Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 * Copyright SUSE, 2021
  10 *
  11 * Author: Ingo Molnar <mingo@elte.hu>
  12 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  13 *	   Frederic Weisbecker <frederic@kernel.org>
  14 */
  15
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
  20{
  21	return lockdep_is_held(&rdp->nocb_lock);
  22}
  23
  24static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
  25{
  26	/* Race on early boot between thread creation and assignment */
  27	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
  28		return true;
  29
  30	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
  31		if (in_task())
  32			return true;
  33	return false;
  34}
  35
  36/*
  37 * Offload callback processing from the boot-time-specified set of CPUs
  38 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
  39 * created that pull the callbacks from the corresponding CPU, wait for
  40 * a grace period to elapse, and invoke the callbacks.  These kthreads
  41 * are organized into GP kthreads, which manage incoming callbacks, wait for
  42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
  43 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
  44 * do a wake_up() on their GP kthread when they insert a callback into any
  45 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
  46 * in which case each kthread actively polls its CPU.  (Which isn't so great
  47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
  48 *
  49 * This is intended to be used in conjunction with Frederic Weisbecker's
  50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  51 * running CPU-bound user-mode computations.
  52 *
  53 * Offloading of callbacks can also be used as an energy-efficiency
  54 * measure because CPUs with no RCU callbacks queued are more aggressive
  55 * about entering dyntick-idle mode.
  56 */
  57
  58
  59/*
  60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
  61 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
  62 */
  63static int __init rcu_nocb_setup(char *str)
  64{
  65	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  66	if (*str == '=') {
  67		if (cpulist_parse(++str, rcu_nocb_mask)) {
  68			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
  69			cpumask_setall(rcu_nocb_mask);
  70		}
  71	}
  72	rcu_state.nocb_is_setup = true;
  73	return 1;
  74}
  75__setup("rcu_nocbs", rcu_nocb_setup);
  76
  77static int __init parse_rcu_nocb_poll(char *arg)
  78{
  79	rcu_nocb_poll = true;
  80	return 0;
  81}
  82early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  83
  84/*
  85 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
  86 * After all, the main point of bypassing is to avoid lock contention
  87 * on ->nocb_lock, which only can happen at high call_rcu() rates.
  88 */
  89static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
  90module_param(nocb_nobypass_lim_per_jiffy, int, 0);
  91
  92/*
  93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
  94 * lock isn't immediately available, increment ->nocb_lock_contended to
  95 * flag the contention.
  96 */
  97static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
  98	__acquires(&rdp->nocb_bypass_lock)
  99{
 100	lockdep_assert_irqs_disabled();
 101	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
 102		return;
 103	atomic_inc(&rdp->nocb_lock_contended);
 104	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
 105	smp_mb__after_atomic(); /* atomic_inc() before lock. */
 106	raw_spin_lock(&rdp->nocb_bypass_lock);
 107	smp_mb__before_atomic(); /* atomic_dec() after lock. */
 108	atomic_dec(&rdp->nocb_lock_contended);
 109}
 110
 111/*
 112 * Spinwait until the specified rcu_data structure's ->nocb_lock is
 113 * not contended.  Please note that this is extremely special-purpose,
 114 * relying on the fact that at most two kthreads and one CPU contend for
 115 * this lock, and also that the two kthreads are guaranteed to have frequent
 116 * grace-period-duration time intervals between successive acquisitions
 117 * of the lock.  This allows us to use an extremely simple throttling
 118 * mechanism, and further to apply it only to the CPU doing floods of
 119 * call_rcu() invocations.  Don't try this at home!
 120 */
 121static void rcu_nocb_wait_contended(struct rcu_data *rdp)
 122{
 123	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
 124	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
 125		cpu_relax();
 126}
 127
 128/*
 129 * Conditionally acquire the specified rcu_data structure's
 130 * ->nocb_bypass_lock.
 131 */
 132static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
 133{
 134	lockdep_assert_irqs_disabled();
 135	return raw_spin_trylock(&rdp->nocb_bypass_lock);
 136}
 137
 138/*
 139 * Release the specified rcu_data structure's ->nocb_bypass_lock.
 140 */
 141static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
 142	__releases(&rdp->nocb_bypass_lock)
 143{
 144	lockdep_assert_irqs_disabled();
 145	raw_spin_unlock(&rdp->nocb_bypass_lock);
 146}
 147
 148/*
 149 * Acquire the specified rcu_data structure's ->nocb_lock, but only
 150 * if it corresponds to a no-CBs CPU.
 151 */
 152static void rcu_nocb_lock(struct rcu_data *rdp)
 153{
 154	lockdep_assert_irqs_disabled();
 155	if (!rcu_rdp_is_offloaded(rdp))
 156		return;
 157	raw_spin_lock(&rdp->nocb_lock);
 158}
 159
 160/*
 161 * Release the specified rcu_data structure's ->nocb_lock, but only
 162 * if it corresponds to a no-CBs CPU.
 163 */
 164static void rcu_nocb_unlock(struct rcu_data *rdp)
 165{
 166	if (rcu_rdp_is_offloaded(rdp)) {
 167		lockdep_assert_irqs_disabled();
 168		raw_spin_unlock(&rdp->nocb_lock);
 169	}
 170}
 171
 172/*
 173 * Release the specified rcu_data structure's ->nocb_lock and restore
 174 * interrupts, but only if it corresponds to a no-CBs CPU.
 175 */
 176static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
 177				       unsigned long flags)
 178{
 179	if (rcu_rdp_is_offloaded(rdp)) {
 180		lockdep_assert_irqs_disabled();
 181		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 182	} else {
 183		local_irq_restore(flags);
 184	}
 185}
 186
 187/* Lockdep check that ->cblist may be safely accessed. */
 188static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 189{
 190	lockdep_assert_irqs_disabled();
 191	if (rcu_rdp_is_offloaded(rdp))
 192		lockdep_assert_held(&rdp->nocb_lock);
 193}
 194
 195/*
 196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 197 * grace period.
 198 */
 199static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 200{
 201	swake_up_all(sq);
 202}
 203
 204static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 205{
 206	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
 207}
 208
 209static void rcu_init_one_nocb(struct rcu_node *rnp)
 210{
 211	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
 212	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
 213}
 214
 215static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
 216			   struct rcu_data *rdp,
 217			   bool force, unsigned long flags)
 218	__releases(rdp_gp->nocb_gp_lock)
 219{
 220	bool needwake = false;
 221
 222	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
 223		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 224		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 225				    TPS("AlreadyAwake"));
 226		return false;
 227	}
 228
 229	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 230		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 231		del_timer(&rdp_gp->nocb_timer);
 232	}
 233
 234	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
 235		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
 236		needwake = true;
 237	}
 238	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 239	if (needwake) {
 240		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
 241		wake_up_process(rdp_gp->nocb_gp_kthread);
 242	}
 243
 244	return needwake;
 245}
 246
 247/*
 248 * Kick the GP kthread for this NOCB group.
