Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
 
   9#include <linux/bpf_perf_event.h>
 
  10#include <linux/filter.h>
  11#include <linux/uaccess.h>
  12#include <linux/ctype.h>
  13#include <linux/kprobes.h>
 
  14#include <linux/syscalls.h>
  15#include <linux/error-injection.h>
 
 
 
 
 
 
 
 
 
 
 
 
  16
  17#include <asm/tlb.h>
  18
  19#include "trace_probe.h"
  20#include "trace.h"
  21
 
 
 
  22#define bpf_event_rcu_dereference(p)					\
  23	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  24
  25#ifdef CONFIG_MODULES
  26struct bpf_trace_module {
  27	struct module *module;
  28	struct list_head list;
  29};
  30
  31static LIST_HEAD(bpf_trace_modules);
  32static DEFINE_MUTEX(bpf_module_mutex);
  33
  34static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  35{
  36	struct bpf_raw_event_map *btp, *ret = NULL;
  37	struct bpf_trace_module *btm;
  38	unsigned int i;
  39
  40	mutex_lock(&bpf_module_mutex);
  41	list_for_each_entry(btm, &bpf_trace_modules, list) {
  42		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  43			btp = &btm->module->bpf_raw_events[i];
  44			if (!strcmp(btp->tp->name, name)) {
  45				if (try_module_get(btm->module))
  46					ret = btp;
  47				goto out;
  48			}
  49		}
  50	}
  51out:
  52	mutex_unlock(&bpf_module_mutex);
  53	return ret;
  54}
  55#else
  56static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  57{
  58	return NULL;
  59}
  60#endif /* CONFIG_MODULES */
  61
  62u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  63u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  64
 
 
 
 
 
 
  65/**
  66 * trace_call_bpf - invoke BPF program
  67 * @call: tracepoint event
  68 * @ctx: opaque context pointer
  69 *
  70 * kprobe handlers execute BPF programs via this helper.
  71 * Can be used from static tracepoints in the future.
  72 *
  73 * Return: BPF programs always return an integer which is interpreted by
  74 * kprobe handler as:
  75 * 0 - return from kprobe (event is filtered out)
  76 * 1 - store kprobe event into ring buffer
  77 * Other values are reserved and currently alias to 1
  78 */
  79unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
  80{
  81	unsigned int ret;
  82
  83	if (in_nmi()) /* not supported yet */
  84		return 1;
  85
  86	preempt_disable();
  87
  88	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
  89		/*
  90		 * since some bpf program is already running on this cpu,
  91		 * don't call into another bpf program (same or different)
  92		 * and don't send kprobe event into ring-buffer,
  93		 * so return zero here
  94		 */
  95		ret = 0;
  96		goto out;
  97	}
  98
  99	/*
 100	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 101	 * to all call sites, we did a bpf_prog_array_valid() there to check
 102	 * whether call->prog_array is empty or not, which is
 103	 * a heurisitc to speed up execution.
 104	 *
 105	 * If bpf_prog_array_valid() fetched prog_array was
 106	 * non-NULL, we go into trace_call_bpf() and do the actual
 107	 * proper rcu_dereference() under RCU lock.
 108	 * If it turns out that prog_array is NULL then, we bail out.
 109	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 110	 * was NULL, you'll skip the prog_array with the risk of missing
 111	 * out of events when it was updated in between this and the
 112	 * rcu_dereference() which is accepted risk.
 113	 */
 114	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
 
 
 
 115
 116 out:
 117	__this_cpu_dec(bpf_prog_active);
 118	preempt_enable();
 119
 120	return ret;
 121}
 122EXPORT_SYMBOL_GPL(trace_call_bpf);
 123
 124#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 125BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 126{
 127	regs_set_return_value(regs, rc);
 128	override_function_with_return(regs);
 129	return 0;
 130}
 131
 132static const struct bpf_func_proto bpf_override_return_proto = {
 133	.func		= bpf_override_return,
 134	.gpl_only	= true,
 135	.ret_type	= RET_INTEGER,
 136	.arg1_type	= ARG_PTR_TO_CTX,
 137	.arg2_type	= ARG_ANYTHING,
 138};
 139#endif
 140
 141BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
 
 142{
 143	int ret;
 144
 145	ret = security_locked_down(LOCKDOWN_BPF_READ);
 146	if (ret < 0)
 147		goto out;
 
 
 148
 149	ret = probe_kernel_read(dst, unsafe_ptr, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150	if (unlikely(ret < 0))
 151out:
 152		memset(dst, 0, size);
 
 
 
 
 
 
 
 
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154	return ret;
 155}
 156
 157static const struct bpf_func_proto bpf_probe_read_proto = {
 158	.func		= bpf_probe_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159	.gpl_only	= true,
 160	.ret_type	= RET_INTEGER,
 161	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 162	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 163	.arg3_type	= ARG_ANYTHING,
 164};
 165
 166BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167	   u32, size)
 168{
 169	/*
 170	 * Ensure we're in user context which is safe for the helper to
 171	 * run. This helper has no business in a kthread.
 172	 *
 173	 * access_ok() should prevent writing to non-user memory, but in
 174	 * some situations (nommu, temporary switch, etc) access_ok() does
 175	 * not provide enough validation, hence the check on KERNEL_DS.
 176	 *
 177	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 178	 * state, when the task or mm are switched. This is specifically
 179	 * required to prevent the use of temporary mm.
 180	 */
 181
 182	if (unlikely(in_interrupt() ||
 183		     current->flags & (PF_KTHREAD | PF_EXITING)))
 184		return -EPERM;
 185	if (unlikely(uaccess_kernel()))
 186		return -EPERM;
 187	if (unlikely(!nmi_uaccess_okay()))
 188		return -EPERM;
 189	if (!access_ok(unsafe_ptr, size))
 190		return -EPERM;
 191
 192	return probe_kernel_write(unsafe_ptr, src, size);
 193}
 194
 195static const struct bpf_func_proto bpf_probe_write_user_proto = {
 196	.func		= bpf_probe_write_user,
 197	.gpl_only	= true,
 198	.ret_type	= RET_INTEGER,
 199	.arg1_type	= ARG_ANYTHING,
 200	.arg2_type	= ARG_PTR_TO_MEM,
 201	.arg3_type	= ARG_CONST_SIZE,
 202};
 203
 204static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 205{
 
 
 
 206	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 207			    current->comm, task_pid_nr(current));
 208
 209	return &bpf_probe_write_user_proto;
 210}
 211
 212/*
 213 * Only limited trace_printk() conversion specifiers allowed:
 214 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
 215 */
 
 216BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 217	   u64, arg2, u64, arg3)
 218{
 219	bool str_seen = false;
 220	int mod[3] = {};
 221	int fmt_cnt = 0;
 222	u64 unsafe_addr;
 223	char buf[64];
 224	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225
 
 
 
 
 
 
 
 
 
 
 226	/*
 227	 * bpf_check()->check_func_arg()->check_stack_boundary()
 228	 * guarantees that fmt points to bpf program stack,
 229	 * fmt_size bytes of it were initialized and fmt_size > 0
 
 
 
 230	 */
 231	if (fmt[--fmt_size] != 0)
 232		return -EINVAL;
 
 233
 234	/* check format string for allowed specifiers */
 235	for (i = 0; i < fmt_size; i++) {
 236		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
 237			return -EINVAL;
 
 238
 239		if (fmt[i] != '%')
 240			continue;
 
 
 
 
 
 241
 242		if (fmt_cnt >= 3)
 243			return -EINVAL;
 
 
 244
 245		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 246		i++;
 247		if (fmt[i] == 'l') {
 248			mod[fmt_cnt]++;
 249			i++;
 250		} else if (fmt[i] == 'p' || fmt[i] == 's') {
 251			mod[fmt_cnt]++;
 252			/* disallow any further format extensions */
 253			if (fmt[i + 1] != 0 &&
 254			    !isspace(fmt[i + 1]) &&
 255			    !ispunct(fmt[i + 1]))
 256				return -EINVAL;
 257			fmt_cnt++;
 258			if (fmt[i] == 's') {
 259				if (str_seen)
 260					/* allow only one '%s' per fmt string */
 261					return -EINVAL;
 262				str_seen = true;
 263
 264				switch (fmt_cnt) {
 265				case 1:
 266					unsafe_addr = arg1;
 267					arg1 = (long) buf;
 268					break;
 269				case 2:
 270					unsafe_addr = arg2;
 271					arg2 = (long) buf;
 272					break;
 273				case 3:
 274					unsafe_addr = arg3;
 275					arg3 = (long) buf;
 276					break;
 277				}
 278				buf[0] = 0;
 279				strncpy_from_unsafe(buf,
 280						    (void *) (long) unsafe_addr,
 281						    sizeof(buf));
 282			}
 283			continue;
 284		}
 285
 286		if (fmt[i] == 'l') {
 287			mod[fmt_cnt]++;
 288			i++;
 289		}
 290
 291		if (fmt[i] != 'i' && fmt[i] != 'd' &&
 292		    fmt[i] != 'u' && fmt[i] != 'x')
 293			return -EINVAL;
 294		fmt_cnt++;
 295	}
 296
 297/* Horrid workaround for getting va_list handling working with different
 298 * argument type combinations generically for 32 and 64 bit archs.
 299 */
 300#define __BPF_TP_EMIT()	__BPF_ARG3_TP()
 301#define __BPF_TP(...)							\
 302	__trace_printk(0 /* Fake ip */,					\
 303		       fmt, ##__VA_ARGS__)
 304
 305#define __BPF_ARG1_TP(...)						\
 306	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
 307	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
 308	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
 309	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
 310	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
 311
 312#define __BPF_ARG2_TP(...)						\
 313	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
 314	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
 315	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
 316	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
 317	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
 318
 319#define __BPF_ARG3_TP(...)						\
 320	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
 321	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
 322	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
 323	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
 324	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
 325
 326	return __BPF_TP_EMIT();
 327}
 328
 329static const struct bpf_func_proto bpf_trace_printk_proto = {
 330	.func		= bpf_trace_printk,
 331	.gpl_only	= true,
 332	.ret_type	= RET_INTEGER,
 333	.arg1_type	= ARG_PTR_TO_MEM,
 334	.arg2_type	= ARG_CONST_SIZE,
 
 
 335};
 336
 337const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 338{
 339	/*
 340	 * this program might be calling bpf_trace_printk,
 341	 * so allocate per-cpu printk buffers
 342	 */
 343	trace_printk_init_buffers();
 344
 345	return &bpf_trace_printk_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346}
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static __always_inline int
 349get_map_perf_counter(struct bpf_map *map, u64 flags,
 350		     u64 *value, u64 *enabled, u64 *running)
 351{
 352	struct bpf_array *array = container_of(map, struct bpf_array, map);
 353	unsigned int cpu = smp_processor_id();
 354	u64 index = flags & BPF_F_INDEX_MASK;
 355	struct bpf_event_entry *ee;
 356
 357	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 358		return -EINVAL;
 359	if (index == BPF_F_CURRENT_CPU)
 360		index = cpu;
 361	if (unlikely(index >= array->map.max_entries))
 362		return -E2BIG;
 363
 364	ee = READ_ONCE(array->ptrs[index]);
 365	if (!ee)
 366		return -ENOENT;
 367
 368	return perf_event_read_local(ee->event, value, enabled, running);
 369}
 370
 371BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 372{
 373	u64 value = 0;
 374	int err;
 375
 376	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 377	/*
 378	 * this api is ugly since we miss [-22..-2] range of valid
 379	 * counter values, but that's uapi
 380	 */
 381	if (err)
 382		return err;
 383	return value;
 384}
 385
 386static const struct bpf_func_proto bpf_perf_event_read_proto = {
 387	.func		= bpf_perf_event_read,
 388	.gpl_only	= true,
 389	.ret_type	= RET_INTEGER,
 390	.arg1_type	= ARG_CONST_MAP_PTR,
 391	.arg2_type	= ARG_ANYTHING,
 392};
 393
 394BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 395	   struct bpf_perf_event_value *, buf, u32, size)
 396{
 397	int err = -EINVAL;
 398
 399	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 400		goto clear;
 401	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 402				   &buf->running);
 403	if (unlikely(err))
 404		goto clear;
 405	return 0;
 406clear:
 407	memset(buf, 0, size);
 408	return err;
 409}
 410
 411static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 412	.func		= bpf_perf_event_read_value,
 413	.gpl_only	= true,
 414	.ret_type	= RET_INTEGER,
 415	.arg1_type	= ARG_CONST_MAP_PTR,
 416	.arg2_type	= ARG_ANYTHING,
 417	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 418	.arg4_type	= ARG_CONST_SIZE,
 419};
 420
 421static __always_inline u64
 422__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 423			u64 flags, struct perf_sample_data *sd)
 424{
 425	struct bpf_array *array = container_of(map, struct bpf_array, map);
 426	unsigned int cpu = smp_processor_id();
 427	u64 index = flags & BPF_F_INDEX_MASK;
 428	struct bpf_event_entry *ee;
 429	struct perf_event *event;
 430
 431	if (index == BPF_F_CURRENT_CPU)
 432		index = cpu;
 433	if (unlikely(index >= array->map.max_entries))
 434		return -E2BIG;
 435
 436	ee = READ_ONCE(array->ptrs[index]);
 437	if (!ee)
 438		return -ENOENT;
 439
 440	event = ee->event;
 441	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 442		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 443		return -EINVAL;
 444
 445	if (unlikely(event->oncpu != cpu))
 446		return -EOPNOTSUPP;
 447
 448	return perf_event_output(event, sd, regs);
 449}
 450
 451/*
 452 * Support executing tracepoints in normal, irq, and nmi context that each call
 453 * bpf_perf_event_output
 454 */
 455struct bpf_trace_sample_data {
 456	struct perf_sample_data sds[3];
 457};
 458
 459static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 460static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 461BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 462	   u64, flags, void *, data, u64, size)
 463{
 464	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 465	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 466	struct perf_raw_record raw = {
 467		.frag = {
 468			.size = size,
 469			.data = data,
 470		},
 471	};
 472	struct perf_sample_data *sd;
 473	int err;
 474
 475	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 476		err = -EBUSY;
 477		goto out;
 478	}
 479
 480	sd = &sds->sds[nest_level - 1];
 481
 482	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 483		err = -EINVAL;
 484		goto out;
 485	}
 486
 487	perf_sample_data_init(sd, 0, 0);
 488	sd->raw = &raw;
 
 489
 490	err = __bpf_perf_event_output(regs, map, flags, sd);
 491
 492out:
 493	this_cpu_dec(bpf_trace_nest_level);
 494	return err;
 495}
 496
 497static const struct bpf_func_proto bpf_perf_event_output_proto = {
 498	.func		= bpf_perf_event_output,
 499	.gpl_only	= true,
 500	.ret_type	= RET_INTEGER,
 501	.arg1_type	= ARG_PTR_TO_CTX,
 502	.arg2_type	= ARG_CONST_MAP_PTR,
 503	.arg3_type	= ARG_ANYTHING,
 504	.arg4_type	= ARG_PTR_TO_MEM,
 505	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 506};
 507
 508static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 509struct bpf_nested_pt_regs {
 510	struct pt_regs regs[3];
 511};
 512static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 513static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 514
 515u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 516		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 517{
 518	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 519	struct perf_raw_frag frag = {
 520		.copy		= ctx_copy,
 521		.size		= ctx_size,
 522		.data		= ctx,
 523	};
 524	struct perf_raw_record raw = {
 525		.frag = {
 526			{
 527				.next	= ctx_size ? &frag : NULL,
 528			},
 529			.size	= meta_size,
 530			.data	= meta,
 531		},
 532	};
 533	struct perf_sample_data *sd;
 534	struct pt_regs *regs;
 535	u64 ret;
 536
 537	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 538		ret = -EBUSY;
 539		goto out;
 540	}
 541	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 542	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 543
 544	perf_fetch_caller_regs(regs);
 545	perf_sample_data_init(sd, 0, 0);
 546	sd->raw = &raw;
 
