Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
4 *
5 * Copyright 2016 Broadcom
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/device.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/ioport.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/of_irq.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21#include <linux/spi/spi.h>
22#include <linux/spi/spi-mem.h>
23#include <linux/sysfs.h>
24#include <linux/types.h>
25#include "spi-bcm-qspi.h"
26
27#define DRIVER_NAME "bcm_qspi"
28
29
30/* BSPI register offsets */
31#define BSPI_REVISION_ID 0x000
32#define BSPI_SCRATCH 0x004
33#define BSPI_MAST_N_BOOT_CTRL 0x008
34#define BSPI_BUSY_STATUS 0x00c
35#define BSPI_INTR_STATUS 0x010
36#define BSPI_B0_STATUS 0x014
37#define BSPI_B0_CTRL 0x018
38#define BSPI_B1_STATUS 0x01c
39#define BSPI_B1_CTRL 0x020
40#define BSPI_STRAP_OVERRIDE_CTRL 0x024
41#define BSPI_FLEX_MODE_ENABLE 0x028
42#define BSPI_BITS_PER_CYCLE 0x02c
43#define BSPI_BITS_PER_PHASE 0x030
44#define BSPI_CMD_AND_MODE_BYTE 0x034
45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
46#define BSPI_BSPI_XOR_VALUE 0x03c
47#define BSPI_BSPI_XOR_ENABLE 0x040
48#define BSPI_BSPI_PIO_MODE_ENABLE 0x044
49#define BSPI_BSPI_PIO_IODIR 0x048
50#define BSPI_BSPI_PIO_DATA 0x04c
51
52/* RAF register offsets */
53#define BSPI_RAF_START_ADDR 0x100
54#define BSPI_RAF_NUM_WORDS 0x104
55#define BSPI_RAF_CTRL 0x108
56#define BSPI_RAF_FULLNESS 0x10c
57#define BSPI_RAF_WATERMARK 0x110
58#define BSPI_RAF_STATUS 0x114
59#define BSPI_RAF_READ_DATA 0x118
60#define BSPI_RAF_WORD_CNT 0x11c
61#define BSPI_RAF_CURR_ADDR 0x120
62
63/* Override mode masks */
64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
69
70#define BSPI_ADDRLEN_3BYTES 3
71#define BSPI_ADDRLEN_4BYTES 4
72
73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
74
75#define BSPI_RAF_CTRL_START_MASK BIT(0)
76#define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
77
78#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
79#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
80
81#define BSPI_READ_LENGTH 256
82
83/* MSPI register offsets */
84#define MSPI_SPCR0_LSB 0x000
85#define MSPI_SPCR0_MSB 0x004
86#define MSPI_SPCR1_LSB 0x008
87#define MSPI_SPCR1_MSB 0x00c
88#define MSPI_NEWQP 0x010
89#define MSPI_ENDQP 0x014
90#define MSPI_SPCR2 0x018
91#define MSPI_MSPI_STATUS 0x020
92#define MSPI_CPTQP 0x024
93#define MSPI_SPCR3 0x028
94#define MSPI_TXRAM 0x040
95#define MSPI_RXRAM 0x0c0
96#define MSPI_CDRAM 0x140
97#define MSPI_WRITE_LOCK 0x180
98
99#define MSPI_MASTER_BIT BIT(7)
100
101#define MSPI_NUM_CDRAM 16
102#define MSPI_CDRAM_CONT_BIT BIT(7)
103#define MSPI_CDRAM_BITSE_BIT BIT(6)
104#define MSPI_CDRAM_PCS 0xf
105
106#define MSPI_SPCR2_SPE BIT(6)
107#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
108
109#define MSPI_MSPI_STATUS_SPIF BIT(0)
110
111#define INTR_BASE_BIT_SHIFT 0x02
112#define INTR_COUNT 0x07
113
114#define NUM_CHIPSELECT 4
115#define QSPI_SPBR_MIN 8U
116#define QSPI_SPBR_MAX 255U
117
118#define OPCODE_DIOR 0xBB
119#define OPCODE_QIOR 0xEB
120#define OPCODE_DIOR_4B 0xBC
121#define OPCODE_QIOR_4B 0xEC
122
123#define MAX_CMD_SIZE 6
124
125#define ADDR_4MB_MASK GENMASK(22, 0)
126
127/* stop at end of transfer, no other reason */
128#define TRANS_STATUS_BREAK_NONE 0
129/* stop at end of spi_message */
130#define TRANS_STATUS_BREAK_EOM 1
131/* stop at end of spi_transfer if delay */
132#define TRANS_STATUS_BREAK_DELAY 2
133/* stop at end of spi_transfer if cs_change */
134#define TRANS_STATUS_BREAK_CS_CHANGE 4
135/* stop if we run out of bytes */
136#define TRANS_STATUS_BREAK_NO_BYTES 8
137
138/* events that make us stop filling TX slots */
139#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
140 TRANS_STATUS_BREAK_DELAY | \
141 TRANS_STATUS_BREAK_CS_CHANGE)
142
143/* events that make us deassert CS */
144#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
145 TRANS_STATUS_BREAK_CS_CHANGE)
146
147struct bcm_qspi_parms {
148 u32 speed_hz;
149 u8 mode;
150 u8 bits_per_word;
151};
152
153struct bcm_xfer_mode {
154 bool flex_mode;
155 unsigned int width;
156 unsigned int addrlen;
157 unsigned int hp;
158};
159
160enum base_type {
161 MSPI,
162 BSPI,
163 CHIP_SELECT,
164 BASEMAX,
165};
166
167enum irq_source {
168 SINGLE_L2,
169 MUXED_L1,
170};
171
172struct bcm_qspi_irq {
173 const char *irq_name;
174 const irq_handler_t irq_handler;
175 int irq_source;
176 u32 mask;
177};
178
179struct bcm_qspi_dev_id {
180 const struct bcm_qspi_irq *irqp;
181 void *dev;
182};
183
184
185struct qspi_trans {
186 struct spi_transfer *trans;
187 int byte;
188 bool mspi_last_trans;
189};
190
191struct bcm_qspi {
192 struct platform_device *pdev;
193 struct spi_master *master;
194 struct clk *clk;
195 u32 base_clk;
196 u32 max_speed_hz;
197 void __iomem *base[BASEMAX];
198
199 /* Some SoCs provide custom interrupt status register(s) */
200 struct bcm_qspi_soc_intc *soc_intc;
201
202 struct bcm_qspi_parms last_parms;
203 struct qspi_trans trans_pos;
204 int curr_cs;
205 int bspi_maj_rev;
206 int bspi_min_rev;
207 int bspi_enabled;
208 const struct spi_mem_op *bspi_rf_op;
209 u32 bspi_rf_op_idx;
210 u32 bspi_rf_op_len;
211 u32 bspi_rf_op_status;
212 struct bcm_xfer_mode xfer_mode;
213 u32 s3_strap_override_ctrl;
214 bool bspi_mode;
215 bool big_endian;
216 int num_irqs;
217 struct bcm_qspi_dev_id *dev_ids;
218 struct completion mspi_done;
219 struct completion bspi_done;
220};
221
222static inline bool has_bspi(struct bcm_qspi *qspi)
223{
224 return qspi->bspi_mode;
225}
226
227/* Read qspi controller register*/
228static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
229 unsigned int offset)
230{
231 return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
232}
233
234/* Write qspi controller register*/
235static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
236 unsigned int offset, unsigned int data)
237{
238 bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
239}
240
241/* BSPI helpers */
242static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
243{
244 int i;
245
246 /* this should normally finish within 10us */
247 for (i = 0; i < 1000; i++) {
248 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
249 return 0;
250 udelay(1);
251 }
252 dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
253 return -EIO;
254}
255
256static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
257{
258 if (qspi->bspi_maj_rev < 4)
259 return true;
260 return false;
261}
262
263static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
264{
265 bcm_qspi_bspi_busy_poll(qspi);
266 /* Force rising edge for the b0/b1 'flush' field */
267 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
268 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
269 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
270 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
271}
272
273static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
274{
275 return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
276 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
277}
278
279static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
280{
281 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
282
283 /* BSPI v3 LR is LE only, convert data to host endianness */
284 if (bcm_qspi_bspi_ver_three(qspi))
285 data = le32_to_cpu(data);
286
287 return data;
288}
289
290static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
291{
292 bcm_qspi_bspi_busy_poll(qspi);
293 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
294 BSPI_RAF_CTRL_START_MASK);
295}
296
297static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
298{
299 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
300 BSPI_RAF_CTRL_CLEAR_MASK);
301 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
302}
303
304static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
305{
306 u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
307 u32 data = 0;
308
309 dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
310 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
311 while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
312 data = bcm_qspi_bspi_lr_read_fifo(qspi);
313 if (likely(qspi->bspi_rf_op_len >= 4) &&
314 IS_ALIGNED((uintptr_t)buf, 4)) {
315 buf[qspi->bspi_rf_op_idx++] = data;
316 qspi->bspi_rf_op_len -= 4;
317 } else {
318 /* Read out remaining bytes, make sure*/
319 u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
320
321 data = cpu_to_le32(data);
322 while (qspi->bspi_rf_op_len) {
323 *cbuf++ = (u8)data;
324 data >>= 8;
325 qspi->bspi_rf_op_len--;
326 }
327 }
328 }
329}
330
331static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
332 int bpp, int bpc, int flex_mode)
333{
334 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
335 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
336 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
337 bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
338 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
339}
340
341static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
342 const struct spi_mem_op *op, int hp)
343{
344 int bpc = 0, bpp = 0;
345 u8 command = op->cmd.opcode;
346 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
347 int addrlen = op->addr.nbytes;
348 int flex_mode = 1;
349
350 dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
351 width, addrlen, hp);
352
353 if (addrlen == BSPI_ADDRLEN_4BYTES)
354 bpp = BSPI_BPP_ADDR_SELECT_MASK;
355
356 bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
357
358 switch (width) {
359 case SPI_NBITS_SINGLE:
360 if (addrlen == BSPI_ADDRLEN_3BYTES)
361 /* default mode, does not need flex_cmd */
362 flex_mode = 0;
363 break;
364 case SPI_NBITS_DUAL:
365 bpc = 0x00000001;
366 if (hp) {
367 bpc |= 0x00010100; /* address and mode are 2-bit */
368 bpp = BSPI_BPP_MODE_SELECT_MASK;
369 }
370 break;
371 case SPI_NBITS_QUAD:
372 bpc = 0x00000002;
373 if (hp) {
374 bpc |= 0x00020200; /* address and mode are 4-bit */
375 bpp |= BSPI_BPP_MODE_SELECT_MASK;
376 }
377 break;
378 default:
379 return -EINVAL;
380 }
381
382 bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
383
384 return 0;
385}
386
387static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
388 const struct spi_mem_op *op, int hp)
389{
390 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
391 int addrlen = op->addr.nbytes;
392 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
393
394 dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
395 width, addrlen, hp);
396
397 switch (width) {
398 case SPI_NBITS_SINGLE:
399 /* clear quad/dual mode */
400 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
401 BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
402 break;
403 case SPI_NBITS_QUAD:
404 /* clear dual mode and set quad mode */
405 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
406 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
407 break;
408 case SPI_NBITS_DUAL:
409 /* clear quad mode set dual mode */
410 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
411 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
412 break;
413 default:
414 return -EINVAL;
415 }
416
417 if (addrlen == BSPI_ADDRLEN_4BYTES)
418 /* set 4byte mode*/
419 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
420 else
421 /* clear 4 byte mode */
422 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
423
424 /* set the override mode */
425 data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
426 bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
427 bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
428
429 return 0;
430}
431
