Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   4 *
   5 * Copyright 2016 Broadcom
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/device.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/ioport.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/of.h>
  18#include <linux/of_irq.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/spi/spi.h>
  22#include <linux/spi/spi-mem.h>
  23#include <linux/sysfs.h>
  24#include <linux/types.h>
  25#include "spi-bcm-qspi.h"
  26
  27#define DRIVER_NAME "bcm_qspi"
  28
  29
  30/* BSPI register offsets */
  31#define BSPI_REVISION_ID			0x000
  32#define BSPI_SCRATCH				0x004
  33#define BSPI_MAST_N_BOOT_CTRL			0x008
  34#define BSPI_BUSY_STATUS			0x00c
  35#define BSPI_INTR_STATUS			0x010
  36#define BSPI_B0_STATUS				0x014
  37#define BSPI_B0_CTRL				0x018
  38#define BSPI_B1_STATUS				0x01c
  39#define BSPI_B1_CTRL				0x020
  40#define BSPI_STRAP_OVERRIDE_CTRL		0x024
  41#define BSPI_FLEX_MODE_ENABLE			0x028
  42#define BSPI_BITS_PER_CYCLE			0x02c
  43#define BSPI_BITS_PER_PHASE			0x030
  44#define BSPI_CMD_AND_MODE_BYTE			0x034
  45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
  46#define BSPI_BSPI_XOR_VALUE			0x03c
  47#define BSPI_BSPI_XOR_ENABLE			0x040
  48#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
  49#define BSPI_BSPI_PIO_IODIR			0x048
  50#define BSPI_BSPI_PIO_DATA			0x04c
  51
  52/* RAF register offsets */
  53#define BSPI_RAF_START_ADDR			0x100
  54#define BSPI_RAF_NUM_WORDS			0x104
  55#define BSPI_RAF_CTRL				0x108
  56#define BSPI_RAF_FULLNESS			0x10c
  57#define BSPI_RAF_WATERMARK			0x110
  58#define BSPI_RAF_STATUS			0x114
  59#define BSPI_RAF_READ_DATA			0x118
  60#define BSPI_RAF_WORD_CNT			0x11c
  61#define BSPI_RAF_CURR_ADDR			0x120
  62
  63/* Override mode masks */
  64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
  65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
  66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
  67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
  68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
  69
  70#define BSPI_ADDRLEN_3BYTES			3
  71#define BSPI_ADDRLEN_4BYTES			4
  72
  73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
  74
  75#define BSPI_RAF_CTRL_START_MASK		BIT(0)
  76#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
  77
  78#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
  79#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
  80
  81#define BSPI_READ_LENGTH			256
  82
  83/* MSPI register offsets */
  84#define MSPI_SPCR0_LSB				0x000
  85#define MSPI_SPCR0_MSB				0x004
 
 
 
  86#define MSPI_SPCR1_LSB				0x008
  87#define MSPI_SPCR1_MSB				0x00c
  88#define MSPI_NEWQP				0x010
  89#define MSPI_ENDQP				0x014
  90#define MSPI_SPCR2				0x018
  91#define MSPI_MSPI_STATUS			0x020
  92#define MSPI_CPTQP				0x024
  93#define MSPI_SPCR3				0x028
 
  94#define MSPI_TXRAM				0x040
  95#define MSPI_RXRAM				0x0c0
  96#define MSPI_CDRAM				0x140
  97#define MSPI_WRITE_LOCK			0x180
  98
  99#define MSPI_MASTER_BIT			BIT(7)
 100
 101#define MSPI_NUM_CDRAM				16
 
 102#define MSPI_CDRAM_CONT_BIT			BIT(7)
 103#define MSPI_CDRAM_BITSE_BIT			BIT(6)
 
 104#define MSPI_CDRAM_PCS				0xf
 105
 106#define MSPI_SPCR2_SPE				BIT(6)
 107#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109#define MSPI_MSPI_STATUS_SPIF			BIT(0)
 110
 111#define INTR_BASE_BIT_SHIFT			0x02
 112#define INTR_COUNT				0x07
 113
 114#define NUM_CHIPSELECT				4
 115#define QSPI_SPBR_MIN				8U
 116#define QSPI_SPBR_MAX				255U
 
 117
 118#define OPCODE_DIOR				0xBB
 119#define OPCODE_QIOR				0xEB
 120#define OPCODE_DIOR_4B				0xBC
 121#define OPCODE_QIOR_4B				0xEC
 122
 123#define MAX_CMD_SIZE				6
 124
 125#define ADDR_4MB_MASK				GENMASK(22, 0)
 126
 127/* stop at end of transfer, no other reason */
 128#define TRANS_STATUS_BREAK_NONE		0
 129/* stop at end of spi_message */
 130#define TRANS_STATUS_BREAK_EOM			1
 131/* stop at end of spi_transfer if delay */
 132#define TRANS_STATUS_BREAK_DELAY		2
 133/* stop at end of spi_transfer if cs_change */
 134#define TRANS_STATUS_BREAK_CS_CHANGE		4
 135/* stop if we run out of bytes */
 136#define TRANS_STATUS_BREAK_NO_BYTES		8
 137
 138/* events that make us stop filling TX slots */
 139#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
 140			       TRANS_STATUS_BREAK_DELAY |		\
 141			       TRANS_STATUS_BREAK_CS_CHANGE)
 142
 143/* events that make us deassert CS */
 144#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
 145				     TRANS_STATUS_BREAK_CS_CHANGE)
 146
 
 
 
 
 
 
 
 
 147struct bcm_qspi_parms {
 148	u32 speed_hz;
 149	u8 mode;
 150	u8 bits_per_word;
 151};
 152
 153struct bcm_xfer_mode {
 154	bool flex_mode;
 155	unsigned int width;
 156	unsigned int addrlen;
 157	unsigned int hp;
 158};
 159
 160enum base_type {
 161	MSPI,
 162	BSPI,
 163	CHIP_SELECT,
 164	BASEMAX,
 165};
 166
 167enum irq_source {
 168	SINGLE_L2,
 169	MUXED_L1,
 170};
 171
 172struct bcm_qspi_irq {
 173	const char *irq_name;
 174	const irq_handler_t irq_handler;
 175	int irq_source;
 176	u32 mask;
 177};
 178
 179struct bcm_qspi_dev_id {
 180	const struct bcm_qspi_irq *irqp;
 181	void *dev;
 182};
 183
 184
 185struct qspi_trans {
 186	struct spi_transfer *trans;
 187	int byte;
 188	bool mspi_last_trans;
 189};
 190
 191struct bcm_qspi {
 192	struct platform_device *pdev;
 193	struct spi_master *master;
 194	struct clk *clk;
 195	u32 base_clk;
 196	u32 max_speed_hz;
 197	void __iomem *base[BASEMAX];
 198
 199	/* Some SoCs provide custom interrupt status register(s) */
 200	struct bcm_qspi_soc_intc	*soc_intc;
 201
 202	struct bcm_qspi_parms last_parms;
 203	struct qspi_trans  trans_pos;
 204	int curr_cs;
 205	int bspi_maj_rev;
 206	int bspi_min_rev;
 207	int bspi_enabled;
 208	const struct spi_mem_op *bspi_rf_op;
 209	u32 bspi_rf_op_idx;
 210	u32 bspi_rf_op_len;
 211	u32 bspi_rf_op_status;
 212	struct bcm_xfer_mode xfer_mode;
 213	u32 s3_strap_override_ctrl;
 214	bool bspi_mode;
 215	bool big_endian;
 216	int num_irqs;
 217	struct bcm_qspi_dev_id *dev_ids;
 218	struct completion mspi_done;
 219	struct completion bspi_done;
 
 
 
 220};
 221
 222static inline bool has_bspi(struct bcm_qspi *qspi)
 223{
 224	return qspi->bspi_mode;
 225}
 226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227/* Read qspi controller register*/
 228static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 229				unsigned int offset)
 230{
 231	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 232}
 233
 234/* Write qspi controller register*/
 235static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 236				  unsigned int offset, unsigned int data)
 237{
 238	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 239}
 240
 241/* BSPI helpers */
 242static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 243{
 244	int i;
 245
 246	/* this should normally finish within 10us */
 247	for (i = 0; i < 1000; i++) {
 248		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 249			return 0;
 250		udelay(1);
 251	}
 252	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 253	return -EIO;
 254}
 255
 256static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 257{
 258	if (qspi->bspi_maj_rev < 4)
 259		return true;
 260	return false;
 261}
 262
 263static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 264{
 265	bcm_qspi_bspi_busy_poll(qspi);
 266	/* Force rising edge for the b0/b1 'flush' field */
 267	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 268	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 269	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 270	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 271}
 272
 273static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 274{
 275	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 276				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 277}
 278
 279static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 280{
 281	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 282
 283	/* BSPI v3 LR is LE only, convert data to host endianness */
 284	if (bcm_qspi_bspi_ver_three(qspi))
 285		data = le32_to_cpu(data);
 286
 287	return data;
 288}
 289
 290static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 291{
 292	bcm_qspi_bspi_busy_poll(qspi);
 293	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 294		       BSPI_RAF_CTRL_START_MASK);
 295}
 296
 297static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 298{
 299	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 300		       BSPI_RAF_CTRL_CLEAR_MASK);
 301	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 302}
 303
 304static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 305{
 306	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
 307	u32 data = 0;
 308
 309	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
 310		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
 311	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 312		data = bcm_qspi_bspi_lr_read_fifo(qspi);
 313		if (likely(qspi->bspi_rf_op_len >= 4) &&
 314		    IS_ALIGNED((uintptr_t)buf, 4)) {
 315			buf[qspi->bspi_rf_op_idx++] = data;
 316			qspi->bspi_rf_op_len -= 4;
 317		} else {
 318			/* Read out remaining bytes, make sure*/
 319			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
 320
 321			data = cpu_to_le32(data);
 322			while (qspi->bspi_rf_op_len) {
 323				*cbuf++ = (u8)data;
 324				data >>= 8;
 325				qspi->bspi_rf_op_len--;
 326			}
 327		}
 328	}
 329}
 330
 331static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 332					  int bpp, int bpc, int flex_mode)
 333{
 334	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 335	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 336	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 337	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 338	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 339}
 340
 341static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
 342				       const struct spi_mem_op *op, int hp)
 343{
 344	int bpc = 0, bpp = 0;
 345	u8 command = op->cmd.opcode;
 346	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 347	int addrlen = op->addr.nbytes;
 348	int flex_mode = 1;
 349
 350	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 351		width, addrlen, hp);
 352
 353	if (addrlen == BSPI_ADDRLEN_4BYTES)
 354		bpp = BSPI_BPP_ADDR_SELECT_MASK;
 355
 356	bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
 