 547
 548	ret = __bpf_perf_event_output(regs, map, flags, sd);
 549out:
 550	this_cpu_dec(bpf_event_output_nest_level);
 551	return ret;
 552}
 553
 554BPF_CALL_0(bpf_get_current_task)
 555{
 556	return (long) current;
 557}
 558
 559static const struct bpf_func_proto bpf_get_current_task_proto = {
 560	.func		= bpf_get_current_task,
 561	.gpl_only	= true,
 562	.ret_type	= RET_INTEGER,
 563};
 564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 566{
 567	struct bpf_array *array = container_of(map, struct bpf_array, map);
 568	struct cgroup *cgrp;
 569
 570	if (unlikely(idx >= array->map.max_entries))
 571		return -E2BIG;
 572
 573	cgrp = READ_ONCE(array->ptrs[idx]);
 574	if (unlikely(!cgrp))
 575		return -EAGAIN;
 576
 577	return task_under_cgroup_hierarchy(current, cgrp);
 578}
 579
 580static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
 581	.func           = bpf_current_task_under_cgroup,
 582	.gpl_only       = false,
 583	.ret_type       = RET_INTEGER,
 584	.arg1_type      = ARG_CONST_MAP_PTR,
 585	.arg2_type      = ARG_ANYTHING,
 586};
 587
 588BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
 589	   const void *, unsafe_ptr)
 590{
 591	int ret;
 592
 593	ret = security_locked_down(LOCKDOWN_BPF_READ);
 594	if (ret < 0)
 595		goto out;
 596
 597	/*
 598	 * The strncpy_from_unsafe() call will likely not fill the entire
 599	 * buffer, but that's okay in this circumstance as we're probing
 600	 * arbitrary memory anyway similar to bpf_probe_read() and might
 601	 * as well probe the stack. Thus, memory is explicitly cleared
 602	 * only in error case, so that improper users ignoring return
 603	 * code altogether don't copy garbage; otherwise length of string
 604	 * is returned that can be used for bpf_perf_event_output() et al.
 605	 */
 606	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
 607	if (unlikely(ret < 0))
 608out:
 609		memset(dst, 0, size);
 610
 611	return ret;
 612}
 613
 614static const struct bpf_func_proto bpf_probe_read_str_proto = {
 615	.func		= bpf_probe_read_str,
 616	.gpl_only	= true,
 617	.ret_type	= RET_INTEGER,
 618	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 619	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 620	.arg3_type	= ARG_ANYTHING,
 621};
 622
 623struct send_signal_irq_work {
 624	struct irq_work irq_work;
 625	struct task_struct *task;
 626	u32 sig;
 
 627};
 628
 629static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
 630
 631static void do_bpf_send_signal(struct irq_work *entry)
 632{
 633	struct send_signal_irq_work *work;
 634
 635	work = container_of(entry, struct send_signal_irq_work, irq_work);
 636	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
 
 637}
 638
 639BPF_CALL_1(bpf_send_signal, u32, sig)
 640{
 641	struct send_signal_irq_work *work = NULL;
 642
 643	/* Similar to bpf_probe_write_user, task needs to be
 644	 * in a sound condition and kernel memory access be
 645	 * permitted in order to send signal to the current
 646	 * task.
 647	 */
 648	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
 649		return -EPERM;
 650	if (unlikely(uaccess_kernel()))
 651		return -EPERM;
 652	if (unlikely(!nmi_uaccess_okay()))
 653		return -EPERM;
 
 
 
 654
 655	if (in_nmi()) {
 656		/* Do an early check on signal validity. Otherwise,
 657		 * the error is lost in deferred irq_work.
 658		 */
 659		if (unlikely(!valid_signal(sig)))
 660			return -EINVAL;
 661
 662		work = this_cpu_ptr(&send_signal_work);
 663		if (work->irq_work.flags & IRQ_WORK_BUSY)
 664			return -EBUSY;
 665
 666		/* Add the current task, which is the target of sending signal,
 667		 * to the irq_work. The current task may change when queued
 668		 * irq works get executed.
 669		 */
 670		work->task = current;
 671		work->sig = sig;
 
 672		irq_work_queue(&work->irq_work);
 673		return 0;
 674	}
 675
 676	return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
 
 
 
 
 
 677}
 678
 679static const struct bpf_func_proto bpf_send_signal_proto = {
 680	.func		= bpf_send_signal,
 681	.gpl_only	= false,
 682	.ret_type	= RET_INTEGER,
 683	.arg1_type	= ARG_ANYTHING,
 684};
 685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686static const struct bpf_func_proto *
 687tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 688{
 689	switch (func_id) {
 690	case BPF_FUNC_map_lookup_elem:
 691		return &bpf_map_lookup_elem_proto;
 692	case BPF_FUNC_map_update_elem:
 693		return &bpf_map_update_elem_proto;
 694	case BPF_FUNC_map_delete_elem:
 695		return &bpf_map_delete_elem_proto;
 696	case BPF_FUNC_map_push_elem:
 697		return &bpf_map_push_elem_proto;
 698	case BPF_FUNC_map_pop_elem:
 699		return &bpf_map_pop_elem_proto;
 700	case BPF_FUNC_map_peek_elem:
 701		return &bpf_map_peek_elem_proto;
 702	case BPF_FUNC_probe_read:
 703		return &bpf_probe_read_proto;
 704	case BPF_FUNC_ktime_get_ns:
 705		return &bpf_ktime_get_ns_proto;
 
 
 706	case BPF_FUNC_tail_call:
 707		return &bpf_tail_call_proto;
 708	case BPF_FUNC_get_current_pid_tgid:
 709		return &bpf_get_current_pid_tgid_proto;
 710	case BPF_FUNC_get_current_task:
 711		return &bpf_get_current_task_proto;
 
 
 
 
 712	case BPF_FUNC_get_current_uid_gid:
 713		return &bpf_get_current_uid_gid_proto;
 714	case BPF_FUNC_get_current_comm:
 715		return &bpf_get_current_comm_proto;
 716	case BPF_FUNC_trace_printk:
 717		return bpf_get_trace_printk_proto();
 718	case BPF_FUNC_get_smp_processor_id:
 719		return &bpf_get_smp_processor_id_proto;
 720	case BPF_FUNC_get_numa_node_id:
 721		return &bpf_get_numa_node_id_proto;
 722	case BPF_FUNC_perf_event_read:
 723		return &bpf_perf_event_read_proto;
 724	case BPF_FUNC_probe_write_user:
 725		return bpf_get_probe_write_proto();
 726	case BPF_FUNC_current_task_under_cgroup:
 727		return &bpf_current_task_under_cgroup_proto;
 728	case BPF_FUNC_get_prandom_u32:
 729		return &bpf_get_prandom_u32_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730	case BPF_FUNC_probe_read_str:
 731		return &bpf_probe_read_str_proto;
 
 
 732#ifdef CONFIG_CGROUPS
 733	case BPF_FUNC_get_current_cgroup_id:
 734		return &bpf_get_current_cgroup_id_proto;
 
 
 
 
 
 
 735#endif
 736	case BPF_FUNC_send_signal:
 737		return &bpf_send_signal_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738	default:
 739		return NULL;
 740	}
 741}
 742
 743static const struct bpf_func_proto *
 744kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 745{
 746	switch (func_id) {
 747	case BPF_FUNC_perf_event_output:
 748		return &bpf_perf_event_output_proto;
 749	case BPF_FUNC_get_stackid:
 750		return &bpf_get_stackid_proto;
 751	case BPF_FUNC_get_stack:
 752		return &bpf_get_stack_proto;
 753	case BPF_FUNC_perf_event_read_value:
 754		return &bpf_perf_event_read_value_proto;
 755#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 756	case BPF_FUNC_override_return:
 757		return &bpf_override_return_proto;
 758#endif
 
 
 
 
 
 
 
 
 759	default:
 760		return tracing_func_proto(func_id, prog);
 761	}
 762}
 763
 764/* bpf+kprobe programs can access fields of 'struct pt_regs' */
 765static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
 766					const struct bpf_prog *prog,
 767					struct bpf_insn_access_aux *info)
 768{
 769	if (off < 0 || off >= sizeof(struct pt_regs))
 770		return false;
 771	if (type != BPF_READ)
 772		return false;
 773	if (off % size != 0)
 774		return false;
 775	/*
 776	 * Assertion for 32 bit to make sure last 8 byte access
 777	 * (BPF_DW) to the last 4 byte member is disallowed.
 778	 */
 779	if (off + size > sizeof(struct pt_regs))
 780		return false;
 781
 782	return true;
 783}
 784
 785const struct bpf_verifier_ops kprobe_verifier_ops = {
 786	.get_func_proto  = kprobe_prog_func_proto,
 787	.is_valid_access = kprobe_prog_is_valid_access,
 788};
 789
 790const struct bpf_prog_ops kprobe_prog_ops = {
 791};
 792
 793BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
 794	   u64, flags, void *, data, u64, size)
 795{
 796	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
 797
 798	/*
 799	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
 800	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
 801	 * from there and call the same bpf_perf_event_output() helper inline.
 802	 */
 803	return ____bpf_perf_event_output(regs, map, flags, data, size);
 804}
 805
 806static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
 807	.func		= bpf_perf_event_output_tp,
 808	.gpl_only	= true,
 809	.ret_type	= RET_INTEGER,
 810	.arg1_type	= ARG_PTR_TO_CTX,
 811	.arg2_type	= ARG_CONST_MAP_PTR,
 812	.arg3_type	= ARG_ANYTHING,
 813	.arg4_type	= ARG_PTR_TO_MEM,
 814	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 815};
 816
 817BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
 818	   u64, flags)
 819{
 820	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
 821
 822	/*
 823	 * Same comment as in bpf_perf_event_output_tp(), only that this time
 824	 * the other helper's function body cannot be inlined due to being
 825	 * external, thus we need to call raw helper function.
 826	 */
 827	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
 828			       flags, 0, 0);
 829}
 830
 831static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
 832	.func		= bpf_get_stackid_tp,
 833	.gpl_only	= true,
 834	.ret_type	= RET_INTEGER,
 835	.arg1_type	= ARG_PTR_TO_CTX,
 836	.arg2_type	= ARG_CONST_MAP_PTR,
 837	.arg3_type	= ARG_ANYTHING,
 838};
 839
 840BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
 841	   u64, flags)
 842{
 843	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
 844
 845	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
 846			     (unsigned long) size, flags, 0);
 847}
 848
 849static const struct bpf_func_proto bpf_get_stack_proto_tp = {
 850	.func		= bpf_get_stack_tp,
 851	.gpl_only	= true,
 852	.ret_type	= RET_INTEGER,
 853	.arg1_type	= ARG_PTR_TO_CTX,
 854	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
 855	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 856	.arg4_type	= ARG_ANYTHING,
 857};
 858
 859static const struct bpf_func_proto *
 860tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 861{
 862	switch (func_id) {
 863	case BPF_FUNC_perf_event_output:
 864		return &bpf_perf_event_output_proto_tp;
 865	case BPF_FUNC_get_stackid:
 866		return &bpf_get_stackid_proto_tp;
 867	case BPF_FUNC_get_stack:
 868		return &bpf_get_stack_proto_tp;
 
 
 869	default:
 870		return tracing_func_proto(func_id, prog);
 871	}
 872}
 873
 874static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
 875				    const struct bpf_prog *prog,
 876				    struct bpf_insn_access_aux *info)
 877{
 878	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
 879		return false;
 880	if (type != BPF_READ)
 881		return false;
 882	if (off % size != 0)
 883		return false;
 884
 885	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
 886	return true;
 887}
 888
 889const struct bpf_verifier_ops tracepoint_verifier_ops = {
 890	.get_func_proto  = tp_prog_func_proto,
 891	.is_valid_access = tp_prog_is_valid_access,
 892};
 893
 894const struct bpf_prog_ops tracepoint_prog_ops = {
 895};
 896
 897BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
 898	   struct bpf_perf_event_value *, buf, u32, size)
 899{
 900	int err = -EINVAL;
 901
 902	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 903		goto clear;
 904	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
 905				    &buf->running);
 906	if (unlikely(err))
 907		goto clear;
 908	return 0;
 909clear:
 910	memset(buf, 0, size);
 911	return err;
 912}
 913
 914static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
 915         .func           = bpf_perf_prog_read_value,
 916         .gpl_only       = true,
 917         .ret_type       = RET_INTEGER,
 918         .arg1_type      = ARG_PTR_TO_CTX,
 919         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
 920         .arg3_type      = ARG_CONST_SIZE,
 921};
 922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923static const struct bpf_func_proto *
 924pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 925{
 926	switch (func_id) {
 927	case BPF_FUNC_perf_event_output:
 928		return &bpf_perf_event_output_proto_tp;
 929	case BPF_FUNC_get_stackid:
 930		return &bpf_get_stackid_proto_tp;
 931	case BPF_FUNC_get_stack:
 932		return &bpf_get_stack_proto_tp;
 933	case BPF_FUNC_perf_prog_read_value:
 934		return &bpf_perf_prog_read_value_proto;
 
 
 
 
 935	default:
 936		return tracing_func_proto(func_id, prog);
 937	}
 938}
 939
 940/*
 941 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
 942 * to avoid potential recursive reuse issue when/if tracepoints are added
 943 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
 944 *
 945 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
 946 * in normal, irq, and nmi context.
 947 */
 948struct bpf_raw_tp_regs {
 949	struct pt_regs regs[3];
 950};
 951static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
 952static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
 953static struct pt_regs *get_bpf_raw_tp_regs(void)
 954{
 955	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
 956	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
 957
 958	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
 959		this_cpu_dec(bpf_raw_tp_nest_level);
 960		return ERR_PTR(-EBUSY);
 961	}
 962
 963	return &tp_regs->regs[nest_level - 1];
 964}
 965
 966static void put_bpf_raw_tp_regs(void)
 967{
 968	this_cpu_dec(bpf_raw_tp_nest_level);
 969}
 970
 971BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
 972	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
 973{
 974	struct pt_regs *regs = get_bpf_raw_tp_regs();
 975	int ret;
 976
 977	if (IS_ERR(regs))
 978		return PTR_ERR(regs);
 979
 980	perf_fetch_caller_regs(regs);
 981	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
 982
 983	put_bpf_raw_tp_regs();
 984	return ret;
 985}
 986
 987static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
 988	.func		= bpf_perf_event_output_raw_tp,
 989	.gpl_only	= true,
 990	.ret_type	= RET_INTEGER,
 991	.arg1_type	= ARG_PTR_TO_CTX,
 992	.arg2_type	= ARG_CONST_MAP_PTR,
 993	.arg3_type	= ARG_ANYTHING,
 994	.arg4_type	= ARG_PTR_TO_MEM,
 995	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 996};
 997
 
 
 
 
 998BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
 999	   struct bpf_map *, map, u64, flags)
1000{
1001	struct pt_regs *regs = get_bpf_raw_tp_regs();
1002	int ret;
1003
1004	if (IS_ERR(regs))
1005		return PTR_ERR(regs);
1006
1007	perf_fetch_caller_regs(regs);
1008	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1009	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1010			      flags, 0, 0);
1011	put_bpf_raw_tp_regs();
1012	return ret;
1013}
1014
1015static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1016	.func		= bpf_get_stackid_raw_tp,
1017	.gpl_only	= true,
1018	.ret_type	= RET_INTEGER,
1019	.arg1_type	= ARG_PTR_TO_CTX,
1020	.arg2_type	= ARG_CONST_MAP_PTR,
1021	.arg3_type	= ARG_ANYTHING,
1022};
1023
1024BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1025	   void *, buf, u32, size, u64, flags)
1026{
1027	struct pt_regs *regs = get_bpf_raw_tp_regs();
1028	int ret;
1029
1030	if (IS_ERR(regs))
1031		return PTR_ERR(regs);
1032
1033	perf_fetch_caller_regs(regs);
1034	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1035			    (unsigned long) size, flags, 0);
1036	put_bpf_raw_tp_regs();
1037	return ret;
1038}
1039
1040static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1041	.func		= bpf_get_stack_raw_tp,
1042	.gpl_only	= true,
1043	.ret_type	= RET_INTEGER,
1044	.arg1_type	= ARG_PTR_TO_CTX,
1045	.arg2_type	= ARG_PTR_TO_MEM,
1046	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1047	.arg4_type	= ARG_ANYTHING,
1048};
1049
1050static const struct bpf_func_proto *
1051raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1052{
1053	switch (func_id) {
1054	case BPF_FUNC_perf_event_output:
1055		return &bpf_perf_event_output_proto_raw_tp;
1056	case BPF_FUNC_get_stackid:
1057		return &bpf_get_stackid_proto_raw_tp;
1058	case BPF_FUNC_get_stack:
1059		return &bpf_get_stack_proto_raw_tp;
1060	default:
1061		return tracing_func_proto(func_id, prog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062	}
1063}
1064
1065static bool raw_tp_prog_is_valid_access(int off, int size,
1066					enum bpf_access_type type,
1067					const struct bpf_prog *prog,
1068					struct bpf_insn_access_aux *info)
1069{
1070	/* largest tracepoint in the kernel has 12 args */
1071	if (off < 0 || off >= sizeof(__u64) * 12)
1072		return false;
1073	if (type != BPF_READ)
1074		return false;
1075	if (off % size != 0)
1076		return false;
1077	return true;
 
