Loading...
Note: File does not exist in v5.4.
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2021, Intel Corporation. */
3
4#include <linux/delay.h>
5#include "ice_common.h"
6#include "ice_ptp_hw.h"
7#include "ice_ptp_consts.h"
8#include "ice_cgu_regs.h"
9
10/* Low level functions for interacting with and managing the device clock used
11 * for the Precision Time Protocol.
12 *
13 * The ice hardware represents the current time using three registers:
14 *
15 * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
16 * +---------------+ +---------------+ +---------------+
17 * | 32 bits | | 32 bits | | 32 bits |
18 * +---------------+ +---------------+ +---------------+
19 *
20 * The registers are incremented every clock tick using a 40bit increment
21 * value defined over two registers:
22 *
23 * GLTSYN_INCVAL_H GLTSYN_INCVAL_L
24 * +---------------+ +---------------+
25 * | 8 bit s | | 32 bits |
26 * +---------------+ +---------------+
27 *
28 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
29 * registers every clock source tick. Depending on the specific device
30 * configuration, the clock source frequency could be one of a number of
31 * values.
32 *
33 * For E810 devices, the increment frequency is 812.5 MHz
34 *
35 * For E822 devices the clock can be derived from different sources, and the
36 * increment has an effective frequency of one of the following:
37 * - 823.4375 MHz
38 * - 783.36 MHz
39 * - 796.875 MHz
40 * - 816 MHz
41 * - 830.078125 MHz
42 * - 783.36 MHz
43 *
44 * The hardware captures timestamps in the PHY for incoming packets, and for
45 * outgoing packets on request. To support this, the PHY maintains a timer
46 * that matches the lower 64 bits of the global source timer.
47 *
48 * In order to ensure that the PHY timers and the source timer are equivalent,
49 * shadow registers are used to prepare the desired initial values. A special
50 * sync command is issued to trigger copying from the shadow registers into
51 * the appropriate source and PHY registers simultaneously.
52 *
53 * The driver supports devices which have different PHYs with subtly different
54 * mechanisms to program and control the timers. We divide the devices into
55 * families named after the first major device, E810 and similar devices, and
56 * E822 and similar devices.
57 *
58 * - E822 based devices have additional support for fine grained Vernier
59 * calibration which requires significant setup
60 * - The layout of timestamp data in the PHY register blocks is different
61 * - The way timer synchronization commands are issued is different.
62 *
63 * To support this, very low level functions have an e810 or e822 suffix
64 * indicating what type of device they work on. Higher level abstractions for
65 * tasks that can be done on both devices do not have the suffix and will
66 * correctly look up the appropriate low level function when running.
67 *
68 * Functions which only make sense on a single device family may not have
69 * a suitable generic implementation
70 */
71
72/**
73 * ice_get_ptp_src_clock_index - determine source clock index
74 * @hw: pointer to HW struct
75 *
76 * Determine the source clock index currently in use, based on device
77 * capabilities reported during initialization.
78 */
79u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
80{
81 return hw->func_caps.ts_func_info.tmr_index_assoc;
82}
83
84/**
85 * ice_ptp_read_src_incval - Read source timer increment value
86 * @hw: pointer to HW struct
87 *
88 * Read the increment value of the source timer and return it.
89 */
90static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
91{
92 u32 lo, hi;
93 u8 tmr_idx;
94
95 tmr_idx = ice_get_ptp_src_clock_index(hw);
96
97 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
98 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
99
100 return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
101}
102
103/**
104 * ice_ptp_src_cmd - Prepare source timer for a timer command
105 * @hw: pointer to HW structure
106 * @cmd: Timer command
107 *
108 * Prepare the source timer for an upcoming timer sync command.
109 */
110static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
111{
112 u32 cmd_val;
113 u8 tmr_idx;
114
115 tmr_idx = ice_get_ptp_src_clock_index(hw);
116 cmd_val = tmr_idx << SEL_CPK_SRC;
117
118 switch (cmd) {
119 case INIT_TIME:
120 cmd_val |= GLTSYN_CMD_INIT_TIME;
121 break;
122 case INIT_INCVAL:
123 cmd_val |= GLTSYN_CMD_INIT_INCVAL;
124 break;
125 case ADJ_TIME:
126 cmd_val |= GLTSYN_CMD_ADJ_TIME;
127 break;
128 case ADJ_TIME_AT_TIME:
129 cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
130 break;
131 case READ_TIME:
132 cmd_val |= GLTSYN_CMD_READ_TIME;
133 break;
134 }
135
136 wr32(hw, GLTSYN_CMD, cmd_val);
137}
138
139/**
140 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
141 * @hw: pointer to HW struct
142 *
143 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
144 * write immediately. This triggers the hardware to begin executing all of the
145 * source and PHY timer commands synchronously.
146 */
147static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
148{
149 wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
150 ice_flush(hw);
151}
152
153/* E822 family functions
154 *
155 * The following functions operate on the E822 family of devices.
156 */
157
158/**
159 * ice_fill_phy_msg_e822 - Fill message data for a PHY register access
160 * @msg: the PHY message buffer to fill in
161 * @port: the port to access
162 * @offset: the register offset
163 */
164static void
165ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
166{
167 int phy_port, phy, quadtype;
168
169 phy_port = port % ICE_PORTS_PER_PHY;
170 phy = port / ICE_PORTS_PER_PHY;
171 quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE;
172
173 if (quadtype == 0) {
174 msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
175 msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
176 } else {
177 msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
178 msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
179 }
180
181 if (phy == 0)
182 msg->dest_dev = rmn_0;
183 else if (phy == 1)
184 msg->dest_dev = rmn_1;
185 else
186 msg->dest_dev = rmn_2;
187}
188
189/**
190 * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
191 * @low_addr: the low address to check
192 * @high_addr: on return, contains the high address of the 64bit register
193 *
194 * Checks if the provided low address is one of the known 64bit PHY values
195 * represented as two 32bit registers. If it is, return the appropriate high
196 * register offset to use.
197 */
198static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
199{
200 switch (low_addr) {
201 case P_REG_PAR_PCS_TX_OFFSET_L:
202 *high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
203 return true;
204 case P_REG_PAR_PCS_RX_OFFSET_L:
205 *high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
206 return true;
207 case P_REG_PAR_TX_TIME_L:
208 *high_addr = P_REG_PAR_TX_TIME_U;
209 return true;
210 case P_REG_PAR_RX_TIME_L:
211 *high_addr = P_REG_PAR_RX_TIME_U;
212 return true;
213 case P_REG_TOTAL_TX_OFFSET_L:
214 *high_addr = P_REG_TOTAL_TX_OFFSET_U;
215 return true;
216 case P_REG_TOTAL_RX_OFFSET_L:
217 *high_addr = P_REG_TOTAL_RX_OFFSET_U;
218 return true;
219 case P_REG_UIX66_10G_40G_L:
220 *high_addr = P_REG_UIX66_10G_40G_U;
221 return true;
222 case P_REG_UIX66_25G_100G_L:
223 *high_addr = P_REG_UIX66_25G_100G_U;
224 return true;
225 case P_REG_TX_CAPTURE_L:
226 *high_addr = P_REG_TX_CAPTURE_U;
227 return true;
228 case P_REG_RX_CAPTURE_L:
229 *high_addr = P_REG_RX_CAPTURE_U;
230 return true;
231 case P_REG_TX_TIMER_INC_PRE_L:
232 *high_addr = P_REG_TX_TIMER_INC_PRE_U;
233 return true;
234 case P_REG_RX_TIMER_INC_PRE_L:
235 *high_addr = P_REG_RX_TIMER_INC_PRE_U;
236 return true;
237 default:
238 return false;
239 }
240}
241
242/**
243 * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
244 * @low_addr: the low address to check
245 * @high_addr: on return, contains the high address of the 40bit value
246 *
247 * Checks if the provided low address is one of the known 40bit PHY values
248 * split into two registers with the lower 8 bits in the low register and the
249 * upper 32 bits in the high register. If it is, return the appropriate high
250 * register offset to use.
251 */
252static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
253{
254 switch (low_addr) {
255 case P_REG_TIMETUS_L:
256 *high_addr = P_REG_TIMETUS_U;
257 return true;
258 case P_REG_PAR_RX_TUS_L:
259 *high_addr = P_REG_PAR_RX_TUS_U;
260 return true;
261 case P_REG_PAR_TX_TUS_L:
262 *high_addr = P_REG_PAR_TX_TUS_U;
263 return true;
264 case P_REG_PCS_RX_TUS_L:
265 *high_addr = P_REG_PCS_RX_TUS_U;
266 return true;
267 case P_REG_PCS_TX_TUS_L:
268 *high_addr = P_REG_PCS_TX_TUS_U;
269 return true;
270 case P_REG_DESK_PAR_RX_TUS_L:
271 *high_addr = P_REG_DESK_PAR_RX_TUS_U;
272 return true;
273 case P_REG_DESK_PAR_TX_TUS_L:
274 *high_addr = P_REG_DESK_PAR_TX_TUS_U;
275 return true;
276 case P_REG_DESK_PCS_RX_TUS_L:
277 *high_addr = P_REG_DESK_PCS_RX_TUS_U;
278 return true;
279 case P_REG_DESK_PCS_TX_TUS_L:
280 *high_addr = P_REG_DESK_PCS_TX_TUS_U;
281 return true;
282 default:
283 return false;
284 }
285}
286
287/**
288 * ice_read_phy_reg_e822 - Read a PHY register
289 * @hw: pointer to the HW struct
290 * @port: PHY port to read from
291 * @offset: PHY register offset to read
292 * @val: on return, the contents read from the PHY
293 *
294 * Read a PHY register for the given port over the device sideband queue.
295 */
296int
297ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
298{
299 struct ice_sbq_msg_input msg = {0};
300 int err;
301
302 ice_fill_phy_msg_e822(&msg, port, offset);
303 msg.opcode = ice_sbq_msg_rd;
304
305 err = ice_sbq_rw_reg(hw, &msg);
306 if (err) {
307 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
308 err);
309 return err;
310 }
311
312 *val = msg.data;
313
314 return 0;
315}
316
317/**
318 * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
319 * @hw: pointer to the HW struct
320 * @port: PHY port to read from
321 * @low_addr: offset of the lower register to read from
322 * @val: on return, the contents of the 64bit value from the PHY registers
323 *
324 * Reads the two registers associated with a 64bit value and returns it in the
325 * val pointer. The offset always specifies the lower register offset to use.
326 * The high offset is looked up. This function only operates on registers
327 * known to be two parts of a 64bit value.
328 */
329static int
330ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
331{
332 u32 low, high;
333 u16 high_addr;
334 int err;
335
336 /* Only operate on registers known to be split into two 32bit
337 * registers.
338 */
339 if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
340 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
341 low_addr);
342 return -EINVAL;
343 }
344
345 err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
346 if (err) {
347 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
348 low_addr, err);
349 return err;
350 }
351
352 err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
353 if (err) {
354 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
355 high_addr, err);
356 return err;
357 }
358
359 *val = (u64)high << 32 | low;
360
361 return 0;
362}
363
364/**
365 * ice_write_phy_reg_e822 - Write a PHY register
366 * @hw: pointer to the HW struct
367 * @port: PHY port to write to
368 * @offset: PHY register offset to write
369 * @val: The value to write to the register
370 *
371 * Write a PHY register for the given port over the device sideband queue.
