Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Generic barrier definitions.
  4 *
  5 * It should be possible to use these on really simple architectures,
  6 * but it serves more as a starting point for new ports.
  7 *
  8 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  9 * Written by David Howells (dhowells@redhat.com)
 10 */
 11#ifndef __ASM_GENERIC_BARRIER_H
 12#define __ASM_GENERIC_BARRIER_H
 13
 14#ifndef __ASSEMBLY__
 15
 16#include <linux/compiler.h>
 
 
 17
 18#ifndef nop
 19#define nop()	asm volatile ("nop")
 20#endif
 21
 22/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23 * Force strict CPU ordering. And yes, this is required on UP too when we're
 24 * talking to devices.
 25 *
 26 * Fall back to compiler barriers if nothing better is provided.
 27 */
 28
 29#ifndef mb
 30#define mb()	barrier()
 31#endif
 32
 33#ifndef rmb
 34#define rmb()	mb()
 35#endif
 36
 37#ifndef wmb
 38#define wmb()	mb()
 39#endif
 40
 
 
 
 
 41#ifndef dma_rmb
 42#define dma_rmb()	rmb()
 43#endif
 44
 45#ifndef dma_wmb
 46#define dma_wmb()	wmb()
 47#endif
 48
 49#ifndef read_barrier_depends
 50#define read_barrier_depends()		do { } while (0)
 51#endif
 52
 53#ifndef __smp_mb
 54#define __smp_mb()	mb()
 55#endif
 56
 57#ifndef __smp_rmb
 58#define __smp_rmb()	rmb()
 59#endif
 60
 61#ifndef __smp_wmb
 62#define __smp_wmb()	wmb()
 63#endif
 64
 65#ifndef __smp_read_barrier_depends
 66#define __smp_read_barrier_depends()	read_barrier_depends()
 67#endif
 68
 69#ifdef CONFIG_SMP
 70
 71#ifndef smp_mb
 72#define smp_mb()	__smp_mb()
 73#endif
 74
 75#ifndef smp_rmb
 76#define smp_rmb()	__smp_rmb()
 77#endif
 78
 79#ifndef smp_wmb
 80#define smp_wmb()	__smp_wmb()
 81#endif
 82
 83#ifndef smp_read_barrier_depends
 84#define smp_read_barrier_depends()	__smp_read_barrier_depends()
 85#endif
 86
 87#else	/* !CONFIG_SMP */
 88
 89#ifndef smp_mb
 90#define smp_mb()	barrier()
 91#endif
 92
 93#ifndef smp_rmb
 94#define smp_rmb()	barrier()
 95#endif
 96
 97#ifndef smp_wmb
 98#define smp_wmb()	barrier()
 99#endif
100
101#ifndef smp_read_barrier_depends
102#define smp_read_barrier_depends()	do { } while (0)
103#endif
104
105#endif	/* CONFIG_SMP */
106
107#ifndef __smp_store_mb
108#define __smp_store_mb(var, value)  do { WRITE_ONCE(var, value); __smp_mb(); } while (0)
109#endif
110
111#ifndef __smp_mb__before_atomic
112#define __smp_mb__before_atomic()	__smp_mb()
113#endif
114
115#ifndef __smp_mb__after_atomic
116#define __smp_mb__after_atomic()	__smp_mb()
117#endif
118
119#ifndef __smp_store_release
120#define __smp_store_release(p, v)					\
121do {									\
122	compiletime_assert_atomic_type(*p);				\
123	__smp_mb();							\
124	WRITE_ONCE(*p, v);						\
125} while (0)
126#endif
127
128#ifndef __smp_load_acquire
129#define __smp_load_acquire(p)						\
130({									\
131	typeof(*p) ___p1 = READ_ONCE(*p);				\
132	compiletime_assert_atomic_type(*p);				\
133	__smp_mb();							\
134	___p1;								\
135})
136#endif
137
138#ifdef CONFIG_SMP
139
140#ifndef smp_store_mb
141#define smp_store_mb(var, value)  __smp_store_mb(var, value)
142#endif
143
144#ifndef smp_mb__before_atomic
145#define smp_mb__before_atomic()	__smp_mb__before_atomic()
146#endif
147
148#ifndef smp_mb__after_atomic
149#define smp_mb__after_atomic()	__smp_mb__after_atomic()
150#endif
151
152#ifndef smp_store_release
153#define smp_store_release(p, v) __smp_store_release(p, v)
154#endif
155
156#ifndef smp_load_acquire
157#define smp_load_acquire(p) __smp_load_acquire(p)
158#endif
159
160#else	/* !CONFIG_SMP */
161
162#ifndef smp_store_mb
163#define smp_store_mb(var, value)  do { WRITE_ONCE(var, value); barrier(); } while (0)
164#endif
165
166#ifndef smp_mb__before_atomic
167#define smp_mb__before_atomic()	barrier()
168#endif
169
170#ifndef smp_mb__after_atomic
171#define smp_mb__after_atomic()	barrier()
172#endif
173
174#ifndef smp_store_release
175#define smp_store_release(p, v)						\
176do {									\
177	compiletime_assert_atomic_type(*p);				\
178	barrier();							\
179	WRITE_ONCE(*p, v);						\
180} while (0)
181#endif
182
183#ifndef smp_load_acquire
184#define smp_load_acquire(p)						\
185({									\
186	typeof(*p) ___p1 = READ_ONCE(*p);				\
187	compiletime_assert_atomic_type(*p);				\
188	barrier();							\
189	___p1;								\
190})
191#endif
