Linux Audio

Check our new training course

Loading...
v5.4
 
   1/* QLogic qede NIC Driver
   2 * Copyright (c) 2015-2017  QLogic Corporation
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and /or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
 
 
  32#include <linux/module.h>
  33#include <linux/pci.h>
  34#include <linux/version.h>
  35#include <linux/device.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/skbuff.h>
  39#include <linux/errno.h>
  40#include <linux/list.h>
  41#include <linux/string.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/interrupt.h>
  44#include <asm/byteorder.h>
  45#include <asm/param.h>
  46#include <linux/io.h>
  47#include <linux/netdev_features.h>
  48#include <linux/udp.h>
  49#include <linux/tcp.h>
  50#include <net/udp_tunnel.h>
  51#include <linux/ip.h>
  52#include <net/ipv6.h>
  53#include <net/tcp.h>
  54#include <linux/if_ether.h>
  55#include <linux/if_vlan.h>
  56#include <linux/pkt_sched.h>
  57#include <linux/ethtool.h>
  58#include <linux/in.h>
  59#include <linux/random.h>
  60#include <net/ip6_checksum.h>
  61#include <linux/bitops.h>
  62#include <linux/vmalloc.h>
 
  63#include "qede.h"
  64#include "qede_ptp.h"
  65
  66static char version[] =
  67	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  68
  69MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  70MODULE_LICENSE("GPL");
  71MODULE_VERSION(DRV_MODULE_VERSION);
  72
  73static uint debug;
  74module_param(debug, uint, 0);
  75MODULE_PARM_DESC(debug, " Default debug msglevel");
  76
  77static const struct qed_eth_ops *qed_ops;
  78
  79#define CHIP_NUM_57980S_40		0x1634
  80#define CHIP_NUM_57980S_10		0x1666
  81#define CHIP_NUM_57980S_MF		0x1636
  82#define CHIP_NUM_57980S_100		0x1644
  83#define CHIP_NUM_57980S_50		0x1654
  84#define CHIP_NUM_57980S_25		0x1656
  85#define CHIP_NUM_57980S_IOV		0x1664
  86#define CHIP_NUM_AH			0x8070
  87#define CHIP_NUM_AH_IOV			0x8090
  88
  89#ifndef PCI_DEVICE_ID_NX2_57980E
  90#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  91#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  92#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  93#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  94#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  95#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
  96#define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
  97#define PCI_DEVICE_ID_AH		CHIP_NUM_AH
  98#define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
  99
 100#endif
 101
 102enum qede_pci_private {
 103	QEDE_PRIVATE_PF,
 104	QEDE_PRIVATE_VF
 105};
 106
 107static const struct pci_device_id qede_pci_tbl[] = {
 108	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
 109	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
 110	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
 111	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
 112	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
 113	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
 114#ifdef CONFIG_QED_SRIOV
 115	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
 116#endif
 117	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
 118#ifdef CONFIG_QED_SRIOV
 119	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
 120#endif
 121	{ 0 }
 122};
 123
 124MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
 125
 126static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
 
 
 127
 128#define TX_TIMEOUT		(5 * HZ)
 129
 130/* Utilize last protocol index for XDP */
 131#define XDP_PI	11
 132
 133static void qede_remove(struct pci_dev *pdev);
 134static void qede_shutdown(struct pci_dev *pdev);
 135static void qede_link_update(void *dev, struct qed_link_output *link);
 136static void qede_schedule_recovery_handler(void *dev);
 137static void qede_recovery_handler(struct qede_dev *edev);
 
 
 138static void qede_get_eth_tlv_data(void *edev, void *data);
 139static void qede_get_generic_tlv_data(void *edev,
 140				      struct qed_generic_tlvs *data);
 141
 142#ifdef CONFIG_QED_SRIOV
 143static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 144			    __be16 vlan_proto)
 145{
 146	struct qede_dev *edev = netdev_priv(ndev);
 147
 148	if (vlan > 4095) {
 149		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 150		return -EINVAL;
 151	}
 152
 153	if (vlan_proto != htons(ETH_P_8021Q))
 154		return -EPROTONOSUPPORT;
 155
 156	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 157		   vlan, vf);
 158
 159	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 160}
 161
 162static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 163{
 164	struct qede_dev *edev = netdev_priv(ndev);
 165
 166	DP_VERBOSE(edev, QED_MSG_IOV,
 167		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
 168		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
 169
 170	if (!is_valid_ether_addr(mac)) {
 171		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 172		return -EINVAL;
 173	}
 174
 175	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 176}
 177
 178static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 179{
 180	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 181	struct qed_dev_info *qed_info = &edev->dev_info.common;
 182	struct qed_update_vport_params *vport_params;
 183	int rc;
 184
 185	vport_params = vzalloc(sizeof(*vport_params));
 186	if (!vport_params)
 187		return -ENOMEM;
 188	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 189
 190	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 191
 192	/* Enable/Disable Tx switching for PF */
 193	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 194	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
 195		vport_params->vport_id = 0;
 196		vport_params->update_tx_switching_flg = 1;
 197		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
 198		edev->ops->vport_update(edev->cdev, vport_params);
 199	}
 200
 201	vfree(vport_params);
 202	return rc;
 203}
 204#endif
 205
 
 
 
 
 206static struct pci_driver qede_pci_driver = {
 207	.name = "qede",
 208	.id_table = qede_pci_tbl,
 209	.probe = qede_probe,
 210	.remove = qede_remove,
 211	.shutdown = qede_shutdown,
 212#ifdef CONFIG_QED_SRIOV
 213	.sriov_configure = qede_sriov_configure,
 214#endif
 
 215};
 216
 217static struct qed_eth_cb_ops qede_ll_ops = {
 218	{
 219#ifdef CONFIG_RFS_ACCEL
 220		.arfs_filter_op = qede_arfs_filter_op,
 221#endif
 222		.link_update = qede_link_update,
 223		.schedule_recovery_handler = qede_schedule_recovery_handler,
 
 224		.get_generic_tlv_data = qede_get_generic_tlv_data,
 225		.get_protocol_tlv_data = qede_get_eth_tlv_data,
 226	},
 227	.force_mac = qede_force_mac,
 228	.ports_update = qede_udp_ports_update,
 229};
 230
 231static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 232			     void *ptr)
 233{
 234	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 235	struct ethtool_drvinfo drvinfo;
 236	struct qede_dev *edev;
 237
 238	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 239		goto done;
 240
 241	/* Check whether this is a qede device */
 242	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 243		goto done;
 244
 245	memset(&drvinfo, 0, sizeof(drvinfo));
 246	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 247	if (strcmp(drvinfo.driver, "qede"))
 248		goto done;
 249	edev = netdev_priv(ndev);
 250
 251	switch (event) {
 252	case NETDEV_CHANGENAME:
 253		/* Notify qed of the name change */
 254		if (!edev->ops || !edev->ops->common)
 255			goto done;
 256		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
 257		break;
 258	case NETDEV_CHANGEADDR:
 259		edev = netdev_priv(ndev);
 260		qede_rdma_event_changeaddr(edev);
 261		break;
 262	}
 263
 264done:
 265	return NOTIFY_DONE;
 266}
 267
 268static struct notifier_block qede_netdev_notifier = {
 269	.notifier_call = qede_netdev_event,
 270};
 271
 272static
 273int __init qede_init(void)
 274{
 275	int ret;
 276
 277	pr_info("qede_init: %s\n", version);
 
 
 278
 279	qed_ops = qed_get_eth_ops();
 280	if (!qed_ops) {
 281		pr_notice("Failed to get qed ethtool operations\n");
 282		return -EINVAL;
 283	}
 284
 285	/* Must register notifier before pci ops, since we might miss
 286	 * interface rename after pci probe and netdev registration.
 287	 */
 288	ret = register_netdevice_notifier(&qede_netdev_notifier);
 289	if (ret) {
 290		pr_notice("Failed to register netdevice_notifier\n");
 291		qed_put_eth_ops();
 292		return -EINVAL;
 293	}
 294
 295	ret = pci_register_driver(&qede_pci_driver);
 296	if (ret) {
 297		pr_notice("Failed to register driver\n");
 298		unregister_netdevice_notifier(&qede_netdev_notifier);
 299		qed_put_eth_ops();
 300		return -EINVAL;
 301	}
 302
 303	return 0;
 304}
 305
 306static void __exit qede_cleanup(void)
 307{
 308	if (debug & QED_LOG_INFO_MASK)
 309		pr_info("qede_cleanup called\n");
 310
 311	unregister_netdevice_notifier(&qede_netdev_notifier);
 312	pci_unregister_driver(&qede_pci_driver);
 313	qed_put_eth_ops();
 314}
 315
 316module_init(qede_init);
 317module_exit(qede_cleanup);
 318
 319static int qede_open(struct net_device *ndev);
 320static int qede_close(struct net_device *ndev);
 321
 322void qede_fill_by_demand_stats(struct qede_dev *edev)
 323{
 324	struct qede_stats_common *p_common = &edev->stats.common;
 325	struct qed_eth_stats stats;
 326
 327	edev->ops->get_vport_stats(edev->cdev, &stats);
 328
 329	p_common->no_buff_discards = stats.common.no_buff_discards;
 330	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
 331	p_common->ttl0_discard = stats.common.ttl0_discard;
 332	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
 333	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
 334	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
 335	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
 336	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
 337	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
 338	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
 339	p_common->mac_filter_discards = stats.common.mac_filter_discards;
 340	p_common->gft_filter_drop = stats.common.gft_filter_drop;
 341
 342	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
 343	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
 344	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
 345	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
 346	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
 347	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
 348	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
 349	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
 350	p_common->coalesced_events = stats.common.tpa_coalesced_events;
 351	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
 352	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
 353	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
 354
 355	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
 356	p_common->rx_65_to_127_byte_packets =
 357	    stats.common.rx_65_to_127_byte_packets;
 358	p_common->rx_128_to_255_byte_packets =
 359	    stats.common.rx_128_to_255_byte_packets;
 360	p_common->rx_256_to_511_byte_packets =
 361	    stats.common.rx_256_to_511_byte_packets;
 362	p_common->rx_512_to_1023_byte_packets =
 363	    stats.common.rx_512_to_1023_byte_packets;
 364	p_common->rx_1024_to_1518_byte_packets =
 365	    stats.common.rx_1024_to_1518_byte_packets;
 366	p_common->rx_crc_errors = stats.common.rx_crc_errors;
 367	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
 368	p_common->rx_pause_frames = stats.common.rx_pause_frames;
 369	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
 370	p_common->rx_align_errors = stats.common.rx_align_errors;
 371	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
 372	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
 373	p_common->rx_jabbers = stats.common.rx_jabbers;
 374	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
 375	p_common->rx_fragments = stats.common.rx_fragments;
 376	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
 377	p_common->tx_65_to_127_byte_packets =
 378	    stats.common.tx_65_to_127_byte_packets;
 379	p_common->tx_128_to_255_byte_packets =
 380	    stats.common.tx_128_to_255_byte_packets;
 381	p_common->tx_256_to_511_byte_packets =
 382	    stats.common.tx_256_to_511_byte_packets;
 383	p_common->tx_512_to_1023_byte_packets =
 384	    stats.common.tx_512_to_1023_byte_packets;
 385	p_common->tx_1024_to_1518_byte_packets =
 386	    stats.common.tx_1024_to_1518_byte_packets;
 387	p_common->tx_pause_frames = stats.common.tx_pause_frames;
 388	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
 389	p_common->brb_truncates = stats.common.brb_truncates;
 390	p_common->brb_discards = stats.common.brb_discards;
 391	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
 392	p_common->link_change_count = stats.common.link_change_count;
 393	p_common->ptp_skip_txts = edev->ptp_skip_txts;
 394
 395	if (QEDE_IS_BB(edev)) {
 396		struct qede_stats_bb *p_bb = &edev->stats.bb;
 397
 398		p_bb->rx_1519_to_1522_byte_packets =
 399		    stats.bb.rx_1519_to_1522_byte_packets;
 400		p_bb->rx_1519_to_2047_byte_packets =
 401		    stats.bb.rx_1519_to_2047_byte_packets;
 402		p_bb->rx_2048_to_4095_byte_packets =
 403		    stats.bb.rx_2048_to_4095_byte_packets;
 404		p_bb->rx_4096_to_9216_byte_packets =
 405		    stats.bb.rx_4096_to_9216_byte_packets;
 406		p_bb->rx_9217_to_16383_byte_packets =
 407		    stats.bb.rx_9217_to_16383_byte_packets;
 408		p_bb->tx_1519_to_2047_byte_packets =
 409		    stats.bb.tx_1519_to_2047_byte_packets;
 410		p_bb->tx_2048_to_4095_byte_packets =
 411		    stats.bb.tx_2048_to_4095_byte_packets;
 412		p_bb->tx_4096_to_9216_byte_packets =
 413		    stats.bb.tx_4096_to_9216_byte_packets;
 414		p_bb->tx_9217_to_16383_byte_packets =
 415		    stats.bb.tx_9217_to_16383_byte_packets;
 416		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
 417		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
 418	} else {
 419		struct qede_stats_ah *p_ah = &edev->stats.ah;
 420
 421		p_ah->rx_1519_to_max_byte_packets =
 422		    stats.ah.rx_1519_to_max_byte_packets;
 423		p_ah->tx_1519_to_max_byte_packets =
 424		    stats.ah.tx_1519_to_max_byte_packets;
 425	}
 426}
 427
 428static void qede_get_stats64(struct net_device *dev,
 429			     struct rtnl_link_stats64 *stats)
 430{
 431	struct qede_dev *edev = netdev_priv(dev);
 432	struct qede_stats_common *p_common;
 433
 434	qede_fill_by_demand_stats(edev);
 435	p_common = &edev->stats.common;
 436
 437	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
 438			    p_common->rx_bcast_pkts;
 439	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
 440			    p_common->tx_bcast_pkts;
 441
 442	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
 443			  p_common->rx_bcast_bytes;
 444	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
 445			  p_common->tx_bcast_bytes;
 446
 447	stats->tx_errors = p_common->tx_err_drop_pkts;
 448	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
 449
 450	stats->rx_fifo_errors = p_common->no_buff_discards;
 451
 452	if (QEDE_IS_BB(edev))
 453		stats->collisions = edev->stats.bb.tx_total_collisions;
 454	stats->rx_crc_errors = p_common->rx_crc_errors;
 455	stats->rx_frame_errors = p_common->rx_align_errors;
 456}
 457
 458#ifdef CONFIG_QED_SRIOV
 459static int qede_get_vf_config(struct net_device *dev, int vfidx,
 460			      struct ifla_vf_info *ivi)
 461{
 462	struct qede_dev *edev = netdev_priv(dev);
 463
 464	if (!edev->ops)
 465		return -EINVAL;
 466
 467	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
 468}
 469
 470static int qede_set_vf_rate(struct net_device *dev, int vfidx,
 471			    int min_tx_rate, int max_tx_rate)
 472{
 473	struct qede_dev *edev = netdev_priv(dev);
 474
 475	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
 476					max_tx_rate);
 477}
 478
 479static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
 480{
 481	struct qede_dev *edev = netdev_priv(dev);
 482
 483	if (!edev->ops)
 484		return -EINVAL;
 485
 486	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
 487}
 488
 489static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
 490				  int link_state)
 491{
 492	struct qede_dev *edev = netdev_priv(dev);
 493
 494	if (!edev->ops)
 495		return -EINVAL;
 496
 497	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
 498}
 499
 500static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
 501{
 502	struct qede_dev *edev = netdev_priv(dev);
 503
 504	if (!edev->ops)
 505		return -EINVAL;
 506
 507	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
 508}
 509#endif
 510
 511static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 512{
 513	struct qede_dev *edev = netdev_priv(dev);
 514
 515	if (!netif_running(dev))
 516		return -EAGAIN;
 517
 518	switch (cmd) {
 519	case SIOCSHWTSTAMP:
 520		return qede_ptp_hw_ts(edev, ifr);
 521	default:
 522		DP_VERBOSE(edev, QED_MSG_DEBUG,
 523			   "default IOCTL cmd 0x%x\n", cmd);
 524		return -EOPNOTSUPP;
 525	}
 526
 527	return 0;
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
 531{
 532	struct qede_dev *edev = netdev_priv(ndev);
 533	int cos, count, offset;
 534
 535	if (num_tc > edev->dev_info.num_tc)
 536		return -EINVAL;
 537
 538	netdev_reset_tc(ndev);
 539	netdev_set_num_tc(ndev, num_tc);
 540
 541	for_each_cos_in_txq(edev, cos) {
 542		count = QEDE_TSS_COUNT(edev);
 543		offset = cos * QEDE_TSS_COUNT(edev);
 544		netdev_set_tc_queue(ndev, cos, count, offset);
 545	}
 546
 547	return 0;
 548}
 549
 550static int
 551qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
 552		__be16 proto)
 553{
 554	switch (f->command) {
 555	case FLOW_CLS_REPLACE:
 556		return qede_add_tc_flower_fltr(edev, proto, f);
 557	case FLOW_CLS_DESTROY:
 558		return qede_delete_flow_filter(edev, f->cookie);
 559	default:
 560		return -EOPNOTSUPP;
 561	}
 562}
 563
 564static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 565				  void *cb_priv)
 566{
 567	struct flow_cls_offload *f;
 568	struct qede_dev *edev = cb_priv;
 569
 570	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
 571		return -EOPNOTSUPP;
 572
 573	switch (type) {
 574	case TC_SETUP_CLSFLOWER:
 575		f = type_data;
 576		return qede_set_flower(edev, f, f->common.protocol);
 577	default:
 578		return -EOPNOTSUPP;
 579	}
 580}
 581
 582static LIST_HEAD(qede_block_cb_list);
 583
 584static int
 585qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
 586		      void *type_data)
 587{
 588	struct qede_dev *edev = netdev_priv(dev);
 589	struct tc_mqprio_qopt *mqprio;
 590
 591	switch (type) {
 592	case TC_SETUP_BLOCK:
 593		return flow_block_cb_setup_simple(type_data,
 594						  &qede_block_cb_list,
 595						  qede_setup_tc_block_cb,
 596						  edev, edev, true);
 597	case TC_SETUP_QDISC_MQPRIO:
 598		mqprio = type_data;
 599
 600		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 601		return qede_setup_tc(dev, mqprio->num_tc);
 602	default:
 603		return -EOPNOTSUPP;
 604	}
 605}
 606
 607static const struct net_device_ops qede_netdev_ops = {
 608	.ndo_open = qede_open,
 609	.ndo_stop = qede_close,
 610	.ndo_start_xmit = qede_start_xmit,
 611	.ndo_select_queue = qede_select_queue,
 612	.ndo_set_rx_mode = qede_set_rx_mode,
 613	.ndo_set_mac_address = qede_set_mac_addr,
 614	.ndo_validate_addr = eth_validate_addr,
 615	.ndo_change_mtu = qede_change_mtu,
 616	.ndo_do_ioctl = qede_ioctl,
 
 617#ifdef CONFIG_QED_SRIOV
 618	.ndo_set_vf_mac = qede_set_vf_mac,
 619	.ndo_set_vf_vlan = qede_set_vf_vlan,
 620	.ndo_set_vf_trust = qede_set_vf_trust,
 621#endif
 622	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 623	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 624	.ndo_fix_features = qede_fix_features,
 625	.ndo_set_features = qede_set_features,
 626	.ndo_get_stats64 = qede_get_stats64,
 627#ifdef CONFIG_QED_SRIOV
 628	.ndo_set_vf_link_state = qede_set_vf_link_state,
 629	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
 630	.ndo_get_vf_config = qede_get_vf_config,
 631	.ndo_set_vf_rate = qede_set_vf_rate,
 632#endif
 633	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
 634	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
 635	.ndo_features_check = qede_features_check,
 636	.ndo_bpf = qede_xdp,
 637#ifdef CONFIG_RFS_ACCEL
 638	.ndo_rx_flow_steer = qede_rx_flow_steer,
 639#endif
 640	.ndo_setup_tc = qede_setup_tc_offload,
 