372 */
373int
374ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
375{
376 struct ice_sbq_msg_input msg = {0};
377 int err;
378
379 ice_fill_phy_msg_e822(&msg, port, offset);
380 msg.opcode = ice_sbq_msg_wr;
381 msg.data = val;
382
383 err = ice_sbq_rw_reg(hw, &msg);
384 if (err) {
385 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
386 err);
387 return err;
388 }
389
390 return 0;
391}
392
393/**
394 * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
395 * @hw: pointer to the HW struct
396 * @port: port to write to
397 * @low_addr: offset of the low register
398 * @val: 40b value to write
399 *
400 * Write the provided 40b value to the two associated registers by splitting
401 * it up into two chunks, the lower 8 bits and the upper 32 bits.
402 */
403static int
404ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
405{
406 u32 low, high;
407 u16 high_addr;
408 int err;
409
410 /* Only operate on registers known to be split into a lower 8 bit
411 * register and an upper 32 bit register.
412 */
413 if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
414 ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
415 low_addr);
416 return -EINVAL;
417 }
418
419 low = (u32)(val & P_REG_40B_LOW_M);
420 high = (u32)(val >> P_REG_40B_HIGH_S);
421
422 err = ice_write_phy_reg_e822(hw, port, low_addr, low);
423 if (err) {
424 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
425 low_addr, err);
426 return err;
427 }
428
429 err = ice_write_phy_reg_e822(hw, port, high_addr, high);
430 if (err) {
431 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
432 high_addr, err);
433 return err;
434 }
435
436 return 0;
437}
438
439/**
440 * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
441 * @hw: pointer to the HW struct
442 * @port: PHY port to read from
443 * @low_addr: offset of the lower register to read from
444 * @val: the contents of the 64bit value to write to PHY
445 *
446 * Write the 64bit value to the two associated 32bit PHY registers. The offset
447 * is always specified as the lower register, and the high address is looked
448 * up. This function only operates on registers known to be two parts of
449 * a 64bit value.
450 */
451static int
452ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
453{
454 u32 low, high;
455 u16 high_addr;
456 int err;
457
458 /* Only operate on registers known to be split into two 32bit
459 * registers.
460 */
461 if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
462 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
463 low_addr);
464 return -EINVAL;
465 }
466
467 low = lower_32_bits(val);
468 high = upper_32_bits(val);
469
470 err = ice_write_phy_reg_e822(hw, port, low_addr, low);
471 if (err) {
472 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
473 low_addr, err);
474 return err;
475 }
476
477 err = ice_write_phy_reg_e822(hw, port, high_addr, high);
478 if (err) {
479 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
480 high_addr, err);
481 return err;
482 }
483
484 return 0;
485}
486
487/**
488 * ice_fill_quad_msg_e822 - Fill message data for quad register access
489 * @msg: the PHY message buffer to fill in
490 * @quad: the quad to access
491 * @offset: the register offset
492 *
493 * Fill a message buffer for accessing a register in a quad shared between
494 * multiple PHYs.
495 */
496static void
497ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
498{
499 u32 addr;
500
501 msg->dest_dev = rmn_0;
502
503 if ((quad % ICE_NUM_QUAD_TYPE) == 0)
504 addr = Q_0_BASE + offset;
505 else
506 addr = Q_1_BASE + offset;
507
508 msg->msg_addr_low = lower_16_bits(addr);
509 msg->msg_addr_high = upper_16_bits(addr);
510}
511
512/**
513 * ice_read_quad_reg_e822 - Read a PHY quad register
514 * @hw: pointer to the HW struct
515 * @quad: quad to read from
516 * @offset: quad register offset to read
517 * @val: on return, the contents read from the quad
518 *
519 * Read a quad register over the device sideband queue. Quad registers are
520 * shared between multiple PHYs.
521 */
522int
523ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
524{
525 struct ice_sbq_msg_input msg = {0};
526 int err;
527
528 if (quad >= ICE_MAX_QUAD)
529 return -EINVAL;
530
531 ice_fill_quad_msg_e822(&msg, quad, offset);
532 msg.opcode = ice_sbq_msg_rd;
533
534 err = ice_sbq_rw_reg(hw, &msg);
535 if (err) {
536 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
537 err);
538 return err;
539 }
540
541 *val = msg.data;
542
543 return 0;
544}
545
546/**
547 * ice_write_quad_reg_e822 - Write a PHY quad register
548 * @hw: pointer to the HW struct
549 * @quad: quad to write to
550 * @offset: quad register offset to write
551 * @val: The value to write to the register
552 *
553 * Write a quad register over the device sideband queue. Quad registers are
554 * shared between multiple PHYs.
555 */
556int
557ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
558{
559 struct ice_sbq_msg_input msg = {0};
560 int err;
561
562 if (quad >= ICE_MAX_QUAD)
563 return -EINVAL;
564
565 ice_fill_quad_msg_e822(&msg, quad, offset);
566 msg.opcode = ice_sbq_msg_wr;
567 msg.data = val;
568
569 err = ice_sbq_rw_reg(hw, &msg);
570 if (err) {
571 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
572 err);
573 return err;
574 }
575
576 return 0;
577}
578
579/**
580 * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
581 * @hw: pointer to the HW struct
582 * @quad: the quad to read from
583 * @idx: the timestamp index to read
584 * @tstamp: on return, the 40bit timestamp value
585 *
586 * Read a 40bit timestamp value out of the two associated registers in the
587 * quad memory block that is shared between the internal PHYs of the E822
588 * family of devices.
589 */
590static int
591ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
592{
593 u16 lo_addr, hi_addr;
594 u32 lo, hi;
595 int err;
596
597 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
598 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
599
600 err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
601 if (err) {
602 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
603 err);
604 return err;
605 }
606
607 err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
608 if (err) {
609 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
610 err);
611 return err;
612 }
613
614 /* For E822 based internal PHYs, the timestamp is reported with the
615 * lower 8 bits in the low register, and the upper 32 bits in the high
616 * register.
617 */
618 *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
619
620 return 0;
621}
622
623/**
624 * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
625 * @hw: pointer to the HW struct
626 * @quad: the quad to read from
627 * @idx: the timestamp index to reset
628 *
629 * Clear a timestamp, resetting its valid bit, from the PHY quad block that is
630 * shared between the internal PHYs on the E822 devices.
631 */
632static int
633ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
634{
635 u16 lo_addr, hi_addr;
636 int err;
637
638 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
639 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
640
641 err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0);
642 if (err) {
643 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
644 err);
645 return err;
646 }
647
648 err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0);
649 if (err) {
650 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
651 err);
652 return err;
653 }
654
655 return 0;
656}
657
658/**
659 * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block
660 * @hw: pointer to the HW struct
661 * @quad: the quad to read from
662 *
663 * Clear all timestamps from the PHY quad block that is shared between the
664 * internal PHYs on the E822 devices.
665 */
666void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad)
667{
668 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
669 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
670}
671
672/**
673 * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks
674 * @hw: pointer to the HW struct
675 */
676static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw)
677{
678 unsigned int quad;
679
680 for (quad = 0; quad < ICE_MAX_QUAD; quad++)
681 ice_ptp_reset_ts_memory_quad_e822(hw, quad);
682}
683
684/**
685 * ice_read_cgu_reg_e822 - Read a CGU register
686 * @hw: pointer to the HW struct
687 * @addr: Register address to read
688 * @val: storage for register value read
689 *
690 * Read the contents of a register of the Clock Generation Unit. Only
691 * applicable to E822 devices.
692 */
693static int
694ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
695{
696 struct ice_sbq_msg_input cgu_msg;
697 int err;
698
699 cgu_msg.opcode = ice_sbq_msg_rd;
700 cgu_msg.dest_dev = cgu;
701 cgu_msg.msg_addr_low = addr;
702 cgu_msg.msg_addr_high = 0x0;
703
704 err = ice_sbq_rw_reg(hw, &cgu_msg);
705 if (err) {
706 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
707 addr, err);
708 return err;
709 }
710
711 *val = cgu_msg.data;
712
713 return err;
714}
715
716/**
717 * ice_write_cgu_reg_e822 - Write a CGU register
718 * @hw: pointer to the HW struct
719 * @addr: Register address to write
720 * @val: value to write into the register
721 *
722 * Write the specified value to a register of the Clock Generation Unit. Only
723 * applicable to E822 devices.
724 */
725static int
726ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
727{
728 struct ice_sbq_msg_input cgu_msg;
729 int err;
730
731 cgu_msg.opcode = ice_sbq_msg_wr;
732 cgu_msg.dest_dev = cgu;
733 cgu_msg.msg_addr_low = addr;
734 cgu_msg.msg_addr_high = 0x0;
735 cgu_msg.data = val;
736
737 err = ice_sbq_rw_reg(hw, &cgu_msg);
738 if (err) {
739 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
740 addr, err);
741 return err;
742 }
743
744 return err;
745}
746
747/**
748 * ice_clk_freq_str - Convert time_ref_freq to string
749 * @clk_freq: Clock frequency
750 *
751 * Convert the specified TIME_REF clock frequency to a string.
752 */
753static const char *ice_clk_freq_str(u8 clk_freq)
754{
755 switch ((enum ice_time_ref_freq)clk_freq) {
756 case ICE_TIME_REF_FREQ_25_000:
757 return "25 MHz";
758 case ICE_TIME_REF_FREQ_122_880:
759 return "122.88 MHz";
760 case ICE_TIME_REF_FREQ_125_000:
761 return "125 MHz";
762 case ICE_TIME_REF_FREQ_153_600:
763 return "153.6 MHz";
764 case ICE_TIME_REF_FREQ_156_250:
765 return "156.25 MHz";
766 case ICE_TIME_REF_FREQ_245_760:
767 return "245.76 MHz";
768 default:
769 return "Unknown";
770 }
771}
772
773/**
774 * ice_clk_src_str - Convert time_ref_src to string
775 * @clk_src: Clock source
776 *
777 * Convert the specified clock source to its string name.
778 */
779static const char *ice_clk_src_str(u8 clk_src)
780{
781 switch ((enum ice_clk_src)clk_src) {
782 case ICE_CLK_SRC_TCX0:
783 return "TCX0";
784 case ICE_CLK_SRC_TIME_REF:
785 return "TIME_REF";
786 default:
787 return "Unknown";
788 }
789}
790
791/**
792 * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
793 * @hw: pointer to the HW struct
794 * @clk_freq: Clock frequency to program
795 * @clk_src: Clock source to select (TIME_REF, or TCX0)
796 *
797 * Configure the Clock Generation Unit with the desired clock frequency and
798 * time reference, enabling the PLL which drives the PTP hardware clock.
