Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "block-group.h"
6#include "space-info.h"
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
10#include "disk-io.h"
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
14#include "sysfs.h"
15#include "tree-log.h"
16#include "delalloc-space.h"
17
18/*
19 * Return target flags in extended format or 0 if restripe for this chunk_type
20 * is not in progress
21 *
22 * Should be called with balance_lock held
23 */
24static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
25{
26 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
27 u64 target = 0;
28
29 if (!bctl)
30 return 0;
31
32 if (flags & BTRFS_BLOCK_GROUP_DATA &&
33 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
34 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
35 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
36 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
39 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
41 }
42
43 return target;
44}
45
46/*
47 * @flags: available profiles in extended format (see ctree.h)
48 *
49 * Return reduced profile in chunk format. If profile changing is in progress
50 * (either running or paused) picks the target profile (if it's already
51 * available), otherwise falls back to plain reducing.
52 */
53static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
54{
55 u64 num_devices = fs_info->fs_devices->rw_devices;
56 u64 target;
57 u64 raid_type;
58 u64 allowed = 0;
59
60 /*
61 * See if restripe for this chunk_type is in progress, if so try to
62 * reduce to the target profile
63 */
64 spin_lock(&fs_info->balance_lock);
65 target = get_restripe_target(fs_info, flags);
66 if (target) {
67 /* Pick target profile only if it's already available */
68 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
71 }
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96}
97
98static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99{
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116}
117
118u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
119{
120 return get_alloc_profile(fs_info, orig_flags);
121}
122
123void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124{
125 atomic_inc(&cache->count);
126}
127
128void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129{
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
133
134 /*
135 * If not empty, someone is still holding mutex of
136 * full_stripe_lock, which can only be released by caller.
137 * And it will definitely cause use-after-free when caller
138 * tries to release full stripe lock.
139 *
140 * No better way to resolve, but only to warn.
141 */
142 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
143 kfree(cache->free_space_ctl);
144 kfree(cache);
145 }
146}
147
148/*
149 * This adds the block group to the fs_info rb tree for the block group cache
150 */
151static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
152 struct btrfs_block_group_cache *block_group)
153{
154 struct rb_node **p;
155 struct rb_node *parent = NULL;
156 struct btrfs_block_group_cache *cache;
157
158 spin_lock(&info->block_group_cache_lock);
159 p = &info->block_group_cache_tree.rb_node;
160
161 while (*p) {
162 parent = *p;
163 cache = rb_entry(parent, struct btrfs_block_group_cache,
164 cache_node);
165 if (block_group->key.objectid < cache->key.objectid) {
166 p = &(*p)->rb_left;
167 } else if (block_group->key.objectid > cache->key.objectid) {
168 p = &(*p)->rb_right;
169 } else {
170 spin_unlock(&info->block_group_cache_lock);
171 return -EEXIST;
172 }
173 }
174
175 rb_link_node(&block_group->cache_node, parent, p);
176 rb_insert_color(&block_group->cache_node,
177 &info->block_group_cache_tree);
178
179 if (info->first_logical_byte > block_group->key.objectid)
180 info->first_logical_byte = block_group->key.objectid;
181
182 spin_unlock(&info->block_group_cache_lock);
183
184 return 0;
185}
186
187/*
188 * This will return the block group at or after bytenr if contains is 0, else
189 * it will return the block group that contains the bytenr
190 */
191static struct btrfs_block_group_cache *block_group_cache_tree_search(
192 struct btrfs_fs_info *info, u64 bytenr, int contains)
193{
194 struct btrfs_block_group_cache *cache, *ret = NULL;
195 struct rb_node *n;
196 u64 end, start;
197
198 spin_lock(&info->block_group_cache_lock);
199 n = info->block_group_cache_tree.rb_node;
200
201 while (n) {
202 cache = rb_entry(n, struct btrfs_block_group_cache,
203 cache_node);
204 end = cache->key.objectid + cache->key.offset - 1;
205 start = cache->key.objectid;
206
207 if (bytenr < start) {
208 if (!contains && (!ret || start < ret->key.objectid))
209 ret = cache;
210 n = n->rb_left;
211 } else if (bytenr > start) {
212 if (contains && bytenr <= end) {
213 ret = cache;
214 break;
215 }
216 n = n->rb_right;
217 } else {
218 ret = cache;
219 break;
220 }
221 }
222 if (ret) {
223 btrfs_get_block_group(ret);
224 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
225 info->first_logical_byte = ret->key.objectid;
226 }
227 spin_unlock(&info->block_group_cache_lock);
228
229 return ret;
230}
231
232/*
233 * Return the block group that starts at or after bytenr
234 */
235struct btrfs_block_group_cache *btrfs_lookup_first_block_group(
236 struct btrfs_fs_info *info, u64 bytenr)
237{
238 return block_group_cache_tree_search(info, bytenr, 0);
239}
240
241/*
242 * Return the block group that contains the given bytenr
243 */
244struct btrfs_block_group_cache *btrfs_lookup_block_group(
245 struct btrfs_fs_info *info, u64 bytenr)
246{
247 return block_group_cache_tree_search(info, bytenr, 1);
248}
249
250struct btrfs_block_group_cache *btrfs_next_block_group(
251 struct btrfs_block_group_cache *cache)
252{
253 struct btrfs_fs_info *fs_info = cache->fs_info;
254 struct rb_node *node;
255
256 spin_lock(&fs_info->block_group_cache_lock);
257
258 /* If our block group was removed, we need a full search. */
259 if (RB_EMPTY_NODE(&cache->cache_node)) {
260 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
261
262 spin_unlock(&fs_info->block_group_cache_lock);
263 btrfs_put_block_group(cache);
264 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
265 }
266 node = rb_next(&cache->cache_node);
267 btrfs_put_block_group(cache);
268 if (node) {
269 cache = rb_entry(node, struct btrfs_block_group_cache,
270 cache_node);
271 btrfs_get_block_group(cache);
272 } else
273 cache = NULL;
274 spin_unlock(&fs_info->block_group_cache_lock);
275 return cache;
276}
277
278bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
279{
280 struct btrfs_block_group_cache *bg;
281 bool ret = true;
282
283 bg = btrfs_lookup_block_group(fs_info, bytenr);
284 if (!bg)
285 return false;
286
287 spin_lock(&bg->lock);
288 if (bg->ro)
289 ret = false;
290 else
291 atomic_inc(&bg->nocow_writers);
292 spin_unlock(&bg->lock);
293
294 /* No put on block group, done by btrfs_dec_nocow_writers */
295 if (!ret)
296 btrfs_put_block_group(bg);
297
298 return ret;
299}
300
301void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
302{
303 struct btrfs_block_group_cache *bg;
304
305 bg = btrfs_lookup_block_group(fs_info, bytenr);
306 ASSERT(bg);
307 if (atomic_dec_and_test(&bg->nocow_writers))
308 wake_up_var(&bg->nocow_writers);
309 /*
310 * Once for our lookup and once for the lookup done by a previous call
311 * to btrfs_inc_nocow_writers()
312 */
313 btrfs_put_block_group(bg);
314 btrfs_put_block_group(bg);
315}
316
317void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
318{
319 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
320}
321
322void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
323 const u64 start)
324{
325 struct btrfs_block_group_cache *bg;
326
327 bg = btrfs_lookup_block_group(fs_info, start);
328 ASSERT(bg);
329 if (atomic_dec_and_test(&bg->reservations))
330 wake_up_var(&bg->reservations);
331 btrfs_put_block_group(bg);
332}
333
334void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
335{
336 struct btrfs_space_info *space_info = bg->space_info;
337
338 ASSERT(bg->ro);
339
340 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
341 return;
342
343 /*
344 * Our block group is read only but before we set it to read only,
345 * some task might have had allocated an extent from it already, but it
346 * has not yet created a respective ordered extent (and added it to a
347 * root's list of ordered extents).
348 * Therefore wait for any task currently allocating extents, since the
349 * block group's reservations counter is incremented while a read lock
350 * on the groups' semaphore is held and decremented after releasing
351 * the read access on that semaphore and creating the ordered extent.
352 */
353 down_write(&space_info->groups_sem);
354 up_write(&space_info->groups_sem);
355
356 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
357}
358
359struct btrfs_caching_control *btrfs_get_caching_control(
360 struct btrfs_block_group_cache *cache)
361{
362 struct btrfs_caching_control *ctl;
363
364 spin_lock(&cache->lock);
365 if (!cache->caching_ctl) {
366 spin_unlock(&cache->lock);
367 return NULL;
368 }
369
370 ctl = cache->caching_ctl;
371 refcount_inc(&ctl->count);
372 spin_unlock(&cache->lock);
373 return ctl;
374}
375
376void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
377{
378 if (refcount_dec_and_test(&ctl->count))
379 kfree(ctl);
380}
381
382/*
383 * When we wait for progress in the block group caching, its because our
384 * allocation attempt failed at least once. So, we must sleep and let some
385 * progress happen before we try again.
386 *
387 * This function will sleep at least once waiting for new free space to show
388 * up, and then it will check the block group free space numbers for our min
389 * num_bytes. Another option is to have it go ahead and look in the rbtree for
390 * a free extent of a given size, but this is a good start.
391 *
392 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
393 * any of the information in this block group.
394 */
395void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
396 u64 num_bytes)
397{
398 struct btrfs_caching_control *caching_ctl;
399
400 caching_ctl = btrfs_get_caching_control(cache);
401 if (!caching_ctl)
402 return;
403
404 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache) ||
405 (cache->free_space_ctl->free_space >= num_bytes));
406
407 btrfs_put_caching_control(caching_ctl);
408}
409
410int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
411{
412 struct btrfs_caching_control *caching_ctl;
413 int ret = 0;
414
415 caching_ctl = btrfs_get_caching_control(cache);
416 if (!caching_ctl)
417 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
418
419 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache));
420 if (cache->cached == BTRFS_CACHE_ERROR)
421 ret = -EIO;
422 btrfs_put_caching_control(caching_ctl);
423 return ret;
424}
425
426#ifdef CONFIG_BTRFS_DEBUG
427static void fragment_free_space(struct btrfs_block_group_cache *block_group)
428{
429 struct btrfs_fs_info *fs_info = block_group->fs_info;
430 u64 start = block_group->key.objectid;
431 u64 len = block_group->key.offset;
432 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
433 fs_info->nodesize : fs_info->sectorsize;
434 u64 step = chunk << 1;
435
436 while (len > chunk) {
437 btrfs_remove_free_space(block_group, start, chunk);
438 start += step;
439 if (len < step)
440 len = 0;
441 else
442 len -= step;
443 }
444}
445#endif
446
447/*
448 * This is only called by btrfs_cache_block_group, since we could have freed
449 * extents we need to check the pinned_extents for any extents that can't be
450 * used yet since their free space will be released as soon as the transaction
451 * commits.
452 */
453u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
454 u64 start, u64 end)
455{
456 struct btrfs_fs_info *info = block_group->fs_info;
457 u64 extent_start, extent_end, size, total_added = 0;
458 int ret;
459
460 while (start < end) {
461 ret = find_first_extent_bit(info->pinned_extents, start,
462 &extent_start, &extent_end,
463 EXTENT_DIRTY | EXTENT_UPTODATE,
464 NULL);
465 if (ret)
466 break;
467
468 if (extent_start <= start) {
469 start = extent_end + 1;
470 } else if (extent_start > start && extent_start < end) {
471 size = extent_start - start;
472 total_added += size;
473 ret = btrfs_add_free_space(block_group, start,
474 size);
475 BUG_ON(ret); /* -ENOMEM or logic error */
476 start = extent_end + 1;
477 } else {
478 break;
479 }
480 }
481
482 if (start < end) {
483 size = end - start;
484 total_added += size;
485 ret = btrfs_add_free_space(block_group, start, size);
486 BUG_ON(ret); /* -ENOMEM or logic error */
487 }
488
489 return total_added;
490}
491
492static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
493{
494 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
495 struct btrfs_fs_info *fs_info = block_group->fs_info;
496 struct btrfs_root *extent_root = fs_info->extent_root;
497 struct btrfs_path *path;
498 struct extent_buffer *leaf;
499 struct btrfs_key key;
500 u64 total_found = 0;
501 u64 last = 0;
502 u32 nritems;
503 int ret;
504 bool wakeup = true;
505
506 path = btrfs_alloc_path();
507 if (!path)
508 return -ENOMEM;
509
510 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
511
512#ifdef CONFIG_BTRFS_DEBUG
513 /*
514 * If we're fragmenting we don't want to make anybody think we can
515 * allocate from this block group until we've had a chance to fragment
516 * the free space.
517 */
518 if (btrfs_should_fragment_free_space(block_group))
519 wakeup = false;
520#endif
521 /*
522 * We don't want to deadlock with somebody trying to allocate a new
523 * extent for the extent root while also trying to search the extent
524 * root to add free space. So we skip locking and search the commit
525 * root, since its read-only
526 */
527 path->skip_locking = 1;
528 path->search_commit_root = 1;
529 path->reada = READA_FORWARD;
530
531 key.objectid = last;
532 key.offset = 0;
533 key.type = BTRFS_EXTENT_ITEM_KEY;
534
535next:
536 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
537 if (ret < 0)
538 goto out;
539
540 leaf = path->nodes[0];
541 nritems = btrfs_header_nritems(leaf);
542
543 while (1) {
544 if (btrfs_fs_closing(fs_info) > 1) {
545 last = (u64)-1;
546 break;
547 }
548
549 if (path->slots[0] < nritems) {
550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
551 } else {
552 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
553 if (ret)
554 break;
555
556 if (need_resched() ||
557 rwsem_is_contended(&fs_info->commit_root_sem)) {
558 if (wakeup)
559 caching_ctl->progress = last;
560 btrfs_release_path(path);
561 up_read(&fs_info->commit_root_sem);
562 mutex_unlock(&caching_ctl->mutex);
563 cond_resched();
564 mutex_lock(&caching_ctl->mutex);
565 down_read(&fs_info->commit_root_sem);
566 goto next;
567 }
568
569 ret = btrfs_next_leaf(extent_root, path);
570 if (ret < 0)
571 goto out;
572 if (ret)
573 break;
574 leaf = path->nodes[0];
575 nritems = btrfs_header_nritems(leaf);
576 continue;
577 }
578
579 if (key.objectid < last) {
580 key.objectid = last;
581 key.offset = 0;
582 key.type = BTRFS_EXTENT_ITEM_KEY;
583
584 if (wakeup)
585 caching_ctl->progress = last;
586 btrfs_release_path(path);
587 goto next;
588 }
589
590 if (key.objectid < block_group->key.objectid) {
591 path->slots[0]++;
592 continue;
593 }
594
595 if (key.objectid >= block_group->key.objectid +
596 block_group->key.offset)
597 break;
598
599 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
600 key.type == BTRFS_METADATA_ITEM_KEY) {
601 total_found += add_new_free_space(block_group, last,
602 key.objectid);
603 if (key.type == BTRFS_METADATA_ITEM_KEY)
604 last = key.objectid +
605 fs_info->nodesize;
606 else
607 last = key.objectid + key.offset;
608
609 if (total_found > CACHING_CTL_WAKE_UP) {
610 total_found = 0;
611 if (wakeup)
612 wake_up(&caching_ctl->wait);
613 }
614 }
615 path->slots[0]++;
616 }
617 ret = 0;
618
619 total_found += add_new_free_space(block_group, last,
620 block_group->key.objectid +
621 block_group->key.offset);
622 caching_ctl->progress = (u64)-1;
623
624out:
625 btrfs_free_path(path);
626 return ret;
627}
628
629static noinline void caching_thread(struct btrfs_work *work)
630{
631 struct btrfs_block_group_cache *block_group;
632 struct btrfs_fs_info *fs_info;
633 struct btrfs_caching_control *caching_ctl;
634 int ret;
635
636 caching_ctl = container_of(work, struct btrfs_caching_control, work);
637 block_group = caching_ctl->block_group;
638 fs_info = block_group->fs_info;
639
640 mutex_lock(&caching_ctl->mutex);
641 down_read(&fs_info->commit_root_sem);
642
643 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
644 ret = load_free_space_tree(caching_ctl);
645 else
646 ret = load_extent_tree_free(caching_ctl);
647
648 spin_lock(&block_group->lock);
649 block_group->caching_ctl = NULL;
650 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
651 spin_unlock(&block_group->lock);
652
653#ifdef CONFIG_BTRFS_DEBUG
654 if (btrfs_should_fragment_free_space(block_group)) {
655 u64 bytes_used;
656
657 spin_lock(&block_group->space_info->lock);
658 spin_lock(&block_group->lock);
659 bytes_used = block_group->key.offset -
660 btrfs_block_group_used(&block_group->item);
661 block_group->space_info->bytes_used += bytes_used >> 1;
662 spin_unlock(&block_group->lock);
663 spin_unlock(&block_group->space_info->lock);
664 fragment_free_space(block_group);
665 }
666#endif
667
668 caching_ctl->progress = (u64)-1;
669
670 up_read(&fs_info->commit_root_sem);
671 btrfs_free_excluded_extents(block_group);
672 mutex_unlock(&caching_ctl->mutex);
673
674 wake_up(&caching_ctl->wait);
675
676 btrfs_put_caching_control(caching_ctl);
677 btrfs_put_block_group(block_group);
678}
679
680int btrfs_cache_block_group(struct btrfs_block_group_cache *cache,
681 int load_cache_only)
682{
683 DEFINE_WAIT(wait);
684 struct btrfs_fs_info *fs_info = cache->fs_info;
685 struct btrfs_caching_control *caching_ctl;
686 int ret = 0;
687
688 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
689 if (!caching_ctl)
690 return -ENOMEM;
691
692 INIT_LIST_HEAD(&caching_ctl->list);
693 mutex_init(&caching_ctl->mutex);
694 init_waitqueue_head(&caching_ctl->wait);
695 caching_ctl->block_group = cache;
696 caching_ctl->progress = cache->key.objectid;
697 refcount_set(&caching_ctl->count, 1);
698 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
699 caching_thread, NULL, NULL);
700
701 spin_lock(&cache->lock);
702 /*
703 * This should be a rare occasion, but this could happen I think in the
704 * case where one thread starts to load the space cache info, and then
705 * some other thread starts a transaction commit which tries to do an
706 * allocation while the other thread is still loading the space cache
707 * info. The previous loop should have kept us from choosing this block
708 * group, but if we've moved to the state where we will wait on caching
709 * block groups we need to first check if we're doing a fast load here,
710 * so we can wait for it to finish, otherwise we could end up allocating
711 * from a block group who's cache gets evicted for one reason or
712 * another.
713 */
714 while (cache->cached == BTRFS_CACHE_FAST) {
715 struct btrfs_caching_control *ctl;
716
717 ctl = cache->caching_ctl;
718 refcount_inc(&ctl->count);
719 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
720 spin_unlock(&cache->lock);
721
722 schedule();
723
724 finish_wait(&ctl->wait, &wait);
725 btrfs_put_caching_control(ctl);
726 spin_lock(&cache->lock);
727 }
728
729 if (cache->cached != BTRFS_CACHE_NO) {
730 spin_unlock(&cache->lock);
731 kfree(caching_ctl);
732 return 0;
733 }
734 WARN_ON(cache->caching_ctl);
735 cache->caching_ctl = caching_ctl;
736 cache->cached = BTRFS_CACHE_FAST;
737 spin_unlock(&cache->lock);
738
739 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
740 mutex_lock(&caching_ctl->mutex);
741 ret = load_free_space_cache(cache);
742
743 spin_lock(&cache->lock);
744 if (ret == 1) {
745 cache->caching_ctl = NULL;
746 cache->cached = BTRFS_CACHE_FINISHED;
747 cache->last_byte_to_unpin = (u64)-1;
748 caching_ctl->progress = (u64)-1;
749 } else {
750 if (load_cache_only) {
751 cache->caching_ctl = NULL;
752 cache->cached = BTRFS_CACHE_NO;
753 } else {
754 cache->cached = BTRFS_CACHE_STARTED;
755 cache->has_caching_ctl = 1;
756 }
757 }
758 spin_unlock(&cache->lock);
759#ifdef CONFIG_BTRFS_DEBUG
760 if (ret == 1 &&
761 btrfs_should_fragment_free_space(cache)) {
762 u64 bytes_used;
763
764 spin_lock(&cache->space_info->lock);
765 spin_lock(&cache->lock);
766 bytes_used = cache->key.offset -
767 btrfs_block_group_used(&cache->item);
768 cache->space_info->bytes_used += bytes_used >> 1;
769 spin_unlock(&cache->lock);
770 spin_unlock(&cache->space_info->lock);
771 fragment_free_space(cache);
772 }
773#endif
774 mutex_unlock(&caching_ctl->mutex);
775
776 wake_up(&caching_ctl->wait);
777 if (ret == 1) {
778 btrfs_put_caching_control(caching_ctl);
779 btrfs_free_excluded_extents(cache);
780 return 0;
781 }
782 } else {
783 /*
784 * We're either using the free space tree or no caching at all.
785 * Set cached to the appropriate value and wakeup any waiters.
786 */
787 spin_lock(&cache->lock);
788 if (load_cache_only) {
789 cache->caching_ctl = NULL;
790 cache->cached = BTRFS_CACHE_NO;
791 } else {
792 cache->cached = BTRFS_CACHE_STARTED;
793 cache->has_caching_ctl = 1;
794 }
795 spin_unlock(&cache->lock);
796 wake_up(&caching_ctl->wait);
797 }
798
799 if (load_cache_only) {
800 btrfs_put_caching_control(caching_ctl);
801 return 0;
802 }
803
804 down_write(&fs_info->commit_root_sem);
805 refcount_inc(&caching_ctl->count);
806 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
807 up_write(&fs_info->commit_root_sem);
808
809 btrfs_get_block_group(cache);
810
811 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
812
813 return ret;
814}
815
816static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
817{
818 u64 extra_flags = chunk_to_extended(flags) &
819 BTRFS_EXTENDED_PROFILE_MASK;
820
821 write_seqlock(&fs_info->profiles_lock);
822 if (flags & BTRFS_BLOCK_GROUP_DATA)
823 fs_info->avail_data_alloc_bits &= ~extra_flags;
824 if (flags & BTRFS_BLOCK_GROUP_METADATA)
825 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
826 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
827 fs_info->avail_system_alloc_bits &= ~extra_flags;
828 write_sequnlock(&fs_info->profiles_lock);
829}
830
831/*
832 * Clear incompat bits for the following feature(s):
833 *
834 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
835 * in the whole filesystem
836 */
837static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
838{
839 if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
840 struct list_head *head = &fs_info->space_info;
841 struct btrfs_space_info *sinfo;
842
843 list_for_each_entry_rcu(sinfo, head, list) {
844 bool found = false;
845
846 down_read(&sinfo->groups_sem);
847 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
848 found = true;
849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
850 found = true;
851 up_read(&sinfo->groups_sem);
852
853 if (found)
854 return;
855 }
856 btrfs_clear_fs_incompat(fs_info, RAID56);
857 }
858}
859
860int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
861 u64 group_start, struct extent_map *em)
862{
863 struct btrfs_fs_info *fs_info = trans->fs_info;
864 struct btrfs_root *root = fs_info->extent_root;
865 struct btrfs_path *path;
866 struct btrfs_block_group_cache *block_group;
867 struct btrfs_free_cluster *cluster;
868 struct btrfs_root *tree_root = fs_info->tree_root;
869 struct btrfs_key key;
870 struct inode *inode;
871 struct kobject *kobj = NULL;
872 int ret;
873 int index;
874 int factor;
875 struct btrfs_caching_control *caching_ctl = NULL;
876 bool remove_em;
877 bool remove_rsv = false;
878
879 block_group = btrfs_lookup_block_group(fs_info, group_start);
880 BUG_ON(!block_group);
881 BUG_ON(!block_group->ro);
882
883 trace_btrfs_remove_block_group(block_group);
884 /*
885 * Free the reserved super bytes from this block group before
886 * remove it.
887 */
888 btrfs_free_excluded_extents(block_group);
889 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
890 block_group->key.offset);
891
892 memcpy(&key, &block_group->key, sizeof(key));
893 index = btrfs_bg_flags_to_raid_index(block_group->flags);
894 factor = btrfs_bg_type_to_factor(block_group->flags);
895
896 /* make sure this block group isn't part of an allocation cluster */
897 cluster = &fs_info->data_alloc_cluster;
898 spin_lock(&cluster->refill_lock);
899 btrfs_return_cluster_to_free_space(block_group, cluster);
900 spin_unlock(&cluster->refill_lock);
901
902 /*
903 * make sure this block group isn't part of a metadata
904 * allocation cluster
905 */
906 cluster = &fs_info->meta_alloc_cluster;
907 spin_lock(&cluster->refill_lock);
908 btrfs_return_cluster_to_free_space(block_group, cluster);
909 spin_unlock(&cluster->refill_lock);
910
911 path = btrfs_alloc_path();
912 if (!path) {
913 ret = -ENOMEM;
914 goto out;
915 }
916
917 /*
918 * get the inode first so any iput calls done for the io_list
919 * aren't the final iput (no unlinks allowed now)
920 */
921 inode = lookup_free_space_inode(block_group, path);
922
923 mutex_lock(&trans->transaction->cache_write_mutex);
924 /*
925 * Make sure our free space cache IO is done before removing the
926 * free space inode
927 */
928 spin_lock(&trans->transaction->dirty_bgs_lock);
929 if (!list_empty(&block_group->io_list)) {
930 list_del_init(&block_group->io_list);
931
932 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
933
934 spin_unlock(&trans->transaction->dirty_bgs_lock);
935 btrfs_wait_cache_io(trans, block_group, path);
936 btrfs_put_block_group(block_group);
937 spin_lock(&trans->transaction->dirty_bgs_lock);
938 }
939
940 if (!list_empty(&block_group->dirty_list)) {
941 list_del_init(&block_group->dirty_list);
942 remove_rsv = true;
943 btrfs_put_block_group(block_group);
944 }
945 spin_unlock(&trans->transaction->dirty_bgs_lock);
946 mutex_unlock(&trans->transaction->cache_write_mutex);
947
948 if (!IS_ERR(inode)) {
949 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
950 if (ret) {
951 btrfs_add_delayed_iput(inode);
952 goto out;
953 }
954 clear_nlink(inode);
955 /* One for the block groups ref */
956 spin_lock(&block_group->lock);
957 if (block_group->iref) {
958 block_group->iref = 0;
959 block_group->inode = NULL;
960 spin_unlock(&block_group->lock);
961 iput(inode);
962 } else {
963 spin_unlock(&block_group->lock);
964 }
965 /* One for our lookup ref */
966 btrfs_add_delayed_iput(inode);
967 }
968
969 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
970 key.offset = block_group->key.objectid;
971 key.type = 0;
972
973 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
974 if (ret < 0)
975 goto out;
976 if (ret > 0)
977 btrfs_release_path(path);
978 if (ret == 0) {
979 ret = btrfs_del_item(trans, tree_root, path);
980 if (ret)
981 goto out;
982 btrfs_release_path(path);
983 }
984
985 spin_lock(&fs_info->block_group_cache_lock);
986 rb_erase(&block_group->cache_node,
987 &fs_info->block_group_cache_tree);
988 RB_CLEAR_NODE(&block_group->cache_node);
989
990 if (fs_info->first_logical_byte == block_group->key.objectid)
991 fs_info->first_logical_byte = (u64)-1;
992 spin_unlock(&fs_info->block_group_cache_lock);
993
994 down_write(&block_group->space_info->groups_sem);
995 /*
996 * we must use list_del_init so people can check to see if they
997 * are still on the list after taking the semaphore
998 */
999 list_del_init(&block_group->list);
1000 if (list_empty(&block_group->space_info->block_groups[index])) {
1001 kobj = block_group->space_info->block_group_kobjs[index];
1002 block_group->space_info->block_group_kobjs[index] = NULL;
1003 clear_avail_alloc_bits(fs_info, block_group->flags);
1004 }
1005 up_write(&block_group->space_info->groups_sem);
1006 clear_incompat_bg_bits(fs_info, block_group->flags);
1007 if (kobj) {
1008 kobject_del(kobj);
1009 kobject_put(kobj);
1010 }
1011
1012 if (block_group->has_caching_ctl)
1013 caching_ctl = btrfs_get_caching_control(block_group);
1014 if (block_group->cached == BTRFS_CACHE_STARTED)
1015 btrfs_wait_block_group_cache_done(block_group);
1016 if (block_group->has_caching_ctl) {
1017 down_write(&fs_info->commit_root_sem);
1018 if (!caching_ctl) {
1019 struct btrfs_caching_control *ctl;
1020
1021 list_for_each_entry(ctl,
1022 &fs_info->caching_block_groups, list)
1023 if (ctl->block_group == block_group) {
1024 caching_ctl = ctl;
1025 refcount_inc(&caching_ctl->count);
1026 break;
1027 }
1028 }
1029 if (caching_ctl)
1030 list_del_init(&caching_ctl->list);
1031 up_write(&fs_info->commit_root_sem);
1032 if (caching_ctl) {
1033 /* Once for the caching bgs list and once for us. */
1034 btrfs_put_caching_control(caching_ctl);
1035 btrfs_put_caching_control(caching_ctl);
1036 }
1037 }
1038
1039 spin_lock(&trans->transaction->dirty_bgs_lock);
1040 WARN_ON(!list_empty(&block_group->dirty_list));
1041 WARN_ON(!list_empty(&block_group->io_list));
1042 spin_unlock(&trans->transaction->dirty_bgs_lock);
1043
1044 btrfs_remove_free_space_cache(block_group);
1045
1046 spin_lock(&block_group->space_info->lock);
1047 list_del_init(&block_group->ro_list);
1048
1049 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1050 WARN_ON(block_group->space_info->total_bytes
1051 < block_group->key.offset);
1052 WARN_ON(block_group->space_info->bytes_readonly
1053 < block_group->key.offset);
1054 WARN_ON(block_group->space_info->disk_total
1055 < block_group->key.offset * factor);
1056 }
1057 block_group->space_info->total_bytes -= block_group->key.offset;
1058 block_group->space_info->bytes_readonly -= block_group->key.offset;
1059 block_group->space_info->disk_total -= block_group->key.offset * factor;
1060
1061 spin_unlock(&block_group->space_info->lock);
1062
1063 memcpy(&key, &block_group->key, sizeof(key));
1064
1065 mutex_lock(&fs_info->chunk_mutex);
1066 spin_lock(&block_group->lock);
1067 block_group->removed = 1;
1068 /*
1069 * At this point trimming can't start on this block group, because we
1070 * removed the block group from the tree fs_info->block_group_cache_tree
1071 * so no one can't find it anymore and even if someone already got this
1072 * block group before we removed it from the rbtree, they have already
1073 * incremented block_group->trimming - if they didn't, they won't find
1074 * any free space entries because we already removed them all when we
1075 * called btrfs_remove_free_space_cache().