 641};
 642
 643static const struct net_device_ops qede_netdev_vf_ops = {
 644	.ndo_open = qede_open,
 645	.ndo_stop = qede_close,
 646	.ndo_start_xmit = qede_start_xmit,
 647	.ndo_select_queue = qede_select_queue,
 648	.ndo_set_rx_mode = qede_set_rx_mode,
 649	.ndo_set_mac_address = qede_set_mac_addr,
 650	.ndo_validate_addr = eth_validate_addr,
 651	.ndo_change_mtu = qede_change_mtu,
 652	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 653	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 654	.ndo_fix_features = qede_fix_features,
 655	.ndo_set_features = qede_set_features,
 656	.ndo_get_stats64 = qede_get_stats64,
 657	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
 658	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
 659	.ndo_features_check = qede_features_check,
 660};
 661
 662static const struct net_device_ops qede_netdev_vf_xdp_ops = {
 663	.ndo_open = qede_open,
 664	.ndo_stop = qede_close,
 665	.ndo_start_xmit = qede_start_xmit,
 666	.ndo_select_queue = qede_select_queue,
 667	.ndo_set_rx_mode = qede_set_rx_mode,
 668	.ndo_set_mac_address = qede_set_mac_addr,
 669	.ndo_validate_addr = eth_validate_addr,
 670	.ndo_change_mtu = qede_change_mtu,
 671	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 672	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 673	.ndo_fix_features = qede_fix_features,
 674	.ndo_set_features = qede_set_features,
 675	.ndo_get_stats64 = qede_get_stats64,
 676	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
 677	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
 678	.ndo_features_check = qede_features_check,
 679	.ndo_bpf = qede_xdp,
 680};
 681
 682/* -------------------------------------------------------------------------
 683 * START OF PROBE / REMOVE
 684 * -------------------------------------------------------------------------
 685 */
 686
 687static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
 688					    struct pci_dev *pdev,
 689					    struct qed_dev_eth_info *info,
 690					    u32 dp_module, u8 dp_level)
 691{
 692	struct net_device *ndev;
 693	struct qede_dev *edev;
 694
 695	ndev = alloc_etherdev_mqs(sizeof(*edev),
 696				  info->num_queues * info->num_tc,
 697				  info->num_queues);
 698	if (!ndev) {
 699		pr_err("etherdev allocation failed\n");
 700		return NULL;
 701	}
 702
 703	edev = netdev_priv(ndev);
 704	edev->ndev = ndev;
 705	edev->cdev = cdev;
 706	edev->pdev = pdev;
 707	edev->dp_module = dp_module;
 708	edev->dp_level = dp_level;
 709	edev->ops = qed_ops;
 710	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
 711	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 
 
 
 
 
 
 712
 713	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
 714		info->num_queues, info->num_queues);
 715
 716	SET_NETDEV_DEV(ndev, &pdev->dev);
 717
 718	memset(&edev->stats, 0, sizeof(edev->stats));
 719	memcpy(&edev->dev_info, info, sizeof(*info));
 720
 721	/* As ethtool doesn't have the ability to show WoL behavior as
 722	 * 'default', if device supports it declare it's enabled.
 723	 */
 724	if (edev->dev_info.common.wol_support)
 725		edev->wol_enabled = true;
 726
 727	INIT_LIST_HEAD(&edev->vlan_list);
 728
 729	return edev;
 730}
 731
 732static void qede_init_ndev(struct qede_dev *edev)
 733{
 734	struct net_device *ndev = edev->ndev;
 735	struct pci_dev *pdev = edev->pdev;
 736	bool udp_tunnel_enable = false;
 737	netdev_features_t hw_features;
 738
 739	pci_set_drvdata(pdev, ndev);
 740
 741	ndev->mem_start = edev->dev_info.common.pci_mem_start;
 742	ndev->base_addr = ndev->mem_start;
 743	ndev->mem_end = edev->dev_info.common.pci_mem_end;
 744	ndev->irq = edev->dev_info.common.pci_irq;
 745
 746	ndev->watchdog_timeo = TX_TIMEOUT;
 747
 748	if (IS_VF(edev)) {
 749		if (edev->dev_info.xdp_supported)
 750			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
 751		else
 752			ndev->netdev_ops = &qede_netdev_vf_ops;
 753	} else {
 754		ndev->netdev_ops = &qede_netdev_ops;
 755	}
 756
 757	qede_set_ethtool_ops(ndev);
 758
 759	ndev->priv_flags |= IFF_UNICAST_FLT;
 760
 761	/* user-changeble features */
 762	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
 763		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 764		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
 765
 766	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
 767		hw_features |= NETIF_F_NTUPLE;
 768
 769	if (edev->dev_info.common.vxlan_enable ||
 770	    edev->dev_info.common.geneve_enable)
 771		udp_tunnel_enable = true;
 772
 773	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
 774		hw_features |= NETIF_F_TSO_ECN;
 775		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 776					NETIF_F_SG | NETIF_F_TSO |
 777					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
 778					NETIF_F_RXCSUM;
 779	}
 780
 781	if (udp_tunnel_enable) {
 782		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
 783				NETIF_F_GSO_UDP_TUNNEL_CSUM);
 784		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
 785					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
 
 
 786	}
 787
 788	if (edev->dev_info.common.gre_enable) {
 789		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
 790		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
 791					  NETIF_F_GSO_GRE_CSUM);
 792	}
 793
 794	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 795			      NETIF_F_HIGHDMA;
 796	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 797			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
 798			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	ndev->hw_features = hw_features;
 801
 802	/* MTU range: 46 - 9600 */
 803	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
 804	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
 805
 806	/* Set network device HW mac */
 807	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
 808
 809	ndev->mtu = edev->dev_info.common.mtu;
 810}
 811
 812/* This function converts from 32b param to two params of level and module
 813 * Input 32b decoding:
 814 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
 815 * 'happy' flow, e.g. memory allocation failed.
 816 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
 817 * and provide important parameters.
 818 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
 819 * module. VERBOSE prints are for tracking the specific flow in low level.
 820 *
 821 * Notice that the level should be that of the lowest required logs.
 822 */
 823void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
 824{
 825	*p_dp_level = QED_LEVEL_NOTICE;
 826	*p_dp_module = 0;
 827
 828	if (debug & QED_LOG_VERBOSE_MASK) {
 829		*p_dp_level = QED_LEVEL_VERBOSE;
 830		*p_dp_module = (debug & 0x3FFFFFFF);
 831	} else if (debug & QED_LOG_INFO_MASK) {
 832		*p_dp_level = QED_LEVEL_INFO;
 833	} else if (debug & QED_LOG_NOTICE_MASK) {
 834		*p_dp_level = QED_LEVEL_NOTICE;
 835	}
 836}
 837
 838static void qede_free_fp_array(struct qede_dev *edev)
 839{
 840	if (edev->fp_array) {
 841		struct qede_fastpath *fp;
 842		int i;
 843
 844		for_each_queue(i) {
 845			fp = &edev->fp_array[i];
 846
 847			kfree(fp->sb_info);
 848			/* Handle mem alloc failure case where qede_init_fp
 849			 * didn't register xdp_rxq_info yet.
 850			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
 851			 */
 852			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
 853				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
 854			kfree(fp->rxq);
 855			kfree(fp->xdp_tx);
 856			kfree(fp->txq);
 857		}
 858		kfree(edev->fp_array);
 859	}
 860
 861	edev->num_queues = 0;
 862	edev->fp_num_tx = 0;
 863	edev->fp_num_rx = 0;
 864}
 865
 866static int qede_alloc_fp_array(struct qede_dev *edev)
 867{
 868	u8 fp_combined, fp_rx = edev->fp_num_rx;
 869	struct qede_fastpath *fp;
 
 870	int i;
 871
 872	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
 873				 sizeof(*edev->fp_array), GFP_KERNEL);
 874	if (!edev->fp_array) {
 875		DP_NOTICE(edev, "fp array allocation failed\n");
 876		goto err;
 877	}
 878
 
 
 
 
 
 
 
 
 
 879	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
 880
 881	/* Allocate the FP elements for Rx queues followed by combined and then
 882	 * the Tx. This ordering should be maintained so that the respective
 883	 * queues (Rx or Tx) will be together in the fastpath array and the
 884	 * associated ids will be sequential.
 885	 */
 886	for_each_queue(i) {
 887		fp = &edev->fp_array[i];
 888
 889		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
 890		if (!fp->sb_info) {
 891			DP_NOTICE(edev, "sb info struct allocation failed\n");
 892			goto err;
 893		}
 894
 895		if (fp_rx) {
 896			fp->type = QEDE_FASTPATH_RX;
 897			fp_rx--;
 898		} else if (fp_combined) {
 899			fp->type = QEDE_FASTPATH_COMBINED;
 900			fp_combined--;
 901		} else {
 902			fp->type = QEDE_FASTPATH_TX;
 903		}
 904
 905		if (fp->type & QEDE_FASTPATH_TX) {
 906			fp->txq = kcalloc(edev->dev_info.num_tc,
 907					  sizeof(*fp->txq), GFP_KERNEL);
 908			if (!fp->txq)
 909				goto err;
 910		}
 911
 912		if (fp->type & QEDE_FASTPATH_RX) {
 913			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
 914			if (!fp->rxq)
 915				goto err;
 916
 917			if (edev->xdp_prog) {
 918				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
 919						     GFP_KERNEL);
 920				if (!fp->xdp_tx)
 921					goto err;
 922				fp->type |= QEDE_FASTPATH_XDP;
 923			}
 924		}
 925	}
 926
 927	return 0;
 928err:
 929	qede_free_fp_array(edev);
 930	return -ENOMEM;
 931}
 932
 933/* The qede lock is used to protect driver state change and driver flows that
 934 * are not reentrant.
 935 */
 936void __qede_lock(struct qede_dev *edev)
 937{
 938	mutex_lock(&edev->qede_lock);
 939}
 940
 941void __qede_unlock(struct qede_dev *edev)
 942{
 943	mutex_unlock(&edev->qede_lock);
 944}
 945
 946/* This version of the lock should be used when acquiring the RTNL lock is also
 947 * needed in addition to the internal qede lock.
 948 */
 949static void qede_lock(struct qede_dev *edev)
 950{
 951	rtnl_lock();
 952	__qede_lock(edev);
 953}
 954
 955static void qede_unlock(struct qede_dev *edev)
 956{
 957	__qede_unlock(edev);
 958	rtnl_unlock();
 959}
 960
 961static void qede_sp_task(struct work_struct *work)
 962{
 963	struct qede_dev *edev = container_of(work, struct qede_dev,
 964					     sp_task.work);
 965
 
 
 
 
 
 
 
 966	/* The locking scheme depends on the specific flag:
 967	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
 968	 * ensure that ongoing flows are ended and new ones are not started.
 969	 * In other cases - only the internal qede lock should be acquired.
 970	 */
 971
 972	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
 973#ifdef CONFIG_QED_SRIOV
 974		/* SRIOV must be disabled outside the lock to avoid a deadlock.
 975		 * The recovery of the active VFs is currently not supported.
 976		 */
 977		qede_sriov_configure(edev->pdev, 0);
 
 978#endif
 979		qede_lock(edev);
 980		qede_recovery_handler(edev);
 981		qede_unlock(edev);
 982	}
 983
 984	__qede_lock(edev);
 985
 986	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
 987		if (edev->state == QEDE_STATE_OPEN)
 988			qede_config_rx_mode(edev->ndev);
 989
 990#ifdef CONFIG_RFS_ACCEL
 991	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
 992		if (edev->state == QEDE_STATE_OPEN)
 993			qede_process_arfs_filters(edev, false);
 994	}
 995#endif
 
 
 996	__qede_unlock(edev);
 
 
 
 
 
 
 
 
 
 
 
 997}
 998
 999static void qede_update_pf_params(struct qed_dev *cdev)
1000{
1001	struct qed_pf_params pf_params;
1002	u16 num_cons;
1003
1004	/* 64 rx + 64 tx + 64 XDP */
1005	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1006
1007	/* 1 rx + 1 xdp + max tx cos */
1008	num_cons = QED_MIN_L2_CONS;
1009
1010	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1011
1012	/* Same for VFs - make sure they'll have sufficient connections
1013	 * to support XDP Tx queues.
1014	 */
1015	pf_params.eth_pf_params.num_vf_cons = 48;
1016
1017	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1018	qed_ops->common->update_pf_params(cdev, &pf_params);
1019}
1020
1021#define QEDE_FW_VER_STR_SIZE	80
1022
1023static void qede_log_probe(struct qede_dev *edev)
1024{
1025	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1026	u8 buf[QEDE_FW_VER_STR_SIZE];
1027	size_t left_size;
1028
1029	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1030		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1031		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1032		 p_dev_info->fw_eng,
1033		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1034		 QED_MFW_VERSION_3_OFFSET,
1035		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1036		 QED_MFW_VERSION_2_OFFSET,
1037		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1038		 QED_MFW_VERSION_1_OFFSET,
1039		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1040		 QED_MFW_VERSION_0_OFFSET);
1041
1042	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1043	if (p_dev_info->mbi_version && left_size)
1044		snprintf(buf + strlen(buf), left_size,
1045			 " [MBI %d.%d.%d]",
1046			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1047			 QED_MBI_VERSION_2_OFFSET,
1048			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1049			 QED_MBI_VERSION_1_OFFSET,
1050			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1051			 QED_MBI_VERSION_0_OFFSET);
1052
1053	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1054		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1055		buf, edev->ndev->name);
1056}
1057
1058enum qede_probe_mode {
1059	QEDE_PROBE_NORMAL,
1060	QEDE_PROBE_RECOVERY,
1061};
1062
1063static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1064			bool is_vf, enum qede_probe_mode mode)
1065{
1066	struct qed_probe_params probe_params;
1067	struct qed_slowpath_params sp_params;
1068	struct qed_dev_eth_info dev_info;
1069	struct qede_dev *edev;
1070	struct qed_dev *cdev;
1071	int rc;
1072
1073	if (unlikely(dp_level & QED_LEVEL_INFO))
1074		pr_notice("Starting qede probe\n");
1075
1076	memset(&probe_params, 0, sizeof(probe_params));
1077	probe_params.protocol = QED_PROTOCOL_ETH;
1078	probe_params.dp_module = dp_module;
1079	probe_params.dp_level = dp_level;
1080	probe_params.is_vf = is_vf;
1081	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1082	cdev = qed_ops->common->probe(pdev, &probe_params);
1083	if (!cdev) {
1084		rc = -ENODEV;
1085		goto err0;
1086	}
1087
1088	qede_update_pf_params(cdev);
1089
1090	/* Start the Slowpath-process */
1091	memset(&sp_params, 0, sizeof(sp_params));
1092	sp_params.int_mode = QED_INT_MODE_MSIX;
1093	sp_params.drv_major = QEDE_MAJOR_VERSION;
1094	sp_params.drv_minor = QEDE_MINOR_VERSION;
1095	sp_params.drv_rev = QEDE_REVISION_VERSION;
1096	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1097	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1098	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1099	if (rc) {
1100		pr_notice("Cannot start slowpath\n");
1101		goto err1;
1102	}
1103
1104	/* Learn information crucial for qede to progress */
1105	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1106	if (rc)
1107		goto err2;
1108
1109	if (mode != QEDE_PROBE_RECOVERY) {
1110		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1111					   dp_level);
1112		if (!edev) {
1113			rc = -ENOMEM;
1114			goto err2;
1115		}
 
 
 
 
 
 
 
 
1116	} else {
1117		struct net_device *ndev = pci_get_drvdata(pdev);
 
1118
1119		edev = netdev_priv(ndev);
 
 
1120		edev->cdev = cdev;
1121		memset(&edev->stats, 0, sizeof(edev->stats));
1122		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1123	}
1124
1125	if (is_vf)
1126		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1127
1128	qede_init_ndev(edev);
1129
1130	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1131	if (rc)
1132		goto err3;
1133
1134	if (mode != QEDE_PROBE_RECOVERY) {
1135		/* Prepare the lock prior to the registration of the netdev,
1136		 * as once it's registered we might reach flows requiring it
1137		 * [it's even possible to reach a flow needing it directly
1138		 * from there, although it's unlikely].
1139		 */
1140		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1141		mutex_init(&edev->qede_lock);
1142
1143		rc = register_netdev(edev->ndev);
1144		if (rc) {
1145			DP_NOTICE(edev, "Cannot register net-device\n");
1146			goto err4;
1147		}
1148	}
1149
1150	edev->ops->common->set_name(cdev, edev->ndev->name);
1151
1152	/* PTP not supported on VFs */
1153	if (!is_vf)
1154		qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1155
1156	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1157
1158#ifdef CONFIG_DCB
1159	if (!IS_VF(edev))
1160		qede_set_dcbnl_ops(edev->ndev);
1161#endif
1162
1163	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1164
1165	qede_log_probe(edev);
1166	return 0;
1167
1168err4:
1169	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1170err3:
1171	free_netdev(edev->ndev);
 
 
 
1172err2:
1173	qed_ops->common->slowpath_stop(cdev);
1174err1:
1175	qed_ops->common->remove(cdev);
1176err0:
1177	return rc;
1178}
1179
1180static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1181{
1182	bool is_vf = false;
1183	u32 dp_module = 0;
1184	u8 dp_level = 0;
1185
1186	switch ((enum qede_pci_private)id->driver_data) {
1187	case QEDE_PRIVATE_VF:
1188		if (debug & QED_LOG_VERBOSE_MASK)
1189			dev_err(&pdev->dev, "Probing a VF\n");
1190		is_vf = true;
1191		break;
1192	default:
1193		if (debug & QED_LOG_VERBOSE_MASK)
1194			dev_err(&pdev->dev, "Probing a PF\n");
1195	}
1196
1197	qede_config_debug(debug, &dp_module, &dp_level);
1198
1199	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1200			    QEDE_PROBE_NORMAL);
1201}
1202
1203enum qede_remove_mode {
1204	QEDE_REMOVE_NORMAL,
1205	QEDE_REMOVE_RECOVERY,
1206};
1207
1208static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1209{
1210	struct net_device *ndev = pci_get_drvdata(pdev);
1211	struct qede_dev *edev;
1212	struct qed_dev *cdev;
1213
1214	if (!ndev) {
1215		dev_info(&pdev->dev, "Device has already been removed\n");
1216		return;
1217	}
1218
1219	edev = netdev_priv(ndev);
1220	cdev = edev->cdev;
1221
1222	DP_INFO(edev, "Starting qede_remove\n");
1223
1224	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1225
1226	if (mode != QEDE_REMOVE_RECOVERY) {
 
1227		unregister_netdev(ndev);
1228
1229		cancel_delayed_work_sync(&edev->sp_task);
1230
1231		edev->ops->common->set_power_state(cdev, PCI_D0);
1232
1233		pci_set_drvdata(pdev, NULL);
1234	}
1235
1236	qede_ptp_disable(edev);
1237
1238	/* Use global ops since we've freed edev */
1239	qed_ops->common->slowpath_stop(cdev);
1240	if (system_state == SYSTEM_POWER_OFF)
1241		return;
 
 
 
 
 
1242	qed_ops->common->remove(cdev);
 
1243
1244	/* Since this can happen out-of-sync with other flows,
1245	 * don't release the netdevice until after slowpath stop
1246	 * has been called to guarantee various other contexts
1247	 * [e.g., QED register callbacks] won't break anything when
1248	 * accessing the netdevice.
1249	 */
1250	if (mode != QEDE_REMOVE_RECOVERY)
 
1251		free_netdev(ndev);
 
1252
1253	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1254}
1255
1256static void qede_remove(struct pci_dev *pdev)
1257{
1258	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1259}
1260
1261static void qede_shutdown(struct pci_dev *pdev)
1262{
1263	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1264}
1265
1266/* -------------------------------------------------------------------------
1267 * START OF LOAD / UNLOAD
1268 * -------------------------------------------------------------------------
1269 */
1270
1271static int qede_set_num_queues(struct qede_dev *edev)
1272{
1273	int rc;
1274	u16 rss_num;
1275
1276	/* Setup queues according to possible resources*/
1277	if (edev->req_queues)
1278		rss_num = edev->req_queues;
1279	else
1280		rss_num = netif_get_num_default_rss_queues() *
1281			  edev->dev_info.common.num_hwfns;
1282
1283	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1284
1285	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1286	if (rc > 0) {
1287		/* Managed to request interrupts for our queues */
1288		edev->num_queues = rc;
1289		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1290			QEDE_QUEUE_CNT(edev), rss_num);
1291		rc = 0;
1292	}
1293
1294	edev->fp_num_tx = edev->req_num_tx;
1295	edev->fp_num_rx = edev->req_num_rx;
1296
1297	return rc;
1298}
1299
1300static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1301			     u16 sb_id)
1302{
1303	if (sb_info->sb_virt) {
1304		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1305					      QED_SB_TYPE_L2_QUEUE);
1306		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1307				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1308		memset(sb_info, 0, sizeof(*sb_info));
1309	}
1310}
1311
1312/* This function allocates fast-path status block memory */
1313static int qede_alloc_mem_sb(struct qede_dev *edev,
1314			     struct qed_sb_info *sb_info, u16 sb_id)
1315{
1316	struct status_block_e4 *sb_virt;
1317	dma_addr_t sb_phys;
1318	int rc;
1319
1320	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1321				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1322	if (!sb_virt) {
1323		DP_ERR(edev, "Status block allocation failed\n");
1324		return -ENOMEM;
1325	}
1326
1327	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1328					sb_virt, sb_phys, sb_id,
1329					QED_SB_TYPE_L2_QUEUE);
1330	if (rc) {
1331		DP_ERR(edev, "Status block initialization failed\n");
1332		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1333				  sb_virt, sb_phys);
1334		return rc;
1335	}
1336
1337	return 0;
1338}
1339
1340static void qede_free_rx_buffers(struct qede_dev *edev,
1341				 struct qede_rx_queue *rxq)
1342{
1343	u16 i;
1344
1345	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1346		struct sw_rx_data *rx_buf;
1347		struct page *data;
1348
1349		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1350		data = rx_buf->data;
1351
1352		dma_unmap_page(&edev->pdev->dev,
1353			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1354
1355		rx_buf->data = NULL;
1356		__free_page(data);
1357	}
1358}
1359
1360static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1361{
1362	/* Free rx buffers */
1363	qede_free_rx_buffers(edev, rxq);
1364
1365	/* Free the parallel SW ring */
1366	kfree(rxq->sw_rx_ring);
1367
1368	/* Free the real RQ ring used by FW */
1369	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1370	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1371}
1372
1373static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1374{
1375	int i;
1376
1377	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1378		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1379
1380		tpa_info->state = QEDE_AGG_STATE_NONE;
1381	}
1382}
1383
1384/* This function allocates all memory needed per Rx queue */
1385static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1386{
 