799 */
800static int
801ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
802 enum ice_clk_src clk_src)
803{
804 union tspll_ro_bwm_lf bwm_lf;
805 union nac_cgu_dword19 dw19;
806 union nac_cgu_dword22 dw22;
807 union nac_cgu_dword24 dw24;
808 union nac_cgu_dword9 dw9;
809 int err;
810
811 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
812 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
813 clk_freq);
814 return -EINVAL;
815 }
816
817 if (clk_src >= NUM_ICE_CLK_SRC) {
818 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
819 clk_src);
820 return -EINVAL;
821 }
822
823 if (clk_src == ICE_CLK_SRC_TCX0 &&
824 clk_freq != ICE_TIME_REF_FREQ_25_000) {
825 dev_warn(ice_hw_to_dev(hw),
826 "TCX0 only supports 25 MHz frequency\n");
827 return -EINVAL;
828 }
829
830 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
831 if (err)
832 return err;
833
834 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
835 if (err)
836 return err;
837
838 err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
839 if (err)
840 return err;
841
842 /* Log the current clock configuration */
843 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
844 dw24.field.ts_pll_enable ? "enabled" : "disabled",
845 ice_clk_src_str(dw24.field.time_ref_sel),
846 ice_clk_freq_str(dw9.field.time_ref_freq_sel),
847 bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
848
849 /* Disable the PLL before changing the clock source or frequency */
850 if (dw24.field.ts_pll_enable) {
851 dw24.field.ts_pll_enable = 0;
852
853 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
854 if (err)
855 return err;
856 }
857
858 /* Set the frequency */
859 dw9.field.time_ref_freq_sel = clk_freq;
860 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
861 if (err)
862 return err;
863
864 /* Configure the TS PLL feedback divisor */
865 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
866 if (err)
867 return err;
868
869 dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
870 dw19.field.tspll_ndivratio = 1;
871
872 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
873 if (err)
874 return err;
875
876 /* Configure the TS PLL post divisor */
877 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
878 if (err)
879 return err;
880
881 dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
882 dw22.field.time1588clk_sel_div2 = 0;
883
884 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
885 if (err)
886 return err;
887
888 /* Configure the TS PLL pre divisor and clock source */
889 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
890 if (err)
891 return err;
892
893 dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
894 dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
895 dw24.field.time_ref_sel = clk_src;
896
897 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
898 if (err)
899 return err;
900
901 /* Finally, enable the PLL */
902 dw24.field.ts_pll_enable = 1;
903
904 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
905 if (err)
906 return err;
907
908 /* Wait to verify if the PLL locks */
909 usleep_range(1000, 5000);
910
911 err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
912 if (err)
913 return err;
914
915 if (!bwm_lf.field.plllock_true_lock_cri) {
916 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
917 return -EBUSY;
918 }
919
920 /* Log the current clock configuration */
921 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
922 dw24.field.ts_pll_enable ? "enabled" : "disabled",
923 ice_clk_src_str(dw24.field.time_ref_sel),
924 ice_clk_freq_str(dw9.field.time_ref_freq_sel),
925 bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
926
927 return 0;
928}
929
930/**
931 * ice_init_cgu_e822 - Initialize CGU with settings from firmware
932 * @hw: pointer to the HW structure
933 *
934 * Initialize the Clock Generation Unit of the E822 device.
935 */
936static int ice_init_cgu_e822(struct ice_hw *hw)
937{
938 struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
939 union tspll_cntr_bist_settings cntr_bist;
940 int err;
941
942 err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
943 &cntr_bist.val);
944 if (err)
945 return err;
946
947 /* Disable sticky lock detection so lock err reported is accurate */
948 cntr_bist.field.i_plllock_sel_0 = 0;
949 cntr_bist.field.i_plllock_sel_1 = 0;
950
951 err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
952 cntr_bist.val);
953 if (err)
954 return err;
955
956 /* Configure the CGU PLL using the parameters from the function
957 * capabilities.
958 */
959 err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
960 (enum ice_clk_src)ts_info->clk_src);
961 if (err)
962 return err;
963
964 return 0;
965}
966
967/**
968 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
969 * @hw: pointer to the HW struct
970 *
971 * Set the window length used for the vernier port calibration process.
972 */
973static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
974{
975 u8 port;
976
977 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
978 int err;
979
980 err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
981 PTP_VERNIER_WL);
982 if (err) {
983 ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
984 port, err);
985 return err;
986 }
987 }
988
989 return 0;
990}
991
992/**
993 * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
994 * @hw: pointer to HW struct
995 *
996 * Perform PHC initialization steps specific to E822 devices.
997 */
998static int ice_ptp_init_phc_e822(struct ice_hw *hw)
999{
1000 int err;
1001 u32 regval;
1002
1003 /* Enable reading switch and PHY registers over the sideband queue */
1004#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
1005#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
1006 regval = rd32(hw, PF_SB_REM_DEV_CTL);
1007 regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
1008 PF_SB_REM_DEV_CTL_PHY0);
1009 wr32(hw, PF_SB_REM_DEV_CTL, regval);
1010
1011 /* Initialize the Clock Generation Unit */
1012 err = ice_init_cgu_e822(hw);
1013 if (err)
1014 return err;
1015
1016 /* Set window length for all the ports */
1017 return ice_ptp_set_vernier_wl(hw);
1018}
1019
1020/**
1021 * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
1022 * @hw: pointer to the HW struct
1023 * @time: Time to initialize the PHY port clocks to
1024 *
1025 * Program the PHY port registers with a new initial time value. The port
1026 * clock will be initialized once the driver issues an INIT_TIME sync
1027 * command. The time value is the upper 32 bits of the PHY timer, usually in
1028 * units of nominal nanoseconds.
1029 */
1030static int
1031ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
1032{
1033 u64 phy_time;
1034 u8 port;
1035 int err;
1036
1037 /* The time represents the upper 32 bits of the PHY timer, so we need
1038 * to shift to account for this when programming.
1039 */
1040 phy_time = (u64)time << 32;
1041
1042 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1043 /* Tx case */
1044 err = ice_write_64b_phy_reg_e822(hw, port,
1045 P_REG_TX_TIMER_INC_PRE_L,
1046 phy_time);
1047 if (err)
1048 goto exit_err;
1049
1050 /* Rx case */
1051 err = ice_write_64b_phy_reg_e822(hw, port,
1052 P_REG_RX_TIMER_INC_PRE_L,
1053 phy_time);
1054 if (err)
1055 goto exit_err;
1056 }
1057
1058 return 0;
1059
1060exit_err:
1061 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1062 port, err);
1063
1064 return err;
1065}
1066
1067/**
1068 * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
1069 * @hw: pointer to HW struct
1070 * @port: Port number to be programmed
1071 * @time: time in cycles to adjust the port Tx and Rx clocks
1072 *
1073 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1074 * registers. The atomic adjustment won't be completed until the driver issues
1075 * an ADJ_TIME command.
1076 *
1077 * Note that time is not in units of nanoseconds. It is in clock time
1078 * including the lower sub-nanosecond portion of the port timer.
1079 *
1080 * Negative adjustments are supported using 2s complement arithmetic.
1081 */
1082int
1083ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
1084{
1085 u32 l_time, u_time;
1086 int err;
1087
1088 l_time = lower_32_bits(time);
1089 u_time = upper_32_bits(time);
1090
1091 /* Tx case */
1092 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
1093 l_time);
1094 if (err)
1095 goto exit_err;
1096
1097 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
1098 u_time);
1099 if (err)
1100 goto exit_err;
1101
1102 /* Rx case */
1103 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
1104 l_time);
1105 if (err)
1106 goto exit_err;
1107
1108 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
1109 u_time);
1110 if (err)
1111 goto exit_err;
1112
1113 return 0;
1114
1115exit_err:
1116 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1117 port, err);
1118 return err;
1119}
1120
1121/**
1122 * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
1123 * @hw: pointer to HW struct
1124 * @adj: adjustment in nanoseconds
1125 *
1126 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1127 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1128 * ADJ_TIME or ADJ_TIME_AT_TIME sync command.
1129 */
1130static int
1131ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
1132{
1133 s64 cycles;
1134 u8 port;
1135
1136 /* The port clock supports adjustment of the sub-nanosecond portion of
1137 * the clock. We shift the provided adjustment in nanoseconds to
1138 * calculate the appropriate adjustment to program into the PHY ports.
1139 */
1140 if (adj > 0)
1141 cycles = (s64)adj << 32;
1142 else
1143 cycles = -(((s64)-adj) << 32);
1144
1145 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1146 int err;
1147
1148 err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
1149 if (err)
1150 return err;
1151 }
1152
1153 return 0;
1154}
1155
1156/**
1157 * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
1158 * @hw: pointer to HW struct
1159 * @incval: new increment value to prepare
1160 *
1161 * Prepare each of the PHY ports for a new increment value by programming the
1162 * port's TIMETUS registers. The new increment value will be updated after
1163 * issuing an INIT_INCVAL command.
1164 */
1165static int
1166ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
1167{
1168 int err;
1169 u8 port;
1170
1171 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1172 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
1173 incval);
1174 if (err)
1175 goto exit_err;
1176 }
1177
1178 return 0;
1179
1180exit_err:
1181 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1182 port, err);
1183
1184 return err;
1185}
1186
1187/**
1188 * ice_ptp_read_port_capture - Read a port's local time capture
1189 * @hw: pointer to HW struct
1190 * @port: Port number to read
1191 * @tx_ts: on return, the Tx port time capture
1192 * @rx_ts: on return, the Rx port time capture
1193 *
1194 * Read the port's Tx and Rx local time capture values.
1195 *
1196 * Note this has no equivalent for the E810 devices.
1197 */
1198static int
1199ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
1200{
1201 int err;
1202
1203 /* Tx case */
1204 err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
1205 if (err) {
1206 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1207 err);
1208 return err;
1209 }
1210
1211 ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
1212 (unsigned long long)*tx_ts);
1213
1214 /* Rx case */
1215 err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
1216 if (err) {
1217 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1218 err);
1219 return err;
1220 }
1221
1222 ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
1223 (unsigned long long)*rx_ts);
1224
1225 return 0;
1226}
1227
1228/**
1229 * ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command
1230 * @hw: pointer to HW struct
1231 * @port: Port to which cmd has to be sent
1232 * @cmd: Command to be sent to the port
1233 *
1234 * Prepare the requested port for an upcoming timer sync command.
1235 *
1236 * Note there is no equivalent of this operation on E810, as that device
1237 * always handles all external PHYs internally.
1238 */
1239static int
1240ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
1241{
1242 u32 cmd_val, val;
1243 u8 tmr_idx;
1244 int err;
1245
1246 tmr_idx = ice_get_ptp_src_clock_index(hw);
1247 cmd_val = tmr_idx << SEL_PHY_SRC;
1248 switch (cmd) {
1249 case INIT_TIME:
1250 cmd_val |= PHY_CMD_INIT_TIME;
1251 break;
1252 case INIT_INCVAL:
1253 cmd_val |= PHY_CMD_INIT_INCVAL;
1254 break;
1255 case ADJ_TIME:
1256 cmd_val |= PHY_CMD_ADJ_TIME;
1257 break;
1258 case READ_TIME:
1259 cmd_val |= PHY_CMD_READ_TIME;
1260 break;
1261 case ADJ_TIME_AT_TIME:
1262 cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
1263 break;
1264 }
1265
1266 /* Tx case */
1267 /* Read, modify, write */
1268 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
1269 if (err) {
1270 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
1271 err);
1272 return err;
1273 }
1274
1275 /* Modify necessary bits only and perform write */
1276 val &= ~TS_CMD_MASK;
1277 val |= cmd_val;
1278
1279 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
1280 if (err) {
1281 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1282 err);
1283 return err;
1284 }
1285
1286 /* Rx case */
1287 /* Read, modify, write */
1288 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
1289 if (err) {
1290 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
1291 err);
1292 return err;
1293 }
1294
1295 /* Modify necessary bits only and perform write */
1296 val &= ~TS_CMD_MASK;
1297 val |= cmd_val;
1298
1299 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
1300 if (err) {
1301 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1302 err);
1303 return err;
1304 }
1305
1306 return 0;
1307}
1308
1309/**
1310 * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
1311 * @hw: pointer to the HW struct
1312 * @cmd: timer command to prepare
1313 *
1314 * Prepare all ports connected to this device for an upcoming timer sync
1315 * command.