 249 */
 250static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
 251{
 252	unsigned long flags;
 253	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 254
 255	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 256	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
 257}
 258
 259/*
 260 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
 261 * can elapse before lazy callbacks are flushed. Lazy callbacks
 262 * could be flushed much earlier for a number of other reasons
 263 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
 264 * left unsubmitted to RCU after those many jiffies.
 265 */
 266#define LAZY_FLUSH_JIFFIES (10 * HZ)
 267static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
 268
 269#ifdef CONFIG_RCU_LAZY
 270// To be called only from test code.
 271void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
 272{
 273	jiffies_till_flush = jif;
 274}
 275EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
 276
 277unsigned long rcu_lazy_get_jiffies_till_flush(void)
 278{
 279	return jiffies_till_flush;
 280}
 281EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
 282#endif
 283
 284/*
 285 * Arrange to wake the GP kthread for this NOCB group at some future
 286 * time when it is safe to do so.
 287 */
 288static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
 289			       const char *reason)
 290{
 291	unsigned long flags;
 292	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 293
 294	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 295
 296	/*
 297	 * Bypass wakeup overrides previous deferments. In case of
 298	 * callback storms, no need to wake up too early.
 299	 */
 300	if (waketype == RCU_NOCB_WAKE_LAZY &&
 301	    rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
 302		mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
 303		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 304	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
 305		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
 306		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 307	} else {
 308		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
 309			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
 310		if (rdp_gp->nocb_defer_wakeup < waketype)
 311			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 312	}
 313
 314	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 315
 316	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
 317}
 318
 319/*
 320 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 321 * However, if there is a callback to be enqueued and if ->nocb_bypass
 322 * proves to be initially empty, just return false because the no-CB GP
 323 * kthread may need to be awakened in this case.
 324 *
 325 * Return true if there was something to be flushed and it succeeded, otherwise
 326 * false.
 327 *
 328 * Note that this function always returns true if rhp is NULL.
 329 */
 330static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
 331				     unsigned long j, bool lazy)
 332{
 333	struct rcu_cblist rcl;
 334	struct rcu_head *rhp = rhp_in;
 335
 336	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
 337	rcu_lockdep_assert_cblist_protected(rdp);
 338	lockdep_assert_held(&rdp->nocb_bypass_lock);
 339	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
 340		raw_spin_unlock(&rdp->nocb_bypass_lock);
 341		return false;
 342	}
 343	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
 344	if (rhp)
 345		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 346
 347	/*
 348	 * If the new CB requested was a lazy one, queue it onto the main
 349	 * ->cblist so that we can take advantage of the grace-period that will
 350	 * happen regardless. But queue it onto the bypass list first so that
 351	 * the lazy CB is ordered with the existing CBs in the bypass list.
 352	 */
 353	if (lazy && rhp) {
 354		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
 355		rhp = NULL;
 356	}
 357	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
 358	WRITE_ONCE(rdp->lazy_len, 0);
 359
 360	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
 361	WRITE_ONCE(rdp->nocb_bypass_first, j);
 362	rcu_nocb_bypass_unlock(rdp);
 363	return true;
 364}
 365
 366/*
 367 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 368 * However, if there is a callback to be enqueued and if ->nocb_bypass
 369 * proves to be initially empty, just return false because the no-CB GP
 370 * kthread may need to be awakened in this case.
 371 *
 372 * Note that this function always returns true if rhp is NULL.
 373 */
 374static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 375				  unsigned long j, bool lazy)
 376{
 377	if (!rcu_rdp_is_offloaded(rdp))
 378		return true;
 379	rcu_lockdep_assert_cblist_protected(rdp);
 380	rcu_nocb_bypass_lock(rdp);
 381	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
 382}
 383
 384/*
 385 * If the ->nocb_bypass_lock is immediately available, flush the
 386 * ->nocb_bypass queue into ->cblist.
 387 */
 388static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
 389{
 390	rcu_lockdep_assert_cblist_protected(rdp);
 391	if (!rcu_rdp_is_offloaded(rdp) ||
 392	    !rcu_nocb_bypass_trylock(rdp))
 393		return;
 394	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
 395}
 396
 397/*
 398 * See whether it is appropriate to use the ->nocb_bypass list in order
 399 * to control contention on ->nocb_lock.  A limited number of direct
 400 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
 401 * is non-empty, further callbacks must be placed into ->nocb_bypass,
 402 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
 403 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
 404 * used if ->cblist is empty, because otherwise callbacks can be stranded
 405 * on ->nocb_bypass because we cannot count on the current CPU ever again
 406 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
 407 * non-empty, the corresponding no-CBs grace-period kthread must not be
 408 * in an indefinite sleep state.
 409 *
 410 * Finally, it is not permitted to use the bypass during early boot,
 411 * as doing so would confuse the auto-initialization code.  Besides
 412 * which, there is no point in worrying about lock contention while
 413 * there is only one CPU in operation.
 414 */
 415static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 416				bool *was_alldone, unsigned long flags,
 417				bool lazy)
 418{
 419	unsigned long c;
 420	unsigned long cur_gp_seq;
 421	unsigned long j = jiffies;
 422	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 423	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
 424
 425	lockdep_assert_irqs_disabled();
 426
 427	// Pure softirq/rcuc based processing: no bypassing, no
 428	// locking.
 429	if (!rcu_rdp_is_offloaded(rdp)) {
 430		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 431		return false;
 432	}
 433
 434	// In the process of (de-)offloading: no bypassing, but
 435	// locking.
 436	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
 437		rcu_nocb_lock(rdp);
 438		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 439		return false; /* Not offloaded, no bypassing. */
 440	}
 441
 442	// Don't use ->nocb_bypass during early boot.
 443	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
 444		rcu_nocb_lock(rdp);
 445		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 446		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 447		return false;
 448	}
 449
 450	// If we have advanced to a new jiffy, reset counts to allow
 451	// moving back from ->nocb_bypass to ->cblist.