 357
 358	switch (width) {
 359	case SPI_NBITS_SINGLE:
 360		if (addrlen == BSPI_ADDRLEN_3BYTES)
 361			/* default mode, does not need flex_cmd */
 362			flex_mode = 0;
 363		break;
 364	case SPI_NBITS_DUAL:
 365		bpc = 0x00000001;
 366		if (hp) {
 367			bpc |= 0x00010100; /* address and mode are 2-bit */
 368			bpp = BSPI_BPP_MODE_SELECT_MASK;
 369		}
 370		break;
 371	case SPI_NBITS_QUAD:
 372		bpc = 0x00000002;
 373		if (hp) {
 374			bpc |= 0x00020200; /* address and mode are 4-bit */
 375			bpp |= BSPI_BPP_MODE_SELECT_MASK;
 376		}
 377		break;
 378	default:
 379		return -EINVAL;
 380	}
 381
 382	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
 383
 384	return 0;
 385}
 386
 387static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
 388				      const struct spi_mem_op *op, int hp)
 389{
 390	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 391	int addrlen = op->addr.nbytes;
 392	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 393
 394	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 395		width, addrlen, hp);
 396
 397	switch (width) {
 398	case SPI_NBITS_SINGLE:
 399		/* clear quad/dual mode */
 400		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 401			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 402		break;
 403	case SPI_NBITS_QUAD:
 404		/* clear dual mode and set quad mode */
 405		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 406		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 407		break;
 408	case SPI_NBITS_DUAL:
 409		/* clear quad mode set dual mode */
 410		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 411		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 412		break;
 413	default:
 414		return -EINVAL;
 415	}
 416
 417	if (addrlen == BSPI_ADDRLEN_4BYTES)
 418		/* set 4byte mode*/
 419		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 420	else
 421		/* clear 4 byte mode */
 422		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 423
 424	/* set the override mode */
 425	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 426	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 427	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
 428
 429	return 0;
 430}
 431
 432static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 433				  const struct spi_mem_op *op, int hp)
 434{
 435	int error = 0;
 436	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 437	int addrlen = op->addr.nbytes;
 438
 439	/* default mode */
 440	qspi->xfer_mode.flex_mode = true;
 441
 442	if (!bcm_qspi_bspi_ver_three(qspi)) {
 443		u32 val, mask;
 444
 445		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 446		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 447		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 448			qspi->xfer_mode.flex_mode = false;
 449			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 450			error = bcm_qspi_bspi_set_override(qspi, op, hp);
 451		}
 452	}
 453
 454	if (qspi->xfer_mode.flex_mode)
 455		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
 456
 457	if (error) {
 458		dev_warn(&qspi->pdev->dev,
 459			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 460			 width, addrlen, hp);
 461	} else if (qspi->xfer_mode.width != width ||
 462		   qspi->xfer_mode.addrlen != addrlen ||
 463		   qspi->xfer_mode.hp != hp) {
 464		qspi->xfer_mode.width = width;
 465		qspi->xfer_mode.addrlen = addrlen;
 466		qspi->xfer_mode.hp = hp;
 467		dev_dbg(&qspi->pdev->dev,
 468			"cs:%d %d-lane output, %d-byte address%s\n",
 469			qspi->curr_cs,
 470			qspi->xfer_mode.width,
 471			qspi->xfer_mode.addrlen,
 472			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 473	}
 474
 475	return error;
 476}
 477
 478static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 479{
 480	if (!has_bspi(qspi))
 481		return;
 482
 483	qspi->bspi_enabled = 1;
 484	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 485		return;
 486
 487	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 488	udelay(1);
 489	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 490	udelay(1);
 491}
 492
 493static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 494{
 495	if (!has_bspi(qspi))
 496		return;
 497
 498	qspi->bspi_enabled = 0;
 499	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 500		return;
 501
 502	bcm_qspi_bspi_busy_poll(qspi);
 503	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 504	udelay(1);
 505}
 506
 507static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 508{
 509	u32 rd = 0;
 510	u32 wr = 0;
 511
 512	if (qspi->base[CHIP_SELECT]) {
 513		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 514		wr = (rd & ~0xff) | (1 << cs);
 515		if (rd == wr)
 516			return;
 517		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
 518		usleep_range(10, 20);
 519	}
 520
 521	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
 522	qspi->curr_cs = cs;
 523}
 524
 
 
 
 
 
 
 
 
 
 525/* MSPI helpers */
 526static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 527				  const struct bcm_qspi_parms *xp)
 528{
 529	u32 spcr, spbr = 0;
 530
 531	if (xp->speed_hz)
 532		spbr = qspi->base_clk / (2 * xp->speed_hz);
 533
 534	spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
 535	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 536
 537	spcr = MSPI_MASTER_BIT;
 538	/* for 16 bit the data should be zero */
 539	if (xp->bits_per_word != 16)
 540		spcr |= xp->bits_per_word << 2;
 541	spcr |= xp->mode & 3;
 542	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544	qspi->last_parms = *xp;
 545}
 546
 547static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 548				  struct spi_device *spi,
 549				  struct spi_transfer *trans)
 550{
 551	struct bcm_qspi_parms xp;
 552
 553	xp.speed_hz = trans->speed_hz;
 554	xp.bits_per_word = trans->bits_per_word;
 555	xp.mode = spi->mode;
 556
 557	bcm_qspi_hw_set_parms(qspi, &xp);
 558}
 559
 560static int bcm_qspi_setup(struct spi_device *spi)
 561{
 562	struct bcm_qspi_parms *xp;
 563
 564	if (spi->bits_per_word > 16)
 565		return -EINVAL;
 566
 567	xp = spi_get_ctldata(spi);
 568	if (!xp) {
 569		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 570		if (!xp)
 571			return -ENOMEM;
 572		spi_set_ctldata(spi, xp);
 573	}
 574	xp->speed_hz = spi->max_speed_hz;
 575	xp->mode = spi->mode;
 576
 577	if (spi->bits_per_word)
 578		xp->bits_per_word = spi->bits_per_word;
 579	else
 580		xp->bits_per_word = 8;
 581
 582	return 0;
 583}
 584
 585static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
 586					   struct qspi_trans *qt)
 587{
 588	if (qt->mspi_last_trans &&
 589	    spi_transfer_is_last(qspi->master, qt->trans))
 590		return true;
 591	else
 592		return false;
 593}
 594
 595static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 596					struct qspi_trans *qt, int flags)
 597{
 598	int ret = TRANS_STATUS_BREAK_NONE;
 599
 600	/* count the last transferred bytes */
 601	if (qt->trans->bits_per_word <= 8)
 602		qt->byte++;
 603	else
 604		qt->byte += 2;
 
 
 
 
 605
 606	if (qt->byte >= qt->trans->len) {
 607		/* we're at the end of the spi_transfer */
 608		/* in TX mode, need to pause for a delay or CS change */
 609		if (qt->trans->delay_usecs &&
 610		    (flags & TRANS_STATUS_BREAK_DELAY))
 611			ret |= TRANS_STATUS_BREAK_DELAY;
 612		if (qt->trans->cs_change &&
 613		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 614			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 615		if (ret)
 616			goto done;
 617
 618		dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
 619		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
 620			ret = TRANS_STATUS_BREAK_EOM;
 621		else
 622			ret = TRANS_STATUS_BREAK_NO_BYTES;
 623
 624		qt->trans = NULL;
 625	}
 626
 627done:
 628	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 629		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 630	return ret;
 631}
 632
 633static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 634{
 635	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 636
 637	/* mask out reserved bits */
 638	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 639}
 640
 641static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 642{
 643	u32 reg_offset = MSPI_RXRAM;
 644	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 645	u32 msb_offset = reg_offset + (slot << 3);
 646
 647	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 648		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 649}
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651static void read_from_hw(struct bcm_qspi *qspi, int slots)
 652{
 653	struct qspi_trans tp;
 654	int slot;
 655
 656	bcm_qspi_disable_bspi(qspi);
 657
 658	if (slots > MSPI_NUM_CDRAM) {
 659		/* should never happen */
 660		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 661		return;
 662	}
 663
 664	tp = qspi->trans_pos;
 665
 666	for (slot = 0; slot < slots; slot++) {
 667		if (tp.trans->bits_per_word <= 8) {
 668			u8 *buf = tp.trans->rx_buf;
 669
 670			if (buf)
 671				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 672			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 673				buf ? buf[tp.byte] : 0xff);
 674		} else {
 675			u16 *buf = tp.trans->rx_buf;
 676
 677			if (buf)
 678				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 679								      slot);
 680			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 681				buf ? buf[tp.byte] : 0xffff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682		}
 683
 684		update_qspi_trans_byte_count(qspi, &tp,
 685					     TRANS_STATUS_BREAK_NONE);
 686	}
 687
 688	qspi->trans_pos = tp;
 689}
 690
 691static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 692				       u8 val)
 693{
 694	u32 reg_offset = MSPI_TXRAM + (slot << 3);
 695
 696	/* mask out reserved bits */
 697	bcm_qspi_write(qspi, MSPI, reg_offset, val);
 698}
 699
 700static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 701					u16 val)
 702{
 703	u32 reg_offset = MSPI_TXRAM;
 704	u32 msb_offset = reg_offset + (slot << 3);
 705	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 706
 707	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 708	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 709}
 710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 712{
 713	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 714}
 715
 716static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 717{
 718	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 719}
 720
 721/* Return number of slots written */
 722static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 723{
 724	struct qspi_trans tp;
 725	int slot = 0, tstatus = 0;
 726	u32 mspi_cdram = 0;
 727
 728	bcm_qspi_disable_bspi(qspi);
 729	tp = qspi->trans_pos;
 730	bcm_qspi_update_parms(qspi, spi, tp.trans);
 731
 732	/* Run until end of transfer or reached the max data */
 733	while (!tstatus && slot < MSPI_NUM_CDRAM) {
 
 734		if (tp.trans->bits_per_word <= 8) {
 735			const u8 *buf = tp.trans->tx_buf;
 736			u8 val = buf ? buf[tp.byte] : 0xff;
 737
 738			write_txram_slot_u8(qspi, slot, val);
 739			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 740		} else {
 741			const u16 *buf = tp.trans->tx_buf;
 742			u16 val = buf ? buf[tp.byte / 2] : 0xffff;
 743
 744			write_txram_slot_u16(qspi, slot, val);
 745			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746		}
 747		mspi_cdram = MSPI_CDRAM_CONT_BIT;
 
 
 
 
 
 
 748
 749		if (has_bspi(qspi))
 750			mspi_cdram &= ~1;
 751		else
 752			mspi_cdram |= (~(1 << spi->chip_select) &
 753				       MSPI_CDRAM_PCS);
 754
 755		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 756				MSPI_CDRAM_BITSE_BIT);
 757
 758		write_cdram_slot(qspi, slot, mspi_cdram);
 759
 760		tstatus = update_qspi_trans_byte_count(qspi, &tp,
 761						       TRANS_STATUS_BREAK_TX);
 762		slot++;
 763	}
 764
 765	if (!slot) {
 766		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
 767		goto done;
 768	}
 769
 770	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
 771	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
 772	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
 773
 774	if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
 
 
 
 
 
 
 
 
 
 775		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
 776			~MSPI_CDRAM_CONT_BIT;
 777		write_cdram_slot(qspi, slot - 1, mspi_cdram);
 778	}
 779
 780	if (has_bspi(qspi))
 781		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
 782
 783	/* Must flush previous writes before starting MSPI operation */
 784	mb();
 785	/* Set cont | spe | spifie */
 786	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
 787
 788done:
 789	return slot;
 790}
 791
 792static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
 793				     const struct spi_mem_op *op)
 794{
 795	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 796	u32 addr = 0, len, rdlen, len_words, from = 0;
 797	int ret = 0;
 798	unsigned long timeo = msecs_to_jiffies(100);
 799	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 800
 801	if (bcm_qspi_bspi_ver_three(qspi))
 802		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
 803			return -EIO;
 804
 805	from = op->addr.val;
 806	bcm_qspi_chip_select(qspi, spi->chip_select);
 