1316 */
1317static int
1318ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
1319{
1320 u8 port;
1321
1322 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1323 int err;
1324
1325 err = ice_ptp_one_port_cmd(hw, port, cmd);
1326 if (err)
1327 return err;
1328 }
1329
1330 return 0;
1331}
1332
1333/* E822 Vernier calibration functions
1334 *
1335 * The following functions are used as part of the vernier calibration of
1336 * a port. This calibration increases the precision of the timestamps on the
1337 * port.
1338 */
1339
1340/**
1341 * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
1342 * @hw: pointer to HW struct
1343 * @port: the port to read from
1344 * @link_out: if non-NULL, holds link speed on success
1345 * @fec_out: if non-NULL, holds FEC algorithm on success
1346 *
1347 * Read the serdes data for the PHY port and extract the link speed and FEC
1348 * algorithm.
1349 */
1350static int
1351ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
1352 enum ice_ptp_link_spd *link_out,
1353 enum ice_ptp_fec_mode *fec_out)
1354{
1355 enum ice_ptp_link_spd link;
1356 enum ice_ptp_fec_mode fec;
1357 u32 serdes;
1358 int err;
1359
1360 err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
1361 if (err) {
1362 ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
1363 return err;
1364 }
1365
1366 /* Determine the FEC algorithm */
1367 fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
1368
1369 serdes &= P_REG_LINK_SPEED_SERDES_M;
1370
1371 /* Determine the link speed */
1372 if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
1373 switch (serdes) {
1374 case ICE_PTP_SERDES_25G:
1375 link = ICE_PTP_LNK_SPD_25G_RS;
1376 break;
1377 case ICE_PTP_SERDES_50G:
1378 link = ICE_PTP_LNK_SPD_50G_RS;
1379 break;
1380 case ICE_PTP_SERDES_100G:
1381 link = ICE_PTP_LNK_SPD_100G_RS;
1382 break;
1383 default:
1384 return -EIO;
1385 }
1386 } else {
1387 switch (serdes) {
1388 case ICE_PTP_SERDES_1G:
1389 link = ICE_PTP_LNK_SPD_1G;
1390 break;
1391 case ICE_PTP_SERDES_10G:
1392 link = ICE_PTP_LNK_SPD_10G;
1393 break;
1394 case ICE_PTP_SERDES_25G:
1395 link = ICE_PTP_LNK_SPD_25G;
1396 break;
1397 case ICE_PTP_SERDES_40G:
1398 link = ICE_PTP_LNK_SPD_40G;
1399 break;
1400 case ICE_PTP_SERDES_50G:
1401 link = ICE_PTP_LNK_SPD_50G;
1402 break;
1403 default:
1404 return -EIO;
1405 }
1406 }
1407
1408 if (link_out)
1409 *link_out = link;
1410 if (fec_out)
1411 *fec_out = fec;
1412
1413 return 0;
1414}
1415
1416/**
1417 * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
1418 * @hw: pointer to HW struct
1419 * @port: to configure the quad for
1420 */
1421static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
1422{
1423 enum ice_ptp_link_spd link_spd;
1424 int err;
1425 u32 val;
1426 u8 quad;
1427
1428 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
1429 if (err) {
1430 ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
1431 err);
1432 return;
1433 }
1434
1435 quad = port / ICE_PORTS_PER_QUAD;
1436
1437 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
1438 if (err) {
1439 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
1440 err);
1441 return;
1442 }
1443
1444 if (link_spd >= ICE_PTP_LNK_SPD_40G)
1445 val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1446 else
1447 val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1448
1449 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
1450 if (err) {
1451 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
1452 err);
1453 return;
1454 }
1455}
1456
1457/**
1458 * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
1459 * @hw: pointer to the HW structure
1460 * @port: the port to configure
1461 *
1462 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
1463 * hardware clock time units (TUs). That is, determine the number of TUs per
1464 * serdes unit interval, and program the UIX registers with this conversion.
1465 *
1466 * This conversion is used as part of the calibration process when determining
1467 * the additional error of a timestamp vs the real time of transmission or
1468 * receipt of the packet.
1469 *
1470 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
1471 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
1472 *
1473 * To calculate the conversion ratio, we use the following facts:
1474 *
1475 * a) the clock frequency in Hz (cycles per second)
1476 * b) the number of TUs per cycle (the increment value of the clock)
1477 * c) 1 second per 1 billion nanoseconds
1478 * d) the duration of 66 UIs in nanoseconds
1479 *
1480 * Given these facts, we can use the following table to work out what ratios
1481 * to multiply in order to get the number of TUs per 66 UIs:
1482 *
1483 * cycles | 1 second | incval (TUs) | nanoseconds
1484 * -------+--------------+--------------+-------------
1485 * second | 1 billion ns | cycle | 66 UIs
1486 *
1487 * To perform the multiplication using integers without too much loss of
1488 * precision, we can take use the following equation:
1489 *
1490 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
1491 *
1492 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
1493 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
1494 *
1495 * The increment value has a maximum expected range of about 34 bits, while
1496 * the frequency value is about 29 bits. Multiplying these values shouldn't
1497 * overflow the 64 bits. However, we must then further multiply them again by
1498 * the Serdes unit interval duration. To avoid overflow here, we split the
1499 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
1500 * a divide by 390,625,000. This does lose some precision, but avoids
1501 * miscalculation due to arithmetic overflow.
1502 */
1503static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
1504{
1505 u64 cur_freq, clk_incval, tu_per_sec, uix;
1506 int err;
1507
1508 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1509 clk_incval = ice_ptp_read_src_incval(hw);
1510
1511 /* Calculate TUs per second divided by 256 */
1512 tu_per_sec = (cur_freq * clk_incval) >> 8;
1513
1514#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
1515#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
1516
1517 /* Program the 10Gb/40Gb conversion ratio */
1518 uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
1519
1520 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
1521 uix);
1522 if (err) {
1523 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
1524 err);
1525 return err;
1526 }
1527
1528 /* Program the 25Gb/100Gb conversion ratio */
1529 uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
1530
1531 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
1532 uix);
1533 if (err) {
1534 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
1535 err);
1536 return err;
1537 }
1538
1539 return 0;
1540}
1541
1542/**
1543 * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
1544 * @hw: pointer to the HW struct
1545 * @port: port to configure
1546 *
1547 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1548 * timestamp calibration process. This depends on the link speed, as the PHY
1549 * uses different markers depending on the speed.
1550 *
1551 * 1Gb/10Gb/25Gb:
1552 * - Tx/Rx PAR/PCS markers
1553 *
1554 * 25Gb RS:
1555 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1556 *
1557 * 40Gb/50Gb:
1558 * - Tx/Rx PAR/PCS markers
1559 * - Rx Deskew PAR/PCS markers
1560 *
1561 * 50G RS and 100GB RS:
1562 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1563 * - Rx Deskew PAR/PCS markers
1564 * - Tx PAR/PCS markers
1565 *
1566 * To calculate the conversion, we use the PHC clock frequency (cycles per
1567 * second), the increment value (TUs per cycle), and the related PHY clock
1568 * frequency to calculate the TUs per unit of the PHY link clock. The
1569 * following table shows how the units convert:
1570 *
1571 * cycles | TUs | second
1572 * -------+-------+--------
1573 * second | cycle | cycles
1574 *
1575 * For each conversion register, look up the appropriate frequency from the
1576 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
1577 * this to the appropriate register, preparing hardware to perform timestamp
1578 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
1579 * in order to calibrate for the internal PHY delays.
1580 *
1581 * Note that the increment value ranges up to ~34 bits, and the clock
1582 * frequency is ~29 bits, so multiplying them together should fit within the
1583 * 64 bit arithmetic.
1584 */
1585static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
1586{
1587 u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
1588 enum ice_ptp_link_spd link_spd;
1589 enum ice_ptp_fec_mode fec_mode;
1590 int err;
1591
1592 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1593 if (err)
1594 return err;
1595
1596 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1597 clk_incval = ice_ptp_read_src_incval(hw);
1598
1599 /* Calculate TUs per cycle of the PHC clock */
1600 tu_per_sec = cur_freq * clk_incval;
1601
1602 /* For each PHY conversion register, look up the appropriate link
1603 * speed frequency and determine the TUs per that clock's cycle time.
1604 * Split this into a high and low value and then program the
1605 * appropriate register. If that link speed does not use the
1606 * associated register, write zeros to clear it instead.
1607 */
1608
1609 /* P_REG_PAR_TX_TUS */
1610 if (e822_vernier[link_spd].tx_par_clk)
1611 phy_tus = div_u64(tu_per_sec,
1612 e822_vernier[link_spd].tx_par_clk);
1613 else
1614 phy_tus = 0;
1615
1616 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
1617 phy_tus);
1618 if (err)
1619 return err;
1620
1621 /* P_REG_PAR_RX_TUS */
1622 if (e822_vernier[link_spd].rx_par_clk)
1623 phy_tus = div_u64(tu_per_sec,
1624 e822_vernier[link_spd].rx_par_clk);
1625 else
1626 phy_tus = 0;
1627
1628 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
1629 phy_tus);
1630 if (err)
1631 return err;
1632
1633 /* P_REG_PCS_TX_TUS */
1634 if (e822_vernier[link_spd].tx_pcs_clk)
1635 phy_tus = div_u64(tu_per_sec,
1636 e822_vernier[link_spd].tx_pcs_clk);
1637 else
1638 phy_tus = 0;
1639
1640 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
1641 phy_tus);
1642 if (err)
1643 return err;
1644
1645 /* P_REG_PCS_RX_TUS */
1646 if (e822_vernier[link_spd].rx_pcs_clk)
1647 phy_tus = div_u64(tu_per_sec,
1648 e822_vernier[link_spd].rx_pcs_clk);
1649 else
1650 phy_tus = 0;
1651
1652 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
1653 phy_tus);
1654 if (err)
1655 return err;
1656
1657 /* P_REG_DESK_PAR_TX_TUS */
1658 if (e822_vernier[link_spd].tx_desk_rsgb_par)
1659 phy_tus = div_u64(tu_per_sec,
1660 e822_vernier[link_spd].tx_desk_rsgb_par);
1661 else
1662 phy_tus = 0;
1663
1664 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
1665 phy_tus);
1666 if (err)
1667 return err;
1668
1669 /* P_REG_DESK_PAR_RX_TUS */
1670 if (e822_vernier[link_spd].rx_desk_rsgb_par)
1671 phy_tus = div_u64(tu_per_sec,
1672 e822_vernier[link_spd].rx_desk_rsgb_par);
1673 else
1674 phy_tus = 0;
1675
1676 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
1677 phy_tus);
1678 if (err)
1679 return err;
1680
1681 /* P_REG_DESK_PCS_TX_TUS */
1682 if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
1683 phy_tus = div_u64(tu_per_sec,
1684 e822_vernier[link_spd].tx_desk_rsgb_pcs);
1685 else
1686 phy_tus = 0;
1687
1688 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
1689 phy_tus);
1690 if (err)
1691 return err;
1692
1693 /* P_REG_DESK_PCS_RX_TUS */
1694 if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
1695 phy_tus = div_u64(tu_per_sec,
1696 e822_vernier[link_spd].rx_desk_rsgb_pcs);
1697 else
1698 phy_tus = 0;
1699
1700 return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
1701 phy_tus);
1702}
1703
1704/**
1705 * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
1706 * @hw: pointer to the HW struct
1707 * @link_spd: the Link speed to calculate for
1708 *
1709 * Calculate the fixed offset due to known static latency data.