 452	if (j == rdp->nocb_nobypass_last) {
 453		c = rdp->nocb_nobypass_count + 1;
 454	} else {
 455		WRITE_ONCE(rdp->nocb_nobypass_last, j);
 456		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
 457		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
 458				 nocb_nobypass_lim_per_jiffy))
 459			c = 0;
 460		else if (c > nocb_nobypass_lim_per_jiffy)
 461			c = nocb_nobypass_lim_per_jiffy;
 462	}
 463	WRITE_ONCE(rdp->nocb_nobypass_count, c);
 464
 465	// If there hasn't yet been all that many ->cblist enqueues
 466	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
 467	// ->nocb_bypass first.
 468	// Lazy CBs throttle this back and do immediate bypass queuing.
 469	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
 470		rcu_nocb_lock(rdp);
 471		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 472		if (*was_alldone)
 473			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 474					    TPS("FirstQ"));
 475
 476		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
 477		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 478		return false; // Caller must enqueue the callback.
 479	}
 480
 481	// If ->nocb_bypass has been used too long or is too full,
 482	// flush ->nocb_bypass to ->cblist.
 483	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
 484	    (ncbs &&  bypass_is_lazy &&
 485	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
 486	    ncbs >= qhimark) {
 487		rcu_nocb_lock(rdp);
 488		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 489
 490		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
 491			if (*was_alldone)
 492				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 493						    TPS("FirstQ"));
 494			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 495			return false; // Caller must enqueue the callback.
 496		}
 497		if (j != rdp->nocb_gp_adv_time &&
 498		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 499		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 500			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 501			rdp->nocb_gp_adv_time = j;
 502		}
 503
 504		// The flush succeeded and we moved CBs into the regular list.
 505		// Don't wait for the wake up timer as it may be too far ahead.
 506		// Wake up the GP thread now instead, if the cblist was empty.
 507		__call_rcu_nocb_wake(rdp, *was_alldone, flags);
 508
 509		return true; // Callback already enqueued.
 510	}
 511
 512	// We need to use the bypass.
 513	rcu_nocb_wait_contended(rdp);
 514	rcu_nocb_bypass_lock(rdp);
 515	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 516	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 517	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
 518
 519	if (lazy)
 520		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
 521
 522	if (!ncbs) {
 523		WRITE_ONCE(rdp->nocb_bypass_first, j);
 524		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
 525	}
 526	rcu_nocb_bypass_unlock(rdp);
 527	smp_mb(); /* Order enqueue before wake. */
 528	// A wake up of the grace period kthread or timer adjustment
 529	// needs to be done only if:
 530	// 1. Bypass list was fully empty before (this is the first
 531	//    bypass list entry), or:
 532	// 2. Both of these conditions are met:
 533	//    a. The bypass list previously had only lazy CBs, and:
 534	//    b. The new CB is non-lazy.
 535	if (ncbs && (!bypass_is_lazy || lazy)) {
 536		local_irq_restore(flags);
 537	} else {
 538		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
 539		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
 540		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
 541			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 542					    TPS("FirstBQwake"));
 543			__call_rcu_nocb_wake(rdp, true, flags);
 544		} else {
 545			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 546					    TPS("FirstBQnoWake"));
 547			rcu_nocb_unlock_irqrestore(rdp, flags);
 548		}
 549	}
 550	return true; // Callback already enqueued.
 551}
 552
 553/*
 554 * Awaken the no-CBs grace-period kthread if needed, either due to it
 555 * legitimately being asleep or due to overload conditions.
 556 *
 557 * If warranted, also wake up the kthread servicing this CPUs queues.
 558 */
 559static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
 560				 unsigned long flags)
 561				 __releases(rdp->nocb_lock)
 562{
 563	long bypass_len;
 564	unsigned long cur_gp_seq;
 565	unsigned long j;
 566	long lazy_len;
 567	long len;
 568	struct task_struct *t;
 569
 570	// If we are being polled or there is no kthread, just leave.
 571	t = READ_ONCE(rdp->nocb_gp_kthread);
 572	if (rcu_nocb_poll || !t) {
 573		rcu_nocb_unlock_irqrestore(rdp, flags);
 574		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 575				    TPS("WakeNotPoll"));
 576		return;
 577	}
 578	// Need to actually to a wakeup.
 579	len = rcu_segcblist_n_cbs(&rdp->cblist);
 580	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 581	lazy_len = READ_ONCE(rdp->lazy_len);
 582	if (was_alldone) {
 583		rdp->qlen_last_fqs_check = len;
 584		// Only lazy CBs in bypass list
 585		if (lazy_len && bypass_len == lazy_len) {
 586			rcu_nocb_unlock_irqrestore(rdp, flags);
 587			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
 588					   TPS("WakeLazy"));
 589		} else if (!irqs_disabled_flags(flags)) {
 590			/* ... if queue was empty ... */
 591			rcu_nocb_unlock_irqrestore(rdp, flags);
 592			wake_nocb_gp(rdp, false);
 593			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 594					    TPS("WakeEmpty"));
 595		} else {
 596			rcu_nocb_unlock_irqrestore(rdp, flags);
 597			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
 598					   TPS("WakeEmptyIsDeferred"));
 599		}
 600	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
 601		/* ... or if many callbacks queued. */
 602		rdp->qlen_last_fqs_check = len;
 603		j = jiffies;
 604		if (j != rdp->nocb_gp_adv_time &&
 605		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 606		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 607			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 608			rdp->nocb_gp_adv_time = j;
 609		}
 610		smp_mb(); /* Enqueue before timer_pending(). */
 611		if ((rdp->nocb_cb_sleep ||
 612		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
 613		    !timer_pending(&rdp->nocb_timer)) {
 614			rcu_nocb_unlock_irqrestore(rdp, flags);
 615			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
 616					   TPS("WakeOvfIsDeferred"));
 617		} else {
 618			rcu_nocb_unlock_irqrestore(rdp, flags);
 619			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 620		}
 621	} else {
 622		rcu_nocb_unlock_irqrestore(rdp, flags);
 623		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 624	}
 625}
 626
 627static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
 628			       bool *wake_state)
 629{
 630	struct rcu_segcblist *cblist = &rdp->cblist;
 631	unsigned long flags;
 632	int ret;
 633
 634	rcu_nocb_lock_irqsave(rdp, flags);
 635	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
 636	    !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
 637		/*
 638		 * Offloading. Set our flag and notify the offload worker.
 639		 * We will handle this rdp until it ever gets de-offloaded.
 640		 */
 641		rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
 642		if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
 643			*wake_state = true;
 644		ret = 1;
 645	} else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
 646		   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
 647		/*
 648		 * De-offloading. Clear our flag and notify the de-offload worker.
 649		 * We will ignore this rdp until it ever gets re-offloaded.