 807	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
 808
 809	/*
 810	 * when using flex mode we need to send
 811	 * the upper address byte to bspi
 812	 */
 813	if (bcm_qspi_bspi_ver_three(qspi) == false) {
 814		addr = from & 0xff000000;
 815		bcm_qspi_write(qspi, BSPI,
 816			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
 817	}
 818
 819	if (!qspi->xfer_mode.flex_mode)
 820		addr = from;
 821	else
 822		addr = from & 0x00ffffff;
 823
 824	if (bcm_qspi_bspi_ver_three(qspi) == true)
 825		addr = (addr + 0xc00000) & 0xffffff;
 826
 827	/*
 828	 * read into the entire buffer by breaking the reads
 829	 * into RAF buffer read lengths
 830	 */
 831	len = op->data.nbytes;
 832	qspi->bspi_rf_op_idx = 0;
 833
 834	do {
 835		if (len > BSPI_READ_LENGTH)
 836			rdlen = BSPI_READ_LENGTH;
 837		else
 838			rdlen = len;
 839
 840		reinit_completion(&qspi->bspi_done);
 841		bcm_qspi_enable_bspi(qspi);
 842		len_words = (rdlen + 3) >> 2;
 843		qspi->bspi_rf_op = op;
 844		qspi->bspi_rf_op_status = 0;
 845		qspi->bspi_rf_op_len = rdlen;
 846		dev_dbg(&qspi->pdev->dev,
 847			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
 848		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
 849		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
 850		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
 851		if (qspi->soc_intc) {
 852			/*
 853			 * clear soc MSPI and BSPI interrupts and enable
 854			 * BSPI interrupts.
 855			 */
 856			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
 857			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
 858		}
 859
 860		/* Must flush previous writes before starting BSPI operation */
 861		mb();
 862		bcm_qspi_bspi_lr_start(qspi);
 863		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
 864			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
 865			ret = -ETIMEDOUT;
 866			break;
 867		}
 868
 869		/* set msg return length */
 870		addr += rdlen;
 871		len -= rdlen;
 872	} while (len);
 873
 874	return ret;
 875}
 876
 877static int bcm_qspi_transfer_one(struct spi_master *master,
 878				 struct spi_device *spi,
 879				 struct spi_transfer *trans)
 880{
 881	struct bcm_qspi *qspi = spi_master_get_devdata(master);
 882	int slots;
 883	unsigned long timeo = msecs_to_jiffies(100);
 884
 885	bcm_qspi_chip_select(qspi, spi->chip_select);
 
 886	qspi->trans_pos.trans = trans;
 887	qspi->trans_pos.byte = 0;
 888
 889	while (qspi->trans_pos.byte < trans->len) {
 890		reinit_completion(&qspi->mspi_done);
 891
 892		slots = write_to_hw(qspi, spi);
 893		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
 894			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
 895			return -ETIMEDOUT;
 896		}
 897
 898		read_from_hw(qspi, slots);
 899	}
 900	bcm_qspi_enable_bspi(qspi);
 901
 902	return 0;
 903}
 904
 905static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
 906				     const struct spi_mem_op *op)
 907{
 908	struct spi_master *master = spi->master;
 909	struct bcm_qspi *qspi = spi_master_get_devdata(master);
 910	struct spi_transfer t[2];
 911	u8 cmd[6] = { };
 912	int ret, i;
 913
 914	memset(cmd, 0, sizeof(cmd));
 915	memset(t, 0, sizeof(t));
 916
 917	/* tx */
 918	/* opcode is in cmd[0] */
 919	cmd[0] = op->cmd.opcode;
 920	for (i = 0; i < op->addr.nbytes; i++)
 921		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
 922
 923	t[0].tx_buf = cmd;
 924	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
 925	t[0].bits_per_word = spi->bits_per_word;
 926	t[0].tx_nbits = op->cmd.buswidth;
 927	/* lets mspi know that this is not last transfer */
 928	qspi->trans_pos.mspi_last_trans = false;
 929	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
 930
 931	/* rx */
 932	qspi->trans_pos.mspi_last_trans = true;
 933	if (!ret) {
 934		/* rx */
 935		t[1].rx_buf = op->data.buf.in;
 936		t[1].len = op->data.nbytes;
 937		t[1].rx_nbits =  op->data.buswidth;
 938		t[1].bits_per_word = spi->bits_per_word;
 939		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
 940	}
 941
 942	return ret;
 943}
 944
 945static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
 946				const struct spi_mem_op *op)
 947{
 948	struct spi_device *spi = mem->spi;
 949	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 950	int ret = 0;
 951	bool mspi_read = false;
 952	u32 addr = 0, len;
 953	u_char *buf;
 954
 955	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
 956	    op->data.dir != SPI_MEM_DATA_IN)
 957		return -ENOTSUPP;
 958
 959	buf = op->data.buf.in;
 960	addr = op->addr.val;
 961	len = op->data.nbytes;
 962
 963	if (bcm_qspi_bspi_ver_three(qspi) == true) {
 964		/*
 965		 * The address coming into this function is a raw flash offset.
 966		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
 967		 * address. If it crosses a 4MB boundary, just revert back to
 968		 * using MSPI.
 969		 */
 970		addr = (addr + 0xc00000) & 0xffffff;
 971
 972		if ((~ADDR_4MB_MASK & addr) ^
 973		    (~ADDR_4MB_MASK & (addr + len - 1)))
 974			mspi_read = true;
 975	}
 976
 977	/* non-aligned and very short transfers are handled by MSPI */
 978	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
 979	    len < 4)
 980		mspi_read = true;
 981
 982	if (mspi_read)
 983		return bcm_qspi_mspi_exec_mem_op(spi, op);
 984
 985	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
 986
 987	if (!ret)
 988		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
 989
 990	return ret;
 991}
 992
 993static void bcm_qspi_cleanup(struct spi_device *spi)
 994{
 995	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
 996
 997	kfree(xp);
 998}
 999
1000static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1001{
1002	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1003	struct bcm_qspi *qspi = qspi_dev_id->dev;
1004	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1005
1006	if (status & MSPI_MSPI_STATUS_SPIF) {
1007		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1008		/* clear interrupt */
1009		status &= ~MSPI_MSPI_STATUS_SPIF;
1010		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1011		if (qspi->soc_intc)
1012			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1013		complete(&qspi->mspi_done);
1014		return IRQ_HANDLED;
1015	}
1016
1017	return IRQ_NONE;
1018}
1019
1020static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1021{
1022	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1023	struct bcm_qspi *qspi = qspi_dev_id->dev;
1024	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1025	u32 status = qspi_dev_id->irqp->mask;
1026
1027	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1028		bcm_qspi_bspi_lr_data_read(qspi);
1029		if (qspi->bspi_rf_op_len == 0) {
1030			qspi->bspi_rf_op = NULL;
1031			if (qspi->soc_intc) {
1032				/* disable soc BSPI interrupt */
1033				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1034							   false);
1035				/* indicate done */
1036				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1037			}
1038
1039			if (qspi->bspi_rf_op_status)
1040				bcm_qspi_bspi_lr_clear(qspi);
1041			else
1042				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1043		}
1044
1045		if (qspi->soc_intc)
1046			/* clear soc BSPI interrupt */
1047			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1048	}
1049
1050	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1051	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1052		complete(&qspi->bspi_done);
1053
1054	return IRQ_HANDLED;
1055}
1056
1057static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1058{
1059	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1060	struct bcm_qspi *qspi = qspi_dev_id->dev;
1061	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1062
1063	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1064	qspi->bspi_rf_op_status = -EIO;
1065	if (qspi->soc_intc)
1066		/* clear soc interrupt */
1067		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1068
1069	complete(&qspi->bspi_done);
1070	return IRQ_HANDLED;
1071}
1072
1073static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1074{
1075	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1076	struct bcm_qspi *qspi = qspi_dev_id->dev;
1077	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1078	irqreturn_t ret = IRQ_NONE;
1079
1080	if (soc_intc) {
1081		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1082
1083		if (status & MSPI_DONE)
1084			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1085		else if (status & BSPI_DONE)
1086			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1087		else if (status & BSPI_ERR)
1088			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1089	}
1090
1091	return ret;
1092}
1093
1094static const struct bcm_qspi_irq qspi_irq_tab[] = {
1095	{
1096		.irq_name = "spi_lr_fullness_reached",
1097		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1098		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1099	},
1100	{
1101		.irq_name = "spi_lr_session_aborted",
1102		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1103		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1104	},
1105	{
1106		.irq_name = "spi_lr_impatient",
1107		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1108		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1109	},
1110	{
1111		.irq_name = "spi_lr_session_done",
1112		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1113		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1114	},
1115#ifdef QSPI_INT_DEBUG
1116	/* this interrupt is for debug purposes only, dont request irq */
1117	{
1118		.irq_name = "spi_lr_overread",
1119		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1120		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1121	},
1122#endif
1123	{
1124		.irq_name = "mspi_done",
1125		.irq_handler = bcm_qspi_mspi_l2_isr,
1126		.mask = INTR_MSPI_DONE_MASK,
1127	},
1128	{
1129		.irq_name = "mspi_halted",
1130		.irq_handler = bcm_qspi_mspi_l2_isr,
1131		.mask = INTR_MSPI_HALTED_MASK,
1132	},
1133	{
1134		/* single muxed L1 interrupt source */
1135		.irq_name = "spi_l1_intr",
1136		.irq_handler = bcm_qspi_l1_isr,
1137		.irq_source = MUXED_L1,
1138		.mask = QSPI_INTERRUPTS_ALL,
1139	},
1140};
1141
1142static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1143{
1144	u32 val = 0;
1145
1146	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1147	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1148	qspi->bspi_min_rev = val & 0xff;
1149	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1150		/* Force mapping of BSPI address -> flash offset */
1151		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1152		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1153	}
1154	qspi->bspi_enabled = 1;
1155	bcm_qspi_disable_bspi(qspi);
1156	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1157	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1158}
1159
1160static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1161{
1162	struct bcm_qspi_parms parms;
1163
1164	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1165	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1166	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1167	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1168	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1169
1170	parms.mode = SPI_MODE_3;
1171	parms.bits_per_word = 8;
1172	parms.speed_hz = qspi->max_speed_hz;
1173	bcm_qspi_hw_set_parms(qspi, &parms);
1174
1175	if (has_bspi(qspi))
1176		bcm_qspi_bspi_init(qspi);
1177}
1178
1179static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1180{
 
 
1181	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1182	if (has_bspi(qspi))
1183		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1184
 
 
1185}
1186
1187static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1188	.exec_op = bcm_qspi_exec_mem_op,
1189};
1190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191static const struct of_device_id bcm_qspi_of_match[] = {
1192	{ .compatible = "brcm,spi-bcm-qspi" },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193	{},
1194};
1195MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1196
1197int bcm_qspi_probe(struct platform_device *pdev,
1198		   struct bcm_qspi_soc_intc *soc_intc)
1199{
 
 
1200	struct device *dev = &pdev->dev;
1201	struct bcm_qspi *qspi;
1202	struct spi_master *master;
1203	struct resource *res;
1204	int irq, ret = 0, num_ints = 0;
1205	u32 val;
 
1206	const char *name = NULL;
1207	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1208
1209	/* We only support device-tree instantiation */
1210	if (!dev->of_node)
1211		return -ENODEV;
1212
1213	if (!of_match_node(bcm_qspi_of_match, dev->of_node))
 
1214		return -ENODEV;
1215
1216	master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
 
 
1217	if (!master) {
1218		dev_err(dev, "error allocating spi_master\n");
1219		return -ENOMEM;
1220	}
1221
1222	qspi = spi_master_get_devdata(master);
 
