227		if (!list_empty(&n->slabs_full) ||
2228		    !list_empty(&n->slabs_partial))
2229			return false;
2230	return true;
2231}
2232
2233int __kmem_cache_shrink(struct kmem_cache *cachep)
2234{
2235	int ret = 0;
2236	int node;
2237	struct kmem_cache_node *n;
2238
2239	drain_cpu_caches(cachep);
2240
2241	check_irq_on();
2242	for_each_kmem_cache_node(cachep, node, n) {
2243		drain_freelist(cachep, n, INT_MAX);
2244
2245		ret += !list_empty(&n->slabs_full) ||
2246			!list_empty(&n->slabs_partial);
2247	}
2248	return (ret ? 1 : 0);
2249}
2250
 
 
 
 
 
 
 
 
 
 
 
2251int __kmem_cache_shutdown(struct kmem_cache *cachep)
2252{
2253	return __kmem_cache_shrink(cachep);
2254}
2255
2256void __kmem_cache_release(struct kmem_cache *cachep)
2257{
2258	int i;
2259	struct kmem_cache_node *n;
2260
2261	cache_random_seq_destroy(cachep);
2262
2263	free_percpu(cachep->cpu_cache);
2264
2265	/* NUMA: free the node structures */
2266	for_each_kmem_cache_node(cachep, i, n) {
2267		kfree(n->shared);
2268		free_alien_cache(n->alien);
2269		kfree(n);
2270		cachep->node[i] = NULL;
2271	}
2272}
2273
2274/*
2275 * Get the memory for a slab management obj.
2276 *
2277 * For a slab cache when the slab descriptor is off-slab, the
2278 * slab descriptor can't come from the same cache which is being created,
2279 * Because if it is the case, that means we defer the creation of
2280 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2281 * And we eventually call down to __kmem_cache_create(), which
2282 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2283 * This is a "chicken-and-egg" problem.
2284 *
2285 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2286 * which are all initialized during kmem_cache_init().
2287 */
2288static void *alloc_slabmgmt(struct kmem_cache *cachep,
2289				   struct slab *slab, int colour_off,
2290				   gfp_t local_flags, int nodeid)
2291{
2292	void *freelist;
2293	void *addr = slab_address(slab);
2294
2295	slab->s_mem = addr + colour_off;
2296	slab->active = 0;
2297
2298	if (OBJFREELIST_SLAB(cachep))
2299		freelist = NULL;
2300	else if (OFF_SLAB(cachep)) {
2301		/* Slab management obj is off-slab. */
2302		freelist = kmalloc_node(cachep->freelist_size,
2303					      local_flags, nodeid);
 
 
2304	} else {
2305		/* We will use last bytes at the slab for freelist */
2306		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2307				cachep->freelist_size;
2308	}
2309
2310	return freelist;
2311}
2312
2313static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2314{
2315	return ((freelist_idx_t *) slab->freelist)[idx];
2316}
2317
2318static inline void set_free_obj(struct slab *slab,
2319					unsigned int idx, freelist_idx_t val)
2320{
2321	((freelist_idx_t *)(slab->freelist))[idx] = val;
2322}
2323
2324static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2325{
2326#if DEBUG
2327	int i;
2328
2329	for (i = 0; i < cachep->num; i++) {
2330		void *objp = index_to_obj(cachep, slab, i);
2331
2332		if (cachep->flags & SLAB_STORE_USER)
2333			*dbg_userword(cachep, objp) = NULL;
2334
2335		if (cachep->flags & SLAB_RED_ZONE) {
2336			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2337			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2338		}
2339		/*
2340		 * Constructors are not allowed to allocate memory from the same
2341		 * cache which they are a constructor for.  Otherwise, deadlock.
2342		 * They must also be threaded.
2343		 */
2344		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2345			kasan_unpoison_object_data(cachep,
2346						   objp + obj_offset(cachep));
2347			cachep->ctor(objp + obj_offset(cachep));
2348			kasan_poison_object_data(
2349				cachep, objp + obj_offset(cachep));
2350		}
2351
2352		if (cachep->flags & SLAB_RED_ZONE) {
2353			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2354				slab_error(cachep, "constructor overwrote the end of an object");
2355			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2356				slab_error(cachep, "constructor overwrote the start of an object");
2357		}
2358		/* need to poison the objs? */
2359		if (cachep->flags & SLAB_POISON) {
2360			poison_obj(cachep, objp, POISON_FREE);
2361			slab_kernel_map(cachep, objp, 0);
2362		}
2363	}
2364#endif
2365}
2366
2367#ifdef CONFIG_SLAB_FREELIST_RANDOM
2368/* Hold information during a freelist initialization */
2369union freelist_init_state {
2370	struct {
2371		unsigned int pos;
2372		unsigned int *list;
2373		unsigned int count;
2374	};
2375	struct rnd_state rnd_state;
2376};
2377
2378/*
2379 * Initialize the state based on the randomization method available.
2380 * return true if the pre-computed list is available, false otherwise.
2381 */
2382static bool freelist_state_initialize(union freelist_init_state *state,
2383				struct kmem_cache *cachep,
2384				unsigned int count)
2385{
2386	bool ret;
2387	unsigned int rand;
2388
2389	/* Use best entropy available to define a random shift */
2390	rand = get_random_u32();
2391
2392	/* Use a random state if the pre-computed list is not available */
2393	if (!cachep->random_seq) {
2394		prandom_seed_state(&state->rnd_state, rand);
2395		ret = false;
2396	} else {
2397		state->list = cachep->random_seq;
2398		state->count = count;
2399		state->pos = rand % count;
2400		ret = true;
2401	}
2402	return ret;
2403}
2404
2405/* Get the next entry on the list and randomize it using a random shift */
2406static freelist_idx_t next_random_slot(union freelist_init_state *state)
2407{
2408	if (state->pos >= state->count)
2409		state->pos = 0;
2410	return state->list[state->pos++];
2411}
2412
2413/* Swap two freelist entries */
2414static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2415{
2416	swap(((freelist_idx_t *) slab->freelist)[a],
2417		((freelist_idx_t *) slab->freelist)[b]);
2418}
2419
2420/*
2421 * Shuffle the freelist initialization state based on pre-computed lists.
2422 * return true if the list was successfully shuffled, false otherwise.
2423 */
2424static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2425{
2426	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2427	union freelist_init_state state;
2428	bool precomputed;
2429
2430	if (count < 2)
2431		return false;
2432
2433	precomputed = freelist_state_initialize(&state, cachep, count);
2434
2435	/* Take a random entry as the objfreelist */
2436	if (OBJFREELIST_SLAB(cachep)) {
2437		if (!precomputed)
2438			objfreelist = count - 1;
2439		else
2440			objfreelist = next_random_slot(&state);
2441		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2442						obj_offset(cachep);
2443		count--;
2444	}
2445
2446	/*
2447	 * On early boot, generate the list dynamically.
2448	 * Later use a pre-computed list for speed.
2449	 */
2450	if (!precomputed) {
2451		for (i = 0; i < count; i++)
2452			set_free_obj(slab, i, i);
2453
2454		/* Fisher-Yates shuffle */
2455		for (i = count - 1; i > 0; i--) {
2456			rand = prandom_u32_state(&state.rnd_state);
2457			rand %= (i + 1);
2458			swap_free_obj(slab, i, rand);
2459		}
2460	} else {
2461		for (i = 0; i < count; i++)
2462			set_free_obj(slab, i, next_random_slot(&state));
2463	}
2464
2465	if (OBJFREELIST_SLAB(cachep))
2466		set_free_obj(slab, cachep->num - 1, objfreelist);
2467
2468	return true;
2469}
2470#else
2471static inline bool shuffle_freelist(struct kmem_cache *cachep,
2472				struct slab *slab)
2473{
2474	return false;
2475}
2476#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2477
2478static void cache_init_objs(struct kmem_cache *cachep,
2479			    struct slab *slab)
2480{
2481	int i;
2482	void *objp;
2483	bool shuffled;
2484
2485	cache_init_objs_debug(cachep, slab);
2486
2487	/* Try to randomize the freelist if enabled */
2488	shuffled = shuffle_freelist(cachep, slab);
2489
2490	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2491		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2492						obj_offset(cachep);
2493	}
2494
2495	for (i = 0; i < cachep->num; i++) {
2496		objp = index_to_obj(cachep, slab, i);
2497		objp = kasan_init_slab_obj(cachep, objp);
2498
2499		/* constructor could break poison info */
2500		if (DEBUG == 0 && cachep->ctor) {
2501			kasan_unpoison_object_data(cachep, objp);
2502			cachep->ctor(objp);
2503			kasan_poison_object_data(cachep, objp);
2504		}
2505
2506		if (!shuffled)
2507			set_free_obj(slab, i, i);
2508	}
2509}
2510
2511static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
2512{
2513	void *objp;
2514
2515	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2516	slab->active++;
2517
2518	return objp;
2519}
2520
2521static void slab_put_obj(struct kmem_cache *cachep,
2522			struct slab *slab, void *objp)
2523{
2524	unsigned int objnr = obj_to_index(cachep, slab, objp);
2525#if DEBUG
2526	unsigned int i;
2527
2528	/* Verify double free bug */
2529	for (i = slab->active; i < cachep->num; i++) {
2530		if (get_free_obj(slab, i) == objnr) {
2531			pr_err("slab: double free detected in cache '%s', objp %px\n",
2532			       cachep->name, objp);
2533			BUG();
2534		}
2535	}
2536#endif
2537	slab->active--;
2538	if (!slab->freelist)
2539		slab->freelist = objp + obj_offset(cachep);
2540
2541	set_free_obj(slab, slab->active, objnr);
 