 
 
 
 
 
 
 
1078}
1079
1080const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1081	.get_func_proto  = raw_tp_prog_func_proto,
1082	.is_valid_access = raw_tp_prog_is_valid_access,
1083};
1084
1085const struct bpf_prog_ops raw_tracepoint_prog_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
1086};
1087
1088static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1089						 enum bpf_access_type type,
1090						 const struct bpf_prog *prog,
1091						 struct bpf_insn_access_aux *info)
1092{
1093	if (off == 0) {
1094		if (size != sizeof(u64) || type != BPF_READ)
1095			return false;
1096		info->reg_type = PTR_TO_TP_BUFFER;
1097	}
1098	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1099}
1100
1101const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1102	.get_func_proto  = raw_tp_prog_func_proto,
1103	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1104};
1105
1106const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1107};
1108
1109static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1110				    const struct bpf_prog *prog,
1111				    struct bpf_insn_access_aux *info)
1112{
1113	const int size_u64 = sizeof(u64);
1114
1115	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1116		return false;
1117	if (type != BPF_READ)
1118		return false;
1119	if (off % size != 0) {
1120		if (sizeof(unsigned long) != 4)
1121			return false;
1122		if (size != 8)
1123			return false;
1124		if (off % size != 4)
1125			return false;
1126	}
1127
1128	switch (off) {
1129	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1130		bpf_ctx_record_field_size(info, size_u64);
1131		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1132			return false;
1133		break;
1134	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1135		bpf_ctx_record_field_size(info, size_u64);
1136		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1137			return false;
1138		break;
1139	default:
1140		if (size != sizeof(long))
1141			return false;
1142	}
1143
1144	return true;
1145}
1146
1147static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1148				      const struct bpf_insn *si,
1149				      struct bpf_insn *insn_buf,
1150				      struct bpf_prog *prog, u32 *target_size)
1151{
1152	struct bpf_insn *insn = insn_buf;
1153
1154	switch (si->off) {
1155	case offsetof(struct bpf_perf_event_data, sample_period):
1156		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1157						       data), si->dst_reg, si->src_reg,
1158				      offsetof(struct bpf_perf_event_data_kern, data));
1159		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1160				      bpf_target_off(struct perf_sample_data, period, 8,
1161						     target_size));
1162		break;
1163	case offsetof(struct bpf_perf_event_data, addr):
1164		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1165						       data), si->dst_reg, si->src_reg,
1166				      offsetof(struct bpf_perf_event_data_kern, data));
1167		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1168				      bpf_target_off(struct perf_sample_data, addr, 8,
1169						     target_size));
1170		break;
1171	default:
1172		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1173						       regs), si->dst_reg, si->src_reg,
1174				      offsetof(struct bpf_perf_event_data_kern, regs));
1175		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1176				      si->off);
1177		break;
1178	}
1179
1180	return insn - insn_buf;
1181}
1182
1183const struct bpf_verifier_ops perf_event_verifier_ops = {
1184	.get_func_proto		= pe_prog_func_proto,
1185	.is_valid_access	= pe_prog_is_valid_access,
1186	.convert_ctx_access	= pe_prog_convert_ctx_access,
1187};
1188
1189const struct bpf_prog_ops perf_event_prog_ops = {
1190};
1191
1192static DEFINE_MUTEX(bpf_event_mutex);
1193
1194#define BPF_TRACE_MAX_PROGS 64
1195
1196int perf_event_attach_bpf_prog(struct perf_event *event,
1197			       struct bpf_prog *prog)
 
1198{
1199	struct bpf_prog_array *old_array;
1200	struct bpf_prog_array *new_array;
1201	int ret = -EEXIST;
1202
1203	/*
1204	 * Kprobe override only works if they are on the function entry,
1205	 * and only if they are on the opt-in list.
1206	 */
1207	if (prog->kprobe_override &&
1208	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1209	     !trace_kprobe_error_injectable(event->tp_event)))
1210		return -EINVAL;
1211
1212	mutex_lock(&bpf_event_mutex);
1213
1214	if (event->prog)
1215		goto unlock;
1216
1217	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1218	if (old_array &&
1219	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1220		ret = -E2BIG;
1221		goto unlock;
1222	}
1223
1224	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1225	if (ret < 0)
1226		goto unlock;
1227
1228	/* set the new array to event->tp_event and set event->prog */
1229	event->prog = prog;
 
1230	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1231	bpf_prog_array_free(old_array);
1232
1233unlock:
1234	mutex_unlock(&bpf_event_mutex);
1235	return ret;
1236}
1237
1238void perf_event_detach_bpf_prog(struct perf_event *event)
1239{
1240	struct bpf_prog_array *old_array;
1241	struct bpf_prog_array *new_array;
1242	int ret;
1243
1244	mutex_lock(&bpf_event_mutex);
1245
1246	if (!event->prog)
1247		goto unlock;
1248
1249	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1250	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1251	if (ret == -ENOENT)
1252		goto unlock;
1253	if (ret < 0) {
1254		bpf_prog_array_delete_safe(old_array, event->prog);
1255	} else {
1256		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1257		bpf_prog_array_free(old_array);
1258	}
1259
1260	bpf_prog_put(event->prog);
1261	event->prog = NULL;
1262
1263unlock:
1264	mutex_unlock(&bpf_event_mutex);
1265}
1266
1267int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1268{
1269	struct perf_event_query_bpf __user *uquery = info;
1270	struct perf_event_query_bpf query = {};
1271	struct bpf_prog_array *progs;
1272	u32 *ids, prog_cnt, ids_len;
1273	int ret;
1274
1275	if (!capable(CAP_SYS_ADMIN))
1276		return -EPERM;
1277	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1278		return -EINVAL;
1279	if (copy_from_user(&query, uquery, sizeof(query)))
1280		return -EFAULT;
1281
1282	ids_len = query.ids_len;
1283	if (ids_len > BPF_TRACE_MAX_PROGS)
1284		return -E2BIG;
1285	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1286	if (!ids)
1287		return -ENOMEM;
1288	/*
1289	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1290	 * is required when user only wants to check for uquery->prog_cnt.
1291	 * There is no need to check for it since the case is handled
1292	 * gracefully in bpf_prog_array_copy_info.
1293	 */
1294
1295	mutex_lock(&bpf_event_mutex);
1296	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1297	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1298	mutex_unlock(&bpf_event_mutex);
1299
1300	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1301	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1302		ret = -EFAULT;
1303
1304	kfree(ids);
1305	return ret;
1306}
1307
1308extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1309extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1310
1311struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1312{
1313	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1314
1315	for (; btp < __stop__bpf_raw_tp; btp++) {
1316		if (!strcmp(btp->tp->name, name))
1317			return btp;
1318	}
1319
1320	return bpf_get_raw_tracepoint_module(name);
1321}
1322
1323void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1324{
1325	struct module *mod = __module_address((unsigned long)btp);
1326
1327	if (mod)
1328		module_put(mod);
 
 
1329}
1330
1331static __always_inline
1332void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1333{
 
 
 
 
 
1334	rcu_read_lock();
1335	preempt_disable();
1336	(void) BPF_PROG_RUN(prog, args);
1337	preempt_enable();
1338	rcu_read_unlock();
 
 
1339}
1340
1341#define UNPACK(...)			__VA_ARGS__
1342#define REPEAT_1(FN, DL, X, ...)	FN(X)
1343#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1344#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1345#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1346#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1347#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1348#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1349#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1350#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1351#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1352#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1353#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1354#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1355
1356#define SARG(X)		u64 arg##X
1357#define COPY(X)		args[X] = arg##X
1358
1359#define __DL_COM	(,)
1360#define __DL_SEM	(;)
1361
1362#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1363
1364#define BPF_TRACE_DEFN_x(x)						\
1365	void bpf_trace_run##x(struct bpf_prog *prog,			\
1366			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1367	{								\
1368		u64 args[x];						\
1369		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1370		__bpf_trace_run(prog, args);				\
1371	}								\
1372	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1373BPF_TRACE_DEFN_x(1);
1374BPF_TRACE_DEFN_x(2);
1375BPF_TRACE_DEFN_x(3);
1376BPF_TRACE_DEFN_x(4);
1377BPF_TRACE_DEFN_x(5);
1378BPF_TRACE_DEFN_x(6);
1379BPF_TRACE_DEFN_x(7);
1380BPF_TRACE_DEFN_x(8);
1381BPF_TRACE_DEFN_x(9);
1382BPF_TRACE_DEFN_x(10);
1383BPF_TRACE_DEFN_x(11);
1384BPF_TRACE_DEFN_x(12);
1385
1386static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1387{
1388	struct tracepoint *tp = btp->tp;
1389
1390	/*
1391	 * check that program doesn't access arguments beyond what's
1392	 * available in this tracepoint
1393	 */
1394	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1395		return -EINVAL;
1396
1397	if (prog->aux->max_tp_access > btp->writable_size)
1398		return -EINVAL;
1399
1400	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
 
1401}
1402
1403int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1404{
1405	return __bpf_probe_register(btp, prog);
1406}
1407
1408int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1409{
1410	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1411}
1412
1413int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1414			    u32 *fd_type, const char **buf,
1415			    u64 *probe_offset, u64 *probe_addr)
1416{
1417	bool is_tracepoint, is_syscall_tp;
1418	struct bpf_prog *prog;
1419	int flags, err = 0;
1420
1421	prog = event->prog;
1422	if (!prog)
1423		return -ENOENT;
1424
1425	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1426	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1427		return -EOPNOTSUPP;
1428
1429	*prog_id = prog->aux->id;
1430	flags = event->tp_event->flags;
1431	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1432	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1433
1434	if (is_tracepoint || is_syscall_tp) {
1435		*buf = is_tracepoint ? event->tp_event->tp->name
1436				     : event->tp_event->name;
1437		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1438		*probe_offset = 0x0;
1439		*probe_addr = 0x0;
1440	} else {
1441		/* kprobe/uprobe */
1442		err = -EOPNOTSUPP;
1443#ifdef CONFIG_KPROBE_EVENTS
1444		if (flags & TRACE_EVENT_FL_KPROBE)
1445			err = bpf_get_kprobe_info(event, fd_type, buf,
1446						  probe_offset, probe_addr,
1447						  event->attr.type == PERF_TYPE_TRACEPOINT);
1448#endif
1449#ifdef CONFIG_UPROBE_EVENTS
1450		if (flags & TRACE_EVENT_FL_UPROBE)
1451			err = bpf_get_uprobe_info(event, fd_type, buf,
1452						  probe_offset,
1453						  event->attr.type == PERF_TYPE_TRACEPOINT);
1454#endif
1455	}
1456
1457	return err;
1458}
1459
1460static int __init send_signal_irq_work_init(void)
1461{
1462	int cpu;
1463	struct send_signal_irq_work *work;
1464
1465	for_each_possible_cpu(cpu) {
1466		work = per_cpu_ptr(&send_signal_work, cpu);
1467		init_irq_work(&work->irq_work, do_bpf_send_signal);
1468	}
1469	return 0;
1470}
1471
1472subsys_initcall(send_signal_irq_work_init);
1473
1474#ifdef CONFIG_MODULES
1475static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1476			    void *module)
1477{
1478	struct bpf_trace_module *btm, *tmp;
1479	struct module *mod = module;
 
1480
1481	if (mod->num_bpf_raw_events == 0 ||
1482	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1483		return 0;
1484
1485	mutex_lock(&bpf_module_mutex);
1486
1487	switch (op) {
1488	case MODULE_STATE_COMING:
1489		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1490		if (btm) {
1491			btm->module = module;
1492			list_add(&btm->list, &bpf_trace_modules);
 
 
1493		}
1494		break;
1495	case MODULE_STATE_GOING:
1496		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1497			if (btm->module == module) {
1498				list_del(&btm->list);
1499				kfree(btm);
1500				break;
1501			}
1502		}
1503		break;
1504	}
1505
1506	mutex_unlock(&bpf_module_mutex);
1507
1508	return 0;
 
1509}
1510
1511static struct notifier_block bpf_module_nb = {
1512	.notifier_call = bpf_event_notify,
1513};
1514
1515static int __init bpf_event_init(void)
1516{
1517	register_module_notifier(&bpf_module_nb);
1518	return 0;
1519}
1520
1521fs_initcall(bpf_event_init);
1522#endif /* CONFIG_MODULES */
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
   9#include <linux/bpf_verifier.h>
  10#include <linux/bpf_perf_event.h>
  11#include <linux/btf.h>
  12#include <linux/filter.h>
  13#include <linux/uaccess.h>
  14#include <linux/ctype.h>
  15#include <linux/kprobes.h>
  16#include <linux/spinlock.h>
  17#include <linux/syscalls.h>
  18#include <linux/error-injection.h>
  19#include <linux/btf_ids.h>
  20#include <linux/bpf_lsm.h>
  21#include <linux/fprobe.h>
  22#include <linux/bsearch.h>
  23#include <linux/sort.h>
  24#include <linux/key.h>
  25#include <linux/verification.h>
  26
  27#include <net/bpf_sk_storage.h>
  28
  29#include <uapi/linux/bpf.h>
  30#include <uapi/linux/btf.h>
  31
  32#include <asm/tlb.h>
  33
  34#include "trace_probe.h"
  35#include "trace.h"
  36
  37#define CREATE_TRACE_POINTS
  38#include "bpf_trace.h"
  39
  40#define bpf_event_rcu_dereference(p)					\
  41	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  42
  43#ifdef CONFIG_MODULES
  44struct bpf_trace_module {
  45	struct module *module;
  46	struct list_head list;
  47};
  48
  49static LIST_HEAD(bpf_trace_modules);
  50static DEFINE_MUTEX(bpf_module_mutex);
  51
  52static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  53{
  54	struct bpf_raw_event_map *btp, *ret = NULL;
  55	struct bpf_trace_module *btm;
  56	unsigned int i;
  57
  58	mutex_lock(&bpf_module_mutex);
  59	list_for_each_entry(btm, &bpf_trace_modules, list) {
  60		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  61			btp = &btm->module->bpf_raw_events[i];
  62			if (!strcmp(btp->tp->name, name)) {
  63				if (try_module_get(btm->module))
  64					ret = btp;
  65				goto out;
  66			}
  67		}
  68	}
  69out:
  70	mutex_unlock(&bpf_module_mutex);
  71	return ret;
  72}
  73#else
  74static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  75{
  76	return NULL;
  77}
  78#endif /* CONFIG_MODULES */
  79
  80u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  81u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  82
  83static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
  84				  u64 flags, const struct btf **btf,
  85				  s32 *btf_id);
  86static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
  87static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
  88
  89/**
  90 * trace_call_bpf - invoke BPF program
  91 * @call: tracepoint event
  92 * @ctx: opaque context pointer
  93 *
  94 * kprobe handlers execute BPF programs via this helper.
  95 * Can be used from static tracepoints in the future.
  96 *
  97 * Return: BPF programs always return an integer which is interpreted by
  98 * kprobe handler as:
  99 * 0 - return from kprobe (event is filtered out)
 100 * 1 - store kprobe event into ring buffer
 101 * Other values are reserved and currently alias to 1
 102 */
 103unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
 104{
 105	unsigned int ret;
 106
 107	cant_sleep();
 
 
 
 108
 109	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
 110		/*
 111		 * since some bpf program is already running on this cpu,
 112		 * don't call into another bpf program (same or different)
 113		 * and don't send kprobe event into ring-buffer,
 114		 * so return zero here
 115		 */
 116		ret = 0;
 117		goto out;
 118	}
 119
 120	/*
 121	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 122	 * to all call sites, we did a bpf_prog_array_valid() there to check
 123	 * whether call->prog_array is empty or not, which is
 124	 * a heuristic to speed up execution.
 125	 *
 126	 * If bpf_prog_array_valid() fetched prog_array was
 127	 * non-NULL, we go into trace_call_bpf() and do the actual
 128	 * proper rcu_dereference() under RCU lock.
 129	 * If it turns out that prog_array is NULL then, we bail out.
 130	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 131	 * was NULL, you'll skip the prog_array with the risk of missing
 132	 * out of events when it was updated in between this and the
 133	 * rcu_dereference() which is accepted risk.
 134	 */
 135	rcu_read_lock();
 136	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
 137				 ctx, bpf_prog_run);
 138	rcu_read_unlock();
 139
 140 out:
 141	__this_cpu_dec(bpf_prog_active);
 
