Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include <linux/delay.h>
   5#include "ice_common.h"
   6#include "ice_ptp_hw.h"
   7#include "ice_ptp_consts.h"
   8#include "ice_cgu_regs.h"
   9
  10/* Low level functions for interacting with and managing the device clock used
  11 * for the Precision Time Protocol.
  12 *
  13 * The ice hardware represents the current time using three registers:
  14 *
  15 *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
  16 *  +---------------+ +---------------+ +---------------+
  17 *  |    32 bits    | |    32 bits    | |    32 bits    |
  18 *  +---------------+ +---------------+ +---------------+
  19 *
  20 * The registers are incremented every clock tick using a 40bit increment
  21 * value defined over two registers:
  22 *
  23 *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
  24 *                    +---------------+ +---------------+
  25 *                    |    8 bit s    | |    32 bits    |
  26 *                    +---------------+ +---------------+
  27 *
  28 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
  29 * registers every clock source tick. Depending on the specific device
  30 * configuration, the clock source frequency could be one of a number of
  31 * values.
  32 *
  33 * For E810 devices, the increment frequency is 812.5 MHz
  34 *
  35 * For E822 devices the clock can be derived from different sources, and the
  36 * increment has an effective frequency of one of the following:
  37 * - 823.4375 MHz
  38 * - 783.36 MHz
  39 * - 796.875 MHz
  40 * - 816 MHz
  41 * - 830.078125 MHz
  42 * - 783.36 MHz
  43 *
  44 * The hardware captures timestamps in the PHY for incoming packets, and for
  45 * outgoing packets on request. To support this, the PHY maintains a timer
  46 * that matches the lower 64 bits of the global source timer.
  47 *
  48 * In order to ensure that the PHY timers and the source timer are equivalent,
  49 * shadow registers are used to prepare the desired initial values. A special
  50 * sync command is issued to trigger copying from the shadow registers into
  51 * the appropriate source and PHY registers simultaneously.
  52 *
  53 * The driver supports devices which have different PHYs with subtly different
  54 * mechanisms to program and control the timers. We divide the devices into
  55 * families named after the first major device, E810 and similar devices, and
  56 * E822 and similar devices.
  57 *
  58 * - E822 based devices have additional support for fine grained Vernier
  59 *   calibration which requires significant setup
  60 * - The layout of timestamp data in the PHY register blocks is different
  61 * - The way timer synchronization commands are issued is different.
  62 *
  63 * To support this, very low level functions have an e810 or e822 suffix
  64 * indicating what type of device they work on. Higher level abstractions for
  65 * tasks that can be done on both devices do not have the suffix and will
  66 * correctly look up the appropriate low level function when running.
  67 *
  68 * Functions which only make sense on a single device family may not have
  69 * a suitable generic implementation
  70 */
  71
  72/**
  73 * ice_get_ptp_src_clock_index - determine source clock index
  74 * @hw: pointer to HW struct
  75 *
  76 * Determine the source clock index currently in use, based on device
  77 * capabilities reported during initialization.
  78 */
  79u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
  80{
  81	return hw->func_caps.ts_func_info.tmr_index_assoc;
  82}
  83
  84/**
  85 * ice_ptp_read_src_incval - Read source timer increment value
  86 * @hw: pointer to HW struct
  87 *
  88 * Read the increment value of the source timer and return it.
  89 */
  90static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
  91{
  92	u32 lo, hi;
  93	u8 tmr_idx;
  94
  95	tmr_idx = ice_get_ptp_src_clock_index(hw);
  96
  97	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
  98	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
  99
 100	return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
 101}
 102
 103/**
 104 * ice_ptp_src_cmd - Prepare source timer for a timer command
 105 * @hw: pointer to HW structure
 106 * @cmd: Timer command
 107 *
 108 * Prepare the source timer for an upcoming timer sync command.
 109 */
 110static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 111{
 112	u32 cmd_val;
 113	u8 tmr_idx;
 114
 115	tmr_idx = ice_get_ptp_src_clock_index(hw);
 116	cmd_val = tmr_idx << SEL_CPK_SRC;
 117
 118	switch (cmd) {
 119	case INIT_TIME:
 120		cmd_val |= GLTSYN_CMD_INIT_TIME;
 121		break;
 122	case INIT_INCVAL:
 123		cmd_val |= GLTSYN_CMD_INIT_INCVAL;
 124		break;
 125	case ADJ_TIME:
 126		cmd_val |= GLTSYN_CMD_ADJ_TIME;
 127		break;
 128	case ADJ_TIME_AT_TIME:
 129		cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
 130		break;
 131	case READ_TIME:
 132		cmd_val |= GLTSYN_CMD_READ_TIME;
 133		break;
 134	}
 135
 136	wr32(hw, GLTSYN_CMD, cmd_val);
 137}
 138
 139/**
 140 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
 141 * @hw: pointer to HW struct
 142 *
 143 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
 144 * write immediately. This triggers the hardware to begin executing all of the
 145 * source and PHY timer commands synchronously.
 146 */
 147static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
 148{
 149	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
 150	ice_flush(hw);
 151}
 152
 153/* E822 family functions
 154 *
 155 * The following functions operate on the E822 family of devices.
 156 */
 157
 158/**
 159 * ice_fill_phy_msg_e822 - Fill message data for a PHY register access
 160 * @msg: the PHY message buffer to fill in
 161 * @port: the port to access
 162 * @offset: the register offset
 163 */
 164static void
 165ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
 166{
 167	int phy_port, phy, quadtype;
 168
 169	phy_port = port % ICE_PORTS_PER_PHY;
 170	phy = port / ICE_PORTS_PER_PHY;
 171	quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE;
 172
 173	if (quadtype == 0) {
 174		msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
 175		msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
 176	} else {
 177		msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
 178		msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
 179	}
 180
 181	if (phy == 0)
 182		msg->dest_dev = rmn_0;
 183	else if (phy == 1)
 184		msg->dest_dev = rmn_1;
 185	else
 186		msg->dest_dev = rmn_2;
 187}
 188
 189/**
 190 * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
 191 * @low_addr: the low address to check
 192 * @high_addr: on return, contains the high address of the 64bit register
 193 *
 194 * Checks if the provided low address is one of the known 64bit PHY values
 195 * represented as two 32bit registers. If it is, return the appropriate high
 196 * register offset to use.
 197 */
 198static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
 199{
 200	switch (low_addr) {
 201	case P_REG_PAR_PCS_TX_OFFSET_L:
 202		*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
 203		return true;
 204	case P_REG_PAR_PCS_RX_OFFSET_L:
 205		*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
 206		return true;
 207	case P_REG_PAR_TX_TIME_L:
 208		*high_addr = P_REG_PAR_TX_TIME_U;
 209		return true;
 210	case P_REG_PAR_RX_TIME_L:
 211		*high_addr = P_REG_PAR_RX_TIME_U;
 212		return true;
 213	case P_REG_TOTAL_TX_OFFSET_L:
 214		*high_addr = P_REG_TOTAL_TX_OFFSET_U;
 215		return true;
 216	case P_REG_TOTAL_RX_OFFSET_L:
 217		*high_addr = P_REG_TOTAL_RX_OFFSET_U;
 218		return true;
 219	case P_REG_UIX66_10G_40G_L:
 220		*high_addr = P_REG_UIX66_10G_40G_U;
 221		return true;
 222	case P_REG_UIX66_25G_100G_L:
 223		*high_addr = P_REG_UIX66_25G_100G_U;
 224		return true;
 225	case P_REG_TX_CAPTURE_L:
 226		*high_addr = P_REG_TX_CAPTURE_U;
 227		return true;
 228	case P_REG_RX_CAPTURE_L:
 229		*high_addr = P_REG_RX_CAPTURE_U;
 230		return true;
 231	case P_REG_TX_TIMER_INC_PRE_L:
 232		*high_addr = P_REG_TX_TIMER_INC_PRE_U;
 233		return true;
 234	case P_REG_RX_TIMER_INC_PRE_L:
 235		*high_addr = P_REG_RX_TIMER_INC_PRE_U;
 236		return true;
 237	default:
 238		return false;
 239	}
 240}
 241
 242/**
 243 * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
 244 * @low_addr: the low address to check
 245 * @high_addr: on return, contains the high address of the 40bit value
 246 *
 247 * Checks if the provided low address is one of the known 40bit PHY values
 248 * split into two registers with the lower 8 bits in the low register and the
 249 * upper 32 bits in the high register. If it is, return the appropriate high
 250 * register offset to use.
 251 */
 252static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
 253{
 254	switch (low_addr) {
 255	case P_REG_TIMETUS_L:
 256		*high_addr = P_REG_TIMETUS_U;
 257		return true;
 258	case P_REG_PAR_RX_TUS_L:
 259		*high_addr = P_REG_PAR_RX_TUS_U;
 260		return true;
 261	case P_REG_PAR_TX_TUS_L:
 262		*high_addr = P_REG_PAR_TX_TUS_U;
 263		return true;
 264	case P_REG_PCS_RX_TUS_L:
 265		*high_addr = P_REG_PCS_RX_TUS_U;
 266		return true;
 267	case P_REG_PCS_TX_TUS_L:
 268		*high_addr = P_REG_PCS_TX_TUS_U;
 269		return true;
 270	case P_REG_DESK_PAR_RX_TUS_L:
 271		*high_addr = P_REG_DESK_PAR_RX_TUS_U;
 272		return true;
 273	case P_REG_DESK_PAR_TX_TUS_L:
 274		*high_addr = P_REG_DESK_PAR_TX_TUS_U;
 275		return true;
 276	case P_REG_DESK_PCS_RX_TUS_L:
 277		*high_addr = P_REG_DESK_PCS_RX_TUS_U;
 278		return true;
 279	case P_REG_DESK_PCS_TX_TUS_L:
 280		*high_addr = P_REG_DESK_PCS_TX_TUS_U;
 281		return true;
 282	default:
 283		return false;
 284	}
 285}
 286
 287/**
 288 * ice_read_phy_reg_e822 - Read a PHY register
 289 * @hw: pointer to the HW struct
 290 * @port: PHY port to read from
 291 * @offset: PHY register offset to read
 292 * @val: on return, the contents read from the PHY
 293 *
 294 * Read a PHY register for the given port over the device sideband queue.
 295 */
 296int
 297ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
 298{
 299	struct ice_sbq_msg_input msg = {0};
 300	int err;
 301
 302	ice_fill_phy_msg_e822(&msg, port, offset);
 303	msg.opcode = ice_sbq_msg_rd;
 304
 305	err = ice_sbq_rw_reg(hw, &msg);
 306	if (err) {
 307		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 308			  err);
 309		return err;
 310	}
 311
 312	*val = msg.data;
 313
 314	return 0;
 315}
 316
 317/**
 318 * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
 319 * @hw: pointer to the HW struct
 320 * @port: PHY port to read from
 321 * @low_addr: offset of the lower register to read from
 322 * @val: on return, the contents of the 64bit value from the PHY registers
 323 *
 324 * Reads the two registers associated with a 64bit value and returns it in the
 325 * val pointer. The offset always specifies the lower register offset to use.
 326 * The high offset is looked up. This function only operates on registers
 327 * known to be two parts of a 64bit value.
 328 */
 329static int
 330ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
 331{
 332	u32 low, high;
 333	u16 high_addr;
 334	int err;
 335
 336	/* Only operate on registers known to be split into two 32bit
 337	 * registers.