 
 
 
 
1223	qspi->pdev = pdev;
1224	qspi->trans_pos.trans = NULL;
1225	qspi->trans_pos.byte = 0;
1226	qspi->trans_pos.mspi_last_trans = true;
1227	qspi->master = master;
1228
1229	master->bus_num = -1;
1230	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
 
1231	master->setup = bcm_qspi_setup;
1232	master->transfer_one = bcm_qspi_transfer_one;
1233	master->mem_ops = &bcm_qspi_mem_ops;
1234	master->cleanup = bcm_qspi_cleanup;
1235	master->dev.of_node = dev->of_node;
1236	master->num_chipselect = NUM_CHIPSELECT;
 
1237
1238	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1239
1240	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1241		master->num_chipselect = val;
1242
1243	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1244	if (!res)
1245		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1246						   "mspi");
1247
1248	if (res) {
1249		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1250		if (IS_ERR(qspi->base[MSPI])) {
1251			ret = PTR_ERR(qspi->base[MSPI]);
1252			goto qspi_resource_err;
1253		}
1254	} else {
1255		goto qspi_resource_err;
1256	}
1257
1258	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1259	if (res) {
1260		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1261		if (IS_ERR(qspi->base[BSPI])) {
1262			ret = PTR_ERR(qspi->base[BSPI]);
1263			goto qspi_resource_err;
1264		}
1265		qspi->bspi_mode = true;
1266	} else {
1267		qspi->bspi_mode = false;
1268	}
1269
1270	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1271
1272	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1273	if (res) {
1274		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1275		if (IS_ERR(qspi->base[CHIP_SELECT])) {
1276			ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1277			goto qspi_resource_err;
1278		}
1279	}
1280
1281	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1282				GFP_KERNEL);
1283	if (!qspi->dev_ids) {
1284		ret = -ENOMEM;
1285		goto qspi_resource_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	}
1287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288	for (val = 0; val < num_irqs; val++) {
1289		irq = -1;
1290		name = qspi_irq_tab[val].irq_name;
1291		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1292			/* get the l2 interrupts */
1293			irq = platform_get_irq_byname(pdev, name);
1294		} else if (!num_ints && soc_intc) {
1295			/* all mspi, bspi intrs muxed to one L1 intr */
1296			irq = platform_get_irq(pdev, 0);
1297		}
1298
1299		if (irq  >= 0) {
1300			ret = devm_request_irq(&pdev->dev, irq,
1301					       qspi_irq_tab[val].irq_handler, 0,
1302					       name,
1303					       &qspi->dev_ids[val]);
1304			if (ret < 0) {
1305				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1306				goto qspi_probe_err;
1307			}
1308
1309			qspi->dev_ids[val].dev = qspi;
1310			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1311			num_ints++;
1312			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1313				qspi_irq_tab[val].irq_name,
1314				irq);
1315		}
1316	}
1317
1318	if (!num_ints) {
1319		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1320		ret = -EINVAL;
1321		goto qspi_probe_err;
1322	}
1323
1324	/*
1325	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1326	 * in specific ways
1327	 */
1328	if (soc_intc) {
1329		qspi->soc_intc = soc_intc;
1330		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1331	} else {
1332		qspi->soc_intc = NULL;
1333	}
1334
1335	qspi->clk = devm_clk_get(&pdev->dev, NULL);
1336	if (IS_ERR(qspi->clk)) {
1337		dev_warn(dev, "unable to get clock\n");
1338		ret = PTR_ERR(qspi->clk);
1339		goto qspi_probe_err;
1340	}
1341
1342	ret = clk_prepare_enable(qspi->clk);
1343	if (ret) {
1344		dev_err(dev, "failed to prepare clock\n");
1345		goto qspi_probe_err;
1346	}
1347
1348	qspi->base_clk = clk_get_rate(qspi->clk);
1349	qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1350
1351	bcm_qspi_hw_init(qspi);
1352	init_completion(&qspi->mspi_done);
1353	init_completion(&qspi->bspi_done);
1354	qspi->curr_cs = -1;
1355
1356	platform_set_drvdata(pdev, qspi);
1357
1358	qspi->xfer_mode.width = -1;
1359	qspi->xfer_mode.addrlen = -1;
1360	qspi->xfer_mode.hp = -1;
1361
1362	ret = devm_spi_register_master(&pdev->dev, master);
1363	if (ret < 0) {
1364		dev_err(dev, "can't register master\n");
1365		goto qspi_reg_err;
1366	}
1367
1368	return 0;
1369
1370qspi_reg_err:
1371	bcm_qspi_hw_uninit(qspi);
 
1372	clk_disable_unprepare(qspi->clk);
1373qspi_probe_err:
1374	kfree(qspi->dev_ids);
1375qspi_resource_err:
1376	spi_master_put(master);
1377	return ret;
1378}
1379/* probe function to be called by SoC specific platform driver probe */
1380EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1381
1382int bcm_qspi_remove(struct platform_device *pdev)
1383{
1384	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1385
 
1386	bcm_qspi_hw_uninit(qspi);
1387	clk_disable_unprepare(qspi->clk);
1388	kfree(qspi->dev_ids);
1389	spi_unregister_master(qspi->master);
1390
1391	return 0;
1392}
 
1393/* function to be called by SoC specific platform driver remove() */
1394EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1395
1396static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1397{
1398	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1399
1400	/* store the override strap value */
1401	if (!bcm_qspi_bspi_ver_three(qspi))
1402		qspi->s3_strap_override_ctrl =
1403			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1404
1405	spi_master_suspend(qspi->master);
1406	clk_disable(qspi->clk);
1407	bcm_qspi_hw_uninit(qspi);
1408
1409	return 0;
1410};
1411
1412static int __maybe_unused bcm_qspi_resume(struct device *dev)
1413{
1414	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1415	int ret = 0;
1416
1417	bcm_qspi_hw_init(qspi);
1418	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1419	if (qspi->soc_intc)
1420		/* enable MSPI interrupt */
1421		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1422						 true);
1423
1424	ret = clk_enable(qspi->clk);
1425	if (!ret)
1426		spi_master_resume(qspi->master);
1427
1428	return ret;
1429}
1430
1431SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1432
1433/* pm_ops to be called by SoC specific platform driver */
1434EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1435
1436MODULE_AUTHOR("Kamal Dasu");
1437MODULE_DESCRIPTION("Broadcom QSPI driver");
1438MODULE_LICENSE("GPL v2");
1439MODULE_ALIAS("platform:" DRIVER_NAME);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   4 *
   5 * Copyright 2016 Broadcom
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/device.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/ioport.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/of.h>
  18#include <linux/of_irq.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/spi/spi.h>
  22#include <linux/spi/spi-mem.h>
  23#include <linux/sysfs.h>
  24#include <linux/types.h>
  25#include "spi-bcm-qspi.h"
  26
  27#define DRIVER_NAME "bcm_qspi"
  28
  29
  30/* BSPI register offsets */
  31#define BSPI_REVISION_ID			0x000
  32#define BSPI_SCRATCH				0x004
  33#define BSPI_MAST_N_BOOT_CTRL			0x008
  34#define BSPI_BUSY_STATUS			0x00c
  35#define BSPI_INTR_STATUS			0x010
  36#define BSPI_B0_STATUS				0x014
  37#define BSPI_B0_CTRL				0x018
  38#define BSPI_B1_STATUS				0x01c
  39#define BSPI_B1_CTRL				0x020
  40#define BSPI_STRAP_OVERRIDE_CTRL		0x024
  41#define BSPI_FLEX_MODE_ENABLE			0x028
  42#define BSPI_BITS_PER_CYCLE			0x02c
  43#define BSPI_BITS_PER_PHASE			0x030
  44#define BSPI_CMD_AND_MODE_BYTE			0x034
  45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
  46#define BSPI_BSPI_XOR_VALUE			0x03c
  47#define BSPI_BSPI_XOR_ENABLE			0x040
  48#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
  49#define BSPI_BSPI_PIO_IODIR			0x048
  50#define BSPI_BSPI_PIO_DATA			0x04c
  51
  52/* RAF register offsets */
  53#define BSPI_RAF_START_ADDR			0x100
  54#define BSPI_RAF_NUM_WORDS			0x104
  55#define BSPI_RAF_CTRL				0x108
  56#define BSPI_RAF_FULLNESS			0x10c
  57#define BSPI_RAF_WATERMARK			0x110
  58#define BSPI_RAF_STATUS			0x114
  59#define BSPI_RAF_READ_DATA			0x118
  60#define BSPI_RAF_WORD_CNT			0x11c
  61#define BSPI_RAF_CURR_ADDR			0x120
  62
  63/* Override mode masks */
  64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
  65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
  66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
  67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
  68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
  69
  70#define BSPI_ADDRLEN_3BYTES			3
  71#define BSPI_ADDRLEN_4BYTES			4
  72
  73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
  74
  75#define BSPI_RAF_CTRL_START_MASK		BIT(0)
  76#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
  77
  78#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
  79#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
  80
  81#define BSPI_READ_LENGTH			256
  82
  83/* MSPI register offsets */
  84#define MSPI_SPCR0_LSB				0x000
  85#define MSPI_SPCR0_MSB				0x004
  86#define MSPI_SPCR0_MSB_CPHA			BIT(0)
  87#define MSPI_SPCR0_MSB_CPOL			BIT(1)
  88#define MSPI_SPCR0_MSB_BITS_SHIFT		0x2
  89#define MSPI_SPCR1_LSB				0x008
  90#define MSPI_SPCR1_MSB				0x00c
  91#define MSPI_NEWQP				0x010
  92#define MSPI_ENDQP				0x014
  93#define MSPI_SPCR2				0x018
  94#define MSPI_MSPI_STATUS			0x020
  95#define MSPI_CPTQP				0x024
  96#define MSPI_SPCR3				0x028
  97#define MSPI_REV				0x02c
  98#define MSPI_TXRAM				0x040
  99#define MSPI_RXRAM				0x0c0
 100#define MSPI_CDRAM				0x140
 101#define MSPI_WRITE_LOCK			0x180
 102
 103#define MSPI_MASTER_BIT			BIT(7)
 104
 105#define MSPI_NUM_CDRAM				16
 106#define MSPI_CDRAM_OUTP				BIT(8)
 107#define MSPI_CDRAM_CONT_BIT			BIT(7)
 108#define MSPI_CDRAM_BITSE_BIT			BIT(6)
 109#define MSPI_CDRAM_DT_BIT			BIT(5)
 110#define MSPI_CDRAM_PCS				0xf
 111
 112#define MSPI_SPCR2_SPE				BIT(6)
 113#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
 114
 115#define MSPI_SPCR3_FASTBR			BIT(0)
 116#define MSPI_SPCR3_FASTDT			BIT(1)
 117#define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
 118#define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
 119						 ~(BIT(10) | BIT(11)))
 120#define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
 121						 BIT(11))
 122#define MSPI_SPCR3_TXRXDAM_MASK			GENMASK(4, 2)
 123#define MSPI_SPCR3_DAM_8BYTE			0
 124#define MSPI_SPCR3_DAM_16BYTE			(BIT(2) | BIT(4))
 125#define MSPI_SPCR3_DAM_32BYTE			(BIT(3) | BIT(5))
 126#define MSPI_SPCR3_HALFDUPLEX			BIT(6)
 127#define MSPI_SPCR3_HDOUTTYPE			BIT(7)
 128#define MSPI_SPCR3_DATA_REG_SZ			BIT(8)
 129#define MSPI_SPCR3_CPHARX			BIT(9)
 130
 131#define MSPI_MSPI_STATUS_SPIF			BIT(0)
 132
 133#define INTR_BASE_BIT_SHIFT			0x02
 134#define INTR_COUNT				0x07
 135
 136#define NUM_CHIPSELECT				4
 
