Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4/* e1000_82575
   5 * e1000_82576
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/types.h>
  11#include <linux/if_ether.h>
  12#include <linux/i2c.h>
  13
  14#include "e1000_mac.h"
  15#include "e1000_82575.h"
  16#include "e1000_i210.h"
  17#include "igb.h"
  18
  19static s32  igb_get_invariants_82575(struct e1000_hw *);
  20static s32  igb_acquire_phy_82575(struct e1000_hw *);
  21static void igb_release_phy_82575(struct e1000_hw *);
  22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  23static void igb_release_nvm_82575(struct e1000_hw *);
  24static s32  igb_check_for_link_82575(struct e1000_hw *);
  25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  26static s32  igb_init_hw_82575(struct e1000_hw *);
  27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  29static s32  igb_reset_hw_82575(struct e1000_hw *);
  30static s32  igb_reset_hw_82580(struct e1000_hw *);
  31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  40						 u16 *);
  41static s32  igb_get_phy_id_82575(struct e1000_hw *);
  42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  43static bool igb_sgmii_active_82575(struct e1000_hw *);
  44static s32  igb_reset_init_script_82575(struct e1000_hw *);
  45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  52static const u16 e1000_82580_rxpbs_table[] = {
  53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  54
  55/* Due to a hw errata, if the host tries to  configure the VFTA register
  56 * while performing queries from the BMC or DMA, then the VFTA in some
  57 * cases won't be written.
  58 */
  59
  60/**
  61 *  igb_write_vfta_i350 - Write value to VLAN filter table
  62 *  @hw: pointer to the HW structure
  63 *  @offset: register offset in VLAN filter table
  64 *  @value: register value written to VLAN filter table
  65 *
  66 *  Writes value at the given offset in the register array which stores
  67 *  the VLAN filter table.
  68 **/
  69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  70{
  71	struct igb_adapter *adapter = hw->back;
  72	int i;
  73
  74	for (i = 10; i--;)
  75		array_wr32(E1000_VFTA, offset, value);
  76
  77	wrfl();
  78	adapter->shadow_vfta[offset] = value;
  79}
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90	u32 reg = 0;
  91	bool ext_mdio = false;
  92
  93	switch (hw->mac.type) {
  94	case e1000_82575:
  95	case e1000_82576:
  96		reg = rd32(E1000_MDIC);
  97		ext_mdio = !!(reg & E1000_MDIC_DEST);
  98		break;
  99	case e1000_82580:
 100	case e1000_i350:
 101	case e1000_i354:
 102	case e1000_i210:
 103	case e1000_i211:
 104		reg = rd32(E1000_MDICNFG);
 105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106		break;
 107	default:
 108		break;
 109	}
 110	return ext_mdio;
 111}
 112
 113/**
 114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 115 *  @hw: pointer to the HW structure
 116 *
 117 *  Poll the M88E1112 interfaces to see which interface achieved link.
 118 */
 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 120{
 121	struct e1000_phy_info *phy = &hw->phy;
 122	s32 ret_val;
 123	u16 data;
 124	u8 port = 0;
 125
 126	/* Check the copper medium. */
 127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 128	if (ret_val)
 129		return ret_val;
 130
 131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 132	if (ret_val)
 133		return ret_val;
 134
 135	if (data & E1000_M88E1112_STATUS_LINK)
 136		port = E1000_MEDIA_PORT_COPPER;
 137
 138	/* Check the other medium. */
 139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 140	if (ret_val)
 141		return ret_val;
 142
 143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 144	if (ret_val)
 145		return ret_val;
 146
 147
 148	if (data & E1000_M88E1112_STATUS_LINK)
 149		port = E1000_MEDIA_PORT_OTHER;
 150
 151	/* Determine if a swap needs to happen. */
 152	if (port && (hw->dev_spec._82575.media_port != port)) {
 153		hw->dev_spec._82575.media_port = port;
 154		hw->dev_spec._82575.media_changed = true;
 155	}
 156
 157	if (port == E1000_MEDIA_PORT_COPPER) {
 158		/* reset page to 0 */
 159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 160		if (ret_val)
 161			return ret_val;
 162		igb_check_for_link_82575(hw);
 163	} else {
 164		igb_check_for_link_82575(hw);
 165		/* reset page to 0 */
 166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 167		if (ret_val)
 168			return ret_val;
 169	}
 170
 171	return 0;
 172}
 173
 174/**
 175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 176 *  @hw: pointer to the HW structure
 177 **/
 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 179{
 180	struct e1000_phy_info *phy = &hw->phy;
 181	s32 ret_val = 0;
 182	u32 ctrl_ext;
 183
 184	if (hw->phy.media_type != e1000_media_type_copper) {
 185		phy->type = e1000_phy_none;
 186		goto out;
 187	}
 188
 189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 190	phy->reset_delay_us	= 100;
 191
 192	ctrl_ext = rd32(E1000_CTRL_EXT);
 193
 194	if (igb_sgmii_active_82575(hw)) {
 195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 196		ctrl_ext |= E1000_CTRL_I2C_ENA;
 197	} else {
 198		phy->ops.reset = igb_phy_hw_reset;
 199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 200	}
 201
 202	wr32(E1000_CTRL_EXT, ctrl_ext);
 203	igb_reset_mdicnfg_82580(hw);
 204
 205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 208	} else {
 209		switch (hw->mac.type) {
 210		case e1000_82580:
 211		case e1000_i350:
 212		case e1000_i354:
 213		case e1000_i210:
 214		case e1000_i211:
 215			phy->ops.read_reg = igb_read_phy_reg_82580;
 216			phy->ops.write_reg = igb_write_phy_reg_82580;
 217			break;
 218		default:
 219			phy->ops.read_reg = igb_read_phy_reg_igp;
 220			phy->ops.write_reg = igb_write_phy_reg_igp;
 221		}
 222	}
 223
 224	/* set lan id */
 225	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 226			E1000_STATUS_FUNC_SHIFT;
 227
 228	/* Set phy->phy_addr and phy->id. */
 229	ret_val = igb_get_phy_id_82575(hw);
 230	if (ret_val)
 231		return ret_val;
 232
 233	/* Verify phy id and set remaining function pointers */
 234	switch (phy->id) {
 235	case M88E1543_E_PHY_ID:
 236	case M88E1512_E_PHY_ID:
 237	case I347AT4_E_PHY_ID:
 238	case M88E1112_E_PHY_ID:
 239	case M88E1111_I_PHY_ID:
 240		phy->type		= e1000_phy_m88;
 241		phy->ops.check_polarity	= igb_check_polarity_m88;
 242		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 243		if (phy->id != M88E1111_I_PHY_ID)
 244			phy->ops.get_cable_length =
 245					 igb_get_cable_length_m88_gen2;
 246		else
 247			phy->ops.get_cable_length = igb_get_cable_length_m88;
 248		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 249		/* Check if this PHY is configured for media swap. */
 250		if (phy->id == M88E1112_E_PHY_ID) {
 251			u16 data;
 252
 253			ret_val = phy->ops.write_reg(hw,
 254						     E1000_M88E1112_PAGE_ADDR,
 255						     2);
 256			if (ret_val)
 257				goto out;
 258
 259			ret_val = phy->ops.read_reg(hw,
 260						    E1000_M88E1112_MAC_CTRL_1,
 261						    &data);
 262			if (ret_val)
 263				goto out;
 264
 265			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 266			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 267			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 268			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 269				hw->mac.ops.check_for_link =
 270						igb_check_for_link_media_swap;
 271		}
 272		if (phy->id == M88E1512_E_PHY_ID) {
 273			ret_val = igb_initialize_M88E1512_phy(hw);
 274			if (ret_val)
 275				goto out;
 276		}
 277		if (phy->id == M88E1543_E_PHY_ID) {
 278			ret_val = igb_initialize_M88E1543_phy(hw);
 279			if (ret_val)
 280				goto out;
 281		}
 282		break;
 283	case IGP03E1000_E_PHY_ID:
 284		phy->type = e1000_phy_igp_3;
 285		phy->ops.get_phy_info = igb_get_phy_info_igp;
 286		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 287		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 288		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 289		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 290		break;
 291	case I82580_I_PHY_ID:
 292	case I350_I_PHY_ID:
 293		phy->type = e1000_phy_82580;
 294		phy->ops.force_speed_duplex =
 295					 igb_phy_force_speed_duplex_82580;
 296		phy->ops.get_cable_length = igb_get_cable_length_82580;
 297		phy->ops.get_phy_info = igb_get_phy_info_82580;
 298		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 299		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 300		break;
 301	case I210_I_PHY_ID:
 302		phy->type		= e1000_phy_i210;
 303		phy->ops.check_polarity	= igb_check_polarity_m88;
 304		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 305		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 306		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 307		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 308		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 309		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 310		break;
 311	case BCM54616_E_PHY_ID:
 312		phy->type = e1000_phy_bcm54616;
 313		break;
 314	default:
 315		ret_val = -E1000_ERR_PHY;
 316		goto out;
 317	}
 318
 319out:
 320	return ret_val;
 321}
 322
 323/**
 324 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 325 *  @hw: pointer to the HW structure
 326 **/
 327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 328{
 329	struct e1000_nvm_info *nvm = &hw->nvm;
 330	u32 eecd = rd32(E1000_EECD);
 331	u16 size;
 332
 333	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 334		     E1000_EECD_SIZE_EX_SHIFT);
 335
 336	/* Added to a constant, "size" becomes the left-shift value
 337	 * for setting word_size.
 338	 */
 339	size += NVM_WORD_SIZE_BASE_SHIFT;
 340
 341	/* Just in case size is out of range, cap it to the largest
 342	 * EEPROM size supported
 343	 */
 344	if (size > 15)
 345		size = 15;
 346
 347	nvm->word_size = BIT(size);
 348	nvm->opcode_bits = 8;
 349	nvm->delay_usec = 1;
 350
 351	switch (nvm->override) {
 352	case e1000_nvm_override_spi_large:
 353		nvm->page_size = 32;
 354		nvm->address_bits = 16;
 355		break;
 356	case e1000_nvm_override_spi_small:
 357		nvm->page_size = 8;
 358		nvm->address_bits = 8;
 359		break;
 360	default:
 361		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 362		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 363				    16 : 8;
 364		break;
 365	}
 366	if (nvm->word_size == BIT(15))
 367		nvm->page_size = 128;
 368
 369	nvm->type = e1000_nvm_eeprom_spi;
 370
 371	/* NVM Function Pointers */
 372	nvm->ops.acquire = igb_acquire_nvm_82575;
 373	nvm->ops.release = igb_release_nvm_82575;
 374	nvm->ops.write = igb_write_nvm_spi;
 375	nvm->ops.validate = igb_validate_nvm_checksum;
 376	nvm->ops.update = igb_update_nvm_checksum;
 377	if (nvm->word_size < BIT(15))
 378		nvm->ops.read = igb_read_nvm_eerd;
 379	else
 380		nvm->ops.read = igb_read_nvm_spi;
 381
 382	/* override generic family function pointers for specific descendants */
 383	switch (hw->mac.type) {
 384	case e1000_82580:
 385		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 386		nvm->ops.update = igb_update_nvm_checksum_82580;
 387		break;
 388	case e1000_i354:
 389	case e1000_i350:
 390		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 391		nvm->ops.update = igb_update_nvm_checksum_i350;
 392		break;
 393	default:
 394		break;
 395	}
 396
 397	return 0;
 398}
 399
 400/**
 401 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 402 *  @hw: pointer to the HW structure
 403 **/
 404static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 405{
 406	struct e1000_mac_info *mac = &hw->mac;
 407	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 408
 409	/* Set mta register count */
 410	mac->mta_reg_count = 128;
 411	/* Set uta register count */
 412	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 413	/* Set rar entry count */
 414	switch (mac->type) {
 415	case e1000_82576:
 416		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 417		break;
 418	case e1000_82580:
 419		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 420		break;
 421	case e1000_i350:
 422	case e1000_i354:
 423		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 424		break;
 425	default:
 426		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 427		break;
 428	}
 429	/* reset */
 430	if (mac->type >= e1000_82580)
 431		mac->ops.reset_hw = igb_reset_hw_82580;
 432	else
 433		mac->ops.reset_hw = igb_reset_hw_82575;
 434
 435	if (mac->type >= e1000_i210) {
 436		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 437		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 438
 439	} else {
 440		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 441		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 442	}
 443
 444	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 445		mac->ops.write_vfta = igb_write_vfta_i350;
 446	else
 447		mac->ops.write_vfta = igb_write_vfta;
 448
 449	/* Set if part includes ASF firmware */
 450	mac->asf_firmware_present = true;
 451	/* Set if manageability features are enabled. */
 452	mac->arc_subsystem_valid =
 453		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 454			? true : false;
 455	/* enable EEE on i350 parts and later parts */
 456	if (mac->type >= e1000_i350)
 457		dev_spec->eee_disable = false;
 458	else
 459		dev_spec->eee_disable = true;
 460	/* Allow a single clear of the SW semaphore on I210 and newer */
 461	if (mac->type >= e1000_i210)
 462		dev_spec->clear_semaphore_once = true;
 463	/* physical interface link setup */
 464	mac->ops.setup_physical_interface =
 465		(hw->phy.media_type == e1000_media_type_copper)
 466			? igb_setup_copper_link_82575
 467			: igb_setup_serdes_link_82575;
 468
 469	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
 470		switch (hw->device_id) {
 471		/* feature not supported on these id's */
 472		case E1000_DEV_ID_DH89XXCC_SGMII:
 473		case E1000_DEV_ID_DH89XXCC_SERDES:
 474		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 475		case E1000_DEV_ID_DH89XXCC_SFP:
 476			break;
 477		default:
 478			hw->dev_spec._82575.mas_capable = true;
 479			break;
 480		}
 481	}
 482	return 0;
 483}
 484
 485/**
 486 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 487 *  @hw: pointer to the HW structure
 488 *
 489 *  The media type is chosen based on SFP module.
 490 *  compatibility flags retrieved from SFP ID EEPROM.
 491 **/
 492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 493{
 494	s32 ret_val = E1000_ERR_CONFIG;
 495	u32 ctrl_ext = 0;
 496	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 497	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 498	u8 tranceiver_type = 0;
 499	s32 timeout = 3;
 500
 501	/* Turn I2C interface ON and power on sfp cage */
 502	ctrl_ext = rd32(E1000_CTRL_EXT);
 503	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 504	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 505
 506	wrfl();
 507
 508	/* Read SFP module data */
 509	while (timeout) {
 510		ret_val = igb_read_sfp_data_byte(hw,
 511			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 512			&tranceiver_type);
 513		if (ret_val == 0)
 514			break;
 515		msleep(100);
 516		timeout--;
 517	}
 518	if (ret_val != 0)
 519		goto out;
 520
 521	ret_val = igb_read_sfp_data_byte(hw,
 522			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 523			(u8 *)eth_flags);
 524	if (ret_val != 0)
 525		goto out;
 526
 527	/* Check if there is some SFP module plugged and powered */
 528	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 529	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 530		dev_spec->module_plugged = true;
 531		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 532			hw->phy.media_type = e1000_media_type_internal_serdes;
 533		} else if (eth_flags->e100_base_fx) {
 534			dev_spec->sgmii_active = true;
 535			hw->phy.media_type = e1000_media_type_internal_serdes;
 536		} else if (eth_flags->e1000_base_t) {
 537			dev_spec->sgmii_active = true;
 538			hw->phy.media_type = e1000_media_type_copper;
 539		} else {
 540			hw->phy.media_type = e1000_media_type_unknown;
 541			hw_dbg("PHY module has not been recognized\n");
 542			goto out;
 543		}
 544	} else {
 545		hw->phy.media_type = e1000_media_type_unknown;
 546	}
 547	ret_val = 0;
 548out:
 549	/* Restore I2C interface setting */
 550	wr32(E1000_CTRL_EXT, ctrl_ext);
 551	return ret_val;
 552}
 553
 554static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 555{
 556	struct e1000_mac_info *mac = &hw->mac;
 557	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 558	s32 ret_val;
 559	u32 ctrl_ext = 0;
 560	u32 link_mode = 0;
 561
 562	switch (hw->device_id) {
 563	case E1000_DEV_ID_82575EB_COPPER:
 564	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 565	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 566		mac->type = e1000_82575;
 567		break;
 568	case E1000_DEV_ID_82576:
 569	case E1000_DEV_ID_82576_NS:
 570	case E1000_DEV_ID_82576_NS_SERDES:
 571	case E1000_DEV_ID_82576_FIBER:
 572	case E1000_DEV_ID_82576_SERDES:
 573	case E1000_DEV_ID_82576_QUAD_COPPER:
 574	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 575	case E1000_DEV_ID_82576_SERDES_QUAD:
 576		mac->type = e1000_82576;
 577		break;
 578	case E1000_DEV_ID_82580_COPPER:
 579	case E1000_DEV_ID_82580_FIBER:
 580	case E1000_DEV_ID_82580_QUAD_FIBER:
 581	case E1000_DEV_ID_82580_SERDES:
 582	case E1000_DEV_ID_82580_SGMII:
 583	case E1000_DEV_ID_82580_COPPER_DUAL:
 584	case E1000_DEV_ID_DH89XXCC_SGMII:
 585	case E1000_DEV_ID_DH89XXCC_SERDES:
 586	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 587	case E1000_DEV_ID_DH89XXCC_SFP:
 588		mac->type = e1000_82580;
 589		break;
 590	case E1000_DEV_ID_I350_COPPER:
 591	case E1000_DEV_ID_I350_FIBER:
 592	case E1000_DEV_ID_I350_SERDES:
 593	case E1000_DEV_ID_I350_SGMII:
 594		mac->type = e1000_i350;
 595		break;
 596	case E1000_DEV_ID_I210_COPPER:
 597	case E1000_DEV_ID_I210_FIBER:
 598	case E1000_DEV_ID_I210_SERDES:
 599	case E1000_DEV_ID_I210_SGMII:
 600	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 601	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 602		mac->type = e1000_i210;
 603		break;
 604	case E1000_DEV_ID_I211_COPPER:
 605		mac->type = e1000_i211;
 606		break;
 607	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 608	case E1000_DEV_ID_I354_SGMII:
 609	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 610		mac->type = e1000_i354;
 611		break;
 612	default:
 613		return -E1000_ERR_MAC_INIT;
 614	}
 615
 616	/* Set media type */
 617	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 618	 * based on the EEPROM. We cannot rely upon device ID. There
 619	 * is no distinguishable difference between fiber and internal
 620	 * SerDes mode on the 82575. There can be an external PHY attached
 621	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 622	 */
 623	hw->phy.media_type = e1000_media_type_copper;
 624	dev_spec->sgmii_active = false;
 625	dev_spec->module_plugged = false;
 626
 627	ctrl_ext = rd32(E1000_CTRL_EXT);
 628
 629	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 630	switch (link_mode) {
 631	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 632		hw->phy.media_type = e1000_media_type_internal_serdes;
 633		break;
 634	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 635		/* Get phy control interface type set (MDIO vs. I2C)*/
 636		if (igb_sgmii_uses_mdio_82575(hw)) {
 637			hw->phy.media_type = e1000_media_type_copper;
 638			dev_spec->sgmii_active = true;
 639			break;
 640		}
 641		/* fall through - for I2C based SGMII */
 642	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 643		/* read media type from SFP EEPROM */
 644		ret_val = igb_set_sfp_media_type_82575(hw);
 645		if ((ret_val != 0) ||
 646		    (hw->phy.media_type == e1000_media_type_unknown)) {
 647			/* If media type was not identified then return media
 648			 * type defined by the CTRL_EXT settings.
 649			 */
 650			hw->phy.media_type = e1000_media_type_internal_serdes;
 651
 652			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 653				hw->phy.media_type = e1000_media_type_copper;
 654				dev_spec->sgmii_active = true;
 655			}
 656
 657			break;
 658		}
 659
 660		/* do not change link mode for 100BaseFX */
 661		if (dev_spec->eth_flags.e100_base_fx)
 662			break;
 663
 664		/* change current link mode setting */
 665		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 666
 667		if (hw->phy.media_type == e1000_media_type_copper)
 668			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 669		else
 670			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 671
 672		wr32(E1000_CTRL_EXT, ctrl_ext);
 673
 674		break;
 675	default:
 676		break;
 677	}
 678
 679	/* mac initialization and operations */
 680	ret_val = igb_init_mac_params_82575(hw);
 681	if (ret_val)
 682		goto out;
 683
 684	/* NVM initialization */
 685	ret_val = igb_init_nvm_params_82575(hw);
 686	switch (hw->mac.type) {
 687	case e1000_i210:
 688	case e1000_i211:
 689		ret_val = igb_init_nvm_params_i210(hw);
 690		break;
 691	default:
 692		break;
 693	}
 694
 695	if (ret_val)
 696		goto out;
 697
 698	/* if part supports SR-IOV then initialize mailbox parameters */
 699	switch (mac->type) {
 700	case e1000_82576:
 701	case e1000_i350:
 702		igb_init_mbx_params_pf(hw);
 703		break;
 704	default:
 705		break;
 706	}
 707
 708	/* setup PHY parameters */
 709	ret_val = igb_init_phy_params_82575(hw);
 710
 711out:
 712	return ret_val;
 713}
 714
 715/**
 716 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 717 *  @hw: pointer to the HW structure
 718 *
 719 *  Acquire access rights to the correct PHY.  This is a
 720 *  function pointer entry point called by the api module.