 
 
 
 
 
 
 
 
 
 
 
2542}
2543
2544/*
2545 * Grow (by 1) the number of slabs within a cache.  This is called by
2546 * kmem_cache_alloc() when there are no active objs left in a cache.
2547 */
2548static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2549				gfp_t flags, int nodeid)
2550{
2551	void *freelist;
2552	size_t offset;
2553	gfp_t local_flags;
2554	int slab_node;
2555	struct kmem_cache_node *n;
2556	struct slab *slab;
2557
2558	/*
2559	 * Be lazy and only check for valid flags here,  keeping it out of the
2560	 * critical path in kmem_cache_alloc().
2561	 */
2562	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2563		flags = kmalloc_fix_flags(flags);
2564
 
 
 
 
2565	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2566	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2567
2568	check_irq_off();
2569	if (gfpflags_allow_blocking(local_flags))
2570		local_irq_enable();
2571
2572	/*
2573	 * Get mem for the objs.  Attempt to allocate a physical page from
2574	 * 'nodeid'.
2575	 */
2576	slab = kmem_getpages(cachep, local_flags, nodeid);
2577	if (!slab)
2578		goto failed;
2579
2580	slab_node = slab_nid(slab);
2581	n = get_node(cachep, slab_node);
2582
2583	/* Get colour for the slab, and cal the next value. */
2584	n->colour_next++;
2585	if (n->colour_next >= cachep->colour)
2586		n->colour_next = 0;
2587
2588	offset = n->colour_next;
2589	if (offset >= cachep->colour)
2590		offset = 0;
2591
2592	offset *= cachep->colour_off;
2593
2594	/*
2595	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2596	 * page_address() in the latter returns a non-tagged pointer,
2597	 * as it should be for slab pages.
2598	 */
2599	kasan_poison_slab(slab);
2600
2601	/* Get slab management. */
2602	freelist = alloc_slabmgmt(cachep, slab, offset,
2603			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2604	if (OFF_SLAB(cachep) && !freelist)
2605		goto opps1;
2606
2607	slab->slab_cache = cachep;
2608	slab->freelist = freelist;
2609
2610	cache_init_objs(cachep, slab);
2611
2612	if (gfpflags_allow_blocking(local_flags))
2613		local_irq_disable();
2614
2615	return slab;
2616
2617opps1:
2618	kmem_freepages(cachep, slab);
2619failed:
2620	if (gfpflags_allow_blocking(local_flags))
2621		local_irq_disable();
2622	return NULL;
2623}
2624
2625static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2626{
2627	struct kmem_cache_node *n;
2628	void *list = NULL;
2629
2630	check_irq_off();
2631
2632	if (!slab)
2633		return;
2634
2635	INIT_LIST_HEAD(&slab->slab_list);
2636	n = get_node(cachep, slab_nid(slab));
2637
2638	raw_spin_lock(&n->list_lock);
2639	n->total_slabs++;
2640	if (!slab->active) {
2641		list_add_tail(&slab->slab_list, &n->slabs_free);
2642		n->free_slabs++;
2643	} else
2644		fixup_slab_list(cachep, n, slab, &list);
2645
2646	STATS_INC_GROWN(cachep);
2647	n->free_objects += cachep->num - slab->active;
2648	raw_spin_unlock(&n->list_lock);
2649
2650	fixup_objfreelist_debug(cachep, &list);
2651}
2652
2653#if DEBUG
2654
2655/*
2656 * Perform extra freeing checks:
2657 * - detect bad pointers.
2658 * - POISON/RED_ZONE checking
2659 */
2660static void kfree_debugcheck(const void *objp)
2661{
2662	if (!virt_addr_valid(objp)) {
2663		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2664		       (unsigned long)objp);
2665		BUG();
2666	}
2667}
2668
2669static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2670{
2671	unsigned long long redzone1, redzone2;
2672
2673	redzone1 = *dbg_redzone1(cache, obj);
2674	redzone2 = *dbg_redzone2(cache, obj);
2675
2676	/*
2677	 * Redzone is ok.
2678	 */
2679	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2680		return;
2681
2682	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2683		slab_error(cache, "double free detected");
2684	else
2685		slab_error(cache, "memory outside object was overwritten");
2686
2687	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2688	       obj, redzone1, redzone2);
2689}
2690
2691static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2692				   unsigned long caller)
2693{
2694	unsigned int objnr;
2695	struct slab *slab;
2696
2697	BUG_ON(virt_to_cache(objp) != cachep);
2698
2699	objp -= obj_offset(cachep);
2700	kfree_debugcheck(objp);
2701	slab = virt_to_slab(objp);
2702
2703	if (cachep->flags & SLAB_RED_ZONE) {
2704		verify_redzone_free(cachep, objp);
2705		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2706		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2707	}
2708	if (cachep->flags & SLAB_STORE_USER)
2709		*dbg_userword(cachep, objp) = (void *)caller;
2710
2711	objnr = obj_to_index(cachep, slab, objp);
2712
2713	BUG_ON(objnr >= cachep->num);
2714	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2715
2716	if (cachep->flags & SLAB_POISON) {
2717		poison_obj(cachep, objp, POISON_FREE);
2718		slab_kernel_map(cachep, objp, 0);
2719	}
2720	return objp;
2721}
2722
2723#else
2724#define kfree_debugcheck(x) do { } while(0)
2725#define cache_free_debugcheck(x, objp, z) (objp)
2726#endif
2727
2728static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2729						void **list)
2730{
2731#if DEBUG
2732	void *next = *list;
2733	void *objp;
2734
2735	while (next) {
2736		objp = next - obj_offset(cachep);
2737		next = *(void **)next;
2738		poison_obj(cachep, objp, POISON_FREE);
2739	}
2740#endif
2741}
2742
2743static inline void fixup_slab_list(struct kmem_cache *cachep,
2744				struct kmem_cache_node *n, struct slab *slab,
2745				void **list)
2746{
2747	/* move slabp to correct slabp list: */
2748	list_del(&slab->slab_list);
2749	if (slab->active == cachep->num) {
2750		list_add(&slab->slab_list, &n->slabs_full);