 650		 */
 651		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
 652		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
 653			*wake_state = true;
 654		ret = 0;
 655	} else {
 656		WARN_ON_ONCE(1);
 657		ret = -1;
 658	}
 659
 660	rcu_nocb_unlock_irqrestore(rdp, flags);
 661
 662	return ret;
 663}
 664
 665static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
 666{
 667	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
 668	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
 669					!READ_ONCE(my_rdp->nocb_gp_sleep));
 670	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
 671}
 672
 673/*
 674 * No-CBs GP kthreads come here to wait for additional callbacks to show up
 675 * or for grace periods to end.
 676 */
 677static void nocb_gp_wait(struct rcu_data *my_rdp)
 678{
 679	bool bypass = false;
 680	int __maybe_unused cpu = my_rdp->cpu;
 681	unsigned long cur_gp_seq;
 682	unsigned long flags;
 683	bool gotcbs = false;
 684	unsigned long j = jiffies;
 685	bool lazy = false;
 686	bool needwait_gp = false; // This prevents actual uninitialized use.
 687	bool needwake;
 688	bool needwake_gp;
 689	struct rcu_data *rdp, *rdp_toggling = NULL;
 690	struct rcu_node *rnp;
 691	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
 692	bool wasempty = false;
 693
 694	/*
 695	 * Each pass through the following loop checks for CBs and for the
 696	 * nearest grace period (if any) to wait for next.  The CB kthreads
 697	 * and the global grace-period kthread are awakened if needed.
 698	 */
 699	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
 700	/*
 701	 * An rcu_data structure is removed from the list after its
 702	 * CPU is de-offloaded and added to the list before that CPU is
 703	 * (re-)offloaded.  If the following loop happens to be referencing
 704	 * that rcu_data structure during the time that the corresponding
 705	 * CPU is de-offloaded and then immediately re-offloaded, this
 706	 * loop's rdp pointer will be carried to the end of the list by
 707	 * the resulting pair of list operations.  This can cause the loop
 708	 * to skip over some of the rcu_data structures that were supposed
 709	 * to have been scanned.  Fortunately a new iteration through the
 710	 * entire loop is forced after a given CPU's rcu_data structure
 711	 * is added to the list, so the skipped-over rcu_data structures
 712	 * won't be ignored for long.
 713	 */
 714	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
 715		long bypass_ncbs;
 716		bool flush_bypass = false;
 717		long lazy_ncbs;
 718
 719		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
 720		rcu_nocb_lock_irqsave(rdp, flags);
 721		lockdep_assert_held(&rdp->nocb_lock);
 722		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 723		lazy_ncbs = READ_ONCE(rdp->lazy_len);
 724
 725		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
 726		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
 727		     bypass_ncbs > 2 * qhimark)) {
 728			flush_bypass = true;
 729		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
 730		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
 731		     bypass_ncbs > 2 * qhimark)) {
 732			flush_bypass = true;
 733		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
 734			rcu_nocb_unlock_irqrestore(rdp, flags);
 735			continue; /* No callbacks here, try next. */
 736		}
 737
 738		if (flush_bypass) {
 739			// Bypass full or old, so flush it.
 740			(void)rcu_nocb_try_flush_bypass(rdp, j);
 741			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 742			lazy_ncbs = READ_ONCE(rdp->lazy_len);
 743		}
 744
 745		if (bypass_ncbs) {
 746			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 747					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
 748			if (bypass_ncbs == lazy_ncbs)
 749				lazy = true;
 750			else
 751				bypass = true;
 752		}
 753		rnp = rdp->mynode;
 754
 755		// Advance callbacks if helpful and low contention.
 756		needwake_gp = false;
 757		if (!rcu_segcblist_restempty(&rdp->cblist,
 758					     RCU_NEXT_READY_TAIL) ||
 759		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 760		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
 761			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
 762			needwake_gp = rcu_advance_cbs(rnp, rdp);
 763			wasempty = rcu_segcblist_restempty(&rdp->cblist,
 764							   RCU_NEXT_READY_TAIL);
 765			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
 766		}
 767		// Need to wait on some grace period?
 768		WARN_ON_ONCE(wasempty &&
 769			     !rcu_segcblist_restempty(&rdp->cblist,
 770						      RCU_NEXT_READY_TAIL));
 771		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
 772			if (!needwait_gp ||
 773			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
 774				wait_gp_seq = cur_gp_seq;
 775			needwait_gp = true;
 776			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 777					    TPS("NeedWaitGP"));
 778		}
 779		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
 780			needwake = rdp->nocb_cb_sleep;
 781			WRITE_ONCE(rdp->nocb_cb_sleep, false);
 782			smp_mb(); /* CB invocation -after- GP end. */
 783		} else {
 784			needwake = false;
 785		}
 786		rcu_nocb_unlock_irqrestore(rdp, flags);
 787		if (needwake) {
 788			swake_up_one(&rdp->nocb_cb_wq);
 789			gotcbs = true;
 790		}
 791		if (needwake_gp)
 792			rcu_gp_kthread_wake();
 793	}
 794
 795	my_rdp->nocb_gp_bypass = bypass;
 796	my_rdp->nocb_gp_gp = needwait_gp;
 797	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
 798
 799	// At least one child with non-empty ->nocb_bypass, so set
 800	// timer in order to avoid stranding its callbacks.
 801	if (!rcu_nocb_poll) {
 802		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
 803		if (lazy && !bypass) {
 804			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
 805					TPS("WakeLazyIsDeferred"));
 806		// Otherwise add a deferred bypass wake up.
 807		} else if (bypass) {
 808			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
 809					TPS("WakeBypassIsDeferred"));
 810		}
 811	}
 812
 813	if (rcu_nocb_poll) {
 814		/* Polling, so trace if first poll in the series. */
 815		if (gotcbs)
 816			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
 817		if (list_empty(&my_rdp->nocb_head_rdp)) {
 818			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 819			if (!my_rdp->nocb_toggling_rdp)
 820				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
 821			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 822			/* Wait for any offloading rdp */
 823			nocb_gp_sleep(my_rdp, cpu);
 824		} else {
 825			schedule_timeout_idle(1);
 826		}
 827	} else if (!needwait_gp) {
 828		/* Wait for callbacks to appear. */
 829		nocb_gp_sleep(my_rdp, cpu);
 830	} else {
 831		rnp = my_rdp->mynode;
 832		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
 833		swait_event_interruptible_exclusive(
 834			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
 835			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
 836			!READ_ONCE(my_rdp->nocb_gp_sleep));
 837		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
 838	}
 839
 840	if (!rcu_nocb_poll) {
 841		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 842		// (De-)queue an rdp to/from the group if its nocb state is changing
 843		rdp_toggling = my_rdp->nocb_toggling_rdp;
 844		if (rdp_toggling)
 845			my_rdp->nocb_toggling_rdp = NULL;
 846
 847		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 848			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 849			del_timer(&my_rdp->nocb_timer);
 850		}
 851		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
 852		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 853	} else {
 854		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
 855		if (rdp_toggling) {
 856			/*
 857			 * Paranoid locking to make sure nocb_toggling_rdp is well
 858			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
 859			 * race with another round of nocb toggling for this rdp.