1076 *
1077 * And we must not remove the extent map from the fs_info->mapping_tree
1078 * to prevent the same logical address range and physical device space
1079 * ranges from being reused for a new block group. This is because our
1080 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1081 * completely transactionless, so while it is trimming a range the
1082 * currently running transaction might finish and a new one start,
1083 * allowing for new block groups to be created that can reuse the same
1084 * physical device locations unless we take this special care.
1085 *
1086 * There may also be an implicit trim operation if the file system
1087 * is mounted with -odiscard. The same protections must remain
1088 * in place until the extents have been discarded completely when
1089 * the transaction commit has completed.
1090 */
1091 remove_em = (atomic_read(&block_group->trimming) == 0);
1092 spin_unlock(&block_group->lock);
1093
1094 mutex_unlock(&fs_info->chunk_mutex);
1095
1096 ret = remove_block_group_free_space(trans, block_group);
1097 if (ret)
1098 goto out;
1099
1100 btrfs_put_block_group(block_group);
1101 btrfs_put_block_group(block_group);
1102
1103 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1104 if (ret > 0)
1105 ret = -EIO;
1106 if (ret < 0)
1107 goto out;
1108
1109 ret = btrfs_del_item(trans, root, path);
1110 if (ret)
1111 goto out;
1112
1113 if (remove_em) {
1114 struct extent_map_tree *em_tree;
1115
1116 em_tree = &fs_info->mapping_tree;
1117 write_lock(&em_tree->lock);
1118 remove_extent_mapping(em_tree, em);
1119 write_unlock(&em_tree->lock);
1120 /* once for the tree */
1121 free_extent_map(em);
1122 }
1123out:
1124 if (remove_rsv)
1125 btrfs_delayed_refs_rsv_release(fs_info, 1);
1126 btrfs_free_path(path);
1127 return ret;
1128}
1129
1130struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1131 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1132{
1133 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1134 struct extent_map *em;
1135 struct map_lookup *map;
1136 unsigned int num_items;
1137
1138 read_lock(&em_tree->lock);
1139 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1140 read_unlock(&em_tree->lock);
1141 ASSERT(em && em->start == chunk_offset);
1142
1143 /*
1144 * We need to reserve 3 + N units from the metadata space info in order
1145 * to remove a block group (done at btrfs_remove_chunk() and at
1146 * btrfs_remove_block_group()), which are used for:
1147 *
1148 * 1 unit for adding the free space inode's orphan (located in the tree
1149 * of tree roots).
1150 * 1 unit for deleting the block group item (located in the extent
1151 * tree).
1152 * 1 unit for deleting the free space item (located in tree of tree
1153 * roots).
1154 * N units for deleting N device extent items corresponding to each
1155 * stripe (located in the device tree).
1156 *
1157 * In order to remove a block group we also need to reserve units in the
1158 * system space info in order to update the chunk tree (update one or
1159 * more device items and remove one chunk item), but this is done at
1160 * btrfs_remove_chunk() through a call to check_system_chunk().
1161 */
1162 map = em->map_lookup;
1163 num_items = 3 + map->num_stripes;
1164 free_extent_map(em);
1165
1166 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1167 num_items, 1);
1168}
1169
1170/*
1171 * Mark block group @cache read-only, so later write won't happen to block
1172 * group @cache.
1173 *
1174 * If @force is not set, this function will only mark the block group readonly
1175 * if we have enough free space (1M) in other metadata/system block groups.
1176 * If @force is not set, this function will mark the block group readonly
1177 * without checking free space.
1178 *
1179 * NOTE: This function doesn't care if other block groups can contain all the
1180 * data in this block group. That check should be done by relocation routine,
1181 * not this function.
1182 */
1183static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
1184{
1185 struct btrfs_space_info *sinfo = cache->space_info;
1186 u64 num_bytes;
1187 u64 sinfo_used;
1188 u64 min_allocable_bytes;
1189 int ret = -ENOSPC;
1190
1191 /*
1192 * We need some metadata space and system metadata space for
1193 * allocating chunks in some corner cases until we force to set
1194 * it to be readonly.
1195 */
1196 if ((sinfo->flags &
1197 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
1198 !force)
1199 min_allocable_bytes = SZ_1M;
1200 else
1201 min_allocable_bytes = 0;
1202
1203 spin_lock(&sinfo->lock);
1204 spin_lock(&cache->lock);
1205
1206 if (cache->ro) {
1207 cache->ro++;
1208 ret = 0;
1209 goto out;
1210 }
1211
1212 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
1213 cache->bytes_super - btrfs_block_group_used(&cache->item);
1214 sinfo_used = btrfs_space_info_used(sinfo, true);
1215
1216 /*
1217 * sinfo_used + num_bytes should always <= sinfo->total_bytes.
1218 *
1219 * Here we make sure if we mark this bg RO, we still have enough
1220 * free space as buffer (if min_allocable_bytes is not 0).
1221 */
1222 if (sinfo_used + num_bytes + min_allocable_bytes <=
1223 sinfo->total_bytes) {
1224 sinfo->bytes_readonly += num_bytes;
1225 cache->ro++;
1226 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1227 ret = 0;
1228 }
1229out:
1230 spin_unlock(&cache->lock);
1231 spin_unlock(&sinfo->lock);
1232 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1233 btrfs_info(cache->fs_info,
1234 "unable to make block group %llu ro",
1235 cache->key.objectid);
1236 btrfs_info(cache->fs_info,
1237 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
1238 sinfo_used, num_bytes, min_allocable_bytes);
1239 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1240 }
1241 return ret;
1242}
1243
1244/*
1245 * Process the unused_bgs list and remove any that don't have any allocated
1246 * space inside of them.
1247 */
1248void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1249{
1250 struct btrfs_block_group_cache *block_group;
1251 struct btrfs_space_info *space_info;
1252 struct btrfs_trans_handle *trans;
1253 int ret = 0;
1254
1255 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1256 return;
1257
1258 spin_lock(&fs_info->unused_bgs_lock);
1259 while (!list_empty(&fs_info->unused_bgs)) {
1260 u64 start, end;
1261 int trimming;
1262
1263 block_group = list_first_entry(&fs_info->unused_bgs,
1264 struct btrfs_block_group_cache,
1265 bg_list);
1266 list_del_init(&block_group->bg_list);
1267
1268 space_info = block_group->space_info;
1269
1270 if (ret || btrfs_mixed_space_info(space_info)) {
1271 btrfs_put_block_group(block_group);
1272 continue;
1273 }
1274 spin_unlock(&fs_info->unused_bgs_lock);
1275
1276 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1277
1278 /* Don't want to race with allocators so take the groups_sem */
1279 down_write(&space_info->groups_sem);
1280 spin_lock(&block_group->lock);
1281 if (block_group->reserved || block_group->pinned ||
1282 btrfs_block_group_used(&block_group->item) ||
1283 block_group->ro ||
1284 list_is_singular(&block_group->list)) {
1285 /*
1286 * We want to bail if we made new allocations or have
1287 * outstanding allocations in this block group. We do
1288 * the ro check in case balance is currently acting on
1289 * this block group.
1290 */
1291 trace_btrfs_skip_unused_block_group(block_group);
1292 spin_unlock(&block_group->lock);
1293 up_write(&space_info->groups_sem);
1294 goto next;
1295 }
1296 spin_unlock(&block_group->lock);
1297
1298 /* We don't want to force the issue, only flip if it's ok. */
1299 ret = inc_block_group_ro(block_group, 0);
1300 up_write(&space_info->groups_sem);
1301 if (ret < 0) {
1302 ret = 0;
1303 goto next;
1304 }
1305
1306 /*
1307 * Want to do this before we do anything else so we can recover
1308 * properly if we fail to join the transaction.
1309 */
1310 trans = btrfs_start_trans_remove_block_group(fs_info,
1311 block_group->key.objectid);
1312 if (IS_ERR(trans)) {
1313 btrfs_dec_block_group_ro(block_group);
1314 ret = PTR_ERR(trans);
1315 goto next;
1316 }
1317
1318 /*
1319 * We could have pending pinned extents for this block group,
1320 * just delete them, we don't care about them anymore.
1321 */
1322 start = block_group->key.objectid;
1323 end = start + block_group->key.offset - 1;
1324 /*
1325 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1326 * btrfs_finish_extent_commit(). If we are at transaction N,
1327 * another task might be running finish_extent_commit() for the
1328 * previous transaction N - 1, and have seen a range belonging
1329 * to the block group in freed_extents[] before we were able to
1330 * clear the whole block group range from freed_extents[]. This
1331 * means that task can lookup for the block group after we
1332 * unpinned it from freed_extents[] and removed it, leading to
1333 * a BUG_ON() at btrfs_unpin_extent_range().
1334 */
1335 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1336 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1337 EXTENT_DIRTY);
1338 if (ret) {
1339 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1340 btrfs_dec_block_group_ro(block_group);
1341 goto end_trans;
1342 }
1343 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1344 EXTENT_DIRTY);
1345 if (ret) {
1346 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1347 btrfs_dec_block_group_ro(block_group);
1348 goto end_trans;
1349 }
1350 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1351
1352 /* Reset pinned so btrfs_put_block_group doesn't complain */
1353 spin_lock(&space_info->lock);
1354 spin_lock(&block_group->lock);
1355
1356 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1357 -block_group->pinned);
1358 space_info->bytes_readonly += block_group->pinned;
1359 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1360 -block_group->pinned,
1361 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1362 block_group->pinned = 0;
1363
1364 spin_unlock(&block_group->lock);
1365 spin_unlock(&space_info->lock);
1366
1367 /* DISCARD can flip during remount */
1368 trimming = btrfs_test_opt(fs_info, DISCARD);
1369
1370 /* Implicit trim during transaction commit. */
1371 if (trimming)
1372 btrfs_get_block_group_trimming(block_group);
1373
1374 /*
1375 * Btrfs_remove_chunk will abort the transaction if things go
1376 * horribly wrong.
1377 */
1378 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
1379
1380 if (ret) {
1381 if (trimming)
1382 btrfs_put_block_group_trimming(block_group);
1383 goto end_trans;
1384 }
1385
1386 /*
1387 * If we're not mounted with -odiscard, we can just forget
1388 * about this block group. Otherwise we'll need to wait
1389 * until transaction commit to do the actual discard.
1390 */
1391 if (trimming) {
1392 spin_lock(&fs_info->unused_bgs_lock);
1393 /*
1394 * A concurrent scrub might have added us to the list
1395 * fs_info->unused_bgs, so use a list_move operation
1396 * to add the block group to the deleted_bgs list.
1397 */
1398 list_move(&block_group->bg_list,
1399 &trans->transaction->deleted_bgs);
1400 spin_unlock(&fs_info->unused_bgs_lock);
1401 btrfs_get_block_group(block_group);
1402 }
1403end_trans:
1404 btrfs_end_transaction(trans);
1405next:
1406 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1407 btrfs_put_block_group(block_group);
1408 spin_lock(&fs_info->unused_bgs_lock);
1409 }
1410 spin_unlock(&fs_info->unused_bgs_lock);
1411}
1412
1413void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
1414{
1415 struct btrfs_fs_info *fs_info = bg->fs_info;
1416
1417 spin_lock(&fs_info->unused_bgs_lock);
1418 if (list_empty(&bg->bg_list)) {
1419 btrfs_get_block_group(bg);
1420 trace_btrfs_add_unused_block_group(bg);
1421 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1422 }
1423 spin_unlock(&fs_info->unused_bgs_lock);
1424}
1425
1426static int find_first_block_group(struct btrfs_fs_info *fs_info,
1427 struct btrfs_path *path,
1428 struct btrfs_key *key)
1429{
1430 struct btrfs_root *root = fs_info->extent_root;
1431 int ret = 0;
1432 struct btrfs_key found_key;
1433 struct extent_buffer *leaf;
1434 struct btrfs_block_group_item bg;
1435 u64 flags;
1436 int slot;
1437
1438 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1439 if (ret < 0)
1440 goto out;
1441
1442 while (1) {
1443 slot = path->slots[0];
1444 leaf = path->nodes[0];
1445 if (slot >= btrfs_header_nritems(leaf)) {
1446 ret = btrfs_next_leaf(root, path);
1447 if (ret == 0)
1448 continue;
1449 if (ret < 0)
1450 goto out;
1451 break;
1452 }
1453 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1454
1455 if (found_key.objectid >= key->objectid &&
1456 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1457 struct extent_map_tree *em_tree;
1458 struct extent_map *em;
1459
1460 em_tree = &root->fs_info->mapping_tree;
1461 read_lock(&em_tree->lock);
1462 em = lookup_extent_mapping(em_tree, found_key.objectid,
1463 found_key.offset);
1464 read_unlock(&em_tree->lock);
1465 if (!em) {
1466 btrfs_err(fs_info,
1467 "logical %llu len %llu found bg but no related chunk",
1468 found_key.objectid, found_key.offset);
1469 ret = -ENOENT;
1470 } else if (em->start != found_key.objectid ||
1471 em->len != found_key.offset) {
1472 btrfs_err(fs_info,
1473 "block group %llu len %llu mismatch with chunk %llu len %llu",
1474 found_key.objectid, found_key.offset,
1475 em->start, em->len);
1476 ret = -EUCLEAN;
1477 } else {
1478 read_extent_buffer(leaf, &bg,
1479 btrfs_item_ptr_offset(leaf, slot),
1480 sizeof(bg));
1481 flags = btrfs_block_group_flags(&bg) &
1482 BTRFS_BLOCK_GROUP_TYPE_MASK;
1483
1484 if (flags != (em->map_lookup->type &
1485 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1486 btrfs_err(fs_info,
1487"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1488 found_key.objectid,
1489 found_key.offset, flags,
1490 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1491 em->map_lookup->type));
1492 ret = -EUCLEAN;
1493 } else {
1494 ret = 0;
1495 }
1496 }
1497 free_extent_map(em);
1498 goto out;
1499 }
1500 path->slots[0]++;
1501 }
1502out:
1503 return ret;
1504}
1505
1506static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1507{
1508 u64 extra_flags = chunk_to_extended(flags) &
1509 BTRFS_EXTENDED_PROFILE_MASK;
1510
1511 write_seqlock(&fs_info->profiles_lock);
1512 if (flags & BTRFS_BLOCK_GROUP_DATA)
1513 fs_info->avail_data_alloc_bits |= extra_flags;
1514 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1515 fs_info->avail_metadata_alloc_bits |= extra_flags;
1516 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1517 fs_info->avail_system_alloc_bits |= extra_flags;
1518 write_sequnlock(&fs_info->profiles_lock);
1519}
1520
1521static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
1522{
1523 struct btrfs_fs_info *fs_info = cache->fs_info;
1524 u64 bytenr;
1525 u64 *logical;
1526 int stripe_len;
1527 int i, nr, ret;
1528
1529 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
1530 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
1531 cache->bytes_super += stripe_len;
1532 ret = btrfs_add_excluded_extent(fs_info, cache->key.objectid,
1533 stripe_len);
1534 if (ret)
1535 return ret;
1536 }
1537
1538 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1539 bytenr = btrfs_sb_offset(i);
1540 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
1541 bytenr, &logical, &nr, &stripe_len);
1542 if (ret)
1543 return ret;
1544
1545 while (nr--) {
1546 u64 start, len;
1547
1548 if (logical[nr] > cache->key.objectid +
1549 cache->key.offset)
1550 continue;
1551
1552 if (logical[nr] + stripe_len <= cache->key.objectid)
1553 continue;
1554
1555 start = logical[nr];
1556 if (start < cache->key.objectid) {
1557 start = cache->key.objectid;
1558 len = (logical[nr] + stripe_len) - start;
1559 } else {
1560 len = min_t(u64, stripe_len,
1561 cache->key.objectid +
1562 cache->key.offset - start);
1563 }
1564
1565 cache->bytes_super += len;
1566 ret = btrfs_add_excluded_extent(fs_info, start, len);
1567 if (ret) {
1568 kfree(logical);
1569 return ret;
1570 }
1571 }
1572
1573 kfree(logical);
1574 }
1575 return 0;
1576}
1577
1578static void link_block_group(struct btrfs_block_group_cache *cache)
1579{
1580 struct btrfs_space_info *space_info = cache->space_info;
1581 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1582 bool first = false;
1583
1584 down_write(&space_info->groups_sem);
1585 if (list_empty(&space_info->block_groups[index]))
1586 first = true;
1587 list_add_tail(&cache->list, &space_info->block_groups[index]);
1588 up_write(&space_info->groups_sem);
1589
1590 if (first)
1591 btrfs_sysfs_add_block_group_type(cache);
1592}
1593
1594static struct btrfs_block_group_cache *btrfs_create_block_group_cache(
1595 struct btrfs_fs_info *fs_info, u64 start, u64 size)
1596{
1597 struct btrfs_block_group_cache *cache;
1598
1599 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1600 if (!cache)
1601 return NULL;
1602
1603 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1604 GFP_NOFS);
1605 if (!cache->free_space_ctl) {
1606 kfree(cache);
1607 return NULL;
1608 }
1609
1610 cache->key.objectid = start;
1611 cache->key.offset = size;
1612 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1613
1614 cache->fs_info = fs_info;
1615 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1616 set_free_space_tree_thresholds(cache);
1617
1618 atomic_set(&cache->count, 1);
1619 spin_lock_init(&cache->lock);
1620 init_rwsem(&cache->data_rwsem);
1621 INIT_LIST_HEAD(&cache->list);
1622 INIT_LIST_HEAD(&cache->cluster_list);
1623 INIT_LIST_HEAD(&cache->bg_list);
1624 INIT_LIST_HEAD(&cache->ro_list);
1625 INIT_LIST_HEAD(&cache->dirty_list);
1626 INIT_LIST_HEAD(&cache->io_list);
1627 btrfs_init_free_space_ctl(cache);
1628 atomic_set(&cache->trimming, 0);
1629 mutex_init(&cache->free_space_lock);
1630 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1631
1632 return cache;
1633}
1634
1635/*
1636 * Iterate all chunks and verify that each of them has the corresponding block
1637 * group
1638 */
1639static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1640{
1641 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1642 struct extent_map *em;
1643 struct btrfs_block_group_cache *bg;
1644 u64 start = 0;
1645 int ret = 0;
1646
1647 while (1) {
1648 read_lock(&map_tree->lock);
1649 /*
1650 * lookup_extent_mapping will return the first extent map
1651 * intersecting the range, so setting @len to 1 is enough to
1652 * get the first chunk.
1653 */
1654 em = lookup_extent_mapping(map_tree, start, 1);
1655 read_unlock(&map_tree->lock);
1656 if (!em)
1657 break;
1658
1659 bg = btrfs_lookup_block_group(fs_info, em->start);
1660 if (!bg) {
1661 btrfs_err(fs_info,
1662 "chunk start=%llu len=%llu doesn't have corresponding block group",
1663 em->start, em->len);
1664 ret = -EUCLEAN;
1665 free_extent_map(em);
1666 break;
1667 }
1668 if (bg->key.objectid != em->start ||
1669 bg->key.offset != em->len ||
1670 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1671 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1672 btrfs_err(fs_info,
1673"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1674 em->start, em->len,
1675 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1676 bg->key.objectid, bg->key.offset,
1677 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1678 ret = -EUCLEAN;
1679 free_extent_map(em);
1680 btrfs_put_block_group(bg);
1681 break;
1682 }
1683 start = em->start + em->len;
1684 free_extent_map(em);
1685 btrfs_put_block_group(bg);
1686 }
1687 return ret;
1688}
1689
1690int btrfs_read_block_groups(struct btrfs_fs_info *info)
1691{
1692 struct btrfs_path *path;
1693 int ret;
1694 struct btrfs_block_group_cache *cache;
1695 struct btrfs_space_info *space_info;
1696 struct btrfs_key key;
1697 struct btrfs_key found_key;
1698 struct extent_buffer *leaf;
1699 int need_clear = 0;
1700 u64 cache_gen;
1701 u64 feature;
1702 int mixed;
1703
1704 feature = btrfs_super_incompat_flags(info->super_copy);
1705 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
1706
1707 key.objectid = 0;
1708 key.offset = 0;
1709 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1710 path = btrfs_alloc_path();
1711 if (!path)
1712 return -ENOMEM;
1713 path->reada = READA_FORWARD;
1714
1715 cache_gen = btrfs_super_cache_generation(info->super_copy);
1716 if (btrfs_test_opt(info, SPACE_CACHE) &&
1717 btrfs_super_generation(info->super_copy) != cache_gen)
1718 need_clear = 1;
1719 if (btrfs_test_opt(info, CLEAR_CACHE))
1720 need_clear = 1;
1721
1722 while (1) {
1723 ret = find_first_block_group(info, path, &key);
1724 if (ret > 0)
1725 break;
1726 if (ret != 0)
1727 goto error;
1728
1729 leaf = path->nodes[0];
1730 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1731
1732 cache = btrfs_create_block_group_cache(info, found_key.objectid,
1733 found_key.offset);
1734 if (!cache) {
1735 ret = -ENOMEM;
1736 goto error;
1737 }
1738
1739 if (need_clear) {
1740 /*
1741 * When we mount with old space cache, we need to
1742 * set BTRFS_DC_CLEAR and set dirty flag.
1743 *
1744 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1745 * truncate the old free space cache inode and
1746 * setup a new one.
1747 * b) Setting 'dirty flag' makes sure that we flush
1748 * the new space cache info onto disk.
1749 */
1750 if (btrfs_test_opt(info, SPACE_CACHE))
1751 cache->disk_cache_state = BTRFS_DC_CLEAR;
1752 }
1753
1754 read_extent_buffer(leaf, &cache->item,
1755 btrfs_item_ptr_offset(leaf, path->slots[0]),
1756 sizeof(cache->item));
1757 cache->flags = btrfs_block_group_flags(&cache->item);
1758 if (!mixed &&
1759 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1760 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1761 btrfs_err(info,
1762"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1763 cache->key.objectid);
1764 btrfs_put_block_group(cache);
1765 ret = -EINVAL;
1766 goto error;
1767 }
1768
1769 key.objectid = found_key.objectid + found_key.offset;
1770 btrfs_release_path(path);
1771
1772 /*
1773 * We need to exclude the super stripes now so that the space
1774 * info has super bytes accounted for, otherwise we'll think
1775 * we have more space than we actually do.
1776 */
1777 ret = exclude_super_stripes(cache);
1778 if (ret) {
1779 /*
1780 * We may have excluded something, so call this just in
1781 * case.
1782 */
1783 btrfs_free_excluded_extents(cache);
1784 btrfs_put_block_group(cache);
1785 goto error;
1786 }
1787
1788 /*
1789 * Check for two cases, either we are full, and therefore
1790 * don't need to bother with the caching work since we won't
1791 * find any space, or we are empty, and we can just add all
1792 * the space in and be done with it. This saves us _a_lot_ of
1793 * time, particularly in the full case.
1794 */
1795 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
1796 cache->last_byte_to_unpin = (u64)-1;
1797 cache->cached = BTRFS_CACHE_FINISHED;
1798 btrfs_free_excluded_extents(cache);
1799 } else if (btrfs_block_group_used(&cache->item) == 0) {
1800 cache->last_byte_to_unpin = (u64)-1;
1801 cache->cached = BTRFS_CACHE_FINISHED;
1802 add_new_free_space(cache, found_key.objectid,
1803 found_key.objectid +
1804 found_key.offset);
1805 btrfs_free_excluded_extents(cache);
1806 }
1807
1808 ret = btrfs_add_block_group_cache(info, cache);
1809 if (ret) {
1810 btrfs_remove_free_space_cache(cache);
1811 btrfs_put_block_group(cache);
1812 goto error;
1813 }
1814
1815 trace_btrfs_add_block_group(info, cache, 0);
1816 btrfs_update_space_info(info, cache->flags, found_key.offset,
1817 btrfs_block_group_used(&cache->item),
1818 cache->bytes_super, &space_info);
1819
1820 cache->space_info = space_info;
1821
1822 link_block_group(cache);
1823
1824 set_avail_alloc_bits(info, cache->flags);
1825 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
1826 inc_block_group_ro(cache, 1);
1827 } else if (btrfs_block_group_used(&cache->item) == 0) {
1828 ASSERT(list_empty(&cache->bg_list));
1829 btrfs_mark_bg_unused(cache);
1830 }
1831 }
1832
1833 list_for_each_entry_rcu(space_info, &info->space_info, list) {
1834 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1835 (BTRFS_BLOCK_GROUP_RAID10 |
1836 BTRFS_BLOCK_GROUP_RAID1_MASK |
1837 BTRFS_BLOCK_GROUP_RAID56_MASK |
1838 BTRFS_BLOCK_GROUP_DUP)))
1839 continue;
1840 /*
1841 * Avoid allocating from un-mirrored block group if there are
1842 * mirrored block groups.
1843 */
1844 list_for_each_entry(cache,
1845 &space_info->block_groups[BTRFS_RAID_RAID0],
1846 list)
1847 inc_block_group_ro(cache, 1);
1848 list_for_each_entry(cache,
1849 &space_info->block_groups[BTRFS_RAID_SINGLE],
1850 list)
1851 inc_block_group_ro(cache, 1);
1852 }
1853
1854 btrfs_init_global_block_rsv(info);
1855 ret = check_chunk_block_group_mappings(info);
1856error:
1857 btrfs_free_path(path);
1858 return ret;
1859}
1860
1861void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
1862{
1863 struct btrfs_fs_info *fs_info = trans->fs_info;
1864 struct btrfs_block_group_cache *block_group;
1865 struct btrfs_root *extent_root = fs_info->extent_root;
1866 struct btrfs_block_group_item item;
1867 struct btrfs_key key;
1868 int ret = 0;
1869
1870 if (!trans->can_flush_pending_bgs)
1871 return;
1872
1873 while (!list_empty(&trans->new_bgs)) {
1874 block_group = list_first_entry(&trans->new_bgs,
1875 struct btrfs_block_group_cache,
1876 bg_list);
1877 if (ret)
1878 goto next;
1879
1880 spin_lock(&block_group->lock);
1881 memcpy(&item, &block_group->item, sizeof(item));
1882 memcpy(&key, &block_group->key, sizeof(key));
1883 spin_unlock(&block_group->lock);
1884
1885 ret = btrfs_insert_item(trans, extent_root, &key, &item,
1886 sizeof(item));
1887 if (ret)
1888 btrfs_abort_transaction(trans, ret);
1889 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
1890 if (ret)
1891 btrfs_abort_transaction(trans, ret);
1892 add_block_group_free_space(trans, block_group);
1893 /* Already aborted the transaction if it failed. */
1894next:
1895 btrfs_delayed_refs_rsv_release(fs_info, 1);
1896 list_del_init(&block_group->bg_list);
1897 }
1898 btrfs_trans_release_chunk_metadata(trans);
1899}
1900
1901int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
1902 u64 type, u64 chunk_offset, u64 size)
1903{
1904 struct btrfs_fs_info *fs_info = trans->fs_info;
1905 struct btrfs_block_group_cache *cache;
1906 int ret;
1907
1908 btrfs_set_log_full_commit(trans);
1909
1910 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
1911 if (!cache)
1912 return -ENOMEM;
1913
1914 btrfs_set_block_group_used(&cache->item, bytes_used);
1915 btrfs_set_block_group_chunk_objectid(&cache->item,
1916 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1917 btrfs_set_block_group_flags(&cache->item, type);
1918
1919 cache->flags = type;
1920 cache->last_byte_to_unpin = (u64)-1;
1921 cache->cached = BTRFS_CACHE_FINISHED;
1922 cache->needs_free_space = 1;
1923 ret = exclude_super_stripes(cache);
1924 if (ret) {
1925 /* We may have excluded something, so call this just in case */
1926 btrfs_free_excluded_extents(cache);
1927 btrfs_put_block_group(cache);
1928 return ret;
1929 }
1930
1931 add_new_free_space(cache, chunk_offset, chunk_offset + size);
1932
1933 btrfs_free_excluded_extents(cache);
1934
1935#ifdef CONFIG_BTRFS_DEBUG
1936 if (btrfs_should_fragment_free_space(cache)) {
1937 u64 new_bytes_used = size - bytes_used;
1938
1939 bytes_used += new_bytes_used >> 1;
1940 fragment_free_space(cache);
1941 }
1942#endif
1943 /*
1944 * Ensure the corresponding space_info object is created and
1945 * assigned to our block group. We want our bg to be added to the rbtree
1946 * with its ->space_info set.