2751		if (OBJFREELIST_SLAB(cachep)) {
2752#if DEBUG
2753			/* Poisoning will be done without holding the lock */
2754			if (cachep->flags & SLAB_POISON) {
2755				void **objp = slab->freelist;
2756
2757				*objp = *list;
2758				*list = objp;
2759			}
2760#endif
2761			slab->freelist = NULL;
2762		}
2763	} else
2764		list_add(&slab->slab_list, &n->slabs_partial);
2765}
2766
2767/* Try to find non-pfmemalloc slab if needed */
2768static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2769					struct slab *slab, bool pfmemalloc)
2770{
2771	if (!slab)
2772		return NULL;
2773
2774	if (pfmemalloc)
2775		return slab;
2776
2777	if (!slab_test_pfmemalloc(slab))
2778		return slab;
2779
2780	/* No need to keep pfmemalloc slab if we have enough free objects */
2781	if (n->free_objects > n->free_limit) {
2782		slab_clear_pfmemalloc(slab);
2783		return slab;
2784	}
2785
2786	/* Move pfmemalloc slab to the end of list to speed up next search */
2787	list_del(&slab->slab_list);
2788	if (!slab->active) {
2789		list_add_tail(&slab->slab_list, &n->slabs_free);
2790		n->free_slabs++;
2791	} else
2792		list_add_tail(&slab->slab_list, &n->slabs_partial);
2793
2794	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2795		if (!slab_test_pfmemalloc(slab))
2796			return slab;
2797	}
2798
2799	n->free_touched = 1;
2800	list_for_each_entry(slab, &n->slabs_free, slab_list) {
2801		if (!slab_test_pfmemalloc(slab)) {
2802			n->free_slabs--;
2803			return slab;
2804		}
2805	}
2806
2807	return NULL;
2808}
2809
2810static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2811{
2812	struct slab *slab;
2813
2814	assert_raw_spin_locked(&n->list_lock);
2815	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2816					slab_list);
2817	if (!slab) {
2818		n->free_touched = 1;
2819		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2820						slab_list);
2821		if (slab)
2822			n->free_slabs--;
2823	}
2824
2825	if (sk_memalloc_socks())
2826		slab = get_valid_first_slab(n, slab, pfmemalloc);
2827
2828	return slab;
2829}
2830
2831static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2832				struct kmem_cache_node *n, gfp_t flags)
2833{
2834	struct slab *slab;
2835	void *obj;
2836	void *list = NULL;
2837
2838	if (!gfp_pfmemalloc_allowed(flags))
2839		return NULL;
2840
2841	raw_spin_lock(&n->list_lock);
2842	slab = get_first_slab(n, true);
2843	if (!slab) {
2844		raw_spin_unlock(&n->list_lock);
2845		return NULL;
2846	}
2847
2848	obj = slab_get_obj(cachep, slab);
2849	n->free_objects--;
2850
2851	fixup_slab_list(cachep, n, slab, &list);
2852
2853	raw_spin_unlock(&n->list_lock);
2854	fixup_objfreelist_debug(cachep, &list);
2855
2856	return obj;
2857}
2858
2859/*
2860 * Slab list should be fixed up by fixup_slab_list() for existing slab
2861 * or cache_grow_end() for new slab
2862 */
2863static __always_inline int alloc_block(struct kmem_cache *cachep,
2864		struct array_cache *ac, struct slab *slab, int batchcount)
2865{
2866	/*
2867	 * There must be at least one object available for
2868	 * allocation.
2869	 */
2870	BUG_ON(slab->active >= cachep->num);
2871
2872	while (slab->active < cachep->num && batchcount--) {
2873		STATS_INC_ALLOCED(cachep);
2874		STATS_INC_ACTIVE(cachep);
2875		STATS_SET_HIGH(cachep);
2876
2877		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2878	}
2879
2880	return batchcount;
2881}
2882
2883static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2884{
2885	int batchcount;
2886	struct kmem_cache_node *n;
2887	struct array_cache *ac, *shared;
2888	int node;
2889	void *list = NULL;
2890	struct slab *slab;
2891
2892	check_irq_off();
2893	node = numa_mem_id();
2894
2895	ac = cpu_cache_get(cachep);
2896	batchcount = ac->batchcount;
2897	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2898		/*
2899		 * If there was little recent activity on this cache, then
2900		 * perform only a partial refill.  Otherwise we could generate
2901		 * refill bouncing.
2902		 */
2903		batchcount = BATCHREFILL_LIMIT;
2904	}
2905	n = get_node(cachep, node);
2906
2907	BUG_ON(ac->avail > 0 || !n);
2908	shared = READ_ONCE(n->shared);
2909	if (!n->free_objects && (!shared || !shared->avail))
2910		goto direct_grow;
2911
2912	raw_spin_lock(&n->list_lock);
2913	shared = READ_ONCE(n->shared);
2914
2915	/* See if we can refill from the shared array */
2916	if (shared && transfer_objects(ac, shared, batchcount)) {
2917		shared->touched = 1;
2918		goto alloc_done;
2919	}
2920
2921	while (batchcount > 0) {
2922		/* Get slab alloc is to come from. */
2923		slab = get_first_slab(n, false);
2924		if (!slab)
2925			goto must_grow;
2926
2927		check_spinlock_acquired(cachep);
2928
2929		batchcount = alloc_block(cachep, ac, slab, batchcount);
2930		fixup_slab_list(cachep, n, slab, &list);
2931	}
2932
2933must_grow:
2934	n->free_objects -= ac->avail;
2935alloc_done:
2936	raw_spin_unlock(&n->list_lock);
2937	fixup_objfreelist_debug(cachep, &list);
2938
2939direct_grow:
2940	if (unlikely(!ac->avail)) {
2941		/* Check if we can use obj in pfmemalloc slab */
2942		if (sk_memalloc_socks()) {
2943			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2944
2945			if (obj)
2946				return obj;
2947		}
2948
2949		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2950
2951		/*
2952		 * cache_grow_begin() can reenable interrupts,
2953		 * then ac could change.
2954		 */
2955		ac = cpu_cache_get(cachep);
2956		if (!ac->avail && slab)
2957			alloc_block(cachep, ac, slab, batchcount);
2958		cache_grow_end(cachep, slab);
2959
2960		if (!ac->avail)
2961			return NULL;
2962	}
2963	ac->touched = 1;
2964
2965	return ac->entry[--ac->avail];
2966}
2967
 