 721 **/
 722static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 723{
 724	u16 mask = E1000_SWFW_PHY0_SM;
 725
 726	if (hw->bus.func == E1000_FUNC_1)
 727		mask = E1000_SWFW_PHY1_SM;
 728	else if (hw->bus.func == E1000_FUNC_2)
 729		mask = E1000_SWFW_PHY2_SM;
 730	else if (hw->bus.func == E1000_FUNC_3)
 731		mask = E1000_SWFW_PHY3_SM;
 732
 733	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 734}
 735
 736/**
 737 *  igb_release_phy_82575 - Release rights to access PHY
 738 *  @hw: pointer to the HW structure
 739 *
 740 *  A wrapper to release access rights to the correct PHY.  This is a
 741 *  function pointer entry point called by the api module.
 742 **/
 743static void igb_release_phy_82575(struct e1000_hw *hw)
 744{
 745	u16 mask = E1000_SWFW_PHY0_SM;
 746
 747	if (hw->bus.func == E1000_FUNC_1)
 748		mask = E1000_SWFW_PHY1_SM;
 749	else if (hw->bus.func == E1000_FUNC_2)
 750		mask = E1000_SWFW_PHY2_SM;
 751	else if (hw->bus.func == E1000_FUNC_3)
 752		mask = E1000_SWFW_PHY3_SM;
 753
 754	hw->mac.ops.release_swfw_sync(hw, mask);
 755}
 756
 757/**
 758 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 759 *  @hw: pointer to the HW structure
 760 *  @offset: register offset to be read
 761 *  @data: pointer to the read data
 762 *
 763 *  Reads the PHY register at offset using the serial gigabit media independent
 764 *  interface and stores the retrieved information in data.
 765 **/
 766static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 767					  u16 *data)
 768{
 769	s32 ret_val = -E1000_ERR_PARAM;
 770
 771	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 772		hw_dbg("PHY Address %u is out of range\n", offset);
 773		goto out;
 774	}
 775
 776	ret_val = hw->phy.ops.acquire(hw);
 777	if (ret_val)
 778		goto out;
 779
 780	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 781
 782	hw->phy.ops.release(hw);
 783
 784out:
 785	return ret_val;
 786}
 787
 788/**
 789 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 790 *  @hw: pointer to the HW structure
 791 *  @offset: register offset to write to
 792 *  @data: data to write at register offset
 793 *
 794 *  Writes the data to PHY register at the offset using the serial gigabit
 795 *  media independent interface.
 796 **/
 797static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 798					   u16 data)
 799{
 800	s32 ret_val = -E1000_ERR_PARAM;
 801
 802
 803	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 804		hw_dbg("PHY Address %d is out of range\n", offset);
 805		goto out;
 806	}
 807
 808	ret_val = hw->phy.ops.acquire(hw);
 809	if (ret_val)
 810		goto out;
 811
 812	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 813
 814	hw->phy.ops.release(hw);
 815
 816out:
 817	return ret_val;
 818}
 819
 820/**
 821 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 822 *  @hw: pointer to the HW structure
 823 *
 824 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 825 *  sgmi interface.
 826 **/
 827static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 828{
 829	struct e1000_phy_info *phy = &hw->phy;
 830	s32  ret_val = 0;
 831	u16 phy_id;
 832	u32 ctrl_ext;
 833	u32 mdic;
 834
 835	/* Extra read required for some PHY's on i354 */
 836	if (hw->mac.type == e1000_i354)
 837		igb_get_phy_id(hw);
 838
 839	/* For SGMII PHYs, we try the list of possible addresses until
 840	 * we find one that works.  For non-SGMII PHYs
 841	 * (e.g. integrated copper PHYs), an address of 1 should
 842	 * work.  The result of this function should mean phy->phy_addr
 843	 * and phy->id are set correctly.
 844	 */
 845	if (!(igb_sgmii_active_82575(hw))) {
 846		phy->addr = 1;
 847		ret_val = igb_get_phy_id(hw);
 848		goto out;
 849	}
 850
 851	if (igb_sgmii_uses_mdio_82575(hw)) {
 852		switch (hw->mac.type) {
 853		case e1000_82575:
 854		case e1000_82576:
 855			mdic = rd32(E1000_MDIC);
 856			mdic &= E1000_MDIC_PHY_MASK;
 857			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 858			break;
 859		case e1000_82580:
 860		case e1000_i350:
 861		case e1000_i354:
 862		case e1000_i210:
 863		case e1000_i211:
 864			mdic = rd32(E1000_MDICNFG);
 865			mdic &= E1000_MDICNFG_PHY_MASK;
 866			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 867			break;
 868		default:
 869			ret_val = -E1000_ERR_PHY;
 870			goto out;
 871		}
 872		ret_val = igb_get_phy_id(hw);
 873		goto out;
 874	}
 875
 876	/* Power on sgmii phy if it is disabled */
 877	ctrl_ext = rd32(E1000_CTRL_EXT);
 878	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 879	wrfl();
 880	msleep(300);
 881
 882	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 883	 * Therefore, we need to test 1-7
 884	 */
 885	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 886		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 887		if (ret_val == 0) {
 888			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 889			       phy_id, phy->addr);
 890			/* At the time of this writing, The M88 part is
 891			 * the only supported SGMII PHY product.
 892			 */
 893			if (phy_id == M88_VENDOR)
 894				break;
 895		} else {
 896			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 897		}
 898	}
 899
 900	/* A valid PHY type couldn't be found. */
 901	if (phy->addr == 8) {
 902		phy->addr = 0;
 903		ret_val = -E1000_ERR_PHY;
 904		goto out;
 905	} else {
 906		ret_val = igb_get_phy_id(hw);
 907	}
 908
 909	/* restore previous sfp cage power state */
 910	wr32(E1000_CTRL_EXT, ctrl_ext);
 911
 912out:
 913	return ret_val;
 914}
 915
 916/**
 917 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 918 *  @hw: pointer to the HW structure
 919 *
 920 *  Resets the PHY using the serial gigabit media independent interface.
 921 **/
 922static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 923{
 924	struct e1000_phy_info *phy = &hw->phy;
 925	s32 ret_val;
 926
 927	/* This isn't a true "hard" reset, but is the only reset
 928	 * available to us at this time.
 929	 */
 930
 931	hw_dbg("Soft resetting SGMII attached PHY...\n");
 932
 933	/* SFP documentation requires the following to configure the SPF module
 934	 * to work on SGMII.  No further documentation is given.
 935	 */
 936	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 937	if (ret_val)
 938		goto out;
 939
 940	ret_val = igb_phy_sw_reset(hw);
 941	if (ret_val)
 942		goto out;
 943
 944	if (phy->id == M88E1512_E_PHY_ID)
 945		ret_val = igb_initialize_M88E1512_phy(hw);
 946	if (phy->id == M88E1543_E_PHY_ID)
 947		ret_val = igb_initialize_M88E1543_phy(hw);
 948out:
 949	return ret_val;
 950}
 951
 952/**
 953 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 954 *  @hw: pointer to the HW structure
 955 *  @active: true to enable LPLU, false to disable
 956 *
 957 *  Sets the LPLU D0 state according to the active flag.  When
 958 *  activating LPLU this function also disables smart speed
 959 *  and vice versa.  LPLU will not be activated unless the
 960 *  device autonegotiation advertisement meets standards of
 961 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 962 *  This is a function pointer entry point only called by
 963 *  PHY setup routines.
 964 **/
 965static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 966{
 967	struct e1000_phy_info *phy = &hw->phy;
 968	s32 ret_val;
 969	u16 data;
 970
 971	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 972	if (ret_val)
 973		goto out;
 974
 975	if (active) {
 976		data |= IGP02E1000_PM_D0_LPLU;
 977		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 978						 data);
 979		if (ret_val)
 980			goto out;
 981
 982		/* When LPLU is enabled, we should disable SmartSpeed */
 983		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 984						&data);
 985		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 986		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 987						 data);
 988		if (ret_val)
 989			goto out;
 990	} else {
 991		data &= ~IGP02E1000_PM_D0_LPLU;
 992		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 993						 data);
 994		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 995		 * during Dx states where the power conservation is most
 996		 * important.  During driver activity we should enable
 997		 * SmartSpeed, so performance is maintained.
 998		 */
 999		if (phy->smart_speed == e1000_smart_speed_on) {
1000			ret_val = phy->ops.read_reg(hw,
1001					IGP01E1000_PHY_PORT_CONFIG, &data);
1002			if (ret_val)
1003				goto out;
1004
1005			data |= IGP01E1000_PSCFR_SMART_SPEED;
1006			ret_val = phy->ops.write_reg(hw,
1007					IGP01E1000_PHY_PORT_CONFIG, data);
1008			if (ret_val)
1009				goto out;
1010		} else if (phy->smart_speed == e1000_smart_speed_off) {
1011			ret_val = phy->ops.read_reg(hw,
1012					IGP01E1000_PHY_PORT_CONFIG, &data);
1013			if (ret_val)
1014				goto out;
1015
1016			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1017			ret_val = phy->ops.write_reg(hw,
1018					IGP01E1000_PHY_PORT_CONFIG, data);
1019			if (ret_val)
1020				goto out;
1021		}
1022	}
1023
1024out:
1025	return ret_val;
1026}
1027
1028/**
1029 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1030 *  @hw: pointer to the HW structure
1031 *  @active: true to enable LPLU, false to disable
1032 *
1033 *  Sets the LPLU D0 state according to the active flag.  When
1034 *  activating LPLU this function also disables smart speed
1035 *  and vice versa.  LPLU will not be activated unless the
1036 *  device autonegotiation advertisement meets standards of
1037 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1038 *  This is a function pointer entry point only called by
1039 *  PHY setup routines.
1040 **/
1041static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1042{
1043	struct e1000_phy_info *phy = &hw->phy;
1044	u16 data;
1045
1046	data = rd32(E1000_82580_PHY_POWER_MGMT);
1047
1048	if (active) {
1049		data |= E1000_82580_PM_D0_LPLU;
1050
1051		/* When LPLU is enabled, we should disable SmartSpeed */
1052		data &= ~E1000_82580_PM_SPD;
1053	} else {
1054		data &= ~E1000_82580_PM_D0_LPLU;
1055
1056		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1057		 * during Dx states where the power conservation is most
1058		 * important.  During driver activity we should enable
1059		 * SmartSpeed, so performance is maintained.
1060		 */
1061		if (phy->smart_speed == e1000_smart_speed_on)
1062			data |= E1000_82580_PM_SPD;
1063		else if (phy->smart_speed == e1000_smart_speed_off)
1064			data &= ~E1000_82580_PM_SPD; }
1065
1066	wr32(E1000_82580_PHY_POWER_MGMT, data);
1067	return 0;
1068}
1069
1070/**
1071 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1072 *  @hw: pointer to the HW structure
1073 *  @active: boolean used to enable/disable lplu
1074 *
1075 *  Success returns 0, Failure returns 1
1076 *
1077 *  The low power link up (lplu) state is set to the power management level D3
1078 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1079 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1080 *  is used during Dx states where the power conservation is most important.
1081 *  During driver activity, SmartSpeed should be enabled so performance is
1082 *  maintained.
1083 **/
1084static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1085{
1086	struct e1000_phy_info *phy = &hw->phy;
1087	u16 data;
1088
1089	data = rd32(E1000_82580_PHY_POWER_MGMT);
1090
1091	if (!active) {
1092		data &= ~E1000_82580_PM_D3_LPLU;
1093		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1094		 * during Dx states where the power conservation is most
1095		 * important.  During driver activity we should enable
1096		 * SmartSpeed, so performance is maintained.
1097		 */
1098		if (phy->smart_speed == e1000_smart_speed_on)
1099			data |= E1000_82580_PM_SPD;
1100		else if (phy->smart_speed == e1000_smart_speed_off)
1101			data &= ~E1000_82580_PM_SPD;
1102	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1103		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1104		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1105		data |= E1000_82580_PM_D3_LPLU;
1106		/* When LPLU is enabled, we should disable SmartSpeed */
1107		data &= ~E1000_82580_PM_SPD;
1108	}
1109
1110	wr32(E1000_82580_PHY_POWER_MGMT, data);
1111	return 0;
1112}
1113
1114/**
1115 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1116 *  @hw: pointer to the HW structure
1117 *
1118 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1119 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1120 *  Return successful if access grant bit set, else clear the request for
1121 *  EEPROM access and return -E1000_ERR_NVM (-1).
1122 **/
1123static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1124{
1125	s32 ret_val;
1126
1127	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1128	if (ret_val)
1129		goto out;
1130
1131	ret_val = igb_acquire_nvm(hw);
1132
1133	if (ret_val)
1134		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1135
1136out:
1137	return ret_val;
1138}
1139
1140/**
1141 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1142 *  @hw: pointer to the HW structure
1143 *
1144 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1145 *  then release the semaphores acquired.
1146 **/
1147static void igb_release_nvm_82575(struct e1000_hw *hw)
1148{
1149	igb_release_nvm(hw);
1150	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1151}
1152
1153/**
1154 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1155 *  @hw: pointer to the HW structure
1156 *  @mask: specifies which semaphore to acquire
1157 *
1158 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1159 *  will also specify which port we're acquiring the lock for.
1160 **/
1161static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1162{
1163	u32 swfw_sync;
1164	u32 swmask = mask;
1165	u32 fwmask = mask << 16;
1166	s32 ret_val = 0;
1167	s32 i = 0, timeout = 200;
1168
1169	while (i < timeout) {
1170		if (igb_get_hw_semaphore(hw)) {
1171			ret_val = -E1000_ERR_SWFW_SYNC;
1172			goto out;
1173		}
1174
1175		swfw_sync = rd32(E1000_SW_FW_SYNC);
1176		if (!(swfw_sync & (fwmask | swmask)))
1177			break;
1178
1179		/* Firmware currently using resource (fwmask)
1180		 * or other software thread using resource (swmask)
1181		 */
1182		igb_put_hw_semaphore(hw);
1183		mdelay(5);
1184		i++;
1185	}
1186
1187	if (i == timeout) {
1188		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1189		ret_val = -E1000_ERR_SWFW_SYNC;
1190		goto out;
1191	}
1192
1193	swfw_sync |= swmask;
1194	wr32(E1000_SW_FW_SYNC, swfw_sync);
1195
1196	igb_put_hw_semaphore(hw);
1197
1198out:
1199	return ret_val;
1200}
1201
1202/**
1203 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1204 *  @hw: pointer to the HW structure
1205 *  @mask: specifies which semaphore to acquire
1206 *
1207 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1208 *  will also specify which port we're releasing the lock for.
1209 **/
1210static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1211{
1212	u32 swfw_sync;
1213
1214	while (igb_get_hw_semaphore(hw) != 0)
1215		; /* Empty */
1216
1217	swfw_sync = rd32(E1000_SW_FW_SYNC);
1218	swfw_sync &= ~mask;
1219	wr32(E1000_SW_FW_SYNC, swfw_sync);
1220
1221	igb_put_hw_semaphore(hw);
1222}
1223
1224/**
1225 *  igb_get_cfg_done_82575 - Read config done bit
1226 *  @hw: pointer to the HW structure
1227 *
1228 *  Read the management control register for the config done bit for
1229 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1230 *  to read the config done bit, so an error is *ONLY* logged and returns
1231 *  0.  If we were to return with error, EEPROM-less silicon
1232 *  would not be able to be reset or change link.
1233 **/
1234static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1235{
1236	s32 timeout = PHY_CFG_TIMEOUT;
1237	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1238
1239	if (hw->bus.func == 1)
1240		mask = E1000_NVM_CFG_DONE_PORT_1;
1241	else if (hw->bus.func == E1000_FUNC_2)
1242		mask = E1000_NVM_CFG_DONE_PORT_2;
1243	else if (hw->bus.func == E1000_FUNC_3)
1244		mask = E1000_NVM_CFG_DONE_PORT_3;
1245
1246	while (timeout) {
1247		if (rd32(E1000_EEMNGCTL) & mask)
1248			break;
1249		usleep_range(1000, 2000);
1250		timeout--;
1251	}
1252	if (!timeout)
1253		hw_dbg("MNG configuration cycle has not completed.\n");
1254
1255	/* If EEPROM is not marked present, init the PHY manually */
1256	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1257	    (hw->phy.type == e1000_phy_igp_3))
1258		igb_phy_init_script_igp3(hw);
1259
1260	return 0;
1261}
1262
1263/**
1264 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1265 *  @hw: pointer to the HW structure
1266 *  @speed: stores the current speed
1267 *  @duplex: stores the current duplex
1268 *
1269 *  This is a wrapper function, if using the serial gigabit media independent
1270 *  interface, use PCS to retrieve the link speed and duplex information.
1271 *  Otherwise, use the generic function to get the link speed and duplex info.
1272 **/
1273static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1274					u16 *duplex)
1275{
1276	s32 ret_val;
1277
1278	if (hw->phy.media_type != e1000_media_type_copper)
1279		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1280							       duplex);
1281	else
1282		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1283								    duplex);
1284
1285	return ret_val;
1286}
1287
1288/**
1289 *  igb_check_for_link_82575 - Check for link
1290 *  @hw: pointer to the HW structure
1291 *
1292 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1293 *  use the generic interface for determining link.
1294 **/
1295static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1296{
1297	s32 ret_val;
1298	u16 speed, duplex;
1299
1300	if (hw->phy.media_type != e1000_media_type_copper) {
1301		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1302							     &duplex);
1303		/* Use this flag to determine if link needs to be checked or
1304		 * not.  If  we have link clear the flag so that we do not
1305		 * continue to check for link.
1306		 */
1307		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1308
1309		/* Configure Flow Control now that Auto-Neg has completed.
1310		 * First, we need to restore the desired flow control
1311		 * settings because we may have had to re-autoneg with a
1312		 * different link partner.
1313		 */
1314		ret_val = igb_config_fc_after_link_up(hw);
1315		if (ret_val)
1316			hw_dbg("Error configuring flow control\n");
1317	} else {
1318		ret_val = igb_check_for_copper_link(hw);
1319	}
1320
1321	return ret_val;
1322}
1323
1324/**
1325 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1326 *  @hw: pointer to the HW structure
1327 **/
1328void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1329{
1330	u32 reg;
1331
1332
1333	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1334	    !igb_sgmii_active_82575(hw))
1335		return;
1336
1337	/* Enable PCS to turn on link */
1338	reg = rd32(E1000_PCS_CFG0);
1339	reg |= E1000_PCS_CFG_PCS_EN;
1340	wr32(E1000_PCS_CFG0, reg);
1341
1342	/* Power up the laser */
1343	reg = rd32(E1000_CTRL_EXT);
1344	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1345	wr32(E1000_CTRL_EXT, reg);
1346
1347	/* flush the write to verify completion */
1348	wrfl();
1349	usleep_range(1000, 2000);
1350}
1351
1352/**
1353 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1354 *  @hw: pointer to the HW structure
1355 *  @speed: stores the current speed
1356 *  @duplex: stores the current duplex
1357 *
1358 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1359 *  duplex, then store the values in the pointers provided.
1360 **/
1361static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1362						u16 *duplex)
1363{
1364	struct e1000_mac_info *mac = &hw->mac;
1365	u32 pcs, status;
1366
1367	/* Set up defaults for the return values of this function */
1368	mac->serdes_has_link = false;
1369	*speed = 0;
1370	*duplex = 0;
1371
1372	/* Read the PCS Status register for link state. For non-copper mode,
1373	 * the status register is not accurate. The PCS status register is
1374	 * used instead.
1375	 */
1376	pcs = rd32(E1000_PCS_LSTAT);
1377
1378	/* The link up bit determines when link is up on autoneg. The sync ok
1379	 * gets set once both sides sync up and agree upon link. Stable link
1380	 * can be determined by checking for both link up and link sync ok
1381	 */
1382	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1383		mac->serdes_has_link = true;
1384
1385		/* Detect and store PCS speed */
1386		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1387			*speed = SPEED_1000;
1388		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1389			*speed = SPEED_100;
1390		else
1391			*speed = SPEED_10;
1392
1393		/* Detect and store PCS duplex */
1394		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1395			*duplex = FULL_DUPLEX;
1396		else
1397			*duplex = HALF_DUPLEX;
1398
1399	/* Check if it is an I354 2.5Gb backplane connection. */
1400		if (mac->type == e1000_i354) {
1401			status = rd32(E1000_STATUS);
1402			if ((status & E1000_STATUS_2P5_SKU) &&
1403			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1404				*speed = SPEED_2500;
1405				*duplex = FULL_DUPLEX;
1406				hw_dbg("2500 Mbs, ");
1407				hw_dbg("Full Duplex\n");
1408			}
1409		}
1410
1411	}
1412
1413	return 0;
1414}
1415
1416/**
1417 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1418 *  @hw: pointer to the HW structure
1419 *
1420 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1421 *  when management pass thru is not enabled.