 338	 */
 339	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
 340		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
 341			  low_addr);
 342		return -EINVAL;
 343	}
 344
 345	err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
 346	if (err) {
 347		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
 348			  low_addr, err);
 349		return err;
 350	}
 351
 352	err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
 353	if (err) {
 354		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
 355			  high_addr, err);
 356		return err;
 357	}
 358
 359	*val = (u64)high << 32 | low;
 360
 361	return 0;
 362}
 363
 364/**
 365 * ice_write_phy_reg_e822 - Write a PHY register
 366 * @hw: pointer to the HW struct
 367 * @port: PHY port to write to
 368 * @offset: PHY register offset to write
 369 * @val: The value to write to the register
 370 *
 371 * Write a PHY register for the given port over the device sideband queue.
 372 */
 373int
 374ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
 375{
 376	struct ice_sbq_msg_input msg = {0};
 377	int err;
 378
 379	ice_fill_phy_msg_e822(&msg, port, offset);
 380	msg.opcode = ice_sbq_msg_wr;
 381	msg.data = val;
 382
 383	err = ice_sbq_rw_reg(hw, &msg);
 384	if (err) {
 385		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 386			  err);
 387		return err;
 388	}
 389
 390	return 0;
 391}
 392
 393/**
 394 * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
 395 * @hw: pointer to the HW struct
 396 * @port: port to write to
 397 * @low_addr: offset of the low register
 398 * @val: 40b value to write
 399 *
 400 * Write the provided 40b value to the two associated registers by splitting
 401 * it up into two chunks, the lower 8 bits and the upper 32 bits.
 402 */
 403static int
 404ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
 405{
 406	u32 low, high;
 407	u16 high_addr;
 408	int err;
 409
 410	/* Only operate on registers known to be split into a lower 8 bit
 411	 * register and an upper 32 bit register.
 412	 */
 413	if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
 414		ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
 415			  low_addr);
 416		return -EINVAL;
 417	}
 418
 419	low = (u32)(val & P_REG_40B_LOW_M);
 420	high = (u32)(val >> P_REG_40B_HIGH_S);
 421
 422	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
 423	if (err) {
 424		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 425			  low_addr, err);
 426		return err;
 427	}
 428
 429	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
 430	if (err) {
 431		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 432			  high_addr, err);
 433		return err;
 434	}
 435
 436	return 0;
 437}
 438
 439/**
 440 * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
 441 * @hw: pointer to the HW struct
 442 * @port: PHY port to read from
 443 * @low_addr: offset of the lower register to read from
 444 * @val: the contents of the 64bit value to write to PHY
 445 *
 446 * Write the 64bit value to the two associated 32bit PHY registers. The offset
 447 * is always specified as the lower register, and the high address is looked
 448 * up. This function only operates on registers known to be two parts of
 449 * a 64bit value.
 450 */
 451static int
 452ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
 453{
 454	u32 low, high;
 455	u16 high_addr;
 456	int err;
 457
 458	/* Only operate on registers known to be split into two 32bit
 459	 * registers.
 460	 */
 461	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
 462		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
 463			  low_addr);
 464		return -EINVAL;
 465	}
 466
 467	low = lower_32_bits(val);
 468	high = upper_32_bits(val);
 469
 470	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
 471	if (err) {
 472		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 473			  low_addr, err);
 474		return err;
 475	}
 476
 477	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
 478	if (err) {
 479		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 480			  high_addr, err);
 481		return err;
 482	}
 483
 484	return 0;
 485}
 486
 487/**
 488 * ice_fill_quad_msg_e822 - Fill message data for quad register access
 489 * @msg: the PHY message buffer to fill in
 490 * @quad: the quad to access
 491 * @offset: the register offset
 492 *
 493 * Fill a message buffer for accessing a register in a quad shared between
 494 * multiple PHYs.
 495 */
 496static void
 497ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
 498{
 499	u32 addr;
 500
 501	msg->dest_dev = rmn_0;
 502
 503	if ((quad % ICE_NUM_QUAD_TYPE) == 0)
 504		addr = Q_0_BASE + offset;
 505	else
 506		addr = Q_1_BASE + offset;
 507
 508	msg->msg_addr_low = lower_16_bits(addr);
 509	msg->msg_addr_high = upper_16_bits(addr);
 510}
 511
 512/**
 513 * ice_read_quad_reg_e822 - Read a PHY quad register
 514 * @hw: pointer to the HW struct
 515 * @quad: quad to read from
 516 * @offset: quad register offset to read
 517 * @val: on return, the contents read from the quad
 518 *
 519 * Read a quad register over the device sideband queue. Quad registers are
 520 * shared between multiple PHYs.
 521 */
 522int
 523ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
 524{
 525	struct ice_sbq_msg_input msg = {0};
 526	int err;
 527
 528	if (quad >= ICE_MAX_QUAD)
 529		return -EINVAL;
 530
 531	ice_fill_quad_msg_e822(&msg, quad, offset);
 532	msg.opcode = ice_sbq_msg_rd;
 533
 534	err = ice_sbq_rw_reg(hw, &msg);
 535	if (err) {
 536		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 537			  err);
 538		return err;
 539	}
 540
 541	*val = msg.data;
 542
 543	return 0;
 544}
 545
 546/**
 547 * ice_write_quad_reg_e822 - Write a PHY quad register
 548 * @hw: pointer to the HW struct
 549 * @quad: quad to write to
 550 * @offset: quad register offset to write
 551 * @val: The value to write to the register
 552 *
 553 * Write a quad register over the device sideband queue. Quad registers are
 554 * shared between multiple PHYs.
 555 */
 556int
 557ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
 558{
 559	struct ice_sbq_msg_input msg = {0};
 560	int err;
 561
 562	if (quad >= ICE_MAX_QUAD)
 563		return -EINVAL;
 564
 565	ice_fill_quad_msg_e822(&msg, quad, offset);
 566	msg.opcode = ice_sbq_msg_wr;
 567	msg.data = val;
 568
 569	err = ice_sbq_rw_reg(hw, &msg);
 570	if (err) {
 571		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 572			  err);
 573		return err;
 574	}
 575
 576	return 0;
 577}
 578
 579/**
 580 * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
 581 * @hw: pointer to the HW struct
 582 * @quad: the quad to read from
 583 * @idx: the timestamp index to read
 584 * @tstamp: on return, the 40bit timestamp value
 585 *
 586 * Read a 40bit timestamp value out of the two associated registers in the
 587 * quad memory block that is shared between the internal PHYs of the E822
 588 * family of devices.
 589 */
 590static int
 591ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
 592{
 593	u16 lo_addr, hi_addr;
 594	u32 lo, hi;
 595	int err;
 596
 597	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
 598	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
 599
 600	err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
 601	if (err) {
 602		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
 603			  err);
 604		return err;
 605	}
 606
 607	err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
 608	if (err) {
 609		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
 610			  err);
 611		return err;
 612	}
 613
 614	/* For E822 based internal PHYs, the timestamp is reported with the
 615	 * lower 8 bits in the low register, and the upper 32 bits in the high
 616	 * register.
 617	 */
 618	*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
 619
 620	return 0;
 621}
 622
 623/**
 624 * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
 625 * @hw: pointer to the HW struct
 626 * @quad: the quad to read from
 627 * @idx: the timestamp index to reset
 628 *
 629 * Clear a timestamp, resetting its valid bit, from the PHY quad block that is
 630 * shared between the internal PHYs on the E822 devices.
 631 */
 632static int
 633ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
 634{
 635	u16 lo_addr, hi_addr;
 636	int err;
 637
 638	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
 639	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
 640
 641	err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0);
 642	if (err) {
 643		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
 644			  err);
 645		return err;
 646	}
 647
 648	err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0);
 649	if (err) {
 650		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
 651			  err);
 652		return err;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block
 660 * @hw: pointer to the HW struct
 661 * @quad: the quad to read from
 662 *
 663 * Clear all timestamps from the PHY quad block that is shared between the
 664 * internal PHYs on the E822 devices.
 665 */
 666void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad)
 667{
 668	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
 669	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
 670}
 671
 672/**
 673 * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks
 674 * @hw: pointer to the HW struct
 675 */
 676static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw)
 677{
 678	unsigned int quad;
 679
 680	for (quad = 0; quad < ICE_MAX_QUAD; quad++)
 681		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
 682}
 683
 684/**
 685 * ice_read_cgu_reg_e822 - Read a CGU register
 686 * @hw: pointer to the HW struct
 687 * @addr: Register address to read
 688 * @val: storage for register value read
 689 *
 690 * Read the contents of a register of the Clock Generation Unit. Only
 691 * applicable to E822 devices.
 692 */
 693static int
 694ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
 695{
 696	struct ice_sbq_msg_input cgu_msg;
 697	int err;
 698
 699	cgu_msg.opcode = ice_sbq_msg_rd;
 700	cgu_msg.dest_dev = cgu;
 701	cgu_msg.msg_addr_low = addr;
 702	cgu_msg.msg_addr_high = 0x0;
 703
 704	err = ice_sbq_rw_reg(hw, &cgu_msg);
 705	if (err) {
 706		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
 707			  addr, err);
 708		return err;
 709	}
 710
 711	*val = cgu_msg.data;
 712
 713	return err;
 714}
 715
 716/**
 717 * ice_write_cgu_reg_e822 - Write a CGU register
 718 * @hw: pointer to the HW struct
 719 * @addr: Register address to write
 720 * @val: value to write into the register
 721 *
 722 * Write the specified value to a register of the Clock Generation Unit. Only
 723 * applicable to E822 devices.
 724 */
 725static int
 726ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
 727{
 728	struct ice_sbq_msg_input cgu_msg;
 729	int err;
 730
 731	cgu_msg.opcode = ice_sbq_msg_wr;
 732	cgu_msg.dest_dev = cgu;
 733	cgu_msg.msg_addr_low = addr;
 734	cgu_msg.msg_addr_high = 0x0;
 735	cgu_msg.data = val;
 736
 737	err = ice_sbq_rw_reg(hw, &cgu_msg);
 738	if (err) {
 739		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
 740			  addr, err);
 741		return err;
 742	}
 743
 744	return err;
 745}
 746
 747/**
 748 * ice_clk_freq_str - Convert time_ref_freq to string
 749 * @clk_freq: Clock frequency
 750 *
 751 * Convert the specified TIME_REF clock frequency to a string.
 752 */
 753static const char *ice_clk_freq_str(u8 clk_freq)
 754{
 755	switch ((enum ice_time_ref_freq)clk_freq) {
 756	case ICE_TIME_REF_FREQ_25_000:
 757		return "25 MHz";
 758	case ICE_TIME_REF_FREQ_122_880:
 759		return "122.88 MHz";
 760	case ICE_TIME_REF_FREQ_125_000:
 761		return "125 MHz";
 762	case ICE_TIME_REF_FREQ_153_600:
 763		return "153.6 MHz";
 764	case ICE_TIME_REF_FREQ_156_250:
 765		return "156.25 MHz";
 766	case ICE_TIME_REF_FREQ_245_760:
 767		return "245.76 MHz";
 768	default:
 769		return "Unknown";
 770	}
 771}
 772
 773/**
 774 * ice_clk_src_str - Convert time_ref_src to string
 775 * @clk_src: Clock source
 776 *
 777 * Convert the specified clock source to its string name.
 778 */
 779static const char *ice_clk_src_str(u8 clk_src)
 780{
 781	switch ((enum ice_clk_src)clk_src) {
 782	case ICE_CLK_SRC_TCX0:
 783		return "TCX0";
 784	case ICE_CLK_SRC_TIME_REF:
 785		return "TIME_REF";
 786	default:
 787		return "Unknown";
 788	}
 789}
 790
 791/**
 792 * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
 793 * @hw: pointer to the HW struct
 794 * @clk_freq: Clock frequency to program
 795 * @clk_src: Clock source to select (TIME_REF, or TCX0)
 796 *
 797 * Configure the Clock Generation Unit with the desired clock frequency and
 798 * time reference, enabling the PLL which drives the PTP hardware clock.