 
 
 
 
 
2968#if DEBUG
2969static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2970				gfp_t flags, void *objp, unsigned long caller)
2971{
2972	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2973	if (!objp || is_kfence_address(objp))
2974		return objp;
2975	if (cachep->flags & SLAB_POISON) {
2976		check_poison_obj(cachep, objp);
2977		slab_kernel_map(cachep, objp, 1);
2978		poison_obj(cachep, objp, POISON_INUSE);
2979	}
2980	if (cachep->flags & SLAB_STORE_USER)
2981		*dbg_userword(cachep, objp) = (void *)caller;
2982
2983	if (cachep->flags & SLAB_RED_ZONE) {
2984		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2985				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2986			slab_error(cachep, "double free, or memory outside object was overwritten");
2987			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2988			       objp, *dbg_redzone1(cachep, objp),
2989			       *dbg_redzone2(cachep, objp));
2990		}
2991		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2992		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2993	}
2994
2995	objp += obj_offset(cachep);
2996	if (cachep->ctor && cachep->flags & SLAB_POISON)
2997		cachep->ctor(objp);
2998	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2999		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
3000		       arch_slab_minalign());
 
3001	}
3002	return objp;
3003}
3004#else
3005#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3006#endif
3007
3008static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3009{
3010	void *objp;
3011	struct array_cache *ac;
3012
3013	check_irq_off();
3014
3015	ac = cpu_cache_get(cachep);
3016	if (likely(ac->avail)) {
3017		ac->touched = 1;
3018		objp = ac->entry[--ac->avail];
3019
3020		STATS_INC_ALLOCHIT(cachep);
3021		goto out;
3022	}
3023
3024	STATS_INC_ALLOCMISS(cachep);
3025	objp = cache_alloc_refill(cachep, flags);
3026	/*
3027	 * the 'ac' may be updated by cache_alloc_refill(),
3028	 * and kmemleak_erase() requires its correct value.
3029	 */
3030	ac = cpu_cache_get(cachep);
3031
3032out:
3033	/*
3034	 * To avoid a false negative, if an object that is in one of the
3035	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3036	 * treat the array pointers as a reference to the object.
3037	 */
3038	if (objp)
3039		kmemleak_erase(&ac->entry[ac->avail]);
3040	return objp;
3041}
3042
3043#ifdef CONFIG_NUMA
3044static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3045
3046/*
3047 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3048 *
3049 * If we are in_interrupt, then process context, including cpusets and
3050 * mempolicy, may not apply and should not be used for allocation policy.
3051 */
3052static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3053{
3054	int nid_alloc, nid_here;
3055
3056	if (in_interrupt() || (flags & __GFP_THISNODE))
3057		return NULL;
3058	nid_alloc = nid_here = numa_mem_id();
3059	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3060		nid_alloc = cpuset_slab_spread_node();
3061	else if (current->mempolicy)
3062		nid_alloc = mempolicy_slab_node();
3063	if (nid_alloc != nid_here)
3064		return ____cache_alloc_node(cachep, flags, nid_alloc);
3065	return NULL;
3066}
3067
3068/*
3069 * Fallback function if there was no memory available and no objects on a
3070 * certain node and fall back is permitted. First we scan all the
3071 * available node for available objects. If that fails then we
3072 * perform an allocation without specifying a node. This allows the page
3073 * allocator to do its reclaim / fallback magic. We then insert the
3074 * slab into the proper nodelist and then allocate from it.
3075 */
3076static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3077{
3078	struct zonelist *zonelist;
3079	struct zoneref *z;
3080	struct zone *zone;
3081	enum zone_type highest_zoneidx = gfp_zone(flags);
3082	void *obj = NULL;
3083	struct slab *slab;
3084	int nid;
3085	unsigned int cpuset_mems_cookie;
3086
3087	if (flags & __GFP_THISNODE)
3088		return NULL;
3089
3090retry_cpuset:
3091	cpuset_mems_cookie = read_mems_allowed_begin();
3092	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3093
3094retry:
3095	/*
3096	 * Look through allowed nodes for objects available
3097	 * from existing per node queues.
3098	 */
3099	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3100		nid = zone_to_nid(zone);
3101
3102		if (cpuset_zone_allowed(zone, flags) &&
3103			get_node(cache, nid) &&
3104			get_node(cache, nid)->free_objects) {
3105				obj = ____cache_alloc_node(cache,
3106					gfp_exact_node(flags), nid);
3107				if (obj)
3108					break;
3109		}
3110	}
3111
3112	if (!obj) {
3113		/*
3114		 * This allocation will be performed within the constraints
3115		 * of the current cpuset / memory policy requirements.
3116		 * We may trigger various forms of reclaim on the allowed
3117		 * set and go into memory reserves if necessary.
3118		 */
3119		slab = cache_grow_begin(cache, flags, numa_mem_id());
3120		cache_grow_end(cache, slab);
3121		if (slab) {
3122			nid = slab_nid(slab);
3123			obj = ____cache_alloc_node(cache,
3124				gfp_exact_node(flags), nid);
3125
3126			/*
3127			 * Another processor may allocate the objects in
3128			 * the slab since we are not holding any locks.
3129			 */
3130			if (!obj)
3131				goto retry;
3132		}
3133	}
3134
3135	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3136		goto retry_cpuset;
3137	return obj;
3138}
3139
3140/*
3141 * An interface to enable slab creation on nodeid
3142 */
3143static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3144				int nodeid)
3145{
3146	struct slab *slab;
3147	struct kmem_cache_node *n;
3148	void *obj = NULL;
3149	void *list = NULL;
3150
3151	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3152	n = get_node(cachep, nodeid);
3153	BUG_ON(!n);
3154
3155	check_irq_off();
3156	raw_spin_lock(&n->list_lock);
3157	slab = get_first_slab(n, false);
3158	if (!slab)
3159		goto must_grow;
3160
3161	check_spinlock_acquired_node(cachep, nodeid);
3162
3163	STATS_INC_NODEALLOCS(cachep);
3164	STATS_INC_ACTIVE(cachep);
3165	STATS_SET_HIGH(cachep);
3166
3167	BUG_ON(slab->active == cachep->num);
3168
3169	obj = slab_get_obj(cachep, slab);
3170	n->free_objects--;
3171
3172	fixup_slab_list(cachep, n, slab, &list);
3173
3174	raw_spin_unlock(&n->list_lock);
3175	fixup_objfreelist_debug(cachep, &list);
3176	return obj;
3177
3178must_grow:
3179	raw_spin_unlock(&n->list_lock);
3180	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3181	if (slab) {
3182		/* This slab isn't counted yet so don't update free_objects */
3183		obj = slab_get_obj(cachep, slab);
3184	}
3185	cache_grow_end(cachep, slab);
3186
3187	return obj ? obj : fallback_alloc(cachep, flags);
3188}
3189
3190static __always_inline void *
3191__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
3192{
3193	void *objp = NULL;
 