 860			 * Nocb locking should prevent from that already but we stick
 861			 * to paranoia, especially in rare path.
 862			 */
 863			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 864			my_rdp->nocb_toggling_rdp = NULL;
 865			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 866		}
 867	}
 868
 869	if (rdp_toggling) {
 870		bool wake_state = false;
 871		int ret;
 872
 873		ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
 874		if (ret == 1)
 875			list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
 876		else if (ret == 0)
 877			list_del(&rdp_toggling->nocb_entry_rdp);
 878		if (wake_state)
 879			swake_up_one(&rdp_toggling->nocb_state_wq);
 880	}
 881
 882	my_rdp->nocb_gp_seq = -1;
 883	WARN_ON(signal_pending(current));
 884}
 885
 886/*
 887 * No-CBs grace-period-wait kthread.  There is one of these per group
 888 * of CPUs, but only once at least one CPU in that group has come online
 889 * at least once since boot.  This kthread checks for newly posted
 890 * callbacks from any of the CPUs it is responsible for, waits for a
 891 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
 892 * that then have callback-invocation work to do.
 893 */
 894static int rcu_nocb_gp_kthread(void *arg)
 895{
 896	struct rcu_data *rdp = arg;
 897
 898	for (;;) {
 899		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
 900		nocb_gp_wait(rdp);
 901		cond_resched_tasks_rcu_qs();
 902	}
 903	return 0;
 904}
 905
 906static inline bool nocb_cb_can_run(struct rcu_data *rdp)
 907{
 908	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
 909
 910	return rcu_segcblist_test_flags(&rdp->cblist, flags);
 911}
 912
 913static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
 914{
 915	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
 916}
 917
 918/*
 919 * Invoke any ready callbacks from the corresponding no-CBs CPU,
 920 * then, if there are no more, wait for more to appear.
 921 */
 922static void nocb_cb_wait(struct rcu_data *rdp)
 923{
 924	struct rcu_segcblist *cblist = &rdp->cblist;
 925	unsigned long cur_gp_seq;
 926	unsigned long flags;
 927	bool needwake_state = false;
 928	bool needwake_gp = false;
 929	bool can_sleep = true;
 930	struct rcu_node *rnp = rdp->mynode;
 931
 932	do {
 933		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
 934						    nocb_cb_wait_cond(rdp));
 935
 936		// VVV Ensure CB invocation follows _sleep test.
 937		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
 938			WARN_ON(signal_pending(current));
 939			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
 940		}
 941	} while (!nocb_cb_can_run(rdp));
 942
 943
 944	local_irq_save(flags);
 945	rcu_momentary_dyntick_idle();
 946	local_irq_restore(flags);
 947	/*
 948	 * Disable BH to provide the expected environment.  Also, when
 949	 * transitioning to/from NOCB mode, a self-requeuing callback might
 950	 * be invoked from softirq.  A short grace period could cause both
 951	 * instances of this callback would execute concurrently.
 952	 */
 953	local_bh_disable();
 954	rcu_do_batch(rdp);
 955	local_bh_enable();
 956	lockdep_assert_irqs_enabled();
 957	rcu_nocb_lock_irqsave(rdp, flags);
 958	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
 959	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
 960	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
 961		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
 962		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 963	}
 964
 965	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
 966		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
 967			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
 968			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
 969				needwake_state = true;
 970		}
 971		if (rcu_segcblist_ready_cbs(cblist))
 972			can_sleep = false;
 973	} else {
 974		/*
 975		 * De-offloading. Clear our flag and notify the de-offload worker.
 976		 * We won't touch the callbacks and keep sleeping until we ever
 977		 * get re-offloaded.
 978		 */
 979		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
 980		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
 981		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
 982			needwake_state = true;
 983	}
 984
 985	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
 986
 987	if (rdp->nocb_cb_sleep)
 988		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
 989
 990	rcu_nocb_unlock_irqrestore(rdp, flags);
 991	if (needwake_gp)
 992		rcu_gp_kthread_wake();
 993
 994	if (needwake_state)
 995		swake_up_one(&rdp->nocb_state_wq);
 996}
 997
 998/*
 999 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
1000 * nocb_cb_wait() to do the dirty work.
1001 */
1002static int rcu_nocb_cb_kthread(void *arg)
1003{
1004	struct rcu_data *rdp = arg;
1005
1006	// Each pass through this loop does one callback batch, and,
1007	// if there are no more ready callbacks, waits for them.
1008	for (;;) {
1009		nocb_cb_wait(rdp);
1010		cond_resched_tasks_rcu_qs();
1011	}
1012	return 0;
1013}
1014
1015/* Is a deferred wakeup of rcu_nocb_kthread() required? */
1016static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1017{
1018	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1019}
1020
1021/* Do a deferred wakeup of rcu_nocb_kthread(). */
1022static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1023					   struct rcu_data *rdp, int level,
1024					   unsigned long flags)
1025	__releases(rdp_gp->nocb_gp_lock)
1026{
1027	int ndw;
1028	int ret;
1029
1030	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1031		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1032		return false;
1033	}
1034
1035	ndw = rdp_gp->nocb_defer_wakeup;
1036	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1037	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1038
1039	return ret;
1040}
1041
1042/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
1043static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1044{
1045	unsigned long flags;
1046	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1047
1048	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1049	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1050
1051	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1052	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1053	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1054}
1055
1056/*
1057 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1058 * This means we do an inexact common-case check.  Note that if
1059 * we miss, ->nocb_timer will eventually clean things up.
1060 */
1061static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1062{
1063	unsigned long flags;
1064	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1065
1066	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1067		return false;
1068
1069	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1070	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1071}
1072
1073void rcu_nocb_flush_deferred_wakeup(void)
1074{
1075	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1076}
1077EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1078
1079static int rdp_offload_toggle(struct rcu_data *rdp,
1080			       bool offload, unsigned long flags)
1081	__releases(rdp->nocb_lock)
1082{
1083	struct rcu_segcblist *cblist = &rdp->cblist;
1084	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1085	bool wake_gp = false;
1086
1087	rcu_segcblist_offload(cblist, offload);
1088
1089	if (rdp->nocb_cb_sleep)
1090		rdp->nocb_cb_sleep = false;
1091	rcu_nocb_unlock_irqrestore(rdp, flags);
1092
1093	/*
1094	 * Ignore former value of nocb_cb_sleep and force wake up as it could
1095	 * have been spuriously set to false already.