 137#define QSPI_SPBR_MAX				255U
 138#define MSPI_BASE_FREQ				27000000UL
 139
 140#define OPCODE_DIOR				0xBB
 141#define OPCODE_QIOR				0xEB
 142#define OPCODE_DIOR_4B				0xBC
 143#define OPCODE_QIOR_4B				0xEC
 144
 145#define MAX_CMD_SIZE				6
 146
 147#define ADDR_4MB_MASK				GENMASK(22, 0)
 148
 149/* stop at end of transfer, no other reason */
 150#define TRANS_STATUS_BREAK_NONE		0
 151/* stop at end of spi_message */
 152#define TRANS_STATUS_BREAK_EOM			1
 153/* stop at end of spi_transfer if delay */
 154#define TRANS_STATUS_BREAK_DELAY		2
 155/* stop at end of spi_transfer if cs_change */
 156#define TRANS_STATUS_BREAK_CS_CHANGE		4
 157/* stop if we run out of bytes */
 158#define TRANS_STATUS_BREAK_NO_BYTES		8
 159
 160/* events that make us stop filling TX slots */
 161#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
 162			       TRANS_STATUS_BREAK_DELAY |		\
 163			       TRANS_STATUS_BREAK_CS_CHANGE)
 164
 165/* events that make us deassert CS */
 166#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
 167				     TRANS_STATUS_BREAK_CS_CHANGE)
 168
 169/*
 170 * Used for writing and reading data in the right order
 171 * to TXRAM and RXRAM when used as 32-bit registers respectively
 172 */
 173#define swap4bytes(__val) \
 174	((((__val) >> 24) & 0x000000FF) | (((__val) >>  8) & 0x0000FF00) | \
 175	 (((__val) <<  8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
 176
 177struct bcm_qspi_parms {
 178	u32 speed_hz;
 179	u8 mode;
 180	u8 bits_per_word;
 181};
 182
 183struct bcm_xfer_mode {
 184	bool flex_mode;
 185	unsigned int width;
 186	unsigned int addrlen;
 187	unsigned int hp;
 188};
 189
 190enum base_type {
 191	MSPI,
 192	BSPI,
 193	CHIP_SELECT,
 194	BASEMAX,
 195};
 196
 197enum irq_source {
 198	SINGLE_L2,
 199	MUXED_L1,
 200};
 201
 202struct bcm_qspi_irq {
 203	const char *irq_name;
 204	const irq_handler_t irq_handler;
 205	int irq_source;
 206	u32 mask;
 207};
 208
 209struct bcm_qspi_dev_id {
 210	const struct bcm_qspi_irq *irqp;
 211	void *dev;
 212};
 213
 214
 215struct qspi_trans {
 216	struct spi_transfer *trans;
 217	int byte;
 218	bool mspi_last_trans;
 219};
 220
 221struct bcm_qspi {
 222	struct platform_device *pdev;
 223	struct spi_master *master;
 224	struct clk *clk;
 225	u32 base_clk;
 226	u32 max_speed_hz;
 227	void __iomem *base[BASEMAX];
 228
 229	/* Some SoCs provide custom interrupt status register(s) */
 230	struct bcm_qspi_soc_intc	*soc_intc;
 231
 232	struct bcm_qspi_parms last_parms;
 233	struct qspi_trans  trans_pos;
 234	int curr_cs;
 235	int bspi_maj_rev;
 236	int bspi_min_rev;
 237	int bspi_enabled;
 238	const struct spi_mem_op *bspi_rf_op;
 239	u32 bspi_rf_op_idx;
 240	u32 bspi_rf_op_len;
 241	u32 bspi_rf_op_status;
 242	struct bcm_xfer_mode xfer_mode;
 243	u32 s3_strap_override_ctrl;
 244	bool bspi_mode;
 245	bool big_endian;
 246	int num_irqs;
 247	struct bcm_qspi_dev_id *dev_ids;
 248	struct completion mspi_done;
 249	struct completion bspi_done;
 250	u8 mspi_maj_rev;
 251	u8 mspi_min_rev;
 252	bool mspi_spcr3_sysclk;
 253};
 254
 255static inline bool has_bspi(struct bcm_qspi *qspi)
 256{
 257	return qspi->bspi_mode;
 258}
 259
 260/* hardware supports spcr3 and fast baud-rate  */
 261static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
 262{
 263	if (!has_bspi(qspi) &&
 264	    ((qspi->mspi_maj_rev >= 1) &&
 265	     (qspi->mspi_min_rev >= 5)))
 266		return true;
 267
 268	return false;
 269}
 270
 271/* hardware supports sys clk 108Mhz  */
 272static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
 273{
 274	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
 275	    ((qspi->mspi_maj_rev >= 1) &&
 276	     (qspi->mspi_min_rev >= 6))))
 277		return true;
 278
 279	return false;
 280}
 281
 282static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
 283{
 284	if (bcm_qspi_has_fastbr(qspi))
 285		return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
 286	else
 287		return 8;
 288}
 289
 290static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
 291			      const struct bcm_qspi_parms *xp)
 292{
 293	u32 spbr = 0;
 294
 295	/* SPBR = System Clock/(2 * SCK Baud Rate) */
 296	if (xp->speed_hz)
 297		spbr = clk_speed_hz / (xp->speed_hz * 2);
 298
 299	return spbr;
 300}
 301
 302/* Read qspi controller register*/
 303static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 304				unsigned int offset)
 305{
 306	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 307}
 308
 309/* Write qspi controller register*/
 310static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 311				  unsigned int offset, unsigned int data)
 312{
 313	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 314}
 315
 316/* BSPI helpers */
 317static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 318{
 319	int i;
 320
 321	/* this should normally finish within 10us */
 322	for (i = 0; i < 1000; i++) {
 323		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 324			return 0;
 325		udelay(1);
 326	}
 327	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 328	return -EIO;
 329}
 330
 331static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 332{
 333	if (qspi->bspi_maj_rev < 4)
 334		return true;
 335	return false;
 336}
 337
 338static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 339{
 340	bcm_qspi_bspi_busy_poll(qspi);
 341	/* Force rising edge for the b0/b1 'flush' field */
 342	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 343	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 344	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 345	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 346}
 347
 348static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 349{
 350	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 351				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 352}
 353
 354static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 355{
 356	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 357
 358	/* BSPI v3 LR is LE only, convert data to host endianness */
 359	if (bcm_qspi_bspi_ver_three(qspi))
 360		data = le32_to_cpu(data);
 361
 362	return data;
 363}
 364
 365static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 366{
 367	bcm_qspi_bspi_busy_poll(qspi);
 368	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 369		       BSPI_RAF_CTRL_START_MASK);
 370}
 371
 372static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 373{
 374	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 375		       BSPI_RAF_CTRL_CLEAR_MASK);
 376	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 377}
 378
 379static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 380{
 381	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
 382	u32 data = 0;
 383
 384	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
 385		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
 386	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 387		data = bcm_qspi_bspi_lr_read_fifo(qspi);
 388		if (likely(qspi->bspi_rf_op_len >= 4) &&
 389		    IS_ALIGNED((uintptr_t)buf, 4)) {
 390			buf[qspi->bspi_rf_op_idx++] = data;
 391			qspi->bspi_rf_op_len -= 4;
 392		} else {
 393			/* Read out remaining bytes, make sure*/
 394			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
 395
 396			data = cpu_to_le32(data);
 397			while (qspi->bspi_rf_op_len) {
 398				*cbuf++ = (u8)data;
 399				data >>= 8;
 400				qspi->bspi_rf_op_len--;
 401			}
 402		}
 403	}
 404}
 405
 406static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 407					  int bpp, int bpc, int flex_mode)
 408{
 409	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 410	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 411	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 412	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 413	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 414}
 415
 416static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
 417				       const struct spi_mem_op *op, int hp)
 418{
 419	int bpc = 0, bpp = 0;
 420	u8 command = op->cmd.opcode;
 421	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 422	int addrlen = op->addr.nbytes;
 423	int flex_mode = 1;
 424
 425	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 426		width, addrlen, hp);
 427
 428	if (addrlen == BSPI_ADDRLEN_4BYTES)
 429		bpp = BSPI_BPP_ADDR_SELECT_MASK;
 430
 431	if (op->dummy.nbytes)
 432		bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
 433
 434	switch (width) {
 435	case SPI_NBITS_SINGLE:
 436		if (addrlen == BSPI_ADDRLEN_3BYTES)
 437			/* default mode, does not need flex_cmd */
 438			flex_mode = 0;
 439		break;
 440	case SPI_NBITS_DUAL:
 441		bpc = 0x00000001;
 442		if (hp) {
 443			bpc |= 0x00010100; /* address and mode are 2-bit */
 444			bpp = BSPI_BPP_MODE_SELECT_MASK;
 445		}
 446		break;
 447	case SPI_NBITS_QUAD:
 448		bpc = 0x00000002;
 449		if (hp) {
 450			bpc |= 0x00020200; /* address and mode are 4-bit */
 451			bpp |= BSPI_BPP_MODE_SELECT_MASK;
 452		}
 453		break;
 454	default:
 455		return -EINVAL;
 456	}
 457
 458	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
 459
 460	return 0;
 461}
 462
 463static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
 464				      const struct spi_mem_op *op, int hp)
 465{
 466	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 467	int addrlen = op->addr.nbytes;
 468	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 469
 470	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 471		width, addrlen, hp);
 472
 473	switch (width) {
 474	case SPI_NBITS_SINGLE:
 475		/* clear quad/dual mode */
 476		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 477			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 478		break;
 479	case SPI_NBITS_QUAD:
 480		/* clear dual mode and set quad mode */
 481		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 482		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 483		break;
 484	case SPI_NBITS_DUAL:
 485		/* clear quad mode set dual mode */
 486		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 487		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 488		break;
 489	default:
 490		return -EINVAL;
 491	}
 492
 493	if (addrlen == BSPI_ADDRLEN_4BYTES)
 494		/* set 4byte mode*/
 495		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 496	else
 497		/* clear 4 byte mode */
 498		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 499
 500	/* set the override mode */
 501	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 502	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 503	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
 504
 505	return 0;
 506}
 507
 508static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 509				  const struct spi_mem_op *op, int hp)
 510{
 511	int error = 0;
 512	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 513	int addrlen = op->addr.nbytes;
 514
 515	/* default mode */
 516	qspi->xfer_mode.flex_mode = true;
 517
 518	if (!bcm_qspi_bspi_ver_three(qspi)) {
 519		u32 val, mask;
 520
 521		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 522		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 523		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 524			qspi->xfer_mode.flex_mode = false;
 525			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 526			error = bcm_qspi_bspi_set_override(qspi, op, hp);
 527		}
 528	}
 529
 530	if (qspi->xfer_mode.flex_mode)
 531		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
 532
 533	if (error) {
 534		dev_warn(&qspi->pdev->dev,
 535			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 536			 width, addrlen, hp);
 537	} else if (qspi->xfer_mode.width != width ||
 538		   qspi->xfer_mode.addrlen != addrlen ||
 539		   qspi->xfer_mode.hp != hp) {
 540		qspi->xfer_mode.width = width;
 541		qspi->xfer_mode.addrlen = addrlen;
 542		qspi->xfer_mode.hp = hp;
 543		dev_dbg(&qspi->pdev->dev,
 544			"cs:%d %d-lane output, %d-byte address%s\n",
 545			qspi->curr_cs,
 546			qspi->xfer_mode.width,
 547			qspi->xfer_mode.addrlen,
 548			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 549	}
 550
 551	return error;
 552}
 553
 554static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 555{
 556	if (!has_bspi(qspi))
 557		return;
 558
 559	qspi->bspi_enabled = 1;
 560	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 561		return;
 562
 563	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 564	udelay(1);
 565	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 566	udelay(1);
 567}
 568
 569static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 570{
 571	if (!has_bspi(qspi))
 572		return;
 573
 574	qspi->bspi_enabled = 0;
 575	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 576		return;
 577
 578	bcm_qspi_bspi_busy_poll(qspi);
 579	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 580	udelay(1);
 581}
 582
 583static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 584{
 585	u32 rd = 0;
 586	u32 wr = 0;
 587
 588	if (cs >= 0 && qspi->base[CHIP_SELECT]) {
 589		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 590		wr = (rd & ~0xff) | (1 << cs);
 591		if (rd == wr)
 592			return;
 593		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
 594		usleep_range(10, 20);
 595	}
 596
 597	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
 598	qspi->curr_cs = cs;
 599}
 600
 601static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
 602				    const struct bcm_qspi_parms * const prev)
 603{
 604	return (cur->speed_hz != prev->speed_hz) ||
 605		(cur->mode != prev->mode) ||
 606		(cur->bits_per_word != prev->bits_per_word);
 607}
 608
 609
 610/* MSPI helpers */
 611static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 612				  const struct bcm_qspi_parms *xp)
 613{
 614	u32 spcr, spbr = 0;
 615
 616	if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
 617		return;
 618
 619	if (!qspi->mspi_maj_rev)
 620		/* legacy controller */
 621		spcr = MSPI_MASTER_BIT;
 622	else
 623		spcr = 0;
 624
 625	/*
 626	 * Bits per transfer.  BITS determines the number of data bits
 627	 * transferred if the command control bit (BITSE of a
 628	 * CDRAM Register) is equal to 1.
 629	 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
 630	 * regardless
 631	 */
 632	if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
 633		spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
 634
 635	spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
 