1422 **/
1423void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1424{
1425	u32 reg;
1426
1427	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1428	    igb_sgmii_active_82575(hw))
1429		return;
1430
1431	if (!igb_enable_mng_pass_thru(hw)) {
1432		/* Disable PCS to turn off link */
1433		reg = rd32(E1000_PCS_CFG0);
1434		reg &= ~E1000_PCS_CFG_PCS_EN;
1435		wr32(E1000_PCS_CFG0, reg);
1436
1437		/* shutdown the laser */
1438		reg = rd32(E1000_CTRL_EXT);
1439		reg |= E1000_CTRL_EXT_SDP3_DATA;
1440		wr32(E1000_CTRL_EXT, reg);
1441
1442		/* flush the write to verify completion */
1443		wrfl();
1444		usleep_range(1000, 2000);
1445	}
1446}
1447
1448/**
1449 *  igb_reset_hw_82575 - Reset hardware
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  This resets the hardware into a known state.  This is a
1453 *  function pointer entry point called by the api module.
1454 **/
1455static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1456{
1457	u32 ctrl;
1458	s32 ret_val;
1459
1460	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1461	 * on the last TLP read/write transaction when MAC is reset.
1462	 */
1463	ret_val = igb_disable_pcie_master(hw);
1464	if (ret_val)
1465		hw_dbg("PCI-E Master disable polling has failed.\n");
1466
1467	/* set the completion timeout for interface */
1468	ret_val = igb_set_pcie_completion_timeout(hw);
1469	if (ret_val)
1470		hw_dbg("PCI-E Set completion timeout has failed.\n");
1471
1472	hw_dbg("Masking off all interrupts\n");
1473	wr32(E1000_IMC, 0xffffffff);
1474
1475	wr32(E1000_RCTL, 0);
1476	wr32(E1000_TCTL, E1000_TCTL_PSP);
1477	wrfl();
1478
1479	usleep_range(10000, 20000);
1480
1481	ctrl = rd32(E1000_CTRL);
1482
1483	hw_dbg("Issuing a global reset to MAC\n");
1484	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1485
1486	ret_val = igb_get_auto_rd_done(hw);
1487	if (ret_val) {
1488		/* When auto config read does not complete, do not
1489		 * return with an error. This can happen in situations
1490		 * where there is no eeprom and prevents getting link.
1491		 */
1492		hw_dbg("Auto Read Done did not complete\n");
1493	}
1494
1495	/* If EEPROM is not present, run manual init scripts */
1496	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1497		igb_reset_init_script_82575(hw);
1498
1499	/* Clear any pending interrupt events. */
1500	wr32(E1000_IMC, 0xffffffff);
1501	rd32(E1000_ICR);
1502
1503	/* Install any alternate MAC address into RAR0 */
1504	ret_val = igb_check_alt_mac_addr(hw);
1505
1506	return ret_val;
1507}
1508
1509/**
1510 *  igb_init_hw_82575 - Initialize hardware
1511 *  @hw: pointer to the HW structure
1512 *
1513 *  This inits the hardware readying it for operation.
1514 **/
1515static s32 igb_init_hw_82575(struct e1000_hw *hw)
1516{
1517	struct e1000_mac_info *mac = &hw->mac;
1518	s32 ret_val;
1519	u16 i, rar_count = mac->rar_entry_count;
1520
1521	if ((hw->mac.type >= e1000_i210) &&
1522	    !(igb_get_flash_presence_i210(hw))) {
1523		ret_val = igb_pll_workaround_i210(hw);
1524		if (ret_val)
1525			return ret_val;
1526	}
1527
1528	/* Initialize identification LED */
1529	ret_val = igb_id_led_init(hw);
1530	if (ret_val) {
1531		hw_dbg("Error initializing identification LED\n");
1532		/* This is not fatal and we should not stop init due to this */
1533	}
1534
1535	/* Disabling VLAN filtering */
1536	hw_dbg("Initializing the IEEE VLAN\n");
1537	igb_clear_vfta(hw);
1538
1539	/* Setup the receive address */
1540	igb_init_rx_addrs(hw, rar_count);
1541
1542	/* Zero out the Multicast HASH table */
1543	hw_dbg("Zeroing the MTA\n");
1544	for (i = 0; i < mac->mta_reg_count; i++)
1545		array_wr32(E1000_MTA, i, 0);
1546
1547	/* Zero out the Unicast HASH table */
1548	hw_dbg("Zeroing the UTA\n");
1549	for (i = 0; i < mac->uta_reg_count; i++)
1550		array_wr32(E1000_UTA, i, 0);
1551
1552	/* Setup link and flow control */
1553	ret_val = igb_setup_link(hw);
1554
1555	/* Clear all of the statistics registers (clear on read).  It is
1556	 * important that we do this after we have tried to establish link
1557	 * because the symbol error count will increment wildly if there
1558	 * is no link.
1559	 */
1560	igb_clear_hw_cntrs_82575(hw);
1561	return ret_val;
1562}
1563
1564/**
1565 *  igb_setup_copper_link_82575 - Configure copper link settings
1566 *  @hw: pointer to the HW structure
1567 *
1568 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1569 *  for link, once link is established calls to configure collision distance
1570 *  and flow control are called.
1571 **/
1572static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1573{
1574	u32 ctrl;
1575	s32  ret_val;
1576	u32 phpm_reg;
1577
1578	ctrl = rd32(E1000_CTRL);
1579	ctrl |= E1000_CTRL_SLU;
1580	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1581	wr32(E1000_CTRL, ctrl);
1582
1583	/* Clear Go Link Disconnect bit on supported devices */
1584	switch (hw->mac.type) {
1585	case e1000_82580:
1586	case e1000_i350:
1587	case e1000_i210:
1588	case e1000_i211:
1589		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1590		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1591		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1592		break;
1593	default:
1594		break;
1595	}
1596
1597	ret_val = igb_setup_serdes_link_82575(hw);
1598	if (ret_val)
1599		goto out;
1600
1601	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1602		/* allow time for SFP cage time to power up phy */
1603		msleep(300);
1604
1605		ret_val = hw->phy.ops.reset(hw);
1606		if (ret_val) {
1607			hw_dbg("Error resetting the PHY.\n");
1608			goto out;
1609		}
1610	}
1611	switch (hw->phy.type) {
1612	case e1000_phy_i210:
1613	case e1000_phy_m88:
1614		switch (hw->phy.id) {
1615		case I347AT4_E_PHY_ID:
1616		case M88E1112_E_PHY_ID:
1617		case M88E1543_E_PHY_ID:
1618		case M88E1512_E_PHY_ID:
1619		case I210_I_PHY_ID:
1620			ret_val = igb_copper_link_setup_m88_gen2(hw);
1621			break;
1622		default:
1623			ret_val = igb_copper_link_setup_m88(hw);
1624			break;
1625		}
1626		break;
1627	case e1000_phy_igp_3:
1628		ret_val = igb_copper_link_setup_igp(hw);
1629		break;
1630	case e1000_phy_82580:
1631		ret_val = igb_copper_link_setup_82580(hw);
1632		break;
1633	case e1000_phy_bcm54616:
1634		ret_val = 0;
1635		break;
1636	default:
1637		ret_val = -E1000_ERR_PHY;
1638		break;
1639	}
1640
1641	if (ret_val)
1642		goto out;
1643
1644	ret_val = igb_setup_copper_link(hw);
1645out:
1646	return ret_val;
1647}
1648
1649/**
1650 *  igb_setup_serdes_link_82575 - Setup link for serdes
1651 *  @hw: pointer to the HW structure
1652 *
1653 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1654 *  used on copper connections where the serialized gigabit media independent
1655 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1656 *  for auto-negotiation or forces speed/duplex.
1657 **/
1658static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1659{
1660	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1661	bool pcs_autoneg;
1662	s32 ret_val = 0;
1663	u16 data;
1664
1665	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1666	    !igb_sgmii_active_82575(hw))
1667		return ret_val;
1668
1669
1670	/* On the 82575, SerDes loopback mode persists until it is
1671	 * explicitly turned off or a power cycle is performed.  A read to
1672	 * the register does not indicate its status.  Therefore, we ensure
1673	 * loopback mode is disabled during initialization.
1674	 */
1675	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1676
1677	/* power on the sfp cage if present and turn on I2C */
1678	ctrl_ext = rd32(E1000_CTRL_EXT);
1679	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1680	ctrl_ext |= E1000_CTRL_I2C_ENA;
1681	wr32(E1000_CTRL_EXT, ctrl_ext);
1682
1683	ctrl_reg = rd32(E1000_CTRL);
1684	ctrl_reg |= E1000_CTRL_SLU;
1685
1686	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1687		/* set both sw defined pins */
1688		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1689
1690		/* Set switch control to serdes energy detect */
1691		reg = rd32(E1000_CONNSW);
1692		reg |= E1000_CONNSW_ENRGSRC;
1693		wr32(E1000_CONNSW, reg);
1694	}
1695
1696	reg = rd32(E1000_PCS_LCTL);
1697
1698	/* default pcs_autoneg to the same setting as mac autoneg */
1699	pcs_autoneg = hw->mac.autoneg;
1700
1701	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1702	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1703		/* sgmii mode lets the phy handle forcing speed/duplex */
1704		pcs_autoneg = true;
1705		/* autoneg time out should be disabled for SGMII mode */
1706		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1707		break;
1708	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1709		/* disable PCS autoneg and support parallel detect only */
1710		pcs_autoneg = false;
1711		/* fall through */
1712	default:
1713		if (hw->mac.type == e1000_82575 ||
1714		    hw->mac.type == e1000_82576) {
1715			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1716			if (ret_val) {
1717				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1718				return ret_val;
1719			}
1720
1721			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1722				pcs_autoneg = false;
1723		}
1724
1725		/* non-SGMII modes only supports a speed of 1000/Full for the
1726		 * link so it is best to just force the MAC and let the pcs
1727		 * link either autoneg or be forced to 1000/Full
1728		 */
1729		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1730				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1731
1732		/* set speed of 1000/Full if speed/duplex is forced */
1733		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1734		break;
1735	}
1736
1737	wr32(E1000_CTRL, ctrl_reg);
1738
1739	/* New SerDes mode allows for forcing speed or autonegotiating speed
1740	 * at 1gb. Autoneg should be default set by most drivers. This is the
1741	 * mode that will be compatible with older link partners and switches.
1742	 * However, both are supported by the hardware and some drivers/tools.
1743	 */
1744	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1745		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1746
1747	if (pcs_autoneg) {
1748		/* Set PCS register for autoneg */
1749		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1750		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1751
1752		/* Disable force flow control for autoneg */
1753		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1754
1755		/* Configure flow control advertisement for autoneg */
1756		anadv_reg = rd32(E1000_PCS_ANADV);
1757		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1758		switch (hw->fc.requested_mode) {
1759		case e1000_fc_full:
1760		case e1000_fc_rx_pause:
1761			anadv_reg |= E1000_TXCW_ASM_DIR;
1762			anadv_reg |= E1000_TXCW_PAUSE;
1763			break;
1764		case e1000_fc_tx_pause:
1765			anadv_reg |= E1000_TXCW_ASM_DIR;
1766			break;
1767		default:
1768			break;
1769		}
1770		wr32(E1000_PCS_ANADV, anadv_reg);
1771
1772		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1773	} else {
1774		/* Set PCS register for forced link */
1775		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1776
1777		/* Force flow control for forced link */
1778		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1779
1780		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1781	}
1782
1783	wr32(E1000_PCS_LCTL, reg);
1784
1785	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1786		igb_force_mac_fc(hw);
1787
1788	return ret_val;
1789}
1790
1791/**
1792 *  igb_sgmii_active_82575 - Return sgmii state
1793 *  @hw: pointer to the HW structure
1794 *
1795 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1796 *  which can be enabled for use in the embedded applications.  Simply
1797 *  return the current state of the sgmii interface.
1798 **/
1799static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1800{
1801	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1802	return dev_spec->sgmii_active;
1803}
1804
1805/**
1806 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  Inits recommended HW defaults after a reset when there is no EEPROM
1810 *  detected. This is only for the 82575.
1811 **/
1812static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1813{
1814	if (hw->mac.type == e1000_82575) {
1815		hw_dbg("Running reset init script for 82575\n");
1816		/* SerDes configuration via SERDESCTRL */
1817		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1818		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1819		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1820		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1821
1822		/* CCM configuration via CCMCTL register */
1823		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1824		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1825
1826		/* PCIe lanes configuration */
1827		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1828		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1829		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1830		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1831
1832		/* PCIe PLL Configuration */
1833		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1834		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1835		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1836	}
1837
1838	return 0;
1839}
1840
1841/**
1842 *  igb_read_mac_addr_82575 - Read device MAC address
1843 *  @hw: pointer to the HW structure
1844 **/
1845static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1846{
1847	s32 ret_val = 0;
1848
1849	/* If there's an alternate MAC address place it in RAR0
1850	 * so that it will override the Si installed default perm
1851	 * address.
1852	 */
1853	ret_val = igb_check_alt_mac_addr(hw);
1854	if (ret_val)
1855		goto out;
1856
1857	ret_val = igb_read_mac_addr(hw);
1858
1859out:
1860	return ret_val;
1861}
1862
1863/**
1864 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1865 * @hw: pointer to the HW structure
1866 *
1867 * In the case of a PHY power down to save power, or to turn off link during a
1868 * driver unload, or wake on lan is not enabled, remove the link.
1869 **/
1870void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1871{
1872	/* If the management interface is not enabled, then power down */
1873	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1874		igb_power_down_phy_copper(hw);
1875}
1876
1877/**
1878 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1879 *  @hw: pointer to the HW structure
1880 *
1881 *  Clears the hardware counters by reading the counter registers.
1882 **/
1883static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1884{
1885	igb_clear_hw_cntrs_base(hw);
1886
1887	rd32(E1000_PRC64);
1888	rd32(E1000_PRC127);
1889	rd32(E1000_PRC255);
1890	rd32(E1000_PRC511);
1891	rd32(E1000_PRC1023);
1892	rd32(E1000_PRC1522);
1893	rd32(E1000_PTC64);
1894	rd32(E1000_PTC127);
1895	rd32(E1000_PTC255);
1896	rd32(E1000_PTC511);
1897	rd32(E1000_PTC1023);
1898	rd32(E1000_PTC1522);
1899
1900	rd32(E1000_ALGNERRC);
1901	rd32(E1000_RXERRC);
1902	rd32(E1000_TNCRS);
1903	rd32(E1000_CEXTERR);
1904	rd32(E1000_TSCTC);
1905	rd32(E1000_TSCTFC);
1906
1907	rd32(E1000_MGTPRC);
1908	rd32(E1000_MGTPDC);
1909	rd32(E1000_MGTPTC);
1910
1911	rd32(E1000_IAC);
1912	rd32(E1000_ICRXOC);
1913
1914	rd32(E1000_ICRXPTC);
1915	rd32(E1000_ICRXATC);
1916	rd32(E1000_ICTXPTC);
1917	rd32(E1000_ICTXATC);
1918	rd32(E1000_ICTXQEC);
1919	rd32(E1000_ICTXQMTC);
1920	rd32(E1000_ICRXDMTC);
1921
1922	rd32(E1000_CBTMPC);
1923	rd32(E1000_HTDPMC);
1924	rd32(E1000_CBRMPC);
1925	rd32(E1000_RPTHC);
1926	rd32(E1000_HGPTC);
1927	rd32(E1000_HTCBDPC);
1928	rd32(E1000_HGORCL);
1929	rd32(E1000_HGORCH);
1930	rd32(E1000_HGOTCL);
1931	rd32(E1000_HGOTCH);
1932	rd32(E1000_LENERRS);
1933
1934	/* This register should not be read in copper configurations */
1935	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1936	    igb_sgmii_active_82575(hw))
1937		rd32(E1000_SCVPC);
1938}
1939
1940/**
1941 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1942 *  @hw: pointer to the HW structure
1943 *
1944 *  After rx enable if manageability is enabled then there is likely some
1945 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1946 *  function clears the fifos and flushes any packets that came in as rx was
1947 *  being enabled.
1948 **/
1949void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1950{
1951	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1952	int i, ms_wait;
1953
1954	/* disable IPv6 options as per hardware errata */
1955	rfctl = rd32(E1000_RFCTL);
1956	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1957	wr32(E1000_RFCTL, rfctl);
1958
1959	if (hw->mac.type != e1000_82575 ||
1960	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1961		return;
1962
1963	/* Disable all RX queues */
1964	for (i = 0; i < 4; i++) {
1965		rxdctl[i] = rd32(E1000_RXDCTL(i));
1966		wr32(E1000_RXDCTL(i),
1967		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1968	}
1969	/* Poll all queues to verify they have shut down */
1970	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1971		usleep_range(1000, 2000);
1972		rx_enabled = 0;
1973		for (i = 0; i < 4; i++)
1974			rx_enabled |= rd32(E1000_RXDCTL(i));
1975		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1976			break;
1977	}
1978
1979	if (ms_wait == 10)
1980		hw_dbg("Queue disable timed out after 10ms\n");
1981
1982	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1983	 * incoming packets are rejected.  Set enable and wait 2ms so that
1984	 * any packet that was coming in as RCTL.EN was set is flushed
1985	 */
1986	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1987
1988	rlpml = rd32(E1000_RLPML);
1989	wr32(E1000_RLPML, 0);
1990
1991	rctl = rd32(E1000_RCTL);
1992	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1993	temp_rctl |= E1000_RCTL_LPE;
1994
1995	wr32(E1000_RCTL, temp_rctl);
1996	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1997	wrfl();
1998	usleep_range(2000, 3000);
1999
2000	/* Enable RX queues that were previously enabled and restore our
2001	 * previous state
2002	 */
2003	for (i = 0; i < 4; i++)
2004		wr32(E1000_RXDCTL(i), rxdctl[i]);
2005	wr32(E1000_RCTL, rctl);
2006	wrfl();
2007
2008	wr32(E1000_RLPML, rlpml);
2009	wr32(E1000_RFCTL, rfctl);
2010
2011	/* Flush receive errors generated by workaround */
2012	rd32(E1000_ROC);
2013	rd32(E1000_RNBC);
2014	rd32(E1000_MPC);
2015}
2016
2017/**
2018 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2019 *  @hw: pointer to the HW structure
2020 *
2021 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2022 *  however the hardware default for these parts is 500us to 1ms which is less
2023 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2024 *  increase the value to either 10ms to 200ms for capability version 1 config,
2025 *  or 16ms to 55ms for version 2.
2026 **/
2027static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2028{
2029	u32 gcr = rd32(E1000_GCR);
2030	s32 ret_val = 0;
2031	u16 pcie_devctl2;
2032
2033	/* only take action if timeout value is defaulted to 0 */
2034	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2035		goto out;
2036
2037	/* if capabilities version is type 1 we can write the
2038	 * timeout of 10ms to 200ms through the GCR register
2039	 */
2040	if (!(gcr & E1000_GCR_CAP_VER2)) {
2041		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2042		goto out;
2043	}
2044
2045	/* for version 2 capabilities we need to write the config space
2046	 * directly in order to set the completion timeout value for
2047	 * 16ms to 55ms
2048	 */
2049	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2050					&pcie_devctl2);
2051	if (ret_val)
2052		goto out;
2053
2054	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2055
2056	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2057					 &pcie_devctl2);
2058out:
2059	/* disable completion timeout resend */
2060	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2061
2062	wr32(E1000_GCR, gcr);
2063	return ret_val;
2064}
2065
2066/**
2067 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2068 *  @hw: pointer to the hardware struct
2069 *  @enable: state to enter, either enabled or disabled
2070 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2071 *
2072 *  enables/disables L2 switch anti-spoofing functionality.
2073 **/
2074void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2075{
2076	u32 reg_val, reg_offset;
2077
2078	switch (hw->mac.type) {
2079	case e1000_82576:
2080		reg_offset = E1000_DTXSWC;
2081		break;
2082	case e1000_i350:
2083	case e1000_i354:
2084		reg_offset = E1000_TXSWC;
2085		break;
2086	default:
2087		return;
2088	}
2089
2090	reg_val = rd32(reg_offset);
2091	if (enable) {
2092		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2093			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2094		/* The PF can spoof - it has to in order to
2095		 * support emulation mode NICs
2096		 */
2097		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2098	} else {
2099		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2100			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2101	}
2102	wr32(reg_offset, reg_val);
2103}
2104
2105/**
2106 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2107 *  @hw: pointer to the hardware struct
2108 *  @enable: state to enter, either enabled or disabled
2109 *
2110 *  enables/disables L2 switch loopback functionality.
2111 **/
2112void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2113{
2114	u32 dtxswc;
2115
2116	switch (hw->mac.type) {
2117	case e1000_82576:
2118		dtxswc = rd32(E1000_DTXSWC);
2119		if (enable)
2120			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2121		else
2122			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2123		wr32(E1000_DTXSWC, dtxswc);
2124		break;
2125	case e1000_i354:
2126	case e1000_i350:
2127		dtxswc = rd32(E1000_TXSWC);
2128		if (enable)
2129			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2130		else
2131			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2132		wr32(E1000_TXSWC, dtxswc);
2133		break;
2134	default:
2135		/* Currently no other hardware supports loopback */
2136		break;
2137	}
2138
2139}
2140
2141/**
2142 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2143 *  @hw: pointer to the hardware struct
2144 *  @enable: state to enter, either enabled or disabled
2145 *
2146 *  enables/disables replication of packets across multiple pools.