192
193#endif	/* CONFIG_SMP */
194
195/* Barriers for virtual machine guests when talking to an SMP host */
196#define virt_mb() __smp_mb()
197#define virt_rmb() __smp_rmb()
198#define virt_wmb() __smp_wmb()
199#define virt_read_barrier_depends() __smp_read_barrier_depends()
200#define virt_store_mb(var, value) __smp_store_mb(var, value)
201#define virt_mb__before_atomic() __smp_mb__before_atomic()
202#define virt_mb__after_atomic()	__smp_mb__after_atomic()
203#define virt_store_release(p, v) __smp_store_release(p, v)
204#define virt_load_acquire(p) __smp_load_acquire(p)
205
206/**
207 * smp_acquire__after_ctrl_dep() - Provide ACQUIRE ordering after a control dependency
208 *
209 * A control dependency provides a LOAD->STORE order, the additional RMB
210 * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order,
211 * aka. (load)-ACQUIRE.
212 *
213 * Architectures that do not do load speculation can have this be barrier().
214 */
215#ifndef smp_acquire__after_ctrl_dep
216#define smp_acquire__after_ctrl_dep()		smp_rmb()
217#endif
218
219/**
220 * smp_cond_load_relaxed() - (Spin) wait for cond with no ordering guarantees
221 * @ptr: pointer to the variable to wait on
222 * @cond: boolean expression to wait for
223 *
224 * Equivalent to using READ_ONCE() on the condition variable.
225 *
226 * Due to C lacking lambda expressions we load the value of *ptr into a
227 * pre-named variable @VAL to be used in @cond.
228 */
229#ifndef smp_cond_load_relaxed
230#define smp_cond_load_relaxed(ptr, cond_expr) ({		\
231	typeof(ptr) __PTR = (ptr);				\
232	typeof(*ptr) VAL;					\
233	for (;;) {						\
234		VAL = READ_ONCE(*__PTR);			\
235		if (cond_expr)					\
236			break;					\
237		cpu_relax();					\
238	}							\
239	VAL;							\
240})
241#endif
242
243/**
244 * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering
245 * @ptr: pointer to the variable to wait on
246 * @cond: boolean expression to wait for
247 *
248 * Equivalent to using smp_load_acquire() on the condition variable but employs
249 * the control dependency of the wait to reduce the barrier on many platforms.
250 */
251#ifndef smp_cond_load_acquire
252#define smp_cond_load_acquire(ptr, cond_expr) ({		\
253	typeof(*ptr) _val;					\
254	_val = smp_cond_load_relaxed(ptr, cond_expr);		\
255	smp_acquire__after_ctrl_dep();				\
256	_val;							\
257})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258#endif
259
260#endif /* !__ASSEMBLY__ */
261#endif /* __ASM_GENERIC_BARRIER_H */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Generic barrier definitions.
  4 *
  5 * It should be possible to use these on really simple architectures,
  6 * but it serves more as a starting point for new ports.
  7 *
  8 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  9 * Written by David Howells (dhowells@redhat.com)
 10 */
 11#ifndef __ASM_GENERIC_BARRIER_H
 12#define __ASM_GENERIC_BARRIER_H
 13
 14#ifndef __ASSEMBLY__
 15
 16#include <linux/compiler.h>
 17#include <linux/kcsan-checks.h>
 18#include <asm/rwonce.h>
 19
 20#ifndef nop
 21#define nop()	asm volatile ("nop")
 22#endif
 23
 24/*
 25 * Architectures that want generic instrumentation can define __ prefixed
 26 * variants of all barriers.
 27 */
 28
 29#ifdef __mb
 30#define mb()	do { kcsan_mb(); __mb(); } while (0)
 31#endif
 32
 33#ifdef __rmb
 34#define rmb()	do { kcsan_rmb(); __rmb(); } while (0)
 35#endif
 36
 37#ifdef __wmb
 38#define wmb()	do { kcsan_wmb(); __wmb(); } while (0)
 39#endif
 40
 41#ifdef __dma_mb
 42#define dma_mb()	do { kcsan_mb(); __dma_mb(); } while (0)
 43#endif
 44
 45#ifdef __dma_rmb
 46#define dma_rmb()	do { kcsan_rmb(); __dma_rmb(); } while (0)
 47#endif
 48
 49#ifdef __dma_wmb
 50#define dma_wmb()	do { kcsan_wmb(); __dma_wmb(); } while (0)
 51#endif
 52
 53/*
 54 * Force strict CPU ordering. And yes, this is required on UP too when we're
 55 * talking to devices.
 56 *
 57 * Fall back to compiler barriers if nothing better is provided.
 58 */
 59
 60#ifndef mb
 61#define mb()	barrier()
 62#endif
 63
 64#ifndef rmb
 65#define rmb()	mb()
 66#endif
 67
 68#ifndef wmb
 69#define wmb()	mb()
 70#endif
 71
 72#ifndef dma_mb
 73#define dma_mb()	mb()
 74#endif
 75
 76#ifndef dma_rmb
 77#define dma_rmb()	rmb()
 78#endif
 79
 80#ifndef dma_wmb
 81#define dma_wmb()	wmb()
 82#endif
 83
 