 
 
 
 
1387	int i, rc, size;
1388
1389	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1390
1391	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1392
1393	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1394	size = rxq->rx_headroom +
1395	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1396
1397	/* Make sure that the headroom and  payload fit in a single page */
1398	if (rxq->rx_buf_size + size > PAGE_SIZE)
1399		rxq->rx_buf_size = PAGE_SIZE - size;
1400
1401	/* Segment size to spilt a page in multiple equal parts ,
1402	 * unless XDP is used in which case we'd use the entire page.
1403	 */
1404	if (!edev->xdp_prog) {
1405		size = size + rxq->rx_buf_size;
1406		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1407	} else {
1408		rxq->rx_buf_seg_size = PAGE_SIZE;
 
1409	}
1410
1411	/* Allocate the parallel driver ring for Rx buffers */
1412	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1413	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1414	if (!rxq->sw_rx_ring) {
1415		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1416		rc = -ENOMEM;
1417		goto err;
1418	}
1419
1420	/* Allocate FW Rx ring  */
1421	rc = edev->ops->common->chain_alloc(edev->cdev,
1422					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1423					    QED_CHAIN_MODE_NEXT_PTR,
1424					    QED_CHAIN_CNT_TYPE_U16,
1425					    RX_RING_SIZE,
1426					    sizeof(struct eth_rx_bd),
1427					    &rxq->rx_bd_ring, NULL);
1428	if (rc)
1429		goto err;
1430
1431	/* Allocate FW completion ring */
1432	rc = edev->ops->common->chain_alloc(edev->cdev,
1433					    QED_CHAIN_USE_TO_CONSUME,
1434					    QED_CHAIN_MODE_PBL,
1435					    QED_CHAIN_CNT_TYPE_U16,
1436					    RX_RING_SIZE,
1437					    sizeof(union eth_rx_cqe),
1438					    &rxq->rx_comp_ring, NULL);
1439	if (rc)
1440		goto err;
1441
1442	/* Allocate buffers for the Rx ring */
1443	rxq->filled_buffers = 0;
1444	for (i = 0; i < rxq->num_rx_buffers; i++) {
1445		rc = qede_alloc_rx_buffer(rxq, false);
1446		if (rc) {
1447			DP_ERR(edev,
1448			       "Rx buffers allocation failed at index %d\n", i);
1449			goto err;
1450		}
1451	}
1452
 
1453	if (!edev->gro_disable)
1454		qede_set_tpa_param(rxq);
1455err:
1456	return rc;
1457}
1458
1459static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1460{
1461	/* Free the parallel SW ring */
1462	if (txq->is_xdp)
1463		kfree(txq->sw_tx_ring.xdp);
1464	else
1465		kfree(txq->sw_tx_ring.skbs);
1466
1467	/* Free the real RQ ring used by FW */
1468	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1469}
1470
1471/* This function allocates all memory needed per Tx queue */
1472static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1473{
1474	union eth_tx_bd_types *p_virt;
 
 
 
 
 
 
1475	int size, rc;
1476
1477	txq->num_tx_buffers = edev->q_num_tx_buffers;
1478
1479	/* Allocate the parallel driver ring for Tx buffers */
1480	if (txq->is_xdp) {
1481		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1482		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1483		if (!txq->sw_tx_ring.xdp)
1484			goto err;
1485	} else {
1486		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1487		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1488		if (!txq->sw_tx_ring.skbs)
1489			goto err;
1490	}
1491
1492	rc = edev->ops->common->chain_alloc(edev->cdev,
1493					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1494					    QED_CHAIN_MODE_PBL,
1495					    QED_CHAIN_CNT_TYPE_U16,
1496					    txq->num_tx_buffers,
1497					    sizeof(*p_virt),
1498					    &txq->tx_pbl, NULL);
1499	if (rc)
1500		goto err;
1501
1502	return 0;
1503
1504err:
1505	qede_free_mem_txq(edev, txq);
1506	return -ENOMEM;
1507}
1508
1509/* This function frees all memory of a single fp */
1510static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1511{
1512	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1513
1514	if (fp->type & QEDE_FASTPATH_RX)
1515		qede_free_mem_rxq(edev, fp->rxq);
1516
1517	if (fp->type & QEDE_FASTPATH_XDP)
1518		qede_free_mem_txq(edev, fp->xdp_tx);
1519
1520	if (fp->type & QEDE_FASTPATH_TX) {
1521		int cos;
1522
1523		for_each_cos_in_txq(edev, cos)
1524			qede_free_mem_txq(edev, &fp->txq[cos]);
1525	}
1526}
1527
1528/* This function allocates all memory needed for a single fp (i.e. an entity
1529 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1530 */
1531static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1532{
1533	int rc = 0;
1534
1535	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1536	if (rc)
1537		goto out;
1538
1539	if (fp->type & QEDE_FASTPATH_RX) {
1540		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1541		if (rc)
1542			goto out;
1543	}
1544
1545	if (fp->type & QEDE_FASTPATH_XDP) {
1546		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1547		if (rc)
1548			goto out;
1549	}
1550
1551	if (fp->type & QEDE_FASTPATH_TX) {
1552		int cos;
1553
1554		for_each_cos_in_txq(edev, cos) {
1555			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1556			if (rc)
1557				goto out;
1558		}
1559	}
1560
1561out:
1562	return rc;
1563}
1564
1565static void qede_free_mem_load(struct qede_dev *edev)
1566{
1567	int i;
1568
1569	for_each_queue(i) {
1570		struct qede_fastpath *fp = &edev->fp_array[i];
1571
1572		qede_free_mem_fp(edev, fp);
1573	}
1574}
1575
1576/* This function allocates all qede memory at NIC load. */
1577static int qede_alloc_mem_load(struct qede_dev *edev)
1578{
1579	int rc = 0, queue_id;
1580
1581	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1582		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1583
1584		rc = qede_alloc_mem_fp(edev, fp);
1585		if (rc) {
1586			DP_ERR(edev,
1587			       "Failed to allocate memory for fastpath - rss id = %d\n",
1588			       queue_id);
1589			qede_free_mem_load(edev);
1590			return rc;
1591		}
1592	}
1593
1594	return 0;
1595}
1596
1597static void qede_empty_tx_queue(struct qede_dev *edev,
1598				struct qede_tx_queue *txq)
1599{
1600	unsigned int pkts_compl = 0, bytes_compl = 0;
1601	struct netdev_queue *netdev_txq;
1602	int rc, len = 0;
1603
1604	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1605
1606	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1607	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1608		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1609			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1610			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1611			   qed_chain_get_prod_idx(&txq->tx_pbl));
1612
1613		rc = qede_free_tx_pkt(edev, txq, &len);
1614		if (rc) {
1615			DP_NOTICE(edev,
1616				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1617				  txq->index,
1618				  qed_chain_get_cons_idx(&txq->tx_pbl),
1619				  qed_chain_get_prod_idx(&txq->tx_pbl));
1620			break;
1621		}
1622
1623		bytes_compl += len;
1624		pkts_compl++;
1625		txq->sw_tx_cons++;
1626	}
1627
1628	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1629}
1630
1631static void qede_empty_tx_queues(struct qede_dev *edev)
1632{
1633	int i;
1634
1635	for_each_queue(i)
1636		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1637			int cos;
1638
1639			for_each_cos_in_txq(edev, cos) {
1640				struct qede_fastpath *fp;
1641
1642				fp = &edev->fp_array[i];
1643				qede_empty_tx_queue(edev,
1644						    &fp->txq[cos]);
1645			}
1646		}
1647}
1648
1649/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1650static void qede_init_fp(struct qede_dev *edev)
1651{
1652	int queue_id, rxq_index = 0, txq_index = 0;
1653	struct qede_fastpath *fp;
 
1654
1655	for_each_queue(queue_id) {
1656		fp = &edev->fp_array[queue_id];
1657
1658		fp->edev = edev;
1659		fp->id = queue_id;
1660
1661		if (fp->type & QEDE_FASTPATH_XDP) {
1662			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1663								rxq_index);
1664			fp->xdp_tx->is_xdp = 1;
 
 
 
1665		}
1666
1667		if (fp->type & QEDE_FASTPATH_RX) {
1668			fp->rxq->rxq_id = rxq_index++;
1669
1670			/* Determine how to map buffers for this queue */
1671			if (fp->type & QEDE_FASTPATH_XDP)
1672				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1673			else
1674				fp->rxq->data_direction = DMA_FROM_DEVICE;
1675			fp->rxq->dev = &edev->pdev->dev;
1676
1677			/* Driver have no error path from here */
1678			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1679						 fp->rxq->rxq_id) < 0);
 
 
 
 
 
 
 
1680		}
1681
1682		if (fp->type & QEDE_FASTPATH_TX) {
1683			int cos;
1684
1685			for_each_cos_in_txq(edev, cos) {
1686				struct qede_tx_queue *txq = &fp->txq[cos];
1687				u16 ndev_tx_id;
1688
1689				txq->cos = cos;
1690				txq->index = txq_index;
1691				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1692				txq->ndev_txq_id = ndev_tx_id;
1693
1694				if (edev->dev_info.is_legacy)
1695					txq->is_legacy = 1;
1696				txq->dev = &edev->pdev->dev;
1697			}
1698
1699			txq_index++;
1700		}
1701
1702		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1703			 edev->ndev->name, queue_id);
1704	}
1705
1706	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
 
 
 
1707}
1708
1709static int qede_set_real_num_queues(struct qede_dev *edev)
1710{
1711	int rc = 0;
1712
1713	rc = netif_set_real_num_tx_queues(edev->ndev,
1714					  QEDE_TSS_COUNT(edev) *
1715					  edev->dev_info.num_tc);
1716	if (rc) {
1717		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1718		return rc;
1719	}
1720
1721	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1722	if (rc) {
1723		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1724		return rc;
1725	}
1726
1727	return 0;
1728}
1729
1730static void qede_napi_disable_remove(struct qede_dev *edev)
1731{
1732	int i;
1733
1734	for_each_queue(i) {
1735		napi_disable(&edev->fp_array[i].napi);
1736
1737		netif_napi_del(&edev->fp_array[i].napi);
1738	}
1739}
1740
1741static void qede_napi_add_enable(struct qede_dev *edev)
1742{
1743	int i;
1744
1745	/* Add NAPI objects */
1746	for_each_queue(i) {
1747		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1748			       qede_poll, NAPI_POLL_WEIGHT);
1749		napi_enable(&edev->fp_array[i].napi);
1750	}
1751}
1752
1753static void qede_sync_free_irqs(struct qede_dev *edev)
1754{
1755	int i;
1756
1757	for (i = 0; i < edev->int_info.used_cnt; i++) {
1758		if (edev->int_info.msix_cnt) {
1759			synchronize_irq(edev->int_info.msix[i].vector);
1760			free_irq(edev->int_info.msix[i].vector,
1761				 &edev->fp_array[i]);
1762		} else {
1763			edev->ops->common->simd_handler_clean(edev->cdev, i);
1764		}
1765	}
1766
1767	edev->int_info.used_cnt = 0;
 
1768}
1769
1770static int qede_req_msix_irqs(struct qede_dev *edev)
1771{
1772	int i, rc;
1773
1774	/* Sanitize number of interrupts == number of prepared RSS queues */
1775	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1776		DP_ERR(edev,
1777		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1778		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1779		return -EINVAL;
1780	}
1781
1782	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1783#ifdef CONFIG_RFS_ACCEL
1784		struct qede_fastpath *fp = &edev->fp_array[i];
1785
1786		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1787			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1788					      edev->int_info.msix[i].vector);
1789			if (rc) {
1790				DP_ERR(edev, "Failed to add CPU rmap\n");
1791				qede_free_arfs(edev);
1792			}
1793		}
1794#endif
1795		rc = request_irq(edev->int_info.msix[i].vector,
1796				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1797				 &edev->fp_array[i]);
1798		if (rc) {
1799			DP_ERR(edev, "Request fp %d irq failed\n", i);
 
 
 
 
 
 
1800			qede_sync_free_irqs(edev);
1801			return rc;
1802		}
1803		DP_VERBOSE(edev, NETIF_MSG_INTR,
1804			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1805			   edev->fp_array[i].name, i,
1806			   &edev->fp_array[i]);
1807		edev->int_info.used_cnt++;
1808	}
1809
1810	return 0;
1811}
1812
1813static void qede_simd_fp_handler(void *cookie)
1814{
1815	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1816
1817	napi_schedule_irqoff(&fp->napi);
1818}
1819
1820static int qede_setup_irqs(struct qede_dev *edev)
1821{
1822	int i, rc = 0;
1823
1824	/* Learn Interrupt configuration */
1825	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1826	if (rc)
1827		return rc;
1828
1829	if (edev->int_info.msix_cnt) {
1830		rc = qede_req_msix_irqs(edev);
1831		if (rc)
1832			return rc;
1833		edev->ndev->irq = edev->int_info.msix[0].vector;
1834	} else {
1835		const struct qed_common_ops *ops;
1836
1837		/* qed should learn receive the RSS ids and callbacks */
1838		ops = edev->ops->common;
1839		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1840			ops->simd_handler_config(edev->cdev,
1841						 &edev->fp_array[i], i,
1842						 qede_simd_fp_handler);
1843		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1844	}
1845	return 0;
1846}
1847
1848static int qede_drain_txq(struct qede_dev *edev,
1849			  struct qede_tx_queue *txq, bool allow_drain)
1850{
1851	int rc, cnt = 1000;
1852
1853	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1854		if (!cnt) {
1855			if (allow_drain) {
1856				DP_NOTICE(edev,
1857					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1858					  txq->index);
1859				rc = edev->ops->common->drain(edev->cdev);
1860				if (rc)
1861					return rc;
1862				return qede_drain_txq(edev, txq, false);
1863			}
1864			DP_NOTICE(edev,
1865				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1866				  txq->index, txq->sw_tx_prod,
1867				  txq->sw_tx_cons);
1868			return -ENODEV;
1869		}
1870		cnt--;
1871		usleep_range(1000, 2000);
1872		barrier();
1873	}
1874
1875	/* FW finished processing, wait for HW to transmit all tx packets */
1876	usleep_range(1000, 2000);
1877
1878	return 0;
1879}
1880
1881static int qede_stop_txq(struct qede_dev *edev,
1882			 struct qede_tx_queue *txq, int rss_id)
1883{
1884	/* delete doorbell from doorbell recovery mechanism */
1885	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1886					   &txq->tx_db);
1887
1888	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1889}
1890
1891static int qede_stop_queues(struct qede_dev *edev)
1892{
1893	struct qed_update_vport_params *vport_update_params;
1894	struct qed_dev *cdev = edev->cdev;
1895	struct qede_fastpath *fp;
1896	int rc, i;
1897
1898	/* Disable the vport */
1899	vport_update_params = vzalloc(sizeof(*vport_update_params));
1900	if (!vport_update_params)
1901		return -ENOMEM;
1902
1903	vport_update_params->vport_id = 0;
1904	vport_update_params->update_vport_active_flg = 1;
1905	vport_update_params->vport_active_flg = 0;
1906	vport_update_params->update_rss_flg = 0;
1907
1908	rc = edev->ops->vport_update(cdev, vport_update_params);
1909	vfree(vport_update_params);
1910
1911	if (rc) {
1912		DP_ERR(edev, "Failed to update vport\n");
1913		return rc;
1914	}
1915
1916	/* Flush Tx queues. If needed, request drain from MCP */
1917	for_each_queue(i) {
1918		fp = &edev->fp_array[i];
1919
1920		if (fp->type & QEDE_FASTPATH_TX) {
1921			int cos;
1922
1923			for_each_cos_in_txq(edev, cos) {
1924				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1925				if (rc)
1926					return rc;
1927			}
1928		}
1929
1930		if (fp->type & QEDE_FASTPATH_XDP) {
1931			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1932			if (rc)
1933				return rc;
1934		}
1935	}
1936
1937	/* Stop all Queues in reverse order */
1938	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1939		fp = &edev->fp_array[i];
1940
1941		/* Stop the Tx Queue(s) */
1942		if (fp->type & QEDE_FASTPATH_TX) {
1943			int cos;
1944
1945			for_each_cos_in_txq(edev, cos) {
1946				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1947				if (rc)
1948					return rc;
1949			}
1950		}
1951
1952		/* Stop the Rx Queue */
1953		if (fp->type & QEDE_FASTPATH_RX) {
1954			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1955			if (rc) {
1956				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1957				return rc;
1958			}
1959		}
1960
1961		/* Stop the XDP forwarding queue */
1962		if (fp->type & QEDE_FASTPATH_XDP) {
1963			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1964			if (rc)
1965				return rc;
1966
1967			bpf_prog_put(fp->rxq->xdp_prog);
1968		}
1969	}
1970
1971	/* Stop the vport */
1972	rc = edev->ops->vport_stop(cdev, 0);
1973	if (rc)
1974		DP_ERR(edev, "Failed to stop VPORT\n");
1975
1976	return rc;
1977}
1978
1979static int qede_start_txq(struct qede_dev *edev,
1980			  struct qede_fastpath *fp,
1981			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1982{
1983	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1984	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1985	struct qed_queue_start_common_params params;
1986	struct qed_txq_start_ret_params ret_params;
1987	int rc;
1988
1989	memset(&params, 0, sizeof(params));
1990	memset(&ret_params, 0, sizeof(ret_params));
1991
1992	/* Let the XDP queue share the queue-zone with one of the regular txq.
1993	 * We don't really care about its coalescing.
1994	 */
1995	if (txq->is_xdp)
1996		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1997	else
1998		params.queue_id = txq->index;
1999
2000	params.p_sb = fp->sb_info;
2001	params.sb_idx = sb_idx;
2002	params.tc = txq->cos;
2003
2004	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2005				   page_cnt, &ret_params);
2006	if (rc) {
2007		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2008		return rc;
2009	}
2010
2011	txq->doorbell_addr = ret_params.p_doorbell;
2012	txq->handle = ret_params.p_handle;
2013
2014	/* Determine the FW consumer address associated */
2015	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2016
2017	/* Prepare the doorbell parameters */
2018	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2019	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2020	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2021		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2022	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2023
2024	/* register doorbell with doorbell recovery mechanism */
2025	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2026						&txq->tx_db, DB_REC_WIDTH_32B,
2027						DB_REC_KERNEL);
2028
2029	return rc;
2030}
2031
2032static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2033{
2034	int vlan_removal_en = 1;
2035	struct qed_dev *cdev = edev->cdev;
2036	struct qed_dev_info *qed_info = &edev->dev_info.common;
2037	struct qed_update_vport_params *vport_update_params;
2038	struct qed_queue_start_common_params q_params;
2039	struct qed_start_vport_params start = {0};
2040	int rc, i;
2041
2042	if (!edev->num_queues) {
2043		DP_ERR(edev,
2044		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2045		return -EINVAL;
2046	}
2047
2048	vport_update_params = vzalloc(sizeof(*vport_update_params));
2049	if (!vport_update_params)
2050		return -ENOMEM;
2051
2052	start.handle_ptp_pkts = !!(edev->ptp);
2053	start.gro_enable = !edev->gro_disable;
2054	start.mtu = edev->ndev->mtu;
2055	start.vport_id = 0;
2056	start.drop_ttl0 = true;
2057	start.remove_inner_vlan = vlan_removal_en;
2058	start.clear_stats = clear_stats;
2059
2060	rc = edev->ops->vport_start(cdev, &start);
2061
2062	if (rc) {
2063		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2064		goto out;
2065	}
2066
2067	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2068		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2069		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2070
2071	for_each_queue(i) {
2072		struct qede_fastpath *fp = &edev->fp_array[i];
2073		dma_addr_t p_phys_table;
2074		u32 page_cnt;
2075
2076		if (fp->type & QEDE_FASTPATH_RX) {
2077			struct qed_rxq_start_ret_params ret_params;
2078			struct qede_rx_queue *rxq = fp->rxq;
2079			__le16 *val;
2080
2081			memset(&ret_params, 0, sizeof(ret_params));
2082			memset(&q_params, 0, sizeof(q_params));
2083			q_params.queue_id = rxq->rxq_id;
2084			q_params.vport_id = 0;
2085			q_params.p_sb = fp->sb_info;
2086			q_params.sb_idx = RX_PI;
2087
2088			p_phys_table =
2089			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2090			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2091
2092			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2093						   rxq->rx_buf_size,
2094						   rxq->rx_bd_ring.p_phys_addr,
2095						   p_phys_table,
2096						   page_cnt, &ret_params);
2097			if (rc) {
2098				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2099				       rc);
2100				goto out;
2101			}
2102
2103			/* Use the return parameters */
2104			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2105			rxq->handle = ret_params.p_handle;
2106
2107			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2108			rxq->hw_cons_ptr = val;
2109
2110			qede_update_rx_prod(edev, rxq);
2111		}
2112
2113		if (fp->type & QEDE_FASTPATH_XDP) {
2114			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2115			if (rc)
2116				goto out;
2117
2118			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2119			if (IS_ERR(fp->rxq->xdp_prog)) {
2120				rc = PTR_ERR(fp->rxq->xdp_prog);
2121				fp->rxq->xdp_prog = NULL;
2122				goto out;
2123			}
2124		}
2125
2126		if (fp->type & QEDE_FASTPATH_TX) {
2127			int cos;
2128
2129			for_each_cos_in_txq(edev, cos) {
2130				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2131						    TX_PI(cos));
2132				if (rc)
2133					goto out;
2134			}
2135		}
2136	}
2137
2138	/* Prepare and send the vport enable */
2139	vport_update_params->vport_id = start.vport_id;
2140	vport_update_params->update_vport_active_flg = 1;
2141	vport_update_params->vport_active_flg = 1;
2142
2143	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2144	    qed_info->tx_switching) {
2145		vport_update_params->update_tx_switching_flg = 1;
2146		vport_update_params->tx_switching_flg = 1;
2147	}
2148
2149	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2150			     &vport_update_params->update_rss_flg);
2151
2152	rc = edev->ops->vport_update(cdev, vport_update_params);
2153	if (rc)
2154		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2155
2156out:
2157	vfree(vport_update_params);
2158	return rc;
2159}
2160
2161enum qede_unload_mode {
2162	QEDE_UNLOAD_NORMAL,
2163	QEDE_UNLOAD_RECOVERY,
2164};
2165
2166static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2167			bool is_locked)
2168{
2169	struct qed_link_params link_params;
2170	int rc;
2171
2172	DP_INFO(edev, "Starting qede unload\n");
2173
2174	if (!is_locked)
2175		__qede_lock(edev);
2176
2177	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2178
2179	if (mode != QEDE_UNLOAD_RECOVERY)
2180		edev->state = QEDE_STATE_CLOSED;
2181
2182	qede_rdma_dev_event_close(edev);
2183
2184	/* Close OS Tx */
2185	netif_tx_disable(edev->ndev);
2186	netif_carrier_off(edev->ndev);
2187
2188	if (mode != QEDE_UNLOAD_RECOVERY) {
2189		/* Reset the link */
2190		memset(&link_params, 0, sizeof(link_params));
2191		link_params.link_up = false;
2192		edev->ops->common->set_link(edev->cdev, &link_params);
2193
2194		rc = qede_stop_queues(edev);
2195		if (rc) {
 