 142
 143	return ret;
 144}
 
 145
 146#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 147BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 148{
 149	regs_set_return_value(regs, rc);
 150	override_function_with_return(regs);
 151	return 0;
 152}
 153
 154static const struct bpf_func_proto bpf_override_return_proto = {
 155	.func		= bpf_override_return,
 156	.gpl_only	= true,
 157	.ret_type	= RET_INTEGER,
 158	.arg1_type	= ARG_PTR_TO_CTX,
 159	.arg2_type	= ARG_ANYTHING,
 160};
 161#endif
 162
 163static __always_inline int
 164bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
 165{
 166	int ret;
 167
 168	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
 169	if (unlikely(ret < 0))
 170		memset(dst, 0, size);
 171	return ret;
 172}
 173
 174BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
 175	   const void __user *, unsafe_ptr)
 176{
 177	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
 178}
 179
 180const struct bpf_func_proto bpf_probe_read_user_proto = {
 181	.func		= bpf_probe_read_user,
 182	.gpl_only	= true,
 183	.ret_type	= RET_INTEGER,
 184	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 185	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 186	.arg3_type	= ARG_ANYTHING,
 187};
 188
 189static __always_inline int
 190bpf_probe_read_user_str_common(void *dst, u32 size,
 191			       const void __user *unsafe_ptr)
 192{
 193	int ret;
 194
 195	/*
 196	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
 197	 * terminator into `dst`.
 198	 *
 199	 * strncpy_from_user() does long-sized strides in the fast path. If the
 200	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
 201	 * then there could be junk after the NUL in `dst`. If user takes `dst`
 202	 * and keys a hash map with it, then semantically identical strings can
 203	 * occupy multiple entries in the map.
 204	 */
 205	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
 206	if (unlikely(ret < 0))
 
 207		memset(dst, 0, size);
 208	return ret;
 209}
 210
 211BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
 212	   const void __user *, unsafe_ptr)
 213{
 214	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
 215}
 216
 217const struct bpf_func_proto bpf_probe_read_user_str_proto = {
 218	.func		= bpf_probe_read_user_str,
 219	.gpl_only	= true,
 220	.ret_type	= RET_INTEGER,
 221	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 222	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 223	.arg3_type	= ARG_ANYTHING,
 224};
 225
 226static __always_inline int
 227bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
 228{
 229	int ret;
 230
 231	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
 232	if (unlikely(ret < 0))
 233		memset(dst, 0, size);
 234	return ret;
 235}
 236
 237BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
 238	   const void *, unsafe_ptr)
 239{
 240	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 241}
 242
 243const struct bpf_func_proto bpf_probe_read_kernel_proto = {
 244	.func		= bpf_probe_read_kernel,
 245	.gpl_only	= true,
 246	.ret_type	= RET_INTEGER,
 247	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 248	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 249	.arg3_type	= ARG_ANYTHING,
 250};
 251
 252static __always_inline int
 253bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
 254{
 255	int ret;
 256
 257	/*
 258	 * The strncpy_from_kernel_nofault() call will likely not fill the
 259	 * entire buffer, but that's okay in this circumstance as we're probing
 260	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
 261	 * as well probe the stack. Thus, memory is explicitly cleared
 262	 * only in error case, so that improper users ignoring return
 263	 * code altogether don't copy garbage; otherwise length of string
 264	 * is returned that can be used for bpf_perf_event_output() et al.
 265	 */
 266	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
 267	if (unlikely(ret < 0))
 268		memset(dst, 0, size);
 269	return ret;
 270}
 271
 272BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
 273	   const void *, unsafe_ptr)
 274{
 275	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 276}
 277
 278const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
 279	.func		= bpf_probe_read_kernel_str,
 280	.gpl_only	= true,
 281	.ret_type	= RET_INTEGER,
 282	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 283	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 284	.arg3_type	= ARG_ANYTHING,
 285};
 286
 287#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 288BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
 289	   const void *, unsafe_ptr)
 290{
 291	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 292		return bpf_probe_read_user_common(dst, size,
 293				(__force void __user *)unsafe_ptr);
 294	}
 295	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 296}
 297
 298static const struct bpf_func_proto bpf_probe_read_compat_proto = {
 299	.func		= bpf_probe_read_compat,
 300	.gpl_only	= true,
 301	.ret_type	= RET_INTEGER,
 302	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 303	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 304	.arg3_type	= ARG_ANYTHING,
 305};
 306
 307BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
 308	   const void *, unsafe_ptr)
 309{
 310	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 311		return bpf_probe_read_user_str_common(dst, size,
 312				(__force void __user *)unsafe_ptr);
 313	}
 314	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 315}
 316
 317static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
 318	.func		= bpf_probe_read_compat_str,
 319	.gpl_only	= true,
 320	.ret_type	= RET_INTEGER,
 321	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 322	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 323	.arg3_type	= ARG_ANYTHING,
 324};
 325#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
 326
 327BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
 328	   u32, size)
 329{
 330	/*
 331	 * Ensure we're in user context which is safe for the helper to
 332	 * run. This helper has no business in a kthread.
 333	 *
 334	 * access_ok() should prevent writing to non-user memory, but in
 335	 * some situations (nommu, temporary switch, etc) access_ok() does
 336	 * not provide enough validation, hence the check on KERNEL_DS.
 337	 *
 338	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 339	 * state, when the task or mm are switched. This is specifically
 340	 * required to prevent the use of temporary mm.
 341	 */
 342
 343	if (unlikely(in_interrupt() ||
 344		     current->flags & (PF_KTHREAD | PF_EXITING)))
 345		return -EPERM;
 
 
 346	if (unlikely(!nmi_uaccess_okay()))
 347		return -EPERM;
 
 
 348
 349	return copy_to_user_nofault(unsafe_ptr, src, size);
 350}
 351
 352static const struct bpf_func_proto bpf_probe_write_user_proto = {
 353	.func		= bpf_probe_write_user,
 354	.gpl_only	= true,
 355	.ret_type	= RET_INTEGER,
 356	.arg1_type	= ARG_ANYTHING,
 357	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 358	.arg3_type	= ARG_CONST_SIZE,
 359};
 360
 361static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 362{
 363	if (!capable(CAP_SYS_ADMIN))
 364		return NULL;
 365
 366	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 367			    current->comm, task_pid_nr(current));
 368
 369	return &bpf_probe_write_user_proto;
 370}
 371
 372static DEFINE_RAW_SPINLOCK(trace_printk_lock);
 373
 374#define MAX_TRACE_PRINTK_VARARGS	3
 375#define BPF_TRACE_PRINTK_SIZE		1024
 376
 377BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 378	   u64, arg2, u64, arg3)
 379{
 380	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
 381	u32 *bin_args;
 382	static char buf[BPF_TRACE_PRINTK_SIZE];
 383	unsigned long flags;
 384	int ret;
 385
 386	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
 387				  MAX_TRACE_PRINTK_VARARGS);
 388	if (ret < 0)
 389		return ret;
 390
 391	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 392	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
 393
 394	trace_bpf_trace_printk(buf);
 395	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 396
 397	bpf_bprintf_cleanup();
 398
 399	return ret;
 400}
 401
 402static const struct bpf_func_proto bpf_trace_printk_proto = {
 403	.func		= bpf_trace_printk,
 404	.gpl_only	= true,
 405	.ret_type	= RET_INTEGER,
 406	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 407	.arg2_type	= ARG_CONST_SIZE,
 408};
 409
 410static void __set_printk_clr_event(void)
 411{
 412	/*
 413	 * This program might be calling bpf_trace_printk,
 414	 * so enable the associated bpf_trace/bpf_trace_printk event.
 415	 * Repeat this each time as it is possible a user has
 416	 * disabled bpf_trace_printk events.  By loading a program
 417	 * calling bpf_trace_printk() however the user has expressed
 418	 * the intent to see such events.
 419	 */
 420	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
 421		pr_warn_ratelimited("could not enable bpf_trace_printk events");
 422}
 423
 424const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 425{
 426	__set_printk_clr_event();
 427	return &bpf_trace_printk_proto;
 428}
 429
 430BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, data,
 431	   u32, data_len)
 432{
 433	static char buf[BPF_TRACE_PRINTK_SIZE];
 434	unsigned long flags;
 435	int ret, num_args;
 436	u32 *bin_args;
 437
 438	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
 439	    (data_len && !data))
 440		return -EINVAL;
 441	num_args = data_len / 8;
 442
 443	ret = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
 444	if (ret < 0)
 445		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446
 447	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 448	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
 
 
 449
 450	trace_bpf_trace_printk(buf);
 451	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 
 
 
 452
 453	bpf_bprintf_cleanup();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454
 455	return ret;
 456}
 457
 458static const struct bpf_func_proto bpf_trace_vprintk_proto = {
 459	.func		= bpf_trace_vprintk,
 460	.gpl_only	= true,
 461	.ret_type	= RET_INTEGER,
 462	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 463	.arg2_type	= ARG_CONST_SIZE,
 464	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
 465	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
 466};
 467
 468const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
 469{
 470	__set_printk_clr_event();
 471	return &bpf_trace_vprintk_proto;
 472}
 
 
 473
 474BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
 475	   const void *, data, u32, data_len)
 476{
 477	int err, num_args;
 478	u32 *bin_args;
 479
 480	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
 481	    (data_len && !data))
 482		return -EINVAL;
 483	num_args = data_len / 8;
 484
 485	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
 486	if (err < 0)
 487		return err;
 488
 489	seq_bprintf(m, fmt, bin_args);
 490
 491	bpf_bprintf_cleanup();
 492
 493	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
 494}
 495
 496BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
 497
 498static const struct bpf_func_proto bpf_seq_printf_proto = {
 499	.func		= bpf_seq_printf,
 500	.gpl_only	= true,
 501	.ret_type	= RET_INTEGER,
 502	.arg1_type	= ARG_PTR_TO_BTF_ID,
 503	.arg1_btf_id	= &btf_seq_file_ids[0],
 504	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 505	.arg3_type	= ARG_CONST_SIZE,
 506	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
 507	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 508};
 509
 510BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
 511{
 512	return seq_write(m, data, len) ? -EOVERFLOW : 0;
 513}
 514
 515static const struct bpf_func_proto bpf_seq_write_proto = {
 516	.func		= bpf_seq_write,
 517	.gpl_only	= true,
 518	.ret_type	= RET_INTEGER,
 519	.arg1_type	= ARG_PTR_TO_BTF_ID,
 520	.arg1_btf_id	= &btf_seq_file_ids[0],
 521	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 522	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 523};
 524
 525BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
 526	   u32, btf_ptr_size, u64, flags)
 527{
 528	const struct btf *btf;
 529	s32 btf_id;
 530	int ret;
 531
 532	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
 533	if (ret)
 534		return ret;
 535
 536	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
 537}
 538
 539static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
 540	.func		= bpf_seq_printf_btf,
 541	.gpl_only	= true,
 542	.ret_type	= RET_INTEGER,
 543	.arg1_type	= ARG_PTR_TO_BTF_ID,
 544	.arg1_btf_id	= &btf_seq_file_ids[0],
 545	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 546	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 547	.arg4_type	= ARG_ANYTHING,
 548};
 549
 550static __always_inline int
 551get_map_perf_counter(struct bpf_map *map, u64 flags,
 552		     u64 *value, u64 *enabled, u64 *running)
 553{
 554	struct bpf_array *array = container_of(map, struct bpf_array, map);
 555	unsigned int cpu = smp_processor_id();
 556	u64 index = flags & BPF_F_INDEX_MASK;
 557	struct bpf_event_entry *ee;
 558
 559	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 560		return -EINVAL;
 561	if (index == BPF_F_CURRENT_CPU)
 562		index = cpu;
 563	if (unlikely(index >= array->map.max_entries))
 564		return -E2BIG;
 565
 566	ee = READ_ONCE(array->ptrs[index]);
 567	if (!ee)
 568		return -ENOENT;
 569
 570	return perf_event_read_local(ee->event, value, enabled, running);
 571}
 572
 573BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 574{
 575	u64 value = 0;
 576	int err;
 577
 578	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 579	/*
 580	 * this api is ugly since we miss [-22..-2] range of valid
 581	 * counter values, but that's uapi
 582	 */
 583	if (err)
 584		return err;
 585	return value;
 586}
 587
 588static const struct bpf_func_proto bpf_perf_event_read_proto = {
 589	.func		= bpf_perf_event_read,
 590	.gpl_only	= true,
 591	.ret_type	= RET_INTEGER,
 592	.arg1_type	= ARG_CONST_MAP_PTR,
 593	.arg2_type	= ARG_ANYTHING,
 594};
 595
 596BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 597	   struct bpf_perf_event_value *, buf, u32, size)
 598{
 599	int err = -EINVAL;
 600
 601	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 602		goto clear;
 603	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 604				   &buf->running);
 605	if (unlikely(err))
 606		goto clear;
 607	return 0;
 608clear:
 609	memset(buf, 0, size);
 610	return err;
 611}
 612
 613static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 614	.func		= bpf_perf_event_read_value,
 615	.gpl_only	= true,
 616	.ret_type	= RET_INTEGER,
 617	.arg1_type	= ARG_CONST_MAP_PTR,
 618	.arg2_type	= ARG_ANYTHING,
 619	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 620	.arg4_type	= ARG_CONST_SIZE,
 621};
 622
 623static __always_inline u64
 624__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 625			u64 flags, struct perf_sample_data *sd)
 626{
 627	struct bpf_array *array = container_of(map, struct bpf_array, map);
 628	unsigned int cpu = smp_processor_id();
 629	u64 index = flags & BPF_F_INDEX_MASK;
 630	struct bpf_event_entry *ee;
 631	struct perf_event *event;
 632
 633	if (index == BPF_F_CURRENT_CPU)
 634		index = cpu;
 635	if (unlikely(index >= array->map.max_entries))
 636		return -E2BIG;
 637
 638	ee = READ_ONCE(array->ptrs[index]);
 639	if (!ee)
 640		return -ENOENT;
 641
 642	event = ee->event;
 643	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 644		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 645		return -EINVAL;
 646
 647	if (unlikely(event->oncpu != cpu))
 648		return -EOPNOTSUPP;
 649
 650	return perf_event_output(event, sd, regs);
 651}
 652
 653/*
 654 * Support executing tracepoints in normal, irq, and nmi context that each call
 655 * bpf_perf_event_output
 656 */
 657struct bpf_trace_sample_data {
 658	struct perf_sample_data sds[3];
 659};
 660
 661static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 662static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 663BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 664	   u64, flags, void *, data, u64, size)
 665{
 666	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 667	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 668	struct perf_raw_record raw = {
 669		.frag = {
 670			.size = size,
 671			.data = data,
 672		},
 673	};
 674	struct perf_sample_data *sd;
 675	int err;
 676
 677	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 678		err = -EBUSY;
 679		goto out;
 680	}
 681
 682	sd = &sds->sds[nest_level - 1];
 683
 684	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 685		err = -EINVAL;
 686		goto out;
 687	}
 688
 689	perf_sample_data_init(sd, 0, 0);
 690	sd->raw = &raw;
 691	sd->sample_flags |= PERF_SAMPLE_RAW;
 692
 693	err = __bpf_perf_event_output(regs, map, flags, sd);
 694
 695out:
 696	this_cpu_dec(bpf_trace_nest_level);
 697	return err;
 698}
 699
 700static const struct bpf_func_proto bpf_perf_event_output_proto = {
 701	.func		= bpf_perf_event_output,
 702	.gpl_only	= true,
 703	.ret_type	= RET_INTEGER,
 704	.arg1_type	= ARG_PTR_TO_CTX,
 705	.arg2_type	= ARG_CONST_MAP_PTR,
 706	.arg3_type	= ARG_ANYTHING,
 707	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 708	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 709};
 710
 711static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 712struct bpf_nested_pt_regs {
 713	struct pt_regs regs[3];
 714};
 715static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 716static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 717
 718u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 719		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 720{
 721	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 722	struct perf_raw_frag frag = {
 723		.copy		= ctx_copy,
 724		.size		= ctx_size,
 725		.data		= ctx,
 726	};
 727	struct perf_raw_record raw = {
 728		.frag = {
 729			{
 730				.next	= ctx_size ? &frag : NULL,
 731			},
 732			.size	= meta_size,
 733			.data	= meta,
 734		},
 735	};
 736	struct perf_sample_data *sd;
 737	struct pt_regs *regs;
 738	u64 ret;
 739
 740	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 741		ret = -EBUSY;
 742		goto out;
 743	}
 744	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 745	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 746
 747	perf_fetch_caller_regs(regs);
 748	perf_sample_data_init(sd, 0, 0);
 749	sd->raw = &raw;
 750	sd->sample_flags |= PERF_SAMPLE_RAW;
 751
 752	ret = __bpf_perf_event_output(regs, map, flags, sd);
 753out:
 754	this_cpu_dec(bpf_event_output_nest_level);
 755	return ret;
 756}
 757
 758BPF_CALL_0(bpf_get_current_task)
 759{
 760	return (long) current;
 761}
 762
 763const struct bpf_func_proto bpf_get_current_task_proto = {
 764	.func		= bpf_get_current_task,
 765	.gpl_only	= true,
 766	.ret_type	= RET_INTEGER,
 767};
 768
 769BPF_CALL_0(bpf_get_current_task_btf)
 770{
 771	return (unsigned long) current;
 772}
 773
 774const struct bpf_func_proto bpf_get_current_task_btf_proto = {
 775	.func		= bpf_get_current_task_btf,
 776	.gpl_only	= true,
 777	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
 778	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
 779};
 780
 781BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
 782{
 783	return (unsigned long) task_pt_regs(task);
 784}
 785
 786BTF_ID_LIST(bpf_task_pt_regs_ids)
 787BTF_ID(struct, pt_regs)
 788
 789const struct bpf_func_proto bpf_task_pt_regs_proto = {
 790	.func		= bpf_task_pt_regs,
 791	.gpl_only	= true,
 792	.arg1_type	= ARG_PTR_TO_BTF_ID,
 793	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
 794	.ret_type	= RET_PTR_TO_BTF_ID,
 795	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
 796};
 797
 798BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 799{
 800	struct bpf_array *array = container_of(map, struct bpf_array, map);
 801	struct cgroup *cgrp;
 802
 803	if (unlikely(idx >= array->map.max_entries))
 804		return -E2BIG;
 805
 806	cgrp = READ_ONCE(array->ptrs[idx]);
 807	if (unlikely(!cgrp))
 808		return -EAGAIN;
 809
 810	return task_under_cgroup_hierarchy(current, cgrp);
 811}
 812
 813static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
 814	.func           = bpf_current_task_under_cgroup,
 815	.gpl_only       = false,
 816	.ret_type       = RET_INTEGER,
 817	.arg1_type      = ARG_CONST_MAP_PTR,
 818	.arg2_type      = ARG_ANYTHING,
 819};
 820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821struct send_signal_irq_work {
 822	struct irq_work irq_work;
 823	struct task_struct *task;
 824	u32 sig;
 825	enum pid_type type;
 826};
 827
 828static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
 829
 830static void do_bpf_send_signal(struct irq_work *entry)
 831{
 832	struct send_signal_irq_work *work;
 833
 834	work = container_of(entry, struct send_signal_irq_work, irq_work);
 835	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
 836	put_task_struct(work->task);
 837}
 838
 839static int bpf_send_signal_common(u32 sig, enum pid_type type)
 840{
 841	struct send_signal_irq_work *work = NULL;
 842
 843	/* Similar to bpf_probe_write_user, task needs to be
 844	 * in a sound condition and kernel memory access be
 845	 * permitted in order to send signal to the current
 846	 * task.
 847	 */
 848	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
 849		return -EPERM;
 