 799 */
 800static int
 801ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
 802		     enum ice_clk_src clk_src)
 803{
 804	union tspll_ro_bwm_lf bwm_lf;
 805	union nac_cgu_dword19 dw19;
 806	union nac_cgu_dword22 dw22;
 807	union nac_cgu_dword24 dw24;
 808	union nac_cgu_dword9 dw9;
 809	int err;
 810
 811	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
 812		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
 813			 clk_freq);
 814		return -EINVAL;
 815	}
 816
 817	if (clk_src >= NUM_ICE_CLK_SRC) {
 818		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
 819			 clk_src);
 820		return -EINVAL;
 821	}
 822
 823	if (clk_src == ICE_CLK_SRC_TCX0 &&
 824	    clk_freq != ICE_TIME_REF_FREQ_25_000) {
 825		dev_warn(ice_hw_to_dev(hw),
 826			 "TCX0 only supports 25 MHz frequency\n");
 827		return -EINVAL;
 828	}
 829
 830	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
 831	if (err)
 832		return err;
 833
 834	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
 835	if (err)
 836		return err;
 837
 838	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 839	if (err)
 840		return err;
 841
 842	/* Log the current clock configuration */
 843	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 844		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
 845		  ice_clk_src_str(dw24.field.time_ref_sel),
 846		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
 847		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
 848
 849	/* Disable the PLL before changing the clock source or frequency */
 850	if (dw24.field.ts_pll_enable) {
 851		dw24.field.ts_pll_enable = 0;
 852
 853		err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
 854		if (err)
 855			return err;
 856	}
 857
 858	/* Set the frequency */
 859	dw9.field.time_ref_freq_sel = clk_freq;
 860	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
 861	if (err)
 862		return err;
 863
 864	/* Configure the TS PLL feedback divisor */
 865	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
 866	if (err)
 867		return err;
 868
 869	dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
 870	dw19.field.tspll_ndivratio = 1;
 871
 872	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
 873	if (err)
 874		return err;
 875
 876	/* Configure the TS PLL post divisor */
 877	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
 878	if (err)
 879		return err;
 880
 881	dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
 882	dw22.field.time1588clk_sel_div2 = 0;
 883
 884	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
 885	if (err)
 886		return err;
 887
 888	/* Configure the TS PLL pre divisor and clock source */
 889	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
 890	if (err)
 891		return err;
 892
 893	dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
 894	dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
 895	dw24.field.time_ref_sel = clk_src;
 896
 897	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
 898	if (err)
 899		return err;
 900
 901	/* Finally, enable the PLL */
 902	dw24.field.ts_pll_enable = 1;
 903
 904	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
 905	if (err)
 906		return err;
 907
 908	/* Wait to verify if the PLL locks */
 909	usleep_range(1000, 5000);
 910
 911	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 912	if (err)
 913		return err;
 914
 915	if (!bwm_lf.field.plllock_true_lock_cri) {
 916		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
 917		return -EBUSY;
 918	}
 919
 920	/* Log the current clock configuration */
 921	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 922		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
 923		  ice_clk_src_str(dw24.field.time_ref_sel),
 924		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
 925		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
 926
 927	return 0;
 928}
 929
 930/**
 931 * ice_init_cgu_e822 - Initialize CGU with settings from firmware
 932 * @hw: pointer to the HW structure
 933 *
 934 * Initialize the Clock Generation Unit of the E822 device.
 935 */
 936static int ice_init_cgu_e822(struct ice_hw *hw)
 937{
 938	struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
 939	union tspll_cntr_bist_settings cntr_bist;
 940	int err;
 941
 942	err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
 943				    &cntr_bist.val);
 944	if (err)
 945		return err;
 946
 947	/* Disable sticky lock detection so lock err reported is accurate */
 948	cntr_bist.field.i_plllock_sel_0 = 0;
 949	cntr_bist.field.i_plllock_sel_1 = 0;
 950
 951	err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
 952				     cntr_bist.val);
 953	if (err)
 954		return err;
 955
 956	/* Configure the CGU PLL using the parameters from the function
 957	 * capabilities.
 958	 */
 959	err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
 960				   (enum ice_clk_src)ts_info->clk_src);
 961	if (err)
 962		return err;
 963
 964	return 0;
 965}
 966
 967/**
 968 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
 969 * @hw: pointer to the HW struct
 970 *
 971 * Set the window length used for the vernier port calibration process.
 972 */
 973static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
 974{
 975	u8 port;
 976
 977	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
 978		int err;
 979
 980		err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
 981					     PTP_VERNIER_WL);
 982		if (err) {
 983			ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
 984				  port, err);
 985			return err;
 986		}
 987	}
 988
 989	return 0;
 990}
 991
 992/**
 993 * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
 994 * @hw: pointer to HW struct
 995 *
 996 * Perform PHC initialization steps specific to E822 devices.
 997 */
 998static int ice_ptp_init_phc_e822(struct ice_hw *hw)
 999{
1000	int err;
1001	u32 regval;
1002
1003	/* Enable reading switch and PHY registers over the sideband queue */
1004#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
1005#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
1006	regval = rd32(hw, PF_SB_REM_DEV_CTL);
1007	regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
1008		   PF_SB_REM_DEV_CTL_PHY0);
1009	wr32(hw, PF_SB_REM_DEV_CTL, regval);
1010
1011	/* Initialize the Clock Generation Unit */
1012	err = ice_init_cgu_e822(hw);
1013	if (err)
1014		return err;
1015
1016	/* Set window length for all the ports */
1017	return ice_ptp_set_vernier_wl(hw);
1018}
1019
1020/**
1021 * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
1022 * @hw: pointer to the HW struct
1023 * @time: Time to initialize the PHY port clocks to
1024 *
1025 * Program the PHY port registers with a new initial time value. The port
1026 * clock will be initialized once the driver issues an INIT_TIME sync
1027 * command. The time value is the upper 32 bits of the PHY timer, usually in
1028 * units of nominal nanoseconds.
1029 */
1030static int
1031ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
1032{
1033	u64 phy_time;
1034	u8 port;
1035	int err;
1036
1037	/* The time represents the upper 32 bits of the PHY timer, so we need
1038	 * to shift to account for this when programming.
1039	 */
1040	phy_time = (u64)time << 32;
1041
1042	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1043		/* Tx case */
1044		err = ice_write_64b_phy_reg_e822(hw, port,
1045						 P_REG_TX_TIMER_INC_PRE_L,
1046						 phy_time);
1047		if (err)
1048			goto exit_err;
1049
1050		/* Rx case */
1051		err = ice_write_64b_phy_reg_e822(hw, port,
1052						 P_REG_RX_TIMER_INC_PRE_L,
1053						 phy_time);
1054		if (err)
1055			goto exit_err;
1056	}
1057
1058	return 0;
1059
1060exit_err:
1061	ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1062		  port, err);
1063
1064	return err;
1065}
1066
1067/**
1068 * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
1069 * @hw: pointer to HW struct
1070 * @port: Port number to be programmed
1071 * @time: time in cycles to adjust the port Tx and Rx clocks
1072 *
1073 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1074 * registers. The atomic adjustment won't be completed until the driver issues
1075 * an ADJ_TIME command.
1076 *
1077 * Note that time is not in units of nanoseconds. It is in clock time
1078 * including the lower sub-nanosecond portion of the port timer.
1079 *
1080 * Negative adjustments are supported using 2s complement arithmetic.
1081 */
1082int
1083ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
1084{
1085	u32 l_time, u_time;
1086	int err;
1087
1088	l_time = lower_32_bits(time);
1089	u_time = upper_32_bits(time);
1090
1091	/* Tx case */
1092	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
1093				     l_time);
1094	if (err)
1095		goto exit_err;
1096
1097	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
1098				     u_time);
1099	if (err)
1100		goto exit_err;
1101
1102	/* Rx case */
1103	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
1104				     l_time);
1105	if (err)
1106		goto exit_err;
1107
1108	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
1109				     u_time);
1110	if (err)
1111		goto exit_err;
1112
1113	return 0;
1114
1115exit_err:
1116	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1117		  port, err);
1118	return err;
1119}
1120
1121/**
1122 * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
1123 * @hw: pointer to HW struct
1124 * @adj: adjustment in nanoseconds
1125 *
1126 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1127 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1128 * ADJ_TIME or ADJ_TIME_AT_TIME sync command.
1129 */
1130static int
1131ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
1132{
1133	s64 cycles;
1134	u8 port;
1135
1136	/* The port clock supports adjustment of the sub-nanosecond portion of
1137	 * the clock. We shift the provided adjustment in nanoseconds to
1138	 * calculate the appropriate adjustment to program into the PHY ports.
1139	 */
1140	if (adj > 0)
1141		cycles = (s64)adj << 32;
1142	else
1143		cycles = -(((s64)-adj) << 32);
1144
1145	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1146		int err;
1147
1148		err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
1149		if (err)
1150			return err;
1151	}
1152
1153	return 0;
1154}
1155
1156/**
1157 * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
1158 * @hw: pointer to HW struct
1159 * @incval: new increment value to prepare
1160 *
1161 * Prepare each of the PHY ports for a new increment value by programming the
1162 * port's TIMETUS registers. The new increment value will be updated after
1163 * issuing an INIT_INCVAL command.
1164 */
1165static int
1166ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
1167{
1168	int err;
1169	u8 port;
1170
1171	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1172		err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
1173						 incval);
1174		if (err)
1175			goto exit_err;
1176	}
1177
1178	return 0;
1179
1180exit_err:
1181	ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1182		  port, err);
1183
1184	return err;
1185}
1186
1187/**
1188 * ice_ptp_read_port_capture - Read a port's local time capture
1189 * @hw: pointer to HW struct
1190 * @port: Port number to read
1191 * @tx_ts: on return, the Tx port time capture
1192 * @rx_ts: on return, the Rx port time capture
1193 *
1194 * Read the port's Tx and Rx local time capture values.
1195 *
1196 * Note this has no equivalent for the E810 devices.
1197 */
1198static int
1199ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
1200{
1201	int err;
1202
1203	/* Tx case */
1204	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
1205	if (err) {
1206		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1207			  err);
1208		return err;
1209	}
1210
1211	ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
1212		  (unsigned long long)*tx_ts);
1213
1214	/* Rx case */
1215	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
1216	if (err) {
1217		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1218			  err);
1219		return err;
1220	}
1221
1222	ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
1223		  (unsigned long long)*rx_ts);
1224
1225	return 0;
1226}
1227
1228/**
1229 * ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command
1230 * @hw: pointer to HW struct
1231 * @port: Port to which cmd has to be sent
1232 * @cmd: Command to be sent to the port
1233 *
1234 * Prepare the requested port for an upcoming timer sync command.
1235 *
1236 * Note there is no equivalent of this operation on E810, as that device
1237 * always handles all external PHYs internally.
