Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5#include <linux/bpf_trace.h>
6#include <net/xdp.h>
7#include "i40e.h"
8#include "i40e_trace.h"
9#include "i40e_prototype.h"
10#include "i40e_txrx_common.h"
11#include "i40e_xsk.h"
12
13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14/**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
21static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23{
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
48 /* Use LAN VSI Id if not programmed by user */
49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55 dtype_cmd |= add ?
56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67 if (fdata->cnt_index) {
68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 ((u32)fdata->cnt_index <<
71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 }
73
74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 fdir_desc->rsvd = cpu_to_le32(0);
76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78}
79
80#define I40E_FD_CLEAN_DELAY 10
81/**
82 * i40e_program_fdir_filter - Program a Flow Director filter
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
85 * @pf: The PF pointer
86 * @add: True for add/update, False for remove
87 **/
88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 u8 *raw_packet, struct i40e_pf *pf,
90 bool add)
91{
92 struct i40e_tx_buffer *tx_buf, *first;
93 struct i40e_tx_desc *tx_desc;
94 struct i40e_ring *tx_ring;
95 struct i40e_vsi *vsi;
96 struct device *dev;
97 dma_addr_t dma;
98 u32 td_cmd = 0;
99 u16 i;
100
101 /* find existing FDIR VSI */
102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 if (!vsi)
104 return -ENOENT;
105
106 tx_ring = vsi->tx_rings[0];
107 dev = tx_ring->dev;
108
109 /* we need two descriptors to add/del a filter and we can wait */
110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 if (!i)
112 return -EAGAIN;
113 msleep_interruptible(1);
114 }
115
116 dma = dma_map_single(dev, raw_packet,
117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 if (dma_mapping_error(dev, dma))
119 goto dma_fail;
120
121 /* grab the next descriptor */
122 i = tx_ring->next_to_use;
123 first = &tx_ring->tx_bi[i];
124 i40e_fdir(tx_ring, fdir_data, add);
125
126 /* Now program a dummy descriptor */
127 i = tx_ring->next_to_use;
128 tx_desc = I40E_TX_DESC(tx_ring, i);
129 tx_buf = &tx_ring->tx_bi[i];
130
131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134
135 /* record length, and DMA address */
136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 dma_unmap_addr_set(tx_buf, dma, dma);
138
139 tx_desc->buffer_addr = cpu_to_le64(dma);
140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141
142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 tx_buf->raw_buf = (void *)raw_packet;
144
145 tx_desc->cmd_type_offset_bsz =
146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147
148 /* Force memory writes to complete before letting h/w
149 * know there are new descriptors to fetch.
150 */
151 wmb();
152
153 /* Mark the data descriptor to be watched */
154 first->next_to_watch = tx_desc;
155
156 writel(tx_ring->next_to_use, tx_ring->tail);
157 return 0;
158
159dma_fail:
160 return -1;
161}
162
163#define IP_HEADER_OFFSET 14
164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
165/**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 struct i40e_fdir_filter *fd_data,
175 bool add)
176{
177 struct i40e_pf *pf = vsi->back;
178 struct udphdr *udp;
179 struct iphdr *ip;
180 u8 *raw_packet;
181 int ret;
182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 if (!raw_packet)
188 return -ENOMEM;
189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 + sizeof(struct iphdr));
194
195 ip->daddr = fd_data->dst_ip;
196 udp->dest = fd_data->dst_port;
197 ip->saddr = fd_data->src_ip;
198 udp->source = fd_data->src_port;
199
200 if (fd_data->flex_filter) {
201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 __be16 pattern = fd_data->flex_word;
203 u16 off = fd_data->flex_offset;
204
205 *((__force __be16 *)(payload + off)) = pattern;
206 }
207
208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 if (ret) {
211 dev_info(&pf->pdev->dev,
212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 fd_data->pctype, fd_data->fd_id, ret);
214 /* Free the packet buffer since it wasn't added to the ring */
215 kfree(raw_packet);
216 return -EOPNOTSUPP;
217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 if (add)
219 dev_info(&pf->pdev->dev,
220 "Filter OK for PCTYPE %d loc = %d\n",
221 fd_data->pctype, fd_data->fd_id);
222 else
223 dev_info(&pf->pdev->dev,
224 "Filter deleted for PCTYPE %d loc = %d\n",
225 fd_data->pctype, fd_data->fd_id);