3194	int slab_node = numa_mem_id();
3195
3196	if (nodeid == NUMA_NO_NODE) {
3197		if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3198			objp = alternate_node_alloc(cachep, flags);
3199			if (objp)
3200				goto out;
3201		}
 
 
 
 
 
 
 
 
 
 
 
 
3202		/*
3203		 * Use the locally cached objects if possible.
3204		 * However ____cache_alloc does not allow fallback
3205		 * to other nodes. It may fail while we still have
3206		 * objects on other nodes available.
3207		 */
3208		objp = ____cache_alloc(cachep, flags);
3209		nodeid = slab_node;
3210	} else if (nodeid == slab_node) {
3211		objp = ____cache_alloc(cachep, flags);
3212	} else if (!get_node(cachep, nodeid)) {
3213		/* Node not bootstrapped yet */
3214		objp = fallback_alloc(cachep, flags);
3215		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3216	}
 
3217
3218	/*
3219	 * We may just have run out of memory on the local node.
3220	 * ____cache_alloc_node() knows how to locate memory on other nodes
3221	 */
3222	if (!objp)
3223		objp = ____cache_alloc_node(cachep, flags, nodeid);
3224out:
 
3225	return objp;
3226}
3227#else
3228
3229static __always_inline void *
3230__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
3231{
3232	return ____cache_alloc(cachep, flags);
3233}
3234
3235#endif /* CONFIG_NUMA */
3236
3237static __always_inline void *
3238slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3239		int nodeid, size_t orig_size, unsigned long caller)
3240{
3241	unsigned long save_flags;
3242	void *objp;
3243	struct obj_cgroup *objcg = NULL;
3244	bool init = false;
3245
3246	flags &= gfp_allowed_mask;
3247	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3248	if (unlikely(!cachep))
3249		return NULL;
3250
3251	objp = kfence_alloc(cachep, orig_size, flags);
3252	if (unlikely(objp))
3253		goto out;
3254
3255	local_irq_save(save_flags);
3256	objp = __do_cache_alloc(cachep, flags, nodeid);
3257	local_irq_restore(save_flags);
3258	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3259	prefetchw(objp);
3260	init = slab_want_init_on_alloc(flags, cachep);
3261
3262out:
3263	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init,
3264				cachep->object_size);
 
3265	return objp;
3266}
3267
3268static __always_inline void *
3269slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3270	   size_t orig_size, unsigned long caller)
3271{
3272	return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
3273			       caller);
3274}
3275
3276/*
3277 * Caller needs to acquire correct kmem_cache_node's list_lock
3278 * @list: List of detached free slabs should be freed by caller
3279 */
3280static void free_block(struct kmem_cache *cachep, void **objpp,
3281			int nr_objects, int node, struct list_head *list)
3282{
3283	int i;
3284	struct kmem_cache_node *n = get_node(cachep, node);
3285	struct slab *slab;
3286
3287	n->free_objects += nr_objects;
3288
3289	for (i = 0; i < nr_objects; i++) {
3290		void *objp;
3291		struct slab *slab;
3292
3293		objp = objpp[i];
3294
3295		slab = virt_to_slab(objp);
3296		list_del(&slab->slab_list);
3297		check_spinlock_acquired_node(cachep, node);
3298		slab_put_obj(cachep, slab, objp);
3299		STATS_DEC_ACTIVE(cachep);
3300
3301		/* fixup slab chains */
3302		if (slab->active == 0) {
3303			list_add(&slab->slab_list, &n->slabs_free);
3304			n->free_slabs++;
3305		} else {
3306			/* Unconditionally move a slab to the end of the
3307			 * partial list on free - maximum time for the
3308			 * other objects to be freed, too.
3309			 */
3310			list_add_tail(&slab->slab_list, &n->slabs_partial);
3311		}
3312	}
3313
3314	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3315		n->free_objects -= cachep->num;
3316
3317		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3318		list_move(&slab->slab_list, list);
3319		n->free_slabs--;
3320		n->total_slabs--;
3321	}
3322}
3323
3324static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3325{
3326	int batchcount;
3327	struct kmem_cache_node *n;
3328	int node = numa_mem_id();
3329	LIST_HEAD(list);
3330
3331	batchcount = ac->batchcount;
3332
3333	check_irq_off();
3334	n = get_node(cachep, node);
3335	raw_spin_lock(&n->list_lock);
3336	if (n->shared) {
3337		struct array_cache *shared_array = n->shared;
3338		int max = shared_array->limit - shared_array->avail;
3339		if (max) {
3340			if (batchcount > max)
3341				batchcount = max;
3342			memcpy(&(shared_array->entry[shared_array->avail]),
3343			       ac->entry, sizeof(void *) * batchcount);
3344			shared_array->avail += batchcount;
3345			goto free_done;
3346		}
3347	}
3348
3349	free_block(cachep, ac->entry, batchcount, node, &list);
3350free_done:
3351#if STATS
3352	{
3353		int i = 0;
3354		struct slab *slab;
3355
3356		list_for_each_entry(slab, &n->slabs_free, slab_list) {
3357			BUG_ON(slab->active);
3358
3359			i++;
3360		}
3361		STATS_SET_FREEABLE(cachep, i);
3362	}
3363#endif
3364	raw_spin_unlock(&n->list_lock);
 