1096	 */
1097	swake_up_one(&rdp->nocb_cb_wq);
1098
1099	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1100	// Queue this rdp for add/del to/from the list to iterate on rcuog
1101	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1102	if (rdp_gp->nocb_gp_sleep) {
1103		rdp_gp->nocb_gp_sleep = false;
1104		wake_gp = true;
1105	}
1106	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1107
1108	return wake_gp;
1109}
1110
1111static long rcu_nocb_rdp_deoffload(void *arg)
1112{
1113	struct rcu_data *rdp = arg;
1114	struct rcu_segcblist *cblist = &rdp->cblist;
1115	unsigned long flags;
1116	int wake_gp;
1117	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1118
1119	/*
1120	 * rcu_nocb_rdp_deoffload() may be called directly if
1121	 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1122	 * is not online yet.
1123	 */
1124	WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1125
1126	pr_info("De-offloading %d\n", rdp->cpu);
1127
1128	rcu_nocb_lock_irqsave(rdp, flags);
1129	/*
1130	 * Flush once and for all now. This suffices because we are
1131	 * running on the target CPU holding ->nocb_lock (thus having
1132	 * interrupts disabled), and because rdp_offload_toggle()
1133	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1134	 * Thus future calls to rcu_segcblist_completely_offloaded() will
1135	 * return false, which means that future calls to rcu_nocb_try_bypass()
1136	 * will refuse to put anything into the bypass.
1137	 */
1138	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1139	/*
1140	 * Start with invoking rcu_core() early. This way if the current thread
1141	 * happens to preempt an ongoing call to rcu_core() in the middle,
1142	 * leaving some work dismissed because rcu_core() still thinks the rdp is
1143	 * completely offloaded, we are guaranteed a nearby future instance of
1144	 * rcu_core() to catch up.
1145	 */
1146	rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1147	invoke_rcu_core();
1148	wake_gp = rdp_offload_toggle(rdp, false, flags);
1149
1150	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1151	if (rdp_gp->nocb_gp_kthread) {
1152		if (wake_gp)
1153			wake_up_process(rdp_gp->nocb_gp_kthread);
1154
1155		/*
1156		 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1157		 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1158		 */
1159		if (!rdp->nocb_cb_kthread) {
1160			rcu_nocb_lock_irqsave(rdp, flags);
1161			rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1162			rcu_nocb_unlock_irqrestore(rdp, flags);
1163		}
1164
1165		swait_event_exclusive(rdp->nocb_state_wq,
1166					!rcu_segcblist_test_flags(cblist,
1167					  SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1168	} else {
1169		/*
1170		 * No kthread to clear the flags for us or remove the rdp from the nocb list
1171		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1172		 * but we stick to paranoia in this rare path.
1173		 */
1174		rcu_nocb_lock_irqsave(rdp, flags);
1175		rcu_segcblist_clear_flags(&rdp->cblist,
1176				SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1177		rcu_nocb_unlock_irqrestore(rdp, flags);
1178
1179		list_del(&rdp->nocb_entry_rdp);
1180	}
1181	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1182
1183	/*
1184	 * Lock one last time to acquire latest callback updates from kthreads
1185	 * so we can later handle callbacks locally without locking.
1186	 */
1187	rcu_nocb_lock_irqsave(rdp, flags);
1188	/*
1189	 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1190	 * lock is released but how about being paranoid for once?
1191	 */
1192	rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1193	/*
1194	 * Without SEGCBLIST_LOCKING, we can't use
1195	 * rcu_nocb_unlock_irqrestore() anymore.
1196	 */
1197	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1198
1199	/* Sanity check */
1200	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1201
1202
1203	return 0;
1204}
1205
1206int rcu_nocb_cpu_deoffload(int cpu)
1207{
1208	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1209	int ret = 0;
1210
1211	cpus_read_lock();
1212	mutex_lock(&rcu_state.barrier_mutex);
1213	if (rcu_rdp_is_offloaded(rdp)) {
1214		if (cpu_online(cpu)) {
1215			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1216			if (!ret)
1217				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1218		} else {
1219			pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1220			ret = -EINVAL;
1221		}
1222	}
1223	mutex_unlock(&rcu_state.barrier_mutex);
1224	cpus_read_unlock();
1225
1226	return ret;
1227}
1228EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1229
1230static long rcu_nocb_rdp_offload(void *arg)
1231{
1232	struct rcu_data *rdp = arg;
1233	struct rcu_segcblist *cblist = &rdp->cblist;
1234	unsigned long flags;
1235	int wake_gp;
1236	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1237
1238	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1239	/*
1240	 * For now we only support re-offload, ie: the rdp must have been
1241	 * offloaded on boot first.
1242	 */
1243	if (!rdp->nocb_gp_rdp)
1244		return -EINVAL;
1245
1246	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1247		return -EINVAL;
1248
1249	pr_info("Offloading %d\n", rdp->cpu);
1250
1251	/*
1252	 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1253	 * is set.
1254	 */
1255	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1256
1257	/*
1258	 * We didn't take the nocb lock while working on the
1259	 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1260	 * Every modifications that have been done previously on
1261	 * rdp->cblist must be visible remotely by the nocb kthreads
1262	 * upon wake up after reading the cblist flags.
1263	 *
1264	 * The layout against nocb_lock enforces that ordering:
1265	 *
1266	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1267	 * -------------------------   ----------------------------
1268	 *      WRITE callbacks           rcu_nocb_lock()
1269	 *      rcu_nocb_lock()           READ flags
1270	 *      WRITE flags               READ callbacks
1271	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
1272	 */
1273	wake_gp = rdp_offload_toggle(rdp, true, flags);
1274	if (wake_gp)
1275		wake_up_process(rdp_gp->nocb_gp_kthread);
1276	swait_event_exclusive(rdp->nocb_state_wq,
1277			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1278			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1279
1280	/*
1281	 * All kthreads are ready to work, we can finally relieve rcu_core() and
1282	 * enable nocb bypass.