 
 
 
 84#ifndef __smp_mb
 85#define __smp_mb()	mb()
 86#endif
 87
 88#ifndef __smp_rmb
 89#define __smp_rmb()	rmb()
 90#endif
 91
 92#ifndef __smp_wmb
 93#define __smp_wmb()	wmb()
 94#endif
 95
 
 
 
 
 96#ifdef CONFIG_SMP
 97
 98#ifndef smp_mb
 99#define smp_mb()	do { kcsan_mb(); __smp_mb(); } while (0)
100#endif
101
102#ifndef smp_rmb
103#define smp_rmb()	do { kcsan_rmb(); __smp_rmb(); } while (0)
104#endif
105
106#ifndef smp_wmb
107#define smp_wmb()	do { kcsan_wmb(); __smp_wmb(); } while (0)
 
 
 
 
108#endif
109
110#else	/* !CONFIG_SMP */
111
112#ifndef smp_mb
113#define smp_mb()	barrier()
114#endif
115
116#ifndef smp_rmb
117#define smp_rmb()	barrier()
118#endif
119
120#ifndef smp_wmb
121#define smp_wmb()	barrier()
122#endif
123
 
 
 
 
124#endif	/* CONFIG_SMP */
125
126#ifndef __smp_store_mb
127#define __smp_store_mb(var, value)  do { WRITE_ONCE(var, value); __smp_mb(); } while (0)
128#endif
129
130#ifndef __smp_mb__before_atomic
131#define __smp_mb__before_atomic()	__smp_mb()
132#endif
133
134#ifndef __smp_mb__after_atomic
135#define __smp_mb__after_atomic()	__smp_mb()
136#endif
137
138#ifndef __smp_store_release
139#define __smp_store_release(p, v)					\
140do {									\
141	compiletime_assert_atomic_type(*p);				\
142	__smp_mb();							\
143	WRITE_ONCE(*p, v);						\
144} while (0)
145#endif
146
147#ifndef __smp_load_acquire
148#define __smp_load_acquire(p)						\
149({									\
150	__unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p);		\
151	compiletime_assert_atomic_type(*p);				\
152	__smp_mb();							\
153	(typeof(*p))___p1;						\
154})
155#endif
156
157#ifdef CONFIG_SMP
158
159#ifndef smp_store_mb
160#define smp_store_mb(var, value)  do { kcsan_mb(); __smp_store_mb(var, value); } while (0)
161#endif
162
163#ifndef smp_mb__before_atomic
164#define smp_mb__before_atomic()	do { kcsan_mb(); __smp_mb__before_atomic(); } while (0)
165#endif
166
167#ifndef smp_mb__after_atomic
168#define smp_mb__after_atomic()	do { kcsan_mb(); __smp_mb__after_atomic(); } while (0)
169#endif
170
171#ifndef smp_store_release
172#define smp_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0)
173#endif
174
175#ifndef smp_load_acquire
176#define smp_load_acquire(p) __smp_load_acquire(p)
177#endif
178
179#else	/* !CONFIG_SMP */
180
181#ifndef smp_store_mb
182#define smp_store_mb(var, value)  do { WRITE_ONCE(var, value); barrier(); } while (0)
183#endif
184
185#ifndef smp_mb__before_atomic
186#define smp_mb__before_atomic()	barrier()
187#endif
188
189#ifndef smp_mb__after_atomic
190#define smp_mb__after_atomic()	barrier()
191#endif
192
193#ifndef smp_store_release
194#define smp_store_release(p, v)						\
195do {									\
196	compiletime_assert_atomic_type(*p);				\
197	barrier();							\
198	WRITE_ONCE(*p, v);						\
199} while (0)
200#endif
201
202#ifndef smp_load_acquire
203#define smp_load_acquire(p)						\
204({									\
205	__unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p);		\
206	compiletime_assert_atomic_type(*p);				\
207	barrier();							\
208	(typeof(*p))___p1;						\
209})
210#endif
211
212#endif	/* CONFIG_SMP */
213
214/* Barriers for virtual machine guests when talking to an SMP host */
215#define virt_mb() do { kcsan_mb(); __smp_mb(); } while (0)
216#define virt_rmb() do { kcsan_rmb(); __smp_rmb(); } while (0)
217#define virt_wmb() do { kcsan_wmb(); __smp_wmb(); } while (0)
218#define virt_store_mb(var, value) do { kcsan_mb(); __smp_store_mb(var, value); } while (0)
219#define virt_mb__before_atomic() do { kcsan_mb(); __smp_mb__before_atomic(); } while (0)
220#define virt_mb__after_atomic()	do { kcsan_mb(); __smp_mb__after_atomic(); } while (0)
221#define virt_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0)
 