1238 */
1239static int
1240ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
1241{
1242	u32 cmd_val, val;
1243	u8 tmr_idx;
1244	int err;
1245
1246	tmr_idx = ice_get_ptp_src_clock_index(hw);
1247	cmd_val = tmr_idx << SEL_PHY_SRC;
1248	switch (cmd) {
1249	case INIT_TIME:
1250		cmd_val |= PHY_CMD_INIT_TIME;
1251		break;
1252	case INIT_INCVAL:
1253		cmd_val |= PHY_CMD_INIT_INCVAL;
1254		break;
1255	case ADJ_TIME:
1256		cmd_val |= PHY_CMD_ADJ_TIME;
1257		break;
1258	case READ_TIME:
1259		cmd_val |= PHY_CMD_READ_TIME;
1260		break;
1261	case ADJ_TIME_AT_TIME:
1262		cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
1263		break;
1264	}
1265
1266	/* Tx case */
1267	/* Read, modify, write */
1268	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
1269	if (err) {
1270		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
1271			  err);
1272		return err;
1273	}
1274
1275	/* Modify necessary bits only and perform write */
1276	val &= ~TS_CMD_MASK;
1277	val |= cmd_val;
1278
1279	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
1280	if (err) {
1281		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1282			  err);
1283		return err;
1284	}
1285
1286	/* Rx case */
1287	/* Read, modify, write */
1288	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
1289	if (err) {
1290		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
1291			  err);
1292		return err;
1293	}
1294
1295	/* Modify necessary bits only and perform write */
1296	val &= ~TS_CMD_MASK;
1297	val |= cmd_val;
1298
1299	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
1300	if (err) {
1301		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1302			  err);
1303		return err;
1304	}
1305
1306	return 0;
1307}
1308
1309/**
1310 * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
1311 * @hw: pointer to the HW struct
1312 * @cmd: timer command to prepare
1313 *
1314 * Prepare all ports connected to this device for an upcoming timer sync
1315 * command.
1316 */
1317static int
1318ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
1319{
1320	u8 port;
1321
1322	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1323		int err;
1324
1325		err = ice_ptp_one_port_cmd(hw, port, cmd);
1326		if (err)
1327			return err;
1328	}
1329
1330	return 0;
1331}
1332
1333/* E822 Vernier calibration functions
1334 *
1335 * The following functions are used as part of the vernier calibration of
1336 * a port. This calibration increases the precision of the timestamps on the
1337 * port.
1338 */
1339
1340/**
1341 * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
1342 * @hw: pointer to HW struct
1343 * @port: the port to read from
1344 * @link_out: if non-NULL, holds link speed on success
1345 * @fec_out: if non-NULL, holds FEC algorithm on success
1346 *
1347 * Read the serdes data for the PHY port and extract the link speed and FEC
1348 * algorithm.
1349 */
1350static int
1351ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
1352			       enum ice_ptp_link_spd *link_out,
1353			       enum ice_ptp_fec_mode *fec_out)
1354{
1355	enum ice_ptp_link_spd link;
1356	enum ice_ptp_fec_mode fec;
1357	u32 serdes;
1358	int err;
1359
1360	err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
1361	if (err) {
1362		ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
1363		return err;
1364	}
1365
1366	/* Determine the FEC algorithm */
1367	fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
1368
1369	serdes &= P_REG_LINK_SPEED_SERDES_M;
1370
1371	/* Determine the link speed */
1372	if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
1373		switch (serdes) {
1374		case ICE_PTP_SERDES_25G:
1375			link = ICE_PTP_LNK_SPD_25G_RS;
1376			break;
1377		case ICE_PTP_SERDES_50G:
1378			link = ICE_PTP_LNK_SPD_50G_RS;
1379			break;
1380		case ICE_PTP_SERDES_100G:
1381			link = ICE_PTP_LNK_SPD_100G_RS;
1382			break;
1383		default:
1384			return -EIO;
1385		}
1386	} else {
1387		switch (serdes) {
1388		case ICE_PTP_SERDES_1G:
1389			link = ICE_PTP_LNK_SPD_1G;
1390			break;
1391		case ICE_PTP_SERDES_10G:
1392			link = ICE_PTP_LNK_SPD_10G;
1393			break;
1394		case ICE_PTP_SERDES_25G:
1395			link = ICE_PTP_LNK_SPD_25G;
1396			break;
1397		case ICE_PTP_SERDES_40G:
1398			link = ICE_PTP_LNK_SPD_40G;
1399			break;
1400		case ICE_PTP_SERDES_50G:
1401			link = ICE_PTP_LNK_SPD_50G;
1402			break;
1403		default:
1404			return -EIO;
1405		}
1406	}
1407
1408	if (link_out)
1409		*link_out = link;
1410	if (fec_out)
1411		*fec_out = fec;
1412
1413	return 0;
1414}
1415
1416/**
1417 * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
1418 * @hw: pointer to HW struct
1419 * @port: to configure the quad for
1420 */
1421static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
1422{
1423	enum ice_ptp_link_spd link_spd;
1424	int err;
1425	u32 val;
1426	u8 quad;
1427
1428	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
1429	if (err) {
1430		ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
1431			  err);
1432		return;
1433	}
1434
1435	quad = port / ICE_PORTS_PER_QUAD;
1436
1437	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
1438	if (err) {
1439		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
1440			  err);
1441		return;
1442	}
1443
1444	if (link_spd >= ICE_PTP_LNK_SPD_40G)
1445		val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1446	else
1447		val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1448
1449	err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
1450	if (err) {
1451		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
1452			  err);
1453		return;
1454	}
1455}
1456
1457/**
1458 * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
1459 * @hw: pointer to the HW structure
1460 * @port: the port to configure
1461 *
1462 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
1463 * hardware clock time units (TUs). That is, determine the number of TUs per
1464 * serdes unit interval, and program the UIX registers with this conversion.
1465 *
1466 * This conversion is used as part of the calibration process when determining
1467 * the additional error of a timestamp vs the real time of transmission or
1468 * receipt of the packet.
1469 *
1470 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
1471 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
1472 *
1473 * To calculate the conversion ratio, we use the following facts:
1474 *
1475 * a) the clock frequency in Hz (cycles per second)
1476 * b) the number of TUs per cycle (the increment value of the clock)
1477 * c) 1 second per 1 billion nanoseconds
1478 * d) the duration of 66 UIs in nanoseconds
1479 *
1480 * Given these facts, we can use the following table to work out what ratios
1481 * to multiply in order to get the number of TUs per 66 UIs:
1482 *
1483 * cycles |   1 second   | incval (TUs) | nanoseconds
1484 * -------+--------------+--------------+-------------
1485 * second | 1 billion ns |    cycle     |   66 UIs
1486 *
1487 * To perform the multiplication using integers without too much loss of
1488 * precision, we can take use the following equation:
1489 *
1490 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
1491 *
1492 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
1493 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
1494 *
1495 * The increment value has a maximum expected range of about 34 bits, while
1496 * the frequency value is about 29 bits. Multiplying these values shouldn't
1497 * overflow the 64 bits. However, we must then further multiply them again by
1498 * the Serdes unit interval duration. To avoid overflow here, we split the
1499 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
1500 * a divide by 390,625,000. This does lose some precision, but avoids
1501 * miscalculation due to arithmetic overflow.
1502 */
1503static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
1504{
1505	u64 cur_freq, clk_incval, tu_per_sec, uix;
1506	int err;
1507
1508	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1509	clk_incval = ice_ptp_read_src_incval(hw);
1510
1511	/* Calculate TUs per second divided by 256 */
1512	tu_per_sec = (cur_freq * clk_incval) >> 8;
1513
1514#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
1515#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
1516
1517	/* Program the 10Gb/40Gb conversion ratio */
1518	uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
1519
1520	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
1521					 uix);
1522	if (err) {
1523		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
1524			  err);
1525		return err;
1526	}
1527
1528	/* Program the 25Gb/100Gb conversion ratio */
1529	uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
1530
1531	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
1532					 uix);
1533	if (err) {
1534		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
1535			  err);
1536		return err;
1537	}
1538
1539	return 0;
1540}
1541
1542/**
1543 * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
1544 * @hw: pointer to the HW struct
1545 * @port: port to configure
1546 *
1547 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1548 * timestamp calibration process. This depends on the link speed, as the PHY
1549 * uses different markers depending on the speed.
1550 *
1551 * 1Gb/10Gb/25Gb:
1552 * - Tx/Rx PAR/PCS markers
1553 *
1554 * 25Gb RS:
1555 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1556 *
1557 * 40Gb/50Gb:
1558 * - Tx/Rx PAR/PCS markers
1559 * - Rx Deskew PAR/PCS markers
1560 *
1561 * 50G RS and 100GB RS:
1562 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1563 * - Rx Deskew PAR/PCS markers
1564 * - Tx PAR/PCS markers
1565 *
1566 * To calculate the conversion, we use the PHC clock frequency (cycles per
1567 * second), the increment value (TUs per cycle), and the related PHY clock
1568 * frequency to calculate the TUs per unit of the PHY link clock. The
1569 * following table shows how the units convert:
1570 *
1571 * cycles |  TUs  | second
1572 * -------+-------+--------
1573 * second | cycle | cycles
1574 *
1575 * For each conversion register, look up the appropriate frequency from the
1576 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
1577 * this to the appropriate register, preparing hardware to perform timestamp
1578 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
1579 * in order to calibrate for the internal PHY delays.
1580 *
1581 * Note that the increment value ranges up to ~34 bits, and the clock
1582 * frequency is ~29 bits, so multiplying them together should fit within the
1583 * 64 bit arithmetic.
1584 */
1585static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
1586{
1587	u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
1588	enum ice_ptp_link_spd link_spd;
1589	enum ice_ptp_fec_mode fec_mode;
1590	int err;
1591
1592	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1593	if (err)
1594		return err;
1595
1596	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1597	clk_incval = ice_ptp_read_src_incval(hw);
1598
1599	/* Calculate TUs per cycle of the PHC clock */
1600	tu_per_sec = cur_freq * clk_incval;
1601
1602	/* For each PHY conversion register, look up the appropriate link
1603	 * speed frequency and determine the TUs per that clock's cycle time.
1604	 * Split this into a high and low value and then program the
1605	 * appropriate register. If that link speed does not use the
1606	 * associated register, write zeros to clear it instead.
1607	 */
1608
1609	/* P_REG_PAR_TX_TUS */
1610	if (e822_vernier[link_spd].tx_par_clk)
1611		phy_tus = div_u64(tu_per_sec,
1612				  e822_vernier[link_spd].tx_par_clk);
1613	else
1614		phy_tus = 0;
1615
1616	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
1617					 phy_tus);
1618	if (err)
1619		return err;
1620
1621	/* P_REG_PAR_RX_TUS */
1622	if (e822_vernier[link_spd].rx_par_clk)
1623		phy_tus = div_u64(tu_per_sec,
1624				  e822_vernier[link_spd].rx_par_clk);
1625	else
1626		phy_tus = 0;
1627
1628	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
1629					 phy_tus);
1630	if (err)
1631		return err;
1632
1633	/* P_REG_PCS_TX_TUS */
1634	if (e822_vernier[link_spd].tx_pcs_clk)
1635		phy_tus = div_u64(tu_per_sec,
1636				  e822_vernier[link_spd].tx_pcs_clk);
1637	else
1638		phy_tus = 0;
1639
1640	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
1641					 phy_tus);
1642	if (err)
1643		return err;
1644
1645	/* P_REG_PCS_RX_TUS */
1646	if (e822_vernier[link_spd].rx_pcs_clk)
1647		phy_tus = div_u64(tu_per_sec,
1648				  e822_vernier[link_spd].rx_pcs_clk);
1649	else
1650		phy_tus = 0;
1651
1652	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
1653					 phy_tus);
1654	if (err)
1655		return err;
1656
1657	/* P_REG_DESK_PAR_TX_TUS */
1658	if (e822_vernier[link_spd].tx_desk_rsgb_par)
1659		phy_tus = div_u64(tu_per_sec,
1660				  e822_vernier[link_spd].tx_desk_rsgb_par);
1661	else
1662		phy_tus = 0;
1663
1664	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
1665					 phy_tus);
1666	if (err)
1667		return err;
1668
1669	/* P_REG_DESK_PAR_RX_TUS */
1670	if (e822_vernier[link_spd].rx_desk_rsgb_par)
1671		phy_tus = div_u64(tu_per_sec,
1672				  e822_vernier[link_spd].rx_desk_rsgb_par);
1673	else
1674		phy_tus = 0;
1675
1676	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
1677					 phy_tus);
1678	if (err)
1679		return err;
1680
1681	/* P_REG_DESK_PCS_TX_TUS */
1682	if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
1683		phy_tus = div_u64(tu_per_sec,
1684				  e822_vernier[link_spd].tx_desk_rsgb_pcs);
1685	else
1686		phy_tus = 0;
1687
1688	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
1689					 phy_tus);
1690	if (err)
1691		return err;
1692
1693	/* P_REG_DESK_PCS_RX_TUS */
1694	if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
1695		phy_tus = div_u64(tu_per_sec,
1696				  e822_vernier[link_spd].rx_desk_rsgb_pcs);
1697	else
1698		phy_tus = 0;
1699
1700	return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
1701					  phy_tus);
1702}
1703
1704/**
1705 * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
1706 * @hw: pointer to the HW struct
1707 * @link_spd: the Link speed to calculate for
1708 *
1709 * Calculate the fixed offset due to known static latency data.