1947 */
1948 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
1949 ASSERT(cache->space_info);
1950
1951 ret = btrfs_add_block_group_cache(fs_info, cache);
1952 if (ret) {
1953 btrfs_remove_free_space_cache(cache);
1954 btrfs_put_block_group(cache);
1955 return ret;
1956 }
1957
1958 /*
1959 * Now that our block group has its ->space_info set and is inserted in
1960 * the rbtree, update the space info's counters.
1961 */
1962 trace_btrfs_add_block_group(fs_info, cache, 1);
1963 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
1964 cache->bytes_super, &cache->space_info);
1965 btrfs_update_global_block_rsv(fs_info);
1966
1967 link_block_group(cache);
1968
1969 list_add_tail(&cache->bg_list, &trans->new_bgs);
1970 trans->delayed_ref_updates++;
1971 btrfs_update_delayed_refs_rsv(trans);
1972
1973 set_avail_alloc_bits(fs_info, type);
1974 return 0;
1975}
1976
1977static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
1978{
1979 u64 num_devices;
1980 u64 stripped;
1981
1982 /*
1983 * if restripe for this chunk_type is on pick target profile and
1984 * return, otherwise do the usual balance
1985 */
1986 stripped = get_restripe_target(fs_info, flags);
1987 if (stripped)
1988 return extended_to_chunk(stripped);
1989
1990 num_devices = fs_info->fs_devices->rw_devices;
1991
1992 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
1993 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
1994
1995 if (num_devices == 1) {
1996 stripped |= BTRFS_BLOCK_GROUP_DUP;
1997 stripped = flags & ~stripped;
1998
1999 /* turn raid0 into single device chunks */
2000 if (flags & BTRFS_BLOCK_GROUP_RAID0)
2001 return stripped;
2002
2003 /* turn mirroring into duplication */
2004 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2005 BTRFS_BLOCK_GROUP_RAID10))
2006 return stripped | BTRFS_BLOCK_GROUP_DUP;
2007 } else {
2008 /* they already had raid on here, just return */
2009 if (flags & stripped)
2010 return flags;
2011
2012 stripped |= BTRFS_BLOCK_GROUP_DUP;
2013 stripped = flags & ~stripped;
2014
2015 /* switch duplicated blocks with raid1 */
2016 if (flags & BTRFS_BLOCK_GROUP_DUP)
2017 return stripped | BTRFS_BLOCK_GROUP_RAID1;
2018
2019 /* this is drive concat, leave it alone */
2020 }
2021
2022 return flags;
2023}
2024
2025int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
2026
2027{
2028 struct btrfs_fs_info *fs_info = cache->fs_info;
2029 struct btrfs_trans_handle *trans;
2030 u64 alloc_flags;
2031 int ret;
2032
2033again:
2034 trans = btrfs_join_transaction(fs_info->extent_root);
2035 if (IS_ERR(trans))
2036 return PTR_ERR(trans);
2037
2038 /*
2039 * we're not allowed to set block groups readonly after the dirty
2040 * block groups cache has started writing. If it already started,
2041 * back off and let this transaction commit
2042 */
2043 mutex_lock(&fs_info->ro_block_group_mutex);
2044 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2045 u64 transid = trans->transid;
2046
2047 mutex_unlock(&fs_info->ro_block_group_mutex);
2048 btrfs_end_transaction(trans);
2049
2050 ret = btrfs_wait_for_commit(fs_info, transid);
2051 if (ret)
2052 return ret;
2053 goto again;
2054 }
2055
2056 /*
2057 * if we are changing raid levels, try to allocate a corresponding
2058 * block group with the new raid level.
2059 */
2060 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2061 if (alloc_flags != cache->flags) {
2062 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2063 /*
2064 * ENOSPC is allowed here, we may have enough space
2065 * already allocated at the new raid level to
2066 * carry on
2067 */
2068 if (ret == -ENOSPC)
2069 ret = 0;
2070 if (ret < 0)
2071 goto out;
2072 }
2073
2074 ret = inc_block_group_ro(cache, 0);
2075 if (!ret)
2076 goto out;
2077 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2078 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2079 if (ret < 0)
2080 goto out;
2081 ret = inc_block_group_ro(cache, 0);
2082out:
2083 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2084 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2085 mutex_lock(&fs_info->chunk_mutex);
2086 check_system_chunk(trans, alloc_flags);
2087 mutex_unlock(&fs_info->chunk_mutex);
2088 }
2089 mutex_unlock(&fs_info->ro_block_group_mutex);
2090
2091 btrfs_end_transaction(trans);
2092 return ret;
2093}
2094
2095void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
2096{
2097 struct btrfs_space_info *sinfo = cache->space_info;
2098 u64 num_bytes;
2099
2100 BUG_ON(!cache->ro);
2101
2102 spin_lock(&sinfo->lock);
2103 spin_lock(&cache->lock);
2104 if (!--cache->ro) {
2105 num_bytes = cache->key.offset - cache->reserved -
2106 cache->pinned - cache->bytes_super -
2107 btrfs_block_group_used(&cache->item);
2108 sinfo->bytes_readonly -= num_bytes;
2109 list_del_init(&cache->ro_list);
2110 }
2111 spin_unlock(&cache->lock);
2112 spin_unlock(&sinfo->lock);
2113}
2114
2115static int write_one_cache_group(struct btrfs_trans_handle *trans,
2116 struct btrfs_path *path,
2117 struct btrfs_block_group_cache *cache)
2118{
2119 struct btrfs_fs_info *fs_info = trans->fs_info;
2120 int ret;
2121 struct btrfs_root *extent_root = fs_info->extent_root;
2122 unsigned long bi;
2123 struct extent_buffer *leaf;
2124
2125 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2126 if (ret) {
2127 if (ret > 0)
2128 ret = -ENOENT;
2129 goto fail;
2130 }
2131
2132 leaf = path->nodes[0];
2133 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2134 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2135 btrfs_mark_buffer_dirty(leaf);
2136fail:
2137 btrfs_release_path(path);
2138 return ret;
2139
2140}
2141
2142static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2143 struct btrfs_trans_handle *trans,
2144 struct btrfs_path *path)
2145{
2146 struct btrfs_fs_info *fs_info = block_group->fs_info;
2147 struct btrfs_root *root = fs_info->tree_root;
2148 struct inode *inode = NULL;
2149 struct extent_changeset *data_reserved = NULL;
2150 u64 alloc_hint = 0;
2151 int dcs = BTRFS_DC_ERROR;
2152 u64 num_pages = 0;
2153 int retries = 0;
2154 int ret = 0;
2155
2156 /*
2157 * If this block group is smaller than 100 megs don't bother caching the
2158 * block group.
2159 */
2160 if (block_group->key.offset < (100 * SZ_1M)) {
2161 spin_lock(&block_group->lock);
2162 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2163 spin_unlock(&block_group->lock);
2164 return 0;
2165 }
2166
2167 if (trans->aborted)
2168 return 0;
2169again:
2170 inode = lookup_free_space_inode(block_group, path);
2171 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2172 ret = PTR_ERR(inode);
2173 btrfs_release_path(path);
2174 goto out;
2175 }
2176
2177 if (IS_ERR(inode)) {
2178 BUG_ON(retries);
2179 retries++;
2180
2181 if (block_group->ro)
2182 goto out_free;
2183
2184 ret = create_free_space_inode(trans, block_group, path);
2185 if (ret)
2186 goto out_free;
2187 goto again;
2188 }
2189
2190 /*
2191 * We want to set the generation to 0, that way if anything goes wrong
2192 * from here on out we know not to trust this cache when we load up next
2193 * time.
2194 */
2195 BTRFS_I(inode)->generation = 0;
2196 ret = btrfs_update_inode(trans, root, inode);
2197 if (ret) {
2198 /*
2199 * So theoretically we could recover from this, simply set the
2200 * super cache generation to 0 so we know to invalidate the
2201 * cache, but then we'd have to keep track of the block groups
2202 * that fail this way so we know we _have_ to reset this cache
2203 * before the next commit or risk reading stale cache. So to
2204 * limit our exposure to horrible edge cases lets just abort the
2205 * transaction, this only happens in really bad situations
2206 * anyway.
2207 */
2208 btrfs_abort_transaction(trans, ret);
2209 goto out_put;
2210 }
2211 WARN_ON(ret);
2212
2213 /* We've already setup this transaction, go ahead and exit */
2214 if (block_group->cache_generation == trans->transid &&
2215 i_size_read(inode)) {
2216 dcs = BTRFS_DC_SETUP;
2217 goto out_put;
2218 }
2219
2220 if (i_size_read(inode) > 0) {
2221 ret = btrfs_check_trunc_cache_free_space(fs_info,
2222 &fs_info->global_block_rsv);
2223 if (ret)
2224 goto out_put;
2225
2226 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2227 if (ret)
2228 goto out_put;
2229 }
2230
2231 spin_lock(&block_group->lock);
2232 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2233 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2234 /*
2235 * don't bother trying to write stuff out _if_
2236 * a) we're not cached,
2237 * b) we're with nospace_cache mount option,
2238 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2239 */
2240 dcs = BTRFS_DC_WRITTEN;
2241 spin_unlock(&block_group->lock);
2242 goto out_put;
2243 }
2244 spin_unlock(&block_group->lock);
2245
2246 /*
2247 * We hit an ENOSPC when setting up the cache in this transaction, just
2248 * skip doing the setup, we've already cleared the cache so we're safe.
2249 */
2250 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2251 ret = -ENOSPC;
2252 goto out_put;
2253 }
2254
2255 /*
2256 * Try to preallocate enough space based on how big the block group is.
2257 * Keep in mind this has to include any pinned space which could end up
2258 * taking up quite a bit since it's not folded into the other space
2259 * cache.
2260 */
2261 num_pages = div_u64(block_group->key.offset, SZ_256M);
2262 if (!num_pages)
2263 num_pages = 1;
2264
2265 num_pages *= 16;
2266 num_pages *= PAGE_SIZE;
2267
2268 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2269 if (ret)
2270 goto out_put;
2271
2272 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2273 num_pages, num_pages,
2274 &alloc_hint);
2275 /*
2276 * Our cache requires contiguous chunks so that we don't modify a bunch
2277 * of metadata or split extents when writing the cache out, which means
2278 * we can enospc if we are heavily fragmented in addition to just normal
2279 * out of space conditions. So if we hit this just skip setting up any
2280 * other block groups for this transaction, maybe we'll unpin enough
2281 * space the next time around.
2282 */
2283 if (!ret)
2284 dcs = BTRFS_DC_SETUP;
2285 else if (ret == -ENOSPC)
2286 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2287
2288out_put:
2289 iput(inode);
2290out_free:
2291 btrfs_release_path(path);
2292out:
2293 spin_lock(&block_group->lock);
2294 if (!ret && dcs == BTRFS_DC_SETUP)
2295 block_group->cache_generation = trans->transid;
2296 block_group->disk_cache_state = dcs;
2297 spin_unlock(&block_group->lock);
2298
2299 extent_changeset_free(data_reserved);
2300 return ret;
2301}
2302
2303int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2304{
2305 struct btrfs_fs_info *fs_info = trans->fs_info;
2306 struct btrfs_block_group_cache *cache, *tmp;
2307 struct btrfs_transaction *cur_trans = trans->transaction;
2308 struct btrfs_path *path;
2309
2310 if (list_empty(&cur_trans->dirty_bgs) ||
2311 !btrfs_test_opt(fs_info, SPACE_CACHE))
2312 return 0;
2313
2314 path = btrfs_alloc_path();
2315 if (!path)
2316 return -ENOMEM;
2317
2318 /* Could add new block groups, use _safe just in case */
2319 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2320 dirty_list) {
2321 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2322 cache_save_setup(cache, trans, path);
2323 }
2324
2325 btrfs_free_path(path);
2326 return 0;
2327}
2328
2329/*
2330 * Transaction commit does final block group cache writeback during a critical
2331 * section where nothing is allowed to change the FS. This is required in
2332 * order for the cache to actually match the block group, but can introduce a
2333 * lot of latency into the commit.
2334 *
2335 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2336 * There's a chance we'll have to redo some of it if the block group changes
2337 * again during the commit, but it greatly reduces the commit latency by
2338 * getting rid of the easy block groups while we're still allowing others to
2339 * join the commit.
2340 */
2341int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2342{
2343 struct btrfs_fs_info *fs_info = trans->fs_info;
2344 struct btrfs_block_group_cache *cache;
2345 struct btrfs_transaction *cur_trans = trans->transaction;
2346 int ret = 0;
2347 int should_put;
2348 struct btrfs_path *path = NULL;
2349 LIST_HEAD(dirty);
2350 struct list_head *io = &cur_trans->io_bgs;
2351 int num_started = 0;
2352 int loops = 0;
2353
2354 spin_lock(&cur_trans->dirty_bgs_lock);
2355 if (list_empty(&cur_trans->dirty_bgs)) {
2356 spin_unlock(&cur_trans->dirty_bgs_lock);
2357 return 0;
2358 }
2359 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2360 spin_unlock(&cur_trans->dirty_bgs_lock);
2361
2362again:
2363 /* Make sure all the block groups on our dirty list actually exist */
2364 btrfs_create_pending_block_groups(trans);
2365
2366 if (!path) {
2367 path = btrfs_alloc_path();
2368 if (!path)
2369 return -ENOMEM;
2370 }
2371
2372 /*
2373 * cache_write_mutex is here only to save us from balance or automatic
2374 * removal of empty block groups deleting this block group while we are
2375 * writing out the cache
2376 */
2377 mutex_lock(&trans->transaction->cache_write_mutex);
2378 while (!list_empty(&dirty)) {
2379 bool drop_reserve = true;
2380
2381 cache = list_first_entry(&dirty,
2382 struct btrfs_block_group_cache,
2383 dirty_list);
2384 /*
2385 * This can happen if something re-dirties a block group that
2386 * is already under IO. Just wait for it to finish and then do
2387 * it all again
2388 */
2389 if (!list_empty(&cache->io_list)) {
2390 list_del_init(&cache->io_list);
2391 btrfs_wait_cache_io(trans, cache, path);
2392 btrfs_put_block_group(cache);
2393 }
2394
2395
2396 /*
2397 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2398 * it should update the cache_state. Don't delete until after
2399 * we wait.
2400 *
2401 * Since we're not running in the commit critical section
2402 * we need the dirty_bgs_lock to protect from update_block_group
2403 */
2404 spin_lock(&cur_trans->dirty_bgs_lock);
2405 list_del_init(&cache->dirty_list);
2406 spin_unlock(&cur_trans->dirty_bgs_lock);
2407
2408 should_put = 1;
2409
2410 cache_save_setup(cache, trans, path);
2411
2412 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2413 cache->io_ctl.inode = NULL;
2414 ret = btrfs_write_out_cache(trans, cache, path);
2415 if (ret == 0 && cache->io_ctl.inode) {
2416 num_started++;
2417 should_put = 0;
2418
2419 /*
2420 * The cache_write_mutex is protecting the
2421 * io_list, also refer to the definition of
2422 * btrfs_transaction::io_bgs for more details
2423 */
2424 list_add_tail(&cache->io_list, io);
2425 } else {
2426 /*
2427 * If we failed to write the cache, the
2428 * generation will be bad and life goes on
2429 */
2430 ret = 0;
2431 }
2432 }
2433 if (!ret) {
2434 ret = write_one_cache_group(trans, path, cache);
2435 /*
2436 * Our block group might still be attached to the list
2437 * of new block groups in the transaction handle of some
2438 * other task (struct btrfs_trans_handle->new_bgs). This
2439 * means its block group item isn't yet in the extent
2440 * tree. If this happens ignore the error, as we will
2441 * try again later in the critical section of the
2442 * transaction commit.
2443 */
2444 if (ret == -ENOENT) {
2445 ret = 0;
2446 spin_lock(&cur_trans->dirty_bgs_lock);
2447 if (list_empty(&cache->dirty_list)) {
2448 list_add_tail(&cache->dirty_list,
2449 &cur_trans->dirty_bgs);
2450 btrfs_get_block_group(cache);
2451 drop_reserve = false;
2452 }
2453 spin_unlock(&cur_trans->dirty_bgs_lock);
2454 } else if (ret) {
2455 btrfs_abort_transaction(trans, ret);
2456 }
2457 }
2458
2459 /* If it's not on the io list, we need to put the block group */
2460 if (should_put)
2461 btrfs_put_block_group(cache);
2462 if (drop_reserve)
2463 btrfs_delayed_refs_rsv_release(fs_info, 1);
2464
2465 if (ret)
2466 break;
2467
2468 /*
2469 * Avoid blocking other tasks for too long. It might even save
2470 * us from writing caches for block groups that are going to be
2471 * removed.
2472 */
2473 mutex_unlock(&trans->transaction->cache_write_mutex);
2474 mutex_lock(&trans->transaction->cache_write_mutex);
2475 }
2476 mutex_unlock(&trans->transaction->cache_write_mutex);
2477
2478 /*
2479 * Go through delayed refs for all the stuff we've just kicked off
2480 * and then loop back (just once)
2481 */
2482 ret = btrfs_run_delayed_refs(trans, 0);
2483 if (!ret && loops == 0) {
2484 loops++;
2485 spin_lock(&cur_trans->dirty_bgs_lock);
2486 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2487 /*
2488 * dirty_bgs_lock protects us from concurrent block group
2489 * deletes too (not just cache_write_mutex).
2490 */
2491 if (!list_empty(&dirty)) {
2492 spin_unlock(&cur_trans->dirty_bgs_lock);
2493 goto again;
2494 }
2495 spin_unlock(&cur_trans->dirty_bgs_lock);
2496 } else if (ret < 0) {
2497 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2498 }
2499
2500 btrfs_free_path(path);
2501 return ret;
2502}
2503
2504int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2505{
2506 struct btrfs_fs_info *fs_info = trans->fs_info;
2507 struct btrfs_block_group_cache *cache;
2508 struct btrfs_transaction *cur_trans = trans->transaction;
2509 int ret = 0;
2510 int should_put;
2511 struct btrfs_path *path;
2512 struct list_head *io = &cur_trans->io_bgs;
2513 int num_started = 0;
2514
2515 path = btrfs_alloc_path();
2516 if (!path)
2517 return -ENOMEM;
2518
2519 /*
2520 * Even though we are in the critical section of the transaction commit,
2521 * we can still have concurrent tasks adding elements to this
2522 * transaction's list of dirty block groups. These tasks correspond to
2523 * endio free space workers started when writeback finishes for a
2524 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2525 * allocate new block groups as a result of COWing nodes of the root
2526 * tree when updating the free space inode. The writeback for the space
2527 * caches is triggered by an earlier call to
2528 * btrfs_start_dirty_block_groups() and iterations of the following
2529 * loop.
2530 * Also we want to do the cache_save_setup first and then run the
2531 * delayed refs to make sure we have the best chance at doing this all
2532 * in one shot.
2533 */
2534 spin_lock(&cur_trans->dirty_bgs_lock);
2535 while (!list_empty(&cur_trans->dirty_bgs)) {
2536 cache = list_first_entry(&cur_trans->dirty_bgs,
2537 struct btrfs_block_group_cache,
2538 dirty_list);
2539
2540 /*
2541 * This can happen if cache_save_setup re-dirties a block group
2542 * that is already under IO. Just wait for it to finish and
2543 * then do it all again
2544 */
2545 if (!list_empty(&cache->io_list)) {
2546 spin_unlock(&cur_trans->dirty_bgs_lock);
2547 list_del_init(&cache->io_list);
2548 btrfs_wait_cache_io(trans, cache, path);
2549 btrfs_put_block_group(cache);
2550 spin_lock(&cur_trans->dirty_bgs_lock);
2551 }
2552
2553 /*
2554 * Don't remove from the dirty list until after we've waited on
2555 * any pending IO
2556 */
2557 list_del_init(&cache->dirty_list);
2558 spin_unlock(&cur_trans->dirty_bgs_lock);
2559 should_put = 1;
2560
2561 cache_save_setup(cache, trans, path);
2562
2563 if (!ret)
2564 ret = btrfs_run_delayed_refs(trans,
2565 (unsigned long) -1);
2566
2567 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2568 cache->io_ctl.inode = NULL;
2569 ret = btrfs_write_out_cache(trans, cache, path);
2570 if (ret == 0 && cache->io_ctl.inode) {
2571 num_started++;
2572 should_put = 0;
2573 list_add_tail(&cache->io_list, io);
2574 } else {
2575 /*
2576 * If we failed to write the cache, the
2577 * generation will be bad and life goes on
2578 */
2579 ret = 0;
2580 }
2581 }
2582 if (!ret) {
2583 ret = write_one_cache_group(trans, path, cache);
2584 /*
2585 * One of the free space endio workers might have
2586 * created a new block group while updating a free space
2587 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2588 * and hasn't released its transaction handle yet, in
2589 * which case the new block group is still attached to
2590 * its transaction handle and its creation has not
2591 * finished yet (no block group item in the extent tree
2592 * yet, etc). If this is the case, wait for all free
2593 * space endio workers to finish and retry. This is a
2594 * a very rare case so no need for a more efficient and
2595 * complex approach.
2596 */
2597 if (ret == -ENOENT) {
2598 wait_event(cur_trans->writer_wait,
2599 atomic_read(&cur_trans->num_writers) == 1);
2600 ret = write_one_cache_group(trans, path, cache);
2601 }
2602 if (ret)
2603 btrfs_abort_transaction(trans, ret);
2604 }
2605
2606 /* If its not on the io list, we need to put the block group */
2607 if (should_put)
2608 btrfs_put_block_group(cache);
2609 btrfs_delayed_refs_rsv_release(fs_info, 1);
2610 spin_lock(&cur_trans->dirty_bgs_lock);
2611 }
2612 spin_unlock(&cur_trans->dirty_bgs_lock);
2613
2614 /*
2615 * Refer to the definition of io_bgs member for details why it's safe
2616 * to use it without any locking
2617 */
2618 while (!list_empty(io)) {
2619 cache = list_first_entry(io, struct btrfs_block_group_cache,
2620 io_list);
2621 list_del_init(&cache->io_list);
2622 btrfs_wait_cache_io(trans, cache, path);
2623 btrfs_put_block_group(cache);
2624 }
2625
2626 btrfs_free_path(path);
2627 return ret;
2628}
2629
2630int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2631 u64 bytenr, u64 num_bytes, int alloc)
2632{
2633 struct btrfs_fs_info *info = trans->fs_info;
2634 struct btrfs_block_group_cache *cache = NULL;
2635 u64 total = num_bytes;
2636 u64 old_val;
2637 u64 byte_in_group;
2638 int factor;
2639 int ret = 0;
2640
2641 /* Block accounting for super block */
2642 spin_lock(&info->delalloc_root_lock);
2643 old_val = btrfs_super_bytes_used(info->super_copy);
2644 if (alloc)
2645 old_val += num_bytes;
2646 else
2647 old_val -= num_bytes;
2648 btrfs_set_super_bytes_used(info->super_copy, old_val);
2649 spin_unlock(&info->delalloc_root_lock);
2650
2651 while (total) {
2652 cache = btrfs_lookup_block_group(info, bytenr);
2653 if (!cache) {
2654 ret = -ENOENT;
2655 break;
2656 }
2657 factor = btrfs_bg_type_to_factor(cache->flags);
2658
2659 /*
2660 * If this block group has free space cache written out, we
2661 * need to make sure to load it if we are removing space. This
2662 * is because we need the unpinning stage to actually add the
2663 * space back to the block group, otherwise we will leak space.
2664 */
2665 if (!alloc && cache->cached == BTRFS_CACHE_NO)
2666 btrfs_cache_block_group(cache, 1);
2667
2668 byte_in_group = bytenr - cache->key.objectid;
2669 WARN_ON(byte_in_group > cache->key.offset);
2670
2671 spin_lock(&cache->space_info->lock);
2672 spin_lock(&cache->lock);
2673
2674 if (btrfs_test_opt(info, SPACE_CACHE) &&
2675 cache->disk_cache_state < BTRFS_DC_CLEAR)
2676 cache->disk_cache_state = BTRFS_DC_CLEAR;
2677
2678 old_val = btrfs_block_group_used(&cache->item);
2679 num_bytes = min(total, cache->key.offset - byte_in_group);
2680 if (alloc) {
2681 old_val += num_bytes;
2682 btrfs_set_block_group_used(&cache->item, old_val);
2683 cache->reserved -= num_bytes;
2684 cache->space_info->bytes_reserved -= num_bytes;
2685 cache->space_info->bytes_used += num_bytes;
2686 cache->space_info->disk_used += num_bytes * factor;
2687 spin_unlock(&cache->lock);
2688 spin_unlock(&cache->space_info->lock);
2689 } else {
2690 old_val -= num_bytes;
2691 btrfs_set_block_group_used(&cache->item, old_val);
2692 cache->pinned += num_bytes;
2693 btrfs_space_info_update_bytes_pinned(info,
2694 cache->space_info, num_bytes);
2695 cache->space_info->bytes_used -= num_bytes;
2696 cache->space_info->disk_used -= num_bytes * factor;
2697 spin_unlock(&cache->lock);
2698 spin_unlock(&cache->space_info->lock);
2699
2700 percpu_counter_add_batch(
2701 &cache->space_info->total_bytes_pinned,
2702 num_bytes,
2703 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2704 set_extent_dirty(info->pinned_extents,
2705 bytenr, bytenr + num_bytes - 1,
2706 GFP_NOFS | __GFP_NOFAIL);
2707 }
2708
2709 spin_lock(&trans->transaction->dirty_bgs_lock);
2710 if (list_empty(&cache->dirty_list)) {
2711 list_add_tail(&cache->dirty_list,
2712 &trans->transaction->dirty_bgs);
2713 trans->delayed_ref_updates++;
2714 btrfs_get_block_group(cache);
2715 }
2716 spin_unlock(&trans->transaction->dirty_bgs_lock);
2717
2718 /*
2719 * No longer have used bytes in this block group, queue it for
2720 * deletion. We do this after adding the block group to the
2721 * dirty list to avoid races between cleaner kthread and space
2722 * cache writeout.
2723 */
2724 if (!alloc && old_val == 0)
2725 btrfs_mark_bg_unused(cache);
2726
2727 btrfs_put_block_group(cache);
2728 total -= num_bytes;
2729 bytenr += num_bytes;
2730 }
2731
2732 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2733 btrfs_update_delayed_refs_rsv(trans);
2734 return ret;
2735}
2736
2737/**
2738 * btrfs_add_reserved_bytes - update the block_group and space info counters
2739 * @cache: The cache we are manipulating
2740 * @ram_bytes: The number of bytes of file content, and will be same to
2741 * @num_bytes except for the compress path.
2742 * @num_bytes: The number of bytes in question
2743 * @delalloc: The blocks are allocated for the delalloc write
2744 *
2745 * This is called by the allocator when it reserves space. If this is a
2746 * reservation and the block group has become read only we cannot make the
2747 * reservation and return -EAGAIN, otherwise this function always succeeds.
2748 */
2749int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
2750 u64 ram_bytes, u64 num_bytes, int delalloc)
2751{
2752 struct btrfs_space_info *space_info = cache->space_info;
2753 int ret = 0;
2754
2755 spin_lock(&space_info->lock);
2756 spin_lock(&cache->lock);
2757 if (cache->ro) {
2758 ret = -EAGAIN;
2759 } else {
2760 cache->reserved += num_bytes;
2761 space_info->bytes_reserved += num_bytes;
2762 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2763 space_info->flags, num_bytes, 1);
2764 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2765 space_info, -ram_bytes);
2766 if (delalloc)
2767 cache->delalloc_bytes += num_bytes;
2768 }
2769 spin_unlock(&cache->lock);
2770 spin_unlock(&space_info->lock);
2771 return ret;
2772}
2773
2774/**
2775 * btrfs_free_reserved_bytes - update the block_group and space info counters
2776 * @cache: The cache we are manipulating
2777 * @num_bytes: The number of bytes in question
2778 * @delalloc: The blocks are allocated for the delalloc write
2779 *
2780 * This is called by somebody who is freeing space that was never actually used
2781 * on disk. For example if you reserve some space for a new leaf in transaction
2782 * A and before transaction A commits you free that leaf, you call this with
2783 * reserve set to 0 in order to clear the reservation.
2784 */
2785void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
2786 u64 num_bytes, int delalloc)
2787{
2788 struct btrfs_space_info *space_info = cache->space_info;
2789
2790 spin_lock(&space_info->lock);
2791 spin_lock(&cache->lock);
2792 if (cache->ro)
2793 space_info->bytes_readonly += num_bytes;
2794 cache->reserved -= num_bytes;
2795 space_info->bytes_reserved -= num_bytes;
2796 space_info->max_extent_size = 0;
2797
2798 if (delalloc)
2799 cache->delalloc_bytes -= num_bytes;
2800 spin_unlock(&cache->lock);
2801 spin_unlock(&space_info->lock);
2802}
2803
2804static void force_metadata_allocation(struct btrfs_fs_info *info)
2805{
2806 struct list_head *head = &info->space_info;
2807 struct btrfs_space_info *found;
2808
2809 rcu_read_lock();
2810 list_for_each_entry_rcu(found, head, list) {
2811 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2812 found->force_alloc = CHUNK_ALLOC_FORCE;
2813 }
2814 rcu_read_unlock();
2815}
2816
2817static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
2818 struct btrfs_space_info *sinfo, int force)
2819{
2820 u64 bytes_used = btrfs_space_info_used(sinfo, false);
2821 u64 thresh;
2822
2823 if (force == CHUNK_ALLOC_FORCE)
2824 return 1;
2825
2826 /*
2827 * in limited mode, we want to have some free space up to
2828 * about 1% of the FS size.