432static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
433 const struct spi_mem_op *op, int hp)
434{
435 int error = 0;
436 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
437 int addrlen = op->addr.nbytes;
438
439 /* default mode */
440 qspi->xfer_mode.flex_mode = true;
441
442 if (!bcm_qspi_bspi_ver_three(qspi)) {
443 u32 val, mask;
444
445 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
446 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
447 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
448 qspi->xfer_mode.flex_mode = false;
449 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
450 error = bcm_qspi_bspi_set_override(qspi, op, hp);
451 }
452 }
453
454 if (qspi->xfer_mode.flex_mode)
455 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
456
457 if (error) {
458 dev_warn(&qspi->pdev->dev,
459 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
460 width, addrlen, hp);
461 } else if (qspi->xfer_mode.width != width ||
462 qspi->xfer_mode.addrlen != addrlen ||
463 qspi->xfer_mode.hp != hp) {
464 qspi->xfer_mode.width = width;
465 qspi->xfer_mode.addrlen = addrlen;
466 qspi->xfer_mode.hp = hp;
467 dev_dbg(&qspi->pdev->dev,
468 "cs:%d %d-lane output, %d-byte address%s\n",
469 qspi->curr_cs,
470 qspi->xfer_mode.width,
471 qspi->xfer_mode.addrlen,
472 qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
473 }
474
475 return error;
476}
477
478static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
479{
480 if (!has_bspi(qspi))
481 return;
482
483 qspi->bspi_enabled = 1;
484 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
485 return;
486
487 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
488 udelay(1);
489 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
490 udelay(1);
491}
492
493static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
494{
495 if (!has_bspi(qspi))
496 return;
497
498 qspi->bspi_enabled = 0;
499 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
500 return;
501
502 bcm_qspi_bspi_busy_poll(qspi);
503 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
504 udelay(1);
505}
506
507static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
508{
509 u32 rd = 0;
510 u32 wr = 0;
511
512 if (qspi->base[CHIP_SELECT]) {
513 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
514 wr = (rd & ~0xff) | (1 << cs);
515 if (rd == wr)
516 return;
517 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
518 usleep_range(10, 20);
519 }
520
521 dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
522 qspi->curr_cs = cs;
523}
524
525/* MSPI helpers */
526static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
527 const struct bcm_qspi_parms *xp)
528{
529 u32 spcr, spbr = 0;
530
531 if (xp->speed_hz)
532 spbr = qspi->base_clk / (2 * xp->speed_hz);
533
534 spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
535 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
536
537 spcr = MSPI_MASTER_BIT;
538 /* for 16 bit the data should be zero */
539 if (xp->bits_per_word != 16)
540 spcr |= xp->bits_per_word << 2;
541 spcr |= xp->mode & 3;
542 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
543
544 qspi->last_parms = *xp;
545}
546
547static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
548 struct spi_device *spi,
549 struct spi_transfer *trans)
550{
551 struct bcm_qspi_parms xp;
552
553 xp.speed_hz = trans->speed_hz;
554 xp.bits_per_word = trans->bits_per_word;
555 xp.mode = spi->mode;
556
557 bcm_qspi_hw_set_parms(qspi, &xp);
558}
559
560static int bcm_qspi_setup(struct spi_device *spi)
561{
562 struct bcm_qspi_parms *xp;
563
564 if (spi->bits_per_word > 16)
565 return -EINVAL;
566
567 xp = spi_get_ctldata(spi);
568 if (!xp) {
569 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
570 if (!xp)
571 return -ENOMEM;
572 spi_set_ctldata(spi, xp);
573 }
574 xp->speed_hz = spi->max_speed_hz;
575 xp->mode = spi->mode;
576
577 if (spi->bits_per_word)
578 xp->bits_per_word = spi->bits_per_word;
579 else
580 xp->bits_per_word = 8;
581
582 return 0;
583}
584
585static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
586 struct qspi_trans *qt)
587{
588 if (qt->mspi_last_trans &&
589 spi_transfer_is_last(qspi->master, qt->trans))
590 return true;
591 else
592 return false;
593}
594
595static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
596 struct qspi_trans *qt, int flags)
597{
598 int ret = TRANS_STATUS_BREAK_NONE;
599
600 /* count the last transferred bytes */
601 if (qt->trans->bits_per_word <= 8)
602 qt->byte++;
603 else
604 qt->byte += 2;
605
606 if (qt->byte >= qt->trans->len) {
607 /* we're at the end of the spi_transfer */
608 /* in TX mode, need to pause for a delay or CS change */
609 if (qt->trans->delay_usecs &&
610 (flags & TRANS_STATUS_BREAK_DELAY))
611 ret |= TRANS_STATUS_BREAK_DELAY;
612 if (qt->trans->cs_change &&
613 (flags & TRANS_STATUS_BREAK_CS_CHANGE))
614 ret |= TRANS_STATUS_BREAK_CS_CHANGE;
615 if (ret)
616 goto done;
617
618 dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
619 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
620 ret = TRANS_STATUS_BREAK_EOM;
621 else
622 ret = TRANS_STATUS_BREAK_NO_BYTES;
623
624 qt->trans = NULL;
625 }
626
627done:
628 dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
629 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
630 return ret;
631}
632
633static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
634{
635 u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
636
637 /* mask out reserved bits */
638 return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
639}
640
641static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
642{
643 u32 reg_offset = MSPI_RXRAM;
644 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
645 u32 msb_offset = reg_offset + (slot << 3);
646
647 return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
648 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
649}
650
651static void read_from_hw(struct bcm_qspi *qspi, int slots)
652{
653 struct qspi_trans tp;
654 int slot;
655
656 bcm_qspi_disable_bspi(qspi);
657
658 if (slots > MSPI_NUM_CDRAM) {
659 /* should never happen */
660 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
661 return;
662 }
663
664 tp = qspi->trans_pos;
665
666 for (slot = 0; slot < slots; slot++) {
667 if (tp.trans->bits_per_word <= 8) {
668 u8 *buf = tp.trans->rx_buf;
669
670 if (buf)
671 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
672 dev_dbg(&qspi->pdev->dev, "RD %02x\n",
673 buf ? buf[tp.byte] : 0xff);
674 } else {
675 u16 *buf = tp.trans->rx_buf;
676
677 if (buf)
678 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
679 slot);
680 dev_dbg(&qspi->pdev->dev, "RD %04x\n",
681 buf ? buf[tp.byte] : 0xffff);
682 }
683
684 update_qspi_trans_byte_count(qspi, &tp,
685 TRANS_STATUS_BREAK_NONE);
686 }
687
688 qspi->trans_pos = tp;
689}
690
691static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
692 u8 val)
693{
694 u32 reg_offset = MSPI_TXRAM + (slot << 3);
695
696 /* mask out reserved bits */
697 bcm_qspi_write(qspi, MSPI, reg_offset, val);
698}
699
700static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
701 u16 val)
702{
703 u32 reg_offset = MSPI_TXRAM;
704 u32 msb_offset = reg_offset + (slot << 3);
705 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
706
707 bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
708 bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
709}
710
711static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
712{
713 return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
714}
715
716static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
717{
718 bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
719}
720
721/* Return number of slots written */
722static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
723{
724 struct qspi_trans tp;
725 int slot = 0, tstatus = 0;
726 u32 mspi_cdram = 0;
727
728 bcm_qspi_disable_bspi(qspi);
729 tp = qspi->trans_pos;
730 bcm_qspi_update_parms(qspi, spi, tp.trans);
731
732 /* Run until end of transfer or reached the max data */
733 while (!tstatus && slot < MSPI_NUM_CDRAM) {
734 if (tp.trans->bits_per_word <= 8) {
735 const u8 *buf = tp.trans->tx_buf;
736 u8 val = buf ? buf[tp.byte] : 0xff;
737
738 write_txram_slot_u8(qspi, slot, val);
739 dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
740 } else {
741 const u16 *buf = tp.trans->tx_buf;
742 u16 val = buf ? buf[tp.byte / 2] : 0xffff;
743
744 write_txram_slot_u16(qspi, slot, val);
745 dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
746 }
747 mspi_cdram = MSPI_CDRAM_CONT_BIT;
748
749 if (has_bspi(qspi))
750 mspi_cdram &= ~1;
751 else
752 mspi_cdram |= (~(1 << spi->chip_select) &
753 MSPI_CDRAM_PCS);
754
755 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
756 MSPI_CDRAM_BITSE_BIT);
757
758 write_cdram_slot(qspi, slot, mspi_cdram);
759
760 tstatus = update_qspi_trans_byte_count(qspi, &tp,
761 TRANS_STATUS_BREAK_TX);
762 slot++;
763 }
764
765 if (!slot) {
766 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
767 goto done;
768 }
769
770 dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
771 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
772 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
773
774 if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
775 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
776 ~MSPI_CDRAM_CONT_BIT;
777 write_cdram_slot(qspi, slot - 1, mspi_cdram);
778 }
779
780 if (has_bspi(qspi))
781 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
782
783 /* Must flush previous writes before starting MSPI operation */
784 mb();
785 /* Set cont | spe | spifie */
786 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
787
788done:
789 return slot;
790}
791
792static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
793 const struct spi_mem_op *op)
794{
795 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
796 u32 addr = 0, len, rdlen, len_words, from = 0;
797 int ret = 0;
798 unsigned long timeo = msecs_to_jiffies(100);
799 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
800
801 if (bcm_qspi_bspi_ver_three(qspi))
802 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
803 return -EIO;
804
805 from = op->addr.val;
806 bcm_qspi_chip_select(qspi, spi->chip_select);
807 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
808
809 /*
810 * when using flex mode we need to send
811 * the upper address byte to bspi
812 */
813 if (bcm_qspi_bspi_ver_three(qspi) == false) {
814 addr = from & 0xff000000;
815 bcm_qspi_write(qspi, BSPI,
816 BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
817 }
818
819 if (!qspi->xfer_mode.flex_mode)
820 addr = from;
821 else
822 addr = from & 0x00ffffff;
823
824 if (bcm_qspi_bspi_ver_three(qspi) == true)
825 addr = (addr + 0xc00000) & 0xffffff;
826
827 /*
828 * read into the entire buffer by breaking the reads
829 * into RAF buffer read lengths
830 */
831 len = op->data.nbytes;
832 qspi->bspi_rf_op_idx = 0;
833
834 do {
835 if (len > BSPI_READ_LENGTH)
836 rdlen = BSPI_READ_LENGTH;
837 else
838 rdlen = len;
839
840 reinit_completion(&qspi->bspi_done);
841 bcm_qspi_enable_bspi(qspi);
842 len_words = (rdlen + 3) >> 2;
843 qspi->bspi_rf_op = op;
844 qspi->bspi_rf_op_status = 0;
845 qspi->bspi_rf_op_len = rdlen;
846 dev_dbg(&qspi->pdev->dev,
847 "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
848 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
849 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
850 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
851 if (qspi->soc_intc) {
852 /*
853 * clear soc MSPI and BSPI interrupts and enable
854 * BSPI interrupts.