226 }
227
228 if (add)
229 pf->fd_udp4_filter_cnt++;
230 else
231 pf->fd_udp4_filter_cnt--;
232
233 return 0;
234}
235
236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
237/**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 struct i40e_fdir_filter *fd_data,
247 bool add)
248{
249 struct i40e_pf *pf = vsi->back;
250 struct tcphdr *tcp;
251 struct iphdr *ip;
252 u8 *raw_packet;
253 int ret;
254 /* Dummy packet */
255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 0x0, 0x72, 0, 0, 0, 0};
259
260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 if (!raw_packet)
262 return -ENOMEM;
263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 + sizeof(struct iphdr));
268
269 ip->daddr = fd_data->dst_ip;
270 tcp->dest = fd_data->dst_port;
271 ip->saddr = fd_data->src_ip;
272 tcp->source = fd_data->src_port;
273
274 if (fd_data->flex_filter) {
275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 __be16 pattern = fd_data->flex_word;
277 u16 off = fd_data->flex_offset;
278
279 *((__force __be16 *)(payload + off)) = pattern;
280 }
281
282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 if (ret) {
285 dev_info(&pf->pdev->dev,
286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 fd_data->pctype, fd_data->fd_id, ret);
288 /* Free the packet buffer since it wasn't added to the ring */
289 kfree(raw_packet);
290 return -EOPNOTSUPP;
291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 if (add)
293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 fd_data->pctype, fd_data->fd_id);
295 else
296 dev_info(&pf->pdev->dev,
297 "Filter deleted for PCTYPE %d loc = %d\n",
298 fd_data->pctype, fd_data->fd_id);
299 }
300
301 if (add) {
302 pf->fd_tcp4_filter_cnt++;
303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 I40E_DEBUG_FD & pf->hw.debug_mask)
305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 } else {
308 pf->fd_tcp4_filter_cnt--;
309 }
310
311 return 0;
312}
313
314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315/**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 struct i40e_fdir_filter *fd_data,
326 bool add)
327{
328 struct i40e_pf *pf = vsi->back;
329 struct sctphdr *sctp;
330 struct iphdr *ip;
331 u8 *raw_packet;
332 int ret;
333 /* Dummy packet */
334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 if (!raw_packet)
340 return -ENOMEM;
341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 + sizeof(struct iphdr));
346
347 ip->daddr = fd_data->dst_ip;
348 sctp->dest = fd_data->dst_port;
349 ip->saddr = fd_data->src_ip;
350 sctp->source = fd_data->src_port;
351
352 if (fd_data->flex_filter) {
353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 __be16 pattern = fd_data->flex_word;
355 u16 off = fd_data->flex_offset;
356
357 *((__force __be16 *)(payload + off)) = pattern;
358 }
359
360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 if (ret) {
363 dev_info(&pf->pdev->dev,
364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 fd_data->pctype, fd_data->fd_id, ret);
366 /* Free the packet buffer since it wasn't added to the ring */
367 kfree(raw_packet);
368 return -EOPNOTSUPP;
369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 if (add)
371 dev_info(&pf->pdev->dev,
372 "Filter OK for PCTYPE %d loc = %d\n",
373 fd_data->pctype, fd_data->fd_id);
374 else
375 dev_info(&pf->pdev->dev,
376 "Filter deleted for PCTYPE %d loc = %d\n",
377 fd_data->pctype, fd_data->fd_id);
378 }
379
380 if (add)
381 pf->fd_sctp4_filter_cnt++;
382 else
383 pf->fd_sctp4_filter_cnt--;
384
385 return 0;
386}
387
388#define I40E_IP_DUMMY_PACKET_LEN 34
389/**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 struct i40e_fdir_filter *fd_data,
400 bool add)
401{
402 struct i40e_pf *pf = vsi->back;
403 struct iphdr *ip;
404 u8 *raw_packet;
405 int ret;
406 int i;
407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 0, 0, 0, 0};
410
411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 if (!raw_packet)
415 return -ENOMEM;
416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
419 ip->saddr = fd_data->src_ip;
420 ip->daddr = fd_data->dst_ip;
421 ip->protocol = 0;
422
423 if (fd_data->flex_filter) {
424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 __be16 pattern = fd_data->flex_word;
426 u16 off = fd_data->flex_offset;
427
428 *((__force __be16 *)(payload + off)) = pattern;
429 }
430
431 fd_data->pctype = i;
432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 if (ret) {
434 dev_info(&pf->pdev->dev,
435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 fd_data->pctype, fd_data->fd_id, ret);
437 /* The packet buffer wasn't added to the ring so we
438 * need to free it now.