1710 */
1711static u64
1712ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
1713{
1714	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
1715
1716	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1717	clk_incval = ice_ptp_read_src_incval(hw);
1718
1719	/* Calculate TUs per second */
1720	tu_per_sec = cur_freq * clk_incval;
1721
1722	/* Calculate number of TUs to add for the fixed Tx latency. Since the
1723	 * latency measurement is in 1/100th of a nanosecond, we need to
1724	 * multiply by tu_per_sec and then divide by 1e11. This calculation
1725	 * overflows 64 bit integer arithmetic, so break it up into two
1726	 * divisions by 1e4 first then by 1e7.
1727	 */
1728	fixed_offset = div_u64(tu_per_sec, 10000);
1729	fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
1730	fixed_offset = div_u64(fixed_offset, 10000000);
1731
1732	return fixed_offset;
1733}
1734
1735/**
1736 * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
1737 * @hw: pointer to the HW struct
1738 * @port: the PHY port to configure
1739 *
1740 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
1741 * adjust Tx timestamps by. This is calculated by combining some known static
1742 * latency along with the Vernier offset computations done by hardware.
1743 *
1744 * This function will not return successfully until the Tx offset calculations
1745 * have been completed, which requires waiting until at least one packet has
1746 * been transmitted by the device. It is safe to call this function
1747 * periodically until calibration succeeds, as it will only program the offset
1748 * once.
1749 *
1750 * To avoid overflow, when calculating the offset based on the known static
1751 * latency values, we use measurements in 1/100th of a nanosecond, and divide
1752 * the TUs per second up front. This avoids overflow while allowing
1753 * calculation of the adjustment using integer arithmetic.
1754 *
1755 * Returns zero on success, -EBUSY if the hardware vernier offset
1756 * calibration has not completed, or another error code on failure.
1757 */
1758int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
1759{
1760	enum ice_ptp_link_spd link_spd;
1761	enum ice_ptp_fec_mode fec_mode;
1762	u64 total_offset, val;
1763	int err;
1764	u32 reg;
1765
1766	/* Nothing to do if we've already programmed the offset */
1767	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, &reg);
1768	if (err) {
1769		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
1770			  port, err);
1771		return err;
1772	}
1773
1774	if (reg)
1775		return 0;
1776
1777	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &reg);
1778	if (err) {
1779		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
1780			  port, err);
1781		return err;
1782	}
1783
1784	if (!(reg & P_REG_TX_OV_STATUS_OV_M))
1785		return -EBUSY;
1786
1787	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1788	if (err)
1789		return err;
1790
1791	total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
1792
1793	/* Read the first Vernier offset from the PHY register and add it to
1794	 * the total offset.
1795	 */
1796	if (link_spd == ICE_PTP_LNK_SPD_1G ||
1797	    link_spd == ICE_PTP_LNK_SPD_10G ||
1798	    link_spd == ICE_PTP_LNK_SPD_25G ||
1799	    link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1800	    link_spd == ICE_PTP_LNK_SPD_40G ||
1801	    link_spd == ICE_PTP_LNK_SPD_50G) {
1802		err = ice_read_64b_phy_reg_e822(hw, port,
1803						P_REG_PAR_PCS_TX_OFFSET_L,
1804						&val);
1805		if (err)
1806			return err;
1807
1808		total_offset += val;
1809	}
1810
1811	/* For Tx, we only need to use the second Vernier offset for
1812	 * multi-lane link speeds with RS-FEC. The lanes will always be
1813	 * aligned.
1814	 */
1815	if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1816	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1817		err = ice_read_64b_phy_reg_e822(hw, port,
1818						P_REG_PAR_TX_TIME_L,
1819						&val);
1820		if (err)
1821			return err;
1822
1823		total_offset += val;
1824	}
1825
1826	/* Now that the total offset has been calculated, program it to the
1827	 * PHY and indicate that the Tx offset is ready. After this,
1828	 * timestamps will be enabled.
1829	 */
1830	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
1831					 total_offset);
1832	if (err)
1833		return err;
1834
1835	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
1836	if (err)
1837		return err;
1838
1839	dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
1840		 port);
1841
1842	return 0;
1843}
1844
1845/**
1846 * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
1847 * @hw: pointer to the HW struct
1848 * @port: the PHY port to adjust for
1849 * @link_spd: the current link speed of the PHY
1850 * @fec_mode: the current FEC mode of the PHY
1851 * @pmd_adj: on return, the amount to adjust the Rx total offset by
1852 *
1853 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
1854 * This varies by link speed and FEC mode. The value calculated accounts for
1855 * various delays caused when receiving a packet.
1856 */
1857static int
1858ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
1859			  enum ice_ptp_link_spd link_spd,
1860			  enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
1861{
1862	u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
1863	u8 pmd_align;
1864	u32 val;
1865	int err;
1866
1867	err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
1868	if (err) {
1869		ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
1870			  err);
1871		return err;
1872	}
1873
1874	pmd_align = (u8)val;
1875
1876	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1877	clk_incval = ice_ptp_read_src_incval(hw);
1878
1879	/* Calculate TUs per second */
1880	tu_per_sec = cur_freq * clk_incval;
1881
1882	/* The PMD alignment adjustment measurement depends on the link speed,
1883	 * and whether FEC is enabled. For each link speed, the alignment
1884	 * adjustment is calculated by dividing a value by the length of
1885	 * a Time Unit in nanoseconds.
1886	 *
1887	 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
1888	 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
1889	 * 10G w/FEC: align * 0.1 * 32/33
1890	 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
1891	 * 25G w/FEC: align * 0.4 * 32/33
1892	 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
1893	 * 40G w/FEC: align * 0.1 * 32/33
1894	 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
1895	 * 50G w/FEC: align * 0.8 * 32/33
1896	 *
1897	 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
1898	 *
1899	 * To allow for calculating this value using integer arithmetic, we
1900	 * instead start with the number of TUs per second, (inverse of the
1901	 * length of a Time Unit in nanoseconds), multiply by a value based
1902	 * on the PMD alignment register, and then divide by the right value
1903	 * calculated based on the table above. To avoid integer overflow this
1904	 * division is broken up into a step of dividing by 125 first.
1905	 */
1906	if (link_spd == ICE_PTP_LNK_SPD_1G) {
1907		if (pmd_align == 4)
1908			mult = 10;
1909		else
1910			mult = (pmd_align + 6) % 10;
1911	} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
1912		   link_spd == ICE_PTP_LNK_SPD_25G ||
1913		   link_spd == ICE_PTP_LNK_SPD_40G ||
1914		   link_spd == ICE_PTP_LNK_SPD_50G) {
1915		/* If Clause 74 FEC, always calculate PMD adjust */
1916		if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
1917			mult = pmd_align;
1918		else
1919			mult = 0;
1920	} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1921		   link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1922		   link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1923		if (pmd_align < 17)
1924			mult = pmd_align + 40;
1925		else
1926			mult = pmd_align;
1927	} else {
1928		ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
1929			  link_spd);
1930		mult = 0;
1931	}
1932
1933	/* In some cases, there's no need to adjust for the PMD alignment */
1934	if (!mult) {
1935		*pmd_adj = 0;
1936		return 0;
1937	}
1938
1939	/* Calculate the adjustment by multiplying TUs per second by the
1940	 * appropriate multiplier and divisor. To avoid overflow, we first
1941	 * divide by 125, and then handle remaining divisor based on the link
1942	 * speed pmd_adj_divisor value.
1943	 */
1944	adj = div_u64(tu_per_sec, 125);
1945	adj *= mult;
1946	adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
1947
1948	/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
1949	 * cycle count is necessary.
1950	 */
1951	if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
1952		u64 cycle_adj;
1953		u8 rx_cycle;
1954
1955		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
1956					    &val);
1957		if (err) {
1958			ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
1959				  err);
1960			return err;
1961		}
1962
1963		rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
1964		if (rx_cycle) {
1965			mult = (4 - rx_cycle) * 40;
1966
1967			cycle_adj = div_u64(tu_per_sec, 125);
1968			cycle_adj *= mult;
1969			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1970
1971			adj += cycle_adj;
1972		}
1973	} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
1974		u64 cycle_adj;
1975		u8 rx_cycle;
1976
1977		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
1978					    &val);
1979		if (err) {
1980			ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
1981				  err);
1982			return err;
1983		}
1984
1985		rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
1986		if (rx_cycle) {
1987			mult = rx_cycle * 40;
1988
1989			cycle_adj = div_u64(tu_per_sec, 125);
1990			cycle_adj *= mult;
1991			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1992
1993			adj += cycle_adj;
1994		}
1995	}
1996
1997	/* Return the calculated adjustment */
1998	*pmd_adj = adj;
1999
2000	return 0;
2001}
2002
2003/**
2004 * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
2005 * @hw: pointer to HW struct
2006 * @link_spd: The Link speed to calculate for
2007 *
2008 * Determine the fixed Rx latency for a given link speed.
2009 */
2010static u64
2011ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
2012{
2013	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
2014
2015	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
2016	clk_incval = ice_ptp_read_src_incval(hw);
2017
2018	/* Calculate TUs per second */
2019	tu_per_sec = cur_freq * clk_incval;
2020
2021	/* Calculate number of TUs to add for the fixed Rx latency. Since the
2022	 * latency measurement is in 1/100th of a nanosecond, we need to
2023	 * multiply by tu_per_sec and then divide by 1e11. This calculation
2024	 * overflows 64 bit integer arithmetic, so break it up into two
2025	 * divisions by 1e4 first then by 1e7.
2026	 */
2027	fixed_offset = div_u64(tu_per_sec, 10000);
2028	fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
2029	fixed_offset = div_u64(fixed_offset, 10000000);
2030
2031	return fixed_offset;
2032}
2033
2034/**
2035 * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
2036 * @hw: pointer to the HW struct
2037 * @port: the PHY port to configure
2038 *
2039 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
2040 * adjust Rx timestamps by. This combines calculations from the Vernier offset
2041 * measurements taken in hardware with some data about known fixed delay as
2042 * well as adjusting for multi-lane alignment delay.
2043 *
2044 * This function will not return successfully until the Rx offset calculations
2045 * have been completed, which requires waiting until at least one packet has
2046 * been received by the device. It is safe to call this function periodically
2047 * until calibration succeeds, as it will only program the offset once.
2048 *
2049 * This function must be called only after the offset registers are valid,
2050 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
2051 * has measured the offset.
2052 *
2053 * To avoid overflow, when calculating the offset based on the known static
2054 * latency values, we use measurements in 1/100th of a nanosecond, and divide
2055 * the TUs per second up front. This avoids overflow while allowing
2056 * calculation of the adjustment using integer arithmetic.