2147 **/
2148void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2149{
2150	u32 vt_ctl = rd32(E1000_VT_CTL);
2151
2152	if (enable)
2153		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2154	else
2155		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2156
2157	wr32(E1000_VT_CTL, vt_ctl);
2158}
2159
2160/**
2161 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2162 *  @hw: pointer to the HW structure
2163 *  @offset: register offset to be read
2164 *  @data: pointer to the read data
2165 *
2166 *  Reads the MDI control register in the PHY at offset and stores the
2167 *  information read to data.
2168 **/
2169s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2170{
2171	s32 ret_val;
2172
2173	ret_val = hw->phy.ops.acquire(hw);
2174	if (ret_val)
2175		goto out;
2176
2177	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2178
2179	hw->phy.ops.release(hw);
2180
2181out:
2182	return ret_val;
2183}
2184
2185/**
2186 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2187 *  @hw: pointer to the HW structure
2188 *  @offset: register offset to write to
2189 *  @data: data to write to register at offset
2190 *
2191 *  Writes data to MDI control register in the PHY at offset.
2192 **/
2193s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2194{
2195	s32 ret_val;
2196
2197
2198	ret_val = hw->phy.ops.acquire(hw);
2199	if (ret_val)
2200		goto out;
2201
2202	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2203
2204	hw->phy.ops.release(hw);
2205
2206out:
2207	return ret_val;
2208}
2209
2210/**
2211 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2212 *  @hw: pointer to the HW structure
2213 *
2214 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2215 *  the values found in the EEPROM.  This addresses an issue in which these
2216 *  bits are not restored from EEPROM after reset.
2217 **/
2218static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2219{
2220	s32 ret_val = 0;
2221	u32 mdicnfg;
2222	u16 nvm_data = 0;
2223
2224	if (hw->mac.type != e1000_82580)
2225		goto out;
2226	if (!igb_sgmii_active_82575(hw))
2227		goto out;
2228
2229	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2230				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2231				   &nvm_data);
2232	if (ret_val) {
2233		hw_dbg("NVM Read Error\n");
2234		goto out;
2235	}
2236
2237	mdicnfg = rd32(E1000_MDICNFG);
2238	if (nvm_data & NVM_WORD24_EXT_MDIO)
2239		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2240	if (nvm_data & NVM_WORD24_COM_MDIO)
2241		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2242	wr32(E1000_MDICNFG, mdicnfg);
2243out:
2244	return ret_val;
2245}
2246
2247/**
2248 *  igb_reset_hw_82580 - Reset hardware
2249 *  @hw: pointer to the HW structure
2250 *
2251 *  This resets function or entire device (all ports, etc.)
2252 *  to a known state.
2253 **/
2254static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2255{
2256	s32 ret_val = 0;
2257	/* BH SW mailbox bit in SW_FW_SYNC */
2258	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2259	u32 ctrl;
2260	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2261
2262	hw->dev_spec._82575.global_device_reset = false;
2263
2264	/* due to hw errata, global device reset doesn't always
2265	 * work on 82580
2266	 */
2267	if (hw->mac.type == e1000_82580)
2268		global_device_reset = false;
2269
2270	/* Get current control state. */
2271	ctrl = rd32(E1000_CTRL);
2272
2273	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2274	 * on the last TLP read/write transaction when MAC is reset.
2275	 */
2276	ret_val = igb_disable_pcie_master(hw);
2277	if (ret_val)
2278		hw_dbg("PCI-E Master disable polling has failed.\n");
2279
2280	hw_dbg("Masking off all interrupts\n");
2281	wr32(E1000_IMC, 0xffffffff);
2282	wr32(E1000_RCTL, 0);
2283	wr32(E1000_TCTL, E1000_TCTL_PSP);
2284	wrfl();
2285
2286	usleep_range(10000, 11000);
2287
2288	/* Determine whether or not a global dev reset is requested */
2289	if (global_device_reset &&
2290		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2291			global_device_reset = false;
2292
2293	if (global_device_reset &&
2294		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2295		ctrl |= E1000_CTRL_DEV_RST;
2296	else
2297		ctrl |= E1000_CTRL_RST;
2298
2299	wr32(E1000_CTRL, ctrl);
2300	wrfl();
2301
2302	/* Add delay to insure DEV_RST has time to complete */
2303	if (global_device_reset)
2304		usleep_range(5000, 6000);
2305
2306	ret_val = igb_get_auto_rd_done(hw);
2307	if (ret_val) {
2308		/* When auto config read does not complete, do not
2309		 * return with an error. This can happen in situations
2310		 * where there is no eeprom and prevents getting link.
2311		 */
2312		hw_dbg("Auto Read Done did not complete\n");
2313	}
2314
2315	/* clear global device reset status bit */
2316	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2317
2318	/* Clear any pending interrupt events. */
2319	wr32(E1000_IMC, 0xffffffff);
2320	rd32(E1000_ICR);
2321
2322	ret_val = igb_reset_mdicnfg_82580(hw);
2323	if (ret_val)
2324		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2325
2326	/* Install any alternate MAC address into RAR0 */
2327	ret_val = igb_check_alt_mac_addr(hw);
2328
2329	/* Release semaphore */
2330	if (global_device_reset)
2331		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2332
2333	return ret_val;
2334}
2335
2336/**
2337 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2338 *  @data: data received by reading RXPBS register
2339 *
2340 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2341 *  This function converts the retrieved value into the correct table value
2342 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2343 *  0x0 36  72 144   1   2   4   8  16
2344 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2345 */
2346u16 igb_rxpbs_adjust_82580(u32 data)
2347{
2348	u16 ret_val = 0;
2349
2350	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2351		ret_val = e1000_82580_rxpbs_table[data];
2352
2353	return ret_val;
2354}
2355
2356/**
2357 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2358 *  checksum
2359 *  @hw: pointer to the HW structure
2360 *  @offset: offset in words of the checksum protected region
2361 *
2362 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2363 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2364 **/
2365static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2366						 u16 offset)
2367{
2368	s32 ret_val = 0;
2369	u16 checksum = 0;
2370	u16 i, nvm_data;
2371
2372	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2373		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2374		if (ret_val) {
2375			hw_dbg("NVM Read Error\n");
2376			goto out;
2377		}
2378		checksum += nvm_data;
2379	}
2380
2381	if (checksum != (u16) NVM_SUM) {
2382		hw_dbg("NVM Checksum Invalid\n");
2383		ret_val = -E1000_ERR_NVM;
2384		goto out;
2385	}
2386
2387out:
2388	return ret_val;
2389}
2390
2391/**
2392 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2393 *  checksum
2394 *  @hw: pointer to the HW structure
2395 *  @offset: offset in words of the checksum protected region
2396 *
2397 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2398 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2399 *  value to the EEPROM.
2400 **/
2401static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2402{
2403	s32 ret_val;
2404	u16 checksum = 0;
2405	u16 i, nvm_data;
2406
2407	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2408		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2409		if (ret_val) {
2410			hw_dbg("NVM Read Error while updating checksum.\n");
2411			goto out;
2412		}
2413		checksum += nvm_data;
2414	}
2415	checksum = (u16) NVM_SUM - checksum;
2416	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2417				&checksum);
2418	if (ret_val)
2419		hw_dbg("NVM Write Error while updating checksum.\n");
2420
2421out:
2422	return ret_val;
2423}
2424
2425/**
2426 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2427 *  @hw: pointer to the HW structure
2428 *
2429 *  Calculates the EEPROM section checksum by reading/adding each word of
2430 *  the EEPROM and then verifies that the sum of the EEPROM is
2431 *  equal to 0xBABA.
2432 **/
2433static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2434{
2435	s32 ret_val = 0;
2436	u16 eeprom_regions_count = 1;
2437	u16 j, nvm_data;
2438	u16 nvm_offset;
2439
2440	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2441	if (ret_val) {
2442		hw_dbg("NVM Read Error\n");
2443		goto out;
2444	}
2445
2446	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2447		/* if checksums compatibility bit is set validate checksums
2448		 * for all 4 ports.
2449		 */
2450		eeprom_regions_count = 4;
2451	}
2452
2453	for (j = 0; j < eeprom_regions_count; j++) {
2454		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2455		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2456								nvm_offset);
2457		if (ret_val != 0)
2458			goto out;
2459	}
2460
2461out:
2462	return ret_val;
2463}
2464
2465/**
2466 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2467 *  @hw: pointer to the HW structure
2468 *
2469 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2470 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2471 *  checksum and writes the value to the EEPROM.
2472 **/
2473static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2474{
2475	s32 ret_val;
2476	u16 j, nvm_data;
2477	u16 nvm_offset;
2478
2479	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2480	if (ret_val) {
2481		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2482		goto out;
2483	}
2484
2485	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2486		/* set compatibility bit to validate checksums appropriately */
2487		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2488		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2489					&nvm_data);
2490		if (ret_val) {
2491			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2492			goto out;
2493		}
2494	}
2495
2496	for (j = 0; j < 4; j++) {
2497		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2498		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2499		if (ret_val)
2500			goto out;
2501	}
2502
2503out:
2504	return ret_val;
2505}
2506
2507/**
2508 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2509 *  @hw: pointer to the HW structure
2510 *
2511 *  Calculates the EEPROM section checksum by reading/adding each word of
2512 *  the EEPROM and then verifies that the sum of the EEPROM is
2513 *  equal to 0xBABA.
2514 **/
2515static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2516{
2517	s32 ret_val = 0;
2518	u16 j;
2519	u16 nvm_offset;
2520
2521	for (j = 0; j < 4; j++) {
2522		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2523		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2524								nvm_offset);
2525		if (ret_val != 0)
2526			goto out;
2527	}
2528
2529out:
2530	return ret_val;
2531}
2532
2533/**
2534 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2535 *  @hw: pointer to the HW structure
2536 *
2537 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2538 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2539 *  checksum and writes the value to the EEPROM.
2540 **/
2541static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2542{
2543	s32 ret_val = 0;
2544	u16 j;
2545	u16 nvm_offset;
2546
2547	for (j = 0; j < 4; j++) {
2548		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2549		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2550		if (ret_val != 0)
2551			goto out;
2552	}
2553
2554out:
2555	return ret_val;
2556}
2557
2558/**
2559 *  __igb_access_emi_reg - Read/write EMI register
2560 *  @hw: pointer to the HW structure
2561 *  @addr: EMI address to program
2562 *  @data: pointer to value to read/write from/to the EMI address
2563 *  @read: boolean flag to indicate read or write
2564 **/
2565static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2566				  u16 *data, bool read)
2567{
2568	s32 ret_val = 0;
2569
2570	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2571	if (ret_val)
2572		return ret_val;
2573
2574	if (read)
2575		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2576	else
2577		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2578
2579	return ret_val;
2580}
2581
2582/**
2583 *  igb_read_emi_reg - Read Extended Management Interface register
2584 *  @hw: pointer to the HW structure
2585 *  @addr: EMI address to program
2586 *  @data: value to be read from the EMI address
2587 **/
2588s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2589{
2590	return __igb_access_emi_reg(hw, addr, data, true);
2591}
2592
2593/**
2594 *  igb_set_eee_i350 - Enable/disable EEE support
2595 *  @hw: pointer to the HW structure
2596 *  @adv1G: boolean flag enabling 1G EEE advertisement
2597 *  @adv100m: boolean flag enabling 100M EEE advertisement
2598 *
2599 *  Enable/disable EEE based on setting in dev_spec structure.
2600 *
2601 **/
2602s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2603{
2604	u32 ipcnfg, eeer;
2605
2606	if ((hw->mac.type < e1000_i350) ||
2607	    (hw->phy.media_type != e1000_media_type_copper))
2608		goto out;
2609	ipcnfg = rd32(E1000_IPCNFG);
2610	eeer = rd32(E1000_EEER);
2611
2612	/* enable or disable per user setting */
2613	if (!(hw->dev_spec._82575.eee_disable)) {
2614		u32 eee_su = rd32(E1000_EEE_SU);
2615
2616		if (adv100M)
2617			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2618		else
2619			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2620
2621		if (adv1G)
2622			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2623		else
2624			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2625
2626		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2627			E1000_EEER_LPI_FC);
2628
2629		/* This bit should not be set in normal operation. */
2630		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2631			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2632
2633	} else {
2634		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2635			E1000_IPCNFG_EEE_100M_AN);
2636		eeer &= ~(E1000_EEER_TX_LPI_EN |
2637			E1000_EEER_RX_LPI_EN |
2638			E1000_EEER_LPI_FC);
2639	}
2640	wr32(E1000_IPCNFG, ipcnfg);
2641	wr32(E1000_EEER, eeer);
2642	rd32(E1000_IPCNFG);
2643	rd32(E1000_EEER);
2644out:
2645
2646	return 0;
2647}
2648
2649/**
2650 *  igb_set_eee_i354 - Enable/disable EEE support
2651 *  @hw: pointer to the HW structure
2652 *  @adv1G: boolean flag enabling 1G EEE advertisement
2653 *  @adv100m: boolean flag enabling 100M EEE advertisement
2654 *
2655 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2656 *
2657 **/
2658s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2659{
2660	struct e1000_phy_info *phy = &hw->phy;
2661	s32 ret_val = 0;
2662	u16 phy_data;
2663
2664	if ((hw->phy.media_type != e1000_media_type_copper) ||
2665	    ((phy->id != M88E1543_E_PHY_ID) &&
2666	     (phy->id != M88E1512_E_PHY_ID)))
2667		goto out;
2668
2669	if (!hw->dev_spec._82575.eee_disable) {
2670		/* Switch to PHY page 18. */
2671		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2672		if (ret_val)
2673			goto out;
2674
2675		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676					    &phy_data);
2677		if (ret_val)
2678			goto out;
2679
2680		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2681		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2682					     phy_data);
2683		if (ret_val)
2684			goto out;
2685
2686		/* Return the PHY to page 0. */
2687		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2688		if (ret_val)
2689			goto out;
2690
2691		/* Turn on EEE advertisement. */
2692		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2693					     E1000_EEE_ADV_DEV_I354,
2694					     &phy_data);
2695		if (ret_val)
2696			goto out;
2697
2698		if (adv100M)
2699			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2700		else
2701			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2702
2703		if (adv1G)
2704			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2705		else
2706			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2707
2708		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2709						E1000_EEE_ADV_DEV_I354,
2710						phy_data);
2711	} else {
2712		/* Turn off EEE advertisement. */
2713		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2714					     E1000_EEE_ADV_DEV_I354,
2715					     &phy_data);
2716		if (ret_val)
2717			goto out;
2718
2719		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2720			      E1000_EEE_ADV_1000_SUPPORTED);
2721		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722					      E1000_EEE_ADV_DEV_I354,
2723					      phy_data);
2724	}
2725
2726out:
2727	return ret_val;
2728}
2729
2730/**
2731 *  igb_get_eee_status_i354 - Get EEE status
2732 *  @hw: pointer to the HW structure
2733 *  @status: EEE status
2734 *
2735 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2736 *  been received.
2737 **/
2738s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2739{
2740	struct e1000_phy_info *phy = &hw->phy;
2741	s32 ret_val = 0;
2742	u16 phy_data;
2743
2744	/* Check if EEE is supported on this device. */
2745	if ((hw->phy.media_type != e1000_media_type_copper) ||
2746	    ((phy->id != M88E1543_E_PHY_ID) &&
2747	     (phy->id != M88E1512_E_PHY_ID)))
2748		goto out;
2749
2750	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2751				     E1000_PCS_STATUS_DEV_I354,
2752				     &phy_data);
2753	if (ret_val)
2754		goto out;
2755
2756	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2757			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2758
2759out:
2760	return ret_val;
2761}
2762
 
2763static const u8 e1000_emc_temp_data[4] = {
2764	E1000_EMC_INTERNAL_DATA,
2765	E1000_EMC_DIODE1_DATA,
2766	E1000_EMC_DIODE2_DATA,
2767	E1000_EMC_DIODE3_DATA
2768};
2769static const u8 e1000_emc_therm_limit[4] = {
2770	E1000_EMC_INTERNAL_THERM_LIMIT,
2771	E1000_EMC_DIODE1_THERM_LIMIT,
2772	E1000_EMC_DIODE2_THERM_LIMIT,
2773	E1000_EMC_DIODE3_THERM_LIMIT
2774};
2775
2776#ifdef CONFIG_IGB_HWMON
2777/**
2778 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2779 *  @hw: pointer to hardware structure
2780 *
2781 *  Updates the temperatures in mac.thermal_sensor_data
2782 **/
2783static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2784{
2785	u16 ets_offset;
2786	u16 ets_cfg;
2787	u16 ets_sensor;
2788	u8  num_sensors;
2789	u8  sensor_index;
2790	u8  sensor_location;
2791	u8  i;
2792	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2793
2794	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2795		return E1000_NOT_IMPLEMENTED;
2796
2797	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2798
2799	/* Return the internal sensor only if ETS is unsupported */
2800	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2801	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2802		return 0;
2803
2804	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2805	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2806	    != NVM_ETS_TYPE_EMC)
2807		return E1000_NOT_IMPLEMENTED;
2808
2809	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2810	if (num_sensors > E1000_MAX_SENSORS)
2811		num_sensors = E1000_MAX_SENSORS;
2812
2813	for (i = 1; i < num_sensors; i++) {
2814		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2815		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2816				NVM_ETS_DATA_INDEX_SHIFT);
2817		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2818				   NVM_ETS_DATA_LOC_SHIFT);
2819
2820		if (sensor_location != 0)
2821			hw->phy.ops.read_i2c_byte(hw,
2822					e1000_emc_temp_data[sensor_index],
2823					E1000_I2C_THERMAL_SENSOR_ADDR,
2824					&data->sensor[i].temp);
2825	}
2826	return 0;
2827}
2828
2829/**
2830 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2831 *  @hw: pointer to hardware structure
2832 *
2833 *  Sets the thermal sensor thresholds according to the NVM map
2834 *  and save off the threshold and location values into mac.thermal_sensor_data
2835 **/
2836static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2837{
2838	u16 ets_offset;
2839	u16 ets_cfg;
2840	u16 ets_sensor;
2841	u8  low_thresh_delta;
2842	u8  num_sensors;
2843	u8  sensor_index;
2844	u8  sensor_location;
2845	u8  therm_limit;
2846	u8  i;
2847	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2848
2849	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2850		return E1000_NOT_IMPLEMENTED;
2851
2852	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2853
2854	data->sensor[0].location = 0x1;
2855	data->sensor[0].caution_thresh =
2856		(rd32(E1000_THHIGHTC) & 0xFF);
2857	data->sensor[0].max_op_thresh =
2858		(rd32(E1000_THLOWTC) & 0xFF);
2859
2860	/* Return the internal sensor only if ETS is unsupported */
2861	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2862	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2863		return 0;
2864
2865	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2866	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2867	    != NVM_ETS_TYPE_EMC)
2868		return E1000_NOT_IMPLEMENTED;
2869
2870	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2871			    NVM_ETS_LTHRES_DELTA_SHIFT);
2872	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2873
2874	for (i = 1; i <= num_sensors; i++) {
2875		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2876		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2877				NVM_ETS_DATA_INDEX_SHIFT);
2878		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2879				   NVM_ETS_DATA_LOC_SHIFT);
2880		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2881
2882		hw->phy.ops.write_i2c_byte(hw,
2883			e1000_emc_therm_limit[sensor_index],
2884			E1000_I2C_THERMAL_SENSOR_ADDR,
2885			therm_limit);
2886
2887		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2888			data->sensor[i].location = sensor_location;
2889			data->sensor[i].caution_thresh = therm_limit;
2890			data->sensor[i].max_op_thresh = therm_limit -
2891							low_thresh_delta;
2892		}
2893	}
2894	return 0;
2895}
2896
2897#endif
2898static struct e1000_mac_operations e1000_mac_ops_82575 = {
2899	.init_hw              = igb_init_hw_82575,
2900	.check_for_link       = igb_check_for_link_82575,
2901	.rar_set              = igb_rar_set,
2902	.read_mac_addr        = igb_read_mac_addr_82575,
2903	.get_speed_and_duplex = igb_get_link_up_info_82575,
2904#ifdef CONFIG_IGB_HWMON
2905	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2906	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2907#endif
2908};
2909
2910static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2911	.acquire              = igb_acquire_phy_82575,
2912	.get_cfg_done         = igb_get_cfg_done_82575,
2913	.release              = igb_release_phy_82575,
2914	.write_i2c_byte       = igb_write_i2c_byte,
2915	.read_i2c_byte        = igb_read_i2c_byte,
2916};
2917
2918static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2919	.acquire              = igb_acquire_nvm_82575,
2920	.read                 = igb_read_nvm_eerd,
2921	.release              = igb_release_nvm_82575,
2922	.write                = igb_write_nvm_spi,
2923};
2924
2925const struct e1000_info e1000_82575_info = {
2926	.get_invariants = igb_get_invariants_82575,
2927	.mac_ops = &e1000_mac_ops_82575,
2928	.phy_ops = &e1000_phy_ops_82575,
2929	.nvm_ops = &e1000_nvm_ops_82575,
2930};
2931
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4/* e1000_82575
   5 * e1000_82576
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/types.h>
  11#include <linux/if_ether.h>
  12#include <linux/i2c.h>
  13
  14#include "e1000_mac.h"
  15#include "e1000_82575.h"
  16#include "e1000_i210.h"
  17#include "igb.h"
  18
  19static s32  igb_get_invariants_82575(struct e1000_hw *);
  20static s32  igb_acquire_phy_82575(struct e1000_hw *);
  21static void igb_release_phy_82575(struct e1000_hw *);
  22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  23static void igb_release_nvm_82575(struct e1000_hw *);
  24static s32  igb_check_for_link_82575(struct e1000_hw *);
  25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  26static s32  igb_init_hw_82575(struct e1000_hw *);
  27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  29static s32  igb_reset_hw_82575(struct e1000_hw *);
  30static s32  igb_reset_hw_82580(struct e1000_hw *);
  31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  40						 u16 *);
  41static s32  igb_get_phy_id_82575(struct e1000_hw *);
  42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  43static bool igb_sgmii_active_82575(struct e1000_hw *);
  44static s32  igb_reset_init_script_82575(struct e1000_hw *);
  45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  52static const u16 e1000_82580_rxpbs_table[] = {
  53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  54
  55/* Due to a hw errata, if the host tries to  configure the VFTA register
  56 * while performing queries from the BMC or DMA, then the VFTA in some
  57 * cases won't be written.