3365	ac->avail -= batchcount;
3366	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3367	slabs_destroy(cachep, &list);
3368}
3369
3370/*
3371 * Release an obj back to its cache. If the obj has a constructed state, it must
3372 * be in this state _before_ it is released.  Called with disabled ints.
3373 */
3374static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3375					 unsigned long caller)
3376{
3377	bool init;
3378
3379	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3380
3381	if (is_kfence_address(objp)) {
3382		kmemleak_free_recursive(objp, cachep->flags);
3383		__kfence_free(objp);
3384		return;
3385	}
3386
3387	/*
3388	 * As memory initialization might be integrated into KASAN,
3389	 * kasan_slab_free and initialization memset must be
3390	 * kept together to avoid discrepancies in behavior.
3391	 */
3392	init = slab_want_init_on_free(cachep);
3393	if (init && !kasan_has_integrated_init())
3394		memset(objp, 0, cachep->object_size);
3395	/* KASAN might put objp into memory quarantine, delaying its reuse. */
3396	if (kasan_slab_free(cachep, objp, init))
3397		return;
3398
3399	/* Use KCSAN to help debug racy use-after-free. */
3400	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3401		__kcsan_check_access(objp, cachep->object_size,
3402				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3403
3404	___cache_free(cachep, objp, caller);
3405}
3406
3407void ___cache_free(struct kmem_cache *cachep, void *objp,
3408		unsigned long caller)
3409{
3410	struct array_cache *ac = cpu_cache_get(cachep);
3411
3412	check_irq_off();
 
 
3413	kmemleak_free_recursive(objp, cachep->flags);
3414	objp = cache_free_debugcheck(cachep, objp, caller);
3415
3416	/*
3417	 * Skip calling cache_free_alien() when the platform is not numa.
3418	 * This will avoid cache misses that happen while accessing slabp (which
3419	 * is per page memory  reference) to get nodeid. Instead use a global
3420	 * variable to skip the call, which is mostly likely to be present in
3421	 * the cache.
3422	 */
3423	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3424		return;
3425
3426	if (ac->avail < ac->limit) {
3427		STATS_INC_FREEHIT(cachep);
3428	} else {
3429		STATS_INC_FREEMISS(cachep);
3430		cache_flusharray(cachep, ac);
3431	}
3432
3433	if (sk_memalloc_socks()) {
3434		struct slab *slab = virt_to_slab(objp);
3435
3436		if (unlikely(slab_test_pfmemalloc(slab))) {
3437			cache_free_pfmemalloc(cachep, slab, objp);
3438			return;
3439		}
3440	}
3441
3442	__free_one(ac, objp);
3443}
3444
3445static __always_inline
3446void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3447			     gfp_t flags)
 
 
 
 
 
 
 
 
3448{
3449	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3450
3451	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
 
3452
3453	return ret;
3454}
3455
3456void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3457{
3458	return __kmem_cache_alloc_lru(cachep, NULL, flags);
3459}
3460EXPORT_SYMBOL(kmem_cache_alloc);
3461
3462void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3463			   gfp_t flags)
3464{
3465	return __kmem_cache_alloc_lru(cachep, lru, flags);
3466}
3467EXPORT_SYMBOL(kmem_cache_alloc_lru);
3468
3469static __always_inline void
3470cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3471				  size_t size, void **p, unsigned long caller)
3472{
3473	size_t i;
3474
3475	for (i = 0; i < size; i++)
3476		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3477}
3478
3479int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3480			  void **p)
3481{
3482	size_t i;
3483	struct obj_cgroup *objcg = NULL;
3484
3485	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3486	if (!s)
3487		return 0;
3488
 
 
3489	local_irq_disable();
3490	for (i = 0; i < size; i++) {
3491		void *objp = kfence_alloc(s, s->object_size, flags) ?:
3492			     __do_cache_alloc(s, flags, NUMA_NO_NODE);
3493
3494		if (unlikely(!objp))
3495			goto error;
3496		p[i] = objp;
3497	}
3498	local_irq_enable();
3499
3500	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3501
3502	/*
3503	 * memcg and kmem_cache debug support and memory initialization.
3504	 * Done outside of the IRQ disabled section.
3505	 */
3506	slab_post_alloc_hook(s, objcg, flags, size, p,
3507			slab_want_init_on_alloc(flags, s), s->object_size);
3508	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3509	return size;
3510error:
3511	local_irq_enable();
3512	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3513	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3514	kmem_cache_free_bulk(s, i, p);
3515	return 0;
3516}
3517EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519/**
3520 * kmem_cache_alloc_node - Allocate an object on the specified node
3521 * @cachep: The cache to allocate from.
3522 * @flags: See kmalloc().
3523 * @nodeid: node number of the target node.
3524 *
3525 * Identical to kmem_cache_alloc but it will allocate memory on the given
3526 * node, which can improve the performance for cpu bound structures.
3527 *
3528 * Fallback to other node is possible if __GFP_THISNODE is not set.
3529 *
3530 * Return: pointer to the new object or %NULL in case of error
3531 */
3532void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3533{
3534	void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
3535
3536	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
 
 
3537
3538	return ret;
3539}
3540EXPORT_SYMBOL(kmem_cache_alloc_node);
3541
3542void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3543			     int nodeid, size_t orig_size,
3544			     unsigned long caller)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545{
3546	return slab_alloc_node(cachep, NULL, flags, nodeid,
3547			       orig_size, caller);
 
 
 
 
 
 
 
 
 
 
3548}
3549
3550#ifdef CONFIG_PRINTK
3551void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552{
3553	struct kmem_cache *cachep;
3554	unsigned int objnr;
3555	void *objp;
 
 
 
 
 
 
 
 
 
 
3556
3557	kpp->kp_ptr = object;
3558	kpp->kp_slab = slab;
3559	cachep = slab->slab_cache;
3560	kpp->kp_slab_cache = cachep;
3561	objp = object - obj_offset(cachep);
3562	kpp->kp_data_offset = obj_offset(cachep);
3563	slab = virt_to_slab(objp);
3564	objnr = obj_to_index(cachep, slab, objp);
3565	objp = index_to_obj(cachep, slab, objnr);
3566	kpp->kp_objp = objp;
3567	if (DEBUG && cachep->flags & SLAB_STORE_USER)
3568		kpp->kp_ret = *dbg_userword(cachep, objp);
3569}
3570#endif
3571
3572static __always_inline
3573void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
3574			  unsigned long caller)
3575{
3576	unsigned long flags;
3577
3578	local_irq_save(flags);
3579	debug_check_no_locks_freed(objp, cachep->object_size);
3580	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3581		debug_check_no_obj_freed(objp, cachep->object_size);
3582	__cache_free(cachep, objp, caller);
3583	local_irq_restore(flags);
3584}
 
3585
3586void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
3587		       unsigned long caller)
3588{
3589	__do_kmem_cache_free(cachep, objp, caller);
3590}
 
3591
3592/**
3593 * kmem_cache_free - Deallocate an object
3594 * @cachep: The cache the allocation was from.
3595 * @objp: The previously allocated object.
3596 *
3597 * Free an object which was previously allocated from this
3598 * cache.
3599 */
3600void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3601{
 
3602	cachep = cache_from_obj(cachep, objp);
3603	if (!cachep)
3604		return;
3605
3606	trace_kmem_cache_free(_RET_IP_, objp, cachep);
3607	__do_kmem_cache_free(cachep, objp, _RET_IP_);
 
 
 
 
 
 
3608}
3609EXPORT_SYMBOL(kmem_cache_free);
3610
3611void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3612{
 