1710 */
1711static u64
1712ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
1713{
1714 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
1715
1716 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1717 clk_incval = ice_ptp_read_src_incval(hw);
1718
1719 /* Calculate TUs per second */
1720 tu_per_sec = cur_freq * clk_incval;
1721
1722 /* Calculate number of TUs to add for the fixed Tx latency. Since the
1723 * latency measurement is in 1/100th of a nanosecond, we need to
1724 * multiply by tu_per_sec and then divide by 1e11. This calculation
1725 * overflows 64 bit integer arithmetic, so break it up into two
1726 * divisions by 1e4 first then by 1e7.
1727 */
1728 fixed_offset = div_u64(tu_per_sec, 10000);
1729 fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
1730 fixed_offset = div_u64(fixed_offset, 10000000);
1731
1732 return fixed_offset;
1733}
1734
1735/**
1736 * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
1737 * @hw: pointer to the HW struct
1738 * @port: the PHY port to configure
1739 *
1740 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
1741 * adjust Tx timestamps by. This is calculated by combining some known static
1742 * latency along with the Vernier offset computations done by hardware.
1743 *
1744 * This function will not return successfully until the Tx offset calculations
1745 * have been completed, which requires waiting until at least one packet has
1746 * been transmitted by the device. It is safe to call this function
1747 * periodically until calibration succeeds, as it will only program the offset
1748 * once.
1749 *
1750 * To avoid overflow, when calculating the offset based on the known static
1751 * latency values, we use measurements in 1/100th of a nanosecond, and divide
1752 * the TUs per second up front. This avoids overflow while allowing
1753 * calculation of the adjustment using integer arithmetic.
1754 *
1755 * Returns zero on success, -EBUSY if the hardware vernier offset
1756 * calibration has not completed, or another error code on failure.
1757 */
1758int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
1759{
1760 enum ice_ptp_link_spd link_spd;
1761 enum ice_ptp_fec_mode fec_mode;
1762 u64 total_offset, val;
1763 int err;
1764 u32 reg;
1765
1766 /* Nothing to do if we've already programmed the offset */
1767 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, ®);
1768 if (err) {
1769 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
1770 port, err);
1771 return err;
1772 }
1773
1774 if (reg)
1775 return 0;
1776
1777 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, ®);
1778 if (err) {
1779 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
1780 port, err);
1781 return err;
1782 }
1783
1784 if (!(reg & P_REG_TX_OV_STATUS_OV_M))
1785 return -EBUSY;
1786
1787 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1788 if (err)
1789 return err;
1790
1791 total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
1792
1793 /* Read the first Vernier offset from the PHY register and add it to
1794 * the total offset.
1795 */
1796 if (link_spd == ICE_PTP_LNK_SPD_1G ||
1797 link_spd == ICE_PTP_LNK_SPD_10G ||
1798 link_spd == ICE_PTP_LNK_SPD_25G ||
1799 link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1800 link_spd == ICE_PTP_LNK_SPD_40G ||
1801 link_spd == ICE_PTP_LNK_SPD_50G) {
1802 err = ice_read_64b_phy_reg_e822(hw, port,
1803 P_REG_PAR_PCS_TX_OFFSET_L,
1804 &val);
1805 if (err)
1806 return err;
1807
1808 total_offset += val;
1809 }
1810
1811 /* For Tx, we only need to use the second Vernier offset for
1812 * multi-lane link speeds with RS-FEC. The lanes will always be
1813 * aligned.
1814 */
1815 if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1816 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1817 err = ice_read_64b_phy_reg_e822(hw, port,
1818 P_REG_PAR_TX_TIME_L,
1819 &val);
1820 if (err)
1821 return err;
1822
1823 total_offset += val;
1824 }
1825
1826 /* Now that the total offset has been calculated, program it to the
1827 * PHY and indicate that the Tx offset is ready. After this,
1828 * timestamps will be enabled.
1829 */
1830 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
1831 total_offset);
1832 if (err)
1833 return err;
1834
1835 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
1836 if (err)
1837 return err;
1838
1839 dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
1840 port);
1841
1842 return 0;
1843}
1844
1845/**
1846 * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
1847 * @hw: pointer to the HW struct
1848 * @port: the PHY port to adjust for
1849 * @link_spd: the current link speed of the PHY
1850 * @fec_mode: the current FEC mode of the PHY
1851 * @pmd_adj: on return, the amount to adjust the Rx total offset by
1852 *
1853 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
1854 * This varies by link speed and FEC mode. The value calculated accounts for
1855 * various delays caused when receiving a packet.
1856 */
1857static int
1858ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
1859 enum ice_ptp_link_spd link_spd,
1860 enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
1861{
1862 u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
1863 u8 pmd_align;
1864 u32 val;
1865 int err;
1866
1867 err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
1868 if (err) {
1869 ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
1870 err);
1871 return err;
1872 }
1873
1874 pmd_align = (u8)val;
1875
1876 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1877 clk_incval = ice_ptp_read_src_incval(hw);
1878
1879 /* Calculate TUs per second */
1880 tu_per_sec = cur_freq * clk_incval;
1881
1882 /* The PMD alignment adjustment measurement depends on the link speed,
1883 * and whether FEC is enabled. For each link speed, the alignment
1884 * adjustment is calculated by dividing a value by the length of
1885 * a Time Unit in nanoseconds.
1886 *
1887 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
1888 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
1889 * 10G w/FEC: align * 0.1 * 32/33
1890 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
1891 * 25G w/FEC: align * 0.4 * 32/33
1892 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
1893 * 40G w/FEC: align * 0.1 * 32/33
1894 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
1895 * 50G w/FEC: align * 0.8 * 32/33
1896 *
1897 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
1898 *
1899 * To allow for calculating this value using integer arithmetic, we
1900 * instead start with the number of TUs per second, (inverse of the
1901 * length of a Time Unit in nanoseconds), multiply by a value based
1902 * on the PMD alignment register, and then divide by the right value
1903 * calculated based on the table above. To avoid integer overflow this
1904 * division is broken up into a step of dividing by 125 first.
1905 */
1906 if (link_spd == ICE_PTP_LNK_SPD_1G) {
1907 if (pmd_align == 4)
1908 mult = 10;
1909 else
1910 mult = (pmd_align + 6) % 10;
1911 } else if (link_spd == ICE_PTP_LNK_SPD_10G ||
1912 link_spd == ICE_PTP_LNK_SPD_25G ||
1913 link_spd == ICE_PTP_LNK_SPD_40G ||
1914 link_spd == ICE_PTP_LNK_SPD_50G) {
1915 /* If Clause 74 FEC, always calculate PMD adjust */
1916 if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
1917 mult = pmd_align;
1918 else
1919 mult = 0;
1920 } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1921 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1922 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1923 if (pmd_align < 17)
1924 mult = pmd_align + 40;
1925 else
1926 mult = pmd_align;
1927 } else {
1928 ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
1929 link_spd);
1930 mult = 0;
1931 }
1932
1933 /* In some cases, there's no need to adjust for the PMD alignment */
1934 if (!mult) {
1935 *pmd_adj = 0;
1936 return 0;
1937 }
1938
1939 /* Calculate the adjustment by multiplying TUs per second by the
1940 * appropriate multiplier and divisor. To avoid overflow, we first
1941 * divide by 125, and then handle remaining divisor based on the link
1942 * speed pmd_adj_divisor value.
1943 */
1944 adj = div_u64(tu_per_sec, 125);
1945 adj *= mult;
1946 adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
1947
1948 /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
1949 * cycle count is necessary.
1950 */
1951 if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
1952 u64 cycle_adj;
1953 u8 rx_cycle;
1954
1955 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
1956 &val);
1957 if (err) {
1958 ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
1959 err);
1960 return err;
1961 }
1962
1963 rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
1964 if (rx_cycle) {
1965 mult = (4 - rx_cycle) * 40;
1966
1967 cycle_adj = div_u64(tu_per_sec, 125);
1968 cycle_adj *= mult;
1969 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1970
1971 adj += cycle_adj;
1972 }
1973 } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
1974 u64 cycle_adj;
1975 u8 rx_cycle;
1976
1977 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
1978 &val);
1979 if (err) {
1980 ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
1981 err);
1982 return err;
1983 }
1984
1985 rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
1986 if (rx_cycle) {
1987 mult = rx_cycle * 40;
1988
1989 cycle_adj = div_u64(tu_per_sec, 125);
1990 cycle_adj *= mult;
1991 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1992
1993 adj += cycle_adj;
1994 }
1995 }
1996
1997 /* Return the calculated adjustment */
1998 *pmd_adj = adj;
1999
2000 return 0;
2001}
2002
2003/**
2004 * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
2005 * @hw: pointer to HW struct
2006 * @link_spd: The Link speed to calculate for
2007 *
2008 * Determine the fixed Rx latency for a given link speed.
2009 */
2010static u64
2011ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
2012{
2013 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
2014
2015 cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
2016 clk_incval = ice_ptp_read_src_incval(hw);
2017
2018 /* Calculate TUs per second */
2019 tu_per_sec = cur_freq * clk_incval;
2020
2021 /* Calculate number of TUs to add for the fixed Rx latency. Since the
2022 * latency measurement is in 1/100th of a nanosecond, we need to
2023 * multiply by tu_per_sec and then divide by 1e11. This calculation
2024 * overflows 64 bit integer arithmetic, so break it up into two
2025 * divisions by 1e4 first then by 1e7.
2026 */
2027 fixed_offset = div_u64(tu_per_sec, 10000);
2028 fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
2029 fixed_offset = div_u64(fixed_offset, 10000000);
2030
2031 return fixed_offset;
2032}
2033
2034/**
2035 * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
2036 * @hw: pointer to the HW struct
2037 * @port: the PHY port to configure
2038 *
2039 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
2040 * adjust Rx timestamps by. This combines calculations from the Vernier offset
2041 * measurements taken in hardware with some data about known fixed delay as
2042 * well as adjusting for multi-lane alignment delay.
2043 *
2044 * This function will not return successfully until the Rx offset calculations
2045 * have been completed, which requires waiting until at least one packet has
2046 * been received by the device. It is safe to call this function periodically
2047 * until calibration succeeds, as it will only program the offset once.
2048 *
2049 * This function must be called only after the offset registers are valid,
2050 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
2051 * has measured the offset.
2052 *
2053 * To avoid overflow, when calculating the offset based on the known static
2054 * latency values, we use measurements in 1/100th of a nanosecond, and divide
2055 * the TUs per second up front. This avoids overflow while allowing
2056 * calculation of the adjustment using integer arithmetic.
2057 *
2058 * Returns zero on success, -EBUSY if the hardware vernier offset
2059 * calibration has not completed, or another error code on failure.
2060 */
2061int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
2062{
2063 enum ice_ptp_link_spd link_spd;
2064 enum ice_ptp_fec_mode fec_mode;
2065 u64 total_offset, pmd, val;
2066 int err;
2067 u32 reg;
2068
2069 /* Nothing to do if we've already programmed the offset */
2070 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, ®);
2071 if (err) {
2072 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
2073 port, err);
2074 return err;
2075 }
2076
2077 if (reg)
2078 return 0;
2079
2080 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, ®);
2081 if (err) {
2082 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
2083 port, err);
2084 return err;
2085 }
2086
2087 if (!(reg & P_REG_RX_OV_STATUS_OV_M))
2088 return -EBUSY;
2089
2090 err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
2091 if (err)
2092 return err;
2093
2094 total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
2095
2096 /* Read the first Vernier offset from the PHY register and add it to
2097 * the total offset.