 
 
 
 636	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 637
 638	if (bcm_qspi_has_fastbr(qspi)) {
 639		spcr = 0;
 640
 641		/* enable fastbr */
 642		spcr |=	MSPI_SPCR3_FASTBR;
 643
 644		if (xp->mode & SPI_3WIRE)
 645			spcr |= MSPI_SPCR3_HALFDUPLEX |  MSPI_SPCR3_HDOUTTYPE;
 646
 647		if (bcm_qspi_has_sysclk_108(qspi)) {
 648			/* check requested baud rate before moving to 108Mhz */
 649			spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
 650			if (spbr > QSPI_SPBR_MAX) {
 651				/* use SYSCLK_27Mhz for slower baud rates */
 652				spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
 653				qspi->base_clk = MSPI_BASE_FREQ;
 654			} else {
 655				/* SYSCLK_108Mhz */
 656				spcr |= MSPI_SPCR3_SYSCLKSEL_108;
 657				qspi->base_clk = MSPI_BASE_FREQ * 4;
 658			}
 659		}
 660
 661		if (xp->bits_per_word > 16) {
 662			/* data_reg_size 1 (64bit) */
 663			spcr |=	MSPI_SPCR3_DATA_REG_SZ;
 664			/* TxRx RAM data access mode 2 for 32B and set fastdt */
 665			spcr |=	MSPI_SPCR3_DAM_32BYTE  | MSPI_SPCR3_FASTDT;
 666			/*
 667			 *  Set length of delay after transfer
 668			 *  DTL from 0(256) to 1
 669			 */
 670			bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
 671		} else {
 672			/* data_reg_size[8] = 0 */
 673			spcr &=	~(MSPI_SPCR3_DATA_REG_SZ);
 674
 675			/*
 676			 * TxRx RAM access mode 8B
 677			 * and disable fastdt
 678			 */
 679			spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
 680		}
 681		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
 682	}
 683
 684	/* SCK Baud Rate = System Clock/(2 * SPBR) */
 685	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
 686	spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
 687	spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
 688	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
 689
 690	qspi->last_parms = *xp;
 691}
 692
 693static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 694				  struct spi_device *spi,
 695				  struct spi_transfer *trans)
 696{
 697	struct bcm_qspi_parms xp;
 698
 699	xp.speed_hz = trans->speed_hz;
 700	xp.bits_per_word = trans->bits_per_word;
 701	xp.mode = spi->mode;
 702
 703	bcm_qspi_hw_set_parms(qspi, &xp);
 704}
 705
 706static int bcm_qspi_setup(struct spi_device *spi)
 707{
 708	struct bcm_qspi_parms *xp;
 709
 710	if (spi->bits_per_word > 64)
 711		return -EINVAL;
 712
 713	xp = spi_get_ctldata(spi);
 714	if (!xp) {
 715		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 716		if (!xp)
 717			return -ENOMEM;
 718		spi_set_ctldata(spi, xp);
 719	}
 720	xp->speed_hz = spi->max_speed_hz;
 721	xp->mode = spi->mode;
 722
 723	if (spi->bits_per_word)
 724		xp->bits_per_word = spi->bits_per_word;
 725	else
 726		xp->bits_per_word = 8;
 727
 728	return 0;
 729}
 730
 731static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
 732					   struct qspi_trans *qt)
 733{
 734	if (qt->mspi_last_trans &&
 735	    spi_transfer_is_last(qspi->master, qt->trans))
 736		return true;
 737	else
 738		return false;
 739}
 740
 741static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 742					struct qspi_trans *qt, int flags)
 743{
 744	int ret = TRANS_STATUS_BREAK_NONE;
 745
 746	/* count the last transferred bytes */
 747	if (qt->trans->bits_per_word <= 8)
 748		qt->byte++;
 749	else if (qt->trans->bits_per_word <= 16)
 750		qt->byte += 2;
 751	else if (qt->trans->bits_per_word <= 32)
 752		qt->byte += 4;
 753	else if (qt->trans->bits_per_word <= 64)
 754		qt->byte += 8;
 755
 756	if (qt->byte >= qt->trans->len) {
 757		/* we're at the end of the spi_transfer */
 758		/* in TX mode, need to pause for a delay or CS change */
 759		if (qt->trans->delay.value &&
 760		    (flags & TRANS_STATUS_BREAK_DELAY))
 761			ret |= TRANS_STATUS_BREAK_DELAY;
 762		if (qt->trans->cs_change &&
 763		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 764			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 
 
 765
 
 766		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
 767			ret |= TRANS_STATUS_BREAK_EOM;
 768		else
 769			ret |= TRANS_STATUS_BREAK_NO_BYTES;
 770
 771		qt->trans = NULL;
 772	}
 773
 
 774	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 775		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 776	return ret;
 777}
 778
 779static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 780{
 781	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 782
 783	/* mask out reserved bits */
 784	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 785}
 786
 787static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 788{
 789	u32 reg_offset = MSPI_RXRAM;
 790	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 791	u32 msb_offset = reg_offset + (slot << 3);
 792
 793	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 794		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 795}
 796
 797static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
 798{
 799	u32 reg_offset = MSPI_RXRAM;
 800	u32 offset = reg_offset + (slot << 3);
 801	u32 val;
 802
 803	val = bcm_qspi_read(qspi, MSPI, offset);
 804	val = swap4bytes(val);
 805
 806	return val;
 807}
 808
 809static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
 810{
 811	u32 reg_offset = MSPI_RXRAM;
 812	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 813	u32 msb_offset = reg_offset + (slot << 3);
 814	u32 msb, lsb;
 815
 816	msb = bcm_qspi_read(qspi, MSPI, msb_offset);
 817	msb = swap4bytes(msb);
 818	lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
 819	lsb = swap4bytes(lsb);
 820
 821	return ((u64)msb << 32 | lsb);
 822}
 823
 824static void read_from_hw(struct bcm_qspi *qspi, int slots)
 825{
 826	struct qspi_trans tp;
 827	int slot;
 828
 829	bcm_qspi_disable_bspi(qspi);
 830
 831	if (slots > MSPI_NUM_CDRAM) {
 832		/* should never happen */
 833		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 834		return;
 835	}
 836
 837	tp = qspi->trans_pos;
 838
 839	for (slot = 0; slot < slots; slot++) {
 840		if (tp.trans->bits_per_word <= 8) {
 841			u8 *buf = tp.trans->rx_buf;
 842
 843			if (buf)
 844				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 845			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 846				buf ? buf[tp.byte] : 0x0);
 847		} else if (tp.trans->bits_per_word <= 16) {
 848			u16 *buf = tp.trans->rx_buf;
 849
 850			if (buf)
 851				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 852								      slot);
 853			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 854				buf ? buf[tp.byte / 2] : 0x0);
 855		} else if (tp.trans->bits_per_word <= 32) {
 856			u32 *buf = tp.trans->rx_buf;
 857
 858			if (buf)
 859				buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
 860								      slot);
 861			dev_dbg(&qspi->pdev->dev, "RD %08x\n",
 862				buf ? buf[tp.byte / 4] : 0x0);
 863
 864		} else if (tp.trans->bits_per_word <= 64) {
 865			u64 *buf = tp.trans->rx_buf;
 866
 867			if (buf)
 868				buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
 869								      slot);
 870			dev_dbg(&qspi->pdev->dev, "RD %llx\n",
 871				buf ? buf[tp.byte / 8] : 0x0);
 872
 873
 874		}
 875
 876		update_qspi_trans_byte_count(qspi, &tp,
 877					     TRANS_STATUS_BREAK_NONE);
 878	}
 879
 880	qspi->trans_pos = tp;
 881}
 882
 883static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 884				       u8 val)
 885{
 886	u32 reg_offset = MSPI_TXRAM + (slot << 3);
 887
 888	/* mask out reserved bits */
 889	bcm_qspi_write(qspi, MSPI, reg_offset, val);
 890}
 891
 892static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 893					u16 val)
 894{
 895	u32 reg_offset = MSPI_TXRAM;
 896	u32 msb_offset = reg_offset + (slot << 3);
 897	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 898
 899	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 900	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 901}
 902
 903static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
 904					u32 val)
 905{
 906	u32 reg_offset = MSPI_TXRAM;
 907	u32 msb_offset = reg_offset + (slot << 3);
 908
 909	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
 910}
 911
 912static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
 913					u64 val)
 914{
 915	u32 reg_offset = MSPI_TXRAM;
 916	u32 msb_offset = reg_offset + (slot << 3);
 917	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 918	u32 msb = upper_32_bits(val);
 919	u32 lsb = lower_32_bits(val);
 920
 921	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
 922	bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
 923}
 924
 925static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 926{
 927	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 928}
 929
 930static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 931{
 932	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 933}
 934
 935/* Return number of slots written */
 936static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 937{
 938	struct qspi_trans tp;
 939	int slot = 0, tstatus = 0;
 940	u32 mspi_cdram = 0;
 941
 942	bcm_qspi_disable_bspi(qspi);
 943	tp = qspi->trans_pos;
 944	bcm_qspi_update_parms(qspi, spi, tp.trans);
 945
 946	/* Run until end of transfer or reached the max data */
 947	while (!tstatus && slot < MSPI_NUM_CDRAM) {
 948		mspi_cdram = MSPI_CDRAM_CONT_BIT;
 949		if (tp.trans->bits_per_word <= 8) {
 950			const u8 *buf = tp.trans->tx_buf;
 951			u8 val = buf ? buf[tp.byte] : 0x00;
 952
 953			write_txram_slot_u8(qspi, slot, val);
 954			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 955		} else if (tp.trans->bits_per_word <= 16) {
 956			const u16 *buf = tp.trans->tx_buf;
 957			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
 958
 959			write_txram_slot_u16(qspi, slot, val);
 960			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 961		} else if (tp.trans->bits_per_word <= 32) {
 962			const u32 *buf = tp.trans->tx_buf;
 963			u32 val = buf ? buf[tp.byte/4] : 0x0;
 964
 965			write_txram_slot_u32(qspi, slot, val);
 966			dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
 967		} else if (tp.trans->bits_per_word <= 64) {
 968			const u64 *buf = tp.trans->tx_buf;
 969			u64 val = (buf ? buf[tp.byte/8] : 0x0);
 970
 971			/* use the length of delay from SPCR1_LSB */
 972			if (bcm_qspi_has_fastbr(qspi))
 973				mspi_cdram |= MSPI_CDRAM_DT_BIT;
 974
 975			write_txram_slot_u64(qspi, slot, val);
 976			dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
 977		}
 978
 979		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 980			       MSPI_CDRAM_BITSE_BIT);
 981
 982		/* set 3wrire halfduplex mode data from master to slave */
 983		if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
 984			mspi_cdram |= MSPI_CDRAM_OUTP;
 985
 986		if (has_bspi(qspi))
 987			mspi_cdram &= ~1;
 988		else
 989			mspi_cdram |= (~(1 << spi->chip_select) &
 990				       MSPI_CDRAM_PCS);
 991
 