439 */
440 kfree(raw_packet);
441 return -EOPNOTSUPP;
442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 if (add)
444 dev_info(&pf->pdev->dev,
445 "Filter OK for PCTYPE %d loc = %d\n",
446 fd_data->pctype, fd_data->fd_id);
447 else
448 dev_info(&pf->pdev->dev,
449 "Filter deleted for PCTYPE %d loc = %d\n",
450 fd_data->pctype, fd_data->fd_id);
451 }
452 }
453
454 if (add)
455 pf->fd_ip4_filter_cnt++;
456 else
457 pf->fd_ip4_filter_cnt--;
458
459 return 0;
460}
461
462/**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
465 * @input: filter to add or delete
466 * @add: true adds a filter, false removes it
467 *
468 **/
469int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 struct i40e_fdir_filter *input, bool add)
471{
472 struct i40e_pf *pf = vsi->back;
473 int ret;
474
475 switch (input->flow_type & ~FLOW_EXT) {
476 case TCP_V4_FLOW:
477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 break;
479 case UDP_V4_FLOW:
480 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 break;
482 case SCTP_V4_FLOW:
483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 break;
485 case IP_USER_FLOW:
486 switch (input->ip4_proto) {
487 case IPPROTO_TCP:
488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 break;
490 case IPPROTO_UDP:
491 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 break;
493 case IPPROTO_SCTP:
494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 break;
496 case IPPROTO_IP:
497 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 break;
499 default:
500 /* We cannot support masking based on protocol */
501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 input->ip4_proto);
503 return -EINVAL;
504 }
505 break;
506 default:
507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 input->flow_type);
509 return -EINVAL;
510 }
511
512 /* The buffer allocated here will be normally be freed by
513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 * completion. In the event of an error adding the buffer to the FDIR
515 * ring, it will immediately be freed. It may also be freed by
516 * i40e_clean_tx_ring() when closing the VSI.
517 */
518 return ret;
519}
520
521/**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
524 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
525 * @prog_id: the id originally used for programming
526 *
527 * This is used to verify if the FD programming or invalidation
528 * requested by SW to the HW is successful or not and take actions accordingly.
529 **/
530void i40e_fd_handle_status(struct i40e_ring *rx_ring,
531 union i40e_rx_desc *rx_desc, u8 prog_id)
532{
533 struct i40e_pf *pf = rx_ring->vsi->back;
534 struct pci_dev *pdev = pf->pdev;
535 u32 fcnt_prog, fcnt_avail;
536 u32 error;
537 u64 qw;
538
539 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
540 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
541 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
542
543 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
544 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
545 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
546 (I40E_DEBUG_FD & pf->hw.debug_mask))
547 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
548 pf->fd_inv);
549
550 /* Check if the programming error is for ATR.
551 * If so, auto disable ATR and set a state for
552 * flush in progress. Next time we come here if flush is in
553 * progress do nothing, once flush is complete the state will
554 * be cleared.
555 */
556 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
557 return;
558
559 pf->fd_add_err++;
560 /* store the current atr filter count */
561 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
562
563 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
564 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
565 /* These set_bit() calls aren't atomic with the
566 * test_bit() here, but worse case we potentially
567 * disable ATR and queue a flush right after SB
568 * support is re-enabled. That shouldn't cause an
569 * issue in practice
570 */
571 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
572 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
573 }
574
575 /* filter programming failed most likely due to table full */
576 fcnt_prog = i40e_get_global_fd_count(pf);
577 fcnt_avail = pf->fdir_pf_filter_count;
578 /* If ATR is running fcnt_prog can quickly change,
579 * if we are very close to full, it makes sense to disable
580 * FD ATR/SB and then re-enable it when there is room.