 
 850	if (unlikely(!nmi_uaccess_okay()))
 851		return -EPERM;
 852	/* Task should not be pid=1 to avoid kernel panic. */
 853	if (unlikely(is_global_init(current)))
 854		return -EPERM;
 855
 856	if (irqs_disabled()) {
 857		/* Do an early check on signal validity. Otherwise,
 858		 * the error is lost in deferred irq_work.
 859		 */
 860		if (unlikely(!valid_signal(sig)))
 861			return -EINVAL;
 862
 863		work = this_cpu_ptr(&send_signal_work);
 864		if (irq_work_is_busy(&work->irq_work))
 865			return -EBUSY;
 866
 867		/* Add the current task, which is the target of sending signal,
 868		 * to the irq_work. The current task may change when queued
 869		 * irq works get executed.
 870		 */
 871		work->task = get_task_struct(current);
 872		work->sig = sig;
 873		work->type = type;
 874		irq_work_queue(&work->irq_work);
 875		return 0;
 876	}
 877
 878	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
 879}
 880
 881BPF_CALL_1(bpf_send_signal, u32, sig)
 882{
 883	return bpf_send_signal_common(sig, PIDTYPE_TGID);
 884}
 885
 886static const struct bpf_func_proto bpf_send_signal_proto = {
 887	.func		= bpf_send_signal,
 888	.gpl_only	= false,
 889	.ret_type	= RET_INTEGER,
 890	.arg1_type	= ARG_ANYTHING,
 891};
 892
 893BPF_CALL_1(bpf_send_signal_thread, u32, sig)
 894{
 895	return bpf_send_signal_common(sig, PIDTYPE_PID);
 896}
 897
 898static const struct bpf_func_proto bpf_send_signal_thread_proto = {
 899	.func		= bpf_send_signal_thread,
 900	.gpl_only	= false,
 901	.ret_type	= RET_INTEGER,
 902	.arg1_type	= ARG_ANYTHING,
 903};
 904
 905BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
 906{
 907	long len;
 908	char *p;
 909
 910	if (!sz)
 911		return 0;
 912
 913	p = d_path(path, buf, sz);
 914	if (IS_ERR(p)) {
 915		len = PTR_ERR(p);
 916	} else {
 917		len = buf + sz - p;
 918		memmove(buf, p, len);
 919	}
 920
 921	return len;
 922}
 923
 924BTF_SET_START(btf_allowlist_d_path)
 925#ifdef CONFIG_SECURITY
 926BTF_ID(func, security_file_permission)
 927BTF_ID(func, security_inode_getattr)
 928BTF_ID(func, security_file_open)
 929#endif
 930#ifdef CONFIG_SECURITY_PATH
 931BTF_ID(func, security_path_truncate)
 932#endif
 933BTF_ID(func, vfs_truncate)
 934BTF_ID(func, vfs_fallocate)
 935BTF_ID(func, dentry_open)
 936BTF_ID(func, vfs_getattr)
 937BTF_ID(func, filp_close)
 938BTF_SET_END(btf_allowlist_d_path)
 939
 940static bool bpf_d_path_allowed(const struct bpf_prog *prog)
 941{
 942	if (prog->type == BPF_PROG_TYPE_TRACING &&
 943	    prog->expected_attach_type == BPF_TRACE_ITER)
 944		return true;
 945
 946	if (prog->type == BPF_PROG_TYPE_LSM)
 947		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
 948
 949	return btf_id_set_contains(&btf_allowlist_d_path,
 950				   prog->aux->attach_btf_id);
 951}
 952
 953BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
 954
 955static const struct bpf_func_proto bpf_d_path_proto = {
 956	.func		= bpf_d_path,
 957	.gpl_only	= false,
 958	.ret_type	= RET_INTEGER,
 959	.arg1_type	= ARG_PTR_TO_BTF_ID,
 960	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
 961	.arg2_type	= ARG_PTR_TO_MEM,
 962	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 963	.allowed	= bpf_d_path_allowed,
 964};
 965
 966#define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
 967			 BTF_F_PTR_RAW | BTF_F_ZERO)
 968
 969static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
 970				  u64 flags, const struct btf **btf,
 971				  s32 *btf_id)
 972{
 973	const struct btf_type *t;
 974
 975	if (unlikely(flags & ~(BTF_F_ALL)))
 976		return -EINVAL;
 977
 978	if (btf_ptr_size != sizeof(struct btf_ptr))
 979		return -EINVAL;
 980
 981	*btf = bpf_get_btf_vmlinux();
 982
 983	if (IS_ERR_OR_NULL(*btf))
 984		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
 985
 986	if (ptr->type_id > 0)
 987		*btf_id = ptr->type_id;
 988	else
 989		return -EINVAL;
 990
 991	if (*btf_id > 0)
 992		t = btf_type_by_id(*btf, *btf_id);
 993	if (*btf_id <= 0 || !t)
 994		return -ENOENT;
 995
 996	return 0;
 997}
 998
 999BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1000	   u32, btf_ptr_size, u64, flags)
1001{
1002	const struct btf *btf;
1003	s32 btf_id;
1004	int ret;
1005
1006	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1007	if (ret)
1008		return ret;
1009
1010	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1011				      flags);
1012}
1013
1014const struct bpf_func_proto bpf_snprintf_btf_proto = {
1015	.func		= bpf_snprintf_btf,
1016	.gpl_only	= false,
1017	.ret_type	= RET_INTEGER,
1018	.arg1_type	= ARG_PTR_TO_MEM,
1019	.arg2_type	= ARG_CONST_SIZE,
1020	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1021	.arg4_type	= ARG_CONST_SIZE,
1022	.arg5_type	= ARG_ANYTHING,
1023};
1024
1025BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1026{
1027	/* This helper call is inlined by verifier. */
1028	return ((u64 *)ctx)[-2];
1029}
1030
1031static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1032	.func		= bpf_get_func_ip_tracing,
1033	.gpl_only	= true,
1034	.ret_type	= RET_INTEGER,
1035	.arg1_type	= ARG_PTR_TO_CTX,
1036};
1037
1038#ifdef CONFIG_X86_KERNEL_IBT
1039static unsigned long get_entry_ip(unsigned long fentry_ip)
1040{
1041	u32 instr;
1042
1043	/* Being extra safe in here in case entry ip is on the page-edge. */
1044	if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1045		return fentry_ip;
1046	if (is_endbr(instr))
1047		fentry_ip -= ENDBR_INSN_SIZE;
1048	return fentry_ip;
1049}
1050#else
1051#define get_entry_ip(fentry_ip) fentry_ip
1052#endif
1053
1054BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1055{
1056	struct kprobe *kp = kprobe_running();
1057
1058	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1059		return 0;
1060
1061	return get_entry_ip((uintptr_t)kp->addr);
1062}
1063
1064static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1065	.func		= bpf_get_func_ip_kprobe,
1066	.gpl_only	= true,
1067	.ret_type	= RET_INTEGER,
1068	.arg1_type	= ARG_PTR_TO_CTX,
1069};
1070
1071BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1072{
1073	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1074}
1075
1076static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1077	.func		= bpf_get_func_ip_kprobe_multi,
1078	.gpl_only	= false,
1079	.ret_type	= RET_INTEGER,
1080	.arg1_type	= ARG_PTR_TO_CTX,
1081};
1082
1083BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1084{
1085	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1086}
1087
1088static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1089	.func		= bpf_get_attach_cookie_kprobe_multi,
1090	.gpl_only	= false,
1091	.ret_type	= RET_INTEGER,
1092	.arg1_type	= ARG_PTR_TO_CTX,
1093};
1094
1095BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1096{
1097	struct bpf_trace_run_ctx *run_ctx;
1098
1099	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1100	return run_ctx->bpf_cookie;
1101}
1102
1103static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1104	.func		= bpf_get_attach_cookie_trace,
1105	.gpl_only	= false,
1106	.ret_type	= RET_INTEGER,
1107	.arg1_type	= ARG_PTR_TO_CTX,
1108};
1109
1110BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1111{
1112	return ctx->event->bpf_cookie;
1113}
1114
1115static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1116	.func		= bpf_get_attach_cookie_pe,
1117	.gpl_only	= false,
1118	.ret_type	= RET_INTEGER,
1119	.arg1_type	= ARG_PTR_TO_CTX,
1120};
1121
1122BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1123{
1124	struct bpf_trace_run_ctx *run_ctx;
1125
1126	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1127	return run_ctx->bpf_cookie;
1128}
1129
1130static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1131	.func		= bpf_get_attach_cookie_tracing,
1132	.gpl_only	= false,
1133	.ret_type	= RET_INTEGER,
1134	.arg1_type	= ARG_PTR_TO_CTX,
1135};
1136
1137BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1138{
1139#ifndef CONFIG_X86
1140	return -ENOENT;
1141#else
1142	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1143	u32 entry_cnt = size / br_entry_size;
1144
1145	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1146
1147	if (unlikely(flags))
1148		return -EINVAL;
1149
1150	if (!entry_cnt)
1151		return -ENOENT;
1152
1153	return entry_cnt * br_entry_size;
1154#endif
1155}
1156
1157static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1158	.func		= bpf_get_branch_snapshot,
1159	.gpl_only	= true,
1160	.ret_type	= RET_INTEGER,
1161	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1162	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1163};
1164
1165BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1166{
1167	/* This helper call is inlined by verifier. */
1168	u64 nr_args = ((u64 *)ctx)[-1];
1169
1170	if ((u64) n >= nr_args)
1171		return -EINVAL;
1172	*value = ((u64 *)ctx)[n];
1173	return 0;
1174}
1175
1176static const struct bpf_func_proto bpf_get_func_arg_proto = {
1177	.func		= get_func_arg,
1178	.ret_type	= RET_INTEGER,
1179	.arg1_type	= ARG_PTR_TO_CTX,
1180	.arg2_type	= ARG_ANYTHING,
1181	.arg3_type	= ARG_PTR_TO_LONG,
1182};
1183
1184BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1185{
1186	/* This helper call is inlined by verifier. */
1187	u64 nr_args = ((u64 *)ctx)[-1];
1188
1189	*value = ((u64 *)ctx)[nr_args];
1190	return 0;
1191}
1192
1193static const struct bpf_func_proto bpf_get_func_ret_proto = {
1194	.func		= get_func_ret,
1195	.ret_type	= RET_INTEGER,
1196	.arg1_type	= ARG_PTR_TO_CTX,
1197	.arg2_type	= ARG_PTR_TO_LONG,
1198};
1199
1200BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1201{
1202	/* This helper call is inlined by verifier. */
1203	return ((u64 *)ctx)[-1];
1204}
1205
1206static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1207	.func		= get_func_arg_cnt,
1208	.ret_type	= RET_INTEGER,
1209	.arg1_type	= ARG_PTR_TO_CTX,
1210};
1211
1212#ifdef CONFIG_KEYS
1213__diag_push();
1214__diag_ignore_all("-Wmissing-prototypes",
1215		  "kfuncs which will be used in BPF programs");
1216
1217/**
1218 * bpf_lookup_user_key - lookup a key by its serial
1219 * @serial: key handle serial number
1220 * @flags: lookup-specific flags
1221 *
1222 * Search a key with a given *serial* and the provided *flags*.
1223 * If found, increment the reference count of the key by one, and
1224 * return it in the bpf_key structure.
1225 *
1226 * The bpf_key structure must be passed to bpf_key_put() when done
1227 * with it, so that the key reference count is decremented and the
1228 * bpf_key structure is freed.
1229 *
1230 * Permission checks are deferred to the time the key is used by
1231 * one of the available key-specific kfuncs.
1232 *
1233 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1234 * special keyring (e.g. session keyring), if it doesn't yet exist.
1235 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1236 * for the key construction, and to retrieve uninstantiated keys (keys
1237 * without data attached to them).
1238 *
1239 * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1240 *         NULL pointer otherwise.
1241 */
1242struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1243{
1244	key_ref_t key_ref;
1245	struct bpf_key *bkey;
1246
1247	if (flags & ~KEY_LOOKUP_ALL)
1248		return NULL;
1249
1250	/*
1251	 * Permission check is deferred until the key is used, as the
1252	 * intent of the caller is unknown here.
1253	 */
1254	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1255	if (IS_ERR(key_ref))
1256		return NULL;
1257
1258	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1259	if (!bkey) {
1260		key_put(key_ref_to_ptr(key_ref));
1261		return NULL;
1262	}
1263
1264	bkey->key = key_ref_to_ptr(key_ref);
1265	bkey->has_ref = true;
1266
1267	return bkey;
1268}
1269
1270/**
1271 * bpf_lookup_system_key - lookup a key by a system-defined ID
1272 * @id: key ID
1273 *
1274 * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1275 * The key pointer is marked as invalid, to prevent bpf_key_put() from
1276 * attempting to decrement the key reference count on that pointer. The key
1277 * pointer set in such way is currently understood only by
1278 * verify_pkcs7_signature().
1279 *
1280 * Set *id* to one of the values defined in include/linux/verification.h:
1281 * 0 for the primary keyring (immutable keyring of system keys);
1282 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1283 * (where keys can be added only if they are vouched for by existing keys
1284 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1285 * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1286 * kerned image and, possibly, the initramfs signature).
1287 *
1288 * Return: a bpf_key pointer with an invalid key pointer set from the
1289 *         pre-determined ID on success, a NULL pointer otherwise
1290 */
1291struct bpf_key *bpf_lookup_system_key(u64 id)
1292{
1293	struct bpf_key *bkey;
1294
1295	if (system_keyring_id_check(id) < 0)
1296		return NULL;
1297
1298	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1299	if (!bkey)
1300		return NULL;
1301
1302	bkey->key = (struct key *)(unsigned long)id;
1303	bkey->has_ref = false;
1304
1305	return bkey;
1306}
1307
1308/**
1309 * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1310 * @bkey: bpf_key structure
1311 *
1312 * Decrement the reference count of the key inside *bkey*, if the pointer
1313 * is valid, and free *bkey*.
1314 */
1315void bpf_key_put(struct bpf_key *bkey)
1316{
1317	if (bkey->has_ref)
1318		key_put(bkey->key);
1319
1320	kfree(bkey);
1321}
1322
1323#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1324/**
1325 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1326 * @data_ptr: data to verify
1327 * @sig_ptr: signature of the data
1328 * @trusted_keyring: keyring with keys trusted for signature verification
1329 *
1330 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1331 * with keys in a keyring referenced by *trusted_keyring*.
1332 *
1333 * Return: 0 on success, a negative value on error.
1334 */
1335int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1336			       struct bpf_dynptr_kern *sig_ptr,
1337			       struct bpf_key *trusted_keyring)
1338{
1339	int ret;
1340
1341	if (trusted_keyring->has_ref) {
1342		/*
1343		 * Do the permission check deferred in bpf_lookup_user_key().
1344		 * See bpf_lookup_user_key() for more details.
1345		 *
1346		 * A call to key_task_permission() here would be redundant, as
1347		 * it is already done by keyring_search() called by
1348		 * find_asymmetric_key().
1349		 */
1350		ret = key_validate(trusted_keyring->key);
1351		if (ret < 0)
1352			return ret;
1353	}
1354
1355	return verify_pkcs7_signature(data_ptr->data,
1356				      bpf_dynptr_get_size(data_ptr),
1357				      sig_ptr->data,
1358				      bpf_dynptr_get_size(sig_ptr),
1359				      trusted_keyring->key,
1360				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1361				      NULL);
1362}
1363#endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1364
1365__diag_pop();
1366
1367BTF_SET8_START(key_sig_kfunc_set)
1368BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1369BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1370BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1371#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1372BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1373#endif
1374BTF_SET8_END(key_sig_kfunc_set)
1375
1376static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1377	.owner = THIS_MODULE,
1378	.set = &key_sig_kfunc_set,
1379};
1380
1381static int __init bpf_key_sig_kfuncs_init(void)
1382{
1383	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1384					 &bpf_key_sig_kfunc_set);
1385}
1386
1387late_initcall(bpf_key_sig_kfuncs_init);
1388#endif /* CONFIG_KEYS */
1389
1390static const struct bpf_func_proto *
1391bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1392{
1393	switch (func_id) {
1394	case BPF_FUNC_map_lookup_elem:
1395		return &bpf_map_lookup_elem_proto;
1396	case BPF_FUNC_map_update_elem:
1397		return &bpf_map_update_elem_proto;
1398	case BPF_FUNC_map_delete_elem:
1399		return &bpf_map_delete_elem_proto;
1400	case BPF_FUNC_map_push_elem:
1401		return &bpf_map_push_elem_proto;
1402	case BPF_FUNC_map_pop_elem:
1403		return &bpf_map_pop_elem_proto;
1404	case BPF_FUNC_map_peek_elem:
1405		return &bpf_map_peek_elem_proto;
1406	case BPF_FUNC_map_lookup_percpu_elem:
1407		return &bpf_map_lookup_percpu_elem_proto;
1408	case BPF_FUNC_ktime_get_ns:
1409		return &bpf_ktime_get_ns_proto;
1410	case BPF_FUNC_ktime_get_boot_ns:
1411		return &bpf_ktime_get_boot_ns_proto;
1412	case BPF_FUNC_tail_call:
1413		return &bpf_tail_call_proto;
1414	case BPF_FUNC_get_current_pid_tgid:
1415		return &bpf_get_current_pid_tgid_proto;
1416	case BPF_FUNC_get_current_task:
1417		return &bpf_get_current_task_proto;
1418	case BPF_FUNC_get_current_task_btf:
1419		return &bpf_get_current_task_btf_proto;
1420	case BPF_FUNC_task_pt_regs:
1421		return &bpf_task_pt_regs_proto;
1422	case BPF_FUNC_get_current_uid_gid:
1423		return &bpf_get_current_uid_gid_proto;
1424	case BPF_FUNC_get_current_comm:
1425		return &bpf_get_current_comm_proto;
1426	case BPF_FUNC_trace_printk:
1427		return bpf_get_trace_printk_proto();
1428	case BPF_FUNC_get_smp_processor_id:
1429		return &bpf_get_smp_processor_id_proto;
1430	case BPF_FUNC_get_numa_node_id:
1431		return &bpf_get_numa_node_id_proto;
1432	case BPF_FUNC_perf_event_read:
1433		return &bpf_perf_event_read_proto;
 