855 */
856 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
857 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
858 }
859
860 /* Must flush previous writes before starting BSPI operation */
861 mb();
862 bcm_qspi_bspi_lr_start(qspi);
863 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
864 dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
865 ret = -ETIMEDOUT;
866 break;
867 }
868
869 /* set msg return length */
870 addr += rdlen;
871 len -= rdlen;
872 } while (len);
873
874 return ret;
875}
876
877static int bcm_qspi_transfer_one(struct spi_master *master,
878 struct spi_device *spi,
879 struct spi_transfer *trans)
880{
881 struct bcm_qspi *qspi = spi_master_get_devdata(master);
882 int slots;
883 unsigned long timeo = msecs_to_jiffies(100);
884
885 bcm_qspi_chip_select(qspi, spi->chip_select);
886 qspi->trans_pos.trans = trans;
887 qspi->trans_pos.byte = 0;
888
889 while (qspi->trans_pos.byte < trans->len) {
890 reinit_completion(&qspi->mspi_done);
891
892 slots = write_to_hw(qspi, spi);
893 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
894 dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
895 return -ETIMEDOUT;
896 }
897
898 read_from_hw(qspi, slots);
899 }
900 bcm_qspi_enable_bspi(qspi);
901
902 return 0;
903}
904
905static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
906 const struct spi_mem_op *op)
907{
908 struct spi_master *master = spi->master;
909 struct bcm_qspi *qspi = spi_master_get_devdata(master);
910 struct spi_transfer t[2];
911 u8 cmd[6] = { };
912 int ret, i;
913
914 memset(cmd, 0, sizeof(cmd));
915 memset(t, 0, sizeof(t));
916
917 /* tx */
918 /* opcode is in cmd[0] */
919 cmd[0] = op->cmd.opcode;
920 for (i = 0; i < op->addr.nbytes; i++)
921 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
922
923 t[0].tx_buf = cmd;
924 t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
925 t[0].bits_per_word = spi->bits_per_word;
926 t[0].tx_nbits = op->cmd.buswidth;
927 /* lets mspi know that this is not last transfer */
928 qspi->trans_pos.mspi_last_trans = false;
929 ret = bcm_qspi_transfer_one(master, spi, &t[0]);
930
931 /* rx */
932 qspi->trans_pos.mspi_last_trans = true;
933 if (!ret) {
934 /* rx */
935 t[1].rx_buf = op->data.buf.in;
936 t[1].len = op->data.nbytes;
937 t[1].rx_nbits = op->data.buswidth;
938 t[1].bits_per_word = spi->bits_per_word;
939 ret = bcm_qspi_transfer_one(master, spi, &t[1]);
940 }
941
942 return ret;
943}
944
945static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
946 const struct spi_mem_op *op)
947{
948 struct spi_device *spi = mem->spi;
949 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
950 int ret = 0;
951 bool mspi_read = false;
952 u32 addr = 0, len;
953 u_char *buf;
954
955 if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
956 op->data.dir != SPI_MEM_DATA_IN)
957 return -ENOTSUPP;
958
959 buf = op->data.buf.in;
960 addr = op->addr.val;
961 len = op->data.nbytes;
962
963 if (bcm_qspi_bspi_ver_three(qspi) == true) {
964 /*
965 * The address coming into this function is a raw flash offset.
966 * But for BSPI <= V3, we need to convert it to a remapped BSPI
967 * address. If it crosses a 4MB boundary, just revert back to
968 * using MSPI.
969 */
970 addr = (addr + 0xc00000) & 0xffffff;
971
972 if ((~ADDR_4MB_MASK & addr) ^
973 (~ADDR_4MB_MASK & (addr + len - 1)))
974 mspi_read = true;
975 }
976
977 /* non-aligned and very short transfers are handled by MSPI */
978 if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
979 len < 4)
980 mspi_read = true;
981
982 if (mspi_read)
983 return bcm_qspi_mspi_exec_mem_op(spi, op);
984
985 ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
986
987 if (!ret)
988 ret = bcm_qspi_bspi_exec_mem_op(spi, op);
989
990 return ret;
991}
992
993static void bcm_qspi_cleanup(struct spi_device *spi)
994{
995 struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
996
997 kfree(xp);
998}
999
1000static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1001{
1002 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1003 struct bcm_qspi *qspi = qspi_dev_id->dev;
1004 u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1005
1006 if (status & MSPI_MSPI_STATUS_SPIF) {
1007 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1008 /* clear interrupt */
1009 status &= ~MSPI_MSPI_STATUS_SPIF;
1010 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1011 if (qspi->soc_intc)
1012 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1013 complete(&qspi->mspi_done);
1014 return IRQ_HANDLED;
1015 }
1016
1017 return IRQ_NONE;
1018}
1019
1020static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1021{
1022 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1023 struct bcm_qspi *qspi = qspi_dev_id->dev;
1024 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1025 u32 status = qspi_dev_id->irqp->mask;
1026
1027 if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1028 bcm_qspi_bspi_lr_data_read(qspi);
1029 if (qspi->bspi_rf_op_len == 0) {
1030 qspi->bspi_rf_op = NULL;
1031 if (qspi->soc_intc) {
1032 /* disable soc BSPI interrupt */
1033 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1034 false);
1035 /* indicate done */
1036 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1037 }
1038
1039 if (qspi->bspi_rf_op_status)
1040 bcm_qspi_bspi_lr_clear(qspi);
1041 else
1042 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1043 }
1044
1045 if (qspi->soc_intc)
1046 /* clear soc BSPI interrupt */
1047 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1048 }
1049
1050 status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1051 if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1052 complete(&qspi->bspi_done);
1053
1054 return IRQ_HANDLED;
1055}
1056
1057static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1058{
1059 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1060 struct bcm_qspi *qspi = qspi_dev_id->dev;
1061 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1062
1063 dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1064 qspi->bspi_rf_op_status = -EIO;
1065 if (qspi->soc_intc)
1066 /* clear soc interrupt */
1067 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1068
1069 complete(&qspi->bspi_done);
1070 return IRQ_HANDLED;
1071}
1072
1073static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1074{
1075 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1076 struct bcm_qspi *qspi = qspi_dev_id->dev;
1077 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1078 irqreturn_t ret = IRQ_NONE;
1079
1080 if (soc_intc) {
1081 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1082
1083 if (status & MSPI_DONE)
1084 ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1085 else if (status & BSPI_DONE)
1086 ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1087 else if (status & BSPI_ERR)
1088 ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1089 }
1090
1091 return ret;
1092}
1093
1094static const struct bcm_qspi_irq qspi_irq_tab[] = {
1095 {
1096 .irq_name = "spi_lr_fullness_reached",
1097 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1098 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1099 },
1100 {
1101 .irq_name = "spi_lr_session_aborted",
1102 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1103 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1104 },
1105 {
1106 .irq_name = "spi_lr_impatient",
1107 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1108 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1109 },
1110 {
1111 .irq_name = "spi_lr_session_done",
1112 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1113 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1114 },
1115#ifdef QSPI_INT_DEBUG
1116 /* this interrupt is for debug purposes only, dont request irq */
1117 {
1118 .irq_name = "spi_lr_overread",
1119 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1120 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1121 },
1122#endif
1123 {
1124 .irq_name = "mspi_done",
1125 .irq_handler = bcm_qspi_mspi_l2_isr,
1126 .mask = INTR_MSPI_DONE_MASK,
1127 },
1128 {
1129 .irq_name = "mspi_halted",
1130 .irq_handler = bcm_qspi_mspi_l2_isr,
1131 .mask = INTR_MSPI_HALTED_MASK,
1132 },
1133 {
1134 /* single muxed L1 interrupt source */
1135 .irq_name = "spi_l1_intr",
1136 .irq_handler = bcm_qspi_l1_isr,
1137 .irq_source = MUXED_L1,
1138 .mask = QSPI_INTERRUPTS_ALL,
1139 },
1140};
1141
1142static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1143{
1144 u32 val = 0;
1145
1146 val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1147 qspi->bspi_maj_rev = (val >> 8) & 0xff;
1148 qspi->bspi_min_rev = val & 0xff;
1149 if (!(bcm_qspi_bspi_ver_three(qspi))) {
1150 /* Force mapping of BSPI address -> flash offset */
1151 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1152 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1153 }
1154 qspi->bspi_enabled = 1;
1155 bcm_qspi_disable_bspi(qspi);
1156 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1157 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1158}
1159
1160static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1161{
1162 struct bcm_qspi_parms parms;
1163
1164 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1165 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1166 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1167 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1168 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1169
1170 parms.mode = SPI_MODE_3;
1171 parms.bits_per_word = 8;
1172 parms.speed_hz = qspi->max_speed_hz;
1173 bcm_qspi_hw_set_parms(qspi, &parms);
1174
1175 if (has_bspi(qspi))
1176 bcm_qspi_bspi_init(qspi);
1177}
1178
1179static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1180{
1181 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1182 if (has_bspi(qspi))
1183 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1184
1185}
1186
1187static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1188 .exec_op = bcm_qspi_exec_mem_op,
1189};
1190
1191static const struct of_device_id bcm_qspi_of_match[] = {
1192 { .compatible = "brcm,spi-bcm-qspi" },
1193 {},
1194};
1195MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1196
1197int bcm_qspi_probe(struct platform_device *pdev,
1198 struct bcm_qspi_soc_intc *soc_intc)
1199{
1200 struct device *dev = &pdev->dev;
1201 struct bcm_qspi *qspi;
1202 struct spi_master *master;
1203 struct resource *res;
1204 int irq, ret = 0, num_ints = 0;
1205 u32 val;
1206 const char *name = NULL;
1207 int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1208
1209 /* We only support device-tree instantiation */
1210 if (!dev->of_node)
1211 return -ENODEV;
1212
1213 if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1214 return -ENODEV;
1215
1216 master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1217 if (!master) {
1218 dev_err(dev, "error allocating spi_master\n");
1219 return -ENOMEM;
1220 }
1221
1222 qspi = spi_master_get_devdata(master);
1223 qspi->pdev = pdev;
1224 qspi->trans_pos.trans = NULL;
1225 qspi->trans_pos.byte = 0;
1226 qspi->trans_pos.mspi_last_trans = true;
1227 qspi->master = master;
1228
1229 master->bus_num = -1;
1230 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1231 master->setup = bcm_qspi_setup;
1232 master->transfer_one = bcm_qspi_transfer_one;
1233 master->mem_ops = &bcm_qspi_mem_ops;
1234 master->cleanup = bcm_qspi_cleanup;
1235 master->dev.of_node = dev->of_node;
1236 master->num_chipselect = NUM_CHIPSELECT;