 
 
 
 
 
 
 
 
2196			qede_sync_free_irqs(edev);
2197			goto out;
2198		}
2199
2200		DP_INFO(edev, "Stopped Queues\n");
2201	}
2202
2203	qede_vlan_mark_nonconfigured(edev);
2204	edev->ops->fastpath_stop(edev->cdev);
2205
2206	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2207		qede_poll_for_freeing_arfs_filters(edev);
2208		qede_free_arfs(edev);
2209	}
2210
2211	/* Release the interrupts */
2212	qede_sync_free_irqs(edev);
2213	edev->ops->common->set_fp_int(edev->cdev, 0);
2214
2215	qede_napi_disable_remove(edev);
2216
2217	if (mode == QEDE_UNLOAD_RECOVERY)
2218		qede_empty_tx_queues(edev);
2219
2220	qede_free_mem_load(edev);
2221	qede_free_fp_array(edev);
2222
2223out:
2224	if (!is_locked)
2225		__qede_unlock(edev);
2226
2227	if (mode != QEDE_UNLOAD_RECOVERY)
2228		DP_NOTICE(edev, "Link is down\n");
2229
2230	edev->ptp_skip_txts = 0;
2231
2232	DP_INFO(edev, "Ending qede unload\n");
2233}
2234
2235enum qede_load_mode {
2236	QEDE_LOAD_NORMAL,
2237	QEDE_LOAD_RELOAD,
2238	QEDE_LOAD_RECOVERY,
2239};
2240
2241static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2242		     bool is_locked)
2243{
2244	struct qed_link_params link_params;
 
2245	u8 num_tc;
2246	int rc;
2247
2248	DP_INFO(edev, "Starting qede load\n");
2249
2250	if (!is_locked)
2251		__qede_lock(edev);
2252
2253	rc = qede_set_num_queues(edev);
2254	if (rc)
2255		goto out;
2256
2257	rc = qede_alloc_fp_array(edev);
2258	if (rc)
2259		goto out;
2260
2261	qede_init_fp(edev);
2262
2263	rc = qede_alloc_mem_load(edev);
2264	if (rc)
2265		goto err1;
2266	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2267		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2268
2269	rc = qede_set_real_num_queues(edev);
2270	if (rc)
2271		goto err2;
2272
2273	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2274		rc = qede_alloc_arfs(edev);
2275		if (rc)
2276			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2277	}
2278
2279	qede_napi_add_enable(edev);
2280	DP_INFO(edev, "Napi added and enabled\n");
2281
2282	rc = qede_setup_irqs(edev);
2283	if (rc)
2284		goto err3;
2285	DP_INFO(edev, "Setup IRQs succeeded\n");
2286
2287	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2288	if (rc)
2289		goto err4;
2290	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2291
2292	num_tc = netdev_get_num_tc(edev->ndev);
2293	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2294	qede_setup_tc(edev->ndev, num_tc);
2295
2296	/* Program un-configured VLANs */
2297	qede_configure_vlan_filters(edev);
2298
2299	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2300
2301	/* Ask for link-up using current configuration */
2302	memset(&link_params, 0, sizeof(link_params));
2303	link_params.link_up = true;
2304	edev->ops->common->set_link(edev->cdev, &link_params);
2305
2306	edev->state = QEDE_STATE_OPEN;
2307
 
 
 
 
 
 
 
 
 
 
 
 
2308	DP_INFO(edev, "Ending successfully qede load\n");
2309
2310	goto out;
2311err4:
2312	qede_sync_free_irqs(edev);
2313	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2314err3:
2315	qede_napi_disable_remove(edev);
2316err2:
2317	qede_free_mem_load(edev);
2318err1:
2319	edev->ops->common->set_fp_int(edev->cdev, 0);
2320	qede_free_fp_array(edev);
2321	edev->num_queues = 0;
2322	edev->fp_num_tx = 0;
2323	edev->fp_num_rx = 0;
2324out:
2325	if (!is_locked)
2326		__qede_unlock(edev);
2327
2328	return rc;
2329}
2330
2331/* 'func' should be able to run between unload and reload assuming interface
2332 * is actually running, or afterwards in case it's currently DOWN.
2333 */
2334void qede_reload(struct qede_dev *edev,
2335		 struct qede_reload_args *args, bool is_locked)
2336{
2337	if (!is_locked)
2338		__qede_lock(edev);
2339
2340	/* Since qede_lock is held, internal state wouldn't change even
2341	 * if netdev state would start transitioning. Check whether current
2342	 * internal configuration indicates device is up, then reload.
2343	 */
2344	if (edev->state == QEDE_STATE_OPEN) {
2345		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2346		if (args)
2347			args->func(edev, args);
2348		qede_load(edev, QEDE_LOAD_RELOAD, true);
2349
2350		/* Since no one is going to do it for us, re-configure */
2351		qede_config_rx_mode(edev->ndev);
2352	} else if (args) {
2353		args->func(edev, args);
2354	}
2355
2356	if (!is_locked)
2357		__qede_unlock(edev);
2358}
2359
2360/* called with rtnl_lock */
2361static int qede_open(struct net_device *ndev)
2362{
2363	struct qede_dev *edev = netdev_priv(ndev);
2364	int rc;
2365
2366	netif_carrier_off(ndev);
2367
2368	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2369
2370	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2371	if (rc)
2372		return rc;
2373
2374	udp_tunnel_get_rx_info(ndev);
2375
2376	edev->ops->common->update_drv_state(edev->cdev, true);
2377
2378	return 0;
2379}
2380
2381static int qede_close(struct net_device *ndev)
2382{
2383	struct qede_dev *edev = netdev_priv(ndev);
2384
2385	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2386
2387	edev->ops->common->update_drv_state(edev->cdev, false);
 
2388
2389	return 0;
2390}
2391
2392static void qede_link_update(void *dev, struct qed_link_output *link)
2393{
2394	struct qede_dev *edev = dev;
2395
2396	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2397		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2398		return;
2399	}
2400
2401	if (link->link_up) {
2402		if (!netif_carrier_ok(edev->ndev)) {
2403			DP_NOTICE(edev, "Link is up\n");
2404			netif_tx_start_all_queues(edev->ndev);
2405			netif_carrier_on(edev->ndev);
2406			qede_rdma_dev_event_open(edev);
2407		}
2408	} else {
2409		if (netif_carrier_ok(edev->ndev)) {
2410			DP_NOTICE(edev, "Link is down\n");
2411			netif_tx_disable(edev->ndev);
2412			netif_carrier_off(edev->ndev);
2413			qede_rdma_dev_event_close(edev);
2414		}
2415	}
2416}
2417
2418static void qede_schedule_recovery_handler(void *dev)
2419{
2420	struct qede_dev *edev = dev;
2421
2422	if (edev->state == QEDE_STATE_RECOVERY) {
2423		DP_NOTICE(edev,
2424			  "Avoid scheduling a recovery handling since already in recovery state\n");
2425		return;
2426	}
2427
2428	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2429	schedule_delayed_work(&edev->sp_task, 0);
2430
2431	DP_INFO(edev, "Scheduled a recovery handler\n");
2432}
2433
2434static void qede_recovery_failed(struct qede_dev *edev)
2435{
2436	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2437
2438	netif_device_detach(edev->ndev);
2439
2440	if (edev->cdev)
2441		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2442}
2443
2444static void qede_recovery_handler(struct qede_dev *edev)
2445{
2446	u32 curr_state = edev->state;
2447	int rc;
2448
2449	DP_NOTICE(edev, "Starting a recovery process\n");
2450
2451	/* No need to acquire first the qede_lock since is done by qede_sp_task
2452	 * before calling this function.
2453	 */
2454	edev->state = QEDE_STATE_RECOVERY;
2455
2456	edev->ops->common->recovery_prolog(edev->cdev);
2457
2458	if (curr_state == QEDE_STATE_OPEN)
2459		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2460
2461	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2462
2463	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2464			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2465	if (rc) {
2466		edev->cdev = NULL;
2467		goto err;
2468	}
2469
2470	if (curr_state == QEDE_STATE_OPEN) {
2471		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2472		if (rc)
2473			goto err;
2474
2475		qede_config_rx_mode(edev->ndev);
2476		udp_tunnel_get_rx_info(edev->ndev);
2477	}
2478
2479	edev->state = curr_state;
2480
2481	DP_NOTICE(edev, "Recovery handling is done\n");
2482
2483	return;
2484
2485err:
2486	qede_recovery_failed(edev);
2487}
2488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2490{
2491	struct netdev_queue *netdev_txq;
2492
2493	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2494	if (netif_xmit_stopped(netdev_txq))
2495		return true;
2496
2497	return false;
2498}
2499
2500static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2501{
2502	struct qede_dev *edev = dev;
2503	struct netdev_hw_addr *ha;
2504	int i;
2505
2506	if (edev->ndev->features & NETIF_F_IP_CSUM)
2507		data->feat_flags |= QED_TLV_IP_CSUM;
2508	if (edev->ndev->features & NETIF_F_TSO)
2509		data->feat_flags |= QED_TLV_LSO;
2510
2511	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2512	memset(data->mac[1], 0, ETH_ALEN);
2513	memset(data->mac[2], 0, ETH_ALEN);
2514	/* Copy the first two UC macs */
2515	netif_addr_lock_bh(edev->ndev);
2516	i = 1;
2517	netdev_for_each_uc_addr(ha, edev->ndev) {
2518		ether_addr_copy(data->mac[i++], ha->addr);
2519		if (i == QED_TLV_MAC_COUNT)
2520			break;
2521	}
2522
2523	netif_addr_unlock_bh(edev->ndev);
2524}
2525
2526static void qede_get_eth_tlv_data(void *dev, void *data)
2527{
2528	struct qed_mfw_tlv_eth *etlv = data;
2529	struct qede_dev *edev = dev;
2530	struct qede_fastpath *fp;
2531	int i;
2532
2533	etlv->lso_maxoff_size = 0XFFFF;
2534	etlv->lso_maxoff_size_set = true;
2535	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2536	etlv->lso_minseg_size_set = true;
2537	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2538	etlv->prom_mode_set = true;
2539	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2540	etlv->tx_descr_size_set = true;
2541	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2542	etlv->rx_descr_size_set = true;
2543	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2544	etlv->iov_offload_set = true;
2545
2546	/* Fill information regarding queues; Should be done under the qede
2547	 * lock to guarantee those don't change beneath our feet.
2548	 */
2549	etlv->txqs_empty = true;
2550	etlv->rxqs_empty = true;
2551	etlv->num_txqs_full = 0;
2552	etlv->num_rxqs_full = 0;
2553
2554	__qede_lock(edev);
2555	for_each_queue(i) {
2556		fp = &edev->fp_array[i];
2557		if (fp->type & QEDE_FASTPATH_TX) {
2558			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2559
2560			if (txq->sw_tx_cons != txq->sw_tx_prod)
2561				etlv->txqs_empty = false;
2562			if (qede_is_txq_full(edev, txq))
2563				etlv->num_txqs_full++;
2564		}
2565		if (fp->type & QEDE_FASTPATH_RX) {
2566			if (qede_has_rx_work(fp->rxq))
2567				etlv->rxqs_empty = false;
2568
2569			/* This one is a bit tricky; Firmware might stop
2570			 * placing packets if ring is not yet full.
2571			 * Give an approximation.
2572			 */
2573			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2574			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2575			    RX_RING_SIZE - 100)
2576				etlv->num_rxqs_full++;
2577		}
2578	}
2579	__qede_unlock(edev);
2580
2581	etlv->txqs_empty_set = true;
2582	etlv->rxqs_empty_set = true;
2583	etlv->num_txqs_full_set = true;
2584	etlv->num_rxqs_full_set = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585}
v6.2
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qede NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2020 Marvell International Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/crash_dump.h>
   8#include <linux/module.h>
   9#include <linux/pci.h>
 
  10#include <linux/device.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/skbuff.h>
  14#include <linux/errno.h>
  15#include <linux/list.h>
  16#include <linux/string.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/interrupt.h>
  19#include <asm/byteorder.h>
  20#include <asm/param.h>
  21#include <linux/io.h>
  22#include <linux/netdev_features.h>
  23#include <linux/udp.h>
  24#include <linux/tcp.h>
  25#include <net/udp_tunnel.h>
  26#include <linux/ip.h>
  27#include <net/ipv6.h>
  28#include <net/tcp.h>
  29#include <linux/if_ether.h>
  30#include <linux/if_vlan.h>
  31#include <linux/pkt_sched.h>
  32#include <linux/ethtool.h>
  33#include <linux/in.h>
  34#include <linux/random.h>
  35#include <net/ip6_checksum.h>
  36#include <linux/bitops.h>
  37#include <linux/vmalloc.h>
  38#include <linux/aer.h>
  39#include "qede.h"
  40#include "qede_ptp.h"
  41
 
 
 
  42MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  43MODULE_LICENSE("GPL");
 
  44
  45static uint debug;
  46module_param(debug, uint, 0);
  47MODULE_PARM_DESC(debug, " Default debug msglevel");
  48
  49static const struct qed_eth_ops *qed_ops;
  50
  51#define CHIP_NUM_57980S_40		0x1634
  52#define CHIP_NUM_57980S_10		0x1666
  53#define CHIP_NUM_57980S_MF		0x1636
  54#define CHIP_NUM_57980S_100		0x1644
  55#define CHIP_NUM_57980S_50		0x1654
  56#define CHIP_NUM_57980S_25		0x1656
  57#define CHIP_NUM_57980S_IOV		0x1664
  58#define CHIP_NUM_AH			0x8070
  59#define CHIP_NUM_AH_IOV			0x8090
  60
  61#ifndef PCI_DEVICE_ID_NX2_57980E
  62#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  63#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  64#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  65#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  66#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  67#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
  68#define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
  69#define PCI_DEVICE_ID_AH		CHIP_NUM_AH
  70#define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
  71
  72#endif
  73
  74enum qede_pci_private {
  75	QEDE_PRIVATE_PF,
  76	QEDE_PRIVATE_VF
  77};
  78
  79static const struct pci_device_id qede_pci_tbl[] = {
  80	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
  81	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
  82	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
  83	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
  84	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
  85	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
  86#ifdef CONFIG_QED_SRIOV
  87	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
  88#endif
  89	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
  90#ifdef CONFIG_QED_SRIOV
  91	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
  92#endif
  93	{ 0 }
  94};
  95
  96MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
  97
  98static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  99static pci_ers_result_t
 100qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
 101
 102#define TX_TIMEOUT		(5 * HZ)
 103
 104/* Utilize last protocol index for XDP */
 105#define XDP_PI	11
 106
 107static void qede_remove(struct pci_dev *pdev);
 108static void qede_shutdown(struct pci_dev *pdev);
 109static void qede_link_update(void *dev, struct qed_link_output *link);
 110static void qede_schedule_recovery_handler(void *dev);
 111static void qede_recovery_handler(struct qede_dev *edev);
 112static void qede_schedule_hw_err_handler(void *dev,
 113					 enum qed_hw_err_type err_type);
 114static void qede_get_eth_tlv_data(void *edev, void *data);
 115static void qede_get_generic_tlv_data(void *edev,
 116				      struct qed_generic_tlvs *data);
 117static void qede_generic_hw_err_handler(struct qede_dev *edev);
 118#ifdef CONFIG_QED_SRIOV
 119static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 120			    __be16 vlan_proto)
 121{
 122	struct qede_dev *edev = netdev_priv(ndev);
 123
 124	if (vlan > 4095) {
 125		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 126		return -EINVAL;
 127	}
 128
 129	if (vlan_proto != htons(ETH_P_8021Q))
 130		return -EPROTONOSUPPORT;
 131
 132	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 133		   vlan, vf);
 134
 135	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 136}
 137
 138static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 139{
 140	struct qede_dev *edev = netdev_priv(ndev);
 141
 142	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
 