 
3613
3614	local_irq_disable();
3615	for (int i = 0; i < size; i++) {
3616		void *objp = p[i];
3617		struct kmem_cache *s;
3618
3619		if (!orig_s) {
3620			struct folio *folio = virt_to_folio(objp);
3621
3622			/* called via kfree_bulk */
3623			if (!folio_test_slab(folio)) {
3624				local_irq_enable();
3625				free_large_kmalloc(folio, objp);
3626				local_irq_disable();
3627				continue;
3628			}
3629			s = folio_slab(folio)->slab_cache;
3630		} else {
3631			s = cache_from_obj(orig_s, objp);
3632		}
3633
3634		if (!s)
3635			continue;
3636
3637		debug_check_no_locks_freed(objp, s->object_size);
3638		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3639			debug_check_no_obj_freed(objp, s->object_size);
3640
3641		__cache_free(s, objp, _RET_IP_);
3642	}
3643	local_irq_enable();
3644
3645	/* FIXME: add tracing */
3646}
3647EXPORT_SYMBOL(kmem_cache_free_bulk);
3648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3649/*
3650 * This initializes kmem_cache_node or resizes various caches for all nodes.
3651 */
3652static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3653{
3654	int ret;
3655	int node;
3656	struct kmem_cache_node *n;
3657
3658	for_each_online_node(node) {
3659		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3660		if (ret)
3661			goto fail;
3662
3663	}
3664
3665	return 0;
3666
3667fail:
3668	if (!cachep->list.next) {
3669		/* Cache is not active yet. Roll back what we did */
3670		node--;
3671		while (node >= 0) {
3672			n = get_node(cachep, node);
3673			if (n) {
3674				kfree(n->shared);
3675				free_alien_cache(n->alien);
3676				kfree(n);
3677				cachep->node[node] = NULL;
3678			}
3679			node--;
3680		}
3681	}
3682	return -ENOMEM;
3683}
3684
3685/* Always called with the slab_mutex held */
3686static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3687			    int batchcount, int shared, gfp_t gfp)
3688{
3689	struct array_cache __percpu *cpu_cache, *prev;
3690	int cpu;
3691
3692	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3693	if (!cpu_cache)
3694		return -ENOMEM;
3695
3696	prev = cachep->cpu_cache;
3697	cachep->cpu_cache = cpu_cache;
3698	/*
3699	 * Without a previous cpu_cache there's no need to synchronize remote
3700	 * cpus, so skip the IPIs.
3701	 */
3702	if (prev)
3703		kick_all_cpus_sync();
3704
3705	check_irq_on();
3706	cachep->batchcount = batchcount;
3707	cachep->limit = limit;
3708	cachep->shared = shared;
3709
3710	if (!prev)
3711		goto setup_node;
3712
3713	for_each_online_cpu(cpu) {
3714		LIST_HEAD(list);
3715		int node;
3716		struct kmem_cache_node *n;
3717		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3718
3719		node = cpu_to_mem(cpu);
3720		n = get_node(cachep, node);
3721		raw_spin_lock_irq(&n->list_lock);
3722		free_block(cachep, ac->entry, ac->avail, node, &list);
3723		raw_spin_unlock_irq(&n->list_lock);
3724		slabs_destroy(cachep, &list);
3725	}
3726	free_percpu(prev);
3727
3728setup_node:
3729	return setup_kmem_cache_nodes(cachep, gfp);
3730}
3731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732/* Called with slab_mutex held always */
3733static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3734{
3735	int err;
3736	int limit = 0;
3737	int shared = 0;
3738	int batchcount = 0;
3739
3740	err = cache_random_seq_create(cachep, cachep->num, gfp);
3741	if (err)
3742		goto end;
3743
 
 
 
 
 
 
 
 
 
3744	/*
3745	 * The head array serves three purposes:
3746	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3747	 * - reduce the number of spinlock operations.
3748	 * - reduce the number of linked list operations on the slab and
3749	 *   bufctl chains: array operations are cheaper.
3750	 * The numbers are guessed, we should auto-tune as described by
3751	 * Bonwick.
3752	 */
3753	if (cachep->size > 131072)
3754		limit = 1;
3755	else if (cachep->size > PAGE_SIZE)
3756		limit = 8;
3757	else if (cachep->size > 1024)
3758		limit = 24;
3759	else if (cachep->size > 256)
3760		limit = 54;
3761	else
3762		limit = 120;
3763
3764	/*
3765	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3766	 * allocation behaviour: Most allocs on one cpu, most free operations
3767	 * on another cpu. For these cases, an efficient object passing between
3768	 * cpus is necessary. This is provided by a shared array. The array
3769	 * replaces Bonwick's magazine layer.
3770	 * On uniprocessor, it's functionally equivalent (but less efficient)
3771	 * to a larger limit. Thus disabled by default.
3772	 */
3773	shared = 0;
3774	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3775		shared = 8;
3776
3777#if DEBUG
3778	/*
3779	 * With debugging enabled, large batchcount lead to excessively long
3780	 * periods with disabled local interrupts. Limit the batchcount
3781	 */
3782	if (limit > 32)
3783		limit = 32;
3784#endif
3785	batchcount = (limit + 1) / 2;
 