1237
1238 qspi->big_endian = of_device_is_big_endian(dev->of_node);
1239
1240 if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1241 master->num_chipselect = val;
1242
1243 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1244 if (!res)
1245 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1246 "mspi");
1247
1248 if (res) {
1249 qspi->base[MSPI] = devm_ioremap_resource(dev, res);
1250 if (IS_ERR(qspi->base[MSPI])) {
1251 ret = PTR_ERR(qspi->base[MSPI]);
1252 goto qspi_resource_err;
1253 }
1254 } else {
1255 goto qspi_resource_err;
1256 }
1257
1258 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1259 if (res) {
1260 qspi->base[BSPI] = devm_ioremap_resource(dev, res);
1261 if (IS_ERR(qspi->base[BSPI])) {
1262 ret = PTR_ERR(qspi->base[BSPI]);
1263 goto qspi_resource_err;
1264 }
1265 qspi->bspi_mode = true;
1266 } else {
1267 qspi->bspi_mode = false;
1268 }
1269
1270 dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1271
1272 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1273 if (res) {
1274 qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
1275 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1276 ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1277 goto qspi_resource_err;
1278 }
1279 }
1280
1281 qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1282 GFP_KERNEL);
1283 if (!qspi->dev_ids) {
1284 ret = -ENOMEM;
1285 goto qspi_resource_err;
1286 }
1287
1288 for (val = 0; val < num_irqs; val++) {
1289 irq = -1;
1290 name = qspi_irq_tab[val].irq_name;
1291 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1292 /* get the l2 interrupts */
1293 irq = platform_get_irq_byname(pdev, name);
1294 } else if (!num_ints && soc_intc) {
1295 /* all mspi, bspi intrs muxed to one L1 intr */
1296 irq = platform_get_irq(pdev, 0);
1297 }
1298
1299 if (irq >= 0) {
1300 ret = devm_request_irq(&pdev->dev, irq,
1301 qspi_irq_tab[val].irq_handler, 0,
1302 name,
1303 &qspi->dev_ids[val]);
1304 if (ret < 0) {
1305 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1306 goto qspi_probe_err;
1307 }
1308
1309 qspi->dev_ids[val].dev = qspi;
1310 qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1311 num_ints++;
1312 dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1313 qspi_irq_tab[val].irq_name,
1314 irq);
1315 }
1316 }
1317
1318 if (!num_ints) {
1319 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1320 ret = -EINVAL;
1321 goto qspi_probe_err;
1322 }
1323
1324 /*
1325 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1326 * in specific ways
1327 */
1328 if (soc_intc) {
1329 qspi->soc_intc = soc_intc;
1330 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1331 } else {
1332 qspi->soc_intc = NULL;
1333 }
1334
1335 qspi->clk = devm_clk_get(&pdev->dev, NULL);
1336 if (IS_ERR(qspi->clk)) {
1337 dev_warn(dev, "unable to get clock\n");
1338 ret = PTR_ERR(qspi->clk);
1339 goto qspi_probe_err;
1340 }
1341
1342 ret = clk_prepare_enable(qspi->clk);
1343 if (ret) {
1344 dev_err(dev, "failed to prepare clock\n");
1345 goto qspi_probe_err;
1346 }
1347
1348 qspi->base_clk = clk_get_rate(qspi->clk);
1349 qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1350
1351 bcm_qspi_hw_init(qspi);
1352 init_completion(&qspi->mspi_done);
1353 init_completion(&qspi->bspi_done);
1354 qspi->curr_cs = -1;
1355
1356 platform_set_drvdata(pdev, qspi);
1357
1358 qspi->xfer_mode.width = -1;
1359 qspi->xfer_mode.addrlen = -1;
1360 qspi->xfer_mode.hp = -1;
1361
1362 ret = devm_spi_register_master(&pdev->dev, master);
1363 if (ret < 0) {
1364 dev_err(dev, "can't register master\n");
1365 goto qspi_reg_err;
1366 }
1367
1368 return 0;
1369
1370qspi_reg_err:
1371 bcm_qspi_hw_uninit(qspi);
1372 clk_disable_unprepare(qspi->clk);
1373qspi_probe_err:
1374 kfree(qspi->dev_ids);
1375qspi_resource_err:
1376 spi_master_put(master);
1377 return ret;
1378}
1379/* probe function to be called by SoC specific platform driver probe */
1380EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1381
1382int bcm_qspi_remove(struct platform_device *pdev)
1383{
1384 struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1385
1386 bcm_qspi_hw_uninit(qspi);
1387 clk_disable_unprepare(qspi->clk);
1388 kfree(qspi->dev_ids);
1389 spi_unregister_master(qspi->master);
1390
1391 return 0;
1392}
1393/* function to be called by SoC specific platform driver remove() */
1394EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1395
1396static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1397{
1398 struct bcm_qspi *qspi = dev_get_drvdata(dev);
1399
1400 /* store the override strap value */
1401 if (!bcm_qspi_bspi_ver_three(qspi))
1402 qspi->s3_strap_override_ctrl =
1403 bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1404
1405 spi_master_suspend(qspi->master);
1406 clk_disable(qspi->clk);
1407 bcm_qspi_hw_uninit(qspi);
1408
1409 return 0;
1410};
1411
1412static int __maybe_unused bcm_qspi_resume(struct device *dev)
1413{
1414 struct bcm_qspi *qspi = dev_get_drvdata(dev);
1415 int ret = 0;
1416
1417 bcm_qspi_hw_init(qspi);
1418 bcm_qspi_chip_select(qspi, qspi->curr_cs);
1419 if (qspi->soc_intc)
1420 /* enable MSPI interrupt */
1421 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1422 true);
1423
1424 ret = clk_enable(qspi->clk);
1425 if (!ret)
1426 spi_master_resume(qspi->master);
1427
1428 return ret;
1429}
1430
1431SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1432
1433/* pm_ops to be called by SoC specific platform driver */
1434EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1435
1436MODULE_AUTHOR("Kamal Dasu");
1437MODULE_DESCRIPTION("Broadcom QSPI driver");
1438MODULE_LICENSE("GPL v2");
1439MODULE_ALIAS("platform:" DRIVER_NAME);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
4 *
5 * Copyright 2016 Broadcom
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/device.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/ioport.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/of_irq.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21#include <linux/spi/spi.h>
22#include <linux/spi/spi-mem.h>
23#include <linux/sysfs.h>
24#include <linux/types.h>
25#include "spi-bcm-qspi.h"
26
27#define DRIVER_NAME "bcm_qspi"
28
29
30/* BSPI register offsets */
31#define BSPI_REVISION_ID 0x000
32#define BSPI_SCRATCH 0x004
33#define BSPI_MAST_N_BOOT_CTRL 0x008
34#define BSPI_BUSY_STATUS 0x00c
35#define BSPI_INTR_STATUS 0x010
36#define BSPI_B0_STATUS 0x014
37#define BSPI_B0_CTRL 0x018
38#define BSPI_B1_STATUS 0x01c
39#define BSPI_B1_CTRL 0x020
40#define BSPI_STRAP_OVERRIDE_CTRL 0x024
41#define BSPI_FLEX_MODE_ENABLE 0x028
42#define BSPI_BITS_PER_CYCLE 0x02c
43#define BSPI_BITS_PER_PHASE 0x030
44#define BSPI_CMD_AND_MODE_BYTE 0x034
45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
46#define BSPI_BSPI_XOR_VALUE 0x03c
47#define BSPI_BSPI_XOR_ENABLE 0x040
48#define BSPI_BSPI_PIO_MODE_ENABLE 0x044
49#define BSPI_BSPI_PIO_IODIR 0x048
50#define BSPI_BSPI_PIO_DATA 0x04c
51
52/* RAF register offsets */
53#define BSPI_RAF_START_ADDR 0x100
54#define BSPI_RAF_NUM_WORDS 0x104
55#define BSPI_RAF_CTRL 0x108
56#define BSPI_RAF_FULLNESS 0x10c
57#define BSPI_RAF_WATERMARK 0x110
58#define BSPI_RAF_STATUS 0x114
59#define BSPI_RAF_READ_DATA 0x118
60#define BSPI_RAF_WORD_CNT 0x11c
61#define BSPI_RAF_CURR_ADDR 0x120
62
63/* Override mode masks */
64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
69
70#define BSPI_ADDRLEN_3BYTES 3
71#define BSPI_ADDRLEN_4BYTES 4
72
73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
74
75#define BSPI_RAF_CTRL_START_MASK BIT(0)
76#define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
77
78#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
79#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
80
81#define BSPI_READ_LENGTH 256
82
83/* MSPI register offsets */
84#define MSPI_SPCR0_LSB 0x000
85#define MSPI_SPCR0_MSB 0x004
86#define MSPI_SPCR0_MSB_CPHA BIT(0)
87#define MSPI_SPCR0_MSB_CPOL BIT(1)
88#define MSPI_SPCR0_MSB_BITS_SHIFT 0x2
89#define MSPI_SPCR1_LSB 0x008
90#define MSPI_SPCR1_MSB 0x00c
91#define MSPI_NEWQP 0x010
92#define MSPI_ENDQP 0x014
93#define MSPI_SPCR2 0x018
94#define MSPI_MSPI_STATUS 0x020
95#define MSPI_CPTQP 0x024
96#define MSPI_SPCR3 0x028
97#define MSPI_REV 0x02c
98#define MSPI_TXRAM 0x040
99#define MSPI_RXRAM 0x0c0
100#define MSPI_CDRAM 0x140
101#define MSPI_WRITE_LOCK 0x180
102
103#define MSPI_MASTER_BIT BIT(7)
104
105#define MSPI_NUM_CDRAM 16
106#define MSPI_CDRAM_OUTP BIT(8)
107#define MSPI_CDRAM_CONT_BIT BIT(7)
108#define MSPI_CDRAM_BITSE_BIT BIT(6)
109#define MSPI_CDRAM_DT_BIT BIT(5)
110#define MSPI_CDRAM_PCS 0xf
111
112#define MSPI_SPCR2_SPE BIT(6)
113#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
114
115#define MSPI_SPCR3_FASTBR BIT(0)
116#define MSPI_SPCR3_FASTDT BIT(1)
117#define MSPI_SPCR3_SYSCLKSEL_MASK GENMASK(11, 10)
118#define MSPI_SPCR3_SYSCLKSEL_27 (MSPI_SPCR3_SYSCLKSEL_MASK & \
119 ~(BIT(10) | BIT(11)))
120#define MSPI_SPCR3_SYSCLKSEL_108 (MSPI_SPCR3_SYSCLKSEL_MASK & \
121 BIT(11))
122#define MSPI_SPCR3_TXRXDAM_MASK GENMASK(4, 2)
123#define MSPI_SPCR3_DAM_8BYTE 0
124#define MSPI_SPCR3_DAM_16BYTE (BIT(2) | BIT(4))
125#define MSPI_SPCR3_DAM_32BYTE (BIT(3) | BIT(5))
126#define MSPI_SPCR3_HALFDUPLEX BIT(6)
127#define MSPI_SPCR3_HDOUTTYPE BIT(7)
128#define MSPI_SPCR3_DATA_REG_SZ BIT(8)
129#define MSPI_SPCR3_CPHARX BIT(9)
130
131#define MSPI_MSPI_STATUS_SPIF BIT(0)
132
133#define INTR_BASE_BIT_SHIFT 0x02
134#define INTR_COUNT 0x07
135
136#define NUM_CHIPSELECT 4
137#define QSPI_SPBR_MAX 255U
138#define MSPI_BASE_FREQ 27000000UL
139
140#define OPCODE_DIOR 0xBB
141#define OPCODE_QIOR 0xEB
142#define OPCODE_DIOR_4B 0xBC
143#define OPCODE_QIOR_4B 0xEC
144
145#define MAX_CMD_SIZE 6
146
147#define ADDR_4MB_MASK GENMASK(22, 0)
148
149/* stop at end of transfer, no other reason */
150#define TRANS_STATUS_BREAK_NONE 0
151/* stop at end of spi_message */
152#define TRANS_STATUS_BREAK_EOM 1
153/* stop at end of spi_transfer if delay */
154#define TRANS_STATUS_BREAK_DELAY 2
155/* stop at end of spi_transfer if cs_change */
156#define TRANS_STATUS_BREAK_CS_CHANGE 4
157/* stop if we run out of bytes */
158#define TRANS_STATUS_BREAK_NO_BYTES 8
159
160/* events that make us stop filling TX slots */
161#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
162 TRANS_STATUS_BREAK_DELAY | \
163 TRANS_STATUS_BREAK_CS_CHANGE)
164
165/* events that make us deassert CS */
166#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
167 TRANS_STATUS_BREAK_CS_CHANGE)
168
169/*
170 * Used for writing and reading data in the right order
171 * to TXRAM and RXRAM when used as 32-bit registers respectively
172 */
173#define swap4bytes(__val) \
174 ((((__val) >> 24) & 0x000000FF) | (((__val) >> 8) & 0x0000FF00) | \
175 (((__val) << 8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
176
177struct bcm_qspi_parms {
178 u32 speed_hz;
179 u8 mode;
180 u8 bits_per_word;
181};
182
183struct bcm_xfer_mode {
184 bool flex_mode;
185 unsigned int width;
186 unsigned int addrlen;
187 unsigned int hp;
188};
189
190enum base_type {
191 MSPI,
192 BSPI,
193 CHIP_SELECT,
194 BASEMAX,
195};
196
197enum irq_source {
198 SINGLE_L2,
199 MUXED_L1,
200};
201
202struct bcm_qspi_irq {
203 const char *irq_name;
204 const irq_handler_t irq_handler;
205 int irq_source;
206 u32 mask;
207};
208
209struct bcm_qspi_dev_id {
210 const struct bcm_qspi_irq *irqp;
211 void *dev;
212};
213
214
215struct qspi_trans {
216 struct spi_transfer *trans;
217 int byte;
218 bool mspi_last_trans;