2098 */
2099 err = ice_read_64b_phy_reg_e822(hw, port,
2100 P_REG_PAR_PCS_RX_OFFSET_L,
2101 &val);
2102 if (err)
2103 return err;
2104
2105 total_offset += val;
2106
2107 /* For Rx, all multi-lane link speeds include a second Vernier
2108 * calibration, because the lanes might not be aligned.
2109 */
2110 if (link_spd == ICE_PTP_LNK_SPD_40G ||
2111 link_spd == ICE_PTP_LNK_SPD_50G ||
2112 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2113 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2114 err = ice_read_64b_phy_reg_e822(hw, port,
2115 P_REG_PAR_RX_TIME_L,
2116 &val);
2117 if (err)
2118 return err;
2119
2120 total_offset += val;
2121 }
2122
2123 /* In addition, Rx must account for the PMD alignment */
2124 err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
2125 if (err)
2126 return err;
2127
2128 /* For RS-FEC, this adjustment adds delay, but for other modes, it
2129 * subtracts delay.
2130 */
2131 if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
2132 total_offset += pmd;
2133 else
2134 total_offset -= pmd;
2135
2136 /* Now that the total offset has been calculated, program it to the
2137 * PHY and indicate that the Rx offset is ready. After this,
2138 * timestamps will be enabled.
2139 */
2140 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
2141 total_offset);
2142 if (err)
2143 return err;
2144
2145 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
2146 if (err)
2147 return err;
2148
2149 dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
2150 port);
2151
2152 return 0;
2153}
2154
2155/**
2156 * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
2157 * @hw: pointer to the HW struct
2158 * @port: the PHY port to read
2159 * @phy_time: on return, the 64bit PHY timer value
2160 * @phc_time: on return, the lower 64bits of PHC time
2161 *
2162 * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC
2163 * timer values.
2164 */
2165static int
2166ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
2167 u64 *phc_time)
2168{
2169 u64 tx_time, rx_time;
2170 u32 zo, lo;
2171 u8 tmr_idx;
2172 int err;
2173
2174 tmr_idx = ice_get_ptp_src_clock_index(hw);
2175
2176 /* Prepare the PHC timer for a READ_TIME capture command */
2177 ice_ptp_src_cmd(hw, READ_TIME);
2178
2179 /* Prepare the PHY timer for a READ_TIME capture command */
2180 err = ice_ptp_one_port_cmd(hw, port, READ_TIME);
2181 if (err)
2182 return err;
2183
2184 /* Issue the sync to start the READ_TIME capture */
2185 ice_ptp_exec_tmr_cmd(hw);
2186
2187 /* Read the captured PHC time from the shadow time registers */
2188 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2189 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2190 *phc_time = (u64)lo << 32 | zo;
2191
2192 /* Read the captured PHY time from the PHY shadow registers */
2193 err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
2194 if (err)
2195 return err;
2196
2197 /* If the PHY Tx and Rx timers don't match, log a warning message.
2198 * Note that this should not happen in normal circumstances since the
2199 * driver always programs them together.
2200 */
2201 if (tx_time != rx_time)
2202 dev_warn(ice_hw_to_dev(hw),
2203 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2204 port, (unsigned long long)tx_time,
2205 (unsigned long long)rx_time);
2206
2207 *phy_time = tx_time;
2208
2209 return 0;
2210}
2211
2212/**
2213 * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
2214 * @hw: pointer to the HW struct
2215 * @port: the PHY port to synchronize
2216 *
2217 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2218 * This is done by issuing a READ_TIME command which triggers a simultaneous
2219 * read of the PHY timer and PHC timer. Then we use the difference to
2220 * calculate an appropriate 2s complement addition to add to the PHY timer in
2221 * order to ensure it reads the same value as the primary PHC timer.
2222 */
2223static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
2224{
2225 u64 phc_time, phy_time, difference;
2226 int err;
2227
2228 if (!ice_ptp_lock(hw)) {
2229 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2230 return -EBUSY;
2231 }
2232
2233 err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2234 if (err)
2235 goto err_unlock;
2236
2237 /* Calculate the amount required to add to the port time in order for
2238 * it to match the PHC time.
2239 *
2240 * Note that the port adjustment is done using 2s complement
2241 * arithmetic. This is convenient since it means that we can simply
2242 * calculate the difference between the PHC time and the port time,
2243 * and it will be interpreted correctly.
2244 */
2245 difference = phc_time - phy_time;
2246
2247 err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
2248 if (err)
2249 goto err_unlock;
2250
2251 err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME);
2252 if (err)
2253 goto err_unlock;
2254
2255 /* Issue the sync to activate the time adjustment */
2256 ice_ptp_exec_tmr_cmd(hw);
2257
2258 /* Re-capture the timer values to flush the command registers and
2259 * verify that the time was properly adjusted.
2260 */
2261 err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2262 if (err)
2263 goto err_unlock;
2264
2265 dev_info(ice_hw_to_dev(hw),
2266 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2267 port, (unsigned long long)phy_time,
2268 (unsigned long long)phc_time);
2269
2270 ice_ptp_unlock(hw);
2271
2272 return 0;
2273
2274err_unlock:
2275 ice_ptp_unlock(hw);
2276 return err;
2277}
2278
2279/**
2280 * ice_stop_phy_timer_e822 - Stop the PHY clock timer
2281 * @hw: pointer to the HW struct
2282 * @port: the PHY port to stop
2283 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
2284 *
2285 * Stop the clock of a PHY port. This must be done as part of the flow to
2286 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2287 * initialized or when link speed changes.
2288 */
2289int
2290ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
2291{
2292 int err;
2293 u32 val;
2294
2295 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
2296 if (err)
2297 return err;
2298
2299 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
2300 if (err)
2301 return err;
2302
2303 err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2304 if (err)
2305 return err;
2306
2307 val &= ~P_REG_PS_START_M;
2308 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2309 if (err)
2310 return err;
2311
2312 val &= ~P_REG_PS_ENA_CLK_M;
2313 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2314 if (err)
2315 return err;
2316
2317 if (soft_reset) {
2318 val |= P_REG_PS_SFT_RESET_M;
2319 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2320 if (err)
2321 return err;
2322 }
2323
2324 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2325
2326 return 0;
2327}
2328
2329/**
2330 * ice_start_phy_timer_e822 - Start the PHY clock timer
2331 * @hw: pointer to the HW struct
2332 * @port: the PHY port to start
2333 *
2334 * Start the clock of a PHY port. This must be done as part of the flow to
2335 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2336 * initialized or when link speed changes.
2337 *
2338 * Hardware will take Vernier measurements on Tx or Rx of packets.
2339 */
2340int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port)
2341{
2342 u32 lo, hi, val;
2343 u64 incval;
2344 u8 tmr_idx;
2345 int err;
2346
2347 tmr_idx = ice_get_ptp_src_clock_index(hw);
2348
2349 err = ice_stop_phy_timer_e822(hw, port, false);
2350 if (err)
2351 return err;
2352
2353 ice_phy_cfg_lane_e822(hw, port);
2354
2355 err = ice_phy_cfg_uix_e822(hw, port);
2356 if (err)
2357 return err;
2358
2359 err = ice_phy_cfg_parpcs_e822(hw, port);
2360 if (err)
2361 return err;
2362
2363 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2364 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2365 incval = (u64)hi << 32 | lo;
2366
2367 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
2368 if (err)
2369 return err;
2370
2371 err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2372 if (err)
2373 return err;
2374
2375 ice_ptp_exec_tmr_cmd(hw);
2376
2377 err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2378 if (err)
2379 return err;
2380
2381 val |= P_REG_PS_SFT_RESET_M;
2382 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2383 if (err)
2384 return err;
2385
2386 val |= P_REG_PS_START_M;
2387 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2388 if (err)
2389 return err;
2390
2391 val &= ~P_REG_PS_SFT_RESET_M;
2392 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2393 if (err)
2394 return err;
2395
2396 err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2397 if (err)
2398 return err;
2399
2400 ice_ptp_exec_tmr_cmd(hw);
2401
2402 val |= P_REG_PS_ENA_CLK_M;
2403 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2404 if (err)
2405 return err;
2406
2407 val |= P_REG_PS_LOAD_OFFSET_M;
2408 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2409 if (err)
2410 return err;
2411
2412 ice_ptp_exec_tmr_cmd(hw);
2413
2414 err = ice_sync_phy_timer_e822(hw, port);
2415 if (err)
2416 return err;
2417
2418 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2419
2420 return 0;
2421}
2422
2423/**
2424 * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register
2425 * @hw: pointer to the HW struct
2426 * @quad: the timestamp quad to read from
2427 * @tstamp_ready: contents of the Tx memory status register
2428 *
2429 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
2430 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2431 * ready to be captured from the PHY timestamp block.
2432 */
2433static int
2434ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
2435{
2436 u32 hi, lo;
2437 int err;
2438
2439 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
2440 if (err) {
2441 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
2442 quad, err);
2443 return err;
2444 }
2445
2446 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
2447 if (err) {
2448 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
2449 quad, err);
2450 return err;
2451 }
2452
2453 *tstamp_ready = (u64)hi << 32 | (u64)lo;
2454
2455 return 0;
2456}
2457
2458/* E810 functions
2459 *
2460 * The following functions operate on the E810 series devices which use
2461 * a separate external PHY.
2462 */
2463
2464/**
2465 * ice_read_phy_reg_e810 - Read register from external PHY on E810
2466 * @hw: pointer to the HW struct
2467 * @addr: the address to read from
2468 * @val: On return, the value read from the PHY
2469 *
2470 * Read a register from the external PHY on the E810 device.
2471 */
2472static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
2473{
2474 struct ice_sbq_msg_input msg = {0};
2475 int err;
2476
2477 msg.msg_addr_low = lower_16_bits(addr);
2478 msg.msg_addr_high = upper_16_bits(addr);
2479 msg.opcode = ice_sbq_msg_rd;
2480 msg.dest_dev = rmn_0;
2481
2482 err = ice_sbq_rw_reg(hw, &msg);
2483 if (err) {
2484 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2485 err);
2486 return err;
2487 }
2488
2489 *val = msg.data;
2490
2491 return 0;
2492}
2493
2494/**
2495 * ice_write_phy_reg_e810 - Write register on external PHY on E810
2496 * @hw: pointer to the HW struct
2497 * @addr: the address to writem to
2498 * @val: the value to write to the PHY
2499 *
2500 * Write a value to a register of the external PHY on the E810 device.
2501 */
2502static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
2503{
2504 struct ice_sbq_msg_input msg = {0};
2505 int err;
2506
2507 msg.msg_addr_low = lower_16_bits(addr);
2508 msg.msg_addr_high = upper_16_bits(addr);
2509 msg.opcode = ice_sbq_msg_wr;
2510 msg.dest_dev = rmn_0;
2511 msg.data = val;
2512
2513 err = ice_sbq_rw_reg(hw, &msg);
2514 if (err) {
2515 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2516 err);
2517 return err;
2518 }
2519
2520 return 0;
2521}
2522
2523/**
2524 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
2525 * @hw: pointer to the HW struct
2526 * @idx: the timestamp index to read
2527 * @hi: 8 bit timestamp high value
2528 * @lo: 32 bit timestamp low value
2529 *
2530 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2531 * timestamp block of the external PHY on the E810 device using the low latency
2532 * timestamp read.