581 */
582 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
583 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
584 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
585 pf->state))
586 if (I40E_DEBUG_FD & pf->hw.debug_mask)
587 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
588 }
589 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
590 if (I40E_DEBUG_FD & pf->hw.debug_mask)
591 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
592 rx_desc->wb.qword0.hi_dword.fd_id);
593 }
594}
595
596/**
597 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
598 * @ring: the ring that owns the buffer
599 * @tx_buffer: the buffer to free
600 **/
601static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
602 struct i40e_tx_buffer *tx_buffer)
603{
604 if (tx_buffer->skb) {
605 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
606 kfree(tx_buffer->raw_buf);
607 else if (ring_is_xdp(ring))
608 xdp_return_frame(tx_buffer->xdpf);
609 else
610 dev_kfree_skb_any(tx_buffer->skb);
611 if (dma_unmap_len(tx_buffer, len))
612 dma_unmap_single(ring->dev,
613 dma_unmap_addr(tx_buffer, dma),
614 dma_unmap_len(tx_buffer, len),
615 DMA_TO_DEVICE);
616 } else if (dma_unmap_len(tx_buffer, len)) {
617 dma_unmap_page(ring->dev,
618 dma_unmap_addr(tx_buffer, dma),
619 dma_unmap_len(tx_buffer, len),
620 DMA_TO_DEVICE);
621 }
622
623 tx_buffer->next_to_watch = NULL;
624 tx_buffer->skb = NULL;
625 dma_unmap_len_set(tx_buffer, len, 0);
626 /* tx_buffer must be completely set up in the transmit path */
627}
628
629/**
630 * i40e_clean_tx_ring - Free any empty Tx buffers
631 * @tx_ring: ring to be cleaned
632 **/
633void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
634{
635 unsigned long bi_size;
636 u16 i;
637
638 if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
639 i40e_xsk_clean_tx_ring(tx_ring);
640 } else {
641 /* ring already cleared, nothing to do */
642 if (!tx_ring->tx_bi)
643 return;
644
645 /* Free all the Tx ring sk_buffs */
646 for (i = 0; i < tx_ring->count; i++)
647 i40e_unmap_and_free_tx_resource(tx_ring,
648 &tx_ring->tx_bi[i]);
649 }
650
651 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
652 memset(tx_ring->tx_bi, 0, bi_size);
653
654 /* Zero out the descriptor ring */
655 memset(tx_ring->desc, 0, tx_ring->size);
656
657 tx_ring->next_to_use = 0;
658 tx_ring->next_to_clean = 0;
659
660 if (!tx_ring->netdev)
661 return;
662
663 /* cleanup Tx queue statistics */
664 netdev_tx_reset_queue(txring_txq(tx_ring));
665}
666
667/**
668 * i40e_free_tx_resources - Free Tx resources per queue
669 * @tx_ring: Tx descriptor ring for a specific queue
670 *
671 * Free all transmit software resources
672 **/
673void i40e_free_tx_resources(struct i40e_ring *tx_ring)
674{
675 i40e_clean_tx_ring(tx_ring);
676 kfree(tx_ring->tx_bi);
677 tx_ring->tx_bi = NULL;
678
679 if (tx_ring->desc) {
680 dma_free_coherent(tx_ring->dev, tx_ring->size,
681 tx_ring->desc, tx_ring->dma);
682 tx_ring->desc = NULL;
683 }
684}
685
686/**
687 * i40e_get_tx_pending - how many tx descriptors not processed
688 * @ring: the ring of descriptors
689 * @in_sw: use SW variables
690 *
691 * Since there is no access to the ring head register
692 * in XL710, we need to use our local copies
693 **/
694u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
695{
696 u32 head, tail;
697
698 if (!in_sw) {
699 head = i40e_get_head(ring);
700 tail = readl(ring->tail);
701 } else {
702 head = ring->next_to_clean;
703 tail = ring->next_to_use;
704 }
705
706 if (head != tail)
707 return (head < tail) ?