219};
220
221struct bcm_qspi {
222 struct platform_device *pdev;
223 struct spi_master *master;
224 struct clk *clk;
225 u32 base_clk;
226 u32 max_speed_hz;
227 void __iomem *base[BASEMAX];
228
229 /* Some SoCs provide custom interrupt status register(s) */
230 struct bcm_qspi_soc_intc *soc_intc;
231
232 struct bcm_qspi_parms last_parms;
233 struct qspi_trans trans_pos;
234 int curr_cs;
235 int bspi_maj_rev;
236 int bspi_min_rev;
237 int bspi_enabled;
238 const struct spi_mem_op *bspi_rf_op;
239 u32 bspi_rf_op_idx;
240 u32 bspi_rf_op_len;
241 u32 bspi_rf_op_status;
242 struct bcm_xfer_mode xfer_mode;
243 u32 s3_strap_override_ctrl;
244 bool bspi_mode;
245 bool big_endian;
246 int num_irqs;
247 struct bcm_qspi_dev_id *dev_ids;
248 struct completion mspi_done;
249 struct completion bspi_done;
250 u8 mspi_maj_rev;
251 u8 mspi_min_rev;
252 bool mspi_spcr3_sysclk;
253};
254
255static inline bool has_bspi(struct bcm_qspi *qspi)
256{
257 return qspi->bspi_mode;
258}
259
260/* hardware supports spcr3 and fast baud-rate */
261static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
262{
263 if (!has_bspi(qspi) &&
264 ((qspi->mspi_maj_rev >= 1) &&
265 (qspi->mspi_min_rev >= 5)))
266 return true;
267
268 return false;
269}
270
271/* hardware supports sys clk 108Mhz */
272static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
273{
274 if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
275 ((qspi->mspi_maj_rev >= 1) &&
276 (qspi->mspi_min_rev >= 6))))
277 return true;
278
279 return false;
280}
281
282static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
283{
284 if (bcm_qspi_has_fastbr(qspi))
285 return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
286 else
287 return 8;
288}
289
290static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
291 const struct bcm_qspi_parms *xp)
292{
293 u32 spbr = 0;
294
295 /* SPBR = System Clock/(2 * SCK Baud Rate) */
296 if (xp->speed_hz)
297 spbr = clk_speed_hz / (xp->speed_hz * 2);
298
299 return spbr;
300}
301
302/* Read qspi controller register*/
303static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
304 unsigned int offset)
305{
306 return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
307}
308
309/* Write qspi controller register*/
310static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
311 unsigned int offset, unsigned int data)
312{
313 bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
314}
315
316/* BSPI helpers */
317static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
318{
319 int i;
320
321 /* this should normally finish within 10us */
322 for (i = 0; i < 1000; i++) {
323 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
324 return 0;
325 udelay(1);
326 }
327 dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
328 return -EIO;
329}
330
331static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
332{
333 if (qspi->bspi_maj_rev < 4)
334 return true;
335 return false;
336}
337
338static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
339{
340 bcm_qspi_bspi_busy_poll(qspi);
341 /* Force rising edge for the b0/b1 'flush' field */
342 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
343 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
344 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
345 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
346}
347
348static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
349{
350 return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
351 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
352}
353
354static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
355{
356 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
357
358 /* BSPI v3 LR is LE only, convert data to host endianness */
359 if (bcm_qspi_bspi_ver_three(qspi))
360 data = le32_to_cpu(data);
361
362 return data;
363}
364
365static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
366{
367 bcm_qspi_bspi_busy_poll(qspi);
368 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
369 BSPI_RAF_CTRL_START_MASK);
370}
371
372static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
373{
374 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
375 BSPI_RAF_CTRL_CLEAR_MASK);
376 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
377}
378
379static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
380{
381 u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
382 u32 data = 0;
383
384 dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
385 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
386 while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
387 data = bcm_qspi_bspi_lr_read_fifo(qspi);
388 if (likely(qspi->bspi_rf_op_len >= 4) &&
389 IS_ALIGNED((uintptr_t)buf, 4)) {
390 buf[qspi->bspi_rf_op_idx++] = data;
391 qspi->bspi_rf_op_len -= 4;
392 } else {
393 /* Read out remaining bytes, make sure*/
394 u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
395
396 data = cpu_to_le32(data);
397 while (qspi->bspi_rf_op_len) {
398 *cbuf++ = (u8)data;
399 data >>= 8;
400 qspi->bspi_rf_op_len--;
401 }
402 }
403 }
404}
405
406static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
407 int bpp, int bpc, int flex_mode)
408{
409 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
410 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
411 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
412 bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
413 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
414}
415
416static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
417 const struct spi_mem_op *op, int hp)
418{
419 int bpc = 0, bpp = 0;
420 u8 command = op->cmd.opcode;
421 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
422 int addrlen = op->addr.nbytes;
423 int flex_mode = 1;
424
425 dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
426 width, addrlen, hp);
427
428 if (addrlen == BSPI_ADDRLEN_4BYTES)
429 bpp = BSPI_BPP_ADDR_SELECT_MASK;
430
431 if (op->dummy.nbytes)
432 bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
433
434 switch (width) {
435 case SPI_NBITS_SINGLE:
436 if (addrlen == BSPI_ADDRLEN_3BYTES)
437 /* default mode, does not need flex_cmd */
438 flex_mode = 0;
439 break;
440 case SPI_NBITS_DUAL:
441 bpc = 0x00000001;
442 if (hp) {
443 bpc |= 0x00010100; /* address and mode are 2-bit */
444 bpp = BSPI_BPP_MODE_SELECT_MASK;
445 }
446 break;
447 case SPI_NBITS_QUAD:
448 bpc = 0x00000002;
449 if (hp) {
450 bpc |= 0x00020200; /* address and mode are 4-bit */
451 bpp |= BSPI_BPP_MODE_SELECT_MASK;
452 }
453 break;
454 default:
455 return -EINVAL;
456 }
457
458 bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
459
460 return 0;
461}
462
463static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
464 const struct spi_mem_op *op, int hp)
465{
466 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
467 int addrlen = op->addr.nbytes;
468 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
469
470 dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
471 width, addrlen, hp);
472
473 switch (width) {
474 case SPI_NBITS_SINGLE:
475 /* clear quad/dual mode */
476 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
477 BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
478 break;
479 case SPI_NBITS_QUAD:
480 /* clear dual mode and set quad mode */
481 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
482 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
483 break;
484 case SPI_NBITS_DUAL:
485 /* clear quad mode set dual mode */
486 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
487 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
488 break;
489 default:
490 return -EINVAL;
491 }
492
493 if (addrlen == BSPI_ADDRLEN_4BYTES)
494 /* set 4byte mode*/
495 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
496 else
497 /* clear 4 byte mode */
498 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
499
500 /* set the override mode */
501 data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
502 bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
503 bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
504
505 return 0;
506}
507
508static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
509 const struct spi_mem_op *op, int hp)
510{
511 int error = 0;
512 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
513 int addrlen = op->addr.nbytes;
514
515 /* default mode */
516 qspi->xfer_mode.flex_mode = true;
517
518 if (!bcm_qspi_bspi_ver_three(qspi)) {
519 u32 val, mask;
520
521 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
522 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
523 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
524 qspi->xfer_mode.flex_mode = false;
525 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
526 error = bcm_qspi_bspi_set_override(qspi, op, hp);
527 }
528 }
529
530 if (qspi->xfer_mode.flex_mode)
531 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
532
533 if (error) {
534 dev_warn(&qspi->pdev->dev,
535 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
536 width, addrlen, hp);
537 } else if (qspi->xfer_mode.width != width ||
538 qspi->xfer_mode.addrlen != addrlen ||
539 qspi->xfer_mode.hp != hp) {
540 qspi->xfer_mode.width = width;
541 qspi->xfer_mode.addrlen = addrlen;
542 qspi->xfer_mode.hp = hp;
543 dev_dbg(&qspi->pdev->dev,
544 "cs:%d %d-lane output, %d-byte address%s\n",
545 qspi->curr_cs,
546 qspi->xfer_mode.width,
547 qspi->xfer_mode.addrlen,
548 qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
549 }
550
551 return error;
552}
553
554static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
555{
556 if (!has_bspi(qspi))
557 return;
558
559 qspi->bspi_enabled = 1;
560 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
561 return;
562
563 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
564 udelay(1);
565 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
566 udelay(1);
567}
568
569static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
570{
571 if (!has_bspi(qspi))
572 return;
573
574 qspi->bspi_enabled = 0;
575 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
576 return;
577
578 bcm_qspi_bspi_busy_poll(qspi);
579 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
580 udelay(1);
581}
582
583static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
584{
585 u32 rd = 0;
586 u32 wr = 0;
587
588 if (cs >= 0 && qspi->base[CHIP_SELECT]) {
589 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
590 wr = (rd & ~0xff) | (1 << cs);
591 if (rd == wr)
592 return;
593 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
594 usleep_range(10, 20);
595 }
596
597 dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
598 qspi->curr_cs = cs;
599}
600
601static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
602 const struct bcm_qspi_parms * const prev)
603{
604 return (cur->speed_hz != prev->speed_hz) ||
605 (cur->mode != prev->mode) ||
606 (cur->bits_per_word != prev->bits_per_word);
607}
608
609
610/* MSPI helpers */
611static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
612 const struct bcm_qspi_parms *xp)
613{
614 u32 spcr, spbr = 0;
615
616 if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
617 return;
618
619 if (!qspi->mspi_maj_rev)
620 /* legacy controller */
621 spcr = MSPI_MASTER_BIT;
622 else
623 spcr = 0;
624
625 /*
626 * Bits per transfer. BITS determines the number of data bits
627 * transferred if the command control bit (BITSE of a
628 * CDRAM Register) is equal to 1.