2829 */
2830 if (force == CHUNK_ALLOC_LIMITED) {
2831 thresh = btrfs_super_total_bytes(fs_info->super_copy);
2832 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
2833
2834 if (sinfo->total_bytes - bytes_used < thresh)
2835 return 1;
2836 }
2837
2838 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
2839 return 0;
2840 return 1;
2841}
2842
2843int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
2844{
2845 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
2846
2847 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2848}
2849
2850/*
2851 * If force is CHUNK_ALLOC_FORCE:
2852 * - return 1 if it successfully allocates a chunk,
2853 * - return errors including -ENOSPC otherwise.
2854 * If force is NOT CHUNK_ALLOC_FORCE:
2855 * - return 0 if it doesn't need to allocate a new chunk,
2856 * - return 1 if it successfully allocates a chunk,
2857 * - return errors including -ENOSPC otherwise.
2858 */
2859int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
2860 enum btrfs_chunk_alloc_enum force)
2861{
2862 struct btrfs_fs_info *fs_info = trans->fs_info;
2863 struct btrfs_space_info *space_info;
2864 bool wait_for_alloc = false;
2865 bool should_alloc = false;
2866 int ret = 0;
2867
2868 /* Don't re-enter if we're already allocating a chunk */
2869 if (trans->allocating_chunk)
2870 return -ENOSPC;
2871
2872 space_info = btrfs_find_space_info(fs_info, flags);
2873 ASSERT(space_info);
2874
2875 do {
2876 spin_lock(&space_info->lock);
2877 if (force < space_info->force_alloc)
2878 force = space_info->force_alloc;
2879 should_alloc = should_alloc_chunk(fs_info, space_info, force);
2880 if (space_info->full) {
2881 /* No more free physical space */
2882 if (should_alloc)
2883 ret = -ENOSPC;
2884 else
2885 ret = 0;
2886 spin_unlock(&space_info->lock);
2887 return ret;
2888 } else if (!should_alloc) {
2889 spin_unlock(&space_info->lock);
2890 return 0;
2891 } else if (space_info->chunk_alloc) {
2892 /*
2893 * Someone is already allocating, so we need to block
2894 * until this someone is finished and then loop to
2895 * recheck if we should continue with our allocation
2896 * attempt.
2897 */
2898 wait_for_alloc = true;
2899 spin_unlock(&space_info->lock);
2900 mutex_lock(&fs_info->chunk_mutex);
2901 mutex_unlock(&fs_info->chunk_mutex);
2902 } else {
2903 /* Proceed with allocation */
2904 space_info->chunk_alloc = 1;
2905 wait_for_alloc = false;
2906 spin_unlock(&space_info->lock);
2907 }
2908
2909 cond_resched();
2910 } while (wait_for_alloc);
2911
2912 mutex_lock(&fs_info->chunk_mutex);
2913 trans->allocating_chunk = true;
2914
2915 /*
2916 * If we have mixed data/metadata chunks we want to make sure we keep
2917 * allocating mixed chunks instead of individual chunks.
2918 */
2919 if (btrfs_mixed_space_info(space_info))
2920 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
2921
2922 /*
2923 * if we're doing a data chunk, go ahead and make sure that
2924 * we keep a reasonable number of metadata chunks allocated in the
2925 * FS as well.
2926 */
2927 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
2928 fs_info->data_chunk_allocations++;
2929 if (!(fs_info->data_chunk_allocations %
2930 fs_info->metadata_ratio))
2931 force_metadata_allocation(fs_info);
2932 }
2933
2934 /*
2935 * Check if we have enough space in SYSTEM chunk because we may need
2936 * to update devices.
2937 */
2938 check_system_chunk(trans, flags);
2939
2940 ret = btrfs_alloc_chunk(trans, flags);
2941 trans->allocating_chunk = false;
2942
2943 spin_lock(&space_info->lock);
2944 if (ret < 0) {
2945 if (ret == -ENOSPC)
2946 space_info->full = 1;
2947 else
2948 goto out;
2949 } else {
2950 ret = 1;
2951 space_info->max_extent_size = 0;
2952 }
2953
2954 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
2955out:
2956 space_info->chunk_alloc = 0;
2957 spin_unlock(&space_info->lock);
2958 mutex_unlock(&fs_info->chunk_mutex);
2959 /*
2960 * When we allocate a new chunk we reserve space in the chunk block
2961 * reserve to make sure we can COW nodes/leafs in the chunk tree or
2962 * add new nodes/leafs to it if we end up needing to do it when
2963 * inserting the chunk item and updating device items as part of the
2964 * second phase of chunk allocation, performed by
2965 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
2966 * large number of new block groups to create in our transaction
2967 * handle's new_bgs list to avoid exhausting the chunk block reserve
2968 * in extreme cases - like having a single transaction create many new
2969 * block groups when starting to write out the free space caches of all
2970 * the block groups that were made dirty during the lifetime of the
2971 * transaction.
2972 */
2973 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
2974 btrfs_create_pending_block_groups(trans);
2975
2976 return ret;
2977}
2978
2979static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
2980{
2981 u64 num_dev;
2982
2983 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
2984 if (!num_dev)
2985 num_dev = fs_info->fs_devices->rw_devices;
2986
2987 return num_dev;
2988}
2989
2990/*
2991 * If @is_allocation is true, reserve space in the system space info necessary
2992 * for allocating a chunk, otherwise if it's false, reserve space necessary for
2993 * removing a chunk.
2994 */
2995void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
2996{
2997 struct btrfs_fs_info *fs_info = trans->fs_info;
2998 struct btrfs_space_info *info;
2999 u64 left;
3000 u64 thresh;
3001 int ret = 0;
3002 u64 num_devs;
3003
3004 /*
3005 * Needed because we can end up allocating a system chunk and for an
3006 * atomic and race free space reservation in the chunk block reserve.
3007 */
3008 lockdep_assert_held(&fs_info->chunk_mutex);
3009
3010 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3011 spin_lock(&info->lock);
3012 left = info->total_bytes - btrfs_space_info_used(info, true);
3013 spin_unlock(&info->lock);
3014
3015 num_devs = get_profile_num_devs(fs_info, type);
3016
3017 /* num_devs device items to update and 1 chunk item to add or remove */
3018 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3019 btrfs_calc_insert_metadata_size(fs_info, 1);
3020
3021 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3022 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3023 left, thresh, type);
3024 btrfs_dump_space_info(fs_info, info, 0, 0);
3025 }
3026
3027 if (left < thresh) {
3028 u64 flags = btrfs_system_alloc_profile(fs_info);
3029
3030 /*
3031 * Ignore failure to create system chunk. We might end up not
3032 * needing it, as we might not need to COW all nodes/leafs from
3033 * the paths we visit in the chunk tree (they were already COWed
3034 * or created in the current transaction for example).
3035 */
3036 ret = btrfs_alloc_chunk(trans, flags);
3037 }
3038
3039 if (!ret) {
3040 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3041 &fs_info->chunk_block_rsv,
3042 thresh, BTRFS_RESERVE_NO_FLUSH);
3043 if (!ret)
3044 trans->chunk_bytes_reserved += thresh;
3045 }
3046}
3047
3048void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3049{
3050 struct btrfs_block_group_cache *block_group;
3051 u64 last = 0;
3052
3053 while (1) {
3054 struct inode *inode;
3055
3056 block_group = btrfs_lookup_first_block_group(info, last);
3057 while (block_group) {
3058 btrfs_wait_block_group_cache_done(block_group);
3059 spin_lock(&block_group->lock);
3060 if (block_group->iref)
3061 break;
3062 spin_unlock(&block_group->lock);
3063 block_group = btrfs_next_block_group(block_group);
3064 }
3065 if (!block_group) {
3066 if (last == 0)
3067 break;
3068 last = 0;
3069 continue;
3070 }
3071
3072 inode = block_group->inode;
3073 block_group->iref = 0;
3074 block_group->inode = NULL;
3075 spin_unlock(&block_group->lock);
3076 ASSERT(block_group->io_ctl.inode == NULL);
3077 iput(inode);
3078 last = block_group->key.objectid + block_group->key.offset;
3079 btrfs_put_block_group(block_group);
3080 }
3081}
3082
3083/*
3084 * Must be called only after stopping all workers, since we could have block
3085 * group caching kthreads running, and therefore they could race with us if we
3086 * freed the block groups before stopping them.
3087 */
3088int btrfs_free_block_groups(struct btrfs_fs_info *info)
3089{
3090 struct btrfs_block_group_cache *block_group;
3091 struct btrfs_space_info *space_info;
3092 struct btrfs_caching_control *caching_ctl;
3093 struct rb_node *n;
3094
3095 down_write(&info->commit_root_sem);
3096 while (!list_empty(&info->caching_block_groups)) {
3097 caching_ctl = list_entry(info->caching_block_groups.next,
3098 struct btrfs_caching_control, list);
3099 list_del(&caching_ctl->list);
3100 btrfs_put_caching_control(caching_ctl);
3101 }
3102 up_write(&info->commit_root_sem);
3103
3104 spin_lock(&info->unused_bgs_lock);
3105 while (!list_empty(&info->unused_bgs)) {
3106 block_group = list_first_entry(&info->unused_bgs,
3107 struct btrfs_block_group_cache,
3108 bg_list);
3109 list_del_init(&block_group->bg_list);
3110 btrfs_put_block_group(block_group);
3111 }
3112 spin_unlock(&info->unused_bgs_lock);
3113
3114 spin_lock(&info->block_group_cache_lock);
3115 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3116 block_group = rb_entry(n, struct btrfs_block_group_cache,
3117 cache_node);
3118 rb_erase(&block_group->cache_node,
3119 &info->block_group_cache_tree);
3120 RB_CLEAR_NODE(&block_group->cache_node);
3121 spin_unlock(&info->block_group_cache_lock);
3122
3123 down_write(&block_group->space_info->groups_sem);
3124 list_del(&block_group->list);
3125 up_write(&block_group->space_info->groups_sem);
3126
3127 /*
3128 * We haven't cached this block group, which means we could
3129 * possibly have excluded extents on this block group.
3130 */
3131 if (block_group->cached == BTRFS_CACHE_NO ||
3132 block_group->cached == BTRFS_CACHE_ERROR)
3133 btrfs_free_excluded_extents(block_group);
3134
3135 btrfs_remove_free_space_cache(block_group);
3136 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3137 ASSERT(list_empty(&block_group->dirty_list));
3138 ASSERT(list_empty(&block_group->io_list));
3139 ASSERT(list_empty(&block_group->bg_list));
3140 ASSERT(atomic_read(&block_group->count) == 1);
3141 btrfs_put_block_group(block_group);
3142
3143 spin_lock(&info->block_group_cache_lock);
3144 }
3145 spin_unlock(&info->block_group_cache_lock);
3146
3147 /*
3148 * Now that all the block groups are freed, go through and free all the
3149 * space_info structs. This is only called during the final stages of
3150 * unmount, and so we know nobody is using them. We call
3151 * synchronize_rcu() once before we start, just to be on the safe side.
3152 */
3153 synchronize_rcu();
3154
3155 btrfs_release_global_block_rsv(info);
3156
3157 while (!list_empty(&info->space_info)) {
3158 space_info = list_entry(info->space_info.next,
3159 struct btrfs_space_info,
3160 list);
3161
3162 /*
3163 * Do not hide this behind enospc_debug, this is actually
3164 * important and indicates a real bug if this happens.
3165 */
3166 if (WARN_ON(space_info->bytes_pinned > 0 ||
3167 space_info->bytes_reserved > 0 ||
3168 space_info->bytes_may_use > 0))
3169 btrfs_dump_space_info(info, space_info, 0, 0);
3170 list_del(&space_info->list);
3171 btrfs_sysfs_remove_space_info(space_info);
3172 }
3173 return 0;
3174}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/list_sort.h>
4#include "misc.h"
5#include "ctree.h"
6#include "block-group.h"
7#include "space-info.h"
8#include "disk-io.h"
9#include "free-space-cache.h"
10#include "free-space-tree.h"
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
14#include "sysfs.h"
15#include "tree-log.h"
16#include "delalloc-space.h"
17#include "discard.h"
18#include "raid56.h"
19#include "zoned.h"
20#include "fs.h"
21#include "accessors.h"
22#include "extent-tree.h"
23
24#ifdef CONFIG_BTRFS_DEBUG
25int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
26{
27 struct btrfs_fs_info *fs_info = block_group->fs_info;
28
29 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
30 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
31 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
32 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
33}
34#endif
35
36/*
37 * Return target flags in extended format or 0 if restripe for this chunk_type
38 * is not in progress
39 *
40 * Should be called with balance_lock held
41 */
42static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
43{
44 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
45 u64 target = 0;
46
47 if (!bctl)
48 return 0;
49
50 if (flags & BTRFS_BLOCK_GROUP_DATA &&
51 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
52 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
53 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
54 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
55 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
56 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
57 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
58 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
59 }
60
61 return target;
62}
63
64/*
65 * @flags: available profiles in extended format (see ctree.h)
66 *
67 * Return reduced profile in chunk format. If profile changing is in progress
68 * (either running or paused) picks the target profile (if it's already
69 * available), otherwise falls back to plain reducing.
70 */
71static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
72{
73 u64 num_devices = fs_info->fs_devices->rw_devices;
74 u64 target;
75 u64 raid_type;
76 u64 allowed = 0;
77
78 /*
79 * See if restripe for this chunk_type is in progress, if so try to
80 * reduce to the target profile
81 */
82 spin_lock(&fs_info->balance_lock);
83 target = get_restripe_target(fs_info, flags);
84 if (target) {
85 spin_unlock(&fs_info->balance_lock);
86 return extended_to_chunk(target);
87 }
88 spin_unlock(&fs_info->balance_lock);
89
90 /* First, mask out the RAID levels which aren't possible */
91 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
92 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
93 allowed |= btrfs_raid_array[raid_type].bg_flag;
94 }
95 allowed &= flags;
96
97 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
98 allowed = BTRFS_BLOCK_GROUP_RAID6;
99 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
100 allowed = BTRFS_BLOCK_GROUP_RAID5;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
102 allowed = BTRFS_BLOCK_GROUP_RAID10;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
104 allowed = BTRFS_BLOCK_GROUP_RAID1;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
106 allowed = BTRFS_BLOCK_GROUP_RAID0;
107
108 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
109
110 return extended_to_chunk(flags | allowed);
111}
112
113u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
114{
115 unsigned seq;
116 u64 flags;
117
118 do {
119 flags = orig_flags;
120 seq = read_seqbegin(&fs_info->profiles_lock);
121
122 if (flags & BTRFS_BLOCK_GROUP_DATA)
123 flags |= fs_info->avail_data_alloc_bits;
124 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
125 flags |= fs_info->avail_system_alloc_bits;
126 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
127 flags |= fs_info->avail_metadata_alloc_bits;
128 } while (read_seqretry(&fs_info->profiles_lock, seq));
129
130 return btrfs_reduce_alloc_profile(fs_info, flags);
131}
132
133void btrfs_get_block_group(struct btrfs_block_group *cache)
134{
135 refcount_inc(&cache->refs);
136}
137
138void btrfs_put_block_group(struct btrfs_block_group *cache)
139{
140 if (refcount_dec_and_test(&cache->refs)) {
141 WARN_ON(cache->pinned > 0);
142 /*
143 * If there was a failure to cleanup a log tree, very likely due
144 * to an IO failure on a writeback attempt of one or more of its
145 * extent buffers, we could not do proper (and cheap) unaccounting
146 * of their reserved space, so don't warn on reserved > 0 in that
147 * case.
148 */
149 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
150 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
151 WARN_ON(cache->reserved > 0);
152
153 /*
154 * A block_group shouldn't be on the discard_list anymore.
155 * Remove the block_group from the discard_list to prevent us
156 * from causing a panic due to NULL pointer dereference.
157 */
158 if (WARN_ON(!list_empty(&cache->discard_list)))
159 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
160 cache);
161
162 /*
163 * If not empty, someone is still holding mutex of
164 * full_stripe_lock, which can only be released by caller.
165 * And it will definitely cause use-after-free when caller
166 * tries to release full stripe lock.
167 *
168 * No better way to resolve, but only to warn.
169 */
170 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
171 kfree(cache->free_space_ctl);
172 kfree(cache->physical_map);
173 kfree(cache);
174 }
175}
176
177/*
178 * This adds the block group to the fs_info rb tree for the block group cache
179 */
180static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
181 struct btrfs_block_group *block_group)
182{
183 struct rb_node **p;
184 struct rb_node *parent = NULL;
185 struct btrfs_block_group *cache;
186 bool leftmost = true;
187
188 ASSERT(block_group->length != 0);
189
190 write_lock(&info->block_group_cache_lock);
191 p = &info->block_group_cache_tree.rb_root.rb_node;
192
193 while (*p) {
194 parent = *p;
195 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
196 if (block_group->start < cache->start) {
197 p = &(*p)->rb_left;
198 } else if (block_group->start > cache->start) {
199 p = &(*p)->rb_right;
200 leftmost = false;
201 } else {
202 write_unlock(&info->block_group_cache_lock);
203 return -EEXIST;
204 }
205 }
206
207 rb_link_node(&block_group->cache_node, parent, p);
208 rb_insert_color_cached(&block_group->cache_node,
209 &info->block_group_cache_tree, leftmost);
210
211 write_unlock(&info->block_group_cache_lock);
212
213 return 0;
214}
215
216/*
217 * This will return the block group at or after bytenr if contains is 0, else
218 * it will return the block group that contains the bytenr
219 */
220static struct btrfs_block_group *block_group_cache_tree_search(
221 struct btrfs_fs_info *info, u64 bytenr, int contains)
222{
223 struct btrfs_block_group *cache, *ret = NULL;
224 struct rb_node *n;
225 u64 end, start;
226
227 read_lock(&info->block_group_cache_lock);
228 n = info->block_group_cache_tree.rb_root.rb_node;
229
230 while (n) {
231 cache = rb_entry(n, struct btrfs_block_group, cache_node);
232 end = cache->start + cache->length - 1;
233 start = cache->start;
234
235 if (bytenr < start) {
236 if (!contains && (!ret || start < ret->start))
237 ret = cache;
238 n = n->rb_left;
239 } else if (bytenr > start) {
240 if (contains && bytenr <= end) {
241 ret = cache;
242 break;
243 }
244 n = n->rb_right;
245 } else {
246 ret = cache;
247 break;
248 }
249 }
250 if (ret)
251 btrfs_get_block_group(ret);
252 read_unlock(&info->block_group_cache_lock);
253
254 return ret;
255}
256
257/*
258 * Return the block group that starts at or after bytenr
259 */
260struct btrfs_block_group *btrfs_lookup_first_block_group(
261 struct btrfs_fs_info *info, u64 bytenr)
262{
263 return block_group_cache_tree_search(info, bytenr, 0);
264}
265
266/*
267 * Return the block group that contains the given bytenr
268 */
269struct btrfs_block_group *btrfs_lookup_block_group(
270 struct btrfs_fs_info *info, u64 bytenr)
271{
272 return block_group_cache_tree_search(info, bytenr, 1);
273}
274
275struct btrfs_block_group *btrfs_next_block_group(
276 struct btrfs_block_group *cache)
277{
278 struct btrfs_fs_info *fs_info = cache->fs_info;
279 struct rb_node *node;
280
281 read_lock(&fs_info->block_group_cache_lock);
282
283 /* If our block group was removed, we need a full search. */
284 if (RB_EMPTY_NODE(&cache->cache_node)) {
285 const u64 next_bytenr = cache->start + cache->length;
286
287 read_unlock(&fs_info->block_group_cache_lock);
288 btrfs_put_block_group(cache);
289 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
290 }
291 node = rb_next(&cache->cache_node);
292 btrfs_put_block_group(cache);
293 if (node) {
294 cache = rb_entry(node, struct btrfs_block_group, cache_node);
295 btrfs_get_block_group(cache);
296 } else
297 cache = NULL;
298 read_unlock(&fs_info->block_group_cache_lock);
299 return cache;
300}
301
302/*
303 * Check if we can do a NOCOW write for a given extent.
304 *
305 * @fs_info: The filesystem information object.
306 * @bytenr: Logical start address of the extent.
307 *
308 * Check if we can do a NOCOW write for the given extent, and increments the
309 * number of NOCOW writers in the block group that contains the extent, as long
310 * as the block group exists and it's currently not in read-only mode.
311 *
312 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
313 * is responsible for calling btrfs_dec_nocow_writers() later.
314 *
315 * Or NULL if we can not do a NOCOW write
316 */
317struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
318 u64 bytenr)
319{
320 struct btrfs_block_group *bg;
321 bool can_nocow = true;
322
323 bg = btrfs_lookup_block_group(fs_info, bytenr);
324 if (!bg)
325 return NULL;
326
327 spin_lock(&bg->lock);
328 if (bg->ro)
329 can_nocow = false;
330 else
331 atomic_inc(&bg->nocow_writers);
332 spin_unlock(&bg->lock);
333
334 if (!can_nocow) {
335 btrfs_put_block_group(bg);
336 return NULL;
337 }
338
339 /* No put on block group, done by btrfs_dec_nocow_writers(). */
340 return bg;
341}
342
343/*
344 * Decrement the number of NOCOW writers in a block group.
345 *
346 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
347 * and on the block group returned by that call. Typically this is called after
348 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
349 * relocation.
350 *
351 * After this call, the caller should not use the block group anymore. It it wants
352 * to use it, then it should get a reference on it before calling this function.
353 */
354void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
355{
356 if (atomic_dec_and_test(&bg->nocow_writers))
357 wake_up_var(&bg->nocow_writers);
358
359 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
360 btrfs_put_block_group(bg);
361}
362
363void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
364{
365 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
366}
367
368void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
369 const u64 start)
370{
371 struct btrfs_block_group *bg;
372
373 bg = btrfs_lookup_block_group(fs_info, start);
374 ASSERT(bg);
375 if (atomic_dec_and_test(&bg->reservations))
376 wake_up_var(&bg->reservations);
377 btrfs_put_block_group(bg);
378}
379
380void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
381{
382 struct btrfs_space_info *space_info = bg->space_info;
383
384 ASSERT(bg->ro);
385
386 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
387 return;
388
389 /*
390 * Our block group is read only but before we set it to read only,
391 * some task might have had allocated an extent from it already, but it
392 * has not yet created a respective ordered extent (and added it to a
393 * root's list of ordered extents).
394 * Therefore wait for any task currently allocating extents, since the
395 * block group's reservations counter is incremented while a read lock
396 * on the groups' semaphore is held and decremented after releasing
397 * the read access on that semaphore and creating the ordered extent.
398 */
399 down_write(&space_info->groups_sem);
400 up_write(&space_info->groups_sem);
401
402 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
403}
404
405struct btrfs_caching_control *btrfs_get_caching_control(
406 struct btrfs_block_group *cache)
407{
408 struct btrfs_caching_control *ctl;
409
410 spin_lock(&cache->lock);
411 if (!cache->caching_ctl) {
412 spin_unlock(&cache->lock);
413 return NULL;
414 }
415
416 ctl = cache->caching_ctl;
417 refcount_inc(&ctl->count);
418 spin_unlock(&cache->lock);
419 return ctl;
420}
421
422void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
423{
424 if (refcount_dec_and_test(&ctl->count))
425 kfree(ctl);
426}
427
428/*
429 * When we wait for progress in the block group caching, its because our
430 * allocation attempt failed at least once. So, we must sleep and let some
431 * progress happen before we try again.
432 *
433 * This function will sleep at least once waiting for new free space to show
434 * up, and then it will check the block group free space numbers for our min
435 * num_bytes. Another option is to have it go ahead and look in the rbtree for
436 * a free extent of a given size, but this is a good start.
437 *
438 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
439 * any of the information in this block group.
440 */
441void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
442 u64 num_bytes)
443{
444 struct btrfs_caching_control *caching_ctl;
445
446 caching_ctl = btrfs_get_caching_control(cache);
447 if (!caching_ctl)
448 return;
449
450 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
451 (cache->free_space_ctl->free_space >= num_bytes));
452
453 btrfs_put_caching_control(caching_ctl);
454}
455
456static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
457 struct btrfs_caching_control *caching_ctl)
458{
459 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
460 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
461}
462
463static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
464{
465 struct btrfs_caching_control *caching_ctl;
466 int ret;
467
468 caching_ctl = btrfs_get_caching_control(cache);
469 if (!caching_ctl)
470 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
471 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
472 btrfs_put_caching_control(caching_ctl);
473 return ret;
474}
475
476#ifdef CONFIG_BTRFS_DEBUG
477static void fragment_free_space(struct btrfs_block_group *block_group)
478{
479 struct btrfs_fs_info *fs_info = block_group->fs_info;
480 u64 start = block_group->start;
481 u64 len = block_group->length;
482 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
483 fs_info->nodesize : fs_info->sectorsize;
484 u64 step = chunk << 1;
485
486 while (len > chunk) {
487 btrfs_remove_free_space(block_group, start, chunk);
488 start += step;
489 if (len < step)
490 len = 0;
491 else
492 len -= step;
493 }
494}
495#endif
496
497/*
498 * This is only called by btrfs_cache_block_group, since we could have freed
499 * extents we need to check the pinned_extents for any extents that can't be
500 * used yet since their free space will be released as soon as the transaction
501 * commits.
502 */
503u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
504{
505 struct btrfs_fs_info *info = block_group->fs_info;
506 u64 extent_start, extent_end, size, total_added = 0;
507 int ret;
508
509 while (start < end) {
510 ret = find_first_extent_bit(&info->excluded_extents, start,
511 &extent_start, &extent_end,
512 EXTENT_DIRTY | EXTENT_UPTODATE,
513 NULL);
514 if (ret)
515 break;
516
517 if (extent_start <= start) {
518 start = extent_end + 1;
519 } else if (extent_start > start && extent_start < end) {
520 size = extent_start - start;
521 total_added += size;
522 ret = btrfs_add_free_space_async_trimmed(block_group,
523 start, size);
524 BUG_ON(ret); /* -ENOMEM or logic error */
525 start = extent_end + 1;
526 } else {
527 break;
528 }
529 }
530
531 if (start < end) {
532 size = end - start;
533 total_added += size;
534 ret = btrfs_add_free_space_async_trimmed(block_group, start,
535 size);
536 BUG_ON(ret); /* -ENOMEM or logic error */
537 }
538
539 return total_added;
540}
541
542static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
543{
544 struct btrfs_block_group *block_group = caching_ctl->block_group;
545 struct btrfs_fs_info *fs_info = block_group->fs_info;
546 struct btrfs_root *extent_root;
547 struct btrfs_path *path;
548 struct extent_buffer *leaf;
549 struct btrfs_key key;
550 u64 total_found = 0;
551 u64 last = 0;
552 u32 nritems;
553 int ret;
554 bool wakeup = true;
555
556 path = btrfs_alloc_path();
557 if (!path)
558 return -ENOMEM;
559
560 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
561 extent_root = btrfs_extent_root(fs_info, last);
562
563#ifdef CONFIG_BTRFS_DEBUG
564 /*
565 * If we're fragmenting we don't want to make anybody think we can
566 * allocate from this block group until we've had a chance to fragment
567 * the free space.
568 */
569 if (btrfs_should_fragment_free_space(block_group))
570 wakeup = false;
571#endif
572 /*
573 * We don't want to deadlock with somebody trying to allocate a new
574 * extent for the extent root while also trying to search the extent
575 * root to add free space. So we skip locking and search the commit
576 * root, since its read-only
577 */
578 path->skip_locking = 1;
579 path->search_commit_root = 1;
580 path->reada = READA_FORWARD;
581
582 key.objectid = last;
583 key.offset = 0;
584 key.type = BTRFS_EXTENT_ITEM_KEY;
585
586next:
587 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
588 if (ret < 0)
589 goto out;
590
591 leaf = path->nodes[0];
592 nritems = btrfs_header_nritems(leaf);
593
594 while (1) {
595 if (btrfs_fs_closing(fs_info) > 1) {
596 last = (u64)-1;
597 break;
598 }
599
600 if (path->slots[0] < nritems) {
601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
602 } else {
603 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
604 if (ret)
605 break;
606
607 if (need_resched() ||
608 rwsem_is_contended(&fs_info->commit_root_sem)) {
609 btrfs_release_path(path);
610 up_read(&fs_info->commit_root_sem);
611 mutex_unlock(&caching_ctl->mutex);
612 cond_resched();
613 mutex_lock(&caching_ctl->mutex);
614 down_read(&fs_info->commit_root_sem);
615 goto next;
616 }
617
618 ret = btrfs_next_leaf(extent_root, path);
619 if (ret < 0)
620 goto out;
621 if (ret)
622 break;
623 leaf = path->nodes[0];
624 nritems = btrfs_header_nritems(leaf);
625 continue;
626 }
627
628 if (key.objectid < last) {
629 key.objectid = last;
630 key.offset = 0;
631 key.type = BTRFS_EXTENT_ITEM_KEY;
632 btrfs_release_path(path);
633 goto next;
634 }
635
636 if (key.objectid < block_group->start) {
637 path->slots[0]++;
638 continue;
639 }
640
641 if (key.objectid >= block_group->start + block_group->length)
642 break;
643
644 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
645 key.type == BTRFS_METADATA_ITEM_KEY) {
646 total_found += add_new_free_space(block_group, last,
647 key.objectid);
648 if (key.type == BTRFS_METADATA_ITEM_KEY)
649 last = key.objectid +
650 fs_info->nodesize;
651 else
652 last = key.objectid + key.offset;
653
654 if (total_found > CACHING_CTL_WAKE_UP) {
655 total_found = 0;
656 if (wakeup)
657 wake_up(&caching_ctl->wait);
658 }
659 }
660 path->slots[0]++;
661 }
662 ret = 0;
663
664 total_found += add_new_free_space(block_group, last,
665 block_group->start + block_group->length);
666
667out:
668 btrfs_free_path(path);
669 return ret;
670}
671
672static noinline void caching_thread(struct btrfs_work *work)
673{
674 struct btrfs_block_group *block_group;
675 struct btrfs_fs_info *fs_info;
676 struct btrfs_caching_control *caching_ctl;
677 int ret;
678
679 caching_ctl = container_of(work, struct btrfs_caching_control, work);
680 block_group = caching_ctl->block_group;
681 fs_info = block_group->fs_info;
682
683 mutex_lock(&caching_ctl->mutex);
684 down_read(&fs_info->commit_root_sem);
685
686 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
687 ret = load_free_space_cache(block_group);
688 if (ret == 1) {
689 ret = 0;
690 goto done;
691 }
692
693 /*
694 * We failed to load the space cache, set ourselves to
695 * CACHE_STARTED and carry on.