  58 */
  59
  60/**
  61 *  igb_write_vfta_i350 - Write value to VLAN filter table
  62 *  @hw: pointer to the HW structure
  63 *  @offset: register offset in VLAN filter table
  64 *  @value: register value written to VLAN filter table
  65 *
  66 *  Writes value at the given offset in the register array which stores
  67 *  the VLAN filter table.
  68 **/
  69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  70{
  71	struct igb_adapter *adapter = hw->back;
  72	int i;
  73
  74	for (i = 10; i--;)
  75		array_wr32(E1000_VFTA, offset, value);
  76
  77	wrfl();
  78	adapter->shadow_vfta[offset] = value;
  79}
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90	u32 reg = 0;
  91	bool ext_mdio = false;
  92
  93	switch (hw->mac.type) {
  94	case e1000_82575:
  95	case e1000_82576:
  96		reg = rd32(E1000_MDIC);
  97		ext_mdio = !!(reg & E1000_MDIC_DEST);
  98		break;
  99	case e1000_82580:
 100	case e1000_i350:
 101	case e1000_i354:
 102	case e1000_i210:
 103	case e1000_i211:
 104		reg = rd32(E1000_MDICNFG);
 105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106		break;
 107	default:
 108		break;
 109	}
 110	return ext_mdio;
 111}
 112
 113/**
 114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 115 *  @hw: pointer to the HW structure
 116 *
 117 *  Poll the M88E1112 interfaces to see which interface achieved link.
 118 */
 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 120{
 121	struct e1000_phy_info *phy = &hw->phy;
 122	s32 ret_val;
 123	u16 data;
 124	u8 port = 0;
 125
 126	/* Check the copper medium. */
 127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 128	if (ret_val)
 129		return ret_val;
 130
 131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 132	if (ret_val)
 133		return ret_val;
 134
 135	if (data & E1000_M88E1112_STATUS_LINK)
 136		port = E1000_MEDIA_PORT_COPPER;
 137
 138	/* Check the other medium. */
 139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 140	if (ret_val)
 141		return ret_val;
 142
 143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 144	if (ret_val)
 145		return ret_val;
 146
 147
 148	if (data & E1000_M88E1112_STATUS_LINK)
 149		port = E1000_MEDIA_PORT_OTHER;
 150
 151	/* Determine if a swap needs to happen. */
 152	if (port && (hw->dev_spec._82575.media_port != port)) {
 153		hw->dev_spec._82575.media_port = port;
 154		hw->dev_spec._82575.media_changed = true;
 155	}
 156
 157	if (port == E1000_MEDIA_PORT_COPPER) {
 158		/* reset page to 0 */
 159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 160		if (ret_val)
 161			return ret_val;
 162		igb_check_for_link_82575(hw);
 163	} else {
 164		igb_check_for_link_82575(hw);
 165		/* reset page to 0 */
 166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 167		if (ret_val)
 168			return ret_val;
 169	}
 170
 171	return 0;
 172}
 173
 174/**
 175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 176 *  @hw: pointer to the HW structure
 177 **/
 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 179{
 180	struct e1000_phy_info *phy = &hw->phy;
 181	s32 ret_val = 0;
 182	u32 ctrl_ext;
 183
 184	if (hw->phy.media_type != e1000_media_type_copper) {
 185		phy->type = e1000_phy_none;
 186		goto out;
 187	}
 188
 189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 190	phy->reset_delay_us	= 100;
 191
 192	ctrl_ext = rd32(E1000_CTRL_EXT);
 193
 194	if (igb_sgmii_active_82575(hw)) {
 195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 196		ctrl_ext |= E1000_CTRL_I2C_ENA;
 197	} else {
 198		phy->ops.reset = igb_phy_hw_reset;
 199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 200	}
 201
 202	wr32(E1000_CTRL_EXT, ctrl_ext);
 203	igb_reset_mdicnfg_82580(hw);
 204
 205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 208	} else {
 209		switch (hw->mac.type) {
 210		case e1000_82580:
 211		case e1000_i350:
 212		case e1000_i354:
 213		case e1000_i210:
 214		case e1000_i211:
 215			phy->ops.read_reg = igb_read_phy_reg_82580;
 216			phy->ops.write_reg = igb_write_phy_reg_82580;
 217			break;
 218		default:
 219			phy->ops.read_reg = igb_read_phy_reg_igp;
 220			phy->ops.write_reg = igb_write_phy_reg_igp;
 221		}
 222	}
 223
 224	/* set lan id */
 225	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 226			E1000_STATUS_FUNC_SHIFT;
 227
 228	/* Set phy->phy_addr and phy->id. */
 229	ret_val = igb_get_phy_id_82575(hw);
 230	if (ret_val)
 231		return ret_val;
 232
 233	/* Verify phy id and set remaining function pointers */
 234	switch (phy->id) {
 235	case M88E1543_E_PHY_ID:
 236	case M88E1512_E_PHY_ID:
 237	case I347AT4_E_PHY_ID:
 238	case M88E1112_E_PHY_ID:
 239	case M88E1111_I_PHY_ID:
 240		phy->type		= e1000_phy_m88;
 241		phy->ops.check_polarity	= igb_check_polarity_m88;
 242		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 243		if (phy->id != M88E1111_I_PHY_ID)
 244			phy->ops.get_cable_length =
 245					 igb_get_cable_length_m88_gen2;
 246		else
 247			phy->ops.get_cable_length = igb_get_cable_length_m88;
 248		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 249		/* Check if this PHY is configured for media swap. */
 250		if (phy->id == M88E1112_E_PHY_ID) {
 251			u16 data;
 252
 253			ret_val = phy->ops.write_reg(hw,
 254						     E1000_M88E1112_PAGE_ADDR,
 255						     2);
 256			if (ret_val)
 257				goto out;
 258
 259			ret_val = phy->ops.read_reg(hw,
 260						    E1000_M88E1112_MAC_CTRL_1,
 261						    &data);
 262			if (ret_val)
 263				goto out;
 264
 265			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 266			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 267			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 268			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 269				hw->mac.ops.check_for_link =
 270						igb_check_for_link_media_swap;
 271		}
 272		if (phy->id == M88E1512_E_PHY_ID) {
 273			ret_val = igb_initialize_M88E1512_phy(hw);
 274			if (ret_val)
 275				goto out;
 276		}
 277		if (phy->id == M88E1543_E_PHY_ID) {
 278			ret_val = igb_initialize_M88E1543_phy(hw);
 279			if (ret_val)
 280				goto out;
 281		}
 282		break;
 283	case IGP03E1000_E_PHY_ID:
 284		phy->type = e1000_phy_igp_3;
 285		phy->ops.get_phy_info = igb_get_phy_info_igp;
 286		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 287		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 288		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 289		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 290		break;
 291	case I82580_I_PHY_ID:
 292	case I350_I_PHY_ID:
 293		phy->type = e1000_phy_82580;
 294		phy->ops.force_speed_duplex =
 295					 igb_phy_force_speed_duplex_82580;
 296		phy->ops.get_cable_length = igb_get_cable_length_82580;
 297		phy->ops.get_phy_info = igb_get_phy_info_82580;
 298		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 299		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 300		break;
 301	case I210_I_PHY_ID:
 302		phy->type		= e1000_phy_i210;
 303		phy->ops.check_polarity	= igb_check_polarity_m88;
 304		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 305		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 306		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 307		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 308		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 309		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 310		break;
 311	case BCM54616_E_PHY_ID:
 312		phy->type = e1000_phy_bcm54616;
 313		break;
 314	default:
 315		ret_val = -E1000_ERR_PHY;
 316		goto out;
 317	}
 318
 319out:
 320	return ret_val;
 321}
 322
 323/**
 324 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 325 *  @hw: pointer to the HW structure
 326 **/
 327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 328{
 329	struct e1000_nvm_info *nvm = &hw->nvm;
 330	u32 eecd = rd32(E1000_EECD);
 331	u16 size;
 332
 333	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 334		     E1000_EECD_SIZE_EX_SHIFT);
 335
 336	/* Added to a constant, "size" becomes the left-shift value
 337	 * for setting word_size.
 338	 */
 339	size += NVM_WORD_SIZE_BASE_SHIFT;
 340
 341	/* Just in case size is out of range, cap it to the largest
 342	 * EEPROM size supported
 343	 */
 344	if (size > 15)
 345		size = 15;
 346
 347	nvm->word_size = BIT(size);
 348	nvm->opcode_bits = 8;
 349	nvm->delay_usec = 1;
 350
 351	switch (nvm->override) {
 352	case e1000_nvm_override_spi_large:
 353		nvm->page_size = 32;
 354		nvm->address_bits = 16;
 355		break;
 356	case e1000_nvm_override_spi_small:
 357		nvm->page_size = 8;
 358		nvm->address_bits = 8;
 359		break;
 360	default:
 361		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 362		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 363				    16 : 8;
 364		break;
 365	}
 366	if (nvm->word_size == BIT(15))
 367		nvm->page_size = 128;
 368
 369	nvm->type = e1000_nvm_eeprom_spi;
 370
 371	/* NVM Function Pointers */
 372	nvm->ops.acquire = igb_acquire_nvm_82575;
 373	nvm->ops.release = igb_release_nvm_82575;
 374	nvm->ops.write = igb_write_nvm_spi;
 375	nvm->ops.validate = igb_validate_nvm_checksum;
 376	nvm->ops.update = igb_update_nvm_checksum;
 377	if (nvm->word_size < BIT(15))
 378		nvm->ops.read = igb_read_nvm_eerd;
 379	else
 380		nvm->ops.read = igb_read_nvm_spi;
 381
 382	/* override generic family function pointers for specific descendants */
 383	switch (hw->mac.type) {
 384	case e1000_82580:
 385		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 386		nvm->ops.update = igb_update_nvm_checksum_82580;
 387		break;
 388	case e1000_i354:
 389	case e1000_i350:
 390		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 391		nvm->ops.update = igb_update_nvm_checksum_i350;
 392		break;
 393	default:
 394		break;
 395	}
 396
 397	return 0;
 398}
 399
 400/**
 401 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 402 *  @hw: pointer to the HW structure
 403 **/
 404static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 405{
 406	struct e1000_mac_info *mac = &hw->mac;
 407	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 408
 409	/* Set mta register count */
 410	mac->mta_reg_count = 128;
 411	/* Set uta register count */
 412	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 413	/* Set rar entry count */
 414	switch (mac->type) {
 415	case e1000_82576:
 416		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 417		break;
 418	case e1000_82580:
 419		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 420		break;
 421	case e1000_i350:
 422	case e1000_i354:
 423		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 424		break;
 425	default:
 426		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 427		break;
 428	}
 429	/* reset */
 430	if (mac->type >= e1000_82580)
 431		mac->ops.reset_hw = igb_reset_hw_82580;
 432	else
 433		mac->ops.reset_hw = igb_reset_hw_82575;
 434
 435	if (mac->type >= e1000_i210) {
 436		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 437		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 438
 439	} else {
 440		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 441		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 442	}
 443
 444	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 445		mac->ops.write_vfta = igb_write_vfta_i350;
 446	else
 447		mac->ops.write_vfta = igb_write_vfta;
 448
 449	/* Set if part includes ASF firmware */
 450	mac->asf_firmware_present = true;
 451	/* Set if manageability features are enabled. */
 452	mac->arc_subsystem_valid =
 453		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 454			? true : false;
 455	/* enable EEE on i350 parts and later parts */
 456	if (mac->type >= e1000_i350)
 457		dev_spec->eee_disable = false;
 458	else
 459		dev_spec->eee_disable = true;
 460	/* Allow a single clear of the SW semaphore on I210 and newer */
 461	if (mac->type >= e1000_i210)
 462		dev_spec->clear_semaphore_once = true;
 463	/* physical interface link setup */
 464	mac->ops.setup_physical_interface =
 465		(hw->phy.media_type == e1000_media_type_copper)
 466			? igb_setup_copper_link_82575
 467			: igb_setup_serdes_link_82575;
 468
 469	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
 470		switch (hw->device_id) {
 471		/* feature not supported on these id's */
 472		case E1000_DEV_ID_DH89XXCC_SGMII:
 473		case E1000_DEV_ID_DH89XXCC_SERDES:
 474		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 475		case E1000_DEV_ID_DH89XXCC_SFP:
 476			break;
 477		default:
 478			hw->dev_spec._82575.mas_capable = true;
 479			break;
 480		}
 481	}
 482	return 0;
 483}
 484
 485/**
 486 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 487 *  @hw: pointer to the HW structure
 488 *
 489 *  The media type is chosen based on SFP module.
 490 *  compatibility flags retrieved from SFP ID EEPROM.
 491 **/
 492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 493{
 494	s32 ret_val = E1000_ERR_CONFIG;
 495	u32 ctrl_ext = 0;
 496	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 497	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 498	u8 tranceiver_type = 0;
 499	s32 timeout = 3;
 500
 501	/* Turn I2C interface ON and power on sfp cage */
 502	ctrl_ext = rd32(E1000_CTRL_EXT);
 503	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 504	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 505
 506	wrfl();
 507
 508	/* Read SFP module data */
 509	while (timeout) {
 510		ret_val = igb_read_sfp_data_byte(hw,
 511			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 512			&tranceiver_type);
 513		if (ret_val == 0)
 514			break;
 515		msleep(100);
 516		timeout--;
 517	}
 518	if (ret_val != 0)
 519		goto out;
 520
 521	ret_val = igb_read_sfp_data_byte(hw,
 522			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 523			(u8 *)eth_flags);
 524	if (ret_val != 0)
 525		goto out;
 526
 527	/* Check if there is some SFP module plugged and powered */
 528	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 529	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 530		dev_spec->module_plugged = true;
 531		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 532			hw->phy.media_type = e1000_media_type_internal_serdes;
 533		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 534			dev_spec->sgmii_active = true;
 535			hw->phy.media_type = e1000_media_type_internal_serdes;
 536		} else if (eth_flags->e1000_base_t) {
 537			dev_spec->sgmii_active = true;
 538			hw->phy.media_type = e1000_media_type_copper;
 539		} else {
 540			hw->phy.media_type = e1000_media_type_unknown;
 541			hw_dbg("PHY module has not been recognized\n");
 542			goto out;
 543		}
 544	} else {
 545		hw->phy.media_type = e1000_media_type_unknown;
 546	}
 547	ret_val = 0;
 548out:
 549	/* Restore I2C interface setting */
 550	wr32(E1000_CTRL_EXT, ctrl_ext);
 551	return ret_val;
 552}
 553
 554static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 555{
 556	struct e1000_mac_info *mac = &hw->mac;
 557	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 558	s32 ret_val;
 559	u32 ctrl_ext = 0;
 560	u32 link_mode = 0;
 561
 562	switch (hw->device_id) {
 563	case E1000_DEV_ID_82575EB_COPPER:
 564	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 565	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 566		mac->type = e1000_82575;
 567		break;
 568	case E1000_DEV_ID_82576:
 569	case E1000_DEV_ID_82576_NS:
 570	case E1000_DEV_ID_82576_NS_SERDES:
 571	case E1000_DEV_ID_82576_FIBER:
 572	case E1000_DEV_ID_82576_SERDES:
 573	case E1000_DEV_ID_82576_QUAD_COPPER:
 574	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 575	case E1000_DEV_ID_82576_SERDES_QUAD:
 576		mac->type = e1000_82576;
 577		break;
 578	case E1000_DEV_ID_82580_COPPER:
 579	case E1000_DEV_ID_82580_FIBER:
 580	case E1000_DEV_ID_82580_QUAD_FIBER:
 581	case E1000_DEV_ID_82580_SERDES:
 582	case E1000_DEV_ID_82580_SGMII:
 583	case E1000_DEV_ID_82580_COPPER_DUAL:
 584	case E1000_DEV_ID_DH89XXCC_SGMII:
 585	case E1000_DEV_ID_DH89XXCC_SERDES:
 586	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 587	case E1000_DEV_ID_DH89XXCC_SFP:
 588		mac->type = e1000_82580;
 589		break;
 590	case E1000_DEV_ID_I350_COPPER:
 591	case E1000_DEV_ID_I350_FIBER:
 592	case E1000_DEV_ID_I350_SERDES:
 593	case E1000_DEV_ID_I350_SGMII:
 594		mac->type = e1000_i350;
 595		break;
 596	case E1000_DEV_ID_I210_COPPER:
 597	case E1000_DEV_ID_I210_FIBER:
 598	case E1000_DEV_ID_I210_SERDES:
 599	case E1000_DEV_ID_I210_SGMII:
 600	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 601	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 602		mac->type = e1000_i210;
 603		break;
 604	case E1000_DEV_ID_I211_COPPER:
 605		mac->type = e1000_i211;
 606		break;
 607	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 608	case E1000_DEV_ID_I354_SGMII:
 609	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 610		mac->type = e1000_i354;
 611		break;
 612	default:
 613		return -E1000_ERR_MAC_INIT;
 614	}
 615
 616	/* Set media type */
 617	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 618	 * based on the EEPROM. We cannot rely upon device ID. There
 619	 * is no distinguishable difference between fiber and internal
 620	 * SerDes mode on the 82575. There can be an external PHY attached
 621	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 622	 */
 623	hw->phy.media_type = e1000_media_type_copper;
 624	dev_spec->sgmii_active = false;
 625	dev_spec->module_plugged = false;
 626
 627	ctrl_ext = rd32(E1000_CTRL_EXT);
 628
 629	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 630	switch (link_mode) {
 631	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 632		hw->phy.media_type = e1000_media_type_internal_serdes;
 633		break;
 634	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 635		/* Get phy control interface type set (MDIO vs. I2C)*/
 636		if (igb_sgmii_uses_mdio_82575(hw)) {
 637			hw->phy.media_type = e1000_media_type_copper;
 638			dev_spec->sgmii_active = true;
 639			break;
 640		}
 641		fallthrough; /* for I2C based SGMII */
 642	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 643		/* read media type from SFP EEPROM */
 644		ret_val = igb_set_sfp_media_type_82575(hw);
 645		if ((ret_val != 0) ||
 646		    (hw->phy.media_type == e1000_media_type_unknown)) {
 647			/* If media type was not identified then return media
 648			 * type defined by the CTRL_EXT settings.
 649			 */
 650			hw->phy.media_type = e1000_media_type_internal_serdes;
 651
 652			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 653				hw->phy.media_type = e1000_media_type_copper;
 654				dev_spec->sgmii_active = true;
 655			}
 656
 657			break;
 658		}
 659
 
 
 
 
 660		/* change current link mode setting */
 661		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 662
 663		if (dev_spec->sgmii_active)
 664			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 665		else
 666			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 667
 668		wr32(E1000_CTRL_EXT, ctrl_ext);
 669
 670		break;
 671	default:
 672		break;
 673	}
 674
 675	/* mac initialization and operations */
 676	ret_val = igb_init_mac_params_82575(hw);
 677	if (ret_val)
 678		goto out;
 679
 680	/* NVM initialization */
 681	ret_val = igb_init_nvm_params_82575(hw);
 682	switch (hw->mac.type) {
 683	case e1000_i210:
 684	case e1000_i211:
 685		ret_val = igb_init_nvm_params_i210(hw);
 686		break;
 687	default:
 688		break;
 689	}
 690
 691	if (ret_val)
 692		goto out;
 693
 694	/* if part supports SR-IOV then initialize mailbox parameters */
 695	switch (mac->type) {
 696	case e1000_82576:
 697	case e1000_i350:
 698		igb_init_mbx_params_pf(hw);
 699		break;
 700	default:
 701		break;
 702	}
 703
 704	/* setup PHY parameters */
 705	ret_val = igb_init_phy_params_82575(hw);
 706
 707out:
 708	return ret_val;
 709}
 710
 711/**
 712 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 713 *  @hw: pointer to the HW structure
 714 *
 715 *  Acquire access rights to the correct PHY.  This is a
 716 *  function pointer entry point called by the api module.