708 tail - head : (tail + ring->count - head);
709
710 return 0;
711}
712
713/**
714 * i40e_detect_recover_hung - Function to detect and recover hung_queues
715 * @vsi: pointer to vsi struct with tx queues
716 *
717 * VSI has netdev and netdev has TX queues. This function is to check each of
718 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
719 **/
720void i40e_detect_recover_hung(struct i40e_vsi *vsi)
721{
722 struct i40e_ring *tx_ring = NULL;
723 struct net_device *netdev;
724 unsigned int i;
725 int packets;
726
727 if (!vsi)
728 return;
729
730 if (test_bit(__I40E_VSI_DOWN, vsi->state))
731 return;
732
733 netdev = vsi->netdev;
734 if (!netdev)
735 return;
736
737 if (!netif_carrier_ok(netdev))
738 return;
739
740 for (i = 0; i < vsi->num_queue_pairs; i++) {
741 tx_ring = vsi->tx_rings[i];
742 if (tx_ring && tx_ring->desc) {
743 /* If packet counter has not changed the queue is
744 * likely stalled, so force an interrupt for this
745 * queue.
746 *
747 * prev_pkt_ctr would be negative if there was no
748 * pending work.
749 */
750 packets = tx_ring->stats.packets & INT_MAX;
751 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
752 i40e_force_wb(vsi, tx_ring->q_vector);
753 continue;
754 }
755
756 /* Memory barrier between read of packet count and call
757 * to i40e_get_tx_pending()
758 */
759 smp_rmb();
760 tx_ring->tx_stats.prev_pkt_ctr =
761 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
762 }
763 }
764}
765
766/**
767 * i40e_clean_tx_irq - Reclaim resources after transmit completes
768 * @vsi: the VSI we care about
769 * @tx_ring: Tx ring to clean
770 * @napi_budget: Used to determine if we are in netpoll
771 *
772 * Returns true if there's any budget left (e.g. the clean is finished)
773 **/
774static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
775 struct i40e_ring *tx_ring, int napi_budget)
776{
777 int i = tx_ring->next_to_clean;
778 struct i40e_tx_buffer *tx_buf;
779 struct i40e_tx_desc *tx_head;
780 struct i40e_tx_desc *tx_desc;
781 unsigned int total_bytes = 0, total_packets = 0;
782 unsigned int budget = vsi->work_limit;
783
784 tx_buf = &tx_ring->tx_bi[i];
785 tx_desc = I40E_TX_DESC(tx_ring, i);
786 i -= tx_ring->count;
787
788 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
789
790 do {
791 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
792
793 /* if next_to_watch is not set then there is no work pending */
794 if (!eop_desc)
795 break;
796
797 /* prevent any other reads prior to eop_desc */
798 smp_rmb();
799
800 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
801 /* we have caught up to head, no work left to do */
802 if (tx_head == tx_desc)
803 break;
804
805 /* clear next_to_watch to prevent false hangs */
806 tx_buf->next_to_watch = NULL;
807
808 /* update the statistics for this packet */
809 total_bytes += tx_buf->bytecount;
810 total_packets += tx_buf->gso_segs;
811
812 /* free the skb/XDP data */
813 if (ring_is_xdp(tx_ring))
814 xdp_return_frame(tx_buf->xdpf);
815 else
816 napi_consume_skb(tx_buf->skb, napi_budget);
817
818 /* unmap skb header data */
819 dma_unmap_single(tx_ring->dev,
820 dma_unmap_addr(tx_buf, dma),
821 dma_unmap_len(tx_buf, len),
822 DMA_TO_DEVICE);
823
824 /* clear tx_buffer data */
825 tx_buf->skb = NULL;
826 dma_unmap_len_set(tx_buf, len, 0);
827
828 /* unmap remaining buffers */
829 while (tx_desc != eop_desc) {
830 i40e_trace(clean_tx_irq_unmap,
831 tx_ring, tx_desc, tx_buf);
832
833 tx_buf++;
834 tx_desc++;
835 i++;
836 if (unlikely(!i)) {
837 i -= tx_ring->count;
838 tx_buf = tx_ring->tx_bi;
839 tx_desc = I40E_TX_DESC(tx_ring, 0);
840 }
841
842 /* unmap any remaining paged data */
843 if (dma_unmap_len(tx_buf, len)) {
844 dma_unmap_page(tx_ring->dev,
845 dma_unmap_addr(tx_buf, dma),
846 dma_unmap_len(tx_buf, len),
847 DMA_TO_DEVICE);
848 dma_unmap_len_set(tx_buf, len, 0);
849 }
850 }
851
852 /* move us one more past the eop_desc for start of next pkt */
853 tx_buf++;
854 tx_desc++;
855 i++;
856 if (unlikely(!i)) {
857 i -= tx_ring->count;
858 tx_buf = tx_ring->tx_bi;
859 tx_desc = I40E_TX_DESC(tx_ring, 0);
860 }
861
862 prefetch(tx_desc);
863
864 /* update budget accounting */
865 budget--;
866 } while (likely(budget));
867
868 i += tx_ring->count;
869 tx_ring->next_to_clean = i;
870 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
871 i40e_arm_wb(tx_ring, vsi, budget);
872
873 if (ring_is_xdp(tx_ring))
874 return !!budget;
875
876 /* notify netdev of completed buffers */
877 netdev_tx_completed_queue(txring_txq(tx_ring),
878 total_packets, total_bytes);
879
880#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
881 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
882 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
883 /* Make sure that anybody stopping the queue after this
884 * sees the new next_to_clean.