1283	 */
1284	rcu_nocb_lock_irqsave(rdp, flags);
1285	rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1286	rcu_nocb_unlock_irqrestore(rdp, flags);
1287
1288	return 0;
1289}
1290
1291int rcu_nocb_cpu_offload(int cpu)
1292{
1293	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1294	int ret = 0;
1295
1296	cpus_read_lock();
1297	mutex_lock(&rcu_state.barrier_mutex);
1298	if (!rcu_rdp_is_offloaded(rdp)) {
1299		if (cpu_online(cpu)) {
1300			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1301			if (!ret)
1302				cpumask_set_cpu(cpu, rcu_nocb_mask);
1303		} else {
1304			pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1305			ret = -EINVAL;
1306		}
1307	}
1308	mutex_unlock(&rcu_state.barrier_mutex);
1309	cpus_read_unlock();
1310
1311	return ret;
1312}
1313EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1314
1315static unsigned long
1316lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1317{
1318	int cpu;
1319	unsigned long count = 0;
1320
1321	/* Snapshot count of all CPUs */
1322	for_each_possible_cpu(cpu) {
1323		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1324
1325		count +=  READ_ONCE(rdp->lazy_len);
1326	}
1327
1328	return count ? count : SHRINK_EMPTY;
1329}
1330
1331static unsigned long
1332lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1333{
1334	int cpu;
1335	unsigned long flags;
1336	unsigned long count = 0;
1337
1338	/* Snapshot count of all CPUs */
1339	for_each_possible_cpu(cpu) {
1340		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1341		int _count = READ_ONCE(rdp->lazy_len);
1342
1343		if (_count == 0)
1344			continue;
1345		rcu_nocb_lock_irqsave(rdp, flags);
1346		WRITE_ONCE(rdp->lazy_len, 0);
1347		rcu_nocb_unlock_irqrestore(rdp, flags);
1348		wake_nocb_gp(rdp, false);
1349		sc->nr_to_scan -= _count;
1350		count += _count;
1351		if (sc->nr_to_scan <= 0)
1352			break;
1353	}
1354	return count ? count : SHRINK_STOP;
1355}
1356
1357static struct shrinker lazy_rcu_shrinker = {
1358	.count_objects = lazy_rcu_shrink_count,
1359	.scan_objects = lazy_rcu_shrink_scan,
1360	.batch = 0,
1361	.seeks = DEFAULT_SEEKS,
1362};
1363
1364void __init rcu_init_nohz(void)
1365{
1366	int cpu;
1367	struct rcu_data *rdp;
1368	const struct cpumask *cpumask = NULL;
1369
1370#if defined(CONFIG_NO_HZ_FULL)
1371	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1372		cpumask = tick_nohz_full_mask;
1373#endif
1374
1375	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1376	    !rcu_state.nocb_is_setup && !cpumask)
1377		cpumask = cpu_possible_mask;
1378
1379	if (cpumask) {
1380		if (!cpumask_available(rcu_nocb_mask)) {
1381			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1382				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1383				return;
1384			}
1385		}
1386
1387		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1388		rcu_state.nocb_is_setup = true;
1389	}
1390
1391	if (!rcu_state.nocb_is_setup)
1392		return;
1393
1394	if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy"))
1395		pr_err("Failed to register lazy_rcu shrinker!\n");
1396
1397	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1398		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1399		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1400			    rcu_nocb_mask);
1401	}
1402	if (cpumask_empty(rcu_nocb_mask))
1403		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1404	else
1405		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1406			cpumask_pr_args(rcu_nocb_mask));
1407	if (rcu_nocb_poll)
1408		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1409
1410	for_each_cpu(cpu, rcu_nocb_mask) {
1411		rdp = per_cpu_ptr(&rcu_data, cpu);
1412		if (rcu_segcblist_empty(&rdp->cblist))
1413			rcu_segcblist_init(&rdp->cblist);
1414		rcu_segcblist_offload(&rdp->cblist, true);
1415		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1416		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1417	}
1418	rcu_organize_nocb_kthreads();
1419}
1420
1421/* Initialize per-rcu_data variables for no-CBs CPUs. */
1422static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1423{
1424	init_swait_queue_head(&rdp->nocb_cb_wq);
1425	init_swait_queue_head(&rdp->nocb_gp_wq);
1426	init_swait_queue_head(&rdp->nocb_state_wq);
1427	raw_spin_lock_init(&rdp->nocb_lock);
1428	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1429	raw_spin_lock_init(&rdp->nocb_gp_lock);
1430	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1431	rcu_cblist_init(&rdp->nocb_bypass);
1432	WRITE_ONCE(rdp->lazy_len, 0);
1433	mutex_init(&rdp->nocb_gp_kthread_mutex);
1434}
1435
1436/*
1437 * If the specified CPU is a no-CBs CPU that does not already have its
1438 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1439 * for this CPU's group has not yet been created, spawn it as well.
1440 */
1441static void rcu_spawn_cpu_nocb_kthread(int cpu)
1442{
1443	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1444	struct rcu_data *rdp_gp;
1445	struct task_struct *t;
1446	struct sched_param sp;
1447
1448	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1449		return;
1450
1451	/* If there already is an rcuo kthread, then nothing to do. */
1452	if (rdp->nocb_cb_kthread)
1453		return;
1454
1455	/* If we didn't spawn the GP kthread first, reorganize! */
1456	sp.sched_priority = kthread_prio;
1457	rdp_gp = rdp->nocb_gp_rdp;
1458	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1459	if (!rdp_gp->nocb_gp_kthread) {
1460		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1461				"rcuog/%d", rdp_gp->cpu);
1462		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1463			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1464			goto end;
1465		}
1466		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1467		if (kthread_prio)
1468			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1469	}
1470	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1471
1472	/* Spawn the kthread for this CPU. */
1473	t = kthread_run(rcu_nocb_cb_kthread, rdp,
1474			"rcuo%c/%d", rcu_state.abbr, cpu);
1475	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1476		goto end;
1477
1478	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1479		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1480
1481	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1482	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1483	return;
1484end:
1485	mutex_lock(&rcu_state.barrier_mutex);
1486	if (rcu_rdp_is_offloaded(rdp)) {
1487		rcu_nocb_rdp_deoffload(rdp);
1488		cpumask_clear_cpu(cpu, rcu_nocb_mask);
1489	}
1490	mutex_unlock(&rcu_state.barrier_mutex);
1491}
1492
1493/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1494static int rcu_nocb_gp_stride = -1;
1495module_param(rcu_nocb_gp_stride, int, 0444);
1496
1497/*
1498 * Initialize GP-CB relationships for all no-CBs CPU.