 717 **/
 718static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 719{
 720	u16 mask = E1000_SWFW_PHY0_SM;
 721
 722	if (hw->bus.func == E1000_FUNC_1)
 723		mask = E1000_SWFW_PHY1_SM;
 724	else if (hw->bus.func == E1000_FUNC_2)
 725		mask = E1000_SWFW_PHY2_SM;
 726	else if (hw->bus.func == E1000_FUNC_3)
 727		mask = E1000_SWFW_PHY3_SM;
 728
 729	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 730}
 731
 732/**
 733 *  igb_release_phy_82575 - Release rights to access PHY
 734 *  @hw: pointer to the HW structure
 735 *
 736 *  A wrapper to release access rights to the correct PHY.  This is a
 737 *  function pointer entry point called by the api module.
 738 **/
 739static void igb_release_phy_82575(struct e1000_hw *hw)
 740{
 741	u16 mask = E1000_SWFW_PHY0_SM;
 742
 743	if (hw->bus.func == E1000_FUNC_1)
 744		mask = E1000_SWFW_PHY1_SM;
 745	else if (hw->bus.func == E1000_FUNC_2)
 746		mask = E1000_SWFW_PHY2_SM;
 747	else if (hw->bus.func == E1000_FUNC_3)
 748		mask = E1000_SWFW_PHY3_SM;
 749
 750	hw->mac.ops.release_swfw_sync(hw, mask);
 751}
 752
 753/**
 754 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 755 *  @hw: pointer to the HW structure
 756 *  @offset: register offset to be read
 757 *  @data: pointer to the read data
 758 *
 759 *  Reads the PHY register at offset using the serial gigabit media independent
 760 *  interface and stores the retrieved information in data.
 761 **/
 762static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 763					  u16 *data)
 764{
 765	s32 ret_val = -E1000_ERR_PARAM;
 766
 767	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 768		hw_dbg("PHY Address %u is out of range\n", offset);
 769		goto out;
 770	}
 771
 772	ret_val = hw->phy.ops.acquire(hw);
 773	if (ret_val)
 774		goto out;
 775
 776	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 777
 778	hw->phy.ops.release(hw);
 779
 780out:
 781	return ret_val;
 782}
 783
 784/**
 785 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 786 *  @hw: pointer to the HW structure
 787 *  @offset: register offset to write to
 788 *  @data: data to write at register offset
 789 *
 790 *  Writes the data to PHY register at the offset using the serial gigabit
 791 *  media independent interface.
 792 **/
 793static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 794					   u16 data)
 795{
 796	s32 ret_val = -E1000_ERR_PARAM;
 797
 798
 799	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 800		hw_dbg("PHY Address %d is out of range\n", offset);
 801		goto out;
 802	}
 803
 804	ret_val = hw->phy.ops.acquire(hw);
 805	if (ret_val)
 806		goto out;
 807
 808	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 809
 810	hw->phy.ops.release(hw);
 811
 812out:
 813	return ret_val;
 814}
 815
 816/**
 817 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 818 *  @hw: pointer to the HW structure
 819 *
 820 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 821 *  sgmi interface.
 822 **/
 823static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 824{
 825	struct e1000_phy_info *phy = &hw->phy;
 826	s32  ret_val = 0;
 827	u16 phy_id;
 828	u32 ctrl_ext;
 829	u32 mdic;
 830
 831	/* Extra read required for some PHY's on i354 */
 832	if (hw->mac.type == e1000_i354)
 833		igb_get_phy_id(hw);
 834
 835	/* For SGMII PHYs, we try the list of possible addresses until
 836	 * we find one that works.  For non-SGMII PHYs
 837	 * (e.g. integrated copper PHYs), an address of 1 should
 838	 * work.  The result of this function should mean phy->phy_addr
 839	 * and phy->id are set correctly.
 840	 */
 841	if (!(igb_sgmii_active_82575(hw))) {
 842		phy->addr = 1;
 843		ret_val = igb_get_phy_id(hw);
 844		goto out;
 845	}
 846
 847	if (igb_sgmii_uses_mdio_82575(hw)) {
 848		switch (hw->mac.type) {
 849		case e1000_82575:
 850		case e1000_82576:
 851			mdic = rd32(E1000_MDIC);
 852			mdic &= E1000_MDIC_PHY_MASK;
 853			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 854			break;
 855		case e1000_82580:
 856		case e1000_i350:
 857		case e1000_i354:
 858		case e1000_i210:
 859		case e1000_i211:
 860			mdic = rd32(E1000_MDICNFG);
 861			mdic &= E1000_MDICNFG_PHY_MASK;
 862			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 863			break;
 864		default:
 865			ret_val = -E1000_ERR_PHY;
 866			goto out;
 867		}
 868		ret_val = igb_get_phy_id(hw);
 869		goto out;
 870	}
 871
 872	/* Power on sgmii phy if it is disabled */
 873	ctrl_ext = rd32(E1000_CTRL_EXT);
 874	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 875	wrfl();
 876	msleep(300);
 877
 878	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 879	 * Therefore, we need to test 1-7
 880	 */
 881	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 882		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 883		if (ret_val == 0) {
 884			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 885			       phy_id, phy->addr);
 886			/* At the time of this writing, The M88 part is
 887			 * the only supported SGMII PHY product.
 888			 */
 889			if (phy_id == M88_VENDOR)
 890				break;
 891		} else {
 892			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 893		}
 894	}
 895
 896	/* A valid PHY type couldn't be found. */
 897	if (phy->addr == 8) {
 898		phy->addr = 0;
 899		ret_val = -E1000_ERR_PHY;
 900		goto out;
 901	} else {
 902		ret_val = igb_get_phy_id(hw);
 903	}
 904
 905	/* restore previous sfp cage power state */
 906	wr32(E1000_CTRL_EXT, ctrl_ext);
 907
 908out:
 909	return ret_val;
 910}
 911
 912/**
 913 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 914 *  @hw: pointer to the HW structure
 915 *
 916 *  Resets the PHY using the serial gigabit media independent interface.
 917 **/
 918static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 919{
 920	struct e1000_phy_info *phy = &hw->phy;
 921	s32 ret_val;
 922
 923	/* This isn't a true "hard" reset, but is the only reset
 924	 * available to us at this time.
 925	 */
 926
 927	hw_dbg("Soft resetting SGMII attached PHY...\n");
 928
 929	/* SFP documentation requires the following to configure the SPF module
 930	 * to work on SGMII.  No further documentation is given.
 931	 */
 932	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 933	if (ret_val)
 934		goto out;
 935
 936	ret_val = igb_phy_sw_reset(hw);
 937	if (ret_val)
 938		goto out;
 939
 940	if (phy->id == M88E1512_E_PHY_ID)
 941		ret_val = igb_initialize_M88E1512_phy(hw);
 942	if (phy->id == M88E1543_E_PHY_ID)
 943		ret_val = igb_initialize_M88E1543_phy(hw);
 944out:
 945	return ret_val;
 946}
 947
 948/**
 949 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 950 *  @hw: pointer to the HW structure
 951 *  @active: true to enable LPLU, false to disable
 952 *
 953 *  Sets the LPLU D0 state according to the active flag.  When
 954 *  activating LPLU this function also disables smart speed
 955 *  and vice versa.  LPLU will not be activated unless the
 956 *  device autonegotiation advertisement meets standards of
 957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 958 *  This is a function pointer entry point only called by
 959 *  PHY setup routines.
 960 **/
 961static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 962{
 963	struct e1000_phy_info *phy = &hw->phy;
 964	s32 ret_val;
 965	u16 data;
 966
 967	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 968	if (ret_val)
 969		goto out;
 970
 971	if (active) {
 972		data |= IGP02E1000_PM_D0_LPLU;
 973		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 974						 data);
 975		if (ret_val)
 976			goto out;
 977
 978		/* When LPLU is enabled, we should disable SmartSpeed */
 979		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 980						&data);
 981		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 982		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 983						 data);
 984		if (ret_val)
 985			goto out;
 986	} else {
 987		data &= ~IGP02E1000_PM_D0_LPLU;
 988		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 989						 data);
 990		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 991		 * during Dx states where the power conservation is most
 992		 * important.  During driver activity we should enable
 993		 * SmartSpeed, so performance is maintained.
 994		 */
 995		if (phy->smart_speed == e1000_smart_speed_on) {
 996			ret_val = phy->ops.read_reg(hw,
 997					IGP01E1000_PHY_PORT_CONFIG, &data);
 998			if (ret_val)
 999				goto out;
1000
1001			data |= IGP01E1000_PSCFR_SMART_SPEED;
1002			ret_val = phy->ops.write_reg(hw,
1003					IGP01E1000_PHY_PORT_CONFIG, data);
1004			if (ret_val)
1005				goto out;
1006		} else if (phy->smart_speed == e1000_smart_speed_off) {
1007			ret_val = phy->ops.read_reg(hw,
1008					IGP01E1000_PHY_PORT_CONFIG, &data);
1009			if (ret_val)
1010				goto out;
1011
1012			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1013			ret_val = phy->ops.write_reg(hw,
1014					IGP01E1000_PHY_PORT_CONFIG, data);
1015			if (ret_val)
1016				goto out;
1017		}
1018	}
1019
1020out:
1021	return ret_val;
1022}
1023
1024/**
1025 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1026 *  @hw: pointer to the HW structure
1027 *  @active: true to enable LPLU, false to disable
1028 *
1029 *  Sets the LPLU D0 state according to the active flag.  When
1030 *  activating LPLU this function also disables smart speed
1031 *  and vice versa.  LPLU will not be activated unless the
1032 *  device autonegotiation advertisement meets standards of
1033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1034 *  This is a function pointer entry point only called by
1035 *  PHY setup routines.
1036 **/
1037static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1038{
1039	struct e1000_phy_info *phy = &hw->phy;
1040	u16 data;
1041
1042	data = rd32(E1000_82580_PHY_POWER_MGMT);
1043
1044	if (active) {
1045		data |= E1000_82580_PM_D0_LPLU;
1046
1047		/* When LPLU is enabled, we should disable SmartSpeed */
1048		data &= ~E1000_82580_PM_SPD;
1049	} else {
1050		data &= ~E1000_82580_PM_D0_LPLU;
1051
1052		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1053		 * during Dx states where the power conservation is most
1054		 * important.  During driver activity we should enable
1055		 * SmartSpeed, so performance is maintained.
1056		 */
1057		if (phy->smart_speed == e1000_smart_speed_on)
1058			data |= E1000_82580_PM_SPD;
1059		else if (phy->smart_speed == e1000_smart_speed_off)
1060			data &= ~E1000_82580_PM_SPD; }
1061
1062	wr32(E1000_82580_PHY_POWER_MGMT, data);
1063	return 0;
1064}
1065
1066/**
1067 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1068 *  @hw: pointer to the HW structure
1069 *  @active: boolean used to enable/disable lplu
1070 *
1071 *  Success returns 0, Failure returns 1
1072 *
1073 *  The low power link up (lplu) state is set to the power management level D3
1074 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1075 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1076 *  is used during Dx states where the power conservation is most important.
1077 *  During driver activity, SmartSpeed should be enabled so performance is
1078 *  maintained.
1079 **/
1080static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1081{
1082	struct e1000_phy_info *phy = &hw->phy;
1083	u16 data;
1084
1085	data = rd32(E1000_82580_PHY_POWER_MGMT);
1086
1087	if (!active) {
1088		data &= ~E1000_82580_PM_D3_LPLU;
1089		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090		 * during Dx states where the power conservation is most
1091		 * important.  During driver activity we should enable
1092		 * SmartSpeed, so performance is maintained.
1093		 */
1094		if (phy->smart_speed == e1000_smart_speed_on)
1095			data |= E1000_82580_PM_SPD;
1096		else if (phy->smart_speed == e1000_smart_speed_off)
1097			data &= ~E1000_82580_PM_SPD;
1098	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1099		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1100		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1101		data |= E1000_82580_PM_D3_LPLU;
1102		/* When LPLU is enabled, we should disable SmartSpeed */
1103		data &= ~E1000_82580_PM_SPD;
1104	}
1105
1106	wr32(E1000_82580_PHY_POWER_MGMT, data);
1107	return 0;
1108}
1109
1110/**
1111 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1112 *  @hw: pointer to the HW structure
1113 *
1114 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1115 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1116 *  Return successful if access grant bit set, else clear the request for
1117 *  EEPROM access and return -E1000_ERR_NVM (-1).
1118 **/
1119static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1120{
1121	s32 ret_val;
1122
1123	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1124	if (ret_val)
1125		goto out;
1126
1127	ret_val = igb_acquire_nvm(hw);
1128
1129	if (ret_val)
1130		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131
1132out:
1133	return ret_val;
1134}
1135
1136/**
1137 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1138 *  @hw: pointer to the HW structure
1139 *
1140 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1141 *  then release the semaphores acquired.
1142 **/
1143static void igb_release_nvm_82575(struct e1000_hw *hw)
1144{
1145	igb_release_nvm(hw);
1146	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1147}
1148
1149/**
1150 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1151 *  @hw: pointer to the HW structure
1152 *  @mask: specifies which semaphore to acquire
1153 *
1154 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1155 *  will also specify which port we're acquiring the lock for.
1156 **/
1157static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1158{
1159	u32 swfw_sync;
1160	u32 swmask = mask;
1161	u32 fwmask = mask << 16;
1162	s32 ret_val = 0;
1163	s32 i = 0, timeout = 200;
1164
1165	while (i < timeout) {
1166		if (igb_get_hw_semaphore(hw)) {
1167			ret_val = -E1000_ERR_SWFW_SYNC;
1168			goto out;
1169		}
1170
1171		swfw_sync = rd32(E1000_SW_FW_SYNC);
1172		if (!(swfw_sync & (fwmask | swmask)))
1173			break;
1174
1175		/* Firmware currently using resource (fwmask)
1176		 * or other software thread using resource (swmask)
1177		 */
1178		igb_put_hw_semaphore(hw);
1179		mdelay(5);
1180		i++;
1181	}
1182
1183	if (i == timeout) {
1184		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1185		ret_val = -E1000_ERR_SWFW_SYNC;
1186		goto out;
1187	}
1188
1189	swfw_sync |= swmask;
1190	wr32(E1000_SW_FW_SYNC, swfw_sync);
1191
1192	igb_put_hw_semaphore(hw);
1193
1194out:
1195	return ret_val;
1196}
1197
1198/**
1199 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1200 *  @hw: pointer to the HW structure
1201 *  @mask: specifies which semaphore to acquire
1202 *
1203 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1204 *  will also specify which port we're releasing the lock for.
1205 **/
1206static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1207{
1208	u32 swfw_sync;
1209
1210	while (igb_get_hw_semaphore(hw) != 0)
1211		; /* Empty */
1212
1213	swfw_sync = rd32(E1000_SW_FW_SYNC);
1214	swfw_sync &= ~mask;
1215	wr32(E1000_SW_FW_SYNC, swfw_sync);
1216
1217	igb_put_hw_semaphore(hw);
1218}
1219
1220/**
1221 *  igb_get_cfg_done_82575 - Read config done bit
1222 *  @hw: pointer to the HW structure
1223 *
1224 *  Read the management control register for the config done bit for
1225 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1226 *  to read the config done bit, so an error is *ONLY* logged and returns
1227 *  0.  If we were to return with error, EEPROM-less silicon
1228 *  would not be able to be reset or change link.
1229 **/
1230static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1231{
1232	s32 timeout = PHY_CFG_TIMEOUT;
1233	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1234
1235	if (hw->bus.func == 1)
1236		mask = E1000_NVM_CFG_DONE_PORT_1;
1237	else if (hw->bus.func == E1000_FUNC_2)
1238		mask = E1000_NVM_CFG_DONE_PORT_2;
1239	else if (hw->bus.func == E1000_FUNC_3)
1240		mask = E1000_NVM_CFG_DONE_PORT_3;
1241
1242	while (timeout) {
1243		if (rd32(E1000_EEMNGCTL) & mask)
1244			break;
1245		usleep_range(1000, 2000);
1246		timeout--;
1247	}
1248	if (!timeout)
1249		hw_dbg("MNG configuration cycle has not completed.\n");
1250
1251	/* If EEPROM is not marked present, init the PHY manually */
1252	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1253	    (hw->phy.type == e1000_phy_igp_3))
1254		igb_phy_init_script_igp3(hw);
1255
1256	return 0;
1257}
1258
1259/**
1260 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1261 *  @hw: pointer to the HW structure
1262 *  @speed: stores the current speed
1263 *  @duplex: stores the current duplex
1264 *
1265 *  This is a wrapper function, if using the serial gigabit media independent
1266 *  interface, use PCS to retrieve the link speed and duplex information.
1267 *  Otherwise, use the generic function to get the link speed and duplex info.
1268 **/
1269static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1270					u16 *duplex)
1271{
1272	s32 ret_val;
1273
1274	if (hw->phy.media_type != e1000_media_type_copper)
1275		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1276							       duplex);
1277	else
1278		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1279								    duplex);
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  igb_check_for_link_82575 - Check for link
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1289 *  use the generic interface for determining link.
1290 **/
1291static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1292{
1293	s32 ret_val;
1294	u16 speed, duplex;
1295
1296	if (hw->phy.media_type != e1000_media_type_copper) {
1297		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1298							     &duplex);
1299		/* Use this flag to determine if link needs to be checked or
1300		 * not.  If  we have link clear the flag so that we do not
1301		 * continue to check for link.
1302		 */
1303		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1304
1305		/* Configure Flow Control now that Auto-Neg has completed.
1306		 * First, we need to restore the desired flow control
1307		 * settings because we may have had to re-autoneg with a
1308		 * different link partner.
1309		 */
1310		ret_val = igb_config_fc_after_link_up(hw);
1311		if (ret_val)
1312			hw_dbg("Error configuring flow control\n");
1313	} else {
1314		ret_val = igb_check_for_copper_link(hw);
1315	}
1316
1317	return ret_val;
1318}
1319
1320/**
1321 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1322 *  @hw: pointer to the HW structure
1323 **/
1324void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1325{
1326	u32 reg;
1327
1328
1329	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1330	    !igb_sgmii_active_82575(hw))
1331		return;
1332
1333	/* Enable PCS to turn on link */
1334	reg = rd32(E1000_PCS_CFG0);
1335	reg |= E1000_PCS_CFG_PCS_EN;
1336	wr32(E1000_PCS_CFG0, reg);
1337
1338	/* Power up the laser */
1339	reg = rd32(E1000_CTRL_EXT);
1340	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1341	wr32(E1000_CTRL_EXT, reg);
1342
1343	/* flush the write to verify completion */
1344	wrfl();
1345	usleep_range(1000, 2000);
1346}
1347
1348/**
1349 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1350 *  @hw: pointer to the HW structure
1351 *  @speed: stores the current speed
1352 *  @duplex: stores the current duplex
1353 *
1354 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1355 *  duplex, then store the values in the pointers provided.
1356 **/
1357static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1358						u16 *duplex)
1359{
1360	struct e1000_mac_info *mac = &hw->mac;
1361	u32 pcs, status;
1362
1363	/* Set up defaults for the return values of this function */
1364	mac->serdes_has_link = false;
1365	*speed = 0;
1366	*duplex = 0;
1367
1368	/* Read the PCS Status register for link state. For non-copper mode,
1369	 * the status register is not accurate. The PCS status register is
1370	 * used instead.
1371	 */
1372	pcs = rd32(E1000_PCS_LSTAT);
1373
1374	/* The link up bit determines when link is up on autoneg. The sync ok
1375	 * gets set once both sides sync up and agree upon link. Stable link
1376	 * can be determined by checking for both link up and link sync ok
1377	 */
1378	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1379		mac->serdes_has_link = true;
1380
1381		/* Detect and store PCS speed */
1382		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1383			*speed = SPEED_1000;
1384		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1385			*speed = SPEED_100;
1386		else
1387			*speed = SPEED_10;
1388
1389		/* Detect and store PCS duplex */
1390		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1391			*duplex = FULL_DUPLEX;
1392		else
1393			*duplex = HALF_DUPLEX;
1394
1395	/* Check if it is an I354 2.5Gb backplane connection. */
1396		if (mac->type == e1000_i354) {
1397			status = rd32(E1000_STATUS);
1398			if ((status & E1000_STATUS_2P5_SKU) &&
1399			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1400				*speed = SPEED_2500;
1401				*duplex = FULL_DUPLEX;
1402				hw_dbg("2500 Mbs, ");
1403				hw_dbg("Full Duplex\n");
1404			}
1405		}
1406
1407	}
1408
1409	return 0;
1410}
1411
1412/**
1413 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1414 *  @hw: pointer to the HW structure
1415 *
1416 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1417 *  when management pass thru is not enabled.
1418 **/
1419void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1420{
1421	u32 reg;
1422
1423	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1424	    igb_sgmii_active_82575(hw))
1425		return;
1426
1427	if (!igb_enable_mng_pass_thru(hw)) {
1428		/* Disable PCS to turn off link */
1429		reg = rd32(E1000_PCS_CFG0);
1430		reg &= ~E1000_PCS_CFG_PCS_EN;
1431		wr32(E1000_PCS_CFG0, reg);
1432
1433		/* shutdown the laser */
1434		reg = rd32(E1000_CTRL_EXT);
1435		reg |= E1000_CTRL_EXT_SDP3_DATA;
1436		wr32(E1000_CTRL_EXT, reg);
1437
1438		/* flush the write to verify completion */
1439		wrfl();
1440		usleep_range(1000, 2000);
1441	}
1442}
1443
1444/**
1445 *  igb_reset_hw_82575 - Reset hardware
1446 *  @hw: pointer to the HW structure
1447 *
1448 *  This resets the hardware into a known state.  This is a
1449 *  function pointer entry point called by the api module.
1450 **/
1451static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1452{
1453	u32 ctrl;
1454	s32 ret_val;
1455
1456	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1457	 * on the last TLP read/write transaction when MAC is reset.
1458	 */
1459	ret_val = igb_disable_pcie_master(hw);
1460	if (ret_val)
1461		hw_dbg("PCI-E Master disable polling has failed.\n");
1462
1463	/* set the completion timeout for interface */
1464	ret_val = igb_set_pcie_completion_timeout(hw);
1465	if (ret_val)
1466		hw_dbg("PCI-E Set completion timeout has failed.\n");
1467
1468	hw_dbg("Masking off all interrupts\n");
1469	wr32(E1000_IMC, 0xffffffff);
1470
1471	wr32(E1000_RCTL, 0);
1472	wr32(E1000_TCTL, E1000_TCTL_PSP);
1473	wrfl();
1474
1475	usleep_range(10000, 20000);
1476
1477	ctrl = rd32(E1000_CTRL);
1478
1479	hw_dbg("Issuing a global reset to MAC\n");
1480	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1481
1482	ret_val = igb_get_auto_rd_done(hw);
1483	if (ret_val) {
1484		/* When auto config read does not complete, do not
1485		 * return with an error. This can happen in situations
1486		 * where there is no eeprom and prevents getting link.
1487		 */
1488		hw_dbg("Auto Read Done did not complete\n");
1489	}
1490
1491	/* If EEPROM is not present, run manual init scripts */
1492	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1493		igb_reset_init_script_82575(hw);
1494
1495	/* Clear any pending interrupt events. */
1496	wr32(E1000_IMC, 0xffffffff);
1497	rd32(E1000_ICR);
1498
1499	/* Install any alternate MAC address into RAR0 */
1500	ret_val = igb_check_alt_mac_addr(hw);
1501
1502	return ret_val;
1503}
1504
1505/**
1506 *  igb_init_hw_82575 - Initialize hardware
1507 *  @hw: pointer to the HW structure
1508 *
1509 *  This inits the hardware readying it for operation.
1510 **/
1511static s32 igb_init_hw_82575(struct e1000_hw *hw)
1512{
1513	struct e1000_mac_info *mac = &hw->mac;
1514	s32 ret_val;
1515	u16 i, rar_count = mac->rar_entry_count;
1516
1517	if ((hw->mac.type >= e1000_i210) &&
1518	    !(igb_get_flash_presence_i210(hw))) {
1519		ret_val = igb_pll_workaround_i210(hw);
1520		if (ret_val)
1521			return ret_val;
1522	}
1523
1524	/* Initialize identification LED */
1525	ret_val = igb_id_led_init(hw);
1526	if (ret_val) {
1527		hw_dbg("Error initializing identification LED\n");
1528		/* This is not fatal and we should not stop init due to this */
1529	}
1530
1531	/* Disabling VLAN filtering */
1532	hw_dbg("Initializing the IEEE VLAN\n");
1533	igb_clear_vfta(hw);
1534
1535	/* Setup the receive address */
1536	igb_init_rx_addrs(hw, rar_count);
1537
1538	/* Zero out the Multicast HASH table */
1539	hw_dbg("Zeroing the MTA\n");
1540	for (i = 0; i < mac->mta_reg_count; i++)
1541		array_wr32(E1000_MTA, i, 0);
1542
1543	/* Zero out the Unicast HASH table */
1544	hw_dbg("Zeroing the UTA\n");
1545	for (i = 0; i < mac->uta_reg_count; i++)
1546		array_wr32(E1000_UTA, i, 0);
1547
1548	/* Setup link and flow control */
1549	ret_val = igb_setup_link(hw);
1550
1551	/* Clear all of the statistics registers (clear on read).  It is
1552	 * important that we do this after we have tried to establish link
1553	 * because the symbol error count will increment wildly if there
1554	 * is no link.
1555	 */
1556	igb_clear_hw_cntrs_82575(hw);
1557	return ret_val;
1558}
1559
1560/**
1561 *  igb_setup_copper_link_82575 - Configure copper link settings
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1565 *  for link, once link is established calls to configure collision distance
1566 *  and flow control are called.
1567 **/
1568static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1569{
1570	u32 ctrl;
1571	s32  ret_val;
1572	u32 phpm_reg;
1573
1574	ctrl = rd32(E1000_CTRL);
1575	ctrl |= E1000_CTRL_SLU;
1576	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1577	wr32(E1000_CTRL, ctrl);
1578
1579	/* Clear Go Link Disconnect bit on supported devices */
1580	switch (hw->mac.type) {
1581	case e1000_82580:
1582	case e1000_i350:
1583	case e1000_i210:
1584	case e1000_i211:
1585		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1586		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1587		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1588		break;
1589	default:
1590		break;
1591	}
1592
1593	ret_val = igb_setup_serdes_link_82575(hw);
1594	if (ret_val)
1595		goto out;
1596
1597	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1598		/* allow time for SFP cage time to power up phy */
1599		msleep(300);
1600
1601		ret_val = hw->phy.ops.reset(hw);
1602		if (ret_val) {
1603			hw_dbg("Error resetting the PHY.\n");
1604			goto out;
1605		}
1606	}
1607	switch (hw->phy.type) {
1608	case e1000_phy_i210:
1609	case e1000_phy_m88:
1610		switch (hw->phy.id) {
1611		case I347AT4_E_PHY_ID:
1612		case M88E1112_E_PHY_ID:
1613		case M88E1543_E_PHY_ID:
1614		case M88E1512_E_PHY_ID:
1615		case I210_I_PHY_ID:
1616			ret_val = igb_copper_link_setup_m88_gen2(hw);
1617			break;
1618		default:
1619			ret_val = igb_copper_link_setup_m88(hw);
1620			break;
1621		}
1622		break;
1623	case e1000_phy_igp_3:
1624		ret_val = igb_copper_link_setup_igp(hw);
1625		break;
1626	case e1000_phy_82580:
1627		ret_val = igb_copper_link_setup_82580(hw);
1628		break;
1629	case e1000_phy_bcm54616:
1630		ret_val = 0;
1631		break;
1632	default:
1633		ret_val = -E1000_ERR_PHY;
1634		break;
1635	}
1636
1637	if (ret_val)
1638		goto out;
1639
1640	ret_val = igb_setup_copper_link(hw);
1641out:
1642	return ret_val;
1643}
1644
1645/**
1646 *  igb_setup_serdes_link_82575 - Setup link for serdes
1647 *  @hw: pointer to the HW structure
1648 *
1649 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1650 *  used on copper connections where the serialized gigabit media independent
1651 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1652 *  for auto-negotiation or forces speed/duplex.
1653 **/
1654static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1655{
1656	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1657	bool pcs_autoneg;
1658	s32 ret_val = 0;
1659	u16 data;
1660
1661	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1662	    !igb_sgmii_active_82575(hw))
1663		return ret_val;
1664
1665
1666	/* On the 82575, SerDes loopback mode persists until it is
1667	 * explicitly turned off or a power cycle is performed.  A read to
1668	 * the register does not indicate its status.  Therefore, we ensure
1669	 * loopback mode is disabled during initialization.
1670	 */
1671	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1672
1673	/* power on the sfp cage if present and turn on I2C */
1674	ctrl_ext = rd32(E1000_CTRL_EXT);
1675	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1676	ctrl_ext |= E1000_CTRL_I2C_ENA;
1677	wr32(E1000_CTRL_EXT, ctrl_ext);
1678
1679	ctrl_reg = rd32(E1000_CTRL);
1680	ctrl_reg |= E1000_CTRL_SLU;
1681
1682	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1683		/* set both sw defined pins */
1684		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1685
1686		/* Set switch control to serdes energy detect */
1687		reg = rd32(E1000_CONNSW);
1688		reg |= E1000_CONNSW_ENRGSRC;
1689		wr32(E1000_CONNSW, reg);
1690	}
1691
1692	reg = rd32(E1000_PCS_LCTL);
1693
1694	/* default pcs_autoneg to the same setting as mac autoneg */
1695	pcs_autoneg = hw->mac.autoneg;
1696
1697	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1698	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1699		/* sgmii mode lets the phy handle forcing speed/duplex */
1700		pcs_autoneg = true;
1701		/* autoneg time out should be disabled for SGMII mode */
1702		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1703		break;
1704	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1705		/* disable PCS autoneg and support parallel detect only */
1706		pcs_autoneg = false;
1707		fallthrough;
1708	default:
1709		if (hw->mac.type == e1000_82575 ||
1710		    hw->mac.type == e1000_82576) {
1711			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1712			if (ret_val) {
1713				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1714				return ret_val;
1715			}
1716
1717			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1718				pcs_autoneg = false;
1719		}
1720
1721		/* non-SGMII modes only supports a speed of 1000/Full for the
1722		 * link so it is best to just force the MAC and let the pcs
1723		 * link either autoneg or be forced to 1000/Full
1724		 */
1725		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1726				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1727
1728		/* set speed of 1000/Full if speed/duplex is forced */
1729		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1730		break;
1731	}
1732
1733	wr32(E1000_CTRL, ctrl_reg);
1734
1735	/* New SerDes mode allows for forcing speed or autonegotiating speed
1736	 * at 1gb. Autoneg should be default set by most drivers. This is the
1737	 * mode that will be compatible with older link partners and switches.
1738	 * However, both are supported by the hardware and some drivers/tools.
1739	 */
1740	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1741		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1742
1743	if (pcs_autoneg) {
1744		/* Set PCS register for autoneg */
1745		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1746		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1747
1748		/* Disable force flow control for autoneg */
1749		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1750
1751		/* Configure flow control advertisement for autoneg */
1752		anadv_reg = rd32(E1000_PCS_ANADV);
1753		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1754		switch (hw->fc.requested_mode) {
1755		case e1000_fc_full:
1756		case e1000_fc_rx_pause:
1757			anadv_reg |= E1000_TXCW_ASM_DIR;
1758			anadv_reg |= E1000_TXCW_PAUSE;
1759			break;
1760		case e1000_fc_tx_pause:
1761			anadv_reg |= E1000_TXCW_ASM_DIR;
1762			break;
1763		default:
1764			break;
1765		}
1766		wr32(E1000_PCS_ANADV, anadv_reg);
1767
1768		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1769	} else {
1770		/* Set PCS register for forced link */
1771		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1772
1773		/* Force flow control for forced link */
1774		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1775
1776		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1777	}
1778
1779	wr32(E1000_PCS_LCTL, reg);
1780
1781	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1782		igb_force_mac_fc(hw);
1783
1784	return ret_val;
1785}
1786
1787/**
1788 *  igb_sgmii_active_82575 - Return sgmii state
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1792 *  which can be enabled for use in the embedded applications.  Simply
1793 *  return the current state of the sgmii interface.
1794 **/
1795static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1796{
1797	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1798	return dev_spec->sgmii_active;
1799}
1800
1801/**
1802 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  Inits recommended HW defaults after a reset when there is no EEPROM
1806 *  detected. This is only for the 82575.
1807 **/
1808static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1809{
1810	if (hw->mac.type == e1000_82575) {
1811		hw_dbg("Running reset init script for 82575\n");
1812		/* SerDes configuration via SERDESCTRL */
1813		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1814		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1815		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1816		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1817
1818		/* CCM configuration via CCMCTL register */
1819		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1820		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1821
1822		/* PCIe lanes configuration */
1823		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1824		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1825		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1826		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1827
1828		/* PCIe PLL Configuration */
1829		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1830		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1831		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1832	}
1833
1834	return 0;
1835}
1836
1837/**
1838 *  igb_read_mac_addr_82575 - Read device MAC address
1839 *  @hw: pointer to the HW structure
1840 **/
1841static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1842{
1843	s32 ret_val = 0;
1844
1845	/* If there's an alternate MAC address place it in RAR0
1846	 * so that it will override the Si installed default perm
1847	 * address.
1848	 */
1849	ret_val = igb_check_alt_mac_addr(hw);
1850	if (ret_val)
1851		goto out;
1852
1853	ret_val = igb_read_mac_addr(hw);
1854
1855out:
1856	return ret_val;
1857}
1858
1859/**
1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1861 * @hw: pointer to the HW structure
1862 *
1863 * In the case of a PHY power down to save power, or to turn off link during a
1864 * driver unload, or wake on lan is not enabled, remove the link.
1865 **/
1866void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1867{
1868	/* If the management interface is not enabled, then power down */
1869	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1870		igb_power_down_phy_copper(hw);
1871}
1872
1873/**
1874 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1875 *  @hw: pointer to the HW structure
1876 *
1877 *  Clears the hardware counters by reading the counter registers.
1878 **/
1879static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1880{
1881	igb_clear_hw_cntrs_base(hw);
1882
1883	rd32(E1000_PRC64);
1884	rd32(E1000_PRC127);
1885	rd32(E1000_PRC255);
1886	rd32(E1000_PRC511);
1887	rd32(E1000_PRC1023);
1888	rd32(E1000_PRC1522);
1889	rd32(E1000_PTC64);
1890	rd32(E1000_PTC127);
1891	rd32(E1000_PTC255);
1892	rd32(E1000_PTC511);
1893	rd32(E1000_PTC1023);
1894	rd32(E1000_PTC1522);
1895
1896	rd32(E1000_ALGNERRC);
1897	rd32(E1000_RXERRC);
1898	rd32(E1000_TNCRS);
1899	rd32(E1000_CEXTERR);
1900	rd32(E1000_TSCTC);
1901	rd32(E1000_TSCTFC);
1902
1903	rd32(E1000_MGTPRC);
1904	rd32(E1000_MGTPDC);
1905	rd32(E1000_MGTPTC);
1906
1907	rd32(E1000_IAC);
1908	rd32(E1000_ICRXOC);
1909
1910	rd32(E1000_ICRXPTC);
1911	rd32(E1000_ICRXATC);
1912	rd32(E1000_ICTXPTC);
1913	rd32(E1000_ICTXATC);
1914	rd32(E1000_ICTXQEC);
1915	rd32(E1000_ICTXQMTC);
1916	rd32(E1000_ICRXDMTC);
1917
1918	rd32(E1000_CBTMPC);
1919	rd32(E1000_HTDPMC);
1920	rd32(E1000_CBRMPC);
1921	rd32(E1000_RPTHC);
1922	rd32(E1000_HGPTC);
1923	rd32(E1000_HTCBDPC);
1924	rd32(E1000_HGORCL);
1925	rd32(E1000_HGORCH);
1926	rd32(E1000_HGOTCL);
1927	rd32(E1000_HGOTCH);
1928	rd32(E1000_LENERRS);
1929
1930	/* This register should not be read in copper configurations */
1931	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1932	    igb_sgmii_active_82575(hw))
1933		rd32(E1000_SCVPC);
1934}
1935
1936/**
1937 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  After rx enable if manageability is enabled then there is likely some
1941 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1942 *  function clears the fifos and flushes any packets that came in as rx was
1943 *  being enabled.
1944 **/
1945void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1946{
1947	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1948	int i, ms_wait;
1949
1950	/* disable IPv6 options as per hardware errata */
1951	rfctl = rd32(E1000_RFCTL);
1952	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1953	wr32(E1000_RFCTL, rfctl);
1954
1955	if (hw->mac.type != e1000_82575 ||
1956	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1957		return;
1958
1959	/* Disable all RX queues */
1960	for (i = 0; i < 4; i++) {
1961		rxdctl[i] = rd32(E1000_RXDCTL(i));
1962		wr32(E1000_RXDCTL(i),
1963		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1964	}
1965	/* Poll all queues to verify they have shut down */
1966	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1967		usleep_range(1000, 2000);
1968		rx_enabled = 0;
1969		for (i = 0; i < 4; i++)
1970			rx_enabled |= rd32(E1000_RXDCTL(i));
1971		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1972			break;
1973	}
1974
1975	if (ms_wait == 10)
1976		hw_dbg("Queue disable timed out after 10ms\n");
1977
1978	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1979	 * incoming packets are rejected.  Set enable and wait 2ms so that
1980	 * any packet that was coming in as RCTL.EN was set is flushed
1981	 */
1982	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1983
1984	rlpml = rd32(E1000_RLPML);
1985	wr32(E1000_RLPML, 0);
1986
1987	rctl = rd32(E1000_RCTL);
1988	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1989	temp_rctl |= E1000_RCTL_LPE;
1990
1991	wr32(E1000_RCTL, temp_rctl);
1992	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1993	wrfl();
1994	usleep_range(2000, 3000);
1995
1996	/* Enable RX queues that were previously enabled and restore our
1997	 * previous state
1998	 */
1999	for (i = 0; i < 4; i++)
2000		wr32(E1000_RXDCTL(i), rxdctl[i]);
2001	wr32(E1000_RCTL, rctl);
2002	wrfl();
2003
2004	wr32(E1000_RLPML, rlpml);
2005	wr32(E1000_RFCTL, rfctl);
2006
2007	/* Flush receive errors generated by workaround */
2008	rd32(E1000_ROC);
2009	rd32(E1000_RNBC);
2010	rd32(E1000_MPC);
2011}
2012
2013/**
2014 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2015 *  @hw: pointer to the HW structure
2016 *
2017 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2018 *  however the hardware default for these parts is 500us to 1ms which is less
2019 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2020 *  increase the value to either 10ms to 200ms for capability version 1 config,
2021 *  or 16ms to 55ms for version 2.
2022 **/
2023static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2024{
2025	u32 gcr = rd32(E1000_GCR);
2026	s32 ret_val = 0;
2027	u16 pcie_devctl2;
2028
2029	/* only take action if timeout value is defaulted to 0 */
2030	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2031		goto out;
2032
2033	/* if capabilities version is type 1 we can write the
2034	 * timeout of 10ms to 200ms through the GCR register
2035	 */
2036	if (!(gcr & E1000_GCR_CAP_VER2)) {
2037		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2038		goto out;
2039	}
2040
2041	/* for version 2 capabilities we need to write the config space
2042	 * directly in order to set the completion timeout value for
2043	 * 16ms to 55ms
2044	 */
2045	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2046					&pcie_devctl2);
2047	if (ret_val)
2048		goto out;
2049
2050	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2051
2052	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2053					 &pcie_devctl2);
2054out:
2055	/* disable completion timeout resend */
2056	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2057
2058	wr32(E1000_GCR, gcr);
2059	return ret_val;
2060}
2061
2062/**
2063 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2064 *  @hw: pointer to the hardware struct
2065 *  @enable: state to enter, either enabled or disabled
2066 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2067 *
2068 *  enables/disables L2 switch anti-spoofing functionality.
2069 **/
2070void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2071{
2072	u32 reg_val, reg_offset;
2073
2074	switch (hw->mac.type) {
2075	case e1000_82576:
2076		reg_offset = E1000_DTXSWC;
2077		break;
2078	case e1000_i350:
2079	case e1000_i354:
2080		reg_offset = E1000_TXSWC;
2081		break;
2082	default:
2083		return;
2084	}
2085
2086	reg_val = rd32(reg_offset);
2087	if (enable) {
2088		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2089			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2090		/* The PF can spoof - it has to in order to
2091		 * support emulation mode NICs
2092		 */
2093		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2094	} else {
2095		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2096			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2097	}
2098	wr32(reg_offset, reg_val);
2099}
2100
2101/**
2102 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2103 *  @hw: pointer to the hardware struct
2104 *  @enable: state to enter, either enabled or disabled
2105 *
2106 *  enables/disables L2 switch loopback functionality.
2107 **/
2108void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2109{
2110	u32 dtxswc;
2111
2112	switch (hw->mac.type) {
2113	case e1000_82576:
2114		dtxswc = rd32(E1000_DTXSWC);
2115		if (enable)
2116			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117		else
2118			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2119		wr32(E1000_DTXSWC, dtxswc);
2120		break;
2121	case e1000_i354:
2122	case e1000_i350:
2123		dtxswc = rd32(E1000_TXSWC);
2124		if (enable)
2125			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126		else
2127			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2128		wr32(E1000_TXSWC, dtxswc);
2129		break;
2130	default:
2131		/* Currently no other hardware supports loopback */
2132		break;
2133	}
2134
2135}
2136
2137/**
2138 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2139 *  @hw: pointer to the hardware struct
2140 *  @enable: state to enter, either enabled or disabled
2141 *
2142 *  enables/disables replication of packets across multiple pools.
2143 **/
2144void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2145{
2146	u32 vt_ctl = rd32(E1000_VT_CTL);
2147
2148	if (enable)
2149		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2150	else
2151		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2152
2153	wr32(E1000_VT_CTL, vt_ctl);
2154}
2155
2156/**
2157 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2158 *  @hw: pointer to the HW structure
2159 *  @offset: register offset to be read
2160 *  @data: pointer to the read data
2161 *
2162 *  Reads the MDI control register in the PHY at offset and stores the
2163 *  information read to data.
2164 **/
2165s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2166{
2167	s32 ret_val;
2168
2169	ret_val = hw->phy.ops.acquire(hw);
2170	if (ret_val)
2171		goto out;
2172
2173	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2174
2175	hw->phy.ops.release(hw);
2176
2177out:
2178	return ret_val;
2179}
2180
2181/**
2182 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2183 *  @hw: pointer to the HW structure
2184 *  @offset: register offset to write to
2185 *  @data: data to write to register at offset
2186 *
2187 *  Writes data to MDI control register in the PHY at offset.
2188 **/
2189s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2190{
2191	s32 ret_val;
2192
2193
2194	ret_val = hw->phy.ops.acquire(hw);
2195	if (ret_val)
2196		goto out;
2197
2198	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2199
2200	hw->phy.ops.release(hw);
2201
2202out:
2203	return ret_val;
2204}
2205
2206/**
2207 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2208 *  @hw: pointer to the HW structure
2209 *
2210 *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2211 *  the values found in the EEPROM.  This addresses an issue in which these
2212 *  bits are not restored from EEPROM after reset.
2213 **/
2214static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2215{
2216	s32 ret_val = 0;
2217	u32 mdicnfg;
2218	u16 nvm_data = 0;
2219
2220	if (hw->mac.type != e1000_82580)
2221		goto out;
2222	if (!igb_sgmii_active_82575(hw))
2223		goto out;
2224
2225	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2226				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2227				   &nvm_data);
2228	if (ret_val) {
2229		hw_dbg("NVM Read Error\n");
2230		goto out;
2231	}
2232
2233	mdicnfg = rd32(E1000_MDICNFG);
2234	if (nvm_data & NVM_WORD24_EXT_MDIO)
2235		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2236	if (nvm_data & NVM_WORD24_COM_MDIO)
2237		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2238	wr32(E1000_MDICNFG, mdicnfg);
2239out:
2240	return ret_val;
2241}
2242
2243/**
2244 *  igb_reset_hw_82580 - Reset hardware
2245 *  @hw: pointer to the HW structure
2246 *
2247 *  This resets function or entire device (all ports, etc.)
2248 *  to a known state.
2249 **/
2250static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2251{
2252	s32 ret_val = 0;
2253	/* BH SW mailbox bit in SW_FW_SYNC */
2254	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2255	u32 ctrl;
2256	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2257
2258	hw->dev_spec._82575.global_device_reset = false;
2259
2260	/* due to hw errata, global device reset doesn't always
2261	 * work on 82580
2262	 */
2263	if (hw->mac.type == e1000_82580)
2264		global_device_reset = false;
2265
2266	/* Get current control state. */
2267	ctrl = rd32(E1000_CTRL);
2268
2269	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2270	 * on the last TLP read/write transaction when MAC is reset.
2271	 */
2272	ret_val = igb_disable_pcie_master(hw);
2273	if (ret_val)
2274		hw_dbg("PCI-E Master disable polling has failed.\n");
2275
2276	hw_dbg("Masking off all interrupts\n");
2277	wr32(E1000_IMC, 0xffffffff);
2278	wr32(E1000_RCTL, 0);
2279	wr32(E1000_TCTL, E1000_TCTL_PSP);
2280	wrfl();
2281
2282	usleep_range(10000, 11000);
2283
2284	/* Determine whether or not a global dev reset is requested */
2285	if (global_device_reset &&
2286		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2287			global_device_reset = false;
2288
2289	if (global_device_reset &&
2290		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2291		ctrl |= E1000_CTRL_DEV_RST;
2292	else
2293		ctrl |= E1000_CTRL_RST;
2294
2295	wr32(E1000_CTRL, ctrl);
2296	wrfl();
2297
2298	/* Add delay to insure DEV_RST has time to complete */
2299	if (global_device_reset)
2300		usleep_range(5000, 6000);
2301
2302	ret_val = igb_get_auto_rd_done(hw);
2303	if (ret_val) {
2304		/* When auto config read does not complete, do not
2305		 * return with an error. This can happen in situations
2306		 * where there is no eeprom and prevents getting link.
2307		 */
2308		hw_dbg("Auto Read Done did not complete\n");
2309	}
2310
2311	/* clear global device reset status bit */
2312	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2313
2314	/* Clear any pending interrupt events. */
2315	wr32(E1000_IMC, 0xffffffff);
2316	rd32(E1000_ICR);
2317
2318	ret_val = igb_reset_mdicnfg_82580(hw);
2319	if (ret_val)
2320		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2321
2322	/* Install any alternate MAC address into RAR0 */
2323	ret_val = igb_check_alt_mac_addr(hw);
2324
2325	/* Release semaphore */
2326	if (global_device_reset)
2327		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2328
2329	return ret_val;
2330}
2331
2332/**
2333 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2334 *  @data: data received by reading RXPBS register
2335 *
2336 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2337 *  This function converts the retrieved value into the correct table value
2338 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2339 *  0x0 36  72 144   1   2   4   8  16
2340 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2341 */
2342u16 igb_rxpbs_adjust_82580(u32 data)
2343{
2344	u16 ret_val = 0;
2345
2346	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2347		ret_val = e1000_82580_rxpbs_table[data];
2348
2349	return ret_val;
2350}
2351
2352/**
2353 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2354 *  checksum
2355 *  @hw: pointer to the HW structure
2356 *  @offset: offset in words of the checksum protected region
2357 *
2358 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2359 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2360 **/
2361static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2362						 u16 offset)
2363{
2364	s32 ret_val = 0;
2365	u16 checksum = 0;
2366	u16 i, nvm_data;
2367
2368	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2369		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2370		if (ret_val) {
2371			hw_dbg("NVM Read Error\n");
2372			goto out;
2373		}
2374		checksum += nvm_data;
2375	}
2376
2377	if (checksum != (u16) NVM_SUM) {
2378		hw_dbg("NVM Checksum Invalid\n");
2379		ret_val = -E1000_ERR_NVM;
2380		goto out;
2381	}
2382
2383out:
2384	return ret_val;
2385}
2386
2387/**
2388 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2389 *  checksum
2390 *  @hw: pointer to the HW structure
2391 *  @offset: offset in words of the checksum protected region
2392 *
2393 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2394 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2395 *  value to the EEPROM.
2396 **/
2397static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2398{
2399	s32 ret_val;
2400	u16 checksum = 0;
2401	u16 i, nvm_data;
2402
2403	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2404		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405		if (ret_val) {
2406			hw_dbg("NVM Read Error while updating checksum.\n");
2407			goto out;
2408		}
2409		checksum += nvm_data;
2410	}
2411	checksum = (u16) NVM_SUM - checksum;
2412	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2413				&checksum);
2414	if (ret_val)
2415		hw_dbg("NVM Write Error while updating checksum.\n");
2416
2417out:
2418	return ret_val;
2419}
2420
2421/**
2422 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2423 *  @hw: pointer to the HW structure
2424 *
2425 *  Calculates the EEPROM section checksum by reading/adding each word of
2426 *  the EEPROM and then verifies that the sum of the EEPROM is
2427 *  equal to 0xBABA.
2428 **/
2429static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2430{
2431	s32 ret_val = 0;
2432	u16 eeprom_regions_count = 1;
2433	u16 j, nvm_data;
2434	u16 nvm_offset;
2435
2436	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2437	if (ret_val) {
2438		hw_dbg("NVM Read Error\n");
2439		goto out;
2440	}
2441
2442	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2443		/* if checksums compatibility bit is set validate checksums
2444		 * for all 4 ports.
2445		 */
2446		eeprom_regions_count = 4;
2447	}
2448
2449	for (j = 0; j < eeprom_regions_count; j++) {
2450		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2451		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2452								nvm_offset);
2453		if (ret_val != 0)
2454			goto out;
2455	}
2456
2457out:
2458	return ret_val;
2459}
2460
2461/**
2462 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2463 *  @hw: pointer to the HW structure
2464 *
2465 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2466 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2467 *  checksum and writes the value to the EEPROM.
2468 **/
2469static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2470{
2471	s32 ret_val;
2472	u16 j, nvm_data;
2473	u16 nvm_offset;
2474
2475	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2476	if (ret_val) {
2477		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2478		goto out;
2479	}
2480
2481	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2482		/* set compatibility bit to validate checksums appropriately */
2483		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2484		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2485					&nvm_data);
2486		if (ret_val) {
2487			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2488			goto out;
2489		}
2490	}
2491
2492	for (j = 0; j < 4; j++) {
2493		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2494		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2495		if (ret_val)
2496			goto out;
2497	}
2498
2499out:
2500	return ret_val;
2501}
2502
2503/**
2504 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2505 *  @hw: pointer to the HW structure
2506 *
2507 *  Calculates the EEPROM section checksum by reading/adding each word of
2508 *  the EEPROM and then verifies that the sum of the EEPROM is
2509 *  equal to 0xBABA.
2510 **/
2511static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2512{
2513	s32 ret_val = 0;
2514	u16 j;
2515	u16 nvm_offset;
2516
2517	for (j = 0; j < 4; j++) {
2518		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2519		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2520								nvm_offset);
2521		if (ret_val != 0)
2522			goto out;
2523	}
2524
2525out:
2526	return ret_val;
2527}
2528
2529/**
2530 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2531 *  @hw: pointer to the HW structure
2532 *
2533 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2534 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2535 *  checksum and writes the value to the EEPROM.
2536 **/
2537static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2538{
2539	s32 ret_val = 0;
2540	u16 j;
2541	u16 nvm_offset;
2542
2543	for (j = 0; j < 4; j++) {
2544		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2545		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2546		if (ret_val != 0)
2547			goto out;
2548	}
2549
2550out:
2551	return ret_val;
2552}
2553
2554/**
2555 *  __igb_access_emi_reg - Read/write EMI register
2556 *  @hw: pointer to the HW structure
2557 *  @address: EMI address to program
2558 *  @data: pointer to value to read/write from/to the EMI address
2559 *  @read: boolean flag to indicate read or write
2560 **/
2561static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2562				  u16 *data, bool read)
2563{
2564	s32 ret_val = 0;
2565
2566	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2567	if (ret_val)
2568		return ret_val;
2569
2570	if (read)
2571		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2572	else
2573		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2574
2575	return ret_val;
2576}
2577
2578/**
2579 *  igb_read_emi_reg - Read Extended Management Interface register
2580 *  @hw: pointer to the HW structure
2581 *  @addr: EMI address to program
2582 *  @data: value to be read from the EMI address
2583 **/
2584s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2585{
2586	return __igb_access_emi_reg(hw, addr, data, true);
2587}
2588
2589/**
2590 *  igb_set_eee_i350 - Enable/disable EEE support
2591 *  @hw: pointer to the HW structure
2592 *  @adv1G: boolean flag enabling 1G EEE advertisement
2593 *  @adv100M: boolean flag enabling 100M EEE advertisement
2594 *
2595 *  Enable/disable EEE based on setting in dev_spec structure.
2596 *
2597 **/
2598s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2599{
2600	u32 ipcnfg, eeer;
2601
2602	if ((hw->mac.type < e1000_i350) ||
2603	    (hw->phy.media_type != e1000_media_type_copper))
2604		goto out;
2605	ipcnfg = rd32(E1000_IPCNFG);
2606	eeer = rd32(E1000_EEER);
2607
2608	/* enable or disable per user setting */
2609	if (!(hw->dev_spec._82575.eee_disable)) {
2610		u32 eee_su = rd32(E1000_EEE_SU);
2611
2612		if (adv100M)
2613			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2614		else
2615			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2616
2617		if (adv1G)
2618			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2619		else
2620			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2621
2622		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2623			E1000_EEER_LPI_FC);
2624
2625		/* This bit should not be set in normal operation. */
2626		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2627			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2628
2629	} else {
2630		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2631			E1000_IPCNFG_EEE_100M_AN);
2632		eeer &= ~(E1000_EEER_TX_LPI_EN |
2633			E1000_EEER_RX_LPI_EN |
2634			E1000_EEER_LPI_FC);
2635	}
2636	wr32(E1000_IPCNFG, ipcnfg);
2637	wr32(E1000_EEER, eeer);
2638	rd32(E1000_IPCNFG);
2639	rd32(E1000_EEER);
2640out:
2641
2642	return 0;
2643}
2644
2645/**
2646 *  igb_set_eee_i354 - Enable/disable EEE support
2647 *  @hw: pointer to the HW structure
2648 *  @adv1G: boolean flag enabling 1G EEE advertisement
2649 *  @adv100M: boolean flag enabling 100M EEE advertisement
2650 *
2651 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2652 *
2653 **/
2654s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2655{
2656	struct e1000_phy_info *phy = &hw->phy;
2657	s32 ret_val = 0;
2658	u16 phy_data;
2659
2660	if ((hw->phy.media_type != e1000_media_type_copper) ||
2661	    ((phy->id != M88E1543_E_PHY_ID) &&
2662	     (phy->id != M88E1512_E_PHY_ID)))
2663		goto out;
2664
2665	if (!hw->dev_spec._82575.eee_disable) {
2666		/* Switch to PHY page 18. */
2667		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2668		if (ret_val)
2669			goto out;
2670
2671		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2672					    &phy_data);
2673		if (ret_val)
2674			goto out;
2675
2676		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2677		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2678					     phy_data);
2679		if (ret_val)
2680			goto out;
2681
2682		/* Return the PHY to page 0. */
2683		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2684		if (ret_val)
2685			goto out;
2686
2687		/* Turn on EEE advertisement. */
2688		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689					     E1000_EEE_ADV_DEV_I354,
2690					     &phy_data);
2691		if (ret_val)
2692			goto out;
2693
2694		if (adv100M)
2695			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2696		else
2697			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2698
2699		if (adv1G)
2700			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2701		else
2702			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2703
2704		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2705						E1000_EEE_ADV_DEV_I354,
2706						phy_data);
2707	} else {
2708		/* Turn off EEE advertisement. */
2709		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2710					     E1000_EEE_ADV_DEV_I354,
2711					     &phy_data);
2712		if (ret_val)
2713			goto out;
2714
2715		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2716			      E1000_EEE_ADV_1000_SUPPORTED);
2717		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2718					      E1000_EEE_ADV_DEV_I354,
2719					      phy_data);
2720	}
2721
2722out:
2723	return ret_val;
2724}
2725
2726/**
2727 *  igb_get_eee_status_i354 - Get EEE status
2728 *  @hw: pointer to the HW structure
2729 *  @status: EEE status
2730 *
2731 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2732 *  been received.
2733 **/
2734s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2735{
2736	struct e1000_phy_info *phy = &hw->phy;
2737	s32 ret_val = 0;
2738	u16 phy_data;
2739
2740	/* Check if EEE is supported on this device. */
2741	if ((hw->phy.media_type != e1000_media_type_copper) ||
2742	    ((phy->id != M88E1543_E_PHY_ID) &&
2743	     (phy->id != M88E1512_E_PHY_ID)))
2744		goto out;
2745
2746	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2747				     E1000_PCS_STATUS_DEV_I354,
2748				     &phy_data);
2749	if (ret_val)
2750		goto out;
2751
2752	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2753			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2754
2755out:
2756	return ret_val;
2757}
2758
2759#ifdef CONFIG_IGB_HWMON
2760static const u8 e1000_emc_temp_data[4] = {
2761	E1000_EMC_INTERNAL_DATA,
2762	E1000_EMC_DIODE1_DATA,
2763	E1000_EMC_DIODE2_DATA,
2764	E1000_EMC_DIODE3_DATA
2765};
2766static const u8 e1000_emc_therm_limit[4] = {
2767	E1000_EMC_INTERNAL_THERM_LIMIT,
2768	E1000_EMC_DIODE1_THERM_LIMIT,
2769	E1000_EMC_DIODE2_THERM_LIMIT,
2770	E1000_EMC_DIODE3_THERM_LIMIT
2771};
2772
 
2773/**
2774 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2775 *  @hw: pointer to hardware structure
2776 *
2777 *  Updates the temperatures in mac.thermal_sensor_data
2778 **/
2779static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2780{
2781	u16 ets_offset;
2782	u16 ets_cfg;
2783	u16 ets_sensor;
2784	u8  num_sensors;
2785	u8  sensor_index;
2786	u8  sensor_location;
2787	u8  i;
2788	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2789
2790	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2791		return E1000_NOT_IMPLEMENTED;
2792
2793	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2794
2795	/* Return the internal sensor only if ETS is unsupported */
2796	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2797	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2798		return 0;
2799
2800	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2801	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2802	    != NVM_ETS_TYPE_EMC)
2803		return E1000_NOT_IMPLEMENTED;
2804
2805	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2806	if (num_sensors > E1000_MAX_SENSORS)
2807		num_sensors = E1000_MAX_SENSORS;
2808
2809	for (i = 1; i < num_sensors; i++) {
2810		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2811		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2812				NVM_ETS_DATA_INDEX_SHIFT);
2813		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2814				   NVM_ETS_DATA_LOC_SHIFT);
2815
2816		if (sensor_location != 0)
2817			hw->phy.ops.read_i2c_byte(hw,
2818					e1000_emc_temp_data[sensor_index],
2819					E1000_I2C_THERMAL_SENSOR_ADDR,
2820					&data->sensor[i].temp);
2821	}
2822	return 0;
2823}
2824
2825/**
2826 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2827 *  @hw: pointer to hardware structure
2828 *
2829 *  Sets the thermal sensor thresholds according to the NVM map
2830 *  and save off the threshold and location values into mac.thermal_sensor_data
2831 **/
2832static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2833{
2834	u16 ets_offset;
2835	u16 ets_cfg;
2836	u16 ets_sensor;
2837	u8  low_thresh_delta;
2838	u8  num_sensors;
2839	u8  sensor_index;
2840	u8  sensor_location;
2841	u8  therm_limit;
2842	u8  i;
2843	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2844
2845	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2846		return E1000_NOT_IMPLEMENTED;
2847
2848	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2849
2850	data->sensor[0].location = 0x1;
2851	data->sensor[0].caution_thresh =
2852		(rd32(E1000_THHIGHTC) & 0xFF);
2853	data->sensor[0].max_op_thresh =
2854		(rd32(E1000_THLOWTC) & 0xFF);
2855
2856	/* Return the internal sensor only if ETS is unsupported */
2857	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2858	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2859		return 0;
2860
2861	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2862	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2863	    != NVM_ETS_TYPE_EMC)
2864		return E1000_NOT_IMPLEMENTED;
2865
2866	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2867			    NVM_ETS_LTHRES_DELTA_SHIFT);
2868	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2869
2870	for (i = 1; i <= num_sensors; i++) {
2871		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2872		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2873				NVM_ETS_DATA_INDEX_SHIFT);
2874		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2875				   NVM_ETS_DATA_LOC_SHIFT);
2876		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2877
2878		hw->phy.ops.write_i2c_byte(hw,
2879			e1000_emc_therm_limit[sensor_index],
2880			E1000_I2C_THERMAL_SENSOR_ADDR,
2881			therm_limit);
2882
2883		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2884			data->sensor[i].location = sensor_location;
2885			data->sensor[i].caution_thresh = therm_limit;
2886			data->sensor[i].max_op_thresh = therm_limit -
2887							low_thresh_delta;
2888		}
2889	}
2890	return 0;
2891}
2892
2893#endif
2894static struct e1000_mac_operations e1000_mac_ops_82575 = {
2895	.init_hw              = igb_init_hw_82575,
2896	.check_for_link       = igb_check_for_link_82575,
2897	.rar_set              = igb_rar_set,
2898	.read_mac_addr        = igb_read_mac_addr_82575,
2899	.get_speed_and_duplex = igb_get_link_up_info_82575,
2900#ifdef CONFIG_IGB_HWMON
2901	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2902	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2903#endif
2904};
2905
2906static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2907	.acquire              = igb_acquire_phy_82575,
2908	.get_cfg_done         = igb_get_cfg_done_82575,
2909	.release              = igb_release_phy_82575,
2910	.write_i2c_byte       = igb_write_i2c_byte,
2911	.read_i2c_byte        = igb_read_i2c_byte,
2912};
2913
2914static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2915	.acquire              = igb_acquire_nvm_82575,
2916	.read                 = igb_read_nvm_eerd,
2917	.release              = igb_release_nvm_82575,
2918	.write                = igb_write_nvm_spi,
2919};
2920
2921const struct e1000_info e1000_82575_info = {
2922	.get_invariants = igb_get_invariants_82575,
2923	.mac_ops = &e1000_mac_ops_82575,
2924	.phy_ops = &e1000_phy_ops_82575,
2925	.nvm_ops = &e1000_nvm_ops_82575,
2926};
2927