696 */
697 spin_lock(&block_group->lock);
698 block_group->cached = BTRFS_CACHE_STARTED;
699 spin_unlock(&block_group->lock);
700 wake_up(&caching_ctl->wait);
701 }
702
703 /*
704 * If we are in the transaction that populated the free space tree we
705 * can't actually cache from the free space tree as our commit root and
706 * real root are the same, so we could change the contents of the blocks
707 * while caching. Instead do the slow caching in this case, and after
708 * the transaction has committed we will be safe.
709 */
710 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
711 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
712 ret = load_free_space_tree(caching_ctl);
713 else
714 ret = load_extent_tree_free(caching_ctl);
715done:
716 spin_lock(&block_group->lock);
717 block_group->caching_ctl = NULL;
718 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
719 spin_unlock(&block_group->lock);
720
721#ifdef CONFIG_BTRFS_DEBUG
722 if (btrfs_should_fragment_free_space(block_group)) {
723 u64 bytes_used;
724
725 spin_lock(&block_group->space_info->lock);
726 spin_lock(&block_group->lock);
727 bytes_used = block_group->length - block_group->used;
728 block_group->space_info->bytes_used += bytes_used >> 1;
729 spin_unlock(&block_group->lock);
730 spin_unlock(&block_group->space_info->lock);
731 fragment_free_space(block_group);
732 }
733#endif
734
735 up_read(&fs_info->commit_root_sem);
736 btrfs_free_excluded_extents(block_group);
737 mutex_unlock(&caching_ctl->mutex);
738
739 wake_up(&caching_ctl->wait);
740
741 btrfs_put_caching_control(caching_ctl);
742 btrfs_put_block_group(block_group);
743}
744
745int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
746{
747 struct btrfs_fs_info *fs_info = cache->fs_info;
748 struct btrfs_caching_control *caching_ctl = NULL;
749 int ret = 0;
750
751 /* Allocator for zoned filesystems does not use the cache at all */
752 if (btrfs_is_zoned(fs_info))
753 return 0;
754
755 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
756 if (!caching_ctl)
757 return -ENOMEM;
758
759 INIT_LIST_HEAD(&caching_ctl->list);
760 mutex_init(&caching_ctl->mutex);
761 init_waitqueue_head(&caching_ctl->wait);
762 caching_ctl->block_group = cache;
763 refcount_set(&caching_ctl->count, 2);
764 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
765
766 spin_lock(&cache->lock);
767 if (cache->cached != BTRFS_CACHE_NO) {
768 kfree(caching_ctl);
769
770 caching_ctl = cache->caching_ctl;
771 if (caching_ctl)
772 refcount_inc(&caching_ctl->count);
773 spin_unlock(&cache->lock);
774 goto out;
775 }
776 WARN_ON(cache->caching_ctl);
777 cache->caching_ctl = caching_ctl;
778 cache->cached = BTRFS_CACHE_STARTED;
779 spin_unlock(&cache->lock);
780
781 write_lock(&fs_info->block_group_cache_lock);
782 refcount_inc(&caching_ctl->count);
783 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
784 write_unlock(&fs_info->block_group_cache_lock);
785
786 btrfs_get_block_group(cache);
787
788 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
789out:
790 if (wait && caching_ctl)
791 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
792 if (caching_ctl)
793 btrfs_put_caching_control(caching_ctl);
794
795 return ret;
796}
797
798static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
799{
800 u64 extra_flags = chunk_to_extended(flags) &
801 BTRFS_EXTENDED_PROFILE_MASK;
802
803 write_seqlock(&fs_info->profiles_lock);
804 if (flags & BTRFS_BLOCK_GROUP_DATA)
805 fs_info->avail_data_alloc_bits &= ~extra_flags;
806 if (flags & BTRFS_BLOCK_GROUP_METADATA)
807 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
808 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
809 fs_info->avail_system_alloc_bits &= ~extra_flags;
810 write_sequnlock(&fs_info->profiles_lock);
811}
812
813/*
814 * Clear incompat bits for the following feature(s):
815 *
816 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
817 * in the whole filesystem
818 *
819 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
820 */
821static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
822{
823 bool found_raid56 = false;
824 bool found_raid1c34 = false;
825
826 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
827 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
828 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
829 struct list_head *head = &fs_info->space_info;
830 struct btrfs_space_info *sinfo;
831
832 list_for_each_entry_rcu(sinfo, head, list) {
833 down_read(&sinfo->groups_sem);
834 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
835 found_raid56 = true;
836 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
837 found_raid56 = true;
838 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
839 found_raid1c34 = true;
840 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
841 found_raid1c34 = true;
842 up_read(&sinfo->groups_sem);
843 }
844 if (!found_raid56)
845 btrfs_clear_fs_incompat(fs_info, RAID56);
846 if (!found_raid1c34)
847 btrfs_clear_fs_incompat(fs_info, RAID1C34);
848 }
849}
850
851static int remove_block_group_item(struct btrfs_trans_handle *trans,
852 struct btrfs_path *path,
853 struct btrfs_block_group *block_group)
854{
855 struct btrfs_fs_info *fs_info = trans->fs_info;
856 struct btrfs_root *root;
857 struct btrfs_key key;
858 int ret;
859
860 root = btrfs_block_group_root(fs_info);
861 key.objectid = block_group->start;
862 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
863 key.offset = block_group->length;
864
865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
866 if (ret > 0)
867 ret = -ENOENT;
868 if (ret < 0)
869 return ret;
870
871 ret = btrfs_del_item(trans, root, path);
872 return ret;
873}
874
875int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
876 u64 group_start, struct extent_map *em)
877{
878 struct btrfs_fs_info *fs_info = trans->fs_info;
879 struct btrfs_path *path;
880 struct btrfs_block_group *block_group;
881 struct btrfs_free_cluster *cluster;
882 struct inode *inode;
883 struct kobject *kobj = NULL;
884 int ret;
885 int index;
886 int factor;
887 struct btrfs_caching_control *caching_ctl = NULL;
888 bool remove_em;
889 bool remove_rsv = false;
890
891 block_group = btrfs_lookup_block_group(fs_info, group_start);
892 BUG_ON(!block_group);
893 BUG_ON(!block_group->ro);
894
895 trace_btrfs_remove_block_group(block_group);
896 /*
897 * Free the reserved super bytes from this block group before
898 * remove it.
899 */
900 btrfs_free_excluded_extents(block_group);
901 btrfs_free_ref_tree_range(fs_info, block_group->start,
902 block_group->length);
903
904 index = btrfs_bg_flags_to_raid_index(block_group->flags);
905 factor = btrfs_bg_type_to_factor(block_group->flags);
906
907 /* make sure this block group isn't part of an allocation cluster */
908 cluster = &fs_info->data_alloc_cluster;
909 spin_lock(&cluster->refill_lock);
910 btrfs_return_cluster_to_free_space(block_group, cluster);
911 spin_unlock(&cluster->refill_lock);
912
913 /*
914 * make sure this block group isn't part of a metadata
915 * allocation cluster
916 */
917 cluster = &fs_info->meta_alloc_cluster;
918 spin_lock(&cluster->refill_lock);
919 btrfs_return_cluster_to_free_space(block_group, cluster);
920 spin_unlock(&cluster->refill_lock);
921
922 btrfs_clear_treelog_bg(block_group);
923 btrfs_clear_data_reloc_bg(block_group);
924
925 path = btrfs_alloc_path();
926 if (!path) {
927 ret = -ENOMEM;
928 goto out;
929 }
930
931 /*
932 * get the inode first so any iput calls done for the io_list
933 * aren't the final iput (no unlinks allowed now)
934 */
935 inode = lookup_free_space_inode(block_group, path);
936
937 mutex_lock(&trans->transaction->cache_write_mutex);
938 /*
939 * Make sure our free space cache IO is done before removing the
940 * free space inode
941 */
942 spin_lock(&trans->transaction->dirty_bgs_lock);
943 if (!list_empty(&block_group->io_list)) {
944 list_del_init(&block_group->io_list);
945
946 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
947
948 spin_unlock(&trans->transaction->dirty_bgs_lock);
949 btrfs_wait_cache_io(trans, block_group, path);
950 btrfs_put_block_group(block_group);
951 spin_lock(&trans->transaction->dirty_bgs_lock);
952 }
953
954 if (!list_empty(&block_group->dirty_list)) {
955 list_del_init(&block_group->dirty_list);
956 remove_rsv = true;
957 btrfs_put_block_group(block_group);
958 }
959 spin_unlock(&trans->transaction->dirty_bgs_lock);
960 mutex_unlock(&trans->transaction->cache_write_mutex);
961
962 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
963 if (ret)
964 goto out;
965
966 write_lock(&fs_info->block_group_cache_lock);
967 rb_erase_cached(&block_group->cache_node,
968 &fs_info->block_group_cache_tree);
969 RB_CLEAR_NODE(&block_group->cache_node);
970
971 /* Once for the block groups rbtree */
972 btrfs_put_block_group(block_group);
973
974 write_unlock(&fs_info->block_group_cache_lock);
975
976 down_write(&block_group->space_info->groups_sem);
977 /*
978 * we must use list_del_init so people can check to see if they
979 * are still on the list after taking the semaphore
980 */
981 list_del_init(&block_group->list);
982 if (list_empty(&block_group->space_info->block_groups[index])) {
983 kobj = block_group->space_info->block_group_kobjs[index];
984 block_group->space_info->block_group_kobjs[index] = NULL;
985 clear_avail_alloc_bits(fs_info, block_group->flags);
986 }
987 up_write(&block_group->space_info->groups_sem);
988 clear_incompat_bg_bits(fs_info, block_group->flags);
989 if (kobj) {
990 kobject_del(kobj);
991 kobject_put(kobj);
992 }
993
994 if (block_group->cached == BTRFS_CACHE_STARTED)
995 btrfs_wait_block_group_cache_done(block_group);
996
997 write_lock(&fs_info->block_group_cache_lock);
998 caching_ctl = btrfs_get_caching_control(block_group);
999 if (!caching_ctl) {
1000 struct btrfs_caching_control *ctl;
1001
1002 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1003 if (ctl->block_group == block_group) {
1004 caching_ctl = ctl;
1005 refcount_inc(&caching_ctl->count);
1006 break;
1007 }
1008 }
1009 }
1010 if (caching_ctl)
1011 list_del_init(&caching_ctl->list);
1012 write_unlock(&fs_info->block_group_cache_lock);
1013
1014 if (caching_ctl) {
1015 /* Once for the caching bgs list and once for us. */
1016 btrfs_put_caching_control(caching_ctl);
1017 btrfs_put_caching_control(caching_ctl);
1018 }
1019
1020 spin_lock(&trans->transaction->dirty_bgs_lock);
1021 WARN_ON(!list_empty(&block_group->dirty_list));
1022 WARN_ON(!list_empty(&block_group->io_list));
1023 spin_unlock(&trans->transaction->dirty_bgs_lock);
1024
1025 btrfs_remove_free_space_cache(block_group);
1026
1027 spin_lock(&block_group->space_info->lock);
1028 list_del_init(&block_group->ro_list);
1029
1030 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1031 WARN_ON(block_group->space_info->total_bytes
1032 < block_group->length);
1033 WARN_ON(block_group->space_info->bytes_readonly
1034 < block_group->length - block_group->zone_unusable);
1035 WARN_ON(block_group->space_info->bytes_zone_unusable
1036 < block_group->zone_unusable);
1037 WARN_ON(block_group->space_info->disk_total
1038 < block_group->length * factor);
1039 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1040 &block_group->runtime_flags) &&
1041 block_group->space_info->active_total_bytes
1042 < block_group->length);
1043 }
1044 block_group->space_info->total_bytes -= block_group->length;
1045 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1046 block_group->space_info->active_total_bytes -= block_group->length;
1047 block_group->space_info->bytes_readonly -=
1048 (block_group->length - block_group->zone_unusable);
1049 block_group->space_info->bytes_zone_unusable -=
1050 block_group->zone_unusable;
1051 block_group->space_info->disk_total -= block_group->length * factor;
1052
1053 spin_unlock(&block_group->space_info->lock);
1054
1055 /*
1056 * Remove the free space for the block group from the free space tree
1057 * and the block group's item from the extent tree before marking the
1058 * block group as removed. This is to prevent races with tasks that
1059 * freeze and unfreeze a block group, this task and another task
1060 * allocating a new block group - the unfreeze task ends up removing
1061 * the block group's extent map before the task calling this function
1062 * deletes the block group item from the extent tree, allowing for
1063 * another task to attempt to create another block group with the same
1064 * item key (and failing with -EEXIST and a transaction abort).
1065 */
1066 ret = remove_block_group_free_space(trans, block_group);
1067 if (ret)
1068 goto out;
1069
1070 ret = remove_block_group_item(trans, path, block_group);
1071 if (ret < 0)
1072 goto out;
1073
1074 spin_lock(&block_group->lock);
1075 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1076
1077 /*
1078 * At this point trimming or scrub can't start on this block group,
1079 * because we removed the block group from the rbtree
1080 * fs_info->block_group_cache_tree so no one can't find it anymore and
1081 * even if someone already got this block group before we removed it
1082 * from the rbtree, they have already incremented block_group->frozen -
1083 * if they didn't, for the trimming case they won't find any free space
1084 * entries because we already removed them all when we called
1085 * btrfs_remove_free_space_cache().
1086 *
1087 * And we must not remove the extent map from the fs_info->mapping_tree
1088 * to prevent the same logical address range and physical device space
1089 * ranges from being reused for a new block group. This is needed to
1090 * avoid races with trimming and scrub.
1091 *
1092 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1093 * completely transactionless, so while it is trimming a range the
1094 * currently running transaction might finish and a new one start,
1095 * allowing for new block groups to be created that can reuse the same
1096 * physical device locations unless we take this special care.
1097 *
1098 * There may also be an implicit trim operation if the file system
1099 * is mounted with -odiscard. The same protections must remain
1100 * in place until the extents have been discarded completely when
1101 * the transaction commit has completed.
1102 */
1103 remove_em = (atomic_read(&block_group->frozen) == 0);
1104 spin_unlock(&block_group->lock);
1105
1106 if (remove_em) {
1107 struct extent_map_tree *em_tree;
1108
1109 em_tree = &fs_info->mapping_tree;
1110 write_lock(&em_tree->lock);
1111 remove_extent_mapping(em_tree, em);
1112 write_unlock(&em_tree->lock);
1113 /* once for the tree */
1114 free_extent_map(em);
1115 }
1116
1117out:
1118 /* Once for the lookup reference */
1119 btrfs_put_block_group(block_group);
1120 if (remove_rsv)
1121 btrfs_delayed_refs_rsv_release(fs_info, 1);
1122 btrfs_free_path(path);
1123 return ret;
1124}
1125
1126struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1127 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1128{
1129 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1130 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1131 struct extent_map *em;
1132 struct map_lookup *map;
1133 unsigned int num_items;
1134
1135 read_lock(&em_tree->lock);
1136 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1137 read_unlock(&em_tree->lock);
1138 ASSERT(em && em->start == chunk_offset);
1139
1140 /*
1141 * We need to reserve 3 + N units from the metadata space info in order
1142 * to remove a block group (done at btrfs_remove_chunk() and at
1143 * btrfs_remove_block_group()), which are used for:
1144 *
1145 * 1 unit for adding the free space inode's orphan (located in the tree
1146 * of tree roots).
1147 * 1 unit for deleting the block group item (located in the extent
1148 * tree).
1149 * 1 unit for deleting the free space item (located in tree of tree
1150 * roots).
1151 * N units for deleting N device extent items corresponding to each
1152 * stripe (located in the device tree).
1153 *
1154 * In order to remove a block group we also need to reserve units in the
1155 * system space info in order to update the chunk tree (update one or
1156 * more device items and remove one chunk item), but this is done at
1157 * btrfs_remove_chunk() through a call to check_system_chunk().
1158 */
1159 map = em->map_lookup;
1160 num_items = 3 + map->num_stripes;
1161 free_extent_map(em);
1162
1163 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1164}
1165
1166/*
1167 * Mark block group @cache read-only, so later write won't happen to block
1168 * group @cache.
1169 *
1170 * If @force is not set, this function will only mark the block group readonly
1171 * if we have enough free space (1M) in other metadata/system block groups.
1172 * If @force is not set, this function will mark the block group readonly
1173 * without checking free space.
1174 *
1175 * NOTE: This function doesn't care if other block groups can contain all the
1176 * data in this block group. That check should be done by relocation routine,
1177 * not this function.
1178 */
1179static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1180{
1181 struct btrfs_space_info *sinfo = cache->space_info;
1182 u64 num_bytes;
1183 int ret = -ENOSPC;
1184
1185 spin_lock(&sinfo->lock);
1186 spin_lock(&cache->lock);
1187
1188 if (cache->swap_extents) {
1189 ret = -ETXTBSY;
1190 goto out;
1191 }
1192
1193 if (cache->ro) {
1194 cache->ro++;
1195 ret = 0;
1196 goto out;
1197 }
1198
1199 num_bytes = cache->length - cache->reserved - cache->pinned -
1200 cache->bytes_super - cache->zone_unusable - cache->used;
1201
1202 /*
1203 * Data never overcommits, even in mixed mode, so do just the straight
1204 * check of left over space in how much we have allocated.
1205 */
1206 if (force) {
1207 ret = 0;
1208 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1209 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1210
1211 /*
1212 * Here we make sure if we mark this bg RO, we still have enough
1213 * free space as buffer.
1214 */
1215 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1216 ret = 0;
1217 } else {
1218 /*
1219 * We overcommit metadata, so we need to do the
1220 * btrfs_can_overcommit check here, and we need to pass in
1221 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1222 * leeway to allow us to mark this block group as read only.
1223 */
1224 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1225 BTRFS_RESERVE_NO_FLUSH))
1226 ret = 0;
1227 }
1228
1229 if (!ret) {
1230 sinfo->bytes_readonly += num_bytes;
1231 if (btrfs_is_zoned(cache->fs_info)) {
1232 /* Migrate zone_unusable bytes to readonly */
1233 sinfo->bytes_readonly += cache->zone_unusable;
1234 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1235 cache->zone_unusable = 0;
1236 }
1237 cache->ro++;
1238 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1239 }
1240out:
1241 spin_unlock(&cache->lock);
1242 spin_unlock(&sinfo->lock);
1243 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1244 btrfs_info(cache->fs_info,
1245 "unable to make block group %llu ro", cache->start);
1246 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1247 }
1248 return ret;
1249}
1250
1251static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1252 struct btrfs_block_group *bg)
1253{
1254 struct btrfs_fs_info *fs_info = bg->fs_info;
1255 struct btrfs_transaction *prev_trans = NULL;
1256 const u64 start = bg->start;
1257 const u64 end = start + bg->length - 1;
1258 int ret;
1259
1260 spin_lock(&fs_info->trans_lock);
1261 if (trans->transaction->list.prev != &fs_info->trans_list) {
1262 prev_trans = list_last_entry(&trans->transaction->list,
1263 struct btrfs_transaction, list);
1264 refcount_inc(&prev_trans->use_count);
1265 }
1266 spin_unlock(&fs_info->trans_lock);
1267
1268 /*
1269 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1270 * btrfs_finish_extent_commit(). If we are at transaction N, another
1271 * task might be running finish_extent_commit() for the previous
1272 * transaction N - 1, and have seen a range belonging to the block
1273 * group in pinned_extents before we were able to clear the whole block
1274 * group range from pinned_extents. This means that task can lookup for
1275 * the block group after we unpinned it from pinned_extents and removed
1276 * it, leading to a BUG_ON() at unpin_extent_range().
1277 */
1278 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1279 if (prev_trans) {
1280 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1281 EXTENT_DIRTY);
1282 if (ret)
1283 goto out;
1284 }
1285
1286 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1287 EXTENT_DIRTY);
1288out:
1289 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1290 if (prev_trans)
1291 btrfs_put_transaction(prev_trans);
1292
1293 return ret == 0;
1294}
1295
1296/*
1297 * Process the unused_bgs list and remove any that don't have any allocated
1298 * space inside of them.
1299 */
1300void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1301{
1302 struct btrfs_block_group *block_group;
1303 struct btrfs_space_info *space_info;
1304 struct btrfs_trans_handle *trans;
1305 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1306 int ret = 0;
1307
1308 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1309 return;
1310
1311 if (btrfs_fs_closing(fs_info))
1312 return;
1313
1314 /*
1315 * Long running balances can keep us blocked here for eternity, so
1316 * simply skip deletion if we're unable to get the mutex.
1317 */
1318 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1319 return;
1320
1321 spin_lock(&fs_info->unused_bgs_lock);
1322 while (!list_empty(&fs_info->unused_bgs)) {
1323 int trimming;
1324
1325 block_group = list_first_entry(&fs_info->unused_bgs,
1326 struct btrfs_block_group,
1327 bg_list);
1328 list_del_init(&block_group->bg_list);
1329
1330 space_info = block_group->space_info;
1331
1332 if (ret || btrfs_mixed_space_info(space_info)) {
1333 btrfs_put_block_group(block_group);
1334 continue;
1335 }
1336 spin_unlock(&fs_info->unused_bgs_lock);
1337
1338 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1339
1340 /* Don't want to race with allocators so take the groups_sem */
1341 down_write(&space_info->groups_sem);
1342
1343 /*
1344 * Async discard moves the final block group discard to be prior
1345 * to the unused_bgs code path. Therefore, if it's not fully
1346 * trimmed, punt it back to the async discard lists.
1347 */
1348 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1349 !btrfs_is_free_space_trimmed(block_group)) {
1350 trace_btrfs_skip_unused_block_group(block_group);
1351 up_write(&space_info->groups_sem);
1352 /* Requeue if we failed because of async discard */
1353 btrfs_discard_queue_work(&fs_info->discard_ctl,
1354 block_group);
1355 goto next;
1356 }
1357
1358 spin_lock(&block_group->lock);
1359 if (block_group->reserved || block_group->pinned ||
1360 block_group->used || block_group->ro ||
1361 list_is_singular(&block_group->list)) {
1362 /*
1363 * We want to bail if we made new allocations or have
1364 * outstanding allocations in this block group. We do
1365 * the ro check in case balance is currently acting on
1366 * this block group.
1367 */
1368 trace_btrfs_skip_unused_block_group(block_group);
1369 spin_unlock(&block_group->lock);
1370 up_write(&space_info->groups_sem);
1371 goto next;
1372 }
1373 spin_unlock(&block_group->lock);
1374
1375 /* We don't want to force the issue, only flip if it's ok. */
1376 ret = inc_block_group_ro(block_group, 0);
1377 up_write(&space_info->groups_sem);
1378 if (ret < 0) {
1379 ret = 0;
1380 goto next;
1381 }
1382
1383 ret = btrfs_zone_finish(block_group);
1384 if (ret < 0) {
1385 btrfs_dec_block_group_ro(block_group);
1386 if (ret == -EAGAIN)
1387 ret = 0;
1388 goto next;
1389 }
1390
1391 /*
1392 * Want to do this before we do anything else so we can recover
1393 * properly if we fail to join the transaction.
1394 */
1395 trans = btrfs_start_trans_remove_block_group(fs_info,
1396 block_group->start);
1397 if (IS_ERR(trans)) {
1398 btrfs_dec_block_group_ro(block_group);
1399 ret = PTR_ERR(trans);
1400 goto next;
1401 }
1402
1403 /*
1404 * We could have pending pinned extents for this block group,
1405 * just delete them, we don't care about them anymore.
1406 */
1407 if (!clean_pinned_extents(trans, block_group)) {
1408 btrfs_dec_block_group_ro(block_group);
1409 goto end_trans;
1410 }
1411
1412 /*
1413 * At this point, the block_group is read only and should fail
1414 * new allocations. However, btrfs_finish_extent_commit() can
1415 * cause this block_group to be placed back on the discard
1416 * lists because now the block_group isn't fully discarded.
1417 * Bail here and try again later after discarding everything.
1418 */
1419 spin_lock(&fs_info->discard_ctl.lock);
1420 if (!list_empty(&block_group->discard_list)) {
1421 spin_unlock(&fs_info->discard_ctl.lock);
1422 btrfs_dec_block_group_ro(block_group);
1423 btrfs_discard_queue_work(&fs_info->discard_ctl,
1424 block_group);
1425 goto end_trans;
1426 }
1427 spin_unlock(&fs_info->discard_ctl.lock);
1428
1429 /* Reset pinned so btrfs_put_block_group doesn't complain */
1430 spin_lock(&space_info->lock);
1431 spin_lock(&block_group->lock);
1432
1433 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1434 -block_group->pinned);
1435 space_info->bytes_readonly += block_group->pinned;
1436 block_group->pinned = 0;
1437
1438 spin_unlock(&block_group->lock);
1439 spin_unlock(&space_info->lock);
1440
1441 /*
1442 * The normal path here is an unused block group is passed here,
1443 * then trimming is handled in the transaction commit path.
1444 * Async discard interposes before this to do the trimming
1445 * before coming down the unused block group path as trimming
1446 * will no longer be done later in the transaction commit path.
1447 */
1448 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1449 goto flip_async;
1450
1451 /*
1452 * DISCARD can flip during remount. On zoned filesystems, we
1453 * need to reset sequential-required zones.
1454 */
1455 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1456 btrfs_is_zoned(fs_info);
1457
1458 /* Implicit trim during transaction commit. */
1459 if (trimming)
1460 btrfs_freeze_block_group(block_group);
1461
1462 /*
1463 * Btrfs_remove_chunk will abort the transaction if things go
1464 * horribly wrong.
1465 */
1466 ret = btrfs_remove_chunk(trans, block_group->start);
1467
1468 if (ret) {
1469 if (trimming)
1470 btrfs_unfreeze_block_group(block_group);
1471 goto end_trans;
1472 }
1473
1474 /*
1475 * If we're not mounted with -odiscard, we can just forget
1476 * about this block group. Otherwise we'll need to wait
1477 * until transaction commit to do the actual discard.
1478 */
1479 if (trimming) {
1480 spin_lock(&fs_info->unused_bgs_lock);
1481 /*
1482 * A concurrent scrub might have added us to the list
1483 * fs_info->unused_bgs, so use a list_move operation
1484 * to add the block group to the deleted_bgs list.
1485 */
1486 list_move(&block_group->bg_list,
1487 &trans->transaction->deleted_bgs);
1488 spin_unlock(&fs_info->unused_bgs_lock);
1489 btrfs_get_block_group(block_group);
1490 }
1491end_trans:
1492 btrfs_end_transaction(trans);
1493next:
1494 btrfs_put_block_group(block_group);
1495 spin_lock(&fs_info->unused_bgs_lock);
1496 }
1497 spin_unlock(&fs_info->unused_bgs_lock);
1498 mutex_unlock(&fs_info->reclaim_bgs_lock);
1499 return;
1500
1501flip_async:
1502 btrfs_end_transaction(trans);
1503 mutex_unlock(&fs_info->reclaim_bgs_lock);
1504 btrfs_put_block_group(block_group);
1505 btrfs_discard_punt_unused_bgs_list(fs_info);
1506}
1507
1508void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1509{
1510 struct btrfs_fs_info *fs_info = bg->fs_info;
1511
1512 spin_lock(&fs_info->unused_bgs_lock);
1513 if (list_empty(&bg->bg_list)) {
1514 btrfs_get_block_group(bg);
1515 trace_btrfs_add_unused_block_group(bg);
1516 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1517 }
1518 spin_unlock(&fs_info->unused_bgs_lock);
1519}
1520
1521/*
1522 * We want block groups with a low number of used bytes to be in the beginning
1523 * of the list, so they will get reclaimed first.