2533 */
2534static int
2535ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
2536{
2537 u32 val;
2538 u8 i;
2539
2540 /* Write TS index to read to the PF register so the FW can read it */
2541 val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
2542 wr32(hw, PF_SB_ATQBAL, val);
2543
2544 /* Read the register repeatedly until the FW provides us the TS */
2545 for (i = TS_LL_READ_RETRIES; i > 0; i--) {
2546 val = rd32(hw, PF_SB_ATQBAL);
2547
2548 /* When the bit is cleared, the TS is ready in the register */
2549 if (!(FIELD_GET(TS_LL_READ_TS, val))) {
2550 /* High 8 bit value of the TS is on the bits 16:23 */
2551 *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
2552
2553 /* Read the low 32 bit value and set the TS valid bit */
2554 *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
2555 return 0;
2556 }
2557
2558 udelay(10);
2559 }
2560
2561 /* FW failed to provide the TS in time */
2562 ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
2563 return -EINVAL;
2564}
2565
2566/**
2567 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
2568 * @hw: pointer to the HW struct
2569 * @lport: the lport to read from
2570 * @idx: the timestamp index to read
2571 * @hi: 8 bit timestamp high value
2572 * @lo: 32 bit timestamp low value
2573 *
2574 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2575 * timestamp block of the external PHY on the E810 device using sideband queue.
2576 */
2577static int
2578ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
2579 u32 *lo)
2580{
2581 u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2582 u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2583 u32 lo_val, hi_val;
2584 int err;
2585
2586 err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
2587 if (err) {
2588 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
2589 err);
2590 return err;
2591 }
2592
2593 err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
2594 if (err) {
2595 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
2596 err);
2597 return err;
2598 }
2599
2600 *lo = lo_val;
2601 *hi = (u8)hi_val;
2602
2603 return 0;
2604}
2605
2606/**
2607 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
2608 * @hw: pointer to the HW struct
2609 * @lport: the lport to read from
2610 * @idx: the timestamp index to read
2611 * @tstamp: on return, the 40bit timestamp value
2612 *
2613 * Read a 40bit timestamp value out of the timestamp block of the external PHY
2614 * on the E810 device.
2615 */
2616static int
2617ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
2618{
2619 u32 lo = 0;
2620 u8 hi = 0;
2621 int err;
2622
2623 if (hw->dev_caps.ts_dev_info.ts_ll_read)
2624 err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
2625 else
2626 err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
2627
2628 if (err)
2629 return err;
2630
2631 /* For E810 devices, the timestamp is reported with the lower 32 bits
2632 * in the low register, and the upper 8 bits in the high register.
2633 */
2634 *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
2635
2636 return 0;
2637}
2638
2639/**
2640 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
2641 * @hw: pointer to the HW struct
2642 * @lport: the lport to read from
2643 * @idx: the timestamp index to reset
2644 *
2645 * Clear a timestamp, resetting its valid bit, from the timestamp block of the
2646 * external PHY on the E810 device.
2647 */
2648static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
2649{
2650 u32 lo_addr, hi_addr;
2651 int err;
2652
2653 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2654 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2655
2656 err = ice_write_phy_reg_e810(hw, lo_addr, 0);
2657 if (err) {
2658 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
2659 err);
2660 return err;
2661 }
2662
2663 err = ice_write_phy_reg_e810(hw, hi_addr, 0);
2664 if (err) {
2665 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
2666 err);
2667 return err;
2668 }
2669
2670 return 0;
2671}
2672
2673/**
2674 * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
2675 * @hw: pointer to HW struct
2676 *
2677 * Enable the timesync PTP functionality for the external PHY connected to
2678 * this function.
2679 */
2680int ice_ptp_init_phy_e810(struct ice_hw *hw)
2681{
2682 u8 tmr_idx;
2683 int err;
2684
2685 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2686 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
2687 GLTSYN_ENA_TSYN_ENA_M);
2688 if (err)
2689 ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
2690 err);
2691
2692 return err;
2693}
2694
2695/**
2696 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
2697 * @hw: pointer to HW struct
2698 *
2699 * Perform E810-specific PTP hardware clock initialization steps.
2700 */
2701static int ice_ptp_init_phc_e810(struct ice_hw *hw)
2702{
2703 /* Ensure synchronization delay is zero */
2704 wr32(hw, GLTSYN_SYNC_DLAY, 0);
2705
2706 /* Initialize the PHY */
2707 return ice_ptp_init_phy_e810(hw);
2708}
2709
2710/**
2711 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
2712 * @hw: Board private structure
2713 * @time: Time to initialize the PHY port clock to
2714 *
2715 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
2716 * initial clock time. The time will not actually be programmed until the
2717 * driver issues an INIT_TIME command.
2718 *
2719 * The time value is the upper 32 bits of the PHY timer, usually in units of
2720 * nominal nanoseconds.
2721 */
2722static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
2723{
2724 u8 tmr_idx;
2725 int err;
2726
2727 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2728 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
2729 if (err) {
2730 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
2731 err);
2732 return err;
2733 }
2734
2735 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
2736 if (err) {
2737 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
2738 err);
2739 return err;
2740 }
2741
2742 return 0;
2743}
2744
2745/**
2746 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
2747 * @hw: pointer to HW struct
2748 * @adj: adjustment value to program
2749 *
2750 * Prepare the PHY port for an atomic adjustment by programming the PHY
2751 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
2752 * is completed by issuing an ADJ_TIME sync command.
2753 *
2754 * The adjustment value only contains the portion used for the upper 32bits of
2755 * the PHY timer, usually in units of nominal nanoseconds. Negative
2756 * adjustments are supported using 2s complement arithmetic.
2757 */
2758static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
2759{
2760 u8 tmr_idx;
2761 int err;
2762
2763 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2764
2765 /* Adjustments are represented as signed 2's complement values in
2766 * nanoseconds. Sub-nanosecond adjustment is not supported.
2767 */
2768 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
2769 if (err) {
2770 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
2771 err);
2772 return err;
2773 }
2774
2775 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
2776 if (err) {
2777 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
2778 err);
2779 return err;
2780 }
2781
2782 return 0;
2783}
2784
2785/**
2786 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
2787 * @hw: pointer to HW struct
2788 * @incval: The new 40bit increment value to prepare
2789 *
2790 * Prepare the PHY port for a new increment value by programming the PHY
2791 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
2792 * completed by issuing an INIT_INCVAL command.
2793 */
2794static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
2795{
2796 u32 high, low;
2797 u8 tmr_idx;
2798 int err;
2799
2800 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2801 low = lower_32_bits(incval);
2802 high = upper_32_bits(incval);
2803
2804 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
2805 if (err) {
2806 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
2807 err);
2808 return err;
2809 }
2810
2811 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
2812 if (err) {
2813 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
2814 err);
2815 return err;
2816 }
2817
2818 return 0;
2819}
2820
2821/**
2822 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
2823 * @hw: pointer to HW struct
2824 * @cmd: Command to be sent to the port
2825 *
2826 * Prepare the external PHYs connected to this device for a timer sync
2827 * command.
2828 */
2829static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2830{
2831 u32 cmd_val, val;
2832 int err;
2833
2834 switch (cmd) {
2835 case INIT_TIME:
2836 cmd_val = GLTSYN_CMD_INIT_TIME;
2837 break;
2838 case INIT_INCVAL:
2839 cmd_val = GLTSYN_CMD_INIT_INCVAL;
2840 break;
2841 case ADJ_TIME:
2842 cmd_val = GLTSYN_CMD_ADJ_TIME;
2843 break;
2844 case READ_TIME:
2845 cmd_val = GLTSYN_CMD_READ_TIME;
2846 break;
2847 case ADJ_TIME_AT_TIME:
2848 cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
2849 break;
2850 }
2851
2852 /* Read, modify, write */
2853 err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
2854 if (err) {
2855 ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
2856 return err;
2857 }
2858
2859 /* Modify necessary bits only and perform write */
2860 val &= ~TS_CMD_MASK_E810;
2861 val |= cmd_val;
2862
2863 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
2864 if (err) {
2865 ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
2866 return err;
2867 }
2868
2869 return 0;
2870}
2871
2872/* Device agnostic functions
2873 *
2874 * The following functions implement shared behavior common to both E822 and
2875 * E810 devices, possibly calling a device specific implementation where
2876 * necessary.
2877 */
2878
2879/**
2880 * ice_ptp_lock - Acquire PTP global semaphore register lock
2881 * @hw: pointer to the HW struct
2882 *
2883 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
2884 * was acquired, false otherwise.
2885 *
2886 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
2887 * value. If software sees the busy bit cleared, this means that this function
2888 * acquired the lock (and the busy bit is now set). If software sees the busy
2889 * bit set, it means that another function acquired the lock.
2890 *
2891 * Software must clear the busy bit with a write to release the lock for other
2892 * functions when done.
2893 */
2894bool ice_ptp_lock(struct ice_hw *hw)
2895{
2896 u32 hw_lock;
2897 int i;
2898
2899#define MAX_TRIES 15
2900
2901 for (i = 0; i < MAX_TRIES; i++) {
2902 hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2903 hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
2904 if (hw_lock) {
2905 /* Somebody is holding the lock */
2906 usleep_range(5000, 6000);
2907 continue;
2908 }
2909
2910 break;
2911 }
2912
2913 return !hw_lock;
2914}
2915
2916/**
2917 * ice_ptp_unlock - Release PTP global semaphore register lock
2918 * @hw: pointer to the HW struct
2919 *
2920 * Release the global PTP hardware semaphore lock. This is done by writing to
2921 * the PFTSYN_SEM register.
2922 */
2923void ice_ptp_unlock(struct ice_hw *hw)
2924{
2925 wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
2926}
2927
2928/**
2929 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
2930 * @hw: pointer to HW struct
2931 * @cmd: the command to issue
2932 *
2933 * Prepare the source timer and PHY timers and then trigger the requested
2934 * command. This causes the shadow registers previously written in preparation
2935 * for the command to be synchronously applied to both the source and PHY
2936 * timers.
2937 */
2938static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2939{
2940 int err;
2941
2942 /* First, prepare the source timer */
2943 ice_ptp_src_cmd(hw, cmd);
2944
2945 /* Next, prepare the ports */
2946 if (ice_is_e810(hw))
2947 err = ice_ptp_port_cmd_e810(hw, cmd);
2948 else
2949 err = ice_ptp_port_cmd_e822(hw, cmd);
2950 if (err) {
2951 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
2952 cmd, err);
2953 return err;
2954 }
2955
2956 /* Write the sync command register to drive both source and PHY timer
2957 * commands synchronously
2958 */
2959 ice_ptp_exec_tmr_cmd(hw);
2960
2961 return 0;
2962}
2963
2964/**
2965 * ice_ptp_init_time - Initialize device time to provided value
2966 * @hw: pointer to HW struct
2967 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
2968 *
2969 * Initialize the device to the specified time provided. This requires a three
2970 * step process:
2971 *
2972 * 1) write the new init time to the source timer shadow registers
2973 * 2) write the new init time to the PHY timer shadow registers
2974 * 3) issue an init_time timer command to synchronously switch both the source
2975 * and port timers to the new init time value at the next clock cycle.