 
 143
 144	if (!is_valid_ether_addr(mac)) {
 145		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 146		return -EINVAL;
 147	}
 148
 149	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 150}
 151
 152static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 153{
 154	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 155	struct qed_dev_info *qed_info = &edev->dev_info.common;
 156	struct qed_update_vport_params *vport_params;
 157	int rc;
 158
 159	vport_params = vzalloc(sizeof(*vport_params));
 160	if (!vport_params)
 161		return -ENOMEM;
 162	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 163
 164	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 165
 166	/* Enable/Disable Tx switching for PF */
 167	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 168	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
 169		vport_params->vport_id = 0;
 170		vport_params->update_tx_switching_flg = 1;
 171		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
 172		edev->ops->vport_update(edev->cdev, vport_params);
 173	}
 174
 175	vfree(vport_params);
 176	return rc;
 177}
 178#endif
 179
 180static const struct pci_error_handlers qede_err_handler = {
 181	.error_detected = qede_io_error_detected,
 182};
 183
 184static struct pci_driver qede_pci_driver = {
 185	.name = "qede",
 186	.id_table = qede_pci_tbl,
 187	.probe = qede_probe,
 188	.remove = qede_remove,
 189	.shutdown = qede_shutdown,
 190#ifdef CONFIG_QED_SRIOV
 191	.sriov_configure = qede_sriov_configure,
 192#endif
 193	.err_handler = &qede_err_handler,
 194};
 195
 196static struct qed_eth_cb_ops qede_ll_ops = {
 197	{
 198#ifdef CONFIG_RFS_ACCEL
 199		.arfs_filter_op = qede_arfs_filter_op,
 200#endif
 201		.link_update = qede_link_update,
 202		.schedule_recovery_handler = qede_schedule_recovery_handler,
 203		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
 204		.get_generic_tlv_data = qede_get_generic_tlv_data,
 205		.get_protocol_tlv_data = qede_get_eth_tlv_data,
 206	},
 207	.force_mac = qede_force_mac,
 208	.ports_update = qede_udp_ports_update,
 209};
 210
 211static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 212			     void *ptr)
 213{
 214	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 215	struct ethtool_drvinfo drvinfo;
 216	struct qede_dev *edev;
 217
 218	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 219		goto done;
 220
 221	/* Check whether this is a qede device */
 222	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 223		goto done;
 224
 225	memset(&drvinfo, 0, sizeof(drvinfo));
 226	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 227	if (strcmp(drvinfo.driver, "qede"))
 228		goto done;
 229	edev = netdev_priv(ndev);
 230
 231	switch (event) {
 232	case NETDEV_CHANGENAME:
 233		/* Notify qed of the name change */
 234		if (!edev->ops || !edev->ops->common)
 235			goto done;
 236		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
 237		break;
 238	case NETDEV_CHANGEADDR:
 239		edev = netdev_priv(ndev);
 240		qede_rdma_event_changeaddr(edev);
 241		break;
 242	}
 243
 244done:
 245	return NOTIFY_DONE;
 246}
 247
 248static struct notifier_block qede_netdev_notifier = {
 249	.notifier_call = qede_netdev_event,
 250};
 251
 252static
 253int __init qede_init(void)
 254{
 255	int ret;
 256
 257	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
 258
 259	qede_forced_speed_maps_init();
 260
 261	qed_ops = qed_get_eth_ops();
 262	if (!qed_ops) {
 263		pr_notice("Failed to get qed ethtool operations\n");
 264		return -EINVAL;
 265	}
 266
 267	/* Must register notifier before pci ops, since we might miss
 268	 * interface rename after pci probe and netdev registration.
 269	 */
 270	ret = register_netdevice_notifier(&qede_netdev_notifier);
 271	if (ret) {
 272		pr_notice("Failed to register netdevice_notifier\n");
 273		qed_put_eth_ops();
 274		return -EINVAL;
 275	}
 276
 277	ret = pci_register_driver(&qede_pci_driver);
 278	if (ret) {
 279		pr_notice("Failed to register driver\n");
 280		unregister_netdevice_notifier(&qede_netdev_notifier);
 281		qed_put_eth_ops();
 282		return -EINVAL;
 283	}
 284
 285	return 0;
 286}
 287
 288static void __exit qede_cleanup(void)
 289{
 290	if (debug & QED_LOG_INFO_MASK)
 291		pr_info("qede_cleanup called\n");
 292
 293	unregister_netdevice_notifier(&qede_netdev_notifier);
 294	pci_unregister_driver(&qede_pci_driver);
 295	qed_put_eth_ops();
 296}
 297
 298module_init(qede_init);
 299module_exit(qede_cleanup);
 300
 301static int qede_open(struct net_device *ndev);
 302static int qede_close(struct net_device *ndev);
 303
 304void qede_fill_by_demand_stats(struct qede_dev *edev)
 305{
 306	struct qede_stats_common *p_common = &edev->stats.common;
 307	struct qed_eth_stats stats;
 308
 309	edev->ops->get_vport_stats(edev->cdev, &stats);
 310
 311	p_common->no_buff_discards = stats.common.no_buff_discards;
 312	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
 313	p_common->ttl0_discard = stats.common.ttl0_discard;
 314	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
 315	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
 316	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
 317	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
 318	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
 319	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
 320	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
 321	p_common->mac_filter_discards = stats.common.mac_filter_discards;
 322	p_common->gft_filter_drop = stats.common.gft_filter_drop;
 323
 324	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
 325	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
 326	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
 327	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
 328	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
 329	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
 330	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
 331	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
 332	p_common->coalesced_events = stats.common.tpa_coalesced_events;
 333	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
 334	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
 335	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
 336
 337	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
 338	p_common->rx_65_to_127_byte_packets =
 339	    stats.common.rx_65_to_127_byte_packets;
 340	p_common->rx_128_to_255_byte_packets =
 341	    stats.common.rx_128_to_255_byte_packets;
 342	p_common->rx_256_to_511_byte_packets =
 343	    stats.common.rx_256_to_511_byte_packets;
 344	p_common->rx_512_to_1023_byte_packets =
 345	    stats.common.rx_512_to_1023_byte_packets;
 346	p_common->rx_1024_to_1518_byte_packets =
 347	    stats.common.rx_1024_to_1518_byte_packets;
 348	p_common->rx_crc_errors = stats.common.rx_crc_errors;
 349	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
 350	p_common->rx_pause_frames = stats.common.rx_pause_frames;
 351	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
 352	p_common->rx_align_errors = stats.common.rx_align_errors;
 353	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
 354	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
 355	p_common->rx_jabbers = stats.common.rx_jabbers;
 356	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
 357	p_common->rx_fragments = stats.common.rx_fragments;
 358	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
 359	p_common->tx_65_to_127_byte_packets =
 360	    stats.common.tx_65_to_127_byte_packets;
 361	p_common->tx_128_to_255_byte_packets =
 362	    stats.common.tx_128_to_255_byte_packets;
 363	p_common->tx_256_to_511_byte_packets =
 364	    stats.common.tx_256_to_511_byte_packets;
 365	p_common->tx_512_to_1023_byte_packets =
 366	    stats.common.tx_512_to_1023_byte_packets;
 367	p_common->tx_1024_to_1518_byte_packets =
 368	    stats.common.tx_1024_to_1518_byte_packets;
 369	p_common->tx_pause_frames = stats.common.tx_pause_frames;
 370	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
 371	p_common->brb_truncates = stats.common.brb_truncates;
 372	p_common->brb_discards = stats.common.brb_discards;
 373	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
 374	p_common->link_change_count = stats.common.link_change_count;
 375	p_common->ptp_skip_txts = edev->ptp_skip_txts;
 376
 377	if (QEDE_IS_BB(edev)) {
 378		struct qede_stats_bb *p_bb = &edev->stats.bb;
 379
 380		p_bb->rx_1519_to_1522_byte_packets =
 381		    stats.bb.rx_1519_to_1522_byte_packets;
 382		p_bb->rx_1519_to_2047_byte_packets =
 383		    stats.bb.rx_1519_to_2047_byte_packets;
 384		p_bb->rx_2048_to_4095_byte_packets =
 385		    stats.bb.rx_2048_to_4095_byte_packets;
 386		p_bb->rx_4096_to_9216_byte_packets =
 387		    stats.bb.rx_4096_to_9216_byte_packets;
 388		p_bb->rx_9217_to_16383_byte_packets =
 389		    stats.bb.rx_9217_to_16383_byte_packets;
 390		p_bb->tx_1519_to_2047_byte_packets =
 391		    stats.bb.tx_1519_to_2047_byte_packets;
 392		p_bb->tx_2048_to_4095_byte_packets =
 393		    stats.bb.tx_2048_to_4095_byte_packets;
 394		p_bb->tx_4096_to_9216_byte_packets =
 395		    stats.bb.tx_4096_to_9216_byte_packets;
 396		p_bb->tx_9217_to_16383_byte_packets =
 397		    stats.bb.tx_9217_to_16383_byte_packets;
 398		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
 399		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
 400	} else {
 401		struct qede_stats_ah *p_ah = &edev->stats.ah;
 402
 403		p_ah->rx_1519_to_max_byte_packets =
 404		    stats.ah.rx_1519_to_max_byte_packets;
 405		p_ah->tx_1519_to_max_byte_packets =
 406		    stats.ah.tx_1519_to_max_byte_packets;
 407	}
 408}
 409
 410static void qede_get_stats64(struct net_device *dev,
 411			     struct rtnl_link_stats64 *stats)
 412{
 413	struct qede_dev *edev = netdev_priv(dev);
 414	struct qede_stats_common *p_common;
 415
 416	qede_fill_by_demand_stats(edev);
 417	p_common = &edev->stats.common;
 418
 419	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
 420			    p_common->rx_bcast_pkts;
 421	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
 422			    p_common->tx_bcast_pkts;
 423
 424	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
 425			  p_common->rx_bcast_bytes;
 426	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
 427			  p_common->tx_bcast_bytes;
 428
 429	stats->tx_errors = p_common->tx_err_drop_pkts;
 430	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
 431
 432	stats->rx_fifo_errors = p_common->no_buff_discards;
 433
 434	if (QEDE_IS_BB(edev))
 435		stats->collisions = edev->stats.bb.tx_total_collisions;
 436	stats->rx_crc_errors = p_common->rx_crc_errors;
 437	stats->rx_frame_errors = p_common->rx_align_errors;
 438}
 439
 440#ifdef CONFIG_QED_SRIOV
 441static int qede_get_vf_config(struct net_device *dev, int vfidx,
 442			      struct ifla_vf_info *ivi)
 443{
 444	struct qede_dev *edev = netdev_priv(dev);
 445
 446	if (!edev->ops)
 447		return -EINVAL;
 448
 449	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
 450}
 451
 452static int qede_set_vf_rate(struct net_device *dev, int vfidx,
 453			    int min_tx_rate, int max_tx_rate)
 454{
 455	struct qede_dev *edev = netdev_priv(dev);
 456
 457	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
 458					max_tx_rate);
 459}
 460
 461static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
 462{
 463	struct qede_dev *edev = netdev_priv(dev);
 464
 465	if (!edev->ops)
 466		return -EINVAL;
 467
 468	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
 469}
 470
 471static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
 472				  int link_state)
 473{
 474	struct qede_dev *edev = netdev_priv(dev);
 475
 476	if (!edev->ops)
 477		return -EINVAL;
 478
 479	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
 480}
 481
 482static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
 483{
 484	struct qede_dev *edev = netdev_priv(dev);
 485
 486	if (!edev->ops)
 487		return -EINVAL;
 488
 489	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
 490}
 491#endif
 492
 493static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 494{
 495	struct qede_dev *edev = netdev_priv(dev);
 496
 497	if (!netif_running(dev))
 498		return -EAGAIN;
 499
 500	switch (cmd) {
 501	case SIOCSHWTSTAMP:
 502		return qede_ptp_hw_ts(edev, ifr);
 503	default:
 504		DP_VERBOSE(edev, QED_MSG_DEBUG,
 505			   "default IOCTL cmd 0x%x\n", cmd);
 506		return -EOPNOTSUPP;
 507	}
 508
 509	return 0;
 510}
 511
 512static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
 513{
 514	char *p_sb = (char *)fp->sb_info->sb_virt;
 515	u32 sb_size, i;
 516
 517	sb_size = sizeof(struct status_block);
 518
 519	for (i = 0; i < sb_size; i += 8)
 520		DP_NOTICE(edev,
 521			  "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
 522			  p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
 523			  p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
 524}
 525
 526static void
 527qede_txq_fp_log_metadata(struct qede_dev *edev,
 528			 struct qede_fastpath *fp, struct qede_tx_queue *txq)
 529{
 530	struct qed_chain *p_chain = &txq->tx_pbl;
 531
 532	/* Dump txq/fp/sb ids etc. other metadata */
 533	DP_NOTICE(edev,
 534		  "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
 535		  fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
 536		  p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
 537
 538	/* Dump all the relevant prod/cons indexes */
 539	DP_NOTICE(edev,
 540		  "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
 541		  le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
 542		  qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
 543}
 544
 545static void
 546qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
 547{
 548	struct qed_sb_info_dbg sb_dbg;
 549	int rc;
 550
 551	/* sb info */
 552	qede_fp_sb_dump(edev, fp);
 553
 554	memset(&sb_dbg, 0, sizeof(sb_dbg));
 555	rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
 556
 557	DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
 558		  sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
 559
 560	/* report to mfw */
 561	edev->ops->common->mfw_report(edev->cdev,
 562				      "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
 563				      txq->index, le16_to_cpu(*txq->hw_cons_ptr),
 564				      qed_chain_get_cons_idx(&txq->tx_pbl),
 565				      qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
 566	if (!rc)
 567		edev->ops->common->mfw_report(edev->cdev,
 568					      "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
 569					      txq->index, fp->sb_info->igu_sb_id,
 570					      sb_dbg.igu_prod, sb_dbg.igu_cons,
 571					      sb_dbg.pi[TX_PI(txq->cos)]);
 572}
 573
 574static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
 575{
 576	struct qede_dev *edev = netdev_priv(dev);
 577	int i;
 578
 579	netif_carrier_off(dev);
 580	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
 581
 582	for_each_queue(i) {
 583		struct qede_tx_queue *txq;
 584		struct qede_fastpath *fp;
 585		int cos;
 586
 587		fp = &edev->fp_array[i];
 588		if (!(fp->type & QEDE_FASTPATH_TX))
 589			continue;
 590
 591		for_each_cos_in_txq(edev, cos) {
 592			txq = &fp->txq[cos];
 593
 594			/* Dump basic metadata for all queues */
 595			qede_txq_fp_log_metadata(edev, fp, txq);
 596
 597			if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
 598			    qed_chain_get_prod_idx(&txq->tx_pbl))
 599				qede_tx_log_print(edev, fp, txq);
 600		}
 601	}
 602
 603	if (IS_VF(edev))
 604		return;
 605
 606	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
 607	    edev->state == QEDE_STATE_RECOVERY) {
 608		DP_INFO(edev,
 609			"Avoid handling a Tx timeout while another HW error is being handled\n");
 610		return;
 611	}
 612
 613	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
 614	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
 615	schedule_delayed_work(&edev->sp_task, 0);
 616}
 617
 618static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
 619{
 620	struct qede_dev *edev = netdev_priv(ndev);
 621	int cos, count, offset;
 622
 623	if (num_tc > edev->dev_info.num_tc)
 624		return -EINVAL;
 625
 626	netdev_reset_tc(ndev);
 627	netdev_set_num_tc(ndev, num_tc);
 628
 629	for_each_cos_in_txq(edev, cos) {
 630		count = QEDE_TSS_COUNT(edev);
 631		offset = cos * QEDE_TSS_COUNT(edev);
 632		netdev_set_tc_queue(ndev, cos, count, offset);
 633	}
 634
 635	return 0;
 636}
 637
 638static int
 639qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
 640		__be16 proto)
 641{
 642	switch (f->command) {
 643	case FLOW_CLS_REPLACE:
 644		return qede_add_tc_flower_fltr(edev, proto, f);
 645	case FLOW_CLS_DESTROY:
 646		return qede_delete_flow_filter(edev, f->cookie);
 647	default:
 648		return -EOPNOTSUPP;
 649	}
 650}
 651
 652static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 653				  void *cb_priv)
 654{
 655	struct flow_cls_offload *f;
 656	struct qede_dev *edev = cb_priv;
 657
 658	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
 659		return -EOPNOTSUPP;
 660
 661	switch (type) {
 662	case TC_SETUP_CLSFLOWER:
 663		f = type_data;
 664		return qede_set_flower(edev, f, f->common.protocol);
 665	default:
 666		return -EOPNOTSUPP;
 667	}
 668}
 669
 670static LIST_HEAD(qede_block_cb_list);
 671
 672static int
 673qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
 674		      void *type_data)
 675{
 676	struct qede_dev *edev = netdev_priv(dev);
 677	struct tc_mqprio_qopt *mqprio;
 678
 679	switch (type) {
 680	case TC_SETUP_BLOCK:
 681		return flow_block_cb_setup_simple(type_data,
 682						  &qede_block_cb_list,
 683						  qede_setup_tc_block_cb,
 684						  edev, edev, true);
 685	case TC_SETUP_QDISC_MQPRIO:
 686		mqprio = type_data;
 687
 688		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 689		return qede_setup_tc(dev, mqprio->num_tc);
 690	default:
 691		return -EOPNOTSUPP;
 692	}
 693}
 694
 695static const struct net_device_ops qede_netdev_ops = {
 696	.ndo_open		= qede_open,
 697	.ndo_stop		= qede_close,
 698	.ndo_start_xmit		= qede_start_xmit,
 699	.ndo_select_queue	= qede_select_queue,
 700	.ndo_set_rx_mode	= qede_set_rx_mode,
 701	.ndo_set_mac_address	= qede_set_mac_addr,
 702	.ndo_validate_addr	= eth_validate_addr,
 703	.ndo_change_mtu		= qede_change_mtu,
 704	.ndo_eth_ioctl		= qede_ioctl,
 705	.ndo_tx_timeout		= qede_tx_timeout,
 706#ifdef CONFIG_QED_SRIOV
 707	.ndo_set_vf_mac		= qede_set_vf_mac,
 708	.ndo_set_vf_vlan	= qede_set_vf_vlan,
 709	.ndo_set_vf_trust	= qede_set_vf_trust,
 710#endif
 711	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 712	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 713	.ndo_fix_features	= qede_fix_features,
 714	.ndo_set_features	= qede_set_features,
 715	.ndo_get_stats64	= qede_get_stats64,
 716#ifdef CONFIG_QED_SRIOV
 717	.ndo_set_vf_link_state	= qede_set_vf_link_state,
 718	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
 719	.ndo_get_vf_config	= qede_get_vf_config,
 720	.ndo_set_vf_rate	= qede_set_vf_rate,
 721#endif
 722	.ndo_features_check	= qede_features_check,
 723	.ndo_bpf		= qede_xdp,
 
 
 724#ifdef CONFIG_RFS_ACCEL
 725	.ndo_rx_flow_steer	= qede_rx_flow_steer,
 726#endif
 727	.ndo_xdp_xmit		= qede_xdp_transmit,
 728	.ndo_setup_tc		= qede_setup_tc_offload,
 729};
 730
 731static const struct net_device_ops qede_netdev_vf_ops = {
 732	.ndo_open		= qede_open,
 733	.ndo_stop		= qede_close,
 734	.ndo_start_xmit		= qede_start_xmit,
 735	.ndo_select_queue	= qede_select_queue,
 736	.ndo_set_rx_mode	= qede_set_rx_mode,
 737	.ndo_set_mac_address	= qede_set_mac_addr,
 738	.ndo_validate_addr	= eth_validate_addr,
 739	.ndo_change_mtu		= qede_change_mtu,
 740	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 741	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 742	.ndo_fix_features	= qede_fix_features,
 743	.ndo_set_features	= qede_set_features,
 744	.ndo_get_stats64	= qede_get_stats64,
 745	.ndo_features_check	= qede_features_check,
 
 
 746};
 747
 748static const struct net_device_ops qede_netdev_vf_xdp_ops = {
 749	.ndo_open		= qede_open,
 750	.ndo_stop		= qede_close,
 751	.ndo_start_xmit		= qede_start_xmit,
 752	.ndo_select_queue	= qede_select_queue,
 753	.ndo_set_rx_mode	= qede_set_rx_mode,
 754	.ndo_set_mac_address	= qede_set_mac_addr,
 755	.ndo_validate_addr	= eth_validate_addr,
 756	.ndo_change_mtu		= qede_change_mtu,
 757	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 758	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 759	.ndo_fix_features	= qede_fix_features,
 760	.ndo_set_features	= qede_set_features,
 761	.ndo_get_stats64	= qede_get_stats64,
 762	.ndo_features_check	= qede_features_check,
 763	.ndo_bpf		= qede_xdp,
 764	.ndo_xdp_xmit		= qede_xdp_transmit,
 