1524 */
1525static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1526 const struct list_head *b)
1527{
1528 const struct btrfs_block_group *bg1, *bg2;
1529
1530 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1531 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1532
1533 return bg1->used > bg2->used;
1534}
1535
1536static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1537{
1538 if (btrfs_is_zoned(fs_info))
1539 return btrfs_zoned_should_reclaim(fs_info);
1540 return true;
1541}
1542
1543static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1544{
1545 const struct btrfs_space_info *space_info = bg->space_info;
1546 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1547 const u64 new_val = bg->used;
1548 const u64 old_val = new_val + bytes_freed;
1549 u64 thresh;
1550
1551 if (reclaim_thresh == 0)
1552 return false;
1553
1554 thresh = mult_perc(bg->length, reclaim_thresh);
1555
1556 /*
1557 * If we were below the threshold before don't reclaim, we are likely a
1558 * brand new block group and we don't want to relocate new block groups.
1559 */
1560 if (old_val < thresh)
1561 return false;
1562 if (new_val >= thresh)
1563 return false;
1564 return true;
1565}
1566
1567void btrfs_reclaim_bgs_work(struct work_struct *work)
1568{
1569 struct btrfs_fs_info *fs_info =
1570 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1571 struct btrfs_block_group *bg;
1572 struct btrfs_space_info *space_info;
1573
1574 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1575 return;
1576
1577 if (btrfs_fs_closing(fs_info))
1578 return;
1579
1580 if (!btrfs_should_reclaim(fs_info))
1581 return;
1582
1583 sb_start_write(fs_info->sb);
1584
1585 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1586 sb_end_write(fs_info->sb);
1587 return;
1588 }
1589
1590 /*
1591 * Long running balances can keep us blocked here for eternity, so
1592 * simply skip reclaim if we're unable to get the mutex.
1593 */
1594 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1595 btrfs_exclop_finish(fs_info);
1596 sb_end_write(fs_info->sb);
1597 return;
1598 }
1599
1600 spin_lock(&fs_info->unused_bgs_lock);
1601 /*
1602 * Sort happens under lock because we can't simply splice it and sort.
1603 * The block groups might still be in use and reachable via bg_list,
1604 * and their presence in the reclaim_bgs list must be preserved.
1605 */
1606 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1607 while (!list_empty(&fs_info->reclaim_bgs)) {
1608 u64 zone_unusable;
1609 int ret = 0;
1610
1611 bg = list_first_entry(&fs_info->reclaim_bgs,
1612 struct btrfs_block_group,
1613 bg_list);
1614 list_del_init(&bg->bg_list);
1615
1616 space_info = bg->space_info;
1617 spin_unlock(&fs_info->unused_bgs_lock);
1618
1619 /* Don't race with allocators so take the groups_sem */
1620 down_write(&space_info->groups_sem);
1621
1622 spin_lock(&bg->lock);
1623 if (bg->reserved || bg->pinned || bg->ro) {
1624 /*
1625 * We want to bail if we made new allocations or have
1626 * outstanding allocations in this block group. We do
1627 * the ro check in case balance is currently acting on
1628 * this block group.
1629 */
1630 spin_unlock(&bg->lock);
1631 up_write(&space_info->groups_sem);
1632 goto next;
1633 }
1634 if (bg->used == 0) {
1635 /*
1636 * It is possible that we trigger relocation on a block
1637 * group as its extents are deleted and it first goes
1638 * below the threshold, then shortly after goes empty.
1639 *
1640 * In this case, relocating it does delete it, but has
1641 * some overhead in relocation specific metadata, looking
1642 * for the non-existent extents and running some extra
1643 * transactions, which we can avoid by using one of the
1644 * other mechanisms for dealing with empty block groups.
1645 */
1646 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1647 btrfs_mark_bg_unused(bg);
1648 spin_unlock(&bg->lock);
1649 up_write(&space_info->groups_sem);
1650 goto next;
1651
1652 }
1653 /*
1654 * The block group might no longer meet the reclaim condition by
1655 * the time we get around to reclaiming it, so to avoid
1656 * reclaiming overly full block_groups, skip reclaiming them.
1657 *
1658 * Since the decision making process also depends on the amount
1659 * being freed, pass in a fake giant value to skip that extra
1660 * check, which is more meaningful when adding to the list in
1661 * the first place.
1662 */
1663 if (!should_reclaim_block_group(bg, bg->length)) {
1664 spin_unlock(&bg->lock);
1665 up_write(&space_info->groups_sem);
1666 goto next;
1667 }
1668 spin_unlock(&bg->lock);
1669
1670 /* Get out fast, in case we're unmounting the filesystem */
1671 if (btrfs_fs_closing(fs_info)) {
1672 up_write(&space_info->groups_sem);
1673 goto next;
1674 }
1675
1676 /*
1677 * Cache the zone_unusable value before turning the block group
1678 * to read only. As soon as the blog group is read only it's
1679 * zone_unusable value gets moved to the block group's read-only
1680 * bytes and isn't available for calculations anymore.
1681 */
1682 zone_unusable = bg->zone_unusable;
1683 ret = inc_block_group_ro(bg, 0);
1684 up_write(&space_info->groups_sem);
1685 if (ret < 0)
1686 goto next;
1687
1688 btrfs_info(fs_info,
1689 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1690 bg->start, div_u64(bg->used * 100, bg->length),
1691 div64_u64(zone_unusable * 100, bg->length));
1692 trace_btrfs_reclaim_block_group(bg);
1693 ret = btrfs_relocate_chunk(fs_info, bg->start);
1694 if (ret) {
1695 btrfs_dec_block_group_ro(bg);
1696 btrfs_err(fs_info, "error relocating chunk %llu",
1697 bg->start);
1698 }
1699
1700next:
1701 btrfs_put_block_group(bg);
1702 spin_lock(&fs_info->unused_bgs_lock);
1703 }
1704 spin_unlock(&fs_info->unused_bgs_lock);
1705 mutex_unlock(&fs_info->reclaim_bgs_lock);
1706 btrfs_exclop_finish(fs_info);
1707 sb_end_write(fs_info->sb);
1708}
1709
1710void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1711{
1712 spin_lock(&fs_info->unused_bgs_lock);
1713 if (!list_empty(&fs_info->reclaim_bgs))
1714 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1715 spin_unlock(&fs_info->unused_bgs_lock);
1716}
1717
1718void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1719{
1720 struct btrfs_fs_info *fs_info = bg->fs_info;
1721
1722 spin_lock(&fs_info->unused_bgs_lock);
1723 if (list_empty(&bg->bg_list)) {
1724 btrfs_get_block_group(bg);
1725 trace_btrfs_add_reclaim_block_group(bg);
1726 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1727 }
1728 spin_unlock(&fs_info->unused_bgs_lock);
1729}
1730
1731static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1732 struct btrfs_path *path)
1733{
1734 struct extent_map_tree *em_tree;
1735 struct extent_map *em;
1736 struct btrfs_block_group_item bg;
1737 struct extent_buffer *leaf;
1738 int slot;
1739 u64 flags;
1740 int ret = 0;
1741
1742 slot = path->slots[0];
1743 leaf = path->nodes[0];
1744
1745 em_tree = &fs_info->mapping_tree;
1746 read_lock(&em_tree->lock);
1747 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1748 read_unlock(&em_tree->lock);
1749 if (!em) {
1750 btrfs_err(fs_info,
1751 "logical %llu len %llu found bg but no related chunk",
1752 key->objectid, key->offset);
1753 return -ENOENT;
1754 }
1755
1756 if (em->start != key->objectid || em->len != key->offset) {
1757 btrfs_err(fs_info,
1758 "block group %llu len %llu mismatch with chunk %llu len %llu",
1759 key->objectid, key->offset, em->start, em->len);
1760 ret = -EUCLEAN;
1761 goto out_free_em;
1762 }
1763
1764 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1765 sizeof(bg));
1766 flags = btrfs_stack_block_group_flags(&bg) &
1767 BTRFS_BLOCK_GROUP_TYPE_MASK;
1768
1769 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1770 btrfs_err(fs_info,
1771"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1772 key->objectid, key->offset, flags,
1773 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1774 ret = -EUCLEAN;
1775 }
1776
1777out_free_em:
1778 free_extent_map(em);
1779 return ret;
1780}
1781
1782static int find_first_block_group(struct btrfs_fs_info *fs_info,
1783 struct btrfs_path *path,
1784 struct btrfs_key *key)
1785{
1786 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1787 int ret;
1788 struct btrfs_key found_key;
1789
1790 btrfs_for_each_slot(root, key, &found_key, path, ret) {
1791 if (found_key.objectid >= key->objectid &&
1792 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1793 return read_bg_from_eb(fs_info, &found_key, path);
1794 }
1795 }
1796 return ret;
1797}
1798
1799static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1800{
1801 u64 extra_flags = chunk_to_extended(flags) &
1802 BTRFS_EXTENDED_PROFILE_MASK;
1803
1804 write_seqlock(&fs_info->profiles_lock);
1805 if (flags & BTRFS_BLOCK_GROUP_DATA)
1806 fs_info->avail_data_alloc_bits |= extra_flags;
1807 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1808 fs_info->avail_metadata_alloc_bits |= extra_flags;
1809 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1810 fs_info->avail_system_alloc_bits |= extra_flags;
1811 write_sequnlock(&fs_info->profiles_lock);
1812}
1813
1814/*
1815 * Map a physical disk address to a list of logical addresses.
1816 *
1817 * @fs_info: the filesystem
1818 * @chunk_start: logical address of block group
1819 * @bdev: physical device to resolve, can be NULL to indicate any device
1820 * @physical: physical address to map to logical addresses
1821 * @logical: return array of logical addresses which map to @physical
1822 * @naddrs: length of @logical
1823 * @stripe_len: size of IO stripe for the given block group
1824 *
1825 * Maps a particular @physical disk address to a list of @logical addresses.
1826 * Used primarily to exclude those portions of a block group that contain super
1827 * block copies.
1828 */
1829int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1830 struct block_device *bdev, u64 physical, u64 **logical,
1831 int *naddrs, int *stripe_len)
1832{
1833 struct extent_map *em;
1834 struct map_lookup *map;
1835 u64 *buf;
1836 u64 bytenr;
1837 u64 data_stripe_length;
1838 u64 io_stripe_size;
1839 int i, nr = 0;
1840 int ret = 0;
1841
1842 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1843 if (IS_ERR(em))
1844 return -EIO;
1845
1846 map = em->map_lookup;
1847 data_stripe_length = em->orig_block_len;
1848 io_stripe_size = map->stripe_len;
1849 chunk_start = em->start;
1850
1851 /* For RAID5/6 adjust to a full IO stripe length */
1852 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1853 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1854
1855 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1856 if (!buf) {
1857 ret = -ENOMEM;
1858 goto out;
1859 }
1860
1861 for (i = 0; i < map->num_stripes; i++) {
1862 bool already_inserted = false;
1863 u64 stripe_nr;
1864 u64 offset;
1865 int j;
1866
1867 if (!in_range(physical, map->stripes[i].physical,
1868 data_stripe_length))
1869 continue;
1870
1871 if (bdev && map->stripes[i].dev->bdev != bdev)
1872 continue;
1873
1874 stripe_nr = physical - map->stripes[i].physical;
1875 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1876
1877 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1878 BTRFS_BLOCK_GROUP_RAID10)) {
1879 stripe_nr = stripe_nr * map->num_stripes + i;
1880 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1881 }
1882 /*
1883 * The remaining case would be for RAID56, multiply by
1884 * nr_data_stripes(). Alternatively, just use rmap_len below
1885 * instead of map->stripe_len
1886 */
1887
1888 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1889
1890 /* Ensure we don't add duplicate addresses */
1891 for (j = 0; j < nr; j++) {
1892 if (buf[j] == bytenr) {
1893 already_inserted = true;
1894 break;
1895 }
1896 }
1897
1898 if (!already_inserted)
1899 buf[nr++] = bytenr;
1900 }
1901
1902 *logical = buf;
1903 *naddrs = nr;
1904 *stripe_len = io_stripe_size;
1905out:
1906 free_extent_map(em);
1907 return ret;
1908}
1909
1910static int exclude_super_stripes(struct btrfs_block_group *cache)
1911{
1912 struct btrfs_fs_info *fs_info = cache->fs_info;
1913 const bool zoned = btrfs_is_zoned(fs_info);
1914 u64 bytenr;
1915 u64 *logical;
1916 int stripe_len;
1917 int i, nr, ret;
1918
1919 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1920 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1921 cache->bytes_super += stripe_len;
1922 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1923 stripe_len);
1924 if (ret)
1925 return ret;
1926 }
1927
1928 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1929 bytenr = btrfs_sb_offset(i);
1930 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1931 bytenr, &logical, &nr, &stripe_len);
1932 if (ret)
1933 return ret;
1934
1935 /* Shouldn't have super stripes in sequential zones */
1936 if (zoned && nr) {
1937 btrfs_err(fs_info,
1938 "zoned: block group %llu must not contain super block",
1939 cache->start);
1940 return -EUCLEAN;
1941 }
1942
1943 while (nr--) {
1944 u64 len = min_t(u64, stripe_len,
1945 cache->start + cache->length - logical[nr]);
1946
1947 cache->bytes_super += len;
1948 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1949 len);
1950 if (ret) {
1951 kfree(logical);
1952 return ret;
1953 }
1954 }
1955
1956 kfree(logical);
1957 }
1958 return 0;
1959}
1960
1961static struct btrfs_block_group *btrfs_create_block_group_cache(
1962 struct btrfs_fs_info *fs_info, u64 start)
1963{
1964 struct btrfs_block_group *cache;
1965
1966 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1967 if (!cache)
1968 return NULL;
1969
1970 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1971 GFP_NOFS);
1972 if (!cache->free_space_ctl) {
1973 kfree(cache);
1974 return NULL;
1975 }
1976
1977 cache->start = start;
1978
1979 cache->fs_info = fs_info;
1980 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1981
1982 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1983
1984 refcount_set(&cache->refs, 1);
1985 spin_lock_init(&cache->lock);
1986 init_rwsem(&cache->data_rwsem);
1987 INIT_LIST_HEAD(&cache->list);
1988 INIT_LIST_HEAD(&cache->cluster_list);
1989 INIT_LIST_HEAD(&cache->bg_list);
1990 INIT_LIST_HEAD(&cache->ro_list);
1991 INIT_LIST_HEAD(&cache->discard_list);
1992 INIT_LIST_HEAD(&cache->dirty_list);
1993 INIT_LIST_HEAD(&cache->io_list);
1994 INIT_LIST_HEAD(&cache->active_bg_list);
1995 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1996 atomic_set(&cache->frozen, 0);
1997 mutex_init(&cache->free_space_lock);
1998 cache->full_stripe_locks_root.root = RB_ROOT;
1999 mutex_init(&cache->full_stripe_locks_root.lock);
2000
2001 return cache;
2002}
2003
2004/*
2005 * Iterate all chunks and verify that each of them has the corresponding block
2006 * group
2007 */
2008static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2009{
2010 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2011 struct extent_map *em;
2012 struct btrfs_block_group *bg;
2013 u64 start = 0;
2014 int ret = 0;
2015
2016 while (1) {
2017 read_lock(&map_tree->lock);
2018 /*
2019 * lookup_extent_mapping will return the first extent map
2020 * intersecting the range, so setting @len to 1 is enough to
2021 * get the first chunk.
2022 */
2023 em = lookup_extent_mapping(map_tree, start, 1);
2024 read_unlock(&map_tree->lock);
2025 if (!em)
2026 break;
2027
2028 bg = btrfs_lookup_block_group(fs_info, em->start);
2029 if (!bg) {
2030 btrfs_err(fs_info,
2031 "chunk start=%llu len=%llu doesn't have corresponding block group",
2032 em->start, em->len);
2033 ret = -EUCLEAN;
2034 free_extent_map(em);
2035 break;
2036 }
2037 if (bg->start != em->start || bg->length != em->len ||
2038 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2039 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2040 btrfs_err(fs_info,
2041"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2042 em->start, em->len,
2043 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2044 bg->start, bg->length,
2045 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2046 ret = -EUCLEAN;
2047 free_extent_map(em);
2048 btrfs_put_block_group(bg);
2049 break;
2050 }
2051 start = em->start + em->len;
2052 free_extent_map(em);
2053 btrfs_put_block_group(bg);
2054 }
2055 return ret;
2056}
2057
2058static int read_one_block_group(struct btrfs_fs_info *info,
2059 struct btrfs_block_group_item *bgi,
2060 const struct btrfs_key *key,
2061 int need_clear)
2062{
2063 struct btrfs_block_group *cache;
2064 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2065 int ret;
2066
2067 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2068
2069 cache = btrfs_create_block_group_cache(info, key->objectid);
2070 if (!cache)
2071 return -ENOMEM;
2072
2073 cache->length = key->offset;
2074 cache->used = btrfs_stack_block_group_used(bgi);
2075 cache->commit_used = cache->used;
2076 cache->flags = btrfs_stack_block_group_flags(bgi);
2077 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2078
2079 set_free_space_tree_thresholds(cache);
2080
2081 if (need_clear) {
2082 /*
2083 * When we mount with old space cache, we need to
2084 * set BTRFS_DC_CLEAR and set dirty flag.
2085 *
2086 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2087 * truncate the old free space cache inode and
2088 * setup a new one.
2089 * b) Setting 'dirty flag' makes sure that we flush
2090 * the new space cache info onto disk.
2091 */
2092 if (btrfs_test_opt(info, SPACE_CACHE))
2093 cache->disk_cache_state = BTRFS_DC_CLEAR;
2094 }
2095 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2096 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2097 btrfs_err(info,
2098"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2099 cache->start);
2100 ret = -EINVAL;
2101 goto error;
2102 }
2103
2104 ret = btrfs_load_block_group_zone_info(cache, false);
2105 if (ret) {
2106 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2107 cache->start);
2108 goto error;
2109 }
2110
2111 /*
2112 * We need to exclude the super stripes now so that the space info has
2113 * super bytes accounted for, otherwise we'll think we have more space
2114 * than we actually do.
2115 */
2116 ret = exclude_super_stripes(cache);
2117 if (ret) {
2118 /* We may have excluded something, so call this just in case. */
2119 btrfs_free_excluded_extents(cache);
2120 goto error;
2121 }
2122
2123 /*
2124 * For zoned filesystem, space after the allocation offset is the only
2125 * free space for a block group. So, we don't need any caching work.
2126 * btrfs_calc_zone_unusable() will set the amount of free space and
2127 * zone_unusable space.
2128 *
2129 * For regular filesystem, check for two cases, either we are full, and
2130 * therefore don't need to bother with the caching work since we won't
2131 * find any space, or we are empty, and we can just add all the space
2132 * in and be done with it. This saves us _a_lot_ of time, particularly
2133 * in the full case.
2134 */
2135 if (btrfs_is_zoned(info)) {
2136 btrfs_calc_zone_unusable(cache);
2137 /* Should not have any excluded extents. Just in case, though. */
2138 btrfs_free_excluded_extents(cache);
2139 } else if (cache->length == cache->used) {
2140 cache->cached = BTRFS_CACHE_FINISHED;
2141 btrfs_free_excluded_extents(cache);
2142 } else if (cache->used == 0) {
2143 cache->cached = BTRFS_CACHE_FINISHED;
2144 add_new_free_space(cache, cache->start,
2145 cache->start + cache->length);
2146 btrfs_free_excluded_extents(cache);
2147 }
2148
2149 ret = btrfs_add_block_group_cache(info, cache);
2150 if (ret) {
2151 btrfs_remove_free_space_cache(cache);
2152 goto error;
2153 }
2154 trace_btrfs_add_block_group(info, cache, 0);
2155 btrfs_add_bg_to_space_info(info, cache);
2156
2157 set_avail_alloc_bits(info, cache->flags);
2158 if (btrfs_chunk_writeable(info, cache->start)) {
2159 if (cache->used == 0) {
2160 ASSERT(list_empty(&cache->bg_list));
2161 if (btrfs_test_opt(info, DISCARD_ASYNC))
2162 btrfs_discard_queue_work(&info->discard_ctl, cache);
2163 else
2164 btrfs_mark_bg_unused(cache);
2165 }
2166 } else {
2167 inc_block_group_ro(cache, 1);
2168 }
2169
2170 return 0;
2171error:
2172 btrfs_put_block_group(cache);
2173 return ret;
2174}
2175
2176static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2177{
2178 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2179 struct rb_node *node;
2180 int ret = 0;
2181
2182 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2183 struct extent_map *em;
2184 struct map_lookup *map;
2185 struct btrfs_block_group *bg;
2186
2187 em = rb_entry(node, struct extent_map, rb_node);
2188 map = em->map_lookup;
2189 bg = btrfs_create_block_group_cache(fs_info, em->start);
2190 if (!bg) {
2191 ret = -ENOMEM;
2192 break;
2193 }
2194
2195 /* Fill dummy cache as FULL */
2196 bg->length = em->len;
2197 bg->flags = map->type;
2198 bg->cached = BTRFS_CACHE_FINISHED;
2199 bg->used = em->len;
2200 bg->flags = map->type;
2201 ret = btrfs_add_block_group_cache(fs_info, bg);
2202 /*
2203 * We may have some valid block group cache added already, in
2204 * that case we skip to the next one.
2205 */
2206 if (ret == -EEXIST) {
2207 ret = 0;
2208 btrfs_put_block_group(bg);
2209 continue;
2210 }
2211
2212 if (ret) {
2213 btrfs_remove_free_space_cache(bg);
2214 btrfs_put_block_group(bg);
2215 break;
2216 }
2217
2218 btrfs_add_bg_to_space_info(fs_info, bg);
2219
2220 set_avail_alloc_bits(fs_info, bg->flags);
2221 }
2222 if (!ret)
2223 btrfs_init_global_block_rsv(fs_info);
2224 return ret;
2225}
2226
2227int btrfs_read_block_groups(struct btrfs_fs_info *info)
2228{
2229 struct btrfs_root *root = btrfs_block_group_root(info);
2230 struct btrfs_path *path;
2231 int ret;
2232 struct btrfs_block_group *cache;
2233 struct btrfs_space_info *space_info;
2234 struct btrfs_key key;
2235 int need_clear = 0;
2236 u64 cache_gen;
2237
2238 /*
2239 * Either no extent root (with ibadroots rescue option) or we have
2240 * unsupported RO options. The fs can never be mounted read-write, so no
2241 * need to waste time searching block group items.
2242 *
2243 * This also allows new extent tree related changes to be RO compat,
2244 * no need for a full incompat flag.
2245 */
2246 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2247 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2248 return fill_dummy_bgs(info);
2249
2250 key.objectid = 0;
2251 key.offset = 0;
2252 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2253 path = btrfs_alloc_path();
2254 if (!path)
2255 return -ENOMEM;
2256
2257 cache_gen = btrfs_super_cache_generation(info->super_copy);
2258 if (btrfs_test_opt(info, SPACE_CACHE) &&
2259 btrfs_super_generation(info->super_copy) != cache_gen)
2260 need_clear = 1;
2261 if (btrfs_test_opt(info, CLEAR_CACHE))
2262 need_clear = 1;
2263
2264 while (1) {
2265 struct btrfs_block_group_item bgi;
2266 struct extent_buffer *leaf;
2267 int slot;
2268
2269 ret = find_first_block_group(info, path, &key);
2270 if (ret > 0)
2271 break;
2272 if (ret != 0)
2273 goto error;
2274
2275 leaf = path->nodes[0];
2276 slot = path->slots[0];
2277
2278 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2279 sizeof(bgi));
2280
2281 btrfs_item_key_to_cpu(leaf, &key, slot);
2282 btrfs_release_path(path);
2283 ret = read_one_block_group(info, &bgi, &key, need_clear);
2284 if (ret < 0)
2285 goto error;
2286 key.objectid += key.offset;
2287 key.offset = 0;
2288 }
2289 btrfs_release_path(path);
2290
2291 list_for_each_entry(space_info, &info->space_info, list) {
2292 int i;
2293
2294 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2295 if (list_empty(&space_info->block_groups[i]))
2296 continue;
2297 cache = list_first_entry(&space_info->block_groups[i],
2298 struct btrfs_block_group,
2299 list);
2300 btrfs_sysfs_add_block_group_type(cache);
2301 }
2302
2303 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2304 (BTRFS_BLOCK_GROUP_RAID10 |
2305 BTRFS_BLOCK_GROUP_RAID1_MASK |
2306 BTRFS_BLOCK_GROUP_RAID56_MASK |
2307 BTRFS_BLOCK_GROUP_DUP)))
2308 continue;
2309 /*
2310 * Avoid allocating from un-mirrored block group if there are
2311 * mirrored block groups.
2312 */
2313 list_for_each_entry(cache,
2314 &space_info->block_groups[BTRFS_RAID_RAID0],
2315 list)
2316 inc_block_group_ro(cache, 1);
2317 list_for_each_entry(cache,
2318 &space_info->block_groups[BTRFS_RAID_SINGLE],
2319 list)
2320 inc_block_group_ro(cache, 1);
2321 }
2322
2323 btrfs_init_global_block_rsv(info);
2324 ret = check_chunk_block_group_mappings(info);
2325error:
2326 btrfs_free_path(path);
2327 /*
2328 * We've hit some error while reading the extent tree, and have
2329 * rescue=ibadroots mount option.
2330 * Try to fill the tree using dummy block groups so that the user can
2331 * continue to mount and grab their data.
2332 */
2333 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2334 ret = fill_dummy_bgs(info);
2335 return ret;
2336}
2337
2338/*
2339 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2340 * allocation.
2341 *
2342 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2343 * phases.
2344 */
2345static int insert_block_group_item(struct btrfs_trans_handle *trans,
2346 struct btrfs_block_group *block_group)
2347{
2348 struct btrfs_fs_info *fs_info = trans->fs_info;
2349 struct btrfs_block_group_item bgi;
2350 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2351 struct btrfs_key key;
2352
2353 spin_lock(&block_group->lock);
2354 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2355 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2356 block_group->global_root_id);
2357 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2358 key.objectid = block_group->start;
2359 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2360 key.offset = block_group->length;
2361 spin_unlock(&block_group->lock);
2362
2363 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2364}
2365
2366static int insert_dev_extent(struct btrfs_trans_handle *trans,
2367 struct btrfs_device *device, u64 chunk_offset,
2368 u64 start, u64 num_bytes)
2369{
2370 struct btrfs_fs_info *fs_info = device->fs_info;
2371 struct btrfs_root *root = fs_info->dev_root;
2372 struct btrfs_path *path;
2373 struct btrfs_dev_extent *extent;
2374 struct extent_buffer *leaf;
2375 struct btrfs_key key;
2376 int ret;
2377
2378 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2379 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2380 path = btrfs_alloc_path();
2381 if (!path)
2382 return -ENOMEM;
2383
2384 key.objectid = device->devid;
2385 key.type = BTRFS_DEV_EXTENT_KEY;
2386 key.offset = start;
2387 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2388 if (ret)
2389 goto out;
2390
2391 leaf = path->nodes[0];
2392 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2393 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2394 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2395 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2396 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2397
2398 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2399 btrfs_mark_buffer_dirty(leaf);
2400out:
2401 btrfs_free_path(path);
2402 return ret;
2403}
2404
2405/*
2406 * This function belongs to phase 2.
2407 *
2408 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2409 * phases.
2410 */
2411static int insert_dev_extents(struct btrfs_trans_handle *trans,
2412 u64 chunk_offset, u64 chunk_size)
2413{
2414 struct btrfs_fs_info *fs_info = trans->fs_info;
2415 struct btrfs_device *device;
2416 struct extent_map *em;
2417 struct map_lookup *map;
2418 u64 dev_offset;
2419 u64 stripe_size;
2420 int i;
2421 int ret = 0;
2422
2423 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2424 if (IS_ERR(em))
2425 return PTR_ERR(em);
2426
2427 map = em->map_lookup;
2428 stripe_size = em->orig_block_len;
2429
2430 /*
2431 * Take the device list mutex to prevent races with the final phase of
2432 * a device replace operation that replaces the device object associated
2433 * with the map's stripes, because the device object's id can change
2434 * at any time during that final phase of the device replace operation
2435 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2436 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2437 * resulting in persisting a device extent item with such ID.
2438 */
2439 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2440 for (i = 0; i < map->num_stripes; i++) {
2441 device = map->stripes[i].dev;
2442 dev_offset = map->stripes[i].physical;
2443
2444 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2445 stripe_size);
2446 if (ret)
2447 break;
2448 }
2449 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2450
2451 free_extent_map(em);
2452 return ret;
2453}
2454
2455/*
2456 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2457 * chunk allocation.
2458 *
2459 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2460 * phases.
2461 */
2462void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2463{
2464 struct btrfs_fs_info *fs_info = trans->fs_info;
2465 struct btrfs_block_group *block_group;
2466 int ret = 0;
2467
2468 while (!list_empty(&trans->new_bgs)) {
2469 int index;
2470
2471 block_group = list_first_entry(&trans->new_bgs,
2472 struct btrfs_block_group,
2473 bg_list);
2474 if (ret)
2475 goto next;
2476
2477 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2478
2479 ret = insert_block_group_item(trans, block_group);
2480 if (ret)
2481 btrfs_abort_transaction(trans, ret);
2482 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2483 &block_group->runtime_flags)) {
2484 mutex_lock(&fs_info->chunk_mutex);
2485 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2486 mutex_unlock(&fs_info->chunk_mutex);
2487 if (ret)
2488 btrfs_abort_transaction(trans, ret);
2489 }
2490 ret = insert_dev_extents(trans, block_group->start,
2491 block_group->length);
2492 if (ret)
2493 btrfs_abort_transaction(trans, ret);
2494 add_block_group_free_space(trans, block_group);
2495
2496 /*
2497 * If we restriped during balance, we may have added a new raid
2498 * type, so now add the sysfs entries when it is safe to do so.