2976 */
2977int ice_ptp_init_time(struct ice_hw *hw, u64 time)
2978{
2979 u8 tmr_idx;
2980 int err;
2981
2982 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2983
2984 /* Source timers */
2985 wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
2986 wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
2987 wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
2988
2989 /* PHY timers */
2990 /* Fill Rx and Tx ports and send msg to PHY */
2991 if (ice_is_e810(hw))
2992 err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
2993 else
2994 err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
2995 if (err)
2996 return err;
2997
2998 return ice_ptp_tmr_cmd(hw, INIT_TIME);
2999}
3000
3001/**
3002 * ice_ptp_write_incval - Program PHC with new increment value
3003 * @hw: pointer to HW struct
3004 * @incval: Source timer increment value per clock cycle
3005 *
3006 * Program the PHC with a new increment value. This requires a three-step
3007 * process:
3008 *
3009 * 1) Write the increment value to the source timer shadow registers
3010 * 2) Write the increment value to the PHY timer shadow registers
3011 * 3) Issue an INIT_INCVAL timer command to synchronously switch both the
3012 * source and port timers to the new increment value at the next clock
3013 * cycle.
3014 */
3015int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
3016{
3017 u8 tmr_idx;
3018 int err;
3019
3020 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3021
3022 /* Shadow Adjust */
3023 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
3024 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
3025
3026 if (ice_is_e810(hw))
3027 err = ice_ptp_prep_phy_incval_e810(hw, incval);
3028 else
3029 err = ice_ptp_prep_phy_incval_e822(hw, incval);
3030 if (err)
3031 return err;
3032
3033 return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
3034}
3035
3036/**
3037 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
3038 * @hw: pointer to HW struct
3039 * @incval: Source timer increment value per clock cycle
3040 *
3041 * Program a new PHC incval while holding the PTP semaphore.
3042 */
3043int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
3044{
3045 int err;
3046
3047 if (!ice_ptp_lock(hw))
3048 return -EBUSY;
3049
3050 err = ice_ptp_write_incval(hw, incval);
3051
3052 ice_ptp_unlock(hw);
3053
3054 return err;
3055}
3056
3057/**
3058 * ice_ptp_adj_clock - Adjust PHC clock time atomically
3059 * @hw: pointer to HW struct
3060 * @adj: Adjustment in nanoseconds
3061 *
3062 * Perform an atomic adjustment of the PHC time by the specified number of
3063 * nanoseconds. This requires a three-step process:
3064 *
3065 * 1) Write the adjustment to the source timer shadow registers
3066 * 2) Write the adjustment to the PHY timer shadow registers
3067 * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
3068 * both the source and port timers at the next clock cycle.
3069 */
3070int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
3071{
3072 u8 tmr_idx;
3073 int err;
3074
3075 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3076
3077 /* Write the desired clock adjustment into the GLTSYN_SHADJ register.
3078 * For an ADJ_TIME command, this set of registers represents the value
3079 * to add to the clock time. It supports subtraction by interpreting
3080 * the value as a 2's complement integer.
3081 */
3082 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
3083 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
3084
3085 if (ice_is_e810(hw))
3086 err = ice_ptp_prep_phy_adj_e810(hw, adj);
3087 else
3088 err = ice_ptp_prep_phy_adj_e822(hw, adj);
3089 if (err)
3090 return err;
3091
3092 return ice_ptp_tmr_cmd(hw, ADJ_TIME);
3093}
3094
3095/**
3096 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
3097 * @hw: pointer to the HW struct
3098 * @block: the block to read from
3099 * @idx: the timestamp index to read
3100 * @tstamp: on return, the 40bit timestamp value
3101 *
3102 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
3103 * the block is the quad to read from. For E810 devices, the block is the
3104 * logical port to read from.
3105 */
3106int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
3107{
3108 if (ice_is_e810(hw))
3109 return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
3110 else
3111 return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
3112}
3113
3114/**
3115 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
3116 * @hw: pointer to the HW struct
3117 * @block: the block to read from
3118 * @idx: the timestamp index to reset
3119 *
3120 * Clear a timestamp, resetting its valid bit, from the timestamp block. For
3121 * E822 devices, the block is the quad to clear from. For E810 devices, the
3122 * block is the logical port to clear from.
3123 */
3124int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
3125{
3126 if (ice_is_e810(hw))
3127 return ice_clear_phy_tstamp_e810(hw, block, idx);
3128 else
3129 return ice_clear_phy_tstamp_e822(hw, block, idx);
3130}
3131
3132/**
3133 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
3134 * @hw: pointer to the HW struct
3135 * @port: the PHY port to read
3136 * @tstamp_ready: contents of the Tx memory status register
3137 *
3138 * E810 devices do not use a Tx memory status register. Instead simply
3139 * indicate that all timestamps are currently ready.
3140 */
3141static int
3142ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
3143{
3144 *tstamp_ready = 0xFFFFFFFFFFFFFFFF;
3145 return 0;
3146}
3147
3148/* E810T SMA functions
3149 *
3150 * The following functions operate specifically on E810T hardware and are used
3151 * to access the extended GPIOs available.
3152 */
3153
3154/**
3155 * ice_get_pca9575_handle
3156 * @hw: pointer to the hw struct
3157 * @pca9575_handle: GPIO controller's handle
3158 *
3159 * Find and return the GPIO controller's handle in the netlist.
3160 * When found - the value will be cached in the hw structure and following calls
3161 * will return cached value
3162 */
3163static int
3164ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
3165{
3166 struct ice_aqc_get_link_topo *cmd;
3167 struct ice_aq_desc desc;
3168 int status;
3169 u8 idx;
3170
3171 /* If handle was read previously return cached value */
3172 if (hw->io_expander_handle) {
3173 *pca9575_handle = hw->io_expander_handle;
3174 return 0;
3175 }
3176
3177 /* If handle was not detected read it from the netlist */
3178 cmd = &desc.params.get_link_topo;
3179 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
3180
3181 /* Set node type to GPIO controller */
3182 cmd->addr.topo_params.node_type_ctx =
3183 (ICE_AQC_LINK_TOPO_NODE_TYPE_M &
3184 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
3185
3186#define SW_PCA9575_SFP_TOPO_IDX 2
3187#define SW_PCA9575_QSFP_TOPO_IDX 1
3188
3189 /* Check if the SW IO expander controlling SMA exists in the netlist. */
3190 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
3191 idx = SW_PCA9575_SFP_TOPO_IDX;
3192 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
3193 idx = SW_PCA9575_QSFP_TOPO_IDX;
3194 else
3195 return -EOPNOTSUPP;
3196
3197 cmd->addr.topo_params.index = idx;
3198
3199 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3200 if (status)
3201 return -EOPNOTSUPP;
3202
3203 /* Verify if we found the right IO expander type */
3204 if (desc.params.get_link_topo.node_part_num !=
3205 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
3206 return -EOPNOTSUPP;
3207
3208 /* If present save the handle and return it */
3209 hw->io_expander_handle =
3210 le16_to_cpu(desc.params.get_link_topo.addr.handle);
3211 *pca9575_handle = hw->io_expander_handle;
3212
3213 return 0;
3214}
3215
3216/**
3217 * ice_read_sma_ctrl_e810t
3218 * @hw: pointer to the hw struct
3219 * @data: pointer to data to be read from the GPIO controller
3220 *
3221 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
3222 * PCA9575 expander, so only bits 3-7 in data are valid.
3223 */
3224int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
3225{
3226 int status;
3227 u16 handle;
3228 u8 i;
3229
3230 status = ice_get_pca9575_handle(hw, &handle);
3231 if (status)
3232 return status;
3233
3234 *data = 0;
3235
3236 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3237 bool pin;
3238
3239 status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3240 &pin, NULL);
3241 if (status)
3242 break;
3243 *data |= (u8)(!pin) << i;
3244 }
3245
3246 return status;
3247}
3248
3249/**
3250 * ice_write_sma_ctrl_e810t
3251 * @hw: pointer to the hw struct
3252 * @data: data to be written to the GPIO controller
3253 *
3254 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
3255 * of the PCA9575 expander, so only bits 3-7 in data are valid.
3256 */
3257int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
3258{
3259 int status;
3260 u16 handle;
3261 u8 i;
3262
3263 status = ice_get_pca9575_handle(hw, &handle);
3264 if (status)
3265 return status;
3266
3267 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3268 bool pin;
3269
3270 pin = !(data & (1 << i));
3271 status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3272 pin, NULL);
3273 if (status)
3274 break;
3275 }
3276
3277 return status;
3278}
3279
3280/**
3281 * ice_read_pca9575_reg_e810t
3282 * @hw: pointer to the hw struct
3283 * @offset: GPIO controller register offset
3284 * @data: pointer to data to be read from the GPIO controller
3285 *
3286 * Read the register from the GPIO controller
3287 */
3288int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
3289{
3290 struct ice_aqc_link_topo_addr link_topo;
3291 __le16 addr;
3292 u16 handle;
3293 int err;
3294
3295 memset(&link_topo, 0, sizeof(link_topo));
3296
3297 err = ice_get_pca9575_handle(hw, &handle);
3298 if (err)
3299 return err;
3300
3301 link_topo.handle = cpu_to_le16(handle);
3302 link_topo.topo_params.node_type_ctx =
3303 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
3304 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
3305
3306 addr = cpu_to_le16((u16)offset);
3307
3308 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
3309}
3310
3311/**
3312 * ice_is_pca9575_present
3313 * @hw: pointer to the hw struct
3314 *
3315 * Check if the SW IO expander is present in the netlist
3316 */
3317bool ice_is_pca9575_present(struct ice_hw *hw)
3318{
3319 u16 handle = 0;
3320 int status;
3321
3322 if (!ice_is_e810t(hw))
3323 return false;
3324
3325 status = ice_get_pca9575_handle(hw, &handle);
3326
3327 return !status && handle;
3328}
3329
3330/**
3331 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
3332 * @hw: pointer to the HW struct
3333 */
3334void ice_ptp_reset_ts_memory(struct ice_hw *hw)
3335{
3336 if (ice_is_e810(hw))
3337 return;
3338
3339 ice_ptp_reset_ts_memory_e822(hw);
3340}
3341
3342/**
3343 * ice_ptp_init_phc - Initialize PTP hardware clock
3344 * @hw: pointer to the HW struct
3345 *
3346 * Perform the steps required to initialize the PTP hardware clock.
3347 */
3348int ice_ptp_init_phc(struct ice_hw *hw)
3349{
3350 u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3351
3352 /* Enable source clocks */
3353 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
3354
3355 /* Clear event err indications for auxiliary pins */
3356 (void)rd32(hw, GLTSYN_STAT(src_idx));
3357
3358 if (ice_is_e810(hw))
3359 return ice_ptp_init_phc_e810(hw);
3360 else
3361 return ice_ptp_init_phc_e822(hw);
3362}
3363
3364/**
3365 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
3366 * @hw: pointer to the HW struct
3367 * @block: the timestamp block to check
3368 * @tstamp_ready: storage for the PHY Tx memory status information
3369 *
3370 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
3371 * which indicates which timestamps in the block may be captured. A set bit
3372 * means the timestamp can be read. An unset bit means the timestamp is not
3373 * ready and software should avoid reading the register.
3374 */
3375int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
3376{
3377 if (ice_is_e810(hw))
3378 return ice_get_phy_tx_tstamp_ready_e810(hw, block,
3379 tstamp_ready);
3380 else
3381 return ice_get_phy_tx_tstamp_ready_e822(hw, block,
3382 tstamp_ready);
3383}