2057 *
2058 * Returns zero on success, -EBUSY if the hardware vernier offset
2059 * calibration has not completed, or another error code on failure.
2060 */
2061int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
2062{
2063	enum ice_ptp_link_spd link_spd;
2064	enum ice_ptp_fec_mode fec_mode;
2065	u64 total_offset, pmd, val;
2066	int err;
2067	u32 reg;
2068
2069	/* Nothing to do if we've already programmed the offset */
2070	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, &reg);
2071	if (err) {
2072		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
2073			  port, err);
2074		return err;
2075	}
2076
2077	if (reg)
2078		return 0;
2079
2080	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &reg);
2081	if (err) {
2082		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
2083			  port, err);
2084		return err;
2085	}
2086
2087	if (!(reg & P_REG_RX_OV_STATUS_OV_M))
2088		return -EBUSY;
2089
2090	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
2091	if (err)
2092		return err;
2093
2094	total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
2095
2096	/* Read the first Vernier offset from the PHY register and add it to
2097	 * the total offset.
2098	 */
2099	err = ice_read_64b_phy_reg_e822(hw, port,
2100					P_REG_PAR_PCS_RX_OFFSET_L,
2101					&val);
2102	if (err)
2103		return err;
2104
2105	total_offset += val;
2106
2107	/* For Rx, all multi-lane link speeds include a second Vernier
2108	 * calibration, because the lanes might not be aligned.
2109	 */
2110	if (link_spd == ICE_PTP_LNK_SPD_40G ||
2111	    link_spd == ICE_PTP_LNK_SPD_50G ||
2112	    link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2113	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2114		err = ice_read_64b_phy_reg_e822(hw, port,
2115						P_REG_PAR_RX_TIME_L,
2116						&val);
2117		if (err)
2118			return err;
2119
2120		total_offset += val;
2121	}
2122
2123	/* In addition, Rx must account for the PMD alignment */
2124	err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
2125	if (err)
2126		return err;
2127
2128	/* For RS-FEC, this adjustment adds delay, but for other modes, it
2129	 * subtracts delay.
2130	 */
2131	if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
2132		total_offset += pmd;
2133	else
2134		total_offset -= pmd;
2135
2136	/* Now that the total offset has been calculated, program it to the
2137	 * PHY and indicate that the Rx offset is ready. After this,
2138	 * timestamps will be enabled.
2139	 */
2140	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
2141					 total_offset);
2142	if (err)
2143		return err;
2144
2145	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
2146	if (err)
2147		return err;
2148
2149	dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
2150		 port);
2151
2152	return 0;
2153}
2154
2155/**
2156 * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
2157 * @hw: pointer to the HW struct
2158 * @port: the PHY port to read
2159 * @phy_time: on return, the 64bit PHY timer value
2160 * @phc_time: on return, the lower 64bits of PHC time
2161 *
2162 * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC
2163 * timer values.
2164 */
2165static int
2166ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
2167			       u64 *phc_time)
2168{
2169	u64 tx_time, rx_time;
2170	u32 zo, lo;
2171	u8 tmr_idx;
2172	int err;
2173
2174	tmr_idx = ice_get_ptp_src_clock_index(hw);
2175
2176	/* Prepare the PHC timer for a READ_TIME capture command */
2177	ice_ptp_src_cmd(hw, READ_TIME);
2178
2179	/* Prepare the PHY timer for a READ_TIME capture command */
2180	err = ice_ptp_one_port_cmd(hw, port, READ_TIME);
2181	if (err)
2182		return err;
2183
2184	/* Issue the sync to start the READ_TIME capture */
2185	ice_ptp_exec_tmr_cmd(hw);
2186
2187	/* Read the captured PHC time from the shadow time registers */
2188	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2189	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2190	*phc_time = (u64)lo << 32 | zo;
2191
2192	/* Read the captured PHY time from the PHY shadow registers */
2193	err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
2194	if (err)
2195		return err;
2196
2197	/* If the PHY Tx and Rx timers don't match, log a warning message.
2198	 * Note that this should not happen in normal circumstances since the
2199	 * driver always programs them together.
2200	 */
2201	if (tx_time != rx_time)
2202		dev_warn(ice_hw_to_dev(hw),
2203			 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2204			 port, (unsigned long long)tx_time,
2205			 (unsigned long long)rx_time);
2206
2207	*phy_time = tx_time;
2208
2209	return 0;
2210}
2211
2212/**
2213 * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
2214 * @hw: pointer to the HW struct
2215 * @port: the PHY port to synchronize
2216 *
2217 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2218 * This is done by issuing a READ_TIME command which triggers a simultaneous
2219 * read of the PHY timer and PHC timer. Then we use the difference to
2220 * calculate an appropriate 2s complement addition to add to the PHY timer in
2221 * order to ensure it reads the same value as the primary PHC timer.
2222 */
2223static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
2224{
2225	u64 phc_time, phy_time, difference;
2226	int err;
2227
2228	if (!ice_ptp_lock(hw)) {
2229		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2230		return -EBUSY;
2231	}
2232
2233	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2234	if (err)
2235		goto err_unlock;
2236
2237	/* Calculate the amount required to add to the port time in order for
2238	 * it to match the PHC time.
2239	 *
2240	 * Note that the port adjustment is done using 2s complement
2241	 * arithmetic. This is convenient since it means that we can simply
2242	 * calculate the difference between the PHC time and the port time,
2243	 * and it will be interpreted correctly.
2244	 */
2245	difference = phc_time - phy_time;
2246
2247	err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
2248	if (err)
2249		goto err_unlock;
2250
2251	err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME);
2252	if (err)
2253		goto err_unlock;
2254
2255	/* Issue the sync to activate the time adjustment */
2256	ice_ptp_exec_tmr_cmd(hw);
2257
2258	/* Re-capture the timer values to flush the command registers and
2259	 * verify that the time was properly adjusted.
2260	 */
2261	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2262	if (err)
2263		goto err_unlock;
2264
2265	dev_info(ice_hw_to_dev(hw),
2266		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2267		 port, (unsigned long long)phy_time,
2268		 (unsigned long long)phc_time);
2269
2270	ice_ptp_unlock(hw);
2271
2272	return 0;
2273
2274err_unlock:
2275	ice_ptp_unlock(hw);
2276	return err;
2277}
2278
2279/**
2280 * ice_stop_phy_timer_e822 - Stop the PHY clock timer
2281 * @hw: pointer to the HW struct
2282 * @port: the PHY port to stop
2283 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
2284 *
2285 * Stop the clock of a PHY port. This must be done as part of the flow to
2286 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2287 * initialized or when link speed changes.
2288 */
2289int
2290ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
2291{
2292	int err;
2293	u32 val;
2294
2295	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
2296	if (err)
2297		return err;
2298
2299	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
2300	if (err)
2301		return err;
2302
2303	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2304	if (err)
2305		return err;
2306
2307	val &= ~P_REG_PS_START_M;
2308	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2309	if (err)
2310		return err;
2311
2312	val &= ~P_REG_PS_ENA_CLK_M;
2313	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2314	if (err)
2315		return err;
2316
2317	if (soft_reset) {
2318		val |= P_REG_PS_SFT_RESET_M;
2319		err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2320		if (err)
2321			return err;
2322	}
2323
2324	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2325
2326	return 0;
2327}
2328
2329/**
2330 * ice_start_phy_timer_e822 - Start the PHY clock timer
2331 * @hw: pointer to the HW struct
2332 * @port: the PHY port to start
2333 *
2334 * Start the clock of a PHY port. This must be done as part of the flow to
2335 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2336 * initialized or when link speed changes.
2337 *
2338 * Hardware will take Vernier measurements on Tx or Rx of packets.
2339 */
2340int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port)
2341{
2342	u32 lo, hi, val;
2343	u64 incval;
2344	u8 tmr_idx;
2345	int err;
2346
2347	tmr_idx = ice_get_ptp_src_clock_index(hw);
2348
2349	err = ice_stop_phy_timer_e822(hw, port, false);
2350	if (err)
2351		return err;
2352
2353	ice_phy_cfg_lane_e822(hw, port);
2354
2355	err = ice_phy_cfg_uix_e822(hw, port);
2356	if (err)
2357		return err;
2358
2359	err = ice_phy_cfg_parpcs_e822(hw, port);
2360	if (err)
2361		return err;
2362
2363	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2364	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2365	incval = (u64)hi << 32 | lo;
2366
2367	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
2368	if (err)
2369		return err;
2370
2371	err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2372	if (err)
2373		return err;
2374
2375	ice_ptp_exec_tmr_cmd(hw);
2376
2377	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2378	if (err)
2379		return err;
2380
2381	val |= P_REG_PS_SFT_RESET_M;
2382	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2383	if (err)
2384		return err;
2385
2386	val |= P_REG_PS_START_M;
2387	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2388	if (err)
2389		return err;
2390
2391	val &= ~P_REG_PS_SFT_RESET_M;
2392	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2393	if (err)
2394		return err;
2395
2396	err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2397	if (err)
2398		return err;
2399
2400	ice_ptp_exec_tmr_cmd(hw);
2401
2402	val |= P_REG_PS_ENA_CLK_M;
2403	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2404	if (err)
2405		return err;
2406
2407	val |= P_REG_PS_LOAD_OFFSET_M;
2408	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2409	if (err)
2410		return err;
2411
2412	ice_ptp_exec_tmr_cmd(hw);
2413
2414	err = ice_sync_phy_timer_e822(hw, port);
2415	if (err)
2416		return err;
2417
2418	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2419
2420	return 0;
2421}
2422
2423/**
2424 * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register
2425 * @hw: pointer to the HW struct
2426 * @quad: the timestamp quad to read from
2427 * @tstamp_ready: contents of the Tx memory status register
2428 *
2429 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
2430 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2431 * ready to be captured from the PHY timestamp block.
2432 */
2433static int
2434ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
2435{
2436	u32 hi, lo;
2437	int err;
2438
2439	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
2440	if (err) {
2441		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
2442			  quad, err);
2443		return err;
2444	}
2445
2446	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
2447	if (err) {
2448		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
2449			  quad, err);
2450		return err;
2451	}
2452
2453	*tstamp_ready = (u64)hi << 32 | (u64)lo;
2454
2455	return 0;
2456}
2457
2458/* E810 functions
2459 *
2460 * The following functions operate on the E810 series devices which use
2461 * a separate external PHY.
2462 */
2463
2464/**
2465 * ice_read_phy_reg_e810 - Read register from external PHY on E810
2466 * @hw: pointer to the HW struct
2467 * @addr: the address to read from
2468 * @val: On return, the value read from the PHY
2469 *
2470 * Read a register from the external PHY on the E810 device.
2471 */
2472static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
2473{
2474	struct ice_sbq_msg_input msg = {0};
2475	int err;
2476
2477	msg.msg_addr_low = lower_16_bits(addr);
2478	msg.msg_addr_high = upper_16_bits(addr);
2479	msg.opcode = ice_sbq_msg_rd;
2480	msg.dest_dev = rmn_0;
2481
2482	err = ice_sbq_rw_reg(hw, &msg);
2483	if (err) {
2484		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2485			  err);
2486		return err;
2487	}
2488
2489	*val = msg.data;
2490
2491	return 0;
2492}
2493
2494/**
2495 * ice_write_phy_reg_e810 - Write register on external PHY on E810
2496 * @hw: pointer to the HW struct
2497 * @addr: the address to writem to
2498 * @val: the value to write to the PHY
2499 *
2500 * Write a value to a register of the external PHY on the E810 device.