 
1434	case BPF_FUNC_current_task_under_cgroup:
1435		return &bpf_current_task_under_cgroup_proto;
1436	case BPF_FUNC_get_prandom_u32:
1437		return &bpf_get_prandom_u32_proto;
1438	case BPF_FUNC_probe_write_user:
1439		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1440		       NULL : bpf_get_probe_write_proto();
1441	case BPF_FUNC_probe_read_user:
1442		return &bpf_probe_read_user_proto;
1443	case BPF_FUNC_probe_read_kernel:
1444		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1445		       NULL : &bpf_probe_read_kernel_proto;
1446	case BPF_FUNC_probe_read_user_str:
1447		return &bpf_probe_read_user_str_proto;
1448	case BPF_FUNC_probe_read_kernel_str:
1449		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1450		       NULL : &bpf_probe_read_kernel_str_proto;
1451#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1452	case BPF_FUNC_probe_read:
1453		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1454		       NULL : &bpf_probe_read_compat_proto;
1455	case BPF_FUNC_probe_read_str:
1456		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1457		       NULL : &bpf_probe_read_compat_str_proto;
1458#endif
1459#ifdef CONFIG_CGROUPS
1460	case BPF_FUNC_get_current_cgroup_id:
1461		return &bpf_get_current_cgroup_id_proto;
1462	case BPF_FUNC_get_current_ancestor_cgroup_id:
1463		return &bpf_get_current_ancestor_cgroup_id_proto;
1464	case BPF_FUNC_cgrp_storage_get:
1465		return &bpf_cgrp_storage_get_proto;
1466	case BPF_FUNC_cgrp_storage_delete:
1467		return &bpf_cgrp_storage_delete_proto;
1468#endif
1469	case BPF_FUNC_send_signal:
1470		return &bpf_send_signal_proto;
1471	case BPF_FUNC_send_signal_thread:
1472		return &bpf_send_signal_thread_proto;
1473	case BPF_FUNC_perf_event_read_value:
1474		return &bpf_perf_event_read_value_proto;
1475	case BPF_FUNC_get_ns_current_pid_tgid:
1476		return &bpf_get_ns_current_pid_tgid_proto;
1477	case BPF_FUNC_ringbuf_output:
1478		return &bpf_ringbuf_output_proto;
1479	case BPF_FUNC_ringbuf_reserve:
1480		return &bpf_ringbuf_reserve_proto;
1481	case BPF_FUNC_ringbuf_submit:
1482		return &bpf_ringbuf_submit_proto;
1483	case BPF_FUNC_ringbuf_discard:
1484		return &bpf_ringbuf_discard_proto;
1485	case BPF_FUNC_ringbuf_query:
1486		return &bpf_ringbuf_query_proto;
1487	case BPF_FUNC_jiffies64:
1488		return &bpf_jiffies64_proto;
1489	case BPF_FUNC_get_task_stack:
1490		return &bpf_get_task_stack_proto;
1491	case BPF_FUNC_copy_from_user:
1492		return &bpf_copy_from_user_proto;
1493	case BPF_FUNC_copy_from_user_task:
1494		return &bpf_copy_from_user_task_proto;
1495	case BPF_FUNC_snprintf_btf:
1496		return &bpf_snprintf_btf_proto;
1497	case BPF_FUNC_per_cpu_ptr:
1498		return &bpf_per_cpu_ptr_proto;
1499	case BPF_FUNC_this_cpu_ptr:
1500		return &bpf_this_cpu_ptr_proto;
1501	case BPF_FUNC_task_storage_get:
1502		if (bpf_prog_check_recur(prog))
1503			return &bpf_task_storage_get_recur_proto;
1504		return &bpf_task_storage_get_proto;
1505	case BPF_FUNC_task_storage_delete:
1506		if (bpf_prog_check_recur(prog))
1507			return &bpf_task_storage_delete_recur_proto;
1508		return &bpf_task_storage_delete_proto;
1509	case BPF_FUNC_for_each_map_elem:
1510		return &bpf_for_each_map_elem_proto;
1511	case BPF_FUNC_snprintf:
1512		return &bpf_snprintf_proto;
1513	case BPF_FUNC_get_func_ip:
1514		return &bpf_get_func_ip_proto_tracing;
1515	case BPF_FUNC_get_branch_snapshot:
1516		return &bpf_get_branch_snapshot_proto;
1517	case BPF_FUNC_find_vma:
1518		return &bpf_find_vma_proto;
1519	case BPF_FUNC_trace_vprintk:
1520		return bpf_get_trace_vprintk_proto();
1521	default:
1522		return bpf_base_func_proto(func_id);
1523	}
1524}
1525
1526static const struct bpf_func_proto *
1527kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1528{
1529	switch (func_id) {
1530	case BPF_FUNC_perf_event_output:
1531		return &bpf_perf_event_output_proto;
1532	case BPF_FUNC_get_stackid:
1533		return &bpf_get_stackid_proto;
1534	case BPF_FUNC_get_stack:
1535		return &bpf_get_stack_proto;
 