3786	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3787end:
3788	if (err)
3789		pr_err("enable_cpucache failed for %s, error %d\n",
3790		       cachep->name, -err);
3791	return err;
3792}
3793
3794/*
3795 * Drain an array if it contains any elements taking the node lock only if
3796 * necessary. Note that the node listlock also protects the array_cache
3797 * if drain_array() is used on the shared array.
3798 */
3799static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3800			 struct array_cache *ac, int node)
3801{
3802	LIST_HEAD(list);
3803
3804	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3805	check_mutex_acquired();
3806
3807	if (!ac || !ac->avail)
3808		return;
3809
3810	if (ac->touched) {
3811		ac->touched = 0;
3812		return;
3813	}
3814
3815	raw_spin_lock_irq(&n->list_lock);
3816	drain_array_locked(cachep, ac, node, false, &list);
3817	raw_spin_unlock_irq(&n->list_lock);
3818
3819	slabs_destroy(cachep, &list);
3820}
3821
3822/**
3823 * cache_reap - Reclaim memory from caches.
3824 * @w: work descriptor
3825 *
3826 * Called from workqueue/eventd every few seconds.
3827 * Purpose:
3828 * - clear the per-cpu caches for this CPU.
3829 * - return freeable pages to the main free memory pool.
3830 *
3831 * If we cannot acquire the cache chain mutex then just give up - we'll try
3832 * again on the next iteration.
3833 */
3834static void cache_reap(struct work_struct *w)
3835{
3836	struct kmem_cache *searchp;
3837	struct kmem_cache_node *n;
3838	int node = numa_mem_id();
3839	struct delayed_work *work = to_delayed_work(w);
3840
3841	if (!mutex_trylock(&slab_mutex))
3842		/* Give up. Setup the next iteration. */
3843		goto out;
3844
3845	list_for_each_entry(searchp, &slab_caches, list) {
3846		check_irq_on();
3847
3848		/*
3849		 * We only take the node lock if absolutely necessary and we
3850		 * have established with reasonable certainty that
3851		 * we can do some work if the lock was obtained.
3852		 */
3853		n = get_node(searchp, node);
3854
3855		reap_alien(searchp, n);
3856
3857		drain_array(searchp, n, cpu_cache_get(searchp), node);
3858
3859		/*
3860		 * These are racy checks but it does not matter
3861		 * if we skip one check or scan twice.
3862		 */
3863		if (time_after(n->next_reap, jiffies))
3864			goto next;
3865
3866		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3867
3868		drain_array(searchp, n, n->shared, node);
3869
3870		if (n->free_touched)
3871			n->free_touched = 0;
3872		else {
3873			int freed;
3874
3875			freed = drain_freelist(searchp, n, (n->free_limit +
3876				5 * searchp->num - 1) / (5 * searchp->num));
3877			STATS_ADD_REAPED(searchp, freed);
3878		}
3879next:
3880		cond_resched();
3881	}
3882	check_irq_on();
3883	mutex_unlock(&slab_mutex);
3884	next_reap_node();
3885out:
3886	/* Set up the next iteration */
3887	schedule_delayed_work_on(smp_processor_id(), work,
3888				round_jiffies_relative(REAPTIMEOUT_AC));
3889}
3890
3891void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3892{
3893	unsigned long active_objs, num_objs, active_slabs;
3894	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
3895	unsigned long free_slabs = 0;
3896	int node;
3897	struct kmem_cache_node *n;
3898
3899	for_each_kmem_cache_node(cachep, node, n) {
3900		check_irq_on();
3901		raw_spin_lock_irq(&n->list_lock);
3902
3903		total_slabs += n->total_slabs;
3904		free_slabs += n->free_slabs;
3905		free_objs += n->free_objects;
3906
3907		if (n->shared)
3908			shared_avail += n->shared->avail;
3909
3910		raw_spin_unlock_irq(&n->list_lock);
3911	}
3912	num_objs = total_slabs * cachep->num;
3913	active_slabs = total_slabs - free_slabs;
3914	active_objs = num_objs - free_objs;
3915
3916	sinfo->active_objs = active_objs;
3917	sinfo->num_objs = num_objs;
3918	sinfo->active_slabs = active_slabs;
3919	sinfo->num_slabs = total_slabs;
3920	sinfo->shared_avail = shared_avail;
3921	sinfo->limit = cachep->limit;
3922	sinfo->batchcount = cachep->batchcount;
3923	sinfo->shared = cachep->shared;
3924	sinfo->objects_per_slab = cachep->num;
3925	sinfo->cache_order = cachep->gfporder;
3926}
3927
3928void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3929{
3930#if STATS
3931	{			/* node stats */
3932		unsigned long high = cachep->high_mark;
3933		unsigned long allocs = cachep->num_allocations;
3934		unsigned long grown = cachep->grown;
3935		unsigned long reaped = cachep->reaped;
3936		unsigned long errors = cachep->errors;
3937		unsigned long max_freeable = cachep->max_freeable;
3938		unsigned long node_allocs = cachep->node_allocs;
3939		unsigned long node_frees = cachep->node_frees;
3940		unsigned long overflows = cachep->node_overflow;
3941
3942		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
3943			   allocs, high, grown,
3944			   reaped, errors, max_freeable, node_allocs,
3945			   node_frees, overflows);
3946	}
3947	/* cpu stats */
3948	{
3949		unsigned long allochit = atomic_read(&cachep->allochit);
3950		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3951		unsigned long freehit = atomic_read(&cachep->freehit);
3952		unsigned long freemiss = atomic_read(&cachep->freemiss);
3953
3954		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3955			   allochit, allocmiss, freehit, freemiss);
3956	}
3957#endif
3958}
3959
3960#define MAX_SLABINFO_WRITE 128
3961/**
3962 * slabinfo_write - Tuning for the slab allocator
3963 * @file: unused
3964 * @buffer: user buffer
3965 * @count: data length
3966 * @ppos: unused
3967 *
3968 * Return: %0 on success, negative error code otherwise.
3969 */
3970ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3971		       size_t count, loff_t *ppos)
3972{
3973	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3974	int limit, batchcount, shared, res;
3975	struct kmem_cache *cachep;
3976
3977	if (count > MAX_SLABINFO_WRITE)
3978		return -EINVAL;
3979	if (copy_from_user(&kbuf, buffer, count))
3980		return -EFAULT;
3981	kbuf[MAX_SLABINFO_WRITE] = '\0';
3982
3983	tmp = strchr(kbuf, ' ');
3984	if (!tmp)
3985		return -EINVAL;
3986	*tmp = '\0';
3987	tmp++;
3988	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3989		return -EINVAL;
3990
3991	/* Find the cache in the chain of caches. */
3992	mutex_lock(&slab_mutex);
3993	res = -EINVAL;
3994	list_for_each_entry(cachep, &slab_caches, list) {
3995		if (!strcmp(cachep->name, kbuf)) {
3996			if (limit < 1 || batchcount < 1 ||
3997					batchcount > limit || shared < 0) {
3998				res = 0;
3999			} else {
4000				res = do_tune_cpucache(cachep, limit,
4001						       batchcount, shared,
4002						       GFP_KERNEL);
4003			}
4004			break;
4005		}
4006	}
4007	mutex_unlock(&slab_mutex);
4008	if (res >= 0)
4009		res = count;
4010	return res;
4011}
4012
4013#ifdef CONFIG_HARDENED_USERCOPY
4014/*
4015 * Rejects incorrectly sized objects and objects that are to be copied
4016 * to/from userspace but do not fall entirely within the containing slab
4017 * cache's usercopy region.
4018 *
4019 * Returns NULL if check passes, otherwise const char * to name of cache
4020 * to indicate an error.
4021 */
4022void __check_heap_object(const void *ptr, unsigned long n,
4023			 const struct slab *slab, bool to_user)
4024{
4025	struct kmem_cache *cachep;
4026	unsigned int objnr;
4027	unsigned long offset;
4028
4029	ptr = kasan_reset_tag(ptr);
4030
4031	/* Find and validate object. */
4032	cachep = slab->slab_cache;
4033	objnr = obj_to_index(cachep, slab, (void *)ptr);
4034	BUG_ON(objnr >= cachep->num);
4035
4036	/* Find offset within object. */
4037	if (is_kfence_address(ptr))
4038		offset = ptr - kfence_object_start(ptr);
4039	else
4040		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
4041
4042	/* Allow address range falling entirely within usercopy region. */
4043	if (offset >= cachep->useroffset &&
4044	    offset - cachep->useroffset <= cachep->usersize &&
4045	    n <= cachep->useroffset - offset + cachep->usersize)
4046		return;
4047
 
 
 
 
 
 
 
 
 
 
 
 
 
4048	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4049}
4050#endif /* CONFIG_HARDENED_USERCOPY */