629 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
630 * regardless
631 */
632 if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
633 spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
634
635 spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
636 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
637
638 if (bcm_qspi_has_fastbr(qspi)) {
639 spcr = 0;
640
641 /* enable fastbr */
642 spcr |= MSPI_SPCR3_FASTBR;
643
644 if (xp->mode & SPI_3WIRE)
645 spcr |= MSPI_SPCR3_HALFDUPLEX | MSPI_SPCR3_HDOUTTYPE;
646
647 if (bcm_qspi_has_sysclk_108(qspi)) {
648 /* check requested baud rate before moving to 108Mhz */
649 spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
650 if (spbr > QSPI_SPBR_MAX) {
651 /* use SYSCLK_27Mhz for slower baud rates */
652 spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
653 qspi->base_clk = MSPI_BASE_FREQ;
654 } else {
655 /* SYSCLK_108Mhz */
656 spcr |= MSPI_SPCR3_SYSCLKSEL_108;
657 qspi->base_clk = MSPI_BASE_FREQ * 4;
658 }
659 }
660
661 if (xp->bits_per_word > 16) {
662 /* data_reg_size 1 (64bit) */
663 spcr |= MSPI_SPCR3_DATA_REG_SZ;
664 /* TxRx RAM data access mode 2 for 32B and set fastdt */
665 spcr |= MSPI_SPCR3_DAM_32BYTE | MSPI_SPCR3_FASTDT;
666 /*
667 * Set length of delay after transfer
668 * DTL from 0(256) to 1
669 */
670 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
671 } else {
672 /* data_reg_size[8] = 0 */
673 spcr &= ~(MSPI_SPCR3_DATA_REG_SZ);
674
675 /*
676 * TxRx RAM access mode 8B
677 * and disable fastdt
678 */
679 spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
680 }
681 bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
682 }
683
684 /* SCK Baud Rate = System Clock/(2 * SPBR) */
685 qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
686 spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
687 spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
688 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
689
690 qspi->last_parms = *xp;
691}
692
693static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
694 struct spi_device *spi,
695 struct spi_transfer *trans)
696{
697 struct bcm_qspi_parms xp;
698
699 xp.speed_hz = trans->speed_hz;
700 xp.bits_per_word = trans->bits_per_word;
701 xp.mode = spi->mode;
702
703 bcm_qspi_hw_set_parms(qspi, &xp);
704}
705
706static int bcm_qspi_setup(struct spi_device *spi)
707{
708 struct bcm_qspi_parms *xp;
709
710 if (spi->bits_per_word > 64)
711 return -EINVAL;
712
713 xp = spi_get_ctldata(spi);
714 if (!xp) {
715 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
716 if (!xp)
717 return -ENOMEM;
718 spi_set_ctldata(spi, xp);
719 }
720 xp->speed_hz = spi->max_speed_hz;
721 xp->mode = spi->mode;
722
723 if (spi->bits_per_word)
724 xp->bits_per_word = spi->bits_per_word;
725 else
726 xp->bits_per_word = 8;
727
728 return 0;
729}
730
731static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
732 struct qspi_trans *qt)
733{
734 if (qt->mspi_last_trans &&
735 spi_transfer_is_last(qspi->master, qt->trans))
736 return true;
737 else
738 return false;
739}
740
741static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
742 struct qspi_trans *qt, int flags)
743{
744 int ret = TRANS_STATUS_BREAK_NONE;
745
746 /* count the last transferred bytes */
747 if (qt->trans->bits_per_word <= 8)
748 qt->byte++;
749 else if (qt->trans->bits_per_word <= 16)
750 qt->byte += 2;
751 else if (qt->trans->bits_per_word <= 32)
752 qt->byte += 4;
753 else if (qt->trans->bits_per_word <= 64)
754 qt->byte += 8;
755
756 if (qt->byte >= qt->trans->len) {
757 /* we're at the end of the spi_transfer */
758 /* in TX mode, need to pause for a delay or CS change */
759 if (qt->trans->delay.value &&
760 (flags & TRANS_STATUS_BREAK_DELAY))
761 ret |= TRANS_STATUS_BREAK_DELAY;
762 if (qt->trans->cs_change &&
763 (flags & TRANS_STATUS_BREAK_CS_CHANGE))
764 ret |= TRANS_STATUS_BREAK_CS_CHANGE;
765
766 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
767 ret |= TRANS_STATUS_BREAK_EOM;
768 else
769 ret |= TRANS_STATUS_BREAK_NO_BYTES;
770
771 qt->trans = NULL;
772 }
773
774 dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
775 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
776 return ret;
777}
778
779static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
780{
781 u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
782
783 /* mask out reserved bits */
784 return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
785}
786
787static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
788{
789 u32 reg_offset = MSPI_RXRAM;
790 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
791 u32 msb_offset = reg_offset + (slot << 3);
792
793 return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
794 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
795}
796
797static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
798{
799 u32 reg_offset = MSPI_RXRAM;
800 u32 offset = reg_offset + (slot << 3);
801 u32 val;
802
803 val = bcm_qspi_read(qspi, MSPI, offset);
804 val = swap4bytes(val);
805
806 return val;
807}
808
809static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
810{
811 u32 reg_offset = MSPI_RXRAM;
812 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
813 u32 msb_offset = reg_offset + (slot << 3);
814 u32 msb, lsb;
815
816 msb = bcm_qspi_read(qspi, MSPI, msb_offset);
817 msb = swap4bytes(msb);
818 lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
819 lsb = swap4bytes(lsb);
820
821 return ((u64)msb << 32 | lsb);
822}
823
824static void read_from_hw(struct bcm_qspi *qspi, int slots)
825{
826 struct qspi_trans tp;
827 int slot;
828
829 bcm_qspi_disable_bspi(qspi);
830
831 if (slots > MSPI_NUM_CDRAM) {
832 /* should never happen */
833 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
834 return;
835 }
836
837 tp = qspi->trans_pos;
838
839 for (slot = 0; slot < slots; slot++) {
840 if (tp.trans->bits_per_word <= 8) {
841 u8 *buf = tp.trans->rx_buf;
842
843 if (buf)
844 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
845 dev_dbg(&qspi->pdev->dev, "RD %02x\n",
846 buf ? buf[tp.byte] : 0x0);
847 } else if (tp.trans->bits_per_word <= 16) {
848 u16 *buf = tp.trans->rx_buf;
849
850 if (buf)
851 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
852 slot);
853 dev_dbg(&qspi->pdev->dev, "RD %04x\n",
854 buf ? buf[tp.byte / 2] : 0x0);
855 } else if (tp.trans->bits_per_word <= 32) {
856 u32 *buf = tp.trans->rx_buf;
857
858 if (buf)
859 buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
860 slot);
861 dev_dbg(&qspi->pdev->dev, "RD %08x\n",
862 buf ? buf[tp.byte / 4] : 0x0);
863
864 } else if (tp.trans->bits_per_word <= 64) {
865 u64 *buf = tp.trans->rx_buf;
866
867 if (buf)
868 buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
869 slot);
870 dev_dbg(&qspi->pdev->dev, "RD %llx\n",
871 buf ? buf[tp.byte / 8] : 0x0);
872
873
874 }
875
876 update_qspi_trans_byte_count(qspi, &tp,
877 TRANS_STATUS_BREAK_NONE);
878 }
879
880 qspi->trans_pos = tp;
881}
882
883static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
884 u8 val)
885{
886 u32 reg_offset = MSPI_TXRAM + (slot << 3);
887
888 /* mask out reserved bits */
889 bcm_qspi_write(qspi, MSPI, reg_offset, val);
890}
891
892static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
893 u16 val)
894{
895 u32 reg_offset = MSPI_TXRAM;
896 u32 msb_offset = reg_offset + (slot << 3);
897 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
898
899 bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
900 bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
901}
902
903static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
904 u32 val)
905{
906 u32 reg_offset = MSPI_TXRAM;
907 u32 msb_offset = reg_offset + (slot << 3);
908
909 bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
910}
911
912static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
913 u64 val)
914{
915 u32 reg_offset = MSPI_TXRAM;
916 u32 msb_offset = reg_offset + (slot << 3);
917 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
918 u32 msb = upper_32_bits(val);
919 u32 lsb = lower_32_bits(val);
920
921 bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
922 bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
923}
924
925static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
926{
927 return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
928}
929
930static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
931{
932 bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
933}
934
935/* Return number of slots written */
936static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
937{
938 struct qspi_trans tp;
939 int slot = 0, tstatus = 0;
940 u32 mspi_cdram = 0;
941
942 bcm_qspi_disable_bspi(qspi);
943 tp = qspi->trans_pos;
944 bcm_qspi_update_parms(qspi, spi, tp.trans);
945
946 /* Run until end of transfer or reached the max data */
947 while (!tstatus && slot < MSPI_NUM_CDRAM) {
948 mspi_cdram = MSPI_CDRAM_CONT_BIT;
949 if (tp.trans->bits_per_word <= 8) {
950 const u8 *buf = tp.trans->tx_buf;
951 u8 val = buf ? buf[tp.byte] : 0x00;
952
953 write_txram_slot_u8(qspi, slot, val);
954 dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
955 } else if (tp.trans->bits_per_word <= 16) {
956 const u16 *buf = tp.trans->tx_buf;
957 u16 val = buf ? buf[tp.byte / 2] : 0x0000;
958
959 write_txram_slot_u16(qspi, slot, val);
960 dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
961 } else if (tp.trans->bits_per_word <= 32) {
962 const u32 *buf = tp.trans->tx_buf;
963 u32 val = buf ? buf[tp.byte/4] : 0x0;
964
965 write_txram_slot_u32(qspi, slot, val);
966 dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
967 } else if (tp.trans->bits_per_word <= 64) {
968 const u64 *buf = tp.trans->tx_buf;
969 u64 val = (buf ? buf[tp.byte/8] : 0x0);
970
971 /* use the length of delay from SPCR1_LSB */
972 if (bcm_qspi_has_fastbr(qspi))
973 mspi_cdram |= MSPI_CDRAM_DT_BIT;
974
975 write_txram_slot_u64(qspi, slot, val);
976 dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
977 }
978
979 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
980 MSPI_CDRAM_BITSE_BIT);
981
982 /* set 3wrire halfduplex mode data from master to slave */
983 if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
984 mspi_cdram |= MSPI_CDRAM_OUTP;
985
986 if (has_bspi(qspi))
987 mspi_cdram &= ~1;
988 else
989 mspi_cdram |= (~(1 << spi->chip_select) &
990 MSPI_CDRAM_PCS);
991
992 write_cdram_slot(qspi, slot, mspi_cdram);
993
994 tstatus = update_qspi_trans_byte_count(qspi, &tp,
995 TRANS_STATUS_BREAK_TX);
996 slot++;
997 }
998
999 if (!slot) {
1000 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
1001 goto done;
1002 }
1003
1004 dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
1005 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1006 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
1007
1008 /*