2499 * We don't have to worry about locking here as it's handled in
2500 * btrfs_sysfs_add_block_group_type.
2501 */
2502 if (block_group->space_info->block_group_kobjs[index] == NULL)
2503 btrfs_sysfs_add_block_group_type(block_group);
2504
2505 /* Already aborted the transaction if it failed. */
2506next:
2507 btrfs_delayed_refs_rsv_release(fs_info, 1);
2508 list_del_init(&block_group->bg_list);
2509 }
2510 btrfs_trans_release_chunk_metadata(trans);
2511}
2512
2513/*
2514 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2515 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2516 */
2517static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2518{
2519 u64 div = SZ_1G;
2520 u64 index;
2521
2522 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2523 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2524
2525 /* If we have a smaller fs index based on 128MiB. */
2526 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2527 div = SZ_128M;
2528
2529 offset = div64_u64(offset, div);
2530 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2531 return index;
2532}
2533
2534struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2535 u64 bytes_used, u64 type,
2536 u64 chunk_offset, u64 size)
2537{
2538 struct btrfs_fs_info *fs_info = trans->fs_info;
2539 struct btrfs_block_group *cache;
2540 int ret;
2541
2542 btrfs_set_log_full_commit(trans);
2543
2544 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2545 if (!cache)
2546 return ERR_PTR(-ENOMEM);
2547
2548 cache->length = size;
2549 set_free_space_tree_thresholds(cache);
2550 cache->used = bytes_used;
2551 cache->flags = type;
2552 cache->cached = BTRFS_CACHE_FINISHED;
2553 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2554
2555 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2556 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2557
2558 ret = btrfs_load_block_group_zone_info(cache, true);
2559 if (ret) {
2560 btrfs_put_block_group(cache);
2561 return ERR_PTR(ret);
2562 }
2563
2564 ret = exclude_super_stripes(cache);
2565 if (ret) {
2566 /* We may have excluded something, so call this just in case */
2567 btrfs_free_excluded_extents(cache);
2568 btrfs_put_block_group(cache);
2569 return ERR_PTR(ret);
2570 }
2571
2572 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2573
2574 btrfs_free_excluded_extents(cache);
2575
2576 /*
2577 * Ensure the corresponding space_info object is created and
2578 * assigned to our block group. We want our bg to be added to the rbtree
2579 * with its ->space_info set.
2580 */
2581 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2582 ASSERT(cache->space_info);
2583
2584 ret = btrfs_add_block_group_cache(fs_info, cache);
2585 if (ret) {
2586 btrfs_remove_free_space_cache(cache);
2587 btrfs_put_block_group(cache);
2588 return ERR_PTR(ret);
2589 }
2590
2591 /*
2592 * Now that our block group has its ->space_info set and is inserted in
2593 * the rbtree, update the space info's counters.
2594 */
2595 trace_btrfs_add_block_group(fs_info, cache, 1);
2596 btrfs_add_bg_to_space_info(fs_info, cache);
2597 btrfs_update_global_block_rsv(fs_info);
2598
2599#ifdef CONFIG_BTRFS_DEBUG
2600 if (btrfs_should_fragment_free_space(cache)) {
2601 u64 new_bytes_used = size - bytes_used;
2602
2603 cache->space_info->bytes_used += new_bytes_used >> 1;
2604 fragment_free_space(cache);
2605 }
2606#endif
2607
2608 list_add_tail(&cache->bg_list, &trans->new_bgs);
2609 trans->delayed_ref_updates++;
2610 btrfs_update_delayed_refs_rsv(trans);
2611
2612 set_avail_alloc_bits(fs_info, type);
2613 return cache;
2614}
2615
2616/*
2617 * Mark one block group RO, can be called several times for the same block
2618 * group.
2619 *
2620 * @cache: the destination block group
2621 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2622 * ensure we still have some free space after marking this
2623 * block group RO.
2624 */
2625int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2626 bool do_chunk_alloc)
2627{
2628 struct btrfs_fs_info *fs_info = cache->fs_info;
2629 struct btrfs_trans_handle *trans;
2630 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2631 u64 alloc_flags;
2632 int ret;
2633 bool dirty_bg_running;
2634
2635 /*
2636 * This can only happen when we are doing read-only scrub on read-only
2637 * mount.
2638 * In that case we should not start a new transaction on read-only fs.
2639 * Thus here we skip all chunk allocations.
2640 */
2641 if (sb_rdonly(fs_info->sb)) {
2642 mutex_lock(&fs_info->ro_block_group_mutex);
2643 ret = inc_block_group_ro(cache, 0);
2644 mutex_unlock(&fs_info->ro_block_group_mutex);
2645 return ret;
2646 }
2647
2648 do {
2649 trans = btrfs_join_transaction(root);
2650 if (IS_ERR(trans))
2651 return PTR_ERR(trans);
2652
2653 dirty_bg_running = false;
2654
2655 /*
2656 * We're not allowed to set block groups readonly after the dirty
2657 * block group cache has started writing. If it already started,
2658 * back off and let this transaction commit.
2659 */
2660 mutex_lock(&fs_info->ro_block_group_mutex);
2661 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2662 u64 transid = trans->transid;
2663
2664 mutex_unlock(&fs_info->ro_block_group_mutex);
2665 btrfs_end_transaction(trans);
2666
2667 ret = btrfs_wait_for_commit(fs_info, transid);
2668 if (ret)
2669 return ret;
2670 dirty_bg_running = true;
2671 }
2672 } while (dirty_bg_running);
2673
2674 if (do_chunk_alloc) {
2675 /*
2676 * If we are changing raid levels, try to allocate a
2677 * corresponding block group with the new raid level.
2678 */
2679 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2680 if (alloc_flags != cache->flags) {
2681 ret = btrfs_chunk_alloc(trans, alloc_flags,
2682 CHUNK_ALLOC_FORCE);
2683 /*
2684 * ENOSPC is allowed here, we may have enough space
2685 * already allocated at the new raid level to carry on
2686 */
2687 if (ret == -ENOSPC)
2688 ret = 0;
2689 if (ret < 0)
2690 goto out;
2691 }
2692 }
2693
2694 ret = inc_block_group_ro(cache, 0);
2695 if (!do_chunk_alloc || ret == -ETXTBSY)
2696 goto unlock_out;
2697 if (!ret)
2698 goto out;
2699 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2700 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2701 if (ret < 0)
2702 goto out;
2703 /*
2704 * We have allocated a new chunk. We also need to activate that chunk to
2705 * grant metadata tickets for zoned filesystem.
2706 */
2707 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2708 if (ret < 0)
2709 goto out;
2710
2711 ret = inc_block_group_ro(cache, 0);
2712 if (ret == -ETXTBSY)
2713 goto unlock_out;
2714out:
2715 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2716 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2717 mutex_lock(&fs_info->chunk_mutex);
2718 check_system_chunk(trans, alloc_flags);
2719 mutex_unlock(&fs_info->chunk_mutex);
2720 }
2721unlock_out:
2722 mutex_unlock(&fs_info->ro_block_group_mutex);
2723
2724 btrfs_end_transaction(trans);
2725 return ret;
2726}
2727
2728void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2729{
2730 struct btrfs_space_info *sinfo = cache->space_info;
2731 u64 num_bytes;
2732
2733 BUG_ON(!cache->ro);
2734
2735 spin_lock(&sinfo->lock);
2736 spin_lock(&cache->lock);
2737 if (!--cache->ro) {
2738 if (btrfs_is_zoned(cache->fs_info)) {
2739 /* Migrate zone_unusable bytes back */
2740 cache->zone_unusable =
2741 (cache->alloc_offset - cache->used) +
2742 (cache->length - cache->zone_capacity);
2743 sinfo->bytes_zone_unusable += cache->zone_unusable;
2744 sinfo->bytes_readonly -= cache->zone_unusable;
2745 }
2746 num_bytes = cache->length - cache->reserved -
2747 cache->pinned - cache->bytes_super -
2748 cache->zone_unusable - cache->used;
2749 sinfo->bytes_readonly -= num_bytes;
2750 list_del_init(&cache->ro_list);
2751 }
2752 spin_unlock(&cache->lock);
2753 spin_unlock(&sinfo->lock);
2754}
2755
2756static int update_block_group_item(struct btrfs_trans_handle *trans,
2757 struct btrfs_path *path,
2758 struct btrfs_block_group *cache)
2759{
2760 struct btrfs_fs_info *fs_info = trans->fs_info;
2761 int ret;
2762 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2763 unsigned long bi;
2764 struct extent_buffer *leaf;
2765 struct btrfs_block_group_item bgi;
2766 struct btrfs_key key;
2767 u64 old_commit_used;
2768 u64 used;
2769
2770 /*
2771 * Block group items update can be triggered out of commit transaction
2772 * critical section, thus we need a consistent view of used bytes.
2773 * We cannot use cache->used directly outside of the spin lock, as it
2774 * may be changed.
2775 */
2776 spin_lock(&cache->lock);
2777 old_commit_used = cache->commit_used;
2778 used = cache->used;
2779 /* No change in used bytes, can safely skip it. */
2780 if (cache->commit_used == used) {
2781 spin_unlock(&cache->lock);
2782 return 0;
2783 }
2784 cache->commit_used = used;
2785 spin_unlock(&cache->lock);
2786
2787 key.objectid = cache->start;
2788 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2789 key.offset = cache->length;
2790
2791 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2792 if (ret) {
2793 if (ret > 0)
2794 ret = -ENOENT;
2795 goto fail;
2796 }
2797
2798 leaf = path->nodes[0];
2799 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2800 btrfs_set_stack_block_group_used(&bgi, used);
2801 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2802 cache->global_root_id);
2803 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2804 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2805 btrfs_mark_buffer_dirty(leaf);
2806fail:
2807 btrfs_release_path(path);
2808 /* We didn't update the block group item, need to revert @commit_used. */
2809 if (ret < 0) {
2810 spin_lock(&cache->lock);
2811 cache->commit_used = old_commit_used;
2812 spin_unlock(&cache->lock);
2813 }
2814 return ret;
2815
2816}
2817
2818static int cache_save_setup(struct btrfs_block_group *block_group,
2819 struct btrfs_trans_handle *trans,
2820 struct btrfs_path *path)
2821{
2822 struct btrfs_fs_info *fs_info = block_group->fs_info;
2823 struct btrfs_root *root = fs_info->tree_root;
2824 struct inode *inode = NULL;
2825 struct extent_changeset *data_reserved = NULL;
2826 u64 alloc_hint = 0;
2827 int dcs = BTRFS_DC_ERROR;
2828 u64 cache_size = 0;
2829 int retries = 0;
2830 int ret = 0;
2831
2832 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2833 return 0;
2834
2835 /*
2836 * If this block group is smaller than 100 megs don't bother caching the
2837 * block group.
2838 */
2839 if (block_group->length < (100 * SZ_1M)) {
2840 spin_lock(&block_group->lock);
2841 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2842 spin_unlock(&block_group->lock);
2843 return 0;
2844 }
2845
2846 if (TRANS_ABORTED(trans))
2847 return 0;
2848again:
2849 inode = lookup_free_space_inode(block_group, path);
2850 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2851 ret = PTR_ERR(inode);
2852 btrfs_release_path(path);
2853 goto out;
2854 }
2855
2856 if (IS_ERR(inode)) {
2857 BUG_ON(retries);
2858 retries++;
2859
2860 if (block_group->ro)
2861 goto out_free;
2862
2863 ret = create_free_space_inode(trans, block_group, path);
2864 if (ret)
2865 goto out_free;
2866 goto again;
2867 }
2868
2869 /*
2870 * We want to set the generation to 0, that way if anything goes wrong
2871 * from here on out we know not to trust this cache when we load up next
2872 * time.
2873 */
2874 BTRFS_I(inode)->generation = 0;
2875 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2876 if (ret) {
2877 /*
2878 * So theoretically we could recover from this, simply set the
2879 * super cache generation to 0 so we know to invalidate the
2880 * cache, but then we'd have to keep track of the block groups
2881 * that fail this way so we know we _have_ to reset this cache
2882 * before the next commit or risk reading stale cache. So to
2883 * limit our exposure to horrible edge cases lets just abort the
2884 * transaction, this only happens in really bad situations
2885 * anyway.
2886 */
2887 btrfs_abort_transaction(trans, ret);
2888 goto out_put;
2889 }
2890 WARN_ON(ret);
2891
2892 /* We've already setup this transaction, go ahead and exit */
2893 if (block_group->cache_generation == trans->transid &&
2894 i_size_read(inode)) {
2895 dcs = BTRFS_DC_SETUP;
2896 goto out_put;
2897 }
2898
2899 if (i_size_read(inode) > 0) {
2900 ret = btrfs_check_trunc_cache_free_space(fs_info,
2901 &fs_info->global_block_rsv);
2902 if (ret)
2903 goto out_put;
2904
2905 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2906 if (ret)
2907 goto out_put;
2908 }
2909
2910 spin_lock(&block_group->lock);
2911 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2912 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2913 /*
2914 * don't bother trying to write stuff out _if_
2915 * a) we're not cached,
2916 * b) we're with nospace_cache mount option,
2917 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2918 */
2919 dcs = BTRFS_DC_WRITTEN;
2920 spin_unlock(&block_group->lock);
2921 goto out_put;
2922 }
2923 spin_unlock(&block_group->lock);
2924
2925 /*
2926 * We hit an ENOSPC when setting up the cache in this transaction, just
2927 * skip doing the setup, we've already cleared the cache so we're safe.
2928 */
2929 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2930 ret = -ENOSPC;
2931 goto out_put;
2932 }
2933
2934 /*
2935 * Try to preallocate enough space based on how big the block group is.
2936 * Keep in mind this has to include any pinned space which could end up
2937 * taking up quite a bit since it's not folded into the other space
2938 * cache.
2939 */
2940 cache_size = div_u64(block_group->length, SZ_256M);
2941 if (!cache_size)
2942 cache_size = 1;
2943
2944 cache_size *= 16;
2945 cache_size *= fs_info->sectorsize;
2946
2947 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2948 cache_size, false);
2949 if (ret)
2950 goto out_put;
2951
2952 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2953 cache_size, cache_size,
2954 &alloc_hint);
2955 /*
2956 * Our cache requires contiguous chunks so that we don't modify a bunch
2957 * of metadata or split extents when writing the cache out, which means
2958 * we can enospc if we are heavily fragmented in addition to just normal
2959 * out of space conditions. So if we hit this just skip setting up any
2960 * other block groups for this transaction, maybe we'll unpin enough
2961 * space the next time around.
2962 */
2963 if (!ret)
2964 dcs = BTRFS_DC_SETUP;
2965 else if (ret == -ENOSPC)
2966 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2967
2968out_put:
2969 iput(inode);
2970out_free:
2971 btrfs_release_path(path);
2972out:
2973 spin_lock(&block_group->lock);
2974 if (!ret && dcs == BTRFS_DC_SETUP)
2975 block_group->cache_generation = trans->transid;
2976 block_group->disk_cache_state = dcs;
2977 spin_unlock(&block_group->lock);
2978
2979 extent_changeset_free(data_reserved);
2980 return ret;
2981}
2982
2983int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2984{
2985 struct btrfs_fs_info *fs_info = trans->fs_info;
2986 struct btrfs_block_group *cache, *tmp;
2987 struct btrfs_transaction *cur_trans = trans->transaction;
2988 struct btrfs_path *path;
2989
2990 if (list_empty(&cur_trans->dirty_bgs) ||
2991 !btrfs_test_opt(fs_info, SPACE_CACHE))
2992 return 0;
2993
2994 path = btrfs_alloc_path();
2995 if (!path)
2996 return -ENOMEM;
2997
2998 /* Could add new block groups, use _safe just in case */
2999 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3000 dirty_list) {
3001 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3002 cache_save_setup(cache, trans, path);
3003 }
3004
3005 btrfs_free_path(path);
3006 return 0;
3007}
3008
3009/*
3010 * Transaction commit does final block group cache writeback during a critical
3011 * section where nothing is allowed to change the FS. This is required in
3012 * order for the cache to actually match the block group, but can introduce a
3013 * lot of latency into the commit.
3014 *
3015 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3016 * There's a chance we'll have to redo some of it if the block group changes
3017 * again during the commit, but it greatly reduces the commit latency by
3018 * getting rid of the easy block groups while we're still allowing others to
3019 * join the commit.
3020 */
3021int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3022{
3023 struct btrfs_fs_info *fs_info = trans->fs_info;
3024 struct btrfs_block_group *cache;
3025 struct btrfs_transaction *cur_trans = trans->transaction;
3026 int ret = 0;
3027 int should_put;
3028 struct btrfs_path *path = NULL;
3029 LIST_HEAD(dirty);
3030 struct list_head *io = &cur_trans->io_bgs;
3031 int loops = 0;
3032
3033 spin_lock(&cur_trans->dirty_bgs_lock);
3034 if (list_empty(&cur_trans->dirty_bgs)) {
3035 spin_unlock(&cur_trans->dirty_bgs_lock);
3036 return 0;
3037 }
3038 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3039 spin_unlock(&cur_trans->dirty_bgs_lock);
3040
3041again:
3042 /* Make sure all the block groups on our dirty list actually exist */
3043 btrfs_create_pending_block_groups(trans);
3044
3045 if (!path) {
3046 path = btrfs_alloc_path();
3047 if (!path) {
3048 ret = -ENOMEM;
3049 goto out;
3050 }
3051 }
3052
3053 /*
3054 * cache_write_mutex is here only to save us from balance or automatic
3055 * removal of empty block groups deleting this block group while we are
3056 * writing out the cache
3057 */
3058 mutex_lock(&trans->transaction->cache_write_mutex);
3059 while (!list_empty(&dirty)) {
3060 bool drop_reserve = true;
3061
3062 cache = list_first_entry(&dirty, struct btrfs_block_group,
3063 dirty_list);
3064 /*
3065 * This can happen if something re-dirties a block group that
3066 * is already under IO. Just wait for it to finish and then do
3067 * it all again
3068 */
3069 if (!list_empty(&cache->io_list)) {
3070 list_del_init(&cache->io_list);
3071 btrfs_wait_cache_io(trans, cache, path);
3072 btrfs_put_block_group(cache);
3073 }
3074
3075
3076 /*
3077 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3078 * it should update the cache_state. Don't delete until after
3079 * we wait.
3080 *
3081 * Since we're not running in the commit critical section
3082 * we need the dirty_bgs_lock to protect from update_block_group
3083 */
3084 spin_lock(&cur_trans->dirty_bgs_lock);
3085 list_del_init(&cache->dirty_list);
3086 spin_unlock(&cur_trans->dirty_bgs_lock);
3087
3088 should_put = 1;
3089
3090 cache_save_setup(cache, trans, path);
3091
3092 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3093 cache->io_ctl.inode = NULL;
3094 ret = btrfs_write_out_cache(trans, cache, path);
3095 if (ret == 0 && cache->io_ctl.inode) {
3096 should_put = 0;
3097
3098 /*
3099 * The cache_write_mutex is protecting the
3100 * io_list, also refer to the definition of
3101 * btrfs_transaction::io_bgs for more details
3102 */
3103 list_add_tail(&cache->io_list, io);
3104 } else {
3105 /*
3106 * If we failed to write the cache, the
3107 * generation will be bad and life goes on
3108 */
3109 ret = 0;
3110 }
3111 }
3112 if (!ret) {
3113 ret = update_block_group_item(trans, path, cache);
3114 /*
3115 * Our block group might still be attached to the list
3116 * of new block groups in the transaction handle of some
3117 * other task (struct btrfs_trans_handle->new_bgs). This
3118 * means its block group item isn't yet in the extent
3119 * tree. If this happens ignore the error, as we will
3120 * try again later in the critical section of the
3121 * transaction commit.
3122 */
3123 if (ret == -ENOENT) {
3124 ret = 0;
3125 spin_lock(&cur_trans->dirty_bgs_lock);
3126 if (list_empty(&cache->dirty_list)) {
3127 list_add_tail(&cache->dirty_list,
3128 &cur_trans->dirty_bgs);
3129 btrfs_get_block_group(cache);
3130 drop_reserve = false;
3131 }
3132 spin_unlock(&cur_trans->dirty_bgs_lock);
3133 } else if (ret) {
3134 btrfs_abort_transaction(trans, ret);
3135 }
3136 }
3137
3138 /* If it's not on the io list, we need to put the block group */
3139 if (should_put)
3140 btrfs_put_block_group(cache);
3141 if (drop_reserve)
3142 btrfs_delayed_refs_rsv_release(fs_info, 1);
3143 /*
3144 * Avoid blocking other tasks for too long. It might even save
3145 * us from writing caches for block groups that are going to be
3146 * removed.
3147 */
3148 mutex_unlock(&trans->transaction->cache_write_mutex);
3149 if (ret)
3150 goto out;
3151 mutex_lock(&trans->transaction->cache_write_mutex);
3152 }
3153 mutex_unlock(&trans->transaction->cache_write_mutex);
3154
3155 /*
3156 * Go through delayed refs for all the stuff we've just kicked off
3157 * and then loop back (just once)
3158 */
3159 if (!ret)
3160 ret = btrfs_run_delayed_refs(trans, 0);
3161 if (!ret && loops == 0) {
3162 loops++;
3163 spin_lock(&cur_trans->dirty_bgs_lock);
3164 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3165 /*
3166 * dirty_bgs_lock protects us from concurrent block group
3167 * deletes too (not just cache_write_mutex).
3168 */
3169 if (!list_empty(&dirty)) {
3170 spin_unlock(&cur_trans->dirty_bgs_lock);
3171 goto again;
3172 }
3173 spin_unlock(&cur_trans->dirty_bgs_lock);
3174 }
3175out:
3176 if (ret < 0) {
3177 spin_lock(&cur_trans->dirty_bgs_lock);
3178 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3179 spin_unlock(&cur_trans->dirty_bgs_lock);
3180 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3181 }
3182
3183 btrfs_free_path(path);
3184 return ret;
3185}
3186
3187int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3188{
3189 struct btrfs_fs_info *fs_info = trans->fs_info;
3190 struct btrfs_block_group *cache;
3191 struct btrfs_transaction *cur_trans = trans->transaction;
3192 int ret = 0;
3193 int should_put;
3194 struct btrfs_path *path;
3195 struct list_head *io = &cur_trans->io_bgs;
3196
3197 path = btrfs_alloc_path();
3198 if (!path)
3199 return -ENOMEM;
3200
3201 /*
3202 * Even though we are in the critical section of the transaction commit,
3203 * we can still have concurrent tasks adding elements to this
3204 * transaction's list of dirty block groups. These tasks correspond to
3205 * endio free space workers started when writeback finishes for a
3206 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3207 * allocate new block groups as a result of COWing nodes of the root
3208 * tree when updating the free space inode. The writeback for the space
3209 * caches is triggered by an earlier call to
3210 * btrfs_start_dirty_block_groups() and iterations of the following
3211 * loop.
3212 * Also we want to do the cache_save_setup first and then run the
3213 * delayed refs to make sure we have the best chance at doing this all
3214 * in one shot.
3215 */
3216 spin_lock(&cur_trans->dirty_bgs_lock);
3217 while (!list_empty(&cur_trans->dirty_bgs)) {
3218 cache = list_first_entry(&cur_trans->dirty_bgs,
3219 struct btrfs_block_group,
3220 dirty_list);
3221
3222 /*
3223 * This can happen if cache_save_setup re-dirties a block group
3224 * that is already under IO. Just wait for it to finish and
3225 * then do it all again
3226 */
3227 if (!list_empty(&cache->io_list)) {
3228 spin_unlock(&cur_trans->dirty_bgs_lock);
3229 list_del_init(&cache->io_list);
3230 btrfs_wait_cache_io(trans, cache, path);
3231 btrfs_put_block_group(cache);
3232 spin_lock(&cur_trans->dirty_bgs_lock);
3233 }
3234
3235 /*
3236 * Don't remove from the dirty list until after we've waited on
3237 * any pending IO
3238 */
3239 list_del_init(&cache->dirty_list);
3240 spin_unlock(&cur_trans->dirty_bgs_lock);
3241 should_put = 1;
3242
3243 cache_save_setup(cache, trans, path);
3244
3245 if (!ret)
3246 ret = btrfs_run_delayed_refs(trans,
3247 (unsigned long) -1);
3248
3249 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3250 cache->io_ctl.inode = NULL;
3251 ret = btrfs_write_out_cache(trans, cache, path);
3252 if (ret == 0 && cache->io_ctl.inode) {
3253 should_put = 0;
3254 list_add_tail(&cache->io_list, io);
3255 } else {
3256 /*
3257 * If we failed to write the cache, the
3258 * generation will be bad and life goes on
3259 */
3260 ret = 0;
3261 }
3262 }
3263 if (!ret) {
3264 ret = update_block_group_item(trans, path, cache);
3265 /*
3266 * One of the free space endio workers might have
3267 * created a new block group while updating a free space
3268 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3269 * and hasn't released its transaction handle yet, in
3270 * which case the new block group is still attached to
3271 * its transaction handle and its creation has not
3272 * finished yet (no block group item in the extent tree
3273 * yet, etc). If this is the case, wait for all free
3274 * space endio workers to finish and retry. This is a
3275 * very rare case so no need for a more efficient and
3276 * complex approach.
3277 */
3278 if (ret == -ENOENT) {
3279 wait_event(cur_trans->writer_wait,
3280 atomic_read(&cur_trans->num_writers) == 1);
3281 ret = update_block_group_item(trans, path, cache);
3282 }
3283 if (ret)
3284 btrfs_abort_transaction(trans, ret);
3285 }
3286
3287 /* If its not on the io list, we need to put the block group */
3288 if (should_put)
3289 btrfs_put_block_group(cache);
3290 btrfs_delayed_refs_rsv_release(fs_info, 1);
3291 spin_lock(&cur_trans->dirty_bgs_lock);
3292 }
3293 spin_unlock(&cur_trans->dirty_bgs_lock);
3294
3295 /*
3296 * Refer to the definition of io_bgs member for details why it's safe
3297 * to use it without any locking
3298 */
3299 while (!list_empty(io)) {
3300 cache = list_first_entry(io, struct btrfs_block_group,
3301 io_list);
3302 list_del_init(&cache->io_list);
3303 btrfs_wait_cache_io(trans, cache, path);
3304 btrfs_put_block_group(cache);
3305 }
3306
3307 btrfs_free_path(path);
3308 return ret;
3309}
3310
3311int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3312 u64 bytenr, u64 num_bytes, bool alloc)
3313{
3314 struct btrfs_fs_info *info = trans->fs_info;
3315 struct btrfs_block_group *cache = NULL;
3316 u64 total = num_bytes;
3317 u64 old_val;
3318 u64 byte_in_group;
3319 int factor;
3320 int ret = 0;
3321
3322 /* Block accounting for super block */
3323 spin_lock(&info->delalloc_root_lock);
3324 old_val = btrfs_super_bytes_used(info->super_copy);
3325 if (alloc)
3326 old_val += num_bytes;
3327 else
3328 old_val -= num_bytes;
3329 btrfs_set_super_bytes_used(info->super_copy, old_val);
3330 spin_unlock(&info->delalloc_root_lock);
3331
3332 while (total) {
3333 bool reclaim;
3334
3335 cache = btrfs_lookup_block_group(info, bytenr);
3336 if (!cache) {
3337 ret = -ENOENT;
3338 break;
3339 }
3340 factor = btrfs_bg_type_to_factor(cache->flags);
3341
3342 /*
3343 * If this block group has free space cache written out, we
3344 * need to make sure to load it if we are removing space. This
3345 * is because we need the unpinning stage to actually add the
3346 * space back to the block group, otherwise we will leak space.
3347 */
3348 if (!alloc && !btrfs_block_group_done(cache))
3349 btrfs_cache_block_group(cache, true);
3350
3351 byte_in_group = bytenr - cache->start;
3352 WARN_ON(byte_in_group > cache->length);
3353
3354 spin_lock(&cache->space_info->lock);
3355 spin_lock(&cache->lock);
3356
3357 if (btrfs_test_opt(info, SPACE_CACHE) &&
3358 cache->disk_cache_state < BTRFS_DC_CLEAR)
3359 cache->disk_cache_state = BTRFS_DC_CLEAR;
3360
3361 old_val = cache->used;
3362 num_bytes = min(total, cache->length - byte_in_group);
3363 if (alloc) {
3364 old_val += num_bytes;
3365 cache->used = old_val;
3366 cache->reserved -= num_bytes;
3367 cache->space_info->bytes_reserved -= num_bytes;
3368 cache->space_info->bytes_used += num_bytes;
3369 cache->space_info->disk_used += num_bytes * factor;
3370 spin_unlock(&cache->lock);
3371 spin_unlock(&cache->space_info->lock);
3372 } else {
3373 old_val -= num_bytes;
3374 cache->used = old_val;
3375 cache->pinned += num_bytes;
3376 btrfs_space_info_update_bytes_pinned(info,
3377 cache->space_info, num_bytes);
3378 cache->space_info->bytes_used -= num_bytes;
3379 cache->space_info->disk_used -= num_bytes * factor;
3380
3381 reclaim = should_reclaim_block_group(cache, num_bytes);
3382 spin_unlock(&cache->lock);
3383 spin_unlock(&cache->space_info->lock);
3384
3385 set_extent_dirty(&trans->transaction->pinned_extents,
3386 bytenr, bytenr + num_bytes - 1,
3387 GFP_NOFS | __GFP_NOFAIL);
3388 }
3389
3390 spin_lock(&trans->transaction->dirty_bgs_lock);
3391 if (list_empty(&cache->dirty_list)) {
3392 list_add_tail(&cache->dirty_list,
3393 &trans->transaction->dirty_bgs);
3394 trans->delayed_ref_updates++;
3395 btrfs_get_block_group(cache);
3396 }
3397 spin_unlock(&trans->transaction->dirty_bgs_lock);
3398
3399 /*
3400 * No longer have used bytes in this block group, queue it for
3401 * deletion. We do this after adding the block group to the
3402 * dirty list to avoid races between cleaner kthread and space
3403 * cache writeout.