1499 */
1500static void __init rcu_organize_nocb_kthreads(void)
1501{
1502	int cpu;
1503	bool firsttime = true;
1504	bool gotnocbs = false;
1505	bool gotnocbscbs = true;
1506	int ls = rcu_nocb_gp_stride;
1507	int nl = 0;  /* Next GP kthread. */
1508	struct rcu_data *rdp;
1509	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1510
1511	if (!cpumask_available(rcu_nocb_mask))
1512		return;
1513	if (ls == -1) {
1514		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1515		rcu_nocb_gp_stride = ls;
1516	}
1517
1518	/*
1519	 * Each pass through this loop sets up one rcu_data structure.
1520	 * Should the corresponding CPU come online in the future, then
1521	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1522	 */
1523	for_each_possible_cpu(cpu) {
1524		rdp = per_cpu_ptr(&rcu_data, cpu);
1525		if (rdp->cpu >= nl) {
1526			/* New GP kthread, set up for CBs & next GP. */
1527			gotnocbs = true;
1528			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1529			rdp_gp = rdp;
1530			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1531			if (dump_tree) {
1532				if (!firsttime)
1533					pr_cont("%s\n", gotnocbscbs
1534							? "" : " (self only)");
1535				gotnocbscbs = false;
1536				firsttime = false;
1537				pr_alert("%s: No-CB GP kthread CPU %d:",
1538					 __func__, cpu);
1539			}
1540		} else {
1541			/* Another CB kthread, link to previous GP kthread. */
1542			gotnocbscbs = true;
1543			if (dump_tree)
1544				pr_cont(" %d", cpu);
1545		}
1546		rdp->nocb_gp_rdp = rdp_gp;
1547		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1548			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1549	}
1550	if (gotnocbs && dump_tree)
1551		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1552}
1553
1554/*
1555 * Bind the current task to the offloaded CPUs.  If there are no offloaded
1556 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1557 */
1558void rcu_bind_current_to_nocb(void)
1559{
1560	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1561		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1562}
1563EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1564
1565// The ->on_cpu field is available only in CONFIG_SMP=y, so...
1566#ifdef CONFIG_SMP
1567static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1568{
1569	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1570}
1571#else // #ifdef CONFIG_SMP
1572static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1573{
1574	return "";
1575}
1576#endif // #else #ifdef CONFIG_SMP
1577
1578/*
1579 * Dump out nocb grace-period kthread state for the specified rcu_data
1580 * structure.
1581 */
1582static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1583{
1584	struct rcu_node *rnp = rdp->mynode;
1585
1586	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1587		rdp->cpu,
1588		"kK"[!!rdp->nocb_gp_kthread],
1589		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1590		"dD"[!!rdp->nocb_defer_wakeup],
1591		"tT"[timer_pending(&rdp->nocb_timer)],
1592		"sS"[!!rdp->nocb_gp_sleep],
1593		".W"[swait_active(&rdp->nocb_gp_wq)],
1594		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1595		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1596		".B"[!!rdp->nocb_gp_bypass],
1597		".G"[!!rdp->nocb_gp_gp],
1598		(long)rdp->nocb_gp_seq,
1599		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1600		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1601		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1602		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1603}
1604
1605/* Dump out nocb kthread state for the specified rcu_data structure. */
1606static void show_rcu_nocb_state(struct rcu_data *rdp)
1607{
1608	char bufw[20];
1609	char bufr[20];
1610	struct rcu_data *nocb_next_rdp;
1611	struct rcu_segcblist *rsclp = &rdp->cblist;
1612	bool waslocked;
1613	bool wassleep;
1614
1615	if (rdp->nocb_gp_rdp == rdp)
1616		show_rcu_nocb_gp_state(rdp);
1617
1618	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1619					      &rdp->nocb_entry_rdp,
1620					      typeof(*rdp),
1621					      nocb_entry_rdp);
1622
1623	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1624	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1625	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1626		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1627		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1628		"kK"[!!rdp->nocb_cb_kthread],
1629		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1630		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1631		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1632		"sS"[!!rdp->nocb_cb_sleep],
1633		".W"[swait_active(&rdp->nocb_cb_wq)],
1634		jiffies - rdp->nocb_bypass_first,
1635		jiffies - rdp->nocb_nobypass_last,
1636		rdp->nocb_nobypass_count,
1637		".D"[rcu_segcblist_ready_cbs(rsclp)],
1638		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1639		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1640		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1641		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1642		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1643		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1644		rcu_segcblist_n_cbs(&rdp->cblist),
1645		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1646		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1647		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1648
1649	/* It is OK for GP kthreads to have GP state. */
1650	if (rdp->nocb_gp_rdp == rdp)
1651		return;
1652
1653	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1654	wassleep = swait_active(&rdp->nocb_gp_wq);
1655	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1656		return;  /* Nothing untoward. */
1657
1658	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1659		"lL"[waslocked],
1660		"dD"[!!rdp->nocb_defer_wakeup],
1661		"sS"[!!rdp->nocb_gp_sleep],
1662		".W"[wassleep]);
1663}
1664
1665#else /* #ifdef CONFIG_RCU_NOCB_CPU */
1666
1667static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1668{
1669	return 0;
1670}
1671
1672static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1673{
1674	return false;
1675}
1676
1677/* No ->nocb_lock to acquire.  */
1678static void rcu_nocb_lock(struct rcu_data *rdp)
1679{
1680}
1681
1682/* No ->nocb_lock to release.  */
1683static void rcu_nocb_unlock(struct rcu_data *rdp)
1684{
1685}
1686
1687/* No ->nocb_lock to release.  */
1688static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1689				       unsigned long flags)
1690{
1691	local_irq_restore(flags);
1692}
1693
1694/* Lockdep check that ->cblist may be safely accessed. */
1695static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1696{
1697	lockdep_assert_irqs_disabled();
1698}
1699
1700static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1701{
1702}
1703
1704static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1705{
1706	return NULL;
1707}
1708
1709static void rcu_init_one_nocb(struct rcu_node *rnp)
1710{
1711}
1712
1713static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1714{
1715	return false;
1716}
1717
1718static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1719				  unsigned long j, bool lazy)
1720{
1721	return true;
1722}
1723
1724static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1725				bool *was_alldone, unsigned long flags, bool lazy)
1726{
1727	return false;
1728}
1729
1730static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1731				 unsigned long flags)
1732{
1733	WARN_ON_ONCE(1);  /* Should be dead code! */
1734}
1735
1736static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1737{
1738}
1739
1740static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1741{
1742	return false;
1743}
1744
1745static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1746{
1747	return false;
1748}
1749
1750static void rcu_spawn_cpu_nocb_kthread(int cpu)
1751{
1752}
1753
1754static void show_rcu_nocb_state(struct rcu_data *rdp)
1755{
1756}
1757
1758#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */