Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2018, Intel Corporation. */
  3
  4#include "ice_common.h"
  5#include "ice_adminq_cmd.h"
  6#include "ice_sriov.h"
 
 
 
 
 
 
 
 
 
  7
  8/**
  9 * ice_aq_send_msg_to_vf
 10 * @hw: pointer to the hardware structure
 11 * @vfid: VF ID to send msg
 12 * @v_opcode: opcodes for VF-PF communication
 13 * @v_retval: return error code
 14 * @msg: pointer to the msg buffer
 15 * @msglen: msg length
 16 * @cd: pointer to command details
 17 *
 18 * Send message to VF driver (0x0802) using mailbox
 19 * queue and asynchronously sending message via
 20 * ice_sq_send_cmd() function
 21 */
 22enum ice_status
 23ice_aq_send_msg_to_vf(struct ice_hw *hw, u16 vfid, u32 v_opcode, u32 v_retval,
 24		      u8 *msg, u16 msglen, struct ice_sq_cd *cd)
 25{
 26	struct ice_aqc_pf_vf_msg *cmd;
 27	struct ice_aq_desc desc;
 
 
 28
 29	ice_fill_dflt_direct_cmd_desc(&desc, ice_mbx_opc_send_msg_to_vf);
 
 
 
 
 30
 31	cmd = &desc.params.virt;
 32	cmd->id = cpu_to_le32(vfid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34	desc.cookie_high = cpu_to_le32(v_opcode);
 35	desc.cookie_low = cpu_to_le32(v_retval);
 
 
 36
 37	if (msglen)
 38		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39
 40	return ice_sq_send_cmd(hw, &hw->mailboxq, &desc, msg, msglen, cd);
 
 
 
 41}
 42
 43/**
 44 * ice_conv_link_speed_to_virtchnl
 45 * @adv_link_support: determines the format of the returned link speed
 46 * @link_speed: variable containing the link_speed to be converted
 
 
 47 *
 48 * Convert link speed supported by HW to link speed supported by virtchnl.
 49 * If adv_link_support is true, then return link speed in Mbps. Else return
 50 * link speed as a VIRTCHNL_LINK_SPEED_* casted to a u32. Note that the caller
 51 * needs to cast back to an enum virtchnl_link_speed in the case where
 52 * adv_link_support is false, but when adv_link_support is true the caller can
 53 * expect the speed in Mbps.
 54 */
 55u32 ice_conv_link_speed_to_virtchnl(bool adv_link_support, u16 link_speed)
 56{
 57	u32 speed;
 58
 59	if (adv_link_support)
 60		switch (link_speed) {
 61		case ICE_AQ_LINK_SPEED_10MB:
 62			speed = ICE_LINK_SPEED_10MBPS;
 63			break;
 64		case ICE_AQ_LINK_SPEED_100MB:
 65			speed = ICE_LINK_SPEED_100MBPS;
 66			break;
 67		case ICE_AQ_LINK_SPEED_1000MB:
 68			speed = ICE_LINK_SPEED_1000MBPS;
 69			break;
 70		case ICE_AQ_LINK_SPEED_2500MB:
 71			speed = ICE_LINK_SPEED_2500MBPS;
 72			break;
 73		case ICE_AQ_LINK_SPEED_5GB:
 74			speed = ICE_LINK_SPEED_5000MBPS;
 75			break;
 76		case ICE_AQ_LINK_SPEED_10GB:
 77			speed = ICE_LINK_SPEED_10000MBPS;
 78			break;
 79		case ICE_AQ_LINK_SPEED_20GB:
 80			speed = ICE_LINK_SPEED_20000MBPS;
 81			break;
 82		case ICE_AQ_LINK_SPEED_25GB:
 83			speed = ICE_LINK_SPEED_25000MBPS;
 84			break;
 85		case ICE_AQ_LINK_SPEED_40GB:
 86			speed = ICE_LINK_SPEED_40000MBPS;
 87			break;
 88		case ICE_AQ_LINK_SPEED_50GB:
 89			speed = ICE_LINK_SPEED_50000MBPS;
 90			break;
 91		case ICE_AQ_LINK_SPEED_100GB:
 92			speed = ICE_LINK_SPEED_100000MBPS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93			break;
 94		default:
 95			speed = ICE_LINK_SPEED_UNKNOWN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98	else
 99		/* Virtchnl speeds are not defined for every speed supported in
100		 * the hardware. To maintain compatibility with older AVF
101		 * drivers, while reporting the speed the new speed values are
102		 * resolved to the closest known virtchnl speeds
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103		 */
104		switch (link_speed) {
105		case ICE_AQ_LINK_SPEED_10MB:
106		case ICE_AQ_LINK_SPEED_100MB:
107			speed = (u32)VIRTCHNL_LINK_SPEED_100MB;
108			break;
109		case ICE_AQ_LINK_SPEED_1000MB:
110		case ICE_AQ_LINK_SPEED_2500MB:
111		case ICE_AQ_LINK_SPEED_5GB:
112			speed = (u32)VIRTCHNL_LINK_SPEED_1GB;
113			break;
114		case ICE_AQ_LINK_SPEED_10GB:
115			speed = (u32)VIRTCHNL_LINK_SPEED_10GB;
116			break;
117		case ICE_AQ_LINK_SPEED_20GB:
118			speed = (u32)VIRTCHNL_LINK_SPEED_20GB;
119			break;
120		case ICE_AQ_LINK_SPEED_25GB:
121			speed = (u32)VIRTCHNL_LINK_SPEED_25GB;
122			break;
123		case ICE_AQ_LINK_SPEED_40GB:
124			/* fall through */
125		case ICE_AQ_LINK_SPEED_50GB:
126			/* fall through */
127		case ICE_AQ_LINK_SPEED_100GB:
128			speed = (u32)VIRTCHNL_LINK_SPEED_40GB;
129			break;
130		default:
131			speed = (u32)VIRTCHNL_LINK_SPEED_UNKNOWN;
132			break;
133		}
 
134
135	return speed;
 
 
136}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_vf_lib_private.h"
   6#include "ice_base.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_flow.h"
  11#include "ice_eswitch.h"
  12#include "ice_virtchnl_allowlist.h"
  13#include "ice_flex_pipe.h"
  14#include "ice_vf_vsi_vlan_ops.h"
  15#include "ice_vlan.h"
  16
  17/**
  18 * ice_free_vf_entries - Free all VF entries from the hash table
  19 * @pf: pointer to the PF structure
 
 
 
 
 
 
  20 *
  21 * Iterate over the VF hash table, removing and releasing all VF entries.
  22 * Called during VF teardown or as cleanup during failed VF initialization.
 
  23 */
  24static void ice_free_vf_entries(struct ice_pf *pf)
 
 
  25{
  26	struct ice_vfs *vfs = &pf->vfs;
  27	struct hlist_node *tmp;
  28	struct ice_vf *vf;
  29	unsigned int bkt;
  30
  31	/* Remove all VFs from the hash table and release their main
  32	 * reference. Once all references to the VF are dropped, ice_put_vf()
  33	 * will call ice_release_vf which will remove the VF memory.
  34	 */
  35	lockdep_assert_held(&vfs->table_lock);
  36
  37	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
  38		hash_del_rcu(&vf->entry);
  39		ice_put_vf(vf);
  40	}
  41}
  42
  43/**
  44 * ice_vf_vsi_release - invalidate the VF's VSI after freeing it
  45 * @vf: invalidate this VF's VSI after freeing it
  46 */
  47static void ice_vf_vsi_release(struct ice_vf *vf)
  48{
  49	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
  50
  51	if (WARN_ON(!vsi))
  52		return;
  53
  54	ice_vsi_release(vsi);
  55	ice_vf_invalidate_vsi(vf);
  56}
  57
  58/**
  59 * ice_free_vf_res - Free a VF's resources
  60 * @vf: pointer to the VF info
  61 */
  62static void ice_free_vf_res(struct ice_vf *vf)
  63{
  64	struct ice_pf *pf = vf->pf;
  65	int i, last_vector_idx;
  66
  67	/* First, disable VF's configuration API to prevent OS from
  68	 * accessing the VF's VSI after it's freed or invalidated.
  69	 */
  70	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
  71	ice_vf_fdir_exit(vf);
  72	/* free VF control VSI */
  73	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
  74		ice_vf_ctrl_vsi_release(vf);
  75
  76	/* free VSI and disconnect it from the parent uplink */
  77	if (vf->lan_vsi_idx != ICE_NO_VSI) {
  78		ice_vf_vsi_release(vf);
  79		vf->num_mac = 0;
  80	}
  81
  82	last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
  83
  84	/* clear VF MDD event information */
  85	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
  86	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
  87
  88	/* Disable interrupts so that VF starts in a known state */
  89	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
  90		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
  91		ice_flush(&pf->hw);
  92	}
  93	/* reset some of the state variables keeping track of the resources */
  94	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
  95	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
  96}
  97
  98/**
  99 * ice_dis_vf_mappings
 100 * @vf: pointer to the VF structure
 101 */
 102static void ice_dis_vf_mappings(struct ice_vf *vf)
 103{
 104	struct ice_pf *pf = vf->pf;
 105	struct ice_vsi *vsi;
 106	struct device *dev;
 107	int first, last, v;
 108	struct ice_hw *hw;
 109
 110	hw = &pf->hw;
 111	vsi = ice_get_vf_vsi(vf);
 112	if (WARN_ON(!vsi))
 113		return;
 114
 115	dev = ice_pf_to_dev(pf);
 116	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
 117	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
 118
 119	first = vf->first_vector_idx;
 120	last = first + pf->vfs.num_msix_per - 1;
 121	for (v = first; v <= last; v++) {
 122		u32 reg;
 123
 124		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
 125			GLINT_VECT2FUNC_IS_PF_M) |
 126		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
 127			GLINT_VECT2FUNC_PF_NUM_M));
 128		wr32(hw, GLINT_VECT2FUNC(v), reg);
 129	}
 130
 131	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
 132		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
 133	else
 134		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 135
 136	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
 137		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
 138	else
 139		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 140}
 141
 142/**
 143 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
 144 * @pf: pointer to the PF structure
 145 *
 146 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
 147 * the pf->sriov_base_vector.
 148 *
 149 * Returns 0 on success, and -EINVAL on error.
 
 
 
 
 
 150 */
 151static int ice_sriov_free_msix_res(struct ice_pf *pf)
 152{
 153	struct ice_res_tracker *res;
 154
 155	if (!pf)
 156		return -EINVAL;
 157
 158	res = pf->irq_tracker;
 159	if (!res)
 160		return -EINVAL;
 161
 162	/* give back irq_tracker resources used */
 163	WARN_ON(pf->sriov_base_vector < res->num_entries);
 164
 165	pf->sriov_base_vector = 0;
 166
 167	return 0;
 168}
 169
 170/**
 171 * ice_free_vfs - Free all VFs
 172 * @pf: pointer to the PF structure
 173 */
 174void ice_free_vfs(struct ice_pf *pf)
 175{
 176	struct device *dev = ice_pf_to_dev(pf);
 177	struct ice_vfs *vfs = &pf->vfs;
 178	struct ice_hw *hw = &pf->hw;
 179	struct ice_vf *vf;
 180	unsigned int bkt;
 181
 182	if (!ice_has_vfs(pf))
 183		return;
 184
 185	while (test_and_set_bit(ICE_VF_DIS, pf->state))
 186		usleep_range(1000, 2000);
 187
 188	/* Disable IOV before freeing resources. This lets any VF drivers
 189	 * running in the host get themselves cleaned up before we yank
 190	 * the carpet out from underneath their feet.
 191	 */
 192	if (!pci_vfs_assigned(pf->pdev))
 193		pci_disable_sriov(pf->pdev);
 194	else
 195		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
 196
 197	mutex_lock(&vfs->table_lock);
 198
 199	ice_eswitch_release(pf);
 200
 201	ice_for_each_vf(pf, bkt, vf) {
 202		mutex_lock(&vf->cfg_lock);
 203
 204		ice_dis_vf_qs(vf);
 205
 206		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
 207			/* disable VF qp mappings and set VF disable state */
 208			ice_dis_vf_mappings(vf);
 209			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
 210			ice_free_vf_res(vf);
 211		}
 212
 213		if (!pci_vfs_assigned(pf->pdev)) {
 214			u32 reg_idx, bit_idx;
 215
 216			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
 217			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
 218			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 219		}
 220
 221		/* clear malicious info since the VF is getting released */
 222		if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
 223					ICE_MAX_SRIOV_VFS, vf->vf_id))
 224			dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
 225				vf->vf_id);
 226
 227		mutex_unlock(&vf->cfg_lock);
 228	}
 229
 230	if (ice_sriov_free_msix_res(pf))
 231		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
 232
 233	vfs->num_qps_per = 0;
 234	ice_free_vf_entries(pf);
 235
 236	mutex_unlock(&vfs->table_lock);
 237
 238	clear_bit(ICE_VF_DIS, pf->state);
 239	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 240}
 241
 242/**
 243 * ice_vf_vsi_setup - Set up a VF VSI
 244 * @vf: VF to setup VSI for
 245 *
 246 * Returns pointer to the successfully allocated VSI struct on success,
 247 * otherwise returns NULL on failure.
 248 */
 249static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
 250{
 251	struct ice_port_info *pi = ice_vf_get_port_info(vf);
 252	struct ice_pf *pf = vf->pf;
 253	struct ice_vsi *vsi;
 254
 255	vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf, NULL);
 256
 257	if (!vsi) {
 258		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
 259		ice_vf_invalidate_vsi(vf);
 260		return NULL;
 261	}
 262
 263	vf->lan_vsi_idx = vsi->idx;
 264	vf->lan_vsi_num = vsi->vsi_num;
 265
 266	return vsi;
 267}
 268
 269/**
 270 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
 271 * @pf: pointer to PF structure
 272 * @vf: pointer to VF that the first MSIX vector index is being calculated for
 273 *
 274 * This returns the first MSIX vector index in PF space that is used by this VF.
 275 * This index is used when accessing PF relative registers such as
 276 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
 277 * This will always be the OICR index in the AVF driver so any functionality
 278 * using vf->first_vector_idx for queue configuration will have to increment by
 279 * 1 to avoid meddling with the OICR index.
 280 */
 281static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
 282{
 283	return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
 284}
 285
 286/**
 287 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
 288 * @vf: VF to enable MSIX mappings for
 289 *
 290 * Some of the registers need to be indexed/configured using hardware global
 291 * device values and other registers need 0-based values, which represent PF
 292 * based values.
 293 */
 294static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
 295{
 296	int device_based_first_msix, device_based_last_msix;
 297	int pf_based_first_msix, pf_based_last_msix, v;
 298	struct ice_pf *pf = vf->pf;
 299	int device_based_vf_id;
 300	struct ice_hw *hw;
 301	u32 reg;
 302
 303	hw = &pf->hw;
 304	pf_based_first_msix = vf->first_vector_idx;
 305	pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
 306
 307	device_based_first_msix = pf_based_first_msix +
 308		pf->hw.func_caps.common_cap.msix_vector_first_id;
 309	device_based_last_msix =
 310		(device_based_first_msix + pf->vfs.num_msix_per) - 1;
 311	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
 312
 313	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
 314		VPINT_ALLOC_FIRST_M) |
 315	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
 316		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
 317	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
 318
 319	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
 320		 & VPINT_ALLOC_PCI_FIRST_M) |
 321	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
 322		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
 323	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
 324
 325	/* map the interrupts to its functions */
 326	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
 327		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
 328			GLINT_VECT2FUNC_VF_NUM_M) |
 329		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
 330			GLINT_VECT2FUNC_PF_NUM_M));
 331		wr32(hw, GLINT_VECT2FUNC(v), reg);
 332	}
 333
 334	/* Map mailbox interrupt to VF MSI-X vector 0 */
 335	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
 336}
 337
 338/**
 339 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
 340 * @vf: VF to enable the mappings for
 341 * @max_txq: max Tx queues allowed on the VF's VSI
 342 * @max_rxq: max Rx queues allowed on the VF's VSI
 343 */
 344static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
 345{
 346	struct device *dev = ice_pf_to_dev(vf->pf);
 347	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 348	struct ice_hw *hw = &vf->pf->hw;
 349	u32 reg;
 350
 351	if (WARN_ON(!vsi))
 352		return;
 353
 354	/* set regardless of mapping mode */
 355	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
 356
 357	/* VF Tx queues allocation */
 358	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 359		/* set the VF PF Tx queue range
 360		 * VFNUMQ value should be set to (number of queues - 1). A value
 361		 * of 0 means 1 queue and a value of 255 means 256 queues
 362		 */
 363		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
 364			VPLAN_TX_QBASE_VFFIRSTQ_M) |
 365		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
 366			VPLAN_TX_QBASE_VFNUMQ_M));
 367		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
 368	} else {
 369		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 370	}
 371
 372	/* set regardless of mapping mode */
 373	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
 374
 375	/* VF Rx queues allocation */
 376	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 377		/* set the VF PF Rx queue range
 378		 * VFNUMQ value should be set to (number of queues - 1). A value
 379		 * of 0 means 1 queue and a value of 255 means 256 queues
 380		 */
 381		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
 382			VPLAN_RX_QBASE_VFFIRSTQ_M) |
 383		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
 384			VPLAN_RX_QBASE_VFNUMQ_M));
 385		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
 386	} else {
 387		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 388	}
 389}
 390
 391/**
 392 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
 393 * @vf: pointer to the VF structure
 394 */
 395static void ice_ena_vf_mappings(struct ice_vf *vf)
 396{
 397	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 398
 399	if (WARN_ON(!vsi))
 400		return;
 401
 402	ice_ena_vf_msix_mappings(vf);
 403	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
 404}
 405
 406/**
 407 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
 408 * @vf: VF to calculate the register index for
 409 * @q_vector: a q_vector associated to the VF
 410 */
 411int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
 412{
 413	struct ice_pf *pf;
 414
 415	if (!vf || !q_vector)
 416		return -EINVAL;
 417
 418	pf = vf->pf;
 419
 420	/* always add one to account for the OICR being the first MSIX */
 421	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
 422		q_vector->v_idx + 1;
 423}
 424
 425/**
 426 * ice_get_max_valid_res_idx - Get the max valid resource index
 427 * @res: pointer to the resource to find the max valid index for
 428 *
 429 * Start from the end of the ice_res_tracker and return right when we find the
 430 * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
 431 * valid for SR-IOV because it is the only consumer that manipulates the
 432 * res->end and this is always called when res->end is set to res->num_entries.
 433 */
 434static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
 435{
 436	int i;
 437
 438	if (!res)
 439		return -EINVAL;
 440
 441	for (i = res->num_entries - 1; i >= 0; i--)
 442		if (res->list[i] & ICE_RES_VALID_BIT)
 443			return i;
 444
 445	return 0;
 446}
 447
 448/**
 449 * ice_sriov_set_msix_res - Set any used MSIX resources
 450 * @pf: pointer to PF structure
 451 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
 452 *
 453 * This function allows SR-IOV resources to be taken from the end of the PF's
 454 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
 455 * just set the pf->sriov_base_vector and return success.
 456 *
 457 * If there are not enough resources available, return an error. This should
 458 * always be caught by ice_set_per_vf_res().
 459 *
 460 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
 461 * in the PF's space available for SR-IOV.
 462 */
 463static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
 464{
 465	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
 466	int vectors_used = pf->irq_tracker->num_entries;
 467	int sriov_base_vector;
 468
 469	sriov_base_vector = total_vectors - num_msix_needed;
 470
 471	/* make sure we only grab irq_tracker entries from the list end and
 472	 * that we have enough available MSIX vectors
 473	 */
 474	if (sriov_base_vector < vectors_used)
 475		return -EINVAL;
 476
 477	pf->sriov_base_vector = sriov_base_vector;
 478
 479	return 0;
 480}
 481
 482/**
 483 * ice_set_per_vf_res - check if vectors and queues are available
 484 * @pf: pointer to the PF structure
 485 * @num_vfs: the number of SR-IOV VFs being configured
 486 *
 487 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
 488 * get more vectors and can enable more queues per VF. Note that this does not
 489 * grab any vectors from the SW pool already allocated. Also note, that all
 490 * vector counts include one for each VF's miscellaneous interrupt vector
 491 * (i.e. OICR).
 492 *
 493 * Minimum VFs - 2 vectors, 1 queue pair
 494 * Small VFs - 5 vectors, 4 queue pairs
 495 * Medium VFs - 17 vectors, 16 queue pairs
 496 *
 497 * Second, determine number of queue pairs per VF by starting with a pre-defined
 498 * maximum each VF supports. If this is not possible, then we adjust based on
 499 * queue pairs available on the device.
 500 *
 501 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
 502 * by each VF during VF initialization and reset.
 503 */
 504static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
 505{
 506	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
 507	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
 508	int msix_avail_per_vf, msix_avail_for_sriov;
 509	struct device *dev = ice_pf_to_dev(pf);
 510	int err;
 511
 512	lockdep_assert_held(&pf->vfs.table_lock);
 513
 514	if (!num_vfs)
 515		return -EINVAL;
 516
 517	if (max_valid_res_idx < 0)
 518		return -ENOSPC;
 519
 520	/* determine MSI-X resources per VF */
 521	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
 522		pf->irq_tracker->num_entries;
 523	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
 524	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
 525		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
 526	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
 527		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
 528	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
 529		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
 530	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
 531		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
 532	} else {
 533		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
 534			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
 535			num_vfs);
 536		return -ENOSPC;
 537	}
 538
 539	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 540			ICE_MAX_RSS_QS_PER_VF);
 541	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
 542	if (!avail_qs)
 543		num_txq = 0;
 544	else if (num_txq > avail_qs)
 545		num_txq = rounddown_pow_of_two(avail_qs);
 546
 547	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 548			ICE_MAX_RSS_QS_PER_VF);
 549	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
 550	if (!avail_qs)
 551		num_rxq = 0;
 552	else if (num_rxq > avail_qs)
 553		num_rxq = rounddown_pow_of_two(avail_qs);
 554
 555	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
 556		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
 557			ICE_MIN_QS_PER_VF, num_vfs);
 558		return -ENOSPC;
 559	}
 560
 561	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
 562	if (err) {
 563		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
 564			num_vfs, err);
 565		return err;
 566	}
 567
 568	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
 569	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
 570	pf->vfs.num_msix_per = num_msix_per_vf;
 571	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
 572		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
 573
 574	return 0;
 575}
 576
 577/**
 578 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
 579 * @vf: VF to initialize/setup the VSI for
 580 *
 581 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
 582 * VF VSI's broadcast filter and is only used during initial VF creation.
 583 */
 584static int ice_init_vf_vsi_res(struct ice_vf *vf)
 585{
 586	struct ice_vsi_vlan_ops *vlan_ops;
 587	struct ice_pf *pf = vf->pf;
 588	u8 broadcast[ETH_ALEN];
 589	struct ice_vsi *vsi;
 590	struct device *dev;
 591	int err;
 592
 593	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
 594
 595	dev = ice_pf_to_dev(pf);
 596	vsi = ice_vf_vsi_setup(vf);
 597	if (!vsi)
 598		return -ENOMEM;
 599
 600	err = ice_vsi_add_vlan_zero(vsi);
 601	if (err) {
 602		dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
 603			 vf->vf_id);
 604		goto release_vsi;
 605	}
 606
 607	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
 608	err = vlan_ops->ena_rx_filtering(vsi);
 609	if (err) {
 610		dev_warn(dev, "Failed to enable Rx VLAN filtering for VF %d\n",
 611			 vf->vf_id);
 612		goto release_vsi;
 613	}
 614
 615	eth_broadcast_addr(broadcast);
 616	err = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
 617	if (err) {
 618		dev_err(dev, "Failed to add broadcast MAC filter for VF %d, error %d\n",
 619			vf->vf_id, err);
 620		goto release_vsi;
 621	}
 622
 623	err = ice_vsi_apply_spoofchk(vsi, vf->spoofchk);
 624	if (err) {
 625		dev_warn(dev, "Failed to initialize spoofchk setting for VF %d\n",
 626			 vf->vf_id);
 627		goto release_vsi;
 628	}
 629
 630	vf->num_mac = 1;
 631
 632	return 0;
 633
 634release_vsi:
 635	ice_vf_vsi_release(vf);
 636	return err;
 637}
 638
 639/**
 640 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
 641 * @pf: PF the VFs are associated with
 642 */
 643static int ice_start_vfs(struct ice_pf *pf)
 644{
 645	struct ice_hw *hw = &pf->hw;
 646	unsigned int bkt, it_cnt;
 647	struct ice_vf *vf;
 648	int retval;
 649
 650	lockdep_assert_held(&pf->vfs.table_lock);
 651
 652	it_cnt = 0;
 653	ice_for_each_vf(pf, bkt, vf) {
 654		vf->vf_ops->clear_reset_trigger(vf);
 655
 656		retval = ice_init_vf_vsi_res(vf);
 657		if (retval) {
 658			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
 659				vf->vf_id, retval);
 660			goto teardown;
 661		}
 662
 663		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
 664		ice_ena_vf_mappings(vf);
 665		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 666		it_cnt++;
 667	}
 668
 669	ice_flush(hw);
 670	return 0;
 671
 672teardown:
 673	ice_for_each_vf(pf, bkt, vf) {
 674		if (it_cnt == 0)
 675			break;
 676
 677		ice_dis_vf_mappings(vf);
 678		ice_vf_vsi_release(vf);
 679		it_cnt--;
 680	}
 681
 682	return retval;
 683}
 684
 685/**
 686 * ice_sriov_free_vf - Free VF memory after all references are dropped
 687 * @vf: pointer to VF to free
 688 *
 689 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
 690 * structure has been dropped.
 691 */
 692static void ice_sriov_free_vf(struct ice_vf *vf)
 693{
 694	mutex_destroy(&vf->cfg_lock);
 695
 696	kfree_rcu(vf, rcu);
 697}
 698
 699/**
 700 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
 701 * @vf: the vf to configure
 702 */
 703static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
 704{
 705	struct ice_pf *pf = vf->pf;
 706
 707	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
 708	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
 709}
 710
 711/**
 712 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
 713 * @vf: pointer to VF structure
 714 * @is_vflr: true if reset occurred due to VFLR
 715 *
 716 * Trigger and cleanup after a VF reset for a SR-IOV VF.
 717 */
 718static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
 719{
 720	struct ice_pf *pf = vf->pf;
 721	u32 reg, reg_idx, bit_idx;
 722	unsigned int vf_abs_id, i;
 723	struct device *dev;
 724	struct ice_hw *hw;
 725
 726	dev = ice_pf_to_dev(pf);
 727	hw = &pf->hw;
 728	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
 729
 730	/* In the case of a VFLR, HW has already reset the VF and we just need
 731	 * to clean up. Otherwise we must first trigger the reset using the
 732	 * VFRTRIG register.
 733	 */
 734	if (!is_vflr) {
 735		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 736		reg |= VPGEN_VFRTRIG_VFSWR_M;
 737		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 738	}
 739
 740	/* clear the VFLR bit in GLGEN_VFLRSTAT */
 741	reg_idx = (vf_abs_id) / 32;
 742	bit_idx = (vf_abs_id) % 32;
 743	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 744	ice_flush(hw);
 745
 746	wr32(hw, PF_PCI_CIAA,
 747	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
 748	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
 749		reg = rd32(hw, PF_PCI_CIAD);
 750		/* no transactions pending so stop polling */
 751		if ((reg & VF_TRANS_PENDING_M) == 0)
 752			break;
 753
 754		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
 755		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
 756	}
 757}
 758
 759/**
 760 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
 761 * @vf: pointer to VF structure
 762 *
 763 * Returns true when reset is successful, else returns false
 764 */
 765static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
 766{
 767	struct ice_pf *pf = vf->pf;
 768	unsigned int i;
 769	u32 reg;
 770
 771	for (i = 0; i < 10; i++) {
 772		/* VF reset requires driver to first reset the VF and then
 773		 * poll the status register to make sure that the reset
 774		 * completed successfully.
 775		 */
 776		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
 777		if (reg & VPGEN_VFRSTAT_VFRD_M)
 778			return true;
 779
 780		/* only sleep if the reset is not done */
 781		usleep_range(10, 20);
 782	}
 783	return false;
 784}
 785
 786/**
 787 * ice_sriov_clear_reset_trigger - enable VF to access hardware
 788 * @vf: VF to enabled hardware access for
 789 */
 790static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
 791{
 792	struct ice_hw *hw = &vf->pf->hw;
 793	u32 reg;
 794
 795	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 796	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
 797	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 798	ice_flush(hw);
 799}
 800
 801/**
 802 * ice_sriov_vsi_rebuild - release and rebuild VF's VSI
 803 * @vf: VF to release and setup the VSI for
 804 *
 805 * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
 806 * configuration change, etc.).
 807 */
 808static int ice_sriov_vsi_rebuild(struct ice_vf *vf)
 809{
 810	struct ice_pf *pf = vf->pf;
 811
 812	ice_vf_vsi_release(vf);
 813	if (!ice_vf_vsi_setup(vf)) {
 814		dev_err(ice_pf_to_dev(pf),
 815			"Failed to release and setup the VF%u's VSI\n",
 816			vf->vf_id);
 817		return -ENOMEM;
 818	}
 819
 820	return 0;
 821}
 822
 823/**
 824 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
 825 * @vf: VF to perform tasks on
 826 */
 827static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
 828{
 829	ice_vf_rebuild_host_cfg(vf);
 830	ice_vf_set_initialized(vf);
 831	ice_ena_vf_mappings(vf);
 832	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 833}
 834
 835static const struct ice_vf_ops ice_sriov_vf_ops = {
 836	.reset_type = ICE_VF_RESET,
 837	.free = ice_sriov_free_vf,
 838	.clear_mbx_register = ice_sriov_clear_mbx_register,
 839	.trigger_reset_register = ice_sriov_trigger_reset_register,
 840	.poll_reset_status = ice_sriov_poll_reset_status,
 841	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
 842	.vsi_rebuild = ice_sriov_vsi_rebuild,
 843	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
 844};
 845
 846/**
 847 * ice_create_vf_entries - Allocate and insert VF entries
 848 * @pf: pointer to the PF structure
 849 * @num_vfs: the number of VFs to allocate
 850 *
 851 * Allocate new VF entries and insert them into the hash table. Set some
 852 * basic default fields for initializing the new VFs.
 853 *
 854 * After this function exits, the hash table will have num_vfs entries
 855 * inserted.
 856 *
 857 * Returns 0 on success or an integer error code on failure.
 858 */
 859static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
 860{
 861	struct ice_vfs *vfs = &pf->vfs;
 862	struct ice_vf *vf;
 863	u16 vf_id;
 864	int err;
 865
 866	lockdep_assert_held(&vfs->table_lock);
 867
 868	for (vf_id = 0; vf_id < num_vfs; vf_id++) {
 869		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
 870		if (!vf) {
 871			err = -ENOMEM;
 872			goto err_free_entries;
 873		}
 874		kref_init(&vf->refcnt);
 875
 876		vf->pf = pf;
 877		vf->vf_id = vf_id;
 878
 879		/* set sriov vf ops for VFs created during SRIOV flow */
 880		vf->vf_ops = &ice_sriov_vf_ops;
 881
 882		vf->vf_sw_id = pf->first_sw;
 883		/* assign default capabilities */
 884		vf->spoofchk = true;
 885		vf->num_vf_qs = pf->vfs.num_qps_per;
 886		ice_vc_set_default_allowlist(vf);
 887
 888		/* ctrl_vsi_idx will be set to a valid value only when VF
 889		 * creates its first fdir rule.
 890		 */
 891		ice_vf_ctrl_invalidate_vsi(vf);
 892		ice_vf_fdir_init(vf);
 893
 894		ice_virtchnl_set_dflt_ops(vf);
 895
 896		mutex_init(&vf->cfg_lock);
 897
 898		hash_add_rcu(vfs->table, &vf->entry, vf_id);
 899	}
 900
 901	return 0;
 902
 903err_free_entries:
 904	ice_free_vf_entries(pf);
 905	return err;
 906}
 907
 908/**
 909 * ice_ena_vfs - enable VFs so they are ready to be used
 910 * @pf: pointer to the PF structure
 911 * @num_vfs: number of VFs to enable
 912 */
 913static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
 914{
 915	struct device *dev = ice_pf_to_dev(pf);
 916	struct ice_hw *hw = &pf->hw;
 917	int ret;
 918
 919	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
 920	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
 921	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
 922	set_bit(ICE_OICR_INTR_DIS, pf->state);
 923	ice_flush(hw);
 924
 925	ret = pci_enable_sriov(pf->pdev, num_vfs);
 926	if (ret)
 927		goto err_unroll_intr;
 928
 929	mutex_lock(&pf->vfs.table_lock);
 930
 931	ret = ice_set_per_vf_res(pf, num_vfs);
 932	if (ret) {
 933		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
 934			num_vfs, ret);
 935		goto err_unroll_sriov;
 936	}
 937
 938	ret = ice_create_vf_entries(pf, num_vfs);
 939	if (ret) {
 940		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
 941			num_vfs);
 942		goto err_unroll_sriov;
 943	}
 944
 945	ret = ice_start_vfs(pf);
 946	if (ret) {
 947		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
 948		ret = -EAGAIN;
 949		goto err_unroll_vf_entries;
 950	}
 951
 952	clear_bit(ICE_VF_DIS, pf->state);
 953
 954	ret = ice_eswitch_configure(pf);
 955	if (ret) {
 956		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
 957		goto err_unroll_sriov;
 958	}
 959
 960	/* rearm global interrupts */
 961	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
 962		ice_irq_dynamic_ena(hw, NULL, NULL);
 963
 964	mutex_unlock(&pf->vfs.table_lock);
 965
 966	return 0;
 967
 968err_unroll_vf_entries:
 969	ice_free_vf_entries(pf);
 970err_unroll_sriov:
 971	mutex_unlock(&pf->vfs.table_lock);
 972	pci_disable_sriov(pf->pdev);
 973err_unroll_intr:
 974	/* rearm interrupts here */
 975	ice_irq_dynamic_ena(hw, NULL, NULL);
 976	clear_bit(ICE_OICR_INTR_DIS, pf->state);
 977	return ret;
 978}
 979
 980/**
 981 * ice_pci_sriov_ena - Enable or change number of VFs
 982 * @pf: pointer to the PF structure
 983 * @num_vfs: number of VFs to allocate
 984 *
 985 * Returns 0 on success and negative on failure
 986 */
 987static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
 988{
 989	int pre_existing_vfs = pci_num_vf(pf->pdev);
 990	struct device *dev = ice_pf_to_dev(pf);
 991	int err;
 992
 993	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
 994		ice_free_vfs(pf);
 995	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
 996		return 0;
 997
 998	if (num_vfs > pf->vfs.num_supported) {
 999		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
1000			num_vfs, pf->vfs.num_supported);
1001		return -EOPNOTSUPP;
1002	}
1003
1004	dev_info(dev, "Enabling %d VFs\n", num_vfs);
1005	err = ice_ena_vfs(pf, num_vfs);
1006	if (err) {
1007		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1008		return err;
1009	}
1010
1011	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
1012	return 0;
1013}
1014
1015/**
1016 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
1017 * @pf: PF to enabled SR-IOV on
1018 */
1019static int ice_check_sriov_allowed(struct ice_pf *pf)
1020{
1021	struct device *dev = ice_pf_to_dev(pf);
1022
1023	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1024		dev_err(dev, "This device is not capable of SR-IOV\n");
1025		return -EOPNOTSUPP;
1026	}
1027
1028	if (ice_is_safe_mode(pf)) {
1029		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1030		return -EOPNOTSUPP;
1031	}
1032
1033	if (!ice_pf_state_is_nominal(pf)) {
1034		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1035		return -EBUSY;
1036	}
1037
1038	return 0;
1039}
1040
1041/**
1042 * ice_sriov_configure - Enable or change number of VFs via sysfs
1043 * @pdev: pointer to a pci_dev structure
1044 * @num_vfs: number of VFs to allocate or 0 to free VFs
1045 *
1046 * This function is called when the user updates the number of VFs in sysfs. On
1047 * success return whatever num_vfs was set to by the caller. Return negative on
1048 * failure.
1049 */
1050int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1051{
1052	struct ice_pf *pf = pci_get_drvdata(pdev);
1053	struct device *dev = ice_pf_to_dev(pf);
1054	int err;
1055
1056	err = ice_check_sriov_allowed(pf);
1057	if (err)
1058		return err;
1059
1060	if (!num_vfs) {
1061		if (!pci_vfs_assigned(pdev)) {
1062			ice_free_vfs(pf);
1063			ice_mbx_deinit_snapshot(&pf->hw);
1064			if (pf->lag)
1065				ice_enable_lag(pf->lag);
1066			return 0;
1067		}
1068
1069		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1070		return -EBUSY;
1071	}
1072
1073	err = ice_mbx_init_snapshot(&pf->hw, num_vfs);
1074	if (err)
1075		return err;
1076
1077	err = ice_pci_sriov_ena(pf, num_vfs);
1078	if (err) {
1079		ice_mbx_deinit_snapshot(&pf->hw);
1080		return err;
1081	}
1082
1083	if (pf->lag)
1084		ice_disable_lag(pf->lag);
1085	return num_vfs;
1086}
1087
1088/**
1089 * ice_process_vflr_event - Free VF resources via IRQ calls
1090 * @pf: pointer to the PF structure
1091 *
1092 * called from the VFLR IRQ handler to
1093 * free up VF resources and state variables
1094 */
1095void ice_process_vflr_event(struct ice_pf *pf)
1096{
1097	struct ice_hw *hw = &pf->hw;
1098	struct ice_vf *vf;
1099	unsigned int bkt;
1100	u32 reg;
1101
1102	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1103	    !ice_has_vfs(pf))
1104		return;
1105
1106	mutex_lock(&pf->vfs.table_lock);
1107	ice_for_each_vf(pf, bkt, vf) {
1108		u32 reg_idx, bit_idx;
1109
1110		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1111		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1112		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1113		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1114		if (reg & BIT(bit_idx))
1115			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1116			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1117	}
1118	mutex_unlock(&pf->vfs.table_lock);
1119}
1120
1121/**
1122 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1123 * @pf: PF used to index all VFs
1124 * @pfq: queue index relative to the PF's function space
1125 *
1126 * If no VF is found who owns the pfq then return NULL, otherwise return a
1127 * pointer to the VF who owns the pfq
1128 *
1129 * If this function returns non-NULL, it acquires a reference count of the VF
1130 * structure. The caller is responsible for calling ice_put_vf() to drop this
1131 * reference.
1132 */
1133static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1134{
1135	struct ice_vf *vf;
1136	unsigned int bkt;
1137
1138	rcu_read_lock();
1139	ice_for_each_vf_rcu(pf, bkt, vf) {
1140		struct ice_vsi *vsi;
1141		u16 rxq_idx;
1142
1143		vsi = ice_get_vf_vsi(vf);
1144		if (!vsi)
1145			continue;
1146
1147		ice_for_each_rxq(vsi, rxq_idx)
1148			if (vsi->rxq_map[rxq_idx] == pfq) {
1149				struct ice_vf *found;
1150
1151				if (kref_get_unless_zero(&vf->refcnt))
1152					found = vf;
1153				else
1154					found = NULL;
1155				rcu_read_unlock();
1156				return found;
1157			}
1158	}
1159	rcu_read_unlock();
1160
1161	return NULL;
1162}
1163
1164/**
1165 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1166 * @pf: PF used for conversion
1167 * @globalq: global queue index used to convert to PF space queue index
1168 */
1169static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1170{
1171	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1172}
1173
1174/**
1175 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1176 * @pf: PF that the LAN overflow event happened on
1177 * @event: structure holding the event information for the LAN overflow event
1178 *
1179 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1180 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1181 * reset on the offending VF.
1182 */
1183void
1184ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1185{
1186	u32 gldcb_rtctq, queue;
1187	struct ice_vf *vf;
1188
1189	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1190	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1191
1192	/* event returns device global Rx queue number */
1193	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1194		GLDCB_RTCTQ_RXQNUM_S;
1195
1196	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1197	if (!vf)
1198		return;
1199
1200	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1201	ice_put_vf(vf);
1202}
1203
1204/**
1205 * ice_set_vf_spoofchk
1206 * @netdev: network interface device structure
1207 * @vf_id: VF identifier
1208 * @ena: flag to enable or disable feature
1209 *
1210 * Enable or disable VF spoof checking
1211 */
1212int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1213{
1214	struct ice_netdev_priv *np = netdev_priv(netdev);
1215	struct ice_pf *pf = np->vsi->back;
1216	struct ice_vsi *vf_vsi;
1217	struct device *dev;
1218	struct ice_vf *vf;
1219	int ret;
1220
1221	dev = ice_pf_to_dev(pf);
1222
1223	vf = ice_get_vf_by_id(pf, vf_id);
1224	if (!vf)
1225		return -EINVAL;
1226
1227	ret = ice_check_vf_ready_for_cfg(vf);
1228	if (ret)
1229		goto out_put_vf;
1230
1231	vf_vsi = ice_get_vf_vsi(vf);
1232	if (!vf_vsi) {
1233		netdev_err(netdev, "VSI %d for VF %d is null\n",
1234			   vf->lan_vsi_idx, vf->vf_id);
1235		ret = -EINVAL;
1236		goto out_put_vf;
1237	}
1238
1239	if (vf_vsi->type != ICE_VSI_VF) {
1240		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1241			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1242		ret = -ENODEV;
1243		goto out_put_vf;
1244	}
1245
1246	if (ena == vf->spoofchk) {
1247		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1248		ret = 0;
1249		goto out_put_vf;
1250	}
1251
1252	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1253	if (ret)
1254		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1255			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1256	else
1257		vf->spoofchk = ena;
1258
1259out_put_vf:
1260	ice_put_vf(vf);
1261	return ret;
1262}
1263
1264/**
1265 * ice_get_vf_cfg
1266 * @netdev: network interface device structure
1267 * @vf_id: VF identifier
1268 * @ivi: VF configuration structure
1269 *
1270 * return VF configuration
1271 */
1272int
1273ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1274{
1275	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1276	struct ice_vf *vf;
1277	int ret;
1278
1279	vf = ice_get_vf_by_id(pf, vf_id);
1280	if (!vf)
1281		return -EINVAL;
1282
1283	ret = ice_check_vf_ready_for_cfg(vf);
1284	if (ret)
1285		goto out_put_vf;
1286
1287	ivi->vf = vf_id;
1288	ether_addr_copy(ivi->mac, vf->hw_lan_addr.addr);
1289
1290	/* VF configuration for VLAN and applicable QoS */
1291	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1292	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1293	if (ice_vf_is_port_vlan_ena(vf))
1294		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1295
1296	ivi->trusted = vf->trusted;
1297	ivi->spoofchk = vf->spoofchk;
1298	if (!vf->link_forced)
1299		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1300	else if (vf->link_up)
1301		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1302	else
1303		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1304	ivi->max_tx_rate = vf->max_tx_rate;
1305	ivi->min_tx_rate = vf->min_tx_rate;
1306
1307out_put_vf:
1308	ice_put_vf(vf);
1309	return ret;
1310}
1311
1312/**
1313 * ice_set_vf_mac
1314 * @netdev: network interface device structure
1315 * @vf_id: VF identifier
1316 * @mac: MAC address
1317 *
1318 * program VF MAC address
1319 */
1320int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1321{
1322	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1323	struct ice_vf *vf;
1324	int ret;
1325
1326	if (is_multicast_ether_addr(mac)) {
1327		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1328		return -EINVAL;
1329	}
1330
1331	vf = ice_get_vf_by_id(pf, vf_id);
1332	if (!vf)
1333		return -EINVAL;
1334
1335	/* nothing left to do, unicast MAC already set */
1336	if (ether_addr_equal(vf->dev_lan_addr.addr, mac) &&
1337	    ether_addr_equal(vf->hw_lan_addr.addr, mac)) {
1338		ret = 0;
1339		goto out_put_vf;
1340	}
1341
1342	ret = ice_check_vf_ready_for_cfg(vf);
1343	if (ret)
1344		goto out_put_vf;
1345
1346	mutex_lock(&vf->cfg_lock);
1347
1348	/* VF is notified of its new MAC via the PF's response to the
1349	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1350	 */
1351	ether_addr_copy(vf->dev_lan_addr.addr, mac);
1352	ether_addr_copy(vf->hw_lan_addr.addr, mac);
1353	if (is_zero_ether_addr(mac)) {
1354		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1355		vf->pf_set_mac = false;
1356		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1357			    vf->vf_id);
1358	} else {
1359		/* PF will add MAC rule for the VF */
1360		vf->pf_set_mac = true;
1361		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1362			    mac, vf_id);
1363	}
1364
1365	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1366	mutex_unlock(&vf->cfg_lock);
1367
1368out_put_vf:
1369	ice_put_vf(vf);
1370	return ret;
1371}
1372
1373/**
1374 * ice_set_vf_trust
1375 * @netdev: network interface device structure
1376 * @vf_id: VF identifier
1377 * @trusted: Boolean value to enable/disable trusted VF
1378 *
1379 * Enable or disable a given VF as trusted
1380 */
1381int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1382{
1383	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1384	struct ice_vf *vf;
1385	int ret;
1386
1387	if (ice_is_eswitch_mode_switchdev(pf)) {
1388		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1389		return -EOPNOTSUPP;
1390	}
1391
1392	vf = ice_get_vf_by_id(pf, vf_id);
1393	if (!vf)
1394		return -EINVAL;
1395
1396	ret = ice_check_vf_ready_for_cfg(vf);
1397	if (ret)
1398		goto out_put_vf;
1399
1400	/* Check if already trusted */
1401	if (trusted == vf->trusted) {
1402		ret = 0;
1403		goto out_put_vf;
1404	}
1405
1406	mutex_lock(&vf->cfg_lock);
1407
1408	vf->trusted = trusted;
1409	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1410	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1411		 vf_id, trusted ? "" : "un");
1412
1413	mutex_unlock(&vf->cfg_lock);
1414
1415out_put_vf:
1416	ice_put_vf(vf);
1417	return ret;
1418}
1419
1420/**
1421 * ice_set_vf_link_state
1422 * @netdev: network interface device structure
1423 * @vf_id: VF identifier
1424 * @link_state: required link state
1425 *
1426 * Set VF's link state, irrespective of physical link state status
1427 */
1428int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1429{
1430	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1431	struct ice_vf *vf;
1432	int ret;
1433
1434	vf = ice_get_vf_by_id(pf, vf_id);
1435	if (!vf)
1436		return -EINVAL;
1437
1438	ret = ice_check_vf_ready_for_cfg(vf);
1439	if (ret)
1440		goto out_put_vf;
1441
1442	switch (link_state) {
1443	case IFLA_VF_LINK_STATE_AUTO:
1444		vf->link_forced = false;
1445		break;
1446	case IFLA_VF_LINK_STATE_ENABLE:
1447		vf->link_forced = true;
1448		vf->link_up = true;
1449		break;
1450	case IFLA_VF_LINK_STATE_DISABLE:
1451		vf->link_forced = true;
1452		vf->link_up = false;
1453		break;
1454	default:
1455		ret = -EINVAL;
1456		goto out_put_vf;
1457	}
1458
1459	ice_vc_notify_vf_link_state(vf);
1460
1461out_put_vf:
1462	ice_put_vf(vf);
1463	return ret;
1464}
1465
1466/**
1467 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1468 * @pf: PF associated with VFs
1469 */
1470static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1471{
1472	struct ice_vf *vf;
1473	unsigned int bkt;
1474	int rate = 0;
1475
1476	rcu_read_lock();
1477	ice_for_each_vf_rcu(pf, bkt, vf)
1478		rate += vf->min_tx_rate;
1479	rcu_read_unlock();
1480
1481	return rate;
1482}
1483
1484/**
1485 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1486 * @vf: VF trying to configure min_tx_rate
1487 * @min_tx_rate: min Tx rate in Mbps
1488 *
1489 * Check if the min_tx_rate being passed in will cause oversubscription of total
1490 * min_tx_rate based on the current link speed and all other VFs configured
1491 * min_tx_rate
1492 *
1493 * Return true if the passed min_tx_rate would cause oversubscription, else
1494 * return false
1495 */
1496static bool
1497ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1498{
1499	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1500	int all_vfs_min_tx_rate;
1501	int link_speed_mbps;
1502
1503	if (WARN_ON(!vsi))
1504		return false;
1505
1506	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1507	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1508
1509	/* this VF's previous rate is being overwritten */
1510	all_vfs_min_tx_rate -= vf->min_tx_rate;
1511
1512	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1513		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1514			min_tx_rate, vf->vf_id,
1515			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1516			link_speed_mbps);
1517		return true;
1518	}
1519
1520	return false;
1521}
1522
1523/**
1524 * ice_set_vf_bw - set min/max VF bandwidth
1525 * @netdev: network interface device structure
1526 * @vf_id: VF identifier
1527 * @min_tx_rate: Minimum Tx rate in Mbps
1528 * @max_tx_rate: Maximum Tx rate in Mbps
1529 */
1530int
1531ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1532	      int max_tx_rate)
1533{
1534	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1535	struct ice_vsi *vsi;
1536	struct device *dev;
1537	struct ice_vf *vf;
1538	int ret;
1539
1540	dev = ice_pf_to_dev(pf);
1541
1542	vf = ice_get_vf_by_id(pf, vf_id);
1543	if (!vf)
1544		return -EINVAL;
1545
1546	ret = ice_check_vf_ready_for_cfg(vf);
1547	if (ret)
1548		goto out_put_vf;
1549
1550	vsi = ice_get_vf_vsi(vf);
1551	if (!vsi) {
1552		ret = -EINVAL;
1553		goto out_put_vf;
1554	}
1555
1556	if (min_tx_rate && ice_is_dcb_active(pf)) {
1557		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1558		ret = -EOPNOTSUPP;
1559		goto out_put_vf;
1560	}
1561
1562	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1563		ret = -EINVAL;
1564		goto out_put_vf;
1565	}
1566
1567	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1568		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1569		if (ret) {
1570			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1571				vf->vf_id);
1572			goto out_put_vf;
1573		}
1574
1575		vf->min_tx_rate = min_tx_rate;
1576	}
1577
1578	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1579		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1580		if (ret) {
1581			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1582				vf->vf_id);
1583			goto out_put_vf;
1584		}
1585
1586		vf->max_tx_rate = max_tx_rate;
1587	}
1588
1589out_put_vf:
1590	ice_put_vf(vf);
1591	return ret;
1592}
1593
1594/**
1595 * ice_get_vf_stats - populate some stats for the VF
1596 * @netdev: the netdev of the PF
1597 * @vf_id: the host OS identifier (0-255)
1598 * @vf_stats: pointer to the OS memory to be initialized
1599 */
1600int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1601		     struct ifla_vf_stats *vf_stats)
1602{