222#define virt_load_acquire(p) __smp_load_acquire(p)
223
224/**
225 * smp_acquire__after_ctrl_dep() - Provide ACQUIRE ordering after a control dependency
226 *
227 * A control dependency provides a LOAD->STORE order, the additional RMB
228 * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order,
229 * aka. (load)-ACQUIRE.
230 *
231 * Architectures that do not do load speculation can have this be barrier().
232 */
233#ifndef smp_acquire__after_ctrl_dep
234#define smp_acquire__after_ctrl_dep()		smp_rmb()
235#endif
236
237/**
238 * smp_cond_load_relaxed() - (Spin) wait for cond with no ordering guarantees
239 * @ptr: pointer to the variable to wait on
240 * @cond: boolean expression to wait for
241 *
242 * Equivalent to using READ_ONCE() on the condition variable.
243 *
244 * Due to C lacking lambda expressions we load the value of *ptr into a
245 * pre-named variable @VAL to be used in @cond.
246 */
247#ifndef smp_cond_load_relaxed
248#define smp_cond_load_relaxed(ptr, cond_expr) ({		\
249	typeof(ptr) __PTR = (ptr);				\
250	__unqual_scalar_typeof(*ptr) VAL;			\
251	for (;;) {						\
252		VAL = READ_ONCE(*__PTR);			\
253		if (cond_expr)					\
254			break;					\
255		cpu_relax();					\
256	}							\
257	(typeof(*ptr))VAL;					\
258})
259#endif
260
261/**
262 * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering
263 * @ptr: pointer to the variable to wait on
264 * @cond: boolean expression to wait for
265 *
266 * Equivalent to using smp_load_acquire() on the condition variable but employs
267 * the control dependency of the wait to reduce the barrier on many platforms.
268 */
269#ifndef smp_cond_load_acquire
270#define smp_cond_load_acquire(ptr, cond_expr) ({		\
271	__unqual_scalar_typeof(*ptr) _val;			\
272	_val = smp_cond_load_relaxed(ptr, cond_expr);		\
273	smp_acquire__after_ctrl_dep();				\
274	(typeof(*ptr))_val;					\
275})
276#endif
277
278/*
279 * pmem_wmb() ensures that all stores for which the modification
280 * are written to persistent storage by preceding instructions have
281 * updated persistent storage before any data  access or data transfer
282 * caused by subsequent instructions is initiated.
283 */
284#ifndef pmem_wmb
285#define pmem_wmb()	wmb()
286#endif
287
288/*
289 * ioremap_wc() maps I/O memory as memory with write-combining attributes. For
290 * this kind of memory accesses, the CPU may wait for prior accesses to be
291 * merged with subsequent ones. In some situation, such wait is bad for the
292 * performance. io_stop_wc() can be used to prevent the merging of
293 * write-combining memory accesses before this macro with those after it.
294 */
295#ifndef io_stop_wc
296#define io_stop_wc() do { } while (0)
297#endif
298
299#endif /* !__ASSEMBLY__ */
300#endif /* __ASM_GENERIC_BARRIER_H */