 765};
 766
 767/* -------------------------------------------------------------------------
 768 * START OF PROBE / REMOVE
 769 * -------------------------------------------------------------------------
 770 */
 771
 772static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
 773					    struct pci_dev *pdev,
 774					    struct qed_dev_eth_info *info,
 775					    u32 dp_module, u8 dp_level)
 776{
 777	struct net_device *ndev;
 778	struct qede_dev *edev;
 779
 780	ndev = alloc_etherdev_mqs(sizeof(*edev),
 781				  info->num_queues * info->num_tc,
 782				  info->num_queues);
 783	if (!ndev) {
 784		pr_err("etherdev allocation failed\n");
 785		return NULL;
 786	}
 787
 788	edev = netdev_priv(ndev);
 789	edev->ndev = ndev;
 790	edev->cdev = cdev;
 791	edev->pdev = pdev;
 792	edev->dp_module = dp_module;
 793	edev->dp_level = dp_level;
 794	edev->ops = qed_ops;
 795
 796	if (is_kdump_kernel()) {
 797		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
 798		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
 799	} else {
 800		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
 801		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 802	}
 803
 804	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
 805		info->num_queues, info->num_queues);
 806
 807	SET_NETDEV_DEV(ndev, &pdev->dev);
 808
 809	memset(&edev->stats, 0, sizeof(edev->stats));
 810	memcpy(&edev->dev_info, info, sizeof(*info));
 811
 812	/* As ethtool doesn't have the ability to show WoL behavior as
 813	 * 'default', if device supports it declare it's enabled.
 814	 */
 815	if (edev->dev_info.common.wol_support)
 816		edev->wol_enabled = true;
 817
 818	INIT_LIST_HEAD(&edev->vlan_list);
 819
 820	return edev;
 821}
 822
 823static void qede_init_ndev(struct qede_dev *edev)
 824{
 825	struct net_device *ndev = edev->ndev;
 826	struct pci_dev *pdev = edev->pdev;
 827	bool udp_tunnel_enable = false;
 828	netdev_features_t hw_features;
 829
 830	pci_set_drvdata(pdev, ndev);
 831
 832	ndev->mem_start = edev->dev_info.common.pci_mem_start;
 833	ndev->base_addr = ndev->mem_start;
 834	ndev->mem_end = edev->dev_info.common.pci_mem_end;
 835	ndev->irq = edev->dev_info.common.pci_irq;
 836
 837	ndev->watchdog_timeo = TX_TIMEOUT;
 838
 839	if (IS_VF(edev)) {
 840		if (edev->dev_info.xdp_supported)
 841			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
 842		else
 843			ndev->netdev_ops = &qede_netdev_vf_ops;
 844	} else {
 845		ndev->netdev_ops = &qede_netdev_ops;
 846	}
 847
 848	qede_set_ethtool_ops(ndev);
 849
 850	ndev->priv_flags |= IFF_UNICAST_FLT;
 851
 852	/* user-changeble features */
 853	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
 854		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 855		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
 856
 857	if (edev->dev_info.common.b_arfs_capable)
 858		hw_features |= NETIF_F_NTUPLE;
 859
 860	if (edev->dev_info.common.vxlan_enable ||
 861	    edev->dev_info.common.geneve_enable)
 862		udp_tunnel_enable = true;
 863
 864	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
 865		hw_features |= NETIF_F_TSO_ECN;
 866		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 867					NETIF_F_SG | NETIF_F_TSO |
 868					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
 869					NETIF_F_RXCSUM;
 870	}
 871
 872	if (udp_tunnel_enable) {
 873		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
 874				NETIF_F_GSO_UDP_TUNNEL_CSUM);
 875		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
 876					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
 877
 878		qede_set_udp_tunnels(edev);
 879	}
 880
 881	if (edev->dev_info.common.gre_enable) {
 882		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
 883		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
 884					  NETIF_F_GSO_GRE_CSUM);
 885	}
 886
 887	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 888			      NETIF_F_HIGHDMA;
 889	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 890			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
 891			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
 892
 893	ndev->hw_features = hw_features;
 894
 895	/* MTU range: 46 - 9600 */
 896	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
 897	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
 898
 899	/* Set network device HW mac */
 900	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
 901
 902	ndev->mtu = edev->dev_info.common.mtu;
 903}
 904
 905/* This function converts from 32b param to two params of level and module
 906 * Input 32b decoding:
 907 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
 908 * 'happy' flow, e.g. memory allocation failed.
 909 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
 910 * and provide important parameters.
 911 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
 912 * module. VERBOSE prints are for tracking the specific flow in low level.
 913 *
 914 * Notice that the level should be that of the lowest required logs.
 915 */
 916void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
 917{
 918	*p_dp_level = QED_LEVEL_NOTICE;
 919	*p_dp_module = 0;
 920
 921	if (debug & QED_LOG_VERBOSE_MASK) {
 922		*p_dp_level = QED_LEVEL_VERBOSE;
 923		*p_dp_module = (debug & 0x3FFFFFFF);
 924	} else if (debug & QED_LOG_INFO_MASK) {
 925		*p_dp_level = QED_LEVEL_INFO;
 926	} else if (debug & QED_LOG_NOTICE_MASK) {
 927		*p_dp_level = QED_LEVEL_NOTICE;
 928	}
 929}
 930
 931static void qede_free_fp_array(struct qede_dev *edev)
 932{
 933	if (edev->fp_array) {
 934		struct qede_fastpath *fp;
 935		int i;
 936
 937		for_each_queue(i) {
 938			fp = &edev->fp_array[i];
 939
 940			kfree(fp->sb_info);
 941			/* Handle mem alloc failure case where qede_init_fp
 942			 * didn't register xdp_rxq_info yet.
 943			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
 944			 */
 945			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
 946				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
 947			kfree(fp->rxq);
 948			kfree(fp->xdp_tx);
 949			kfree(fp->txq);
 950		}
 951		kfree(edev->fp_array);
 952	}
 953
 954	edev->num_queues = 0;
 955	edev->fp_num_tx = 0;
 956	edev->fp_num_rx = 0;
 957}
 958
 959static int qede_alloc_fp_array(struct qede_dev *edev)
 960{
 961	u8 fp_combined, fp_rx = edev->fp_num_rx;
 962	struct qede_fastpath *fp;
 963	void *mem;
 964	int i;
 965
 966	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
 967				 sizeof(*edev->fp_array), GFP_KERNEL);
 968	if (!edev->fp_array) {
 969		DP_NOTICE(edev, "fp array allocation failed\n");
 970		goto err;
 971	}
 972
 973	mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
 974		       sizeof(*edev->coal_entry), GFP_KERNEL);
 975	if (!mem) {
 976		DP_ERR(edev, "coalesce entry allocation failed\n");
 977		kfree(edev->coal_entry);
 978		goto err;
 979	}
 980	edev->coal_entry = mem;
 981
 982	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
 983
 984	/* Allocate the FP elements for Rx queues followed by combined and then
 985	 * the Tx. This ordering should be maintained so that the respective
 986	 * queues (Rx or Tx) will be together in the fastpath array and the
 987	 * associated ids will be sequential.
 988	 */
 989	for_each_queue(i) {
 990		fp = &edev->fp_array[i];
 991
 992		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
 993		if (!fp->sb_info) {
 994			DP_NOTICE(edev, "sb info struct allocation failed\n");
 995			goto err;
 996		}
 997
 998		if (fp_rx) {
 999			fp->type = QEDE_FASTPATH_RX;
1000			fp_rx--;
1001		} else if (fp_combined) {
1002			fp->type = QEDE_FASTPATH_COMBINED;
1003			fp_combined--;
1004		} else {
1005			fp->type = QEDE_FASTPATH_TX;
1006		}
1007
1008		if (fp->type & QEDE_FASTPATH_TX) {
1009			fp->txq = kcalloc(edev->dev_info.num_tc,
1010					  sizeof(*fp->txq), GFP_KERNEL);
1011			if (!fp->txq)
1012				goto err;
1013		}
1014
1015		if (fp->type & QEDE_FASTPATH_RX) {
1016			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1017			if (!fp->rxq)
1018				goto err;
1019
1020			if (edev->xdp_prog) {
1021				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1022						     GFP_KERNEL);
1023				if (!fp->xdp_tx)
1024					goto err;
1025				fp->type |= QEDE_FASTPATH_XDP;
1026			}
1027		}
1028	}
1029
1030	return 0;
1031err:
1032	qede_free_fp_array(edev);
1033	return -ENOMEM;
1034}
1035
1036/* The qede lock is used to protect driver state change and driver flows that
1037 * are not reentrant.
1038 */
1039void __qede_lock(struct qede_dev *edev)
1040{
1041	mutex_lock(&edev->qede_lock);
1042}
1043
1044void __qede_unlock(struct qede_dev *edev)
1045{
1046	mutex_unlock(&edev->qede_lock);
1047}
1048
1049/* This version of the lock should be used when acquiring the RTNL lock is also
1050 * needed in addition to the internal qede lock.
1051 */
1052static void qede_lock(struct qede_dev *edev)
1053{
1054	rtnl_lock();
1055	__qede_lock(edev);
1056}
1057
1058static void qede_unlock(struct qede_dev *edev)
1059{
1060	__qede_unlock(edev);
1061	rtnl_unlock();
1062}
1063
1064static void qede_sp_task(struct work_struct *work)
1065{
1066	struct qede_dev *edev = container_of(work, struct qede_dev,
1067					     sp_task.work);
1068
1069	/* Disable execution of this deferred work once
1070	 * qede removal is in progress, this stop any future
1071	 * scheduling of sp_task.
1072	 */
1073	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1074		return;
1075
1076	/* The locking scheme depends on the specific flag:
1077	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1078	 * ensure that ongoing flows are ended and new ones are not started.
1079	 * In other cases - only the internal qede lock should be acquired.
1080	 */
1081
1082	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1083#ifdef CONFIG_QED_SRIOV
1084		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1085		 * The recovery of the active VFs is currently not supported.
1086		 */
1087		if (pci_num_vf(edev->pdev))
1088			qede_sriov_configure(edev->pdev, 0);
1089#endif
1090		qede_lock(edev);
1091		qede_recovery_handler(edev);
1092		qede_unlock(edev);
1093	}
1094
1095	__qede_lock(edev);
1096
1097	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1098		if (edev->state == QEDE_STATE_OPEN)
1099			qede_config_rx_mode(edev->ndev);
1100
1101#ifdef CONFIG_RFS_ACCEL
1102	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1103		if (edev->state == QEDE_STATE_OPEN)
1104			qede_process_arfs_filters(edev, false);
1105	}
1106#endif
1107	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1108		qede_generic_hw_err_handler(edev);
1109	__qede_unlock(edev);
1110
1111	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1112#ifdef CONFIG_QED_SRIOV
1113		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1114		 * The recovery of the active VFs is currently not supported.
1115		 */
1116		if (pci_num_vf(edev->pdev))
1117			qede_sriov_configure(edev->pdev, 0);
1118#endif
1119		edev->ops->common->recovery_process(edev->cdev);
1120	}
1121}
1122
1123static void qede_update_pf_params(struct qed_dev *cdev)
1124{
1125	struct qed_pf_params pf_params;
1126	u16 num_cons;
1127
1128	/* 64 rx + 64 tx + 64 XDP */
1129	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1130
1131	/* 1 rx + 1 xdp + max tx cos */
1132	num_cons = QED_MIN_L2_CONS;
1133
1134	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1135
1136	/* Same for VFs - make sure they'll have sufficient connections
1137	 * to support XDP Tx queues.
1138	 */
1139	pf_params.eth_pf_params.num_vf_cons = 48;
1140
1141	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1142	qed_ops->common->update_pf_params(cdev, &pf_params);
1143}
1144
1145#define QEDE_FW_VER_STR_SIZE	80
1146
1147static void qede_log_probe(struct qede_dev *edev)
1148{
1149	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1150	u8 buf[QEDE_FW_VER_STR_SIZE];
1151	size_t left_size;
1152
1153	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1154		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1155		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1156		 p_dev_info->fw_eng,
1157		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1158		 QED_MFW_VERSION_3_OFFSET,
1159		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1160		 QED_MFW_VERSION_2_OFFSET,
1161		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1162		 QED_MFW_VERSION_1_OFFSET,
1163		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1164		 QED_MFW_VERSION_0_OFFSET);
1165
1166	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1167	if (p_dev_info->mbi_version && left_size)
1168		snprintf(buf + strlen(buf), left_size,
1169			 " [MBI %d.%d.%d]",
1170			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1171			 QED_MBI_VERSION_2_OFFSET,
1172			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1173			 QED_MBI_VERSION_1_OFFSET,
1174			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1175			 QED_MBI_VERSION_0_OFFSET);
1176
1177	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1178		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1179		buf, edev->ndev->name);
1180}
1181
1182enum qede_probe_mode {
1183	QEDE_PROBE_NORMAL,
1184	QEDE_PROBE_RECOVERY,
1185};
1186
1187static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1188			bool is_vf, enum qede_probe_mode mode)
1189{
1190	struct qed_probe_params probe_params;
1191	struct qed_slowpath_params sp_params;
1192	struct qed_dev_eth_info dev_info;
1193	struct qede_dev *edev;
1194	struct qed_dev *cdev;
1195	int rc;
1196
1197	if (unlikely(dp_level & QED_LEVEL_INFO))
1198		pr_notice("Starting qede probe\n");
1199
1200	memset(&probe_params, 0, sizeof(probe_params));
1201	probe_params.protocol = QED_PROTOCOL_ETH;
1202	probe_params.dp_module = dp_module;
1203	probe_params.dp_level = dp_level;
1204	probe_params.is_vf = is_vf;
1205	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1206	cdev = qed_ops->common->probe(pdev, &probe_params);
1207	if (!cdev) {
1208		rc = -ENODEV;
1209		goto err0;
1210	}
1211
1212	qede_update_pf_params(cdev);
1213
1214	/* Start the Slowpath-process */
1215	memset(&sp_params, 0, sizeof(sp_params));
1216	sp_params.int_mode = QED_INT_MODE_MSIX;
1217	strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
 
 
 
 
1218	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1219	if (rc) {
1220		pr_notice("Cannot start slowpath\n");
1221		goto err1;
1222	}
1223
1224	/* Learn information crucial for qede to progress */
1225	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1226	if (rc)
1227		goto err2;
1228
1229	if (mode != QEDE_PROBE_RECOVERY) {
1230		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1231					   dp_level);
1232		if (!edev) {
1233			rc = -ENOMEM;
1234			goto err2;
1235		}
1236
1237		edev->devlink = qed_ops->common->devlink_register(cdev);
1238		if (IS_ERR(edev->devlink)) {
1239			DP_NOTICE(edev, "Cannot register devlink\n");
1240			rc = PTR_ERR(edev->devlink);
1241			edev->devlink = NULL;
1242			goto err3;
1243		}
1244	} else {
1245		struct net_device *ndev = pci_get_drvdata(pdev);
1246		struct qed_devlink *qdl;
1247
1248		edev = netdev_priv(ndev);
1249		qdl = devlink_priv(edev->devlink);
1250		qdl->cdev = cdev;
1251		edev->cdev = cdev;
1252		memset(&edev->stats, 0, sizeof(edev->stats));
1253		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1254	}
1255
1256	if (is_vf)
1257		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1258
1259	qede_init_ndev(edev);
1260
1261	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1262	if (rc)
1263		goto err3;
1264
1265	if (mode != QEDE_PROBE_RECOVERY) {
1266		/* Prepare the lock prior to the registration of the netdev,
1267		 * as once it's registered we might reach flows requiring it
1268		 * [it's even possible to reach a flow needing it directly
1269		 * from there, although it's unlikely].
1270		 */
1271		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1272		mutex_init(&edev->qede_lock);
1273
1274		rc = register_netdev(edev->ndev);
1275		if (rc) {
1276			DP_NOTICE(edev, "Cannot register net-device\n");
1277			goto err4;
1278		}
1279	}
1280
1281	edev->ops->common->set_name(cdev, edev->ndev->name);
1282
1283	/* PTP not supported on VFs */
1284	if (!is_vf)
1285		qede_ptp_enable(edev);
1286
1287	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1288
1289#ifdef CONFIG_DCB
1290	if (!IS_VF(edev))
1291		qede_set_dcbnl_ops(edev->ndev);
1292#endif
1293
1294	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1295
1296	qede_log_probe(edev);
1297	return 0;
1298
1299err4:
1300	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1301err3:
1302	if (mode != QEDE_PROBE_RECOVERY)
1303		free_netdev(edev->ndev);
1304	else
1305		edev->cdev = NULL;
1306err2:
1307	qed_ops->common->slowpath_stop(cdev);
1308err1:
1309	qed_ops->common->remove(cdev);
1310err0:
1311	return rc;
1312}
1313
1314static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1315{
1316	bool is_vf = false;
1317	u32 dp_module = 0;
1318	u8 dp_level = 0;
1319
1320	switch ((enum qede_pci_private)id->driver_data) {
1321	case QEDE_PRIVATE_VF:
1322		if (debug & QED_LOG_VERBOSE_MASK)
1323			dev_err(&pdev->dev, "Probing a VF\n");
1324		is_vf = true;
1325		break;
1326	default:
1327		if (debug & QED_LOG_VERBOSE_MASK)
1328			dev_err(&pdev->dev, "Probing a PF\n");
1329	}
1330
1331	qede_config_debug(debug, &dp_module, &dp_level);
1332
1333	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1334			    QEDE_PROBE_NORMAL);
1335}
1336
1337enum qede_remove_mode {
1338	QEDE_REMOVE_NORMAL,
1339	QEDE_REMOVE_RECOVERY,
1340};
1341
1342static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1343{
1344	struct net_device *ndev = pci_get_drvdata(pdev);
1345	struct qede_dev *edev;
1346	struct qed_dev *cdev;
1347
1348	if (!ndev) {
1349		dev_info(&pdev->dev, "Device has already been removed\n");
1350		return;
1351	}
1352
1353	edev = netdev_priv(ndev);
1354	cdev = edev->cdev;
1355
1356	DP_INFO(edev, "Starting qede_remove\n");
1357
1358	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1359
1360	if (mode != QEDE_REMOVE_RECOVERY) {
1361		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1362		unregister_netdev(ndev);
1363
1364		cancel_delayed_work_sync(&edev->sp_task);
1365
1366		edev->ops->common->set_power_state(cdev, PCI_D0);
1367
1368		pci_set_drvdata(pdev, NULL);
1369	}
1370
1371	qede_ptp_disable(edev);
1372
1373	/* Use global ops since we've freed edev */
1374	qed_ops->common->slowpath_stop(cdev);
1375	if (system_state == SYSTEM_POWER_OFF)
1376		return;
1377
1378	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1379		qed_ops->common->devlink_unregister(edev->devlink);
1380		edev->devlink = NULL;
1381	}
1382	qed_ops->common->remove(cdev);
1383	edev->cdev = NULL;
1384
1385	/* Since this can happen out-of-sync with other flows,
1386	 * don't release the netdevice until after slowpath stop
1387	 * has been called to guarantee various other contexts
1388	 * [e.g., QED register callbacks] won't break anything when
1389	 * accessing the netdevice.
1390	 */
1391	if (mode != QEDE_REMOVE_RECOVERY) {
1392		kfree(edev->coal_entry);
1393		free_netdev(ndev);
1394	}
1395
1396	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1397}
1398
1399static void qede_remove(struct pci_dev *pdev)
1400{
1401	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1402}
1403
1404static void qede_shutdown(struct pci_dev *pdev)
1405{
1406	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1407}
1408
1409/* -------------------------------------------------------------------------
1410 * START OF LOAD / UNLOAD
1411 * -------------------------------------------------------------------------
1412 */
1413
1414static int qede_set_num_queues(struct qede_dev *edev)
1415{
1416	int rc;
1417	u16 rss_num;
1418
1419	/* Setup queues according to possible resources*/
1420	if (edev->req_queues)
1421		rss_num = edev->req_queues;
1422	else
1423		rss_num = netif_get_num_default_rss_queues() *
1424			  edev->dev_info.common.num_hwfns;
1425
1426	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1427
1428	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1429	if (rc > 0) {
1430		/* Managed to request interrupts for our queues */
1431		edev->num_queues = rc;
1432		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1433			QEDE_QUEUE_CNT(edev), rss_num);
1434		rc = 0;
1435	}
1436
1437	edev->fp_num_tx = edev->req_num_tx;
1438	edev->fp_num_rx = edev->req_num_rx;
1439
1440	return rc;
1441}
1442
1443static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1444			     u16 sb_id)
1445{
1446	if (sb_info->sb_virt) {
1447		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1448					      QED_SB_TYPE_L2_QUEUE);
1449		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1450				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1451		memset(sb_info, 0, sizeof(*sb_info));
1452	}
1453}
1454
1455/* This function allocates fast-path status block memory */
1456static int qede_alloc_mem_sb(struct qede_dev *edev,
1457			     struct qed_sb_info *sb_info, u16 sb_id)
1458{
1459	struct status_block *sb_virt;
1460	dma_addr_t sb_phys;
1461	int rc;
1462
1463	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1464				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1465	if (!sb_virt) {
1466		DP_ERR(edev, "Status block allocation failed\n");
1467		return -ENOMEM;
1468	}
1469
1470	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1471					sb_virt, sb_phys, sb_id,
1472					QED_SB_TYPE_L2_QUEUE);
1473	if (rc) {
1474		DP_ERR(edev, "Status block initialization failed\n");
1475		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1476				  sb_virt, sb_phys);
1477		return rc;
1478	}
1479
1480	return 0;
1481}
1482
1483static void qede_free_rx_buffers(struct qede_dev *edev,
1484				 struct qede_rx_queue *rxq)
1485{
1486	u16 i;
1487
1488	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1489		struct sw_rx_data *rx_buf;
1490		struct page *data;
1491
1492		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1493		data = rx_buf->data;
1494
1495		dma_unmap_page(&edev->pdev->dev,
1496			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1497
1498		rx_buf->data = NULL;
1499		__free_page(data);
1500	}
1501}
1502
1503static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1504{
1505	/* Free rx buffers */
1506	qede_free_rx_buffers(edev, rxq);
1507
1508	/* Free the parallel SW ring */
1509	kfree(rxq->sw_rx_ring);
1510
1511	/* Free the real RQ ring used by FW */
1512	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1513	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1514}
1515
1516static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1517{
1518	int i;
1519
1520	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1521		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1522
1523		tpa_info->state = QEDE_AGG_STATE_NONE;
1524	}
1525}
1526
1527/* This function allocates all memory needed per Rx queue */
1528static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1529{
1530	struct qed_chain_init_params params = {
1531		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1532		.num_elems	= RX_RING_SIZE,
1533	};
1534	struct qed_dev *cdev = edev->cdev;
1535	int i, rc, size;
1536
1537	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1538
1539	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1540
1541	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1542	size = rxq->rx_headroom +
1543	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1544
1545	/* Make sure that the headroom and  payload fit in a single page */
1546	if (rxq->rx_buf_size + size > PAGE_SIZE)
1547		rxq->rx_buf_size = PAGE_SIZE - size;
1548
1549	/* Segment size to split a page in multiple equal parts,
1550	 * unless XDP is used in which case we'd use the entire page.
1551	 */
1552	if (!edev->xdp_prog) {
1553		size = size + rxq->rx_buf_size;
1554		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1555	} else {
1556		rxq->rx_buf_seg_size = PAGE_SIZE;
1557		edev->ndev->features &= ~NETIF_F_GRO_HW;
1558	}
1559
1560	/* Allocate the parallel driver ring for Rx buffers */
1561	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1562	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1563	if (!rxq->sw_rx_ring) {
1564		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1565		rc = -ENOMEM;
1566		goto err;
1567	}
1568
1569	/* Allocate FW Rx ring  */
1570	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1571	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1572	params.elem_size = sizeof(struct eth_rx_bd);
1573
1574	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
 