2501 */
2502static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
2503{
2504	struct ice_sbq_msg_input msg = {0};
2505	int err;
2506
2507	msg.msg_addr_low = lower_16_bits(addr);
2508	msg.msg_addr_high = upper_16_bits(addr);
2509	msg.opcode = ice_sbq_msg_wr;
2510	msg.dest_dev = rmn_0;
2511	msg.data = val;
2512
2513	err = ice_sbq_rw_reg(hw, &msg);
2514	if (err) {
2515		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2516			  err);
2517		return err;
2518	}
2519
2520	return 0;
2521}
2522
2523/**
2524 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
2525 * @hw: pointer to the HW struct
2526 * @idx: the timestamp index to read
2527 * @hi: 8 bit timestamp high value
2528 * @lo: 32 bit timestamp low value
2529 *
2530 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2531 * timestamp block of the external PHY on the E810 device using the low latency
2532 * timestamp read.
2533 */
2534static int
2535ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
2536{
2537	u32 val;
2538	u8 i;
2539
2540	/* Write TS index to read to the PF register so the FW can read it */
2541	val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
2542	wr32(hw, PF_SB_ATQBAL, val);
2543
2544	/* Read the register repeatedly until the FW provides us the TS */
2545	for (i = TS_LL_READ_RETRIES; i > 0; i--) {
2546		val = rd32(hw, PF_SB_ATQBAL);
2547
2548		/* When the bit is cleared, the TS is ready in the register */
2549		if (!(FIELD_GET(TS_LL_READ_TS, val))) {
2550			/* High 8 bit value of the TS is on the bits 16:23 */
2551			*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
2552
2553			/* Read the low 32 bit value and set the TS valid bit */
2554			*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
2555			return 0;
2556		}
2557
2558		udelay(10);
2559	}
2560
2561	/* FW failed to provide the TS in time */
2562	ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
2563	return -EINVAL;
2564}
2565
2566/**
2567 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
2568 * @hw: pointer to the HW struct
2569 * @lport: the lport to read from
2570 * @idx: the timestamp index to read
2571 * @hi: 8 bit timestamp high value
2572 * @lo: 32 bit timestamp low value
2573 *
2574 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2575 * timestamp block of the external PHY on the E810 device using sideband queue.
2576 */
2577static int
2578ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
2579			     u32 *lo)
2580{
2581	u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2582	u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2583	u32 lo_val, hi_val;
2584	int err;
2585
2586	err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
2587	if (err) {
2588		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
2589			  err);
2590		return err;
2591	}
2592
2593	err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
2594	if (err) {
2595		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
2596			  err);
2597		return err;
2598	}
2599
2600	*lo = lo_val;
2601	*hi = (u8)hi_val;
2602
2603	return 0;
2604}
2605
2606/**
2607 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
2608 * @hw: pointer to the HW struct
2609 * @lport: the lport to read from
2610 * @idx: the timestamp index to read
2611 * @tstamp: on return, the 40bit timestamp value
2612 *
2613 * Read a 40bit timestamp value out of the timestamp block of the external PHY
2614 * on the E810 device.
2615 */
2616static int
2617ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
2618{
2619	u32 lo = 0;
2620	u8 hi = 0;
2621	int err;
2622
2623	if (hw->dev_caps.ts_dev_info.ts_ll_read)
2624		err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
2625	else
2626		err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
2627
2628	if (err)
2629		return err;
2630
2631	/* For E810 devices, the timestamp is reported with the lower 32 bits
2632	 * in the low register, and the upper 8 bits in the high register.
2633	 */
2634	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
2635
2636	return 0;
2637}
2638
2639/**
2640 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
2641 * @hw: pointer to the HW struct
2642 * @lport: the lport to read from
2643 * @idx: the timestamp index to reset
2644 *
2645 * Clear a timestamp, resetting its valid bit, from the timestamp block of the
2646 * external PHY on the E810 device.
2647 */
2648static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
2649{
2650	u32 lo_addr, hi_addr;
2651	int err;
2652
2653	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2654	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2655
2656	err = ice_write_phy_reg_e810(hw, lo_addr, 0);
2657	if (err) {
2658		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
2659			  err);
2660		return err;
2661	}
2662
2663	err = ice_write_phy_reg_e810(hw, hi_addr, 0);
2664	if (err) {
2665		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
2666			  err);
2667		return err;
2668	}
2669
2670	return 0;
2671}
2672
2673/**
2674 * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
2675 * @hw: pointer to HW struct
2676 *
2677 * Enable the timesync PTP functionality for the external PHY connected to
2678 * this function.
2679 */
2680int ice_ptp_init_phy_e810(struct ice_hw *hw)
2681{
2682	u8 tmr_idx;
2683	int err;
2684
2685	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2686	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
2687				     GLTSYN_ENA_TSYN_ENA_M);
2688	if (err)
2689		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
2690			  err);
2691
2692	return err;
2693}
2694
2695/**
2696 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
2697 * @hw: pointer to HW struct
2698 *
2699 * Perform E810-specific PTP hardware clock initialization steps.
2700 */
2701static int ice_ptp_init_phc_e810(struct ice_hw *hw)
2702{
2703	/* Ensure synchronization delay is zero */
2704	wr32(hw, GLTSYN_SYNC_DLAY, 0);
2705
2706	/* Initialize the PHY */
2707	return ice_ptp_init_phy_e810(hw);
2708}
2709
2710/**
2711 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
2712 * @hw: Board private structure
2713 * @time: Time to initialize the PHY port clock to
2714 *
2715 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
2716 * initial clock time. The time will not actually be programmed until the
2717 * driver issues an INIT_TIME command.
2718 *
2719 * The time value is the upper 32 bits of the PHY timer, usually in units of
2720 * nominal nanoseconds.
2721 */
2722static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
2723{
2724	u8 tmr_idx;
2725	int err;
2726
2727	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2728	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
2729	if (err) {
2730		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
2731			  err);
2732		return err;
2733	}
2734
2735	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
2736	if (err) {
2737		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
2738			  err);
2739		return err;
2740	}
2741
2742	return 0;
2743}
2744
2745/**
2746 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
2747 * @hw: pointer to HW struct
2748 * @adj: adjustment value to program
2749 *
2750 * Prepare the PHY port for an atomic adjustment by programming the PHY
2751 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
2752 * is completed by issuing an ADJ_TIME sync command.
2753 *
2754 * The adjustment value only contains the portion used for the upper 32bits of
2755 * the PHY timer, usually in units of nominal nanoseconds. Negative
2756 * adjustments are supported using 2s complement arithmetic.
2757 */
2758static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
2759{
2760	u8 tmr_idx;
2761	int err;
2762
2763	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2764
2765	/* Adjustments are represented as signed 2's complement values in
2766	 * nanoseconds. Sub-nanosecond adjustment is not supported.
2767	 */
2768	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
2769	if (err) {
2770		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
2771			  err);
2772		return err;
2773	}
2774
2775	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
2776	if (err) {
2777		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
2778			  err);
2779		return err;
2780	}
2781
2782	return 0;
2783}
2784
2785/**
2786 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
2787 * @hw: pointer to HW struct
2788 * @incval: The new 40bit increment value to prepare
2789 *
2790 * Prepare the PHY port for a new increment value by programming the PHY
2791 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
2792 * completed by issuing an INIT_INCVAL command.
2793 */
2794static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
2795{
2796	u32 high, low;
2797	u8 tmr_idx;
2798	int err;
2799
2800	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2801	low = lower_32_bits(incval);
2802	high = upper_32_bits(incval);
2803
2804	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
2805	if (err) {
2806		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
2807			  err);
2808		return err;
2809	}
2810
2811	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
2812	if (err) {
2813		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
2814			  err);
2815		return err;
2816	}
2817
2818	return 0;
2819}
2820
2821/**
2822 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
2823 * @hw: pointer to HW struct
2824 * @cmd: Command to be sent to the port
2825 *
2826 * Prepare the external PHYs connected to this device for a timer sync
2827 * command.
2828 */
2829static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2830{
2831	u32 cmd_val, val;
2832	int err;
2833
2834	switch (cmd) {
2835	case INIT_TIME:
2836		cmd_val = GLTSYN_CMD_INIT_TIME;
2837		break;
2838	case INIT_INCVAL:
2839		cmd_val = GLTSYN_CMD_INIT_INCVAL;
2840		break;
2841	case ADJ_TIME:
2842		cmd_val = GLTSYN_CMD_ADJ_TIME;
2843		break;
2844	case READ_TIME:
2845		cmd_val = GLTSYN_CMD_READ_TIME;
2846		break;
2847	case ADJ_TIME_AT_TIME:
2848		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
2849		break;
2850	}
2851
2852	/* Read, modify, write */
2853	err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
2854	if (err) {
2855		ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
2856		return err;
2857	}
2858
2859	/* Modify necessary bits only and perform write */
2860	val &= ~TS_CMD_MASK_E810;
2861	val |= cmd_val;
2862
2863	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
2864	if (err) {
2865		ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
2866		return err;
2867	}
2868
2869	return 0;
2870}
2871
2872/* Device agnostic functions
2873 *
2874 * The following functions implement shared behavior common to both E822 and
2875 * E810 devices, possibly calling a device specific implementation where
2876 * necessary.
2877 */
2878
2879/**
2880 * ice_ptp_lock - Acquire PTP global semaphore register lock
2881 * @hw: pointer to the HW struct
2882 *
2883 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
2884 * was acquired, false otherwise.
2885 *
2886 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
2887 * value. If software sees the busy bit cleared, this means that this function
2888 * acquired the lock (and the busy bit is now set). If software sees the busy
2889 * bit set, it means that another function acquired the lock.
2890 *
2891 * Software must clear the busy bit with a write to release the lock for other
2892 * functions when done.
2893 */
2894bool ice_ptp_lock(struct ice_hw *hw)
2895{
2896	u32 hw_lock;
2897	int i;
2898
2899#define MAX_TRIES 15
2900
2901	for (i = 0; i < MAX_TRIES; i++) {
2902		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2903		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
2904		if (hw_lock) {
2905			/* Somebody is holding the lock */
2906			usleep_range(5000, 6000);
2907			continue;
2908		}
2909
2910		break;
2911	}
2912
2913	return !hw_lock;
2914}
2915
2916/**
2917 * ice_ptp_unlock - Release PTP global semaphore register lock
2918 * @hw: pointer to the HW struct
2919 *
2920 * Release the global PTP hardware semaphore lock. This is done by writing to
2921 * the PFTSYN_SEM register.
2922 */
2923void ice_ptp_unlock(struct ice_hw *hw)
2924{
2925	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
2926}
2927
2928/**
2929 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
2930 * @hw: pointer to HW struct
2931 * @cmd: the command to issue
2932 *
2933 * Prepare the source timer and PHY timers and then trigger the requested
2934 * command. This causes the shadow registers previously written in preparation
2935 * for the command to be synchronously applied to both the source and PHY
2936 * timers.
2937 */
2938static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2939{
2940	int err;
2941
2942	/* First, prepare the source timer */
2943	ice_ptp_src_cmd(hw, cmd);
2944
2945	/* Next, prepare the ports */
2946	if (ice_is_e810(hw))
2947		err = ice_ptp_port_cmd_e810(hw, cmd);
2948	else
2949		err = ice_ptp_port_cmd_e822(hw, cmd);
2950	if (err) {
2951		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
2952			  cmd, err);
2953		return err;
2954	}
2955
2956	/* Write the sync command register to drive both source and PHY timer
2957	 * commands synchronously
2958	 */
2959	ice_ptp_exec_tmr_cmd(hw);
2960
2961	return 0;
2962}
2963
2964/**
2965 * ice_ptp_init_time - Initialize device time to provided value
2966 * @hw: pointer to HW struct
2967 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
2968 *
2969 * Initialize the device to the specified time provided. This requires a three
2970 * step process:
2971 *
2972 * 1) write the new init time to the source timer shadow registers
2973 * 2) write the new init time to the PHY timer shadow registers
2974 * 3) issue an init_time timer command to synchronously switch both the source
2975 *    and port timers to the new init time value at the next clock cycle.