 
 
 992		write_cdram_slot(qspi, slot, mspi_cdram);
 993
 994		tstatus = update_qspi_trans_byte_count(qspi, &tp,
 995						       TRANS_STATUS_BREAK_TX);
 996		slot++;
 997	}
 998
 999	if (!slot) {
1000		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
1001		goto done;
1002	}
1003
1004	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
1005	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1006	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
1007
1008	/*
1009	 *  case 1) EOM =1, cs_change =0: SSb inactive
1010	 *  case 2) EOM =1, cs_change =1: SSb stay active
1011	 *  case 3) EOM =0, cs_change =0: SSb stay active
1012	 *  case 4) EOM =0, cs_change =1: SSb inactive
1013	 */
1014	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
1015	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
1016	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
1017	     == TRANS_STATUS_BREAK_EOM)) {
1018		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
1019			~MSPI_CDRAM_CONT_BIT;
1020		write_cdram_slot(qspi, slot - 1, mspi_cdram);
1021	}
1022
1023	if (has_bspi(qspi))
1024		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
1025
1026	/* Must flush previous writes before starting MSPI operation */
1027	mb();
1028	/* Set cont | spe | spifie */
1029	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
1030
1031done:
1032	return slot;
1033}
1034
1035static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1036				     const struct spi_mem_op *op)
1037{
1038	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1039	u32 addr = 0, len, rdlen, len_words, from = 0;
1040	int ret = 0;
1041	unsigned long timeo = msecs_to_jiffies(100);
1042	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1043
1044	if (bcm_qspi_bspi_ver_three(qspi))
1045		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1046			return -EIO;
1047
1048	from = op->addr.val;
1049	if (!spi->cs_gpiod)
1050		bcm_qspi_chip_select(qspi, spi->chip_select);
1051	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1052
1053	/*
1054	 * when using flex mode we need to send
1055	 * the upper address byte to bspi
1056	 */
1057	if (!bcm_qspi_bspi_ver_three(qspi)) {
1058		addr = from & 0xff000000;
1059		bcm_qspi_write(qspi, BSPI,
1060			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1061	}
1062
1063	if (!qspi->xfer_mode.flex_mode)
1064		addr = from;
1065	else
1066		addr = from & 0x00ffffff;
1067
1068	if (bcm_qspi_bspi_ver_three(qspi) == true)
1069		addr = (addr + 0xc00000) & 0xffffff;
1070
1071	/*
1072	 * read into the entire buffer by breaking the reads
1073	 * into RAF buffer read lengths
1074	 */
1075	len = op->data.nbytes;
1076	qspi->bspi_rf_op_idx = 0;
1077
1078	do {
1079		if (len > BSPI_READ_LENGTH)
1080			rdlen = BSPI_READ_LENGTH;
1081		else
1082			rdlen = len;
1083
1084		reinit_completion(&qspi->bspi_done);
1085		bcm_qspi_enable_bspi(qspi);
1086		len_words = (rdlen + 3) >> 2;
1087		qspi->bspi_rf_op = op;
1088		qspi->bspi_rf_op_status = 0;
1089		qspi->bspi_rf_op_len = rdlen;
1090		dev_dbg(&qspi->pdev->dev,
1091			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1092		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1093		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1094		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1095		if (qspi->soc_intc) {
1096			/*
1097			 * clear soc MSPI and BSPI interrupts and enable
1098			 * BSPI interrupts.
1099			 */
1100			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1101			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1102		}
1103
1104		/* Must flush previous writes before starting BSPI operation */
1105		mb();
1106		bcm_qspi_bspi_lr_start(qspi);
1107		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1108			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1109			ret = -ETIMEDOUT;
1110			break;
1111		}
1112
1113		/* set msg return length */
1114		addr += rdlen;
1115		len -= rdlen;
1116	} while (len);
1117
1118	return ret;
1119}
1120
1121static int bcm_qspi_transfer_one(struct spi_master *master,
1122				 struct spi_device *spi,
1123				 struct spi_transfer *trans)
1124{
1125	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1126	int slots;
1127	unsigned long timeo = msecs_to_jiffies(100);
1128
1129	if (!spi->cs_gpiod)
1130		bcm_qspi_chip_select(qspi, spi->chip_select);
1131	qspi->trans_pos.trans = trans;
1132	qspi->trans_pos.byte = 0;
1133
1134	while (qspi->trans_pos.byte < trans->len) {
1135		reinit_completion(&qspi->mspi_done);
1136
1137		slots = write_to_hw(qspi, spi);
1138		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1139			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1140			return -ETIMEDOUT;
1141		}
1142
1143		read_from_hw(qspi, slots);
1144	}
1145	bcm_qspi_enable_bspi(qspi);
1146
1147	return 0;
1148}
1149
1150static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1151				     const struct spi_mem_op *op)
1152{
1153	struct spi_master *master = spi->master;
1154	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1155	struct spi_transfer t[2];
1156	u8 cmd[6] = { };
1157	int ret, i;
1158
1159	memset(cmd, 0, sizeof(cmd));
1160	memset(t, 0, sizeof(t));
1161
1162	/* tx */
1163	/* opcode is in cmd[0] */
1164	cmd[0] = op->cmd.opcode;
1165	for (i = 0; i < op->addr.nbytes; i++)
1166		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1167
1168	t[0].tx_buf = cmd;
1169	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1170	t[0].bits_per_word = spi->bits_per_word;
1171	t[0].tx_nbits = op->cmd.buswidth;
1172	/* lets mspi know that this is not last transfer */
1173	qspi->trans_pos.mspi_last_trans = false;
1174	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1175
1176	/* rx */
1177	qspi->trans_pos.mspi_last_trans = true;
1178	if (!ret) {
1179		/* rx */
1180		t[1].rx_buf = op->data.buf.in;
1181		t[1].len = op->data.nbytes;
1182		t[1].rx_nbits =  op->data.buswidth;
1183		t[1].bits_per_word = spi->bits_per_word;
1184		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1185	}
1186
1187	return ret;
1188}
1189
1190static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1191				const struct spi_mem_op *op)
1192{
1193	struct spi_device *spi = mem->spi;
1194	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1195	int ret = 0;
1196	bool mspi_read = false;
1197	u32 addr = 0, len;
1198	u_char *buf;
1199
1200	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1201	    op->data.dir != SPI_MEM_DATA_IN)
1202		return -ENOTSUPP;
1203
1204	buf = op->data.buf.in;
1205	addr = op->addr.val;
1206	len = op->data.nbytes;
1207
1208	if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1209		/*
1210		 * The address coming into this function is a raw flash offset.
1211		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212		 * address. If it crosses a 4MB boundary, just revert back to
1213		 * using MSPI.
1214		 */
1215		addr = (addr + 0xc00000) & 0xffffff;
1216
1217		if ((~ADDR_4MB_MASK & addr) ^
1218		    (~ADDR_4MB_MASK & (addr + len - 1)))
1219			mspi_read = true;
1220	}
1221
1222	/* non-aligned and very short transfers are handled by MSPI */
1223	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1224	    len < 4)
1225		mspi_read = true;
1226
1227	if (!has_bspi(qspi) || mspi_read)
1228		return bcm_qspi_mspi_exec_mem_op(spi, op);
1229
1230	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1231
1232	if (!ret)
1233		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1234
1235	return ret;
1236}
1237
1238static void bcm_qspi_cleanup(struct spi_device *spi)
1239{
1240	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1241
1242	kfree(xp);
1243}
1244
1245static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1246{
1247	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1248	struct bcm_qspi *qspi = qspi_dev_id->dev;
1249	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1250
1251	if (status & MSPI_MSPI_STATUS_SPIF) {
1252		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1253		/* clear interrupt */
1254		status &= ~MSPI_MSPI_STATUS_SPIF;
1255		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1256		if (qspi->soc_intc)
1257			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1258		complete(&qspi->mspi_done);
1259		return IRQ_HANDLED;
1260	}
1261
1262	return IRQ_NONE;
1263}
1264
1265static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1266{
1267	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1268	struct bcm_qspi *qspi = qspi_dev_id->dev;
1269	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1270	u32 status = qspi_dev_id->irqp->mask;
1271
1272	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1273		bcm_qspi_bspi_lr_data_read(qspi);
1274		if (qspi->bspi_rf_op_len == 0) {
1275			qspi->bspi_rf_op = NULL;
1276			if (qspi->soc_intc) {
1277				/* disable soc BSPI interrupt */
1278				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1279							   false);
1280				/* indicate done */
1281				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1282			}
1283
1284			if (qspi->bspi_rf_op_status)
1285				bcm_qspi_bspi_lr_clear(qspi);
1286			else
1287				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1288		}
1289
1290		if (qspi->soc_intc)
1291			/* clear soc BSPI interrupt */
1292			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1293	}
1294
1295	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1296	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1297		complete(&qspi->bspi_done);
1298
1299	return IRQ_HANDLED;
1300}
1301
1302static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1303{
1304	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1305	struct bcm_qspi *qspi = qspi_dev_id->dev;
1306	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1307
1308	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1309	qspi->bspi_rf_op_status = -EIO;
1310	if (qspi->soc_intc)
1311		/* clear soc interrupt */
1312		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1313
1314	complete(&qspi->bspi_done);
1315	return IRQ_HANDLED;
1316}
1317
1318static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1319{
1320	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1321	struct bcm_qspi *qspi = qspi_dev_id->dev;
1322	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1323	irqreturn_t ret = IRQ_NONE;
1324
1325	if (soc_intc) {
1326		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1327
1328		if (status & MSPI_DONE)
1329			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1330		else if (status & BSPI_DONE)
1331			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1332		else if (status & BSPI_ERR)
1333			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1334	}
1335
1336	return ret;
1337}
1338
1339static const struct bcm_qspi_irq qspi_irq_tab[] = {
1340	{
1341		.irq_name = "spi_lr_fullness_reached",
1342		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1343		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1344	},
1345	{
1346		.irq_name = "spi_lr_session_aborted",
1347		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1348		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1349	},
1350	{
1351		.irq_name = "spi_lr_impatient",
1352		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1353		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1354	},
1355	{
1356		.irq_name = "spi_lr_session_done",
1357		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1358		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1359	},
1360#ifdef QSPI_INT_DEBUG
1361	/* this interrupt is for debug purposes only, dont request irq */
1362	{
1363		.irq_name = "spi_lr_overread",
1364		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1365		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1366	},
1367#endif
1368	{
1369		.irq_name = "mspi_done",
1370		.irq_handler = bcm_qspi_mspi_l2_isr,
1371		.mask = INTR_MSPI_DONE_MASK,
1372	},
1373	{
1374		.irq_name = "mspi_halted",
1375		.irq_handler = bcm_qspi_mspi_l2_isr,
1376		.mask = INTR_MSPI_HALTED_MASK,
1377	},
1378	{
1379		/* single muxed L1 interrupt source */
1380		.irq_name = "spi_l1_intr",
1381		.irq_handler = bcm_qspi_l1_isr,
1382		.irq_source = MUXED_L1,
1383		.mask = QSPI_INTERRUPTS_ALL,
1384	},
1385};
1386
1387static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1388{
1389	u32 val = 0;
1390
1391	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1392	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1393	qspi->bspi_min_rev = val & 0xff;
1394	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1395		/* Force mapping of BSPI address -> flash offset */
1396		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1397		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1398	}
1399	qspi->bspi_enabled = 1;
1400	bcm_qspi_disable_bspi(qspi);
1401	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1402	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1403}
1404
1405static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1406{
1407	struct bcm_qspi_parms parms;
1408
1409	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1410	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1411	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1412	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1413	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1414
1415	parms.mode = SPI_MODE_3;
1416	parms.bits_per_word = 8;
1417	parms.speed_hz = qspi->max_speed_hz;
1418	bcm_qspi_hw_set_parms(qspi, &parms);
1419
1420	if (has_bspi(qspi))
1421		bcm_qspi_bspi_init(qspi);
1422}
1423
1424static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1425{
1426	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1427
1428	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1429	if (has_bspi(qspi))
1430		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1431
1432	/* clear interrupt */
1433	bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1434}
1435
1436static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1437	.exec_op = bcm_qspi_exec_mem_op,
1438};
1439
1440struct bcm_qspi_data {
1441	bool	has_mspi_rev;
1442	bool	has_spcr3_sysclk;
1443};
1444
1445static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1446	.has_mspi_rev	= false,
1447	.has_spcr3_sysclk = false,
1448};
1449
1450static const struct bcm_qspi_data bcm_qspi_rev_data = {
1451	.has_mspi_rev	= true,
1452	.has_spcr3_sysclk = false,
1453};
1454
1455static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1456	.has_mspi_rev	= true,
1457	.has_spcr3_sysclk = true,
1458};
1459
1460static const struct of_device_id bcm_qspi_of_match[] = {
1461	{
1462		.compatible = "brcm,spi-bcm7445-qspi",
1463		.data = &bcm_qspi_rev_data,
1464
1465	},
1466	{
1467		.compatible = "brcm,spi-bcm-qspi",
1468		.data = &bcm_qspi_no_rev_data,
1469	},
1470	{
1471		.compatible = "brcm,spi-bcm7216-qspi",
1472		.data = &bcm_qspi_spcr3_data,
1473	},
1474	{
1475		.compatible = "brcm,spi-bcm7278-qspi",
1476		.data = &bcm_qspi_spcr3_data,
1477	},
1478	{},
1479};
1480MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1481
1482int bcm_qspi_probe(struct platform_device *pdev,
1483		   struct bcm_qspi_soc_intc *soc_intc)
1484{
1485	const struct of_device_id *of_id = NULL;
1486	const struct bcm_qspi_data *data;
1487	struct device *dev = &pdev->dev;
1488	struct bcm_qspi *qspi;
1489	struct spi_master *master;
1490	struct resource *res;
1491	int irq, ret = 0, num_ints = 0;
1492	u32 val;
1493	u32 rev = 0;
1494	const char *name = NULL;
1495	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1496
1497	/* We only support device-tree instantiation */
1498	if (!dev->of_node)
1499		return -ENODEV;
1500
1501	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1502	if (!of_id)
1503		return -ENODEV;
1504
1505	data = of_id->data;
1506
1507	master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1508	if (!master) {
1509		dev_err(dev, "error allocating spi_master\n");
1510		return -ENOMEM;
1511	}
1512
1513	qspi = spi_master_get_devdata(master);
1514
1515	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1516	if (IS_ERR(qspi->clk))
1517		return PTR_ERR(qspi->clk);
1518
1519	qspi->pdev = pdev;
1520	qspi->trans_pos.trans = NULL;
1521	qspi->trans_pos.byte = 0;
1522	qspi->trans_pos.mspi_last_trans = true;
1523	qspi->master = master;
1524
1525	master->bus_num = -1;
1526	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1527				SPI_3WIRE;
1528	master->setup = bcm_qspi_setup;
1529	master->transfer_one = bcm_qspi_transfer_one;
1530	master->mem_ops = &bcm_qspi_mem_ops;
1531	master->cleanup = bcm_qspi_cleanup;
1532	master->dev.of_node = dev->of_node;
1533	master->num_chipselect = NUM_CHIPSELECT;
1534	master->use_gpio_descriptors = true;
1535
1536	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1537
1538	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1539		master->num_chipselect = val;
1540
1541	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1542	if (!res)
1543		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1544						   "mspi");
1545
1546	if (res) {
1547		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1548		if (IS_ERR(qspi->base[MSPI]))
1549			return PTR_ERR(qspi->base[MSPI]);
 