 
1575	if (rc)
1576		goto err;
1577
1578	/* Allocate FW completion ring */
1579	params.mode = QED_CHAIN_MODE_PBL;
1580	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1581	params.elem_size = sizeof(union eth_rx_cqe);
1582
1583	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
 
 
1584	if (rc)
1585		goto err;
1586
1587	/* Allocate buffers for the Rx ring */
1588	rxq->filled_buffers = 0;
1589	for (i = 0; i < rxq->num_rx_buffers; i++) {
1590		rc = qede_alloc_rx_buffer(rxq, false);
1591		if (rc) {
1592			DP_ERR(edev,
1593			       "Rx buffers allocation failed at index %d\n", i);
1594			goto err;
1595		}
1596	}
1597
1598	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1599	if (!edev->gro_disable)
1600		qede_set_tpa_param(rxq);
1601err:
1602	return rc;
1603}
1604
1605static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1606{
1607	/* Free the parallel SW ring */
1608	if (txq->is_xdp)
1609		kfree(txq->sw_tx_ring.xdp);
1610	else
1611		kfree(txq->sw_tx_ring.skbs);
1612
1613	/* Free the real RQ ring used by FW */
1614	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1615}
1616
1617/* This function allocates all memory needed per Tx queue */
1618static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1619{
1620	struct qed_chain_init_params params = {
1621		.mode		= QED_CHAIN_MODE_PBL,
1622		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1623		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1624		.num_elems	= edev->q_num_tx_buffers,
1625		.elem_size	= sizeof(union eth_tx_bd_types),
1626	};
1627	int size, rc;
1628
1629	txq->num_tx_buffers = edev->q_num_tx_buffers;
1630
1631	/* Allocate the parallel driver ring for Tx buffers */
1632	if (txq->is_xdp) {
1633		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1634		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1635		if (!txq->sw_tx_ring.xdp)
1636			goto err;
1637	} else {
1638		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1639		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1640		if (!txq->sw_tx_ring.skbs)
1641			goto err;
1642	}
1643
1644	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
 
 
 
 
 
 
1645	if (rc)
1646		goto err;
1647
1648	return 0;
1649
1650err:
1651	qede_free_mem_txq(edev, txq);
1652	return -ENOMEM;
1653}
1654
1655/* This function frees all memory of a single fp */
1656static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1657{
1658	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1659
1660	if (fp->type & QEDE_FASTPATH_RX)
1661		qede_free_mem_rxq(edev, fp->rxq);
1662
1663	if (fp->type & QEDE_FASTPATH_XDP)
1664		qede_free_mem_txq(edev, fp->xdp_tx);
1665
1666	if (fp->type & QEDE_FASTPATH_TX) {
1667		int cos;
1668
1669		for_each_cos_in_txq(edev, cos)
1670			qede_free_mem_txq(edev, &fp->txq[cos]);
1671	}
1672}
1673
1674/* This function allocates all memory needed for a single fp (i.e. an entity
1675 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1676 */
1677static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1678{
1679	int rc = 0;
1680
1681	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1682	if (rc)
1683		goto out;
1684
1685	if (fp->type & QEDE_FASTPATH_RX) {
1686		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1687		if (rc)
1688			goto out;
1689	}
1690
1691	if (fp->type & QEDE_FASTPATH_XDP) {
1692		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1693		if (rc)
1694			goto out;
1695	}
1696
1697	if (fp->type & QEDE_FASTPATH_TX) {
1698		int cos;
1699
1700		for_each_cos_in_txq(edev, cos) {
1701			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1702			if (rc)
1703				goto out;
1704		}
1705	}
1706
1707out:
1708	return rc;
1709}
1710
1711static void qede_free_mem_load(struct qede_dev *edev)
1712{
1713	int i;
1714
1715	for_each_queue(i) {
1716		struct qede_fastpath *fp = &edev->fp_array[i];
1717
1718		qede_free_mem_fp(edev, fp);
1719	}
1720}
1721
1722/* This function allocates all qede memory at NIC load. */
1723static int qede_alloc_mem_load(struct qede_dev *edev)
1724{
1725	int rc = 0, queue_id;
1726
1727	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1728		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1729
1730		rc = qede_alloc_mem_fp(edev, fp);
1731		if (rc) {
1732			DP_ERR(edev,
1733			       "Failed to allocate memory for fastpath - rss id = %d\n",
1734			       queue_id);
1735			qede_free_mem_load(edev);
1736			return rc;
1737		}
1738	}
1739
1740	return 0;
1741}
1742
1743static void qede_empty_tx_queue(struct qede_dev *edev,
1744				struct qede_tx_queue *txq)
1745{
1746	unsigned int pkts_compl = 0, bytes_compl = 0;
1747	struct netdev_queue *netdev_txq;
1748	int rc, len = 0;
1749
1750	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1751
1752	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1753	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1754		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1755			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1756			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1757			   qed_chain_get_prod_idx(&txq->tx_pbl));
1758
1759		rc = qede_free_tx_pkt(edev, txq, &len);
1760		if (rc) {
1761			DP_NOTICE(edev,
1762				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1763				  txq->index,
1764				  qed_chain_get_cons_idx(&txq->tx_pbl),
1765				  qed_chain_get_prod_idx(&txq->tx_pbl));
1766			break;
1767		}
1768
1769		bytes_compl += len;
1770		pkts_compl++;
1771		txq->sw_tx_cons++;
1772	}
1773
1774	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1775}
1776
1777static void qede_empty_tx_queues(struct qede_dev *edev)
1778{
1779	int i;
1780
1781	for_each_queue(i)
1782		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1783			int cos;
1784
1785			for_each_cos_in_txq(edev, cos) {
1786				struct qede_fastpath *fp;
1787
1788				fp = &edev->fp_array[i];
1789				qede_empty_tx_queue(edev,
1790						    &fp->txq[cos]);
1791			}
1792		}
1793}
1794
1795/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1796static void qede_init_fp(struct qede_dev *edev)
1797{
1798	int queue_id, rxq_index = 0, txq_index = 0;
1799	struct qede_fastpath *fp;
1800	bool init_xdp = false;
1801
1802	for_each_queue(queue_id) {
1803		fp = &edev->fp_array[queue_id];
1804
1805		fp->edev = edev;
1806		fp->id = queue_id;
1807
1808		if (fp->type & QEDE_FASTPATH_XDP) {
1809			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1810								rxq_index);
1811			fp->xdp_tx->is_xdp = 1;
1812
1813			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1814			init_xdp = true;
1815		}
1816
1817		if (fp->type & QEDE_FASTPATH_RX) {
1818			fp->rxq->rxq_id = rxq_index++;
1819
1820			/* Determine how to map buffers for this queue */
1821			if (fp->type & QEDE_FASTPATH_XDP)
1822				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1823			else
1824				fp->rxq->data_direction = DMA_FROM_DEVICE;
1825			fp->rxq->dev = &edev->pdev->dev;
1826
1827			/* Driver have no error path from here */
1828			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1829						 fp->rxq->rxq_id, 0) < 0);
1830
1831			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1832						       MEM_TYPE_PAGE_ORDER0,
1833						       NULL)) {
1834				DP_NOTICE(edev,
1835					  "Failed to register XDP memory model\n");
1836			}
1837		}
1838
1839		if (fp->type & QEDE_FASTPATH_TX) {
1840			int cos;
1841
1842			for_each_cos_in_txq(edev, cos) {
1843				struct qede_tx_queue *txq = &fp->txq[cos];
1844				u16 ndev_tx_id;
1845
1846				txq->cos = cos;
1847				txq->index = txq_index;
1848				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1849				txq->ndev_txq_id = ndev_tx_id;
1850
1851				if (edev->dev_info.is_legacy)
1852					txq->is_legacy = true;
1853				txq->dev = &edev->pdev->dev;
1854			}
1855
1856			txq_index++;
1857		}
1858
1859		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1860			 edev->ndev->name, queue_id);
1861	}
1862
1863	if (init_xdp) {
1864		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1865		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1866	}
1867}
1868
1869static int qede_set_real_num_queues(struct qede_dev *edev)
1870{
1871	int rc = 0;
1872
1873	rc = netif_set_real_num_tx_queues(edev->ndev,
1874					  QEDE_TSS_COUNT(edev) *
1875					  edev->dev_info.num_tc);
1876	if (rc) {
1877		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1878		return rc;
1879	}
1880
1881	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1882	if (rc) {
1883		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1884		return rc;
1885	}
1886
1887	return 0;
1888}
1889
1890static void qede_napi_disable_remove(struct qede_dev *edev)
1891{
1892	int i;
1893
1894	for_each_queue(i) {
1895		napi_disable(&edev->fp_array[i].napi);
1896
1897		netif_napi_del(&edev->fp_array[i].napi);
1898	}
1899}
1900
1901static void qede_napi_add_enable(struct qede_dev *edev)
1902{
1903	int i;
1904
1905	/* Add NAPI objects */
1906	for_each_queue(i) {
1907		netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
 
1908		napi_enable(&edev->fp_array[i].napi);
1909	}
1910}
1911
1912static void qede_sync_free_irqs(struct qede_dev *edev)
1913{
1914	int i;
1915
1916	for (i = 0; i < edev->int_info.used_cnt; i++) {
1917		if (edev->int_info.msix_cnt) {
 
1918			free_irq(edev->int_info.msix[i].vector,
1919				 &edev->fp_array[i]);
1920		} else {
1921			edev->ops->common->simd_handler_clean(edev->cdev, i);
1922		}
1923	}
1924
1925	edev->int_info.used_cnt = 0;
1926	edev->int_info.msix_cnt = 0;
1927}
1928
1929static int qede_req_msix_irqs(struct qede_dev *edev)
1930{
1931	int i, rc;
1932
1933	/* Sanitize number of interrupts == number of prepared RSS queues */
1934	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1935		DP_ERR(edev,
1936		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1937		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1938		return -EINVAL;
1939	}
1940
1941	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1942#ifdef CONFIG_RFS_ACCEL
1943		struct qede_fastpath *fp = &edev->fp_array[i];
1944
1945		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1946			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1947					      edev->int_info.msix[i].vector);
1948			if (rc) {
1949				DP_ERR(edev, "Failed to add CPU rmap\n");
1950				qede_free_arfs(edev);
1951			}
1952		}
1953#endif
1954		rc = request_irq(edev->int_info.msix[i].vector,
1955				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1956				 &edev->fp_array[i]);
1957		if (rc) {
1958			DP_ERR(edev, "Request fp %d irq failed\n", i);
1959#ifdef CONFIG_RFS_ACCEL
1960			if (edev->ndev->rx_cpu_rmap)
1961				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1962
1963			edev->ndev->rx_cpu_rmap = NULL;
1964#endif
1965			qede_sync_free_irqs(edev);
1966			return rc;
1967		}
1968		DP_VERBOSE(edev, NETIF_MSG_INTR,
1969			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1970			   edev->fp_array[i].name, i,
1971			   &edev->fp_array[i]);
1972		edev->int_info.used_cnt++;
1973	}
1974
1975	return 0;
1976}
1977
1978static void qede_simd_fp_handler(void *cookie)
1979{
1980	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1981
1982	napi_schedule_irqoff(&fp->napi);
1983}
1984
1985static int qede_setup_irqs(struct qede_dev *edev)
1986{
1987	int i, rc = 0;
1988
1989	/* Learn Interrupt configuration */
1990	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1991	if (rc)
1992		return rc;
1993
1994	if (edev->int_info.msix_cnt) {
1995		rc = qede_req_msix_irqs(edev);
1996		if (rc)
1997			return rc;
1998		edev->ndev->irq = edev->int_info.msix[0].vector;
1999	} else {
2000		const struct qed_common_ops *ops;
2001
2002		/* qed should learn receive the RSS ids and callbacks */
2003		ops = edev->ops->common;
2004		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2005			ops->simd_handler_config(edev->cdev,
2006						 &edev->fp_array[i], i,
2007						 qede_simd_fp_handler);
2008		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2009	}
2010	return 0;
2011}
2012
2013static int qede_drain_txq(struct qede_dev *edev,
2014			  struct qede_tx_queue *txq, bool allow_drain)
2015{
2016	int rc, cnt = 1000;
2017
2018	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2019		if (!cnt) {
2020			if (allow_drain) {
2021				DP_NOTICE(edev,
2022					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2023					  txq->index);
2024				rc = edev->ops->common->drain(edev->cdev);
2025				if (rc)
2026					return rc;
2027				return qede_drain_txq(edev, txq, false);
2028			}
2029			DP_NOTICE(edev,
2030				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2031				  txq->index, txq->sw_tx_prod,
2032				  txq->sw_tx_cons);
2033			return -ENODEV;
2034		}
2035		cnt--;
2036		usleep_range(1000, 2000);
2037		barrier();
2038	}
2039
2040	/* FW finished processing, wait for HW to transmit all tx packets */
2041	usleep_range(1000, 2000);
2042
2043	return 0;
2044}
2045
2046static int qede_stop_txq(struct qede_dev *edev,
2047			 struct qede_tx_queue *txq, int rss_id)
2048{
2049	/* delete doorbell from doorbell recovery mechanism */
2050	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2051					   &txq->tx_db);
2052
2053	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2054}
2055
2056static int qede_stop_queues(struct qede_dev *edev)
2057{
2058	struct qed_update_vport_params *vport_update_params;
2059	struct qed_dev *cdev = edev->cdev;
2060	struct qede_fastpath *fp;
2061	int rc, i;
2062
2063	/* Disable the vport */
2064	vport_update_params = vzalloc(sizeof(*vport_update_params));
2065	if (!vport_update_params)
2066		return -ENOMEM;
2067
2068	vport_update_params->vport_id = 0;
2069	vport_update_params->update_vport_active_flg = 1;
2070	vport_update_params->vport_active_flg = 0;
2071	vport_update_params->update_rss_flg = 0;
2072
2073	rc = edev->ops->vport_update(cdev, vport_update_params);
2074	vfree(vport_update_params);
2075
2076	if (rc) {
2077		DP_ERR(edev, "Failed to update vport\n");
2078		return rc;
2079	}
2080
2081	/* Flush Tx queues. If needed, request drain from MCP */
2082	for_each_queue(i) {
2083		fp = &edev->fp_array[i];
2084
2085		if (fp->type & QEDE_FASTPATH_TX) {
2086			int cos;
2087
2088			for_each_cos_in_txq(edev, cos) {
2089				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2090				if (rc)
2091					return rc;
2092			}
2093		}
2094
2095		if (fp->type & QEDE_FASTPATH_XDP) {
2096			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2097			if (rc)
2098				return rc;
2099		}
2100	}
2101
2102	/* Stop all Queues in reverse order */
2103	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2104		fp = &edev->fp_array[i];
2105
2106		/* Stop the Tx Queue(s) */
2107		if (fp->type & QEDE_FASTPATH_TX) {
2108			int cos;
2109
2110			for_each_cos_in_txq(edev, cos) {
2111				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2112				if (rc)
2113					return rc;
2114			}
2115		}
2116
2117		/* Stop the Rx Queue */
2118		if (fp->type & QEDE_FASTPATH_RX) {
2119			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2120			if (rc) {
2121				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2122				return rc;
2123			}
2124		}
2125
2126		/* Stop the XDP forwarding queue */
2127		if (fp->type & QEDE_FASTPATH_XDP) {
2128			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2129			if (rc)
2130				return rc;
2131
2132			bpf_prog_put(fp->rxq->xdp_prog);
2133		}
2134	}
2135
2136	/* Stop the vport */
2137	rc = edev->ops->vport_stop(cdev, 0);
2138	if (rc)
2139		DP_ERR(edev, "Failed to stop VPORT\n");
2140
2141	return rc;
2142}
2143
2144static int qede_start_txq(struct qede_dev *edev,
2145			  struct qede_fastpath *fp,
2146			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2147{
2148	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2149	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2150	struct qed_queue_start_common_params params;
2151	struct qed_txq_start_ret_params ret_params;
2152	int rc;
2153
2154	memset(&params, 0, sizeof(params));
2155	memset(&ret_params, 0, sizeof(ret_params));
2156
2157	/* Let the XDP queue share the queue-zone with one of the regular txq.
2158	 * We don't really care about its coalescing.
2159	 */
2160	if (txq->is_xdp)
2161		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2162	else
2163		params.queue_id = txq->index;
2164
2165	params.p_sb = fp->sb_info;
2166	params.sb_idx = sb_idx;
2167	params.tc = txq->cos;
2168
2169	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2170				   page_cnt, &ret_params);
2171	if (rc) {
2172		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2173		return rc;
2174	}
2175
2176	txq->doorbell_addr = ret_params.p_doorbell;
2177	txq->handle = ret_params.p_handle;
2178
2179	/* Determine the FW consumer address associated */
2180	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2181
2182	/* Prepare the doorbell parameters */
2183	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2184	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2185	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2186		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2187	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2188
2189	/* register doorbell with doorbell recovery mechanism */
2190	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2191						&txq->tx_db, DB_REC_WIDTH_32B,
2192						DB_REC_KERNEL);
2193
2194	return rc;
2195}
2196
2197static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2198{
2199	int vlan_removal_en = 1;
2200	struct qed_dev *cdev = edev->cdev;
2201	struct qed_dev_info *qed_info = &edev->dev_info.common;
2202	struct qed_update_vport_params *vport_update_params;
2203	struct qed_queue_start_common_params q_params;
2204	struct qed_start_vport_params start = {0};
2205	int rc, i;
2206
2207	if (!edev->num_queues) {
2208		DP_ERR(edev,
2209		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2210		return -EINVAL;
2211	}
2212
2213	vport_update_params = vzalloc(sizeof(*vport_update_params));
2214	if (!vport_update_params)
2215		return -ENOMEM;
2216
2217	start.handle_ptp_pkts = !!(edev->ptp);
2218	start.gro_enable = !edev->gro_disable;
2219	start.mtu = edev->ndev->mtu;
2220	start.vport_id = 0;
2221	start.drop_ttl0 = true;
2222	start.remove_inner_vlan = vlan_removal_en;
2223	start.clear_stats = clear_stats;
2224
2225	rc = edev->ops->vport_start(cdev, &start);
2226
2227	if (rc) {
2228		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2229		goto out;
2230	}
2231
2232	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2233		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2234		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2235
2236	for_each_queue(i) {
2237		struct qede_fastpath *fp = &edev->fp_array[i];
2238		dma_addr_t p_phys_table;
2239		u32 page_cnt;
2240
2241		if (fp->type & QEDE_FASTPATH_RX) {
2242			struct qed_rxq_start_ret_params ret_params;
2243			struct qede_rx_queue *rxq = fp->rxq;
2244			__le16 *val;
2245
2246			memset(&ret_params, 0, sizeof(ret_params));
2247			memset(&q_params, 0, sizeof(q_params));
2248			q_params.queue_id = rxq->rxq_id;
2249			q_params.vport_id = 0;
2250			q_params.p_sb = fp->sb_info;
2251			q_params.sb_idx = RX_PI;
2252
2253			p_phys_table =
2254			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2255			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2256
2257			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2258						   rxq->rx_buf_size,
2259						   rxq->rx_bd_ring.p_phys_addr,
2260						   p_phys_table,
2261						   page_cnt, &ret_params);
2262			if (rc) {
2263				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2264				       rc);
2265				goto out;
2266			}
2267
2268			/* Use the return parameters */
2269			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2270			rxq->handle = ret_params.p_handle;
2271
2272			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2273			rxq->hw_cons_ptr = val;
2274
2275			qede_update_rx_prod(edev, rxq);
2276		}
2277
2278		if (fp->type & QEDE_FASTPATH_XDP) {
2279			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2280			if (rc)
2281				goto out;
2282
2283			bpf_prog_add(edev->xdp_prog, 1);
2284			fp->rxq->xdp_prog = edev->xdp_prog;
 