 
1536#ifdef CONFIG_BPF_KPROBE_OVERRIDE
1537	case BPF_FUNC_override_return:
1538		return &bpf_override_return_proto;
1539#endif
1540	case BPF_FUNC_get_func_ip:
1541		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1542			&bpf_get_func_ip_proto_kprobe_multi :
1543			&bpf_get_func_ip_proto_kprobe;
1544	case BPF_FUNC_get_attach_cookie:
1545		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1546			&bpf_get_attach_cookie_proto_kmulti :
1547			&bpf_get_attach_cookie_proto_trace;
1548	default:
1549		return bpf_tracing_func_proto(func_id, prog);
1550	}
1551}
1552
1553/* bpf+kprobe programs can access fields of 'struct pt_regs' */
1554static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1555					const struct bpf_prog *prog,
1556					struct bpf_insn_access_aux *info)
1557{
1558	if (off < 0 || off >= sizeof(struct pt_regs))
1559		return false;
1560	if (type != BPF_READ)
1561		return false;
1562	if (off % size != 0)
1563		return false;
1564	/*
1565	 * Assertion for 32 bit to make sure last 8 byte access
1566	 * (BPF_DW) to the last 4 byte member is disallowed.
1567	 */
1568	if (off + size > sizeof(struct pt_regs))
1569		return false;
1570
1571	return true;
1572}
1573
1574const struct bpf_verifier_ops kprobe_verifier_ops = {
1575	.get_func_proto  = kprobe_prog_func_proto,
1576	.is_valid_access = kprobe_prog_is_valid_access,
1577};
1578
1579const struct bpf_prog_ops kprobe_prog_ops = {
1580};
1581
1582BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1583	   u64, flags, void *, data, u64, size)
1584{
1585	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1586
1587	/*
1588	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1589	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1590	 * from there and call the same bpf_perf_event_output() helper inline.
1591	 */
1592	return ____bpf_perf_event_output(regs, map, flags, data, size);
1593}
1594
1595static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1596	.func		= bpf_perf_event_output_tp,
1597	.gpl_only	= true,
1598	.ret_type	= RET_INTEGER,
1599	.arg1_type	= ARG_PTR_TO_CTX,
1600	.arg2_type	= ARG_CONST_MAP_PTR,
1601	.arg3_type	= ARG_ANYTHING,
1602	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1603	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1604};
1605
1606BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1607	   u64, flags)
1608{
1609	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1610
1611	/*
1612	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1613	 * the other helper's function body cannot be inlined due to being
1614	 * external, thus we need to call raw helper function.
1615	 */
1616	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1617			       flags, 0, 0);
1618}
1619
1620static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1621	.func		= bpf_get_stackid_tp,
1622	.gpl_only	= true,
1623	.ret_type	= RET_INTEGER,
1624	.arg1_type	= ARG_PTR_TO_CTX,
1625	.arg2_type	= ARG_CONST_MAP_PTR,
1626	.arg3_type	= ARG_ANYTHING,
1627};
1628
1629BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1630	   u64, flags)
1631{
1632	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1633
1634	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1635			     (unsigned long) size, flags, 0);
1636}
1637
1638static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1639	.func		= bpf_get_stack_tp,
1640	.gpl_only	= true,
1641	.ret_type	= RET_INTEGER,
1642	.arg1_type	= ARG_PTR_TO_CTX,
1643	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1644	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1645	.arg4_type	= ARG_ANYTHING,
1646};
1647
1648static const struct bpf_func_proto *
1649tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1650{
1651	switch (func_id) {
1652	case BPF_FUNC_perf_event_output:
1653		return &bpf_perf_event_output_proto_tp;
1654	case BPF_FUNC_get_stackid:
1655		return &bpf_get_stackid_proto_tp;
1656	case BPF_FUNC_get_stack:
1657		return &bpf_get_stack_proto_tp;
1658	case BPF_FUNC_get_attach_cookie:
1659		return &bpf_get_attach_cookie_proto_trace;
1660	default:
1661		return bpf_tracing_func_proto(func_id, prog);
1662	}
1663}
1664
1665static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1666				    const struct bpf_prog *prog,
1667				    struct bpf_insn_access_aux *info)
1668{
1669	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1670		return false;
1671	if (type != BPF_READ)
1672		return false;
1673	if (off % size != 0)
1674		return false;
1675
1676	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1677	return true;
1678}
1679
1680const struct bpf_verifier_ops tracepoint_verifier_ops = {
1681	.get_func_proto  = tp_prog_func_proto,
1682	.is_valid_access = tp_prog_is_valid_access,
1683};
1684
1685const struct bpf_prog_ops tracepoint_prog_ops = {
1686};
1687
1688BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1689	   struct bpf_perf_event_value *, buf, u32, size)
1690{
1691	int err = -EINVAL;
1692
1693	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1694		goto clear;
1695	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1696				    &buf->running);
1697	if (unlikely(err))
1698		goto clear;
1699	return 0;
1700clear:
1701	memset(buf, 0, size);
1702	return err;
1703}
1704
1705static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1706         .func           = bpf_perf_prog_read_value,
1707         .gpl_only       = true,
1708         .ret_type       = RET_INTEGER,
1709         .arg1_type      = ARG_PTR_TO_CTX,
1710         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1711         .arg3_type      = ARG_CONST_SIZE,
1712};
1713
1714BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1715	   void *, buf, u32, size, u64, flags)
1716{
1717	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1718	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1719	u32 to_copy;
1720
1721	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1722		return -EINVAL;
1723
1724	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1725		return -ENOENT;
1726
1727	if (unlikely(!br_stack))
1728		return -ENOENT;
1729
1730	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1731		return br_stack->nr * br_entry_size;
1732
1733	if (!buf || (size % br_entry_size != 0))
1734		return -EINVAL;
1735
1736	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1737	memcpy(buf, br_stack->entries, to_copy);
1738
1739	return to_copy;
1740}
1741
1742static const struct bpf_func_proto bpf_read_branch_records_proto = {
1743	.func           = bpf_read_branch_records,
1744	.gpl_only       = true,
1745	.ret_type       = RET_INTEGER,
1746	.arg1_type      = ARG_PTR_TO_CTX,
1747	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1748	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1749	.arg4_type      = ARG_ANYTHING,
1750};
1751
1752static const struct bpf_func_proto *
1753pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1754{
1755	switch (func_id) {
1756	case BPF_FUNC_perf_event_output:
1757		return &bpf_perf_event_output_proto_tp;
1758	case BPF_FUNC_get_stackid:
1759		return &bpf_get_stackid_proto_pe;
1760	case BPF_FUNC_get_stack:
1761		return &bpf_get_stack_proto_pe;
1762	case BPF_FUNC_perf_prog_read_value:
1763		return &bpf_perf_prog_read_value_proto;
1764	case BPF_FUNC_read_branch_records:
1765		return &bpf_read_branch_records_proto;
1766	case BPF_FUNC_get_attach_cookie:
1767		return &bpf_get_attach_cookie_proto_pe;
1768	default:
1769		return bpf_tracing_func_proto(func_id, prog);
1770	}
1771}
1772
1773/*
1774 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1775 * to avoid potential recursive reuse issue when/if tracepoints are added
1776 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1777 *
1778 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1779 * in normal, irq, and nmi context.
1780 */
1781struct bpf_raw_tp_regs {
1782	struct pt_regs regs[3];
1783};
1784static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1785static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1786static struct pt_regs *get_bpf_raw_tp_regs(void)
1787{
1788	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1789	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1790
1791	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1792		this_cpu_dec(bpf_raw_tp_nest_level);
1793		return ERR_PTR(-EBUSY);
1794	}
1795
1796	return &tp_regs->regs[nest_level - 1];
1797}
1798
1799static void put_bpf_raw_tp_regs(void)
1800{
1801	this_cpu_dec(bpf_raw_tp_nest_level);
1802}
1803
1804BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1805	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1806{
1807	struct pt_regs *regs = get_bpf_raw_tp_regs();
1808	int ret;
1809
1810	if (IS_ERR(regs))
1811		return PTR_ERR(regs);
1812
1813	perf_fetch_caller_regs(regs);
1814	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1815
1816	put_bpf_raw_tp_regs();
1817	return ret;
1818}
1819
1820static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1821	.func		= bpf_perf_event_output_raw_tp,
1822	.gpl_only	= true,
1823	.ret_type	= RET_INTEGER,
1824	.arg1_type	= ARG_PTR_TO_CTX,
1825	.arg2_type	= ARG_CONST_MAP_PTR,
1826	.arg3_type	= ARG_ANYTHING,
1827	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1828	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1829};
1830
1831extern const struct bpf_func_proto bpf_skb_output_proto;
1832extern const struct bpf_func_proto bpf_xdp_output_proto;
1833extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1834
1835BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1836	   struct bpf_map *, map, u64, flags)
1837{
1838	struct pt_regs *regs = get_bpf_raw_tp_regs();
1839	int ret;
1840
1841	if (IS_ERR(regs))
1842		return PTR_ERR(regs);
1843
1844	perf_fetch_caller_regs(regs);
1845	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1846	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1847			      flags, 0, 0);
1848	put_bpf_raw_tp_regs();
1849	return ret;
1850}
1851
1852static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1853	.func		= bpf_get_stackid_raw_tp,
1854	.gpl_only	= true,
1855	.ret_type	= RET_INTEGER,
1856	.arg1_type	= ARG_PTR_TO_CTX,
1857	.arg2_type	= ARG_CONST_MAP_PTR,
1858	.arg3_type	= ARG_ANYTHING,
1859};
1860
1861BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1862	   void *, buf, u32, size, u64, flags)
1863{
1864	struct pt_regs *regs = get_bpf_raw_tp_regs();
1865	int ret;
1866
1867	if (IS_ERR(regs))
1868		return PTR_ERR(regs);
1869
1870	perf_fetch_caller_regs(regs);
1871	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1872			    (unsigned long) size, flags, 0);
1873	put_bpf_raw_tp_regs();
1874	return ret;
1875}
1876
1877static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1878	.func		= bpf_get_stack_raw_tp,
1879	.gpl_only	= true,
1880	.ret_type	= RET_INTEGER,
1881	.arg1_type	= ARG_PTR_TO_CTX,
1882	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1883	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1884	.arg4_type	= ARG_ANYTHING,
1885};
1886
1887static const struct bpf_func_proto *
1888raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1889{
1890	switch (func_id) {
1891	case BPF_FUNC_perf_event_output:
1892		return &bpf_perf_event_output_proto_raw_tp;
1893	case BPF_FUNC_get_stackid:
1894		return &bpf_get_stackid_proto_raw_tp;
1895	case BPF_FUNC_get_stack:
1896		return &bpf_get_stack_proto_raw_tp;
1897	default:
1898		return bpf_tracing_func_proto(func_id, prog);
1899	}
1900}
1901
1902const struct bpf_func_proto *
1903tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1904{
1905	const struct bpf_func_proto *fn;
1906
1907	switch (func_id) {
1908#ifdef CONFIG_NET
1909	case BPF_FUNC_skb_output:
1910		return &bpf_skb_output_proto;
1911	case BPF_FUNC_xdp_output:
1912		return &bpf_xdp_output_proto;
1913	case BPF_FUNC_skc_to_tcp6_sock:
1914		return &bpf_skc_to_tcp6_sock_proto;
1915	case BPF_FUNC_skc_to_tcp_sock:
1916		return &bpf_skc_to_tcp_sock_proto;
1917	case BPF_FUNC_skc_to_tcp_timewait_sock:
1918		return &bpf_skc_to_tcp_timewait_sock_proto;
1919	case BPF_FUNC_skc_to_tcp_request_sock:
1920		return &bpf_skc_to_tcp_request_sock_proto;
1921	case BPF_FUNC_skc_to_udp6_sock:
1922		return &bpf_skc_to_udp6_sock_proto;
1923	case BPF_FUNC_skc_to_unix_sock:
1924		return &bpf_skc_to_unix_sock_proto;
1925	case BPF_FUNC_skc_to_mptcp_sock:
1926		return &bpf_skc_to_mptcp_sock_proto;
1927	case BPF_FUNC_sk_storage_get:
1928		return &bpf_sk_storage_get_tracing_proto;
1929	case BPF_FUNC_sk_storage_delete:
1930		return &bpf_sk_storage_delete_tracing_proto;
1931	case BPF_FUNC_sock_from_file:
1932		return &bpf_sock_from_file_proto;
1933	case BPF_FUNC_get_socket_cookie:
1934		return &bpf_get_socket_ptr_cookie_proto;
1935	case BPF_FUNC_xdp_get_buff_len:
1936		return &bpf_xdp_get_buff_len_trace_proto;
1937#endif
1938	case BPF_FUNC_seq_printf:
1939		return prog->expected_attach_type == BPF_TRACE_ITER ?
1940		       &bpf_seq_printf_proto :
1941		       NULL;
1942	case BPF_FUNC_seq_write:
1943		return prog->expected_attach_type == BPF_TRACE_ITER ?
1944		       &bpf_seq_write_proto :
1945		       NULL;
1946	case BPF_FUNC_seq_printf_btf:
1947		return prog->expected_attach_type == BPF_TRACE_ITER ?
1948		       &bpf_seq_printf_btf_proto :
1949		       NULL;
1950	case BPF_FUNC_d_path:
1951		return &bpf_d_path_proto;
1952	case BPF_FUNC_get_func_arg:
1953		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1954	case BPF_FUNC_get_func_ret:
1955		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1956	case BPF_FUNC_get_func_arg_cnt:
1957		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1958	case BPF_FUNC_get_attach_cookie:
1959		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1960	default:
1961		fn = raw_tp_prog_func_proto(func_id, prog);
1962		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1963			fn = bpf_iter_get_func_proto(func_id, prog);
1964		return fn;
1965	}
1966}
1967
1968static bool raw_tp_prog_is_valid_access(int off, int size,
1969					enum bpf_access_type type,
1970					const struct bpf_prog *prog,
1971					struct bpf_insn_access_aux *info)
1972{
1973	return bpf_tracing_ctx_access(off, size, type);
1974}
1975
1976static bool tracing_prog_is_valid_access(int off, int size,
1977					 enum bpf_access_type type,
1978					 const struct bpf_prog *prog,
1979					 struct bpf_insn_access_aux *info)
1980{
1981	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1982}
1983
1984int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1985				     const union bpf_attr *kattr,
1986				     union bpf_attr __user *uattr)
1987{
1988	return -ENOTSUPP;
1989}
1990
1991const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1992	.get_func_proto  = raw_tp_prog_func_proto,
1993	.is_valid_access = raw_tp_prog_is_valid_access,
1994};
1995
1996const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1997#ifdef CONFIG_NET
1998	.test_run = bpf_prog_test_run_raw_tp,
1999#endif
2000};
2001
2002const struct bpf_verifier_ops tracing_verifier_ops = {
2003	.get_func_proto  = tracing_prog_func_proto,
2004	.is_valid_access = tracing_prog_is_valid_access,
2005};
2006
2007const struct bpf_prog_ops tracing_prog_ops = {
2008	.test_run = bpf_prog_test_run_tracing,
2009};
2010
2011static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2012						 enum bpf_access_type type,
2013						 const struct bpf_prog *prog,
2014						 struct bpf_insn_access_aux *info)
2015{
2016	if (off == 0) {
2017		if (size != sizeof(u64) || type != BPF_READ)
2018			return false;
2019		info->reg_type = PTR_TO_TP_BUFFER;
2020	}
2021	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2022}
2023
2024const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2025	.get_func_proto  = raw_tp_prog_func_proto,
2026	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2027};
2028
2029const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2030};
2031
2032static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2033				    const struct bpf_prog *prog,
2034				    struct bpf_insn_access_aux *info)
2035{
2036	const int size_u64 = sizeof(u64);
2037
2038	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2039		return false;
2040	if (type != BPF_READ)
2041		return false;
2042	if (off % size != 0) {
2043		if (sizeof(unsigned long) != 4)
2044			return false;
2045		if (size != 8)
2046			return false;
2047		if (off % size != 4)
2048			return false;
2049	}
2050
2051	switch (off) {
2052	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2053		bpf_ctx_record_field_size(info, size_u64);
2054		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2055			return false;
2056		break;
2057	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2058		bpf_ctx_record_field_size(info, size_u64);
2059		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2060			return false;
2061		break;
2062	default:
2063		if (size != sizeof(long))
2064			return false;
2065	}
2066
2067	return true;
2068}
2069
2070static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2071				      const struct bpf_insn *si,
2072				      struct bpf_insn *insn_buf,
2073				      struct bpf_prog *prog, u32 *target_size)
2074{
2075	struct bpf_insn *insn = insn_buf;
2076
2077	switch (si->off) {
2078	case offsetof(struct bpf_perf_event_data, sample_period):
2079		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2080						       data), si->dst_reg, si->src_reg,
2081				      offsetof(struct bpf_perf_event_data_kern, data));
2082		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2083				      bpf_target_off(struct perf_sample_data, period, 8,
2084						     target_size));
2085		break;
2086	case offsetof(struct bpf_perf_event_data, addr):
2087		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2088						       data), si->dst_reg, si->src_reg,
2089				      offsetof(struct bpf_perf_event_data_kern, data));
2090		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2091				      bpf_target_off(struct perf_sample_data, addr, 8,
2092						     target_size));
2093		break;
2094	default:
2095		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2096						       regs), si->dst_reg, si->src_reg,
2097				      offsetof(struct bpf_perf_event_data_kern, regs));
2098		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2099				      si->off);
2100		break;
2101	}
2102
2103	return insn - insn_buf;
2104}
2105
2106const struct bpf_verifier_ops perf_event_verifier_ops = {
2107	.get_func_proto		= pe_prog_func_proto,
2108	.is_valid_access	= pe_prog_is_valid_access,
2109	.convert_ctx_access	= pe_prog_convert_ctx_access,
2110};
2111
2112const struct bpf_prog_ops perf_event_prog_ops = {
2113};
2114
2115static DEFINE_MUTEX(bpf_event_mutex);
2116
2117#define BPF_TRACE_MAX_PROGS 64
2118
2119int perf_event_attach_bpf_prog(struct perf_event *event,
2120			       struct bpf_prog *prog,
2121			       u64 bpf_cookie)
2122{
2123	struct bpf_prog_array *old_array;
2124	struct bpf_prog_array *new_array;
2125	int ret = -EEXIST;
2126
2127	/*
2128	 * Kprobe override only works if they are on the function entry,
2129	 * and only if they are on the opt-in list.
2130	 */
2131	if (prog->kprobe_override &&
2132	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2133	     !trace_kprobe_error_injectable(event->tp_event)))
2134		return -EINVAL;
2135
2136	mutex_lock(&bpf_event_mutex);
2137
2138	if (event->prog)
2139		goto unlock;
2140
2141	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2142	if (old_array &&
2143	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2144		ret = -E2BIG;
2145		goto unlock;
2146	}
2147
2148	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2149	if (ret < 0)
2150		goto unlock;
2151
2152	/* set the new array to event->tp_event and set event->prog */
2153	event->prog = prog;
2154	event->bpf_cookie = bpf_cookie;
2155	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2156	bpf_prog_array_free_sleepable(old_array);
2157
2158unlock:
2159	mutex_unlock(&bpf_event_mutex);
2160	return ret;
2161}
2162
2163void perf_event_detach_bpf_prog(struct perf_event *event)
2164{
2165	struct bpf_prog_array *old_array;
2166	struct bpf_prog_array *new_array;
2167	int ret;
2168
2169	mutex_lock(&bpf_event_mutex);
2170
2171	if (!event->prog)
2172		goto unlock;
2173
2174	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2175	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2176	if (ret == -ENOENT)
2177		goto unlock;
2178	if (ret < 0) {
2179		bpf_prog_array_delete_safe(old_array, event->prog);
2180	} else {
2181		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2182		bpf_prog_array_free_sleepable(old_array);
2183	}
2184
2185	bpf_prog_put(event->prog);
2186	event->prog = NULL;
2187
2188unlock:
2189	mutex_unlock(&bpf_event_mutex);
2190}
2191
2192int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2193{
2194	struct perf_event_query_bpf __user *uquery = info;
2195	struct perf_event_query_bpf query = {};
2196	struct bpf_prog_array *progs;
2197	u32 *ids, prog_cnt, ids_len;
2198	int ret;
2199
2200	if (!perfmon_capable())
2201		return -EPERM;
2202	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2203		return -EINVAL;
2204	if (copy_from_user(&query, uquery, sizeof(query)))
2205		return -EFAULT;
2206
2207	ids_len = query.ids_len;
2208	if (ids_len > BPF_TRACE_MAX_PROGS)
2209		return -E2BIG;
2210	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2211	if (!ids)
2212		return -ENOMEM;
2213	/*
2214	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2215	 * is required when user only wants to check for uquery->prog_cnt.
2216	 * There is no need to check for it since the case is handled
2217	 * gracefully in bpf_prog_array_copy_info.
2218	 */
2219
2220	mutex_lock(&bpf_event_mutex);
2221	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2222	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2223	mutex_unlock(&bpf_event_mutex);
2224
2225	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2226	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2227		ret = -EFAULT;
2228
2229	kfree(ids);
2230	return ret;
2231}
2232
2233extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2234extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2235
2236struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2237{
2238	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2239
2240	for (; btp < __stop__bpf_raw_tp; btp++) {
2241		if (!strcmp(btp->tp->name, name))
2242			return btp;
2243	}
2244
2245	return bpf_get_raw_tracepoint_module(name);
2246}
2247
2248void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2249{
2250	struct module *mod;
2251
2252	preempt_disable();
2253	mod = __module_address((unsigned long)btp);
2254	module_put(mod);
2255	preempt_enable();
2256}
2257
2258static __always_inline
2259void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2260{
2261	cant_sleep();
2262	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2263		bpf_prog_inc_misses_counter(prog);
2264		goto out;
2265	}
2266	rcu_read_lock();
2267	(void) bpf_prog_run(prog, args);
 