885 */
886 smp_mb();
887 if (__netif_subqueue_stopped(tx_ring->netdev,
888 tx_ring->queue_index) &&
889 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
890 netif_wake_subqueue(tx_ring->netdev,
891 tx_ring->queue_index);
892 ++tx_ring->tx_stats.restart_queue;
893 }
894 }
895
896 return !!budget;
897}
898
899/**
900 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
901 * @vsi: the VSI we care about
902 * @q_vector: the vector on which to enable writeback
903 *
904 **/
905static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
906 struct i40e_q_vector *q_vector)
907{
908 u16 flags = q_vector->tx.ring[0].flags;
909 u32 val;
910
911 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
912 return;
913
914 if (q_vector->arm_wb_state)
915 return;
916
917 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
918 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
919 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
920
921 wr32(&vsi->back->hw,
922 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
923 val);
924 } else {
925 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
926 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
927
928 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
929 }
930 q_vector->arm_wb_state = true;
931}
932
933/**
934 * i40e_force_wb - Issue SW Interrupt so HW does a wb
935 * @vsi: the VSI we care about
936 * @q_vector: the vector on which to force writeback
937 *
938 **/
939void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
940{
941 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
942 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
943 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
944 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
945 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
946 /* allow 00 to be written to the index */
947
948 wr32(&vsi->back->hw,
949 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
950 } else {
951 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
952 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
953 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
954 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
955 /* allow 00 to be written to the index */
956
957 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
958 }
959}
960
961static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
962 struct i40e_ring_container *rc)
963{
964 return &q_vector->rx == rc;
965}
966
967static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
968{
969 unsigned int divisor;
970
971 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
972 case I40E_LINK_SPEED_40GB:
973 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
974 break;
975 case I40E_LINK_SPEED_25GB:
976 case I40E_LINK_SPEED_20GB:
977 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
978 break;
979 default:
980 case I40E_LINK_SPEED_10GB:
981 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
982 break;
983 case I40E_LINK_SPEED_1GB:
984 case I40E_LINK_SPEED_100MB:
985 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
986 break;
987 }
988
989 return divisor;
990}
991
992/**
993 * i40e_update_itr - update the dynamic ITR value based on statistics
994 * @q_vector: structure containing interrupt and ring information
995 * @rc: structure containing ring performance data
996 *
997 * Stores a new ITR value based on packets and byte
998 * counts during the last interrupt. The advantage of per interrupt
999 * computation is faster updates and more accurate ITR for the current
1000 * traffic pattern. Constants in this function were computed
1001 * based on theoretical maximum wire speed and thresholds were set based
1002 * on testing data as well as attempting to minimize response time
1003 * while increasing bulk throughput.
1004 **/
1005static void i40e_update_itr(struct i40e_q_vector *q_vector,
1006 struct i40e_ring_container *rc)
1007{
1008 unsigned int avg_wire_size, packets, bytes, itr;
1009 unsigned long next_update = jiffies;
1010
1011 /* If we don't have any rings just leave ourselves set for maximum
1012 * possible latency so we take ourselves out of the equation.
1013 */
1014 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1015 return;
1016
1017 /* For Rx we want to push the delay up and default to low latency.
1018 * for Tx we want to pull the delay down and default to high latency.
1019 */
1020 itr = i40e_container_is_rx(q_vector, rc) ?