 
 
 
2285		}
2286
2287		if (fp->type & QEDE_FASTPATH_TX) {
2288			int cos;
2289
2290			for_each_cos_in_txq(edev, cos) {
2291				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2292						    TX_PI(cos));
2293				if (rc)
2294					goto out;
2295			}
2296		}
2297	}
2298
2299	/* Prepare and send the vport enable */
2300	vport_update_params->vport_id = start.vport_id;
2301	vport_update_params->update_vport_active_flg = 1;
2302	vport_update_params->vport_active_flg = 1;
2303
2304	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2305	    qed_info->tx_switching) {
2306		vport_update_params->update_tx_switching_flg = 1;
2307		vport_update_params->tx_switching_flg = 1;
2308	}
2309
2310	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2311			     &vport_update_params->update_rss_flg);
2312
2313	rc = edev->ops->vport_update(cdev, vport_update_params);
2314	if (rc)
2315		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2316
2317out:
2318	vfree(vport_update_params);
2319	return rc;
2320}
2321
2322enum qede_unload_mode {
2323	QEDE_UNLOAD_NORMAL,
2324	QEDE_UNLOAD_RECOVERY,
2325};
2326
2327static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2328			bool is_locked)
2329{
2330	struct qed_link_params link_params;
2331	int rc;
2332
2333	DP_INFO(edev, "Starting qede unload\n");
2334
2335	if (!is_locked)
2336		__qede_lock(edev);
2337
2338	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2339
2340	if (mode != QEDE_UNLOAD_RECOVERY)
2341		edev->state = QEDE_STATE_CLOSED;
2342
2343	qede_rdma_dev_event_close(edev);
2344
2345	/* Close OS Tx */
2346	netif_tx_disable(edev->ndev);
2347	netif_carrier_off(edev->ndev);
2348
2349	if (mode != QEDE_UNLOAD_RECOVERY) {
2350		/* Reset the link */
2351		memset(&link_params, 0, sizeof(link_params));
2352		link_params.link_up = false;
2353		edev->ops->common->set_link(edev->cdev, &link_params);
2354
2355		rc = qede_stop_queues(edev);
2356		if (rc) {
2357#ifdef CONFIG_RFS_ACCEL
2358			if (edev->dev_info.common.b_arfs_capable) {
2359				qede_poll_for_freeing_arfs_filters(edev);
2360				if (edev->ndev->rx_cpu_rmap)
2361					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2362
2363				edev->ndev->rx_cpu_rmap = NULL;
2364			}
2365#endif
2366			qede_sync_free_irqs(edev);
2367			goto out;
2368		}
2369
2370		DP_INFO(edev, "Stopped Queues\n");
2371	}
2372
2373	qede_vlan_mark_nonconfigured(edev);
2374	edev->ops->fastpath_stop(edev->cdev);
2375
2376	if (edev->dev_info.common.b_arfs_capable) {
2377		qede_poll_for_freeing_arfs_filters(edev);
2378		qede_free_arfs(edev);
2379	}
2380
2381	/* Release the interrupts */
2382	qede_sync_free_irqs(edev);
2383	edev->ops->common->set_fp_int(edev->cdev, 0);
2384
2385	qede_napi_disable_remove(edev);
2386
2387	if (mode == QEDE_UNLOAD_RECOVERY)
2388		qede_empty_tx_queues(edev);
2389
2390	qede_free_mem_load(edev);
2391	qede_free_fp_array(edev);
2392
2393out:
2394	if (!is_locked)
2395		__qede_unlock(edev);
2396
2397	if (mode != QEDE_UNLOAD_RECOVERY)
2398		DP_NOTICE(edev, "Link is down\n");
2399
2400	edev->ptp_skip_txts = 0;
2401
2402	DP_INFO(edev, "Ending qede unload\n");
2403}
2404
2405enum qede_load_mode {
2406	QEDE_LOAD_NORMAL,
2407	QEDE_LOAD_RELOAD,
2408	QEDE_LOAD_RECOVERY,
2409};
2410
2411static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2412		     bool is_locked)
2413{
2414	struct qed_link_params link_params;
2415	struct ethtool_coalesce coal = {};
2416	u8 num_tc;
2417	int rc, i;
2418
2419	DP_INFO(edev, "Starting qede load\n");
2420
2421	if (!is_locked)
2422		__qede_lock(edev);
2423
2424	rc = qede_set_num_queues(edev);
2425	if (rc)
2426		goto out;
2427
2428	rc = qede_alloc_fp_array(edev);
2429	if (rc)
2430		goto out;
2431
2432	qede_init_fp(edev);
2433
2434	rc = qede_alloc_mem_load(edev);
2435	if (rc)
2436		goto err1;
2437	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2438		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2439
2440	rc = qede_set_real_num_queues(edev);
2441	if (rc)
2442		goto err2;
2443
2444	if (qede_alloc_arfs(edev)) {
2445		edev->ndev->features &= ~NETIF_F_NTUPLE;
2446		edev->dev_info.common.b_arfs_capable = false;
 
2447	}
2448
2449	qede_napi_add_enable(edev);
2450	DP_INFO(edev, "Napi added and enabled\n");
2451
2452	rc = qede_setup_irqs(edev);
2453	if (rc)
2454		goto err3;
2455	DP_INFO(edev, "Setup IRQs succeeded\n");
2456
2457	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2458	if (rc)
2459		goto err4;
2460	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2461
2462	num_tc = netdev_get_num_tc(edev->ndev);
2463	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2464	qede_setup_tc(edev->ndev, num_tc);
2465
2466	/* Program un-configured VLANs */
2467	qede_configure_vlan_filters(edev);
2468
2469	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2470
2471	/* Ask for link-up using current configuration */
2472	memset(&link_params, 0, sizeof(link_params));
2473	link_params.link_up = true;
2474	edev->ops->common->set_link(edev->cdev, &link_params);
2475
2476	edev->state = QEDE_STATE_OPEN;
2477
2478	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2479	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2480
2481	for_each_queue(i) {
2482		if (edev->coal_entry[i].isvalid) {
2483			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2484			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2485		}
2486		__qede_unlock(edev);
2487		qede_set_per_coalesce(edev->ndev, i, &coal);
2488		__qede_lock(edev);
2489	}
2490	DP_INFO(edev, "Ending successfully qede load\n");
2491
2492	goto out;
2493err4:
2494	qede_sync_free_irqs(edev);
 
2495err3:
2496	qede_napi_disable_remove(edev);
2497err2:
2498	qede_free_mem_load(edev);
2499err1:
2500	edev->ops->common->set_fp_int(edev->cdev, 0);
2501	qede_free_fp_array(edev);
2502	edev->num_queues = 0;
2503	edev->fp_num_tx = 0;
2504	edev->fp_num_rx = 0;
2505out:
2506	if (!is_locked)
2507		__qede_unlock(edev);
2508
2509	return rc;
2510}
2511
2512/* 'func' should be able to run between unload and reload assuming interface
2513 * is actually running, or afterwards in case it's currently DOWN.
2514 */
2515void qede_reload(struct qede_dev *edev,
2516		 struct qede_reload_args *args, bool is_locked)
2517{
2518	if (!is_locked)
2519		__qede_lock(edev);
2520
2521	/* Since qede_lock is held, internal state wouldn't change even
2522	 * if netdev state would start transitioning. Check whether current
2523	 * internal configuration indicates device is up, then reload.
2524	 */
2525	if (edev->state == QEDE_STATE_OPEN) {
2526		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2527		if (args)
2528			args->func(edev, args);
2529		qede_load(edev, QEDE_LOAD_RELOAD, true);
2530
2531		/* Since no one is going to do it for us, re-configure */
2532		qede_config_rx_mode(edev->ndev);
2533	} else if (args) {
2534		args->func(edev, args);
2535	}
2536
2537	if (!is_locked)
2538		__qede_unlock(edev);
2539}
2540
2541/* called with rtnl_lock */
2542static int qede_open(struct net_device *ndev)
2543{
2544	struct qede_dev *edev = netdev_priv(ndev);
2545	int rc;
2546
2547	netif_carrier_off(ndev);
2548
2549	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2550
2551	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2552	if (rc)
2553		return rc;
2554
2555	udp_tunnel_nic_reset_ntf(ndev);
2556
2557	edev->ops->common->update_drv_state(edev->cdev, true);
2558
2559	return 0;
2560}
2561
2562static int qede_close(struct net_device *ndev)
2563{
2564	struct qede_dev *edev = netdev_priv(ndev);
2565
2566	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2567
2568	if (edev->cdev)
2569		edev->ops->common->update_drv_state(edev->cdev, false);
2570
2571	return 0;
2572}
2573
2574static void qede_link_update(void *dev, struct qed_link_output *link)
2575{
2576	struct qede_dev *edev = dev;
2577
2578	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2579		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2580		return;
2581	}
2582
2583	if (link->link_up) {
2584		if (!netif_carrier_ok(edev->ndev)) {
2585			DP_NOTICE(edev, "Link is up\n");
2586			netif_tx_start_all_queues(edev->ndev);
2587			netif_carrier_on(edev->ndev);
2588			qede_rdma_dev_event_open(edev);
2589		}
2590	} else {
2591		if (netif_carrier_ok(edev->ndev)) {
2592			DP_NOTICE(edev, "Link is down\n");
2593			netif_tx_disable(edev->ndev);
2594			netif_carrier_off(edev->ndev);
2595			qede_rdma_dev_event_close(edev);
2596		}
2597	}
2598}
2599
2600static void qede_schedule_recovery_handler(void *dev)
2601{
2602	struct qede_dev *edev = dev;
2603
2604	if (edev->state == QEDE_STATE_RECOVERY) {
2605		DP_NOTICE(edev,
2606			  "Avoid scheduling a recovery handling since already in recovery state\n");
2607		return;
2608	}
2609
2610	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2611	schedule_delayed_work(&edev->sp_task, 0);
2612
2613	DP_INFO(edev, "Scheduled a recovery handler\n");
2614}
2615
2616static void qede_recovery_failed(struct qede_dev *edev)
2617{
2618	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2619
2620	netif_device_detach(edev->ndev);
2621
2622	if (edev->cdev)
2623		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2624}
2625
2626static void qede_recovery_handler(struct qede_dev *edev)
2627{
2628	u32 curr_state = edev->state;
2629	int rc;
2630
2631	DP_NOTICE(edev, "Starting a recovery process\n");
2632
2633	/* No need to acquire first the qede_lock since is done by qede_sp_task
2634	 * before calling this function.
2635	 */
2636	edev->state = QEDE_STATE_RECOVERY;
2637
2638	edev->ops->common->recovery_prolog(edev->cdev);
2639
2640	if (curr_state == QEDE_STATE_OPEN)
2641		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2642
2643	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2644
2645	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2646			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2647	if (rc) {
2648		edev->cdev = NULL;
2649		goto err;
2650	}
2651
2652	if (curr_state == QEDE_STATE_OPEN) {
2653		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2654		if (rc)
2655			goto err;
2656
2657		qede_config_rx_mode(edev->ndev);
2658		udp_tunnel_nic_reset_ntf(edev->ndev);
2659	}
2660
2661	edev->state = curr_state;
2662
2663	DP_NOTICE(edev, "Recovery handling is done\n");
2664
2665	return;
2666
2667err:
2668	qede_recovery_failed(edev);
2669}
2670
2671static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2672{
2673	struct qed_dev *cdev = edev->cdev;
2674
2675	DP_NOTICE(edev,
2676		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2677		  edev->err_flags);
2678
2679	/* Get a call trace of the flow that led to the error */
2680	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2681
2682	/* Prevent HW attentions from being reasserted */
2683	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2684		edev->ops->common->attn_clr_enable(cdev, true);
2685
2686	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2687}
2688
2689static void qede_generic_hw_err_handler(struct qede_dev *edev)
2690{
2691	DP_NOTICE(edev,
2692		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2693		  edev->err_flags);
2694
2695	if (edev->devlink) {
2696		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2697		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2698	}
2699
2700	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2701
2702	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2703}
2704
2705static void qede_set_hw_err_flags(struct qede_dev *edev,
2706				  enum qed_hw_err_type err_type)
2707{
2708	unsigned long err_flags = 0;
2709
2710	switch (err_type) {
2711	case QED_HW_ERR_DMAE_FAIL:
2712		set_bit(QEDE_ERR_WARN, &err_flags);
2713		fallthrough;
2714	case QED_HW_ERR_MFW_RESP_FAIL:
2715	case QED_HW_ERR_HW_ATTN:
2716	case QED_HW_ERR_RAMROD_FAIL:
2717	case QED_HW_ERR_FW_ASSERT:
2718		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2719		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2720		/* make this error as recoverable and start recovery*/
2721		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2722		break;
2723
2724	default:
2725		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2726		break;
2727	}
2728
2729	edev->err_flags |= err_flags;
2730}
2731
2732static void qede_schedule_hw_err_handler(void *dev,
2733					 enum qed_hw_err_type err_type)
2734{
2735	struct qede_dev *edev = dev;
2736
2737	/* Fan failure cannot be masked by handling of another HW error or by a
2738	 * concurrent recovery process.
2739	 */
2740	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2741	     edev->state == QEDE_STATE_RECOVERY) &&
2742	     err_type != QED_HW_ERR_FAN_FAIL) {
2743		DP_INFO(edev,
2744			"Avoid scheduling an error handling while another HW error is being handled\n");
2745		return;
2746	}
2747
2748	if (err_type >= QED_HW_ERR_LAST) {
2749		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2750		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2751		return;
2752	}
2753
2754	edev->last_err_type = err_type;
2755	qede_set_hw_err_flags(edev, err_type);
2756	qede_atomic_hw_err_handler(edev);
2757	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2758	schedule_delayed_work(&edev->sp_task, 0);
2759
2760	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2761}
2762
2763static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2764{
2765	struct netdev_queue *netdev_txq;
2766
2767	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2768	if (netif_xmit_stopped(netdev_txq))
2769		return true;
2770
2771	return false;
2772}
2773
2774static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2775{
2776	struct qede_dev *edev = dev;
2777	struct netdev_hw_addr *ha;
2778	int i;
2779
2780	if (edev->ndev->features & NETIF_F_IP_CSUM)
2781		data->feat_flags |= QED_TLV_IP_CSUM;
2782	if (edev->ndev->features & NETIF_F_TSO)
2783		data->feat_flags |= QED_TLV_LSO;
2784
2785	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2786	eth_zero_addr(data->mac[1]);
2787	eth_zero_addr(data->mac[2]);
2788	/* Copy the first two UC macs */
2789	netif_addr_lock_bh(edev->ndev);
2790	i = 1;
2791	netdev_for_each_uc_addr(ha, edev->ndev) {
2792		ether_addr_copy(data->mac[i++], ha->addr);
2793		if (i == QED_TLV_MAC_COUNT)
2794			break;
2795	}
2796
2797	netif_addr_unlock_bh(edev->ndev);
2798}
2799
2800static void qede_get_eth_tlv_data(void *dev, void *data)
2801{
2802	struct qed_mfw_tlv_eth *etlv = data;
2803	struct qede_dev *edev = dev;
2804	struct qede_fastpath *fp;
2805	int i;
2806
2807	etlv->lso_maxoff_size = 0XFFFF;
2808	etlv->lso_maxoff_size_set = true;
2809	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2810	etlv->lso_minseg_size_set = true;
2811	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2812	etlv->prom_mode_set = true;
2813	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2814	etlv->tx_descr_size_set = true;
2815	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2816	etlv->rx_descr_size_set = true;
2817	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2818	etlv->iov_offload_set = true;
2819
2820	/* Fill information regarding queues; Should be done under the qede
2821	 * lock to guarantee those don't change beneath our feet.
2822	 */
2823	etlv->txqs_empty = true;
2824	etlv->rxqs_empty = true;
2825	etlv->num_txqs_full = 0;
2826	etlv->num_rxqs_full = 0;
2827
2828	__qede_lock(edev);
2829	for_each_queue(i) {
2830		fp = &edev->fp_array[i];
2831		if (fp->type & QEDE_FASTPATH_TX) {
2832			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2833
2834			if (txq->sw_tx_cons != txq->sw_tx_prod)
2835				etlv->txqs_empty = false;
2836			if (qede_is_txq_full(edev, txq))
2837				etlv->num_txqs_full++;
2838		}
2839		if (fp->type & QEDE_FASTPATH_RX) {
2840			if (qede_has_rx_work(fp->rxq))
2841				etlv->rxqs_empty = false;
2842
2843			/* This one is a bit tricky; Firmware might stop
2844			 * placing packets if ring is not yet full.
2845			 * Give an approximation.
2846			 */
2847			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2848			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2849			    RX_RING_SIZE - 100)
2850				etlv->num_rxqs_full++;
2851		}
2852	}
2853	__qede_unlock(edev);
2854
2855	etlv->txqs_empty_set = true;
2856	etlv->rxqs_empty_set = true;
2857	etlv->num_txqs_full_set = true;
2858	etlv->num_rxqs_full_set = true;
2859}
2860
2861/**
2862 * qede_io_error_detected(): Called when PCI error is detected
2863 *
2864 * @pdev: Pointer to PCI device
2865 * @state: The current pci connection state
2866 *
2867 *Return: pci_ers_result_t.
2868 *
2869 * This function is called after a PCI bus error affecting
2870 * this device has been detected.
2871 */
2872static pci_ers_result_t
2873qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2874{
2875	struct net_device *dev = pci_get_drvdata(pdev);
2876	struct qede_dev *edev = netdev_priv(dev);
2877
2878	if (!edev)
2879		return PCI_ERS_RESULT_NONE;
2880
2881	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2882
2883	__qede_lock(edev);
2884	if (edev->state == QEDE_STATE_RECOVERY) {
2885		DP_NOTICE(edev, "Device already in the recovery state\n");
2886		__qede_unlock(edev);
2887		return PCI_ERS_RESULT_NONE;
2888	}
2889
2890	/* PF handles the recovery of its VFs */
2891	if (IS_VF(edev)) {
2892		DP_VERBOSE(edev, QED_MSG_IOV,
2893			   "VF recovery is handled by its PF\n");
2894		__qede_unlock(edev);
2895		return PCI_ERS_RESULT_RECOVERED;
2896	}
2897
2898	/* Close OS Tx */
2899	netif_tx_disable(edev->ndev);
2900	netif_carrier_off(edev->ndev);
2901
2902	set_bit(QEDE_SP_AER, &edev->sp_flags);
2903	schedule_delayed_work(&edev->sp_task, 0);
2904
2905	__qede_unlock(edev);
2906
2907	return PCI_ERS_RESULT_CAN_RECOVER;
2908}