1009 * case 1) EOM =1, cs_change =0: SSb inactive
1010 * case 2) EOM =1, cs_change =1: SSb stay active
1011 * case 3) EOM =0, cs_change =0: SSb stay active
1012 * case 4) EOM =0, cs_change =1: SSb inactive
1013 */
1014 if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
1015 == TRANS_STATUS_BREAK_CS_CHANGE) ||
1016 ((tstatus & TRANS_STATUS_BREAK_DESELECT)
1017 == TRANS_STATUS_BREAK_EOM)) {
1018 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
1019 ~MSPI_CDRAM_CONT_BIT;
1020 write_cdram_slot(qspi, slot - 1, mspi_cdram);
1021 }
1022
1023 if (has_bspi(qspi))
1024 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
1025
1026 /* Must flush previous writes before starting MSPI operation */
1027 mb();
1028 /* Set cont | spe | spifie */
1029 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
1030
1031done:
1032 return slot;
1033}
1034
1035static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1036 const struct spi_mem_op *op)
1037{
1038 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1039 u32 addr = 0, len, rdlen, len_words, from = 0;
1040 int ret = 0;
1041 unsigned long timeo = msecs_to_jiffies(100);
1042 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1043
1044 if (bcm_qspi_bspi_ver_three(qspi))
1045 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1046 return -EIO;
1047
1048 from = op->addr.val;
1049 if (!spi->cs_gpiod)
1050 bcm_qspi_chip_select(qspi, spi->chip_select);
1051 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1052
1053 /*
1054 * when using flex mode we need to send
1055 * the upper address byte to bspi
1056 */
1057 if (!bcm_qspi_bspi_ver_three(qspi)) {
1058 addr = from & 0xff000000;
1059 bcm_qspi_write(qspi, BSPI,
1060 BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1061 }
1062
1063 if (!qspi->xfer_mode.flex_mode)
1064 addr = from;
1065 else
1066 addr = from & 0x00ffffff;
1067
1068 if (bcm_qspi_bspi_ver_three(qspi) == true)
1069 addr = (addr + 0xc00000) & 0xffffff;
1070
1071 /*
1072 * read into the entire buffer by breaking the reads
1073 * into RAF buffer read lengths
1074 */
1075 len = op->data.nbytes;
1076 qspi->bspi_rf_op_idx = 0;
1077
1078 do {
1079 if (len > BSPI_READ_LENGTH)
1080 rdlen = BSPI_READ_LENGTH;
1081 else
1082 rdlen = len;
1083
1084 reinit_completion(&qspi->bspi_done);
1085 bcm_qspi_enable_bspi(qspi);
1086 len_words = (rdlen + 3) >> 2;
1087 qspi->bspi_rf_op = op;
1088 qspi->bspi_rf_op_status = 0;
1089 qspi->bspi_rf_op_len = rdlen;
1090 dev_dbg(&qspi->pdev->dev,
1091 "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1092 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1093 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1094 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1095 if (qspi->soc_intc) {
1096 /*
1097 * clear soc MSPI and BSPI interrupts and enable
1098 * BSPI interrupts.
1099 */
1100 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1101 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1102 }
1103
1104 /* Must flush previous writes before starting BSPI operation */
1105 mb();
1106 bcm_qspi_bspi_lr_start(qspi);
1107 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1108 dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1109 ret = -ETIMEDOUT;
1110 break;
1111 }
1112
1113 /* set msg return length */
1114 addr += rdlen;
1115 len -= rdlen;
1116 } while (len);
1117
1118 return ret;
1119}
1120
1121static int bcm_qspi_transfer_one(struct spi_master *master,
1122 struct spi_device *spi,
1123 struct spi_transfer *trans)
1124{
1125 struct bcm_qspi *qspi = spi_master_get_devdata(master);
1126 int slots;
1127 unsigned long timeo = msecs_to_jiffies(100);
1128
1129 if (!spi->cs_gpiod)
1130 bcm_qspi_chip_select(qspi, spi->chip_select);
1131 qspi->trans_pos.trans = trans;
1132 qspi->trans_pos.byte = 0;
1133
1134 while (qspi->trans_pos.byte < trans->len) {
1135 reinit_completion(&qspi->mspi_done);
1136
1137 slots = write_to_hw(qspi, spi);
1138 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1139 dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1140 return -ETIMEDOUT;
1141 }
1142
1143 read_from_hw(qspi, slots);
1144 }
1145 bcm_qspi_enable_bspi(qspi);
1146
1147 return 0;
1148}
1149
1150static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1151 const struct spi_mem_op *op)
1152{
1153 struct spi_master *master = spi->master;
1154 struct bcm_qspi *qspi = spi_master_get_devdata(master);
1155 struct spi_transfer t[2];
1156 u8 cmd[6] = { };
1157 int ret, i;
1158
1159 memset(cmd, 0, sizeof(cmd));
1160 memset(t, 0, sizeof(t));
1161
1162 /* tx */
1163 /* opcode is in cmd[0] */
1164 cmd[0] = op->cmd.opcode;
1165 for (i = 0; i < op->addr.nbytes; i++)
1166 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1167
1168 t[0].tx_buf = cmd;
1169 t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1170 t[0].bits_per_word = spi->bits_per_word;
1171 t[0].tx_nbits = op->cmd.buswidth;
1172 /* lets mspi know that this is not last transfer */
1173 qspi->trans_pos.mspi_last_trans = false;
1174 ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1175
1176 /* rx */
1177 qspi->trans_pos.mspi_last_trans = true;
1178 if (!ret) {
1179 /* rx */
1180 t[1].rx_buf = op->data.buf.in;
1181 t[1].len = op->data.nbytes;
1182 t[1].rx_nbits = op->data.buswidth;
1183 t[1].bits_per_word = spi->bits_per_word;
1184 ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1185 }
1186
1187 return ret;
1188}
1189
1190static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1191 const struct spi_mem_op *op)
1192{
1193 struct spi_device *spi = mem->spi;
1194 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1195 int ret = 0;
1196 bool mspi_read = false;
1197 u32 addr = 0, len;
1198 u_char *buf;
1199
1200 if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1201 op->data.dir != SPI_MEM_DATA_IN)
1202 return -ENOTSUPP;
1203
1204 buf = op->data.buf.in;
1205 addr = op->addr.val;
1206 len = op->data.nbytes;
1207
1208 if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1209 /*
1210 * The address coming into this function is a raw flash offset.
1211 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212 * address. If it crosses a 4MB boundary, just revert back to
1213 * using MSPI.
1214 */
1215 addr = (addr + 0xc00000) & 0xffffff;
1216
1217 if ((~ADDR_4MB_MASK & addr) ^
1218 (~ADDR_4MB_MASK & (addr + len - 1)))
1219 mspi_read = true;
1220 }
1221
1222 /* non-aligned and very short transfers are handled by MSPI */
1223 if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1224 len < 4)
1225 mspi_read = true;
1226
1227 if (!has_bspi(qspi) || mspi_read)
1228 return bcm_qspi_mspi_exec_mem_op(spi, op);
1229
1230 ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1231
1232 if (!ret)
1233 ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1234
1235 return ret;
1236}
1237
1238static void bcm_qspi_cleanup(struct spi_device *spi)
1239{
1240 struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1241
1242 kfree(xp);
1243}
1244
1245static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1246{
1247 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1248 struct bcm_qspi *qspi = qspi_dev_id->dev;
1249 u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1250
1251 if (status & MSPI_MSPI_STATUS_SPIF) {
1252 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1253 /* clear interrupt */
1254 status &= ~MSPI_MSPI_STATUS_SPIF;
1255 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1256 if (qspi->soc_intc)
1257 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1258 complete(&qspi->mspi_done);
1259 return IRQ_HANDLED;
1260 }
1261
1262 return IRQ_NONE;
1263}
1264
1265static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1266{
1267 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1268 struct bcm_qspi *qspi = qspi_dev_id->dev;
1269 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1270 u32 status = qspi_dev_id->irqp->mask;
1271
1272 if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1273 bcm_qspi_bspi_lr_data_read(qspi);
1274 if (qspi->bspi_rf_op_len == 0) {
1275 qspi->bspi_rf_op = NULL;
1276 if (qspi->soc_intc) {
1277 /* disable soc BSPI interrupt */
1278 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1279 false);
1280 /* indicate done */
1281 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1282 }
1283
1284 if (qspi->bspi_rf_op_status)
1285 bcm_qspi_bspi_lr_clear(qspi);
1286 else
1287 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1288 }
1289
1290 if (qspi->soc_intc)
1291 /* clear soc BSPI interrupt */
1292 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1293 }
1294
1295 status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1296 if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1297 complete(&qspi->bspi_done);
1298
1299 return IRQ_HANDLED;
1300}
1301
1302static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1303{
1304 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1305 struct bcm_qspi *qspi = qspi_dev_id->dev;
1306 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1307
1308 dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1309 qspi->bspi_rf_op_status = -EIO;
1310 if (qspi->soc_intc)
1311 /* clear soc interrupt */
1312 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1313
1314 complete(&qspi->bspi_done);
1315 return IRQ_HANDLED;
1316}
1317
1318static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1319{
1320 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1321 struct bcm_qspi *qspi = qspi_dev_id->dev;
1322 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1323 irqreturn_t ret = IRQ_NONE;
1324
1325 if (soc_intc) {
1326 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1327
1328 if (status & MSPI_DONE)
1329 ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1330 else if (status & BSPI_DONE)
1331 ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1332 else if (status & BSPI_ERR)
1333 ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1334 }
1335
1336 return ret;
1337}
1338
1339static const struct bcm_qspi_irq qspi_irq_tab[] = {
1340 {
1341 .irq_name = "spi_lr_fullness_reached",
1342 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1343 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1344 },
1345 {
1346 .irq_name = "spi_lr_session_aborted",
1347 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1348 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1349 },
1350 {
1351 .irq_name = "spi_lr_impatient",
1352 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1353 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1354 },
1355 {
1356 .irq_name = "spi_lr_session_done",
1357 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1358 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1359 },
1360#ifdef QSPI_INT_DEBUG
1361 /* this interrupt is for debug purposes only, dont request irq */
1362 {
1363 .irq_name = "spi_lr_overread",