1603	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1604	struct ice_eth_stats *stats;
1605	struct ice_vsi *vsi;
1606	struct ice_vf *vf;
1607	int ret;
1608
1609	vf = ice_get_vf_by_id(pf, vf_id);
1610	if (!vf)
1611		return -EINVAL;
1612
1613	ret = ice_check_vf_ready_for_cfg(vf);
1614	if (ret)
1615		goto out_put_vf;
1616
1617	vsi = ice_get_vf_vsi(vf);
1618	if (!vsi) {
1619		ret = -EINVAL;
1620		goto out_put_vf;
1621	}
1622
1623	ice_update_eth_stats(vsi);
1624	stats = &vsi->eth_stats;
1625
1626	memset(vf_stats, 0, sizeof(*vf_stats));
1627
1628	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1629		stats->rx_multicast;
1630	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1631		stats->tx_multicast;
1632	vf_stats->rx_bytes   = stats->rx_bytes;
1633	vf_stats->tx_bytes   = stats->tx_bytes;
1634	vf_stats->broadcast  = stats->rx_broadcast;
1635	vf_stats->multicast  = stats->rx_multicast;
1636	vf_stats->rx_dropped = stats->rx_discards;
1637	vf_stats->tx_dropped = stats->tx_discards;
1638
1639out_put_vf:
1640	ice_put_vf(vf);
1641	return ret;
1642}
1643
1644/**
1645 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1646 * @hw: hardware structure used to check the VLAN mode
1647 * @vlan_proto: VLAN TPID being checked
1648 *
1649 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1650 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1651 * Mode (SVM), then only ETH_P_8021Q is supported.
1652 */
1653static bool
1654ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1655{
1656	bool is_supported = false;
1657
1658	switch (vlan_proto) {
1659	case ETH_P_8021Q:
1660		is_supported = true;
1661		break;
1662	case ETH_P_8021AD:
1663		if (ice_is_dvm_ena(hw))
1664			is_supported = true;
1665		break;
1666	}
1667
1668	return is_supported;
1669}
1670
1671/**
1672 * ice_set_vf_port_vlan
1673 * @netdev: network interface device structure
1674 * @vf_id: VF identifier
1675 * @vlan_id: VLAN ID being set
1676 * @qos: priority setting
1677 * @vlan_proto: VLAN protocol
1678 *
1679 * program VF Port VLAN ID and/or QoS
1680 */
1681int
1682ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1683		     __be16 vlan_proto)
1684{
1685	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1686	u16 local_vlan_proto = ntohs(vlan_proto);
1687	struct device *dev;
1688	struct ice_vf *vf;
1689	int ret;
1690
1691	dev = ice_pf_to_dev(pf);
1692
1693	if (vlan_id >= VLAN_N_VID || qos > 7) {
1694		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1695			vf_id, vlan_id, qos);
1696		return -EINVAL;
1697	}
1698
1699	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1700		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1701			local_vlan_proto);
1702		return -EPROTONOSUPPORT;
1703	}
1704
1705	vf = ice_get_vf_by_id(pf, vf_id);
1706	if (!vf)
1707		return -EINVAL;
1708
1709	ret = ice_check_vf_ready_for_cfg(vf);
1710	if (ret)
1711		goto out_put_vf;
1712
1713	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1714	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1715	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1716		/* duplicate request, so just return success */
1717		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1718			vlan_id, qos, local_vlan_proto);
1719		ret = 0;
1720		goto out_put_vf;
1721	}
1722
1723	mutex_lock(&vf->cfg_lock);
1724
1725	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1726	if (ice_vf_is_port_vlan_ena(vf))
1727		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1728			 vlan_id, qos, local_vlan_proto, vf_id);
1729	else
1730		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1731
1732	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1733	mutex_unlock(&vf->cfg_lock);
1734
1735out_put_vf:
1736	ice_put_vf(vf);
1737	return ret;
1738}
1739
1740/**
1741 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1742 * @vf: pointer to the VF structure
1743 */
1744void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1745{
1746	struct ice_pf *pf = vf->pf;
1747	struct device *dev;
1748
1749	dev = ice_pf_to_dev(pf);
1750
1751	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1752		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1753		 vf->dev_lan_addr.addr,
1754		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1755			  ? "on" : "off");
1756}
1757
1758/**
1759 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1760 * @pf: pointer to the PF structure
1761 *
1762 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1763 */
1764void ice_print_vfs_mdd_events(struct ice_pf *pf)
1765{
1766	struct device *dev = ice_pf_to_dev(pf);
1767	struct ice_hw *hw = &pf->hw;
1768	struct ice_vf *vf;
1769	unsigned int bkt;
1770
1771	/* check that there are pending MDD events to print */
1772	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1773		return;
1774
1775	/* VF MDD event logs are rate limited to one second intervals */
1776	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1777		return;
1778
1779	pf->vfs.last_printed_mdd_jiffies = jiffies;
1780
1781	mutex_lock(&pf->vfs.table_lock);
1782	ice_for_each_vf(pf, bkt, vf) {
1783		/* only print Rx MDD event message if there are new events */
1784		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1785			vf->mdd_rx_events.last_printed =
1786							vf->mdd_rx_events.count;
1787			ice_print_vf_rx_mdd_event(vf);
1788		}
1789
1790		/* only print Tx MDD event message if there are new events */
1791		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1792			vf->mdd_tx_events.last_printed =
1793							vf->mdd_tx_events.count;
1794
1795			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1796				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1797				 vf->dev_lan_addr.addr);
1798		}
1799	}
1800	mutex_unlock(&pf->vfs.table_lock);
1801}
1802
1803/**
1804 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1805 * @pdev: pointer to a pci_dev structure
1806 *
1807 * Called when recovering from a PF FLR to restore interrupt capability to
1808 * the VFs.
1809 */
1810void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1811{
1812	u16 vf_id;
1813	int pos;
1814
1815	if (!pci_num_vf(pdev))
1816		return;
1817
1818	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1819	if (pos) {
1820		struct pci_dev *vfdev;
1821
1822		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1823				     &vf_id);
1824		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1825		while (vfdev) {
1826			if (vfdev->is_virtfn && vfdev->physfn == pdev)
1827				pci_restore_msi_state(vfdev);
1828			vfdev = pci_get_device(pdev->vendor, vf_id,
1829					       vfdev);
1830		}
1831	}
1832}
1833
1834/**
1835 * ice_is_malicious_vf - helper function to detect a malicious VF
1836 * @pf: ptr to struct ice_pf
1837 * @event: pointer to the AQ event
1838 * @num_msg_proc: the number of messages processed so far
1839 * @num_msg_pending: the number of messages peinding in admin queue
1840 */
1841bool
1842ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event,
1843		    u16 num_msg_proc, u16 num_msg_pending)
1844{
1845	s16 vf_id = le16_to_cpu(event->desc.retval);
1846	struct device *dev = ice_pf_to_dev(pf);
1847	struct ice_mbx_data mbxdata;
1848	bool malvf = false;
1849	struct ice_vf *vf;
1850	int status;
1851
1852	vf = ice_get_vf_by_id(pf, vf_id);
1853	if (!vf)
1854		return false;
1855
1856	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
1857		goto out_put_vf;
1858
1859	mbxdata.num_msg_proc = num_msg_proc;
1860	mbxdata.num_pending_arq = num_msg_pending;
1861	mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries;
1862#define ICE_MBX_OVERFLOW_WATERMARK 64
1863	mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1864
1865	/* check to see if we have a malicious VF */
1866	status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf);
1867	if (status)
1868		goto out_put_vf;
1869
1870	if (malvf) {
1871		bool report_vf = false;
1872
1873		/* if the VF is malicious and we haven't let the user
1874		 * know about it, then let them know now
1875		 */
1876		status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs,
1877					      ICE_MAX_SRIOV_VFS, vf_id,
1878					      &report_vf);
1879		if (status)
1880			dev_dbg(dev, "Error reporting malicious VF\n");
1881
1882		if (report_vf) {
1883			struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
1884
1885			if (pf_vsi)
1886				dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
1887					 &vf->dev_lan_addr.addr[0],
1888					 pf_vsi->netdev->dev_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889		}
1890	}
1891
1892out_put_vf:
1893	ice_put_vf(vf);
1894	return malvf;
1895}