3404 */
3405 if (!alloc && old_val == 0) {
3406 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3407 btrfs_mark_bg_unused(cache);
3408 } else if (!alloc && reclaim) {
3409 btrfs_mark_bg_to_reclaim(cache);
3410 }
3411
3412 btrfs_put_block_group(cache);
3413 total -= num_bytes;
3414 bytenr += num_bytes;
3415 }
3416
3417 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3418 btrfs_update_delayed_refs_rsv(trans);
3419 return ret;
3420}
3421
3422/*
3423 * Update the block_group and space info counters.
3424 *
3425 * @cache: The cache we are manipulating
3426 * @ram_bytes: The number of bytes of file content, and will be same to
3427 * @num_bytes except for the compress path.
3428 * @num_bytes: The number of bytes in question
3429 * @delalloc: The blocks are allocated for the delalloc write
3430 *
3431 * This is called by the allocator when it reserves space. If this is a
3432 * reservation and the block group has become read only we cannot make the
3433 * reservation and return -EAGAIN, otherwise this function always succeeds.
3434 */
3435int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3436 u64 ram_bytes, u64 num_bytes, int delalloc)
3437{
3438 struct btrfs_space_info *space_info = cache->space_info;
3439 int ret = 0;
3440
3441 spin_lock(&space_info->lock);
3442 spin_lock(&cache->lock);
3443 if (cache->ro) {
3444 ret = -EAGAIN;
3445 } else {
3446 cache->reserved += num_bytes;
3447 space_info->bytes_reserved += num_bytes;
3448 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3449 space_info->flags, num_bytes, 1);
3450 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3451 space_info, -ram_bytes);
3452 if (delalloc)
3453 cache->delalloc_bytes += num_bytes;
3454
3455 /*
3456 * Compression can use less space than we reserved, so wake
3457 * tickets if that happens
3458 */
3459 if (num_bytes < ram_bytes)
3460 btrfs_try_granting_tickets(cache->fs_info, space_info);
3461 }
3462 spin_unlock(&cache->lock);
3463 spin_unlock(&space_info->lock);
3464 return ret;
3465}
3466
3467/*
3468 * Update the block_group and space info counters.
3469 *
3470 * @cache: The cache we are manipulating
3471 * @num_bytes: The number of bytes in question
3472 * @delalloc: The blocks are allocated for the delalloc write
3473 *
3474 * This is called by somebody who is freeing space that was never actually used
3475 * on disk. For example if you reserve some space for a new leaf in transaction
3476 * A and before transaction A commits you free that leaf, you call this with
3477 * reserve set to 0 in order to clear the reservation.
3478 */
3479void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3480 u64 num_bytes, int delalloc)
3481{
3482 struct btrfs_space_info *space_info = cache->space_info;
3483
3484 spin_lock(&space_info->lock);
3485 spin_lock(&cache->lock);
3486 if (cache->ro)
3487 space_info->bytes_readonly += num_bytes;
3488 cache->reserved -= num_bytes;
3489 space_info->bytes_reserved -= num_bytes;
3490 space_info->max_extent_size = 0;
3491
3492 if (delalloc)
3493 cache->delalloc_bytes -= num_bytes;
3494 spin_unlock(&cache->lock);
3495
3496 btrfs_try_granting_tickets(cache->fs_info, space_info);
3497 spin_unlock(&space_info->lock);
3498}
3499
3500static void force_metadata_allocation(struct btrfs_fs_info *info)
3501{
3502 struct list_head *head = &info->space_info;
3503 struct btrfs_space_info *found;
3504
3505 list_for_each_entry(found, head, list) {
3506 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3507 found->force_alloc = CHUNK_ALLOC_FORCE;
3508 }
3509}
3510
3511static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3512 struct btrfs_space_info *sinfo, int force)
3513{
3514 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3515 u64 thresh;
3516
3517 if (force == CHUNK_ALLOC_FORCE)
3518 return 1;
3519
3520 /*
3521 * in limited mode, we want to have some free space up to
3522 * about 1% of the FS size.
3523 */
3524 if (force == CHUNK_ALLOC_LIMITED) {
3525 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3526 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3527
3528 if (sinfo->total_bytes - bytes_used < thresh)
3529 return 1;
3530 }
3531
3532 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3533 return 0;
3534 return 1;
3535}
3536
3537int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3538{
3539 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3540
3541 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3542}
3543
3544static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3545{
3546 struct btrfs_block_group *bg;
3547 int ret;
3548
3549 /*
3550 * Check if we have enough space in the system space info because we
3551 * will need to update device items in the chunk btree and insert a new
3552 * chunk item in the chunk btree as well. This will allocate a new
3553 * system block group if needed.
3554 */
3555 check_system_chunk(trans, flags);
3556
3557 bg = btrfs_create_chunk(trans, flags);
3558 if (IS_ERR(bg)) {
3559 ret = PTR_ERR(bg);
3560 goto out;
3561 }
3562
3563 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3564 /*
3565 * Normally we are not expected to fail with -ENOSPC here, since we have
3566 * previously reserved space in the system space_info and allocated one
3567 * new system chunk if necessary. However there are three exceptions:
3568 *
3569 * 1) We may have enough free space in the system space_info but all the
3570 * existing system block groups have a profile which can not be used
3571 * for extent allocation.
3572 *
3573 * This happens when mounting in degraded mode. For example we have a
3574 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3575 * using the other device in degraded mode. If we then allocate a chunk,
3576 * we may have enough free space in the existing system space_info, but
3577 * none of the block groups can be used for extent allocation since they
3578 * have a RAID1 profile, and because we are in degraded mode with a
3579 * single device, we are forced to allocate a new system chunk with a
3580 * SINGLE profile. Making check_system_chunk() iterate over all system
3581 * block groups and check if they have a usable profile and enough space
3582 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3583 * try again after forcing allocation of a new system chunk. Like this
3584 * we avoid paying the cost of that search in normal circumstances, when
3585 * we were not mounted in degraded mode;
3586 *
3587 * 2) We had enough free space info the system space_info, and one suitable
3588 * block group to allocate from when we called check_system_chunk()
3589 * above. However right after we called it, the only system block group
3590 * with enough free space got turned into RO mode by a running scrub,
3591 * and in this case we have to allocate a new one and retry. We only
3592 * need do this allocate and retry once, since we have a transaction
3593 * handle and scrub uses the commit root to search for block groups;
3594 *
3595 * 3) We had one system block group with enough free space when we called
3596 * check_system_chunk(), but after that, right before we tried to
3597 * allocate the last extent buffer we needed, a discard operation came
3598 * in and it temporarily removed the last free space entry from the
3599 * block group (discard removes a free space entry, discards it, and
3600 * then adds back the entry to the block group cache).
3601 */
3602 if (ret == -ENOSPC) {
3603 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3604 struct btrfs_block_group *sys_bg;
3605
3606 sys_bg = btrfs_create_chunk(trans, sys_flags);
3607 if (IS_ERR(sys_bg)) {
3608 ret = PTR_ERR(sys_bg);
3609 btrfs_abort_transaction(trans, ret);
3610 goto out;
3611 }
3612
3613 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3614 if (ret) {
3615 btrfs_abort_transaction(trans, ret);
3616 goto out;
3617 }
3618
3619 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3620 if (ret) {
3621 btrfs_abort_transaction(trans, ret);
3622 goto out;
3623 }
3624 } else if (ret) {
3625 btrfs_abort_transaction(trans, ret);
3626 goto out;
3627 }
3628out:
3629 btrfs_trans_release_chunk_metadata(trans);
3630
3631 if (ret)
3632 return ERR_PTR(ret);
3633
3634 btrfs_get_block_group(bg);
3635 return bg;
3636}
3637
3638/*
3639 * Chunk allocation is done in 2 phases:
3640 *
3641 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3642 * the chunk, the chunk mapping, create its block group and add the items
3643 * that belong in the chunk btree to it - more specifically, we need to
3644 * update device items in the chunk btree and add a new chunk item to it.
3645 *
3646 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3647 * group item to the extent btree and the device extent items to the devices
3648 * btree.
3649 *
3650 * This is done to prevent deadlocks. For example when COWing a node from the
3651 * extent btree we are holding a write lock on the node's parent and if we
3652 * trigger chunk allocation and attempted to insert the new block group item
3653 * in the extent btree right way, we could deadlock because the path for the
3654 * insertion can include that parent node. At first glance it seems impossible
3655 * to trigger chunk allocation after starting a transaction since tasks should
3656 * reserve enough transaction units (metadata space), however while that is true
3657 * most of the time, chunk allocation may still be triggered for several reasons:
3658 *
3659 * 1) When reserving metadata, we check if there is enough free space in the
3660 * metadata space_info and therefore don't trigger allocation of a new chunk.
3661 * However later when the task actually tries to COW an extent buffer from
3662 * the extent btree or from the device btree for example, it is forced to
3663 * allocate a new block group (chunk) because the only one that had enough
3664 * free space was just turned to RO mode by a running scrub for example (or
3665 * device replace, block group reclaim thread, etc), so we can not use it
3666 * for allocating an extent and end up being forced to allocate a new one;
3667 *
3668 * 2) Because we only check that the metadata space_info has enough free bytes,
3669 * we end up not allocating a new metadata chunk in that case. However if
3670 * the filesystem was mounted in degraded mode, none of the existing block
3671 * groups might be suitable for extent allocation due to their incompatible
3672 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3673 * use a RAID1 profile, in degraded mode using a single device). In this case
3674 * when the task attempts to COW some extent buffer of the extent btree for
3675 * example, it will trigger allocation of a new metadata block group with a
3676 * suitable profile (SINGLE profile in the example of the degraded mount of
3677 * the RAID1 filesystem);
3678 *
3679 * 3) The task has reserved enough transaction units / metadata space, but when
3680 * it attempts to COW an extent buffer from the extent or device btree for
3681 * example, it does not find any free extent in any metadata block group,
3682 * therefore forced to try to allocate a new metadata block group.
3683 * This is because some other task allocated all available extents in the
3684 * meanwhile - this typically happens with tasks that don't reserve space
3685 * properly, either intentionally or as a bug. One example where this is
3686 * done intentionally is fsync, as it does not reserve any transaction units
3687 * and ends up allocating a variable number of metadata extents for log
3688 * tree extent buffers;
3689 *
3690 * 4) The task has reserved enough transaction units / metadata space, but right
3691 * before it tries to allocate the last extent buffer it needs, a discard
3692 * operation comes in and, temporarily, removes the last free space entry from
3693 * the only metadata block group that had free space (discard starts by
3694 * removing a free space entry from a block group, then does the discard
3695 * operation and, once it's done, it adds back the free space entry to the
3696 * block group).
3697 *
3698 * We also need this 2 phases setup when adding a device to a filesystem with
3699 * a seed device - we must create new metadata and system chunks without adding
3700 * any of the block group items to the chunk, extent and device btrees. If we
3701 * did not do it this way, we would get ENOSPC when attempting to update those
3702 * btrees, since all the chunks from the seed device are read-only.
3703 *
3704 * Phase 1 does the updates and insertions to the chunk btree because if we had
3705 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3706 * parallel, we risk having too many system chunks allocated by many tasks if
3707 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3708 * extreme case this leads to exhaustion of the system chunk array in the
3709 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3710 * and with RAID filesystems (so we have more device items in the chunk btree).
3711 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3712 * the system chunk array due to concurrent allocations") provides more details.
3713 *
3714 * Allocation of system chunks does not happen through this function. A task that
3715 * needs to update the chunk btree (the only btree that uses system chunks), must
3716 * preallocate chunk space by calling either check_system_chunk() or
3717 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3718 * metadata chunk or when removing a chunk, while the later is used before doing
3719 * a modification to the chunk btree - use cases for the later are adding,
3720 * removing and resizing a device as well as relocation of a system chunk.
3721 * See the comment below for more details.
3722 *
3723 * The reservation of system space, done through check_system_chunk(), as well
3724 * as all the updates and insertions into the chunk btree must be done while
3725 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3726 * an extent buffer from the chunks btree we never trigger allocation of a new
3727 * system chunk, which would result in a deadlock (trying to lock twice an
3728 * extent buffer of the chunk btree, first time before triggering the chunk
3729 * allocation and the second time during chunk allocation while attempting to
3730 * update the chunks btree). The system chunk array is also updated while holding
3731 * that mutex. The same logic applies to removing chunks - we must reserve system
3732 * space, update the chunk btree and the system chunk array in the superblock
3733 * while holding fs_info->chunk_mutex.
3734 *
3735 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3736 *
3737 * If @force is CHUNK_ALLOC_FORCE:
3738 * - return 1 if it successfully allocates a chunk,
3739 * - return errors including -ENOSPC otherwise.
3740 * If @force is NOT CHUNK_ALLOC_FORCE:
3741 * - return 0 if it doesn't need to allocate a new chunk,
3742 * - return 1 if it successfully allocates a chunk,
3743 * - return errors including -ENOSPC otherwise.
3744 */
3745int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3746 enum btrfs_chunk_alloc_enum force)
3747{
3748 struct btrfs_fs_info *fs_info = trans->fs_info;
3749 struct btrfs_space_info *space_info;
3750 struct btrfs_block_group *ret_bg;
3751 bool wait_for_alloc = false;
3752 bool should_alloc = false;
3753 bool from_extent_allocation = false;
3754 int ret = 0;
3755
3756 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3757 from_extent_allocation = true;
3758 force = CHUNK_ALLOC_FORCE;
3759 }
3760
3761 /* Don't re-enter if we're already allocating a chunk */
3762 if (trans->allocating_chunk)
3763 return -ENOSPC;
3764 /*
3765 * Allocation of system chunks can not happen through this path, as we
3766 * could end up in a deadlock if we are allocating a data or metadata
3767 * chunk and there is another task modifying the chunk btree.
3768 *
3769 * This is because while we are holding the chunk mutex, we will attempt
3770 * to add the new chunk item to the chunk btree or update an existing
3771 * device item in the chunk btree, while the other task that is modifying
3772 * the chunk btree is attempting to COW an extent buffer while holding a
3773 * lock on it and on its parent - if the COW operation triggers a system
3774 * chunk allocation, then we can deadlock because we are holding the
3775 * chunk mutex and we may need to access that extent buffer or its parent
3776 * in order to add the chunk item or update a device item.
3777 *
3778 * Tasks that want to modify the chunk tree should reserve system space
3779 * before updating the chunk btree, by calling either
3780 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3781 * It's possible that after a task reserves the space, it still ends up
3782 * here - this happens in the cases described above at do_chunk_alloc().
3783 * The task will have to either retry or fail.
3784 */
3785 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3786 return -ENOSPC;
3787
3788 space_info = btrfs_find_space_info(fs_info, flags);
3789 ASSERT(space_info);
3790
3791 do {
3792 spin_lock(&space_info->lock);
3793 if (force < space_info->force_alloc)
3794 force = space_info->force_alloc;
3795 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3796 if (space_info->full) {
3797 /* No more free physical space */
3798 if (should_alloc)
3799 ret = -ENOSPC;
3800 else
3801 ret = 0;
3802 spin_unlock(&space_info->lock);
3803 return ret;
3804 } else if (!should_alloc) {
3805 spin_unlock(&space_info->lock);
3806 return 0;
3807 } else if (space_info->chunk_alloc) {
3808 /*
3809 * Someone is already allocating, so we need to block
3810 * until this someone is finished and then loop to
3811 * recheck if we should continue with our allocation
3812 * attempt.
3813 */
3814 wait_for_alloc = true;
3815 force = CHUNK_ALLOC_NO_FORCE;
3816 spin_unlock(&space_info->lock);
3817 mutex_lock(&fs_info->chunk_mutex);
3818 mutex_unlock(&fs_info->chunk_mutex);
3819 } else {
3820 /* Proceed with allocation */
3821 space_info->chunk_alloc = 1;
3822 wait_for_alloc = false;
3823 spin_unlock(&space_info->lock);
3824 }
3825
3826 cond_resched();
3827 } while (wait_for_alloc);
3828
3829 mutex_lock(&fs_info->chunk_mutex);
3830 trans->allocating_chunk = true;
3831
3832 /*
3833 * If we have mixed data/metadata chunks we want to make sure we keep
3834 * allocating mixed chunks instead of individual chunks.
3835 */
3836 if (btrfs_mixed_space_info(space_info))
3837 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3838
3839 /*
3840 * if we're doing a data chunk, go ahead and make sure that
3841 * we keep a reasonable number of metadata chunks allocated in the
3842 * FS as well.
3843 */
3844 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3845 fs_info->data_chunk_allocations++;
3846 if (!(fs_info->data_chunk_allocations %
3847 fs_info->metadata_ratio))
3848 force_metadata_allocation(fs_info);
3849 }
3850
3851 ret_bg = do_chunk_alloc(trans, flags);
3852 trans->allocating_chunk = false;
3853
3854 if (IS_ERR(ret_bg)) {
3855 ret = PTR_ERR(ret_bg);
3856 } else if (from_extent_allocation) {
3857 /*
3858 * New block group is likely to be used soon. Try to activate
3859 * it now. Failure is OK for now.
3860 */
3861 btrfs_zone_activate(ret_bg);
3862 }
3863
3864 if (!ret)
3865 btrfs_put_block_group(ret_bg);
3866
3867 spin_lock(&space_info->lock);
3868 if (ret < 0) {
3869 if (ret == -ENOSPC)
3870 space_info->full = 1;
3871 else
3872 goto out;
3873 } else {
3874 ret = 1;
3875 space_info->max_extent_size = 0;
3876 }
3877
3878 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3879out:
3880 space_info->chunk_alloc = 0;
3881 spin_unlock(&space_info->lock);
3882 mutex_unlock(&fs_info->chunk_mutex);
3883
3884 return ret;
3885}
3886
3887static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3888{
3889 u64 num_dev;
3890
3891 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3892 if (!num_dev)
3893 num_dev = fs_info->fs_devices->rw_devices;
3894
3895 return num_dev;
3896}
3897
3898static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3899 u64 bytes,
3900 u64 type)
3901{
3902 struct btrfs_fs_info *fs_info = trans->fs_info;
3903 struct btrfs_space_info *info;
3904 u64 left;
3905 int ret = 0;
3906
3907 /*
3908 * Needed because we can end up allocating a system chunk and for an
3909 * atomic and race free space reservation in the chunk block reserve.
3910 */
3911 lockdep_assert_held(&fs_info->chunk_mutex);
3912
3913 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3914 spin_lock(&info->lock);
3915 left = info->total_bytes - btrfs_space_info_used(info, true);
3916 spin_unlock(&info->lock);
3917
3918 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3919 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3920 left, bytes, type);
3921 btrfs_dump_space_info(fs_info, info, 0, 0);
3922 }
3923
3924 if (left < bytes) {
3925 u64 flags = btrfs_system_alloc_profile(fs_info);
3926 struct btrfs_block_group *bg;
3927
3928 /*
3929 * Ignore failure to create system chunk. We might end up not
3930 * needing it, as we might not need to COW all nodes/leafs from
3931 * the paths we visit in the chunk tree (they were already COWed
3932 * or created in the current transaction for example).
3933 */
3934 bg = btrfs_create_chunk(trans, flags);
3935 if (IS_ERR(bg)) {
3936 ret = PTR_ERR(bg);
3937 } else {
3938 /*
3939 * We have a new chunk. We also need to activate it for
3940 * zoned filesystem.
3941 */
3942 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3943 if (ret < 0)
3944 return;
3945
3946 /*
3947 * If we fail to add the chunk item here, we end up
3948 * trying again at phase 2 of chunk allocation, at
3949 * btrfs_create_pending_block_groups(). So ignore
3950 * any error here. An ENOSPC here could happen, due to
3951 * the cases described at do_chunk_alloc() - the system
3952 * block group we just created was just turned into RO
3953 * mode by a scrub for example, or a running discard
3954 * temporarily removed its free space entries, etc.
3955 */
3956 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3957 }
3958 }
3959
3960 if (!ret) {
3961 ret = btrfs_block_rsv_add(fs_info,
3962 &fs_info->chunk_block_rsv,
3963 bytes, BTRFS_RESERVE_NO_FLUSH);
3964 if (!ret)
3965 trans->chunk_bytes_reserved += bytes;
3966 }
3967}
3968
3969/*
3970 * Reserve space in the system space for allocating or removing a chunk.
3971 * The caller must be holding fs_info->chunk_mutex.
3972 */
3973void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3974{
3975 struct btrfs_fs_info *fs_info = trans->fs_info;
3976 const u64 num_devs = get_profile_num_devs(fs_info, type);
3977 u64 bytes;
3978
3979 /* num_devs device items to update and 1 chunk item to add or remove. */
3980 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3981 btrfs_calc_insert_metadata_size(fs_info, 1);
3982
3983 reserve_chunk_space(trans, bytes, type);
3984}
3985
3986/*
3987 * Reserve space in the system space, if needed, for doing a modification to the
3988 * chunk btree.
3989 *
3990 * @trans: A transaction handle.
3991 * @is_item_insertion: Indicate if the modification is for inserting a new item
3992 * in the chunk btree or if it's for the deletion or update
3993 * of an existing item.
3994 *
3995 * This is used in a context where we need to update the chunk btree outside
3996 * block group allocation and removal, to avoid a deadlock with a concurrent
3997 * task that is allocating a metadata or data block group and therefore needs to
3998 * update the chunk btree while holding the chunk mutex. After the update to the
3999 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4000 *
4001 */
4002void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4003 bool is_item_insertion)
4004{
4005 struct btrfs_fs_info *fs_info = trans->fs_info;
4006 u64 bytes;
4007
4008 if (is_item_insertion)
4009 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4010 else
4011 bytes = btrfs_calc_metadata_size(fs_info, 1);
4012
4013 mutex_lock(&fs_info->chunk_mutex);
4014 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4015 mutex_unlock(&fs_info->chunk_mutex);
4016}
4017
4018void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4019{
4020 struct btrfs_block_group *block_group;
4021
4022 block_group = btrfs_lookup_first_block_group(info, 0);
4023 while (block_group) {
4024 btrfs_wait_block_group_cache_done(block_group);
4025 spin_lock(&block_group->lock);
4026 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4027 &block_group->runtime_flags)) {
4028 struct inode *inode = block_group->inode;
4029
4030 block_group->inode = NULL;
4031 spin_unlock(&block_group->lock);
4032
4033 ASSERT(block_group->io_ctl.inode == NULL);
4034 iput(inode);
4035 } else {
4036 spin_unlock(&block_group->lock);
4037 }
4038 block_group = btrfs_next_block_group(block_group);
4039 }
4040}
4041
4042/*
4043 * Must be called only after stopping all workers, since we could have block
4044 * group caching kthreads running, and therefore they could race with us if we
4045 * freed the block groups before stopping them.
4046 */
4047int btrfs_free_block_groups(struct btrfs_fs_info *info)
4048{
4049 struct btrfs_block_group *block_group;
4050 struct btrfs_space_info *space_info;
4051 struct btrfs_caching_control *caching_ctl;
4052 struct rb_node *n;
4053
4054 write_lock(&info->block_group_cache_lock);
4055 while (!list_empty(&info->caching_block_groups)) {
4056 caching_ctl = list_entry(info->caching_block_groups.next,
4057 struct btrfs_caching_control, list);
4058 list_del(&caching_ctl->list);
4059 btrfs_put_caching_control(caching_ctl);
4060 }
4061 write_unlock(&info->block_group_cache_lock);
4062
4063 spin_lock(&info->unused_bgs_lock);
4064 while (!list_empty(&info->unused_bgs)) {
4065 block_group = list_first_entry(&info->unused_bgs,
4066 struct btrfs_block_group,
4067 bg_list);
4068 list_del_init(&block_group->bg_list);
4069 btrfs_put_block_group(block_group);
4070 }
4071
4072 while (!list_empty(&info->reclaim_bgs)) {
4073 block_group = list_first_entry(&info->reclaim_bgs,
4074 struct btrfs_block_group,
4075 bg_list);
4076 list_del_init(&block_group->bg_list);
4077 btrfs_put_block_group(block_group);
4078 }
4079 spin_unlock(&info->unused_bgs_lock);
4080
4081 spin_lock(&info->zone_active_bgs_lock);
4082 while (!list_empty(&info->zone_active_bgs)) {
4083 block_group = list_first_entry(&info->zone_active_bgs,
4084 struct btrfs_block_group,
4085 active_bg_list);
4086 list_del_init(&block_group->active_bg_list);
4087 btrfs_put_block_group(block_group);
4088 }
4089 spin_unlock(&info->zone_active_bgs_lock);
4090
4091 write_lock(&info->block_group_cache_lock);
4092 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4093 block_group = rb_entry(n, struct btrfs_block_group,
4094 cache_node);
4095 rb_erase_cached(&block_group->cache_node,
4096 &info->block_group_cache_tree);
4097 RB_CLEAR_NODE(&block_group->cache_node);
4098 write_unlock(&info->block_group_cache_lock);
4099
4100 down_write(&block_group->space_info->groups_sem);
4101 list_del(&block_group->list);
4102 up_write(&block_group->space_info->groups_sem);
4103
4104 /*
4105 * We haven't cached this block group, which means we could
4106 * possibly have excluded extents on this block group.
4107 */
4108 if (block_group->cached == BTRFS_CACHE_NO ||
4109 block_group->cached == BTRFS_CACHE_ERROR)
4110 btrfs_free_excluded_extents(block_group);
4111
4112 btrfs_remove_free_space_cache(block_group);
4113 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4114 ASSERT(list_empty(&block_group->dirty_list));
4115 ASSERT(list_empty(&block_group->io_list));
4116 ASSERT(list_empty(&block_group->bg_list));
4117 ASSERT(refcount_read(&block_group->refs) == 1);
4118 ASSERT(block_group->swap_extents == 0);
4119 btrfs_put_block_group(block_group);
4120
4121 write_lock(&info->block_group_cache_lock);
4122 }
4123 write_unlock(&info->block_group_cache_lock);
4124
4125 btrfs_release_global_block_rsv(info);
4126
4127 while (!list_empty(&info->space_info)) {
4128 space_info = list_entry(info->space_info.next,
4129 struct btrfs_space_info,
4130 list);
4131
4132 /*
4133 * Do not hide this behind enospc_debug, this is actually
4134 * important and indicates a real bug if this happens.
4135 */
4136 if (WARN_ON(space_info->bytes_pinned > 0 ||
4137 space_info->bytes_may_use > 0))
4138 btrfs_dump_space_info(info, space_info, 0, 0);
4139
4140 /*
4141 * If there was a failure to cleanup a log tree, very likely due
4142 * to an IO failure on a writeback attempt of one or more of its
4143 * extent buffers, we could not do proper (and cheap) unaccounting
4144 * of their reserved space, so don't warn on bytes_reserved > 0 in
4145 * that case.
4146 */
4147 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4148 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4149 if (WARN_ON(space_info->bytes_reserved > 0))
4150 btrfs_dump_space_info(info, space_info, 0, 0);
4151 }
4152
4153 WARN_ON(space_info->reclaim_size > 0);
4154 list_del(&space_info->list);
4155 btrfs_sysfs_remove_space_info(space_info);
4156 }
4157 return 0;
4158}
4159
4160void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4161{
4162 atomic_inc(&cache->frozen);
4163}
4164
4165void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4166{
4167 struct btrfs_fs_info *fs_info = block_group->fs_info;
4168 struct extent_map_tree *em_tree;
4169 struct extent_map *em;
4170 bool cleanup;
4171
4172 spin_lock(&block_group->lock);
4173 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4174 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4175 spin_unlock(&block_group->lock);
4176
4177 if (cleanup) {
4178 em_tree = &fs_info->mapping_tree;
4179 write_lock(&em_tree->lock);
4180 em = lookup_extent_mapping(em_tree, block_group->start,
4181 1);
4182 BUG_ON(!em); /* logic error, can't happen */
4183 remove_extent_mapping(em_tree, em);
4184 write_unlock(&em_tree->lock);
4185
4186 /* once for us and once for the tree */
4187 free_extent_map(em);
4188 free_extent_map(em);
4189
4190 /*
4191 * We may have left one free space entry and other possible
4192 * tasks trimming this block group have left 1 entry each one.
4193 * Free them if any.
4194 */
4195 btrfs_remove_free_space_cache(block_group);
4196 }
4197}
4198
4199bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4200{
4201 bool ret = true;
4202
4203 spin_lock(&bg->lock);
4204 if (bg->ro)
4205 ret = false;
4206 else
4207 bg->swap_extents++;
4208 spin_unlock(&bg->lock);
4209
4210 return ret;
4211}
4212
4213void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4214{
4215 spin_lock(&bg->lock);
4216 ASSERT(!bg->ro);
4217 ASSERT(bg->swap_extents >= amount);
4218 bg->swap_extents -= amount;
4219 spin_unlock(&bg->lock);
4220}