1364 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1365 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1366 },
1367#endif
1368 {
1369 .irq_name = "mspi_done",
1370 .irq_handler = bcm_qspi_mspi_l2_isr,
1371 .mask = INTR_MSPI_DONE_MASK,
1372 },
1373 {
1374 .irq_name = "mspi_halted",
1375 .irq_handler = bcm_qspi_mspi_l2_isr,
1376 .mask = INTR_MSPI_HALTED_MASK,
1377 },
1378 {
1379 /* single muxed L1 interrupt source */
1380 .irq_name = "spi_l1_intr",
1381 .irq_handler = bcm_qspi_l1_isr,
1382 .irq_source = MUXED_L1,
1383 .mask = QSPI_INTERRUPTS_ALL,
1384 },
1385};
1386
1387static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1388{
1389 u32 val = 0;
1390
1391 val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1392 qspi->bspi_maj_rev = (val >> 8) & 0xff;
1393 qspi->bspi_min_rev = val & 0xff;
1394 if (!(bcm_qspi_bspi_ver_three(qspi))) {
1395 /* Force mapping of BSPI address -> flash offset */
1396 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1397 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1398 }
1399 qspi->bspi_enabled = 1;
1400 bcm_qspi_disable_bspi(qspi);
1401 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1402 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1403}
1404
1405static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1406{
1407 struct bcm_qspi_parms parms;
1408
1409 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1410 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1411 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1412 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1413 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1414
1415 parms.mode = SPI_MODE_3;
1416 parms.bits_per_word = 8;
1417 parms.speed_hz = qspi->max_speed_hz;
1418 bcm_qspi_hw_set_parms(qspi, &parms);
1419
1420 if (has_bspi(qspi))
1421 bcm_qspi_bspi_init(qspi);
1422}
1423
1424static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1425{
1426 u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1427
1428 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1429 if (has_bspi(qspi))
1430 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1431
1432 /* clear interrupt */
1433 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1434}
1435
1436static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1437 .exec_op = bcm_qspi_exec_mem_op,
1438};
1439
1440struct bcm_qspi_data {
1441 bool has_mspi_rev;
1442 bool has_spcr3_sysclk;
1443};
1444
1445static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1446 .has_mspi_rev = false,
1447 .has_spcr3_sysclk = false,
1448};
1449
1450static const struct bcm_qspi_data bcm_qspi_rev_data = {
1451 .has_mspi_rev = true,
1452 .has_spcr3_sysclk = false,
1453};
1454
1455static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1456 .has_mspi_rev = true,
1457 .has_spcr3_sysclk = true,
1458};
1459
1460static const struct of_device_id bcm_qspi_of_match[] = {
1461 {
1462 .compatible = "brcm,spi-bcm7445-qspi",
1463 .data = &bcm_qspi_rev_data,
1464
1465 },
1466 {
1467 .compatible = "brcm,spi-bcm-qspi",
1468 .data = &bcm_qspi_no_rev_data,
1469 },
1470 {
1471 .compatible = "brcm,spi-bcm7216-qspi",
1472 .data = &bcm_qspi_spcr3_data,
1473 },
1474 {
1475 .compatible = "brcm,spi-bcm7278-qspi",
1476 .data = &bcm_qspi_spcr3_data,
1477 },
1478 {},
1479};
1480MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1481
1482int bcm_qspi_probe(struct platform_device *pdev,
1483 struct bcm_qspi_soc_intc *soc_intc)
1484{
1485 const struct of_device_id *of_id = NULL;
1486 const struct bcm_qspi_data *data;
1487 struct device *dev = &pdev->dev;
1488 struct bcm_qspi *qspi;
1489 struct spi_master *master;
1490 struct resource *res;
1491 int irq, ret = 0, num_ints = 0;
1492 u32 val;
1493 u32 rev = 0;
1494 const char *name = NULL;
1495 int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1496
1497 /* We only support device-tree instantiation */
1498 if (!dev->of_node)
1499 return -ENODEV;
1500
1501 of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1502 if (!of_id)
1503 return -ENODEV;
1504
1505 data = of_id->data;
1506
1507 master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1508 if (!master) {
1509 dev_err(dev, "error allocating spi_master\n");
1510 return -ENOMEM;
1511 }
1512
1513 qspi = spi_master_get_devdata(master);
1514
1515 qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1516 if (IS_ERR(qspi->clk))
1517 return PTR_ERR(qspi->clk);
1518
1519 qspi->pdev = pdev;
1520 qspi->trans_pos.trans = NULL;
1521 qspi->trans_pos.byte = 0;
1522 qspi->trans_pos.mspi_last_trans = true;
1523 qspi->master = master;
1524
1525 master->bus_num = -1;
1526 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1527 SPI_3WIRE;
1528 master->setup = bcm_qspi_setup;
1529 master->transfer_one = bcm_qspi_transfer_one;
1530 master->mem_ops = &bcm_qspi_mem_ops;
1531 master->cleanup = bcm_qspi_cleanup;
1532 master->dev.of_node = dev->of_node;
1533 master->num_chipselect = NUM_CHIPSELECT;
1534 master->use_gpio_descriptors = true;
1535
1536 qspi->big_endian = of_device_is_big_endian(dev->of_node);
1537
1538 if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1539 master->num_chipselect = val;
1540
1541 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1542 if (!res)
1543 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1544 "mspi");
1545
1546 if (res) {
1547 qspi->base[MSPI] = devm_ioremap_resource(dev, res);
1548 if (IS_ERR(qspi->base[MSPI]))
1549 return PTR_ERR(qspi->base[MSPI]);
1550 } else {
1551 return 0;
1552 }
1553
1554 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1555 if (res) {
1556 qspi->base[BSPI] = devm_ioremap_resource(dev, res);
1557 if (IS_ERR(qspi->base[BSPI]))
1558 return PTR_ERR(qspi->base[BSPI]);
1559 qspi->bspi_mode = true;
1560 } else {
1561 qspi->bspi_mode = false;
1562 }
1563
1564 dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1565
1566 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1567 if (res) {
1568 qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
1569 if (IS_ERR(qspi->base[CHIP_SELECT]))
1570 return PTR_ERR(qspi->base[CHIP_SELECT]);
1571 }
1572
1573 qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1574 GFP_KERNEL);
1575 if (!qspi->dev_ids)
1576 return -ENOMEM;
1577
1578 /*
1579 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1580 * in specific ways
1581 */
1582 if (soc_intc) {
1583 qspi->soc_intc = soc_intc;
1584 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1585 } else {
1586 qspi->soc_intc = NULL;
1587 }
1588
1589 if (qspi->clk) {
1590 ret = clk_prepare_enable(qspi->clk);
1591 if (ret) {
1592 dev_err(dev, "failed to prepare clock\n");
1593 goto qspi_probe_err;
1594 }
1595 qspi->base_clk = clk_get_rate(qspi->clk);
1596 } else {
1597 qspi->base_clk = MSPI_BASE_FREQ;
1598 }
1599
1600 if (data->has_mspi_rev) {
1601 rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1602 /* some older revs do not have a MSPI_REV register */
1603 if ((rev & 0xff) == 0xff)
1604 rev = 0;
1605 }
1606
1607 qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1608 qspi->mspi_min_rev = rev & 0xf;
1609 qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1610
1611 qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1612
1613 /*
1614 * On SW resets it is possible to have the mask still enabled
1615 * Need to disable the mask and clear the status while we init
1616 */
1617 bcm_qspi_hw_uninit(qspi);
1618
1619 for (val = 0; val < num_irqs; val++) {
1620 irq = -1;
1621 name = qspi_irq_tab[val].irq_name;
1622 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1623 /* get the l2 interrupts */
1624 irq = platform_get_irq_byname_optional(pdev, name);
1625 } else if (!num_ints && soc_intc) {
1626 /* all mspi, bspi intrs muxed to one L1 intr */
1627 irq = platform_get_irq(pdev, 0);
1628 }
1629
1630 if (irq >= 0) {
1631 ret = devm_request_irq(&pdev->dev, irq,
1632 qspi_irq_tab[val].irq_handler, 0,
1633 name,
1634 &qspi->dev_ids[val]);
1635 if (ret < 0) {
1636 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1637 goto qspi_unprepare_err;
1638 }
1639
1640 qspi->dev_ids[val].dev = qspi;
1641 qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1642 num_ints++;
1643 dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1644 qspi_irq_tab[val].irq_name,
1645 irq);
1646 }
1647 }
1648
1649 if (!num_ints) {
1650 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1651 ret = -EINVAL;
1652 goto qspi_unprepare_err;
1653 }
1654
1655 bcm_qspi_hw_init(qspi);
1656 init_completion(&qspi->mspi_done);
1657 init_completion(&qspi->bspi_done);
1658 qspi->curr_cs = -1;
1659
1660 platform_set_drvdata(pdev, qspi);
1661
1662 qspi->xfer_mode.width = -1;
1663 qspi->xfer_mode.addrlen = -1;
1664 qspi->xfer_mode.hp = -1;
1665
1666 ret = spi_register_master(master);
1667 if (ret < 0) {
1668 dev_err(dev, "can't register master\n");
1669 goto qspi_reg_err;
1670 }
1671
1672 return 0;
1673
1674qspi_reg_err:
1675 bcm_qspi_hw_uninit(qspi);
1676qspi_unprepare_err:
1677 clk_disable_unprepare(qspi->clk);
1678qspi_probe_err:
1679 kfree(qspi->dev_ids);
1680 return ret;
1681}
1682/* probe function to be called by SoC specific platform driver probe */
1683EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1684
1685void bcm_qspi_remove(struct platform_device *pdev)
1686{
1687 struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1688
1689 spi_unregister_master(qspi->master);
1690 bcm_qspi_hw_uninit(qspi);
1691 clk_disable_unprepare(qspi->clk);
1692 kfree(qspi->dev_ids);
1693}
1694
1695/* function to be called by SoC specific platform driver remove() */
1696EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1697
1698static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1699{
1700 struct bcm_qspi *qspi = dev_get_drvdata(dev);
1701
1702 /* store the override strap value */
1703 if (!bcm_qspi_bspi_ver_three(qspi))
1704 qspi->s3_strap_override_ctrl =
1705 bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1706
1707 spi_master_suspend(qspi->master);
1708 clk_disable_unprepare(qspi->clk);
1709 bcm_qspi_hw_uninit(qspi);
1710
1711 return 0;
1712};
1713
1714static int __maybe_unused bcm_qspi_resume(struct device *dev)
1715{
1716 struct bcm_qspi *qspi = dev_get_drvdata(dev);
1717 int ret = 0;
1718
1719 bcm_qspi_hw_init(qspi);
1720 bcm_qspi_chip_select(qspi, qspi->curr_cs);
1721 if (qspi->soc_intc)
1722 /* enable MSPI interrupt */
1723 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1724 true);
1725
1726 ret = clk_prepare_enable(qspi->clk);
1727 if (!ret)
1728 spi_master_resume(qspi->master);
1729
1730 return ret;
1731}
1732
1733SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1734
1735/* pm_ops to be called by SoC specific platform driver */
1736EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1737
1738MODULE_AUTHOR("Kamal Dasu");
1739MODULE_DESCRIPTION("Broadcom QSPI driver");
1740MODULE_LICENSE("GPL v2");
1741MODULE_ALIAS("platform:" DRIVER_NAME);