2976 */
2977int ice_ptp_init_time(struct ice_hw *hw, u64 time)
2978{
2979	u8 tmr_idx;
2980	int err;
2981
2982	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2983
2984	/* Source timers */
2985	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
2986	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
2987	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
2988
2989	/* PHY timers */
2990	/* Fill Rx and Tx ports and send msg to PHY */
2991	if (ice_is_e810(hw))
2992		err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
2993	else
2994		err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
2995	if (err)
2996		return err;
2997
2998	return ice_ptp_tmr_cmd(hw, INIT_TIME);
2999}
3000
3001/**
3002 * ice_ptp_write_incval - Program PHC with new increment value
3003 * @hw: pointer to HW struct
3004 * @incval: Source timer increment value per clock cycle
3005 *
3006 * Program the PHC with a new increment value. This requires a three-step
3007 * process:
3008 *
3009 * 1) Write the increment value to the source timer shadow registers
3010 * 2) Write the increment value to the PHY timer shadow registers
3011 * 3) Issue an INIT_INCVAL timer command to synchronously switch both the
3012 *    source and port timers to the new increment value at the next clock
3013 *    cycle.
3014 */
3015int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
3016{
3017	u8 tmr_idx;
3018	int err;
3019
3020	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3021
3022	/* Shadow Adjust */
3023	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
3024	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
3025
3026	if (ice_is_e810(hw))
3027		err = ice_ptp_prep_phy_incval_e810(hw, incval);
3028	else
3029		err = ice_ptp_prep_phy_incval_e822(hw, incval);
3030	if (err)
3031		return err;
3032
3033	return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
3034}
3035
3036/**
3037 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
3038 * @hw: pointer to HW struct
3039 * @incval: Source timer increment value per clock cycle
3040 *
3041 * Program a new PHC incval while holding the PTP semaphore.
3042 */
3043int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
3044{
3045	int err;
3046
3047	if (!ice_ptp_lock(hw))
3048		return -EBUSY;
3049
3050	err = ice_ptp_write_incval(hw, incval);
3051
3052	ice_ptp_unlock(hw);
3053
3054	return err;
3055}
3056
3057/**
3058 * ice_ptp_adj_clock - Adjust PHC clock time atomically
3059 * @hw: pointer to HW struct
3060 * @adj: Adjustment in nanoseconds
3061 *
3062 * Perform an atomic adjustment of the PHC time by the specified number of
3063 * nanoseconds. This requires a three-step process:
3064 *
3065 * 1) Write the adjustment to the source timer shadow registers
3066 * 2) Write the adjustment to the PHY timer shadow registers
3067 * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
3068 *    both the source and port timers at the next clock cycle.
3069 */
3070int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
3071{
3072	u8 tmr_idx;
3073	int err;
3074
3075	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3076
3077	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
3078	 * For an ADJ_TIME command, this set of registers represents the value
3079	 * to add to the clock time. It supports subtraction by interpreting
3080	 * the value as a 2's complement integer.
3081	 */
3082	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
3083	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
3084
3085	if (ice_is_e810(hw))
3086		err = ice_ptp_prep_phy_adj_e810(hw, adj);
3087	else
3088		err = ice_ptp_prep_phy_adj_e822(hw, adj);
3089	if (err)
3090		return err;
3091
3092	return ice_ptp_tmr_cmd(hw, ADJ_TIME);
3093}
3094
3095/**
3096 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
3097 * @hw: pointer to the HW struct
3098 * @block: the block to read from
3099 * @idx: the timestamp index to read
3100 * @tstamp: on return, the 40bit timestamp value
3101 *
3102 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
3103 * the block is the quad to read from. For E810 devices, the block is the
3104 * logical port to read from.
3105 */
3106int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
3107{
3108	if (ice_is_e810(hw))
3109		return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
3110	else
3111		return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
3112}
3113
3114/**
3115 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
3116 * @hw: pointer to the HW struct
3117 * @block: the block to read from
3118 * @idx: the timestamp index to reset
3119 *
3120 * Clear a timestamp, resetting its valid bit, from the timestamp block. For
3121 * E822 devices, the block is the quad to clear from. For E810 devices, the
3122 * block is the logical port to clear from.
3123 */
3124int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
3125{
3126	if (ice_is_e810(hw))
3127		return ice_clear_phy_tstamp_e810(hw, block, idx);
3128	else
3129		return ice_clear_phy_tstamp_e822(hw, block, idx);
3130}
3131
3132/**
3133 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
3134 * @hw: pointer to the HW struct
3135 * @port: the PHY port to read
3136 * @tstamp_ready: contents of the Tx memory status register
3137 *
3138 * E810 devices do not use a Tx memory status register. Instead simply
3139 * indicate that all timestamps are currently ready.
3140 */
3141static int
3142ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
3143{
3144	*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
3145	return 0;
3146}
3147
3148/* E810T SMA functions
3149 *
3150 * The following functions operate specifically on E810T hardware and are used
3151 * to access the extended GPIOs available.
3152 */
3153
3154/**
3155 * ice_get_pca9575_handle
3156 * @hw: pointer to the hw struct
3157 * @pca9575_handle: GPIO controller's handle
3158 *
3159 * Find and return the GPIO controller's handle in the netlist.
3160 * When found - the value will be cached in the hw structure and following calls
3161 * will return cached value
3162 */
3163static int
3164ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
3165{
3166	struct ice_aqc_get_link_topo *cmd;
3167	struct ice_aq_desc desc;
3168	int status;
3169	u8 idx;
3170
3171	/* If handle was read previously return cached value */
3172	if (hw->io_expander_handle) {
3173		*pca9575_handle = hw->io_expander_handle;
3174		return 0;
3175	}
3176
3177	/* If handle was not detected read it from the netlist */
3178	cmd = &desc.params.get_link_topo;
3179	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
3180
3181	/* Set node type to GPIO controller */
3182	cmd->addr.topo_params.node_type_ctx =
3183		(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
3184		 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
3185
3186#define SW_PCA9575_SFP_TOPO_IDX		2
3187#define SW_PCA9575_QSFP_TOPO_IDX	1
3188
3189	/* Check if the SW IO expander controlling SMA exists in the netlist. */
3190	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
3191		idx = SW_PCA9575_SFP_TOPO_IDX;
3192	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
3193		idx = SW_PCA9575_QSFP_TOPO_IDX;
3194	else
3195		return -EOPNOTSUPP;
3196
3197	cmd->addr.topo_params.index = idx;
3198
3199	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3200	if (status)
3201		return -EOPNOTSUPP;
3202
3203	/* Verify if we found the right IO expander type */
3204	if (desc.params.get_link_topo.node_part_num !=
3205		ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
3206		return -EOPNOTSUPP;
3207
3208	/* If present save the handle and return it */
3209	hw->io_expander_handle =
3210		le16_to_cpu(desc.params.get_link_topo.addr.handle);
3211	*pca9575_handle = hw->io_expander_handle;
3212
3213	return 0;
3214}
3215
3216/**
3217 * ice_read_sma_ctrl_e810t
3218 * @hw: pointer to the hw struct
3219 * @data: pointer to data to be read from the GPIO controller
3220 *
3221 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
3222 * PCA9575 expander, so only bits 3-7 in data are valid.
3223 */
3224int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
3225{
3226	int status;
3227	u16 handle;
3228	u8 i;
3229
3230	status = ice_get_pca9575_handle(hw, &handle);
3231	if (status)
3232		return status;
3233
3234	*data = 0;
3235
3236	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3237		bool pin;
3238
3239		status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3240					 &pin, NULL);
3241		if (status)
3242			break;
3243		*data |= (u8)(!pin) << i;
3244	}
3245
3246	return status;
3247}
3248
3249/**
3250 * ice_write_sma_ctrl_e810t
3251 * @hw: pointer to the hw struct
3252 * @data: data to be written to the GPIO controller
3253 *
3254 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
3255 * of the PCA9575 expander, so only bits 3-7 in data are valid.
3256 */
3257int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
3258{
3259	int status;
3260	u16 handle;
3261	u8 i;
3262
3263	status = ice_get_pca9575_handle(hw, &handle);
3264	if (status)
3265		return status;
3266
3267	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3268		bool pin;
3269
3270		pin = !(data & (1 << i));
3271		status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3272					 pin, NULL);
3273		if (status)
3274			break;
3275	}
3276
3277	return status;
3278}
3279
3280/**
3281 * ice_read_pca9575_reg_e810t
3282 * @hw: pointer to the hw struct
3283 * @offset: GPIO controller register offset
3284 * @data: pointer to data to be read from the GPIO controller
3285 *
3286 * Read the register from the GPIO controller
3287 */
3288int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
3289{
3290	struct ice_aqc_link_topo_addr link_topo;
3291	__le16 addr;
3292	u16 handle;
3293	int err;
3294
3295	memset(&link_topo, 0, sizeof(link_topo));
3296
3297	err = ice_get_pca9575_handle(hw, &handle);
3298	if (err)
3299		return err;
3300
3301	link_topo.handle = cpu_to_le16(handle);
3302	link_topo.topo_params.node_type_ctx =
3303		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
3304			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
3305
3306	addr = cpu_to_le16((u16)offset);
3307
3308	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
3309}
3310
3311/**
3312 * ice_is_pca9575_present
3313 * @hw: pointer to the hw struct
3314 *
3315 * Check if the SW IO expander is present in the netlist
3316 */
3317bool ice_is_pca9575_present(struct ice_hw *hw)
3318{
3319	u16 handle = 0;
3320	int status;
3321
3322	if (!ice_is_e810t(hw))
3323		return false;
3324
3325	status = ice_get_pca9575_handle(hw, &handle);
3326
3327	return !status && handle;
3328}
3329
3330/**
3331 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
3332 * @hw: pointer to the HW struct
3333 */
3334void ice_ptp_reset_ts_memory(struct ice_hw *hw)
3335{
3336	if (ice_is_e810(hw))
3337		return;
3338
3339	ice_ptp_reset_ts_memory_e822(hw);
3340}
3341
3342/**
3343 * ice_ptp_init_phc - Initialize PTP hardware clock
3344 * @hw: pointer to the HW struct
3345 *
3346 * Perform the steps required to initialize the PTP hardware clock.
3347 */
3348int ice_ptp_init_phc(struct ice_hw *hw)
3349{
3350	u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3351
3352	/* Enable source clocks */
3353	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
3354
3355	/* Clear event err indications for auxiliary pins */
3356	(void)rd32(hw, GLTSYN_STAT(src_idx));
3357
3358	if (ice_is_e810(hw))
3359		return ice_ptp_init_phc_e810(hw);
3360	else
3361		return ice_ptp_init_phc_e822(hw);
3362}
3363
3364/**
3365 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
3366 * @hw: pointer to the HW struct
3367 * @block: the timestamp block to check
3368 * @tstamp_ready: storage for the PHY Tx memory status information
3369 *
3370 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
3371 * which indicates which timestamps in the block may be captured. A set bit
3372 * means the timestamp can be read. An unset bit means the timestamp is not
3373 * ready and software should avoid reading the register.
3374 */
3375int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
3376{
3377	if (ice_is_e810(hw))
3378		return ice_get_phy_tx_tstamp_ready_e810(hw, block,
3379							tstamp_ready);
3380	else
3381		return ice_get_phy_tx_tstamp_ready_e822(hw, block,
3382							tstamp_ready);
3383}