 
1550	} else {
1551		return 0;
1552	}
1553
1554	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1555	if (res) {
1556		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1557		if (IS_ERR(qspi->base[BSPI]))
1558			return PTR_ERR(qspi->base[BSPI]);
 
 
1559		qspi->bspi_mode = true;
1560	} else {
1561		qspi->bspi_mode = false;
1562	}
1563
1564	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1565
1566	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1567	if (res) {
1568		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1569		if (IS_ERR(qspi->base[CHIP_SELECT]))
1570			return PTR_ERR(qspi->base[CHIP_SELECT]);
 
 
1571	}
1572
1573	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1574				GFP_KERNEL);
1575	if (!qspi->dev_ids)
1576		return -ENOMEM;
1577
1578	/*
1579	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1580	 * in specific ways
1581	 */
1582	if (soc_intc) {
1583		qspi->soc_intc = soc_intc;
1584		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1585	} else {
1586		qspi->soc_intc = NULL;
1587	}
1588
1589	if (qspi->clk) {
1590		ret = clk_prepare_enable(qspi->clk);
1591		if (ret) {
1592			dev_err(dev, "failed to prepare clock\n");
1593			goto qspi_probe_err;
1594		}
1595		qspi->base_clk = clk_get_rate(qspi->clk);
1596	} else {
1597		qspi->base_clk = MSPI_BASE_FREQ;
1598	}
1599
1600	if (data->has_mspi_rev) {
1601		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1602		/* some older revs do not have a MSPI_REV register */
1603		if ((rev & 0xff) == 0xff)
1604			rev = 0;
1605	}
1606
1607	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1608	qspi->mspi_min_rev = rev & 0xf;
1609	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1610
1611	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1612
1613	/*
1614	 * On SW resets it is possible to have the mask still enabled
1615	 * Need to disable the mask and clear the status while we init
1616	 */
1617	bcm_qspi_hw_uninit(qspi);
1618
1619	for (val = 0; val < num_irqs; val++) {
1620		irq = -1;
1621		name = qspi_irq_tab[val].irq_name;
1622		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1623			/* get the l2 interrupts */
1624			irq = platform_get_irq_byname_optional(pdev, name);
1625		} else if (!num_ints && soc_intc) {
1626			/* all mspi, bspi intrs muxed to one L1 intr */
1627			irq = platform_get_irq(pdev, 0);
1628		}
1629
1630		if (irq  >= 0) {
1631			ret = devm_request_irq(&pdev->dev, irq,
1632					       qspi_irq_tab[val].irq_handler, 0,
1633					       name,
1634					       &qspi->dev_ids[val]);
1635			if (ret < 0) {
1636				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1637				goto qspi_unprepare_err;
1638			}
1639
1640			qspi->dev_ids[val].dev = qspi;
1641			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1642			num_ints++;
1643			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1644				qspi_irq_tab[val].irq_name,
1645				irq);
1646		}
1647	}
1648
1649	if (!num_ints) {
1650		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1651		ret = -EINVAL;
1652		goto qspi_unprepare_err;
1653	}
1654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655	bcm_qspi_hw_init(qspi);
1656	init_completion(&qspi->mspi_done);
1657	init_completion(&qspi->bspi_done);
1658	qspi->curr_cs = -1;
1659
1660	platform_set_drvdata(pdev, qspi);
1661
1662	qspi->xfer_mode.width = -1;
1663	qspi->xfer_mode.addrlen = -1;
1664	qspi->xfer_mode.hp = -1;
1665
1666	ret = spi_register_master(master);
1667	if (ret < 0) {
1668		dev_err(dev, "can't register master\n");
1669		goto qspi_reg_err;
1670	}
1671
1672	return 0;
1673
1674qspi_reg_err:
1675	bcm_qspi_hw_uninit(qspi);
1676qspi_unprepare_err:
1677	clk_disable_unprepare(qspi->clk);
1678qspi_probe_err:
1679	kfree(qspi->dev_ids);
 
 
1680	return ret;
1681}
1682/* probe function to be called by SoC specific platform driver probe */
1683EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1684
1685void bcm_qspi_remove(struct platform_device *pdev)
1686{
1687	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1688
1689	spi_unregister_master(qspi->master);
1690	bcm_qspi_hw_uninit(qspi);
1691	clk_disable_unprepare(qspi->clk);
1692	kfree(qspi->dev_ids);
 
 
 
1693}
1694
1695/* function to be called by SoC specific platform driver remove() */
1696EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1697
1698static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1699{
1700	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1701
1702	/* store the override strap value */
1703	if (!bcm_qspi_bspi_ver_three(qspi))
1704		qspi->s3_strap_override_ctrl =
1705			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1706
1707	spi_master_suspend(qspi->master);
1708	clk_disable_unprepare(qspi->clk);
1709	bcm_qspi_hw_uninit(qspi);
1710
1711	return 0;
1712};
1713
1714static int __maybe_unused bcm_qspi_resume(struct device *dev)
1715{
1716	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1717	int ret = 0;
1718
1719	bcm_qspi_hw_init(qspi);
1720	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1721	if (qspi->soc_intc)
1722		/* enable MSPI interrupt */
1723		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1724						 true);
1725
1726	ret = clk_prepare_enable(qspi->clk);
1727	if (!ret)
1728		spi_master_resume(qspi->master);
1729
1730	return ret;
1731}
1732
1733SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1734
1735/* pm_ops to be called by SoC specific platform driver */
1736EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1737
1738MODULE_AUTHOR("Kamal Dasu");
1739MODULE_DESCRIPTION("Broadcom QSPI driver");
1740MODULE_LICENSE("GPL v2");
1741MODULE_ALIAS("platform:" DRIVER_NAME);