 
2268	rcu_read_unlock();
2269out:
2270	this_cpu_dec(*(prog->active));
2271}
2272
2273#define UNPACK(...)			__VA_ARGS__
2274#define REPEAT_1(FN, DL, X, ...)	FN(X)
2275#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2276#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2277#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2278#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2279#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2280#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2281#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2282#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2283#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2284#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2285#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2286#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2287
2288#define SARG(X)		u64 arg##X
2289#define COPY(X)		args[X] = arg##X
2290
2291#define __DL_COM	(,)
2292#define __DL_SEM	(;)
2293
2294#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2295
2296#define BPF_TRACE_DEFN_x(x)						\
2297	void bpf_trace_run##x(struct bpf_prog *prog,			\
2298			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2299	{								\
2300		u64 args[x];						\
2301		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2302		__bpf_trace_run(prog, args);				\
2303	}								\
2304	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2305BPF_TRACE_DEFN_x(1);
2306BPF_TRACE_DEFN_x(2);
2307BPF_TRACE_DEFN_x(3);
2308BPF_TRACE_DEFN_x(4);
2309BPF_TRACE_DEFN_x(5);
2310BPF_TRACE_DEFN_x(6);
2311BPF_TRACE_DEFN_x(7);
2312BPF_TRACE_DEFN_x(8);
2313BPF_TRACE_DEFN_x(9);
2314BPF_TRACE_DEFN_x(10);
2315BPF_TRACE_DEFN_x(11);
2316BPF_TRACE_DEFN_x(12);
2317
2318static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2319{
2320	struct tracepoint *tp = btp->tp;
2321
2322	/*
2323	 * check that program doesn't access arguments beyond what's
2324	 * available in this tracepoint
2325	 */
2326	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2327		return -EINVAL;
2328
2329	if (prog->aux->max_tp_access > btp->writable_size)
2330		return -EINVAL;
2331
2332	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2333						   prog);
2334}
2335
2336int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2337{
2338	return __bpf_probe_register(btp, prog);
2339}
2340
2341int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2342{
2343	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2344}
2345
2346int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2347			    u32 *fd_type, const char **buf,
2348			    u64 *probe_offset, u64 *probe_addr)
2349{
2350	bool is_tracepoint, is_syscall_tp;
2351	struct bpf_prog *prog;
2352	int flags, err = 0;
2353
2354	prog = event->prog;
2355	if (!prog)
2356		return -ENOENT;
2357
2358	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2359	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2360		return -EOPNOTSUPP;
2361
2362	*prog_id = prog->aux->id;
2363	flags = event->tp_event->flags;
2364	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2365	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2366
2367	if (is_tracepoint || is_syscall_tp) {
2368		*buf = is_tracepoint ? event->tp_event->tp->name
2369				     : event->tp_event->name;
2370		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2371		*probe_offset = 0x0;
2372		*probe_addr = 0x0;
2373	} else {
2374		/* kprobe/uprobe */
2375		err = -EOPNOTSUPP;
2376#ifdef CONFIG_KPROBE_EVENTS
2377		if (flags & TRACE_EVENT_FL_KPROBE)
2378			err = bpf_get_kprobe_info(event, fd_type, buf,
2379						  probe_offset, probe_addr,
2380						  event->attr.type == PERF_TYPE_TRACEPOINT);
2381#endif
2382#ifdef CONFIG_UPROBE_EVENTS
2383		if (flags & TRACE_EVENT_FL_UPROBE)
2384			err = bpf_get_uprobe_info(event, fd_type, buf,
2385						  probe_offset,
2386						  event->attr.type == PERF_TYPE_TRACEPOINT);
2387#endif
2388	}
2389
2390	return err;
2391}
2392
2393static int __init send_signal_irq_work_init(void)
2394{
2395	int cpu;
2396	struct send_signal_irq_work *work;
2397
2398	for_each_possible_cpu(cpu) {
2399		work = per_cpu_ptr(&send_signal_work, cpu);
2400		init_irq_work(&work->irq_work, do_bpf_send_signal);
2401	}
2402	return 0;
2403}
2404
2405subsys_initcall(send_signal_irq_work_init);
2406
2407#ifdef CONFIG_MODULES
2408static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2409			    void *module)
2410{
2411	struct bpf_trace_module *btm, *tmp;
2412	struct module *mod = module;
2413	int ret = 0;
2414
2415	if (mod->num_bpf_raw_events == 0 ||
2416	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2417		goto out;
2418
2419	mutex_lock(&bpf_module_mutex);
2420
2421	switch (op) {
2422	case MODULE_STATE_COMING:
2423		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2424		if (btm) {
2425			btm->module = module;
2426			list_add(&btm->list, &bpf_trace_modules);
2427		} else {
2428			ret = -ENOMEM;
2429		}
2430		break;
2431	case MODULE_STATE_GOING:
2432		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2433			if (btm->module == module) {
2434				list_del(&btm->list);
2435				kfree(btm);
2436				break;
2437			}
2438		}
2439		break;
2440	}
2441
2442	mutex_unlock(&bpf_module_mutex);
2443
2444out:
2445	return notifier_from_errno(ret);
2446}
2447
2448static struct notifier_block bpf_module_nb = {
2449	.notifier_call = bpf_event_notify,
2450};
2451
2452static int __init bpf_event_init(void)
2453{
2454	register_module_notifier(&bpf_module_nb);
2455	return 0;
2456}
2457
2458fs_initcall(bpf_event_init);
2459#endif /* CONFIG_MODULES */
2460
2461#ifdef CONFIG_FPROBE
2462struct bpf_kprobe_multi_link {
2463	struct bpf_link link;
2464	struct fprobe fp;
2465	unsigned long *addrs;
2466	u64 *cookies;
2467	u32 cnt;
2468	u32 mods_cnt;
2469	struct module **mods;
2470};
2471
2472struct bpf_kprobe_multi_run_ctx {
2473	struct bpf_run_ctx run_ctx;
2474	struct bpf_kprobe_multi_link *link;
2475	unsigned long entry_ip;
2476};
2477
2478struct user_syms {
2479	const char **syms;
2480	char *buf;
2481};
2482
2483static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2484{
2485	unsigned long __user usymbol;
2486	const char **syms = NULL;
2487	char *buf = NULL, *p;
2488	int err = -ENOMEM;
2489	unsigned int i;
2490
2491	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2492	if (!syms)
2493		goto error;
2494
2495	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2496	if (!buf)
2497		goto error;
2498
2499	for (p = buf, i = 0; i < cnt; i++) {
2500		if (__get_user(usymbol, usyms + i)) {
2501			err = -EFAULT;
2502			goto error;
2503		}
2504		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2505		if (err == KSYM_NAME_LEN)
2506			err = -E2BIG;
2507		if (err < 0)
2508			goto error;
2509		syms[i] = p;
2510		p += err + 1;
2511	}
2512
2513	us->syms = syms;
2514	us->buf = buf;
2515	return 0;
2516
2517error:
2518	if (err) {
2519		kvfree(syms);
2520		kvfree(buf);
2521	}
2522	return err;
2523}
2524
2525static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2526{
2527	u32 i;
2528
2529	for (i = 0; i < cnt; i++)
2530		module_put(mods[i]);
2531}
2532
2533static void free_user_syms(struct user_syms *us)
2534{
2535	kvfree(us->syms);
2536	kvfree(us->buf);
2537}
2538
2539static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2540{
2541	struct bpf_kprobe_multi_link *kmulti_link;
2542
2543	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2544	unregister_fprobe(&kmulti_link->fp);
2545	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2546}
2547
2548static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2549{
2550	struct bpf_kprobe_multi_link *kmulti_link;
2551
2552	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2553	kvfree(kmulti_link->addrs);
2554	kvfree(kmulti_link->cookies);
2555	kfree(kmulti_link->mods);
2556	kfree(kmulti_link);
2557}
2558
2559static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2560	.release = bpf_kprobe_multi_link_release,
2561	.dealloc = bpf_kprobe_multi_link_dealloc,
2562};
2563
2564static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2565{
2566	const struct bpf_kprobe_multi_link *link = priv;
2567	unsigned long *addr_a = a, *addr_b = b;
2568	u64 *cookie_a, *cookie_b;
2569
2570	cookie_a = link->cookies + (addr_a - link->addrs);
2571	cookie_b = link->cookies + (addr_b - link->addrs);
2572
2573	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2574	swap(*addr_a, *addr_b);
2575	swap(*cookie_a, *cookie_b);
2576}
2577
2578static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2579{
2580	const unsigned long *addr_a = a, *addr_b = b;
2581
2582	if (*addr_a == *addr_b)
2583		return 0;
2584	return *addr_a < *addr_b ? -1 : 1;
2585}
2586
2587static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2588{
2589	return bpf_kprobe_multi_addrs_cmp(a, b);
2590}
2591
2592static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2593{
2594	struct bpf_kprobe_multi_run_ctx *run_ctx;
2595	struct bpf_kprobe_multi_link *link;
2596	u64 *cookie, entry_ip;
2597	unsigned long *addr;
2598
2599	if (WARN_ON_ONCE(!ctx))
2600		return 0;
2601	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2602	link = run_ctx->link;
2603	if (!link->cookies)
2604		return 0;
2605	entry_ip = run_ctx->entry_ip;
2606	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2607		       bpf_kprobe_multi_addrs_cmp);
2608	if (!addr)
2609		return 0;
2610	cookie = link->cookies + (addr - link->addrs);
2611	return *cookie;
2612}
2613
2614static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2615{
2616	struct bpf_kprobe_multi_run_ctx *run_ctx;
2617
2618	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2619	return run_ctx->entry_ip;
2620}
2621
2622static int
2623kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2624			   unsigned long entry_ip, struct pt_regs *regs)
2625{
2626	struct bpf_kprobe_multi_run_ctx run_ctx = {
2627		.link = link,
2628		.entry_ip = entry_ip,
2629	};
2630	struct bpf_run_ctx *old_run_ctx;
2631	int err;
2632
2633	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2634		err = 0;
2635		goto out;
2636	}
2637
2638	migrate_disable();
2639	rcu_read_lock();
2640	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2641	err = bpf_prog_run(link->link.prog, regs);
2642	bpf_reset_run_ctx(old_run_ctx);
2643	rcu_read_unlock();
2644	migrate_enable();
2645
2646 out:
2647	__this_cpu_dec(bpf_prog_active);
2648	return err;
2649}
2650
2651static void
2652kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2653			  struct pt_regs *regs)
2654{
2655	struct bpf_kprobe_multi_link *link;
2656
2657	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2658	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2659}
2660
2661static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2662{
2663	const char **str_a = (const char **) a;
2664	const char **str_b = (const char **) b;
2665
2666	return strcmp(*str_a, *str_b);
2667}
2668
2669struct multi_symbols_sort {
2670	const char **funcs;
2671	u64 *cookies;
2672};
2673
2674static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2675{
2676	const struct multi_symbols_sort *data = priv;
2677	const char **name_a = a, **name_b = b;
2678
2679	swap(*name_a, *name_b);
2680
2681	/* If defined, swap also related cookies. */
2682	if (data->cookies) {
2683		u64 *cookie_a, *cookie_b;
2684
2685		cookie_a = data->cookies + (name_a - data->funcs);
2686		cookie_b = data->cookies + (name_b - data->funcs);
2687		swap(*cookie_a, *cookie_b);
2688	}
2689}
2690
2691struct module_addr_args {
2692	unsigned long *addrs;
2693	u32 addrs_cnt;
2694	struct module **mods;
2695	int mods_cnt;
2696	int mods_cap;
2697};
2698
2699static int module_callback(void *data, const char *name,
2700			   struct module *mod, unsigned long addr)
2701{
2702	struct module_addr_args *args = data;
2703	struct module **mods;
2704
2705	/* We iterate all modules symbols and for each we:
2706	 * - search for it in provided addresses array
2707	 * - if found we check if we already have the module pointer stored
2708	 *   (we iterate modules sequentially, so we can check just the last
2709	 *   module pointer)
2710	 * - take module reference and store it
2711	 */
2712	if (!bsearch(&addr, args->addrs, args->addrs_cnt, sizeof(addr),
2713		       bpf_kprobe_multi_addrs_cmp))
2714		return 0;
2715
2716	if (args->mods && args->mods[args->mods_cnt - 1] == mod)
2717		return 0;
2718
2719	if (args->mods_cnt == args->mods_cap) {
2720		args->mods_cap = max(16, args->mods_cap * 3 / 2);
2721		mods = krealloc_array(args->mods, args->mods_cap, sizeof(*mods), GFP_KERNEL);
2722		if (!mods)
2723			return -ENOMEM;
2724		args->mods = mods;
2725	}
2726
2727	if (!try_module_get(mod))
2728		return -EINVAL;
2729
2730	args->mods[args->mods_cnt] = mod;
2731	args->mods_cnt++;
2732	return 0;
2733}
2734
2735static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2736{
2737	struct module_addr_args args = {
2738		.addrs     = addrs,
2739		.addrs_cnt = addrs_cnt,
2740	};
2741	int err;
2742
2743	/* We return either err < 0 in case of error, ... */
2744	err = module_kallsyms_on_each_symbol(module_callback, &args);
2745	if (err) {
2746		kprobe_multi_put_modules(args.mods, args.mods_cnt);
2747		kfree(args.mods);
2748		return err;
2749	}
2750
2751	/* or number of modules found if everything is ok. */
2752	*mods = args.mods;
2753	return args.mods_cnt;
2754}
2755
2756int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2757{
2758	struct bpf_kprobe_multi_link *link = NULL;
2759	struct bpf_link_primer link_primer;
2760	void __user *ucookies;
2761	unsigned long *addrs;
2762	u32 flags, cnt, size;
2763	void __user *uaddrs;
2764	u64 *cookies = NULL;
2765	void __user *usyms;
2766	int err;
2767
2768	/* no support for 32bit archs yet */
2769	if (sizeof(u64) != sizeof(void *))
2770		return -EOPNOTSUPP;
2771
2772	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2773		return -EINVAL;
2774
2775	flags = attr->link_create.kprobe_multi.flags;
2776	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2777		return -EINVAL;
2778
2779	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2780	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2781	if (!!uaddrs == !!usyms)
2782		return -EINVAL;
2783
2784	cnt = attr->link_create.kprobe_multi.cnt;
2785	if (!cnt)
2786		return -EINVAL;
2787
2788	size = cnt * sizeof(*addrs);
2789	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2790	if (!addrs)
2791		return -ENOMEM;
2792
2793	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2794	if (ucookies) {
2795		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2796		if (!cookies) {
2797			err = -ENOMEM;
2798			goto error;
2799		}
2800		if (copy_from_user(cookies, ucookies, size)) {
2801			err = -EFAULT;
2802			goto error;
2803		}
2804	}
2805
2806	if (uaddrs) {
2807		if (copy_from_user(addrs, uaddrs, size)) {
2808			err = -EFAULT;
2809			goto error;
2810		}
2811	} else {
2812		struct multi_symbols_sort data = {
2813			.cookies = cookies,
2814		};
2815		struct user_syms us;
2816
2817		err = copy_user_syms(&us, usyms, cnt);
2818		if (err)
2819			goto error;
2820
2821		if (cookies)
2822			data.funcs = us.syms;
2823
2824		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2825		       symbols_swap_r, &data);
2826
2827		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2828		free_user_syms(&us);
2829		if (err)
2830			goto error;
2831	}
2832
2833	link = kzalloc(sizeof(*link), GFP_KERNEL);
2834	if (!link) {
2835		err = -ENOMEM;
2836		goto error;
2837	}
2838
2839	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2840		      &bpf_kprobe_multi_link_lops, prog);
2841
2842	err = bpf_link_prime(&link->link, &link_primer);
2843	if (err)
2844		goto error;
2845
2846	if (flags & BPF_F_KPROBE_MULTI_RETURN)
2847		link->fp.exit_handler = kprobe_multi_link_handler;
2848	else
2849		link->fp.entry_handler = kprobe_multi_link_handler;
2850
2851	link->addrs = addrs;
2852	link->cookies = cookies;
2853	link->cnt = cnt;
2854
2855	if (cookies) {
2856		/*
2857		 * Sorting addresses will trigger sorting cookies as well
2858		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2859		 * find cookie based on the address in bpf_get_attach_cookie
2860		 * helper.
2861		 */
2862		sort_r(addrs, cnt, sizeof(*addrs),
2863		       bpf_kprobe_multi_cookie_cmp,
2864		       bpf_kprobe_multi_cookie_swap,
2865		       link);
2866	} else {
2867		/*
2868		 * We need to sort addrs array even if there are no cookies
2869		 * provided, to allow bsearch in get_modules_for_addrs.
2870		 */
2871		sort(addrs, cnt, sizeof(*addrs),
2872		       bpf_kprobe_multi_addrs_cmp, NULL);
2873	}
2874
2875	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2876	if (err < 0) {
2877		bpf_link_cleanup(&link_primer);
2878		return err;
2879	}
2880	link->mods_cnt = err;
2881
2882	err = register_fprobe_ips(&link->fp, addrs, cnt);
2883	if (err) {
2884		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2885		bpf_link_cleanup(&link_primer);
2886		return err;
2887	}
2888
2889	return bpf_link_settle(&link_primer);
2890
2891error:
2892	kfree(link);
2893	kvfree(addrs);
2894	kvfree(cookies);
2895	return err;
2896}
2897#else /* !CONFIG_FPROBE */
2898int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2899{
2900	return -EOPNOTSUPP;
2901}
2902static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2903{
2904	return 0;
2905}
2906static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2907{
2908	return 0;
2909}
2910#endif