1021 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1022 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1023
1024 /* If we didn't update within up to 1 - 2 jiffies we can assume
1025 * that either packets are coming in so slow there hasn't been
1026 * any work, or that there is so much work that NAPI is dealing
1027 * with interrupt moderation and we don't need to do anything.
1028 */
1029 if (time_after(next_update, rc->next_update))
1030 goto clear_counts;
1031
1032 /* If itr_countdown is set it means we programmed an ITR within
1033 * the last 4 interrupt cycles. This has a side effect of us
1034 * potentially firing an early interrupt. In order to work around
1035 * this we need to throw out any data received for a few
1036 * interrupts following the update.
1037 */
1038 if (q_vector->itr_countdown) {
1039 itr = rc->target_itr;
1040 goto clear_counts;
1041 }
1042
1043 packets = rc->total_packets;
1044 bytes = rc->total_bytes;
1045
1046 if (i40e_container_is_rx(q_vector, rc)) {
1047 /* If Rx there are 1 to 4 packets and bytes are less than
1048 * 9000 assume insufficient data to use bulk rate limiting
1049 * approach unless Tx is already in bulk rate limiting. We
1050 * are likely latency driven.
1051 */
1052 if (packets && packets < 4 && bytes < 9000 &&
1053 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1054 itr = I40E_ITR_ADAPTIVE_LATENCY;
1055 goto adjust_by_size;
1056 }
1057 } else if (packets < 4) {
1058 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1059 * bulk mode and we are receiving 4 or fewer packets just
1060 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1061 * that the Rx can relax.
1062 */
1063 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1064 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1065 I40E_ITR_ADAPTIVE_MAX_USECS)
1066 goto clear_counts;
1067 } else if (packets > 32) {
1068 /* If we have processed over 32 packets in a single interrupt
1069 * for Tx assume we need to switch over to "bulk" mode.
1070 */
1071 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1072 }
1073
1074 /* We have no packets to actually measure against. This means
1075 * either one of the other queues on this vector is active or
1076 * we are a Tx queue doing TSO with too high of an interrupt rate.
1077 *
1078 * Between 4 and 56 we can assume that our current interrupt delay
1079 * is only slightly too low. As such we should increase it by a small
1080 * fixed amount.
1081 */
1082 if (packets < 56) {
1083 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1084 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1085 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1086 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1087 }
1088 goto clear_counts;
1089 }
1090
1091 if (packets <= 256) {
1092 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1093 itr &= I40E_ITR_MASK;
1094
1095 /* Between 56 and 112 is our "goldilocks" zone where we are
1096 * working out "just right". Just report that our current
1097 * ITR is good for us.
1098 */
1099 if (packets <= 112)
1100 goto clear_counts;
1101
1102 /* If packet count is 128 or greater we are likely looking
1103 * at a slight overrun of the delay we want. Try halving
1104 * our delay to see if that will cut the number of packets
1105 * in half per interrupt.
1106 */
1107 itr /= 2;
1108 itr &= I40E_ITR_MASK;
1109 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1110 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1111
1112 goto clear_counts;
1113 }
1114
1115 /* The paths below assume we are dealing with a bulk ITR since
1116 * number of packets is greater than 256. We are just going to have
1117 * to compute a value and try to bring the count under control,
1118 * though for smaller packet sizes there isn't much we can do as
1119 * NAPI polling will likely be kicking in sooner rather than later.
1120 */
1121 itr = I40E_ITR_ADAPTIVE_BULK;
1122
1123adjust_by_size:
1124 /* If packet counts are 256 or greater we can assume we have a gross
1125 * overestimation of what the rate should be. Instead of trying to fine
1126 * tune it just use the formula below to try and dial in an exact value
1127 * give the current packet size of the frame.
1128 */
1129 avg_wire_size = bytes / packets;
1130
1131 /* The following is a crude approximation of:
1132 * wmem_default / (size + overhead) = desired_pkts_per_int
1133 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1134 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1135 *
1136 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1137 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1138 * formula down to
1139 *
1140 * (170 * (size + 24)) / (size + 640) = ITR
1141 *
1142 * We first do some math on the packet size and then finally bitshift
1143 * by 8 after rounding up. We also have to account for PCIe link speed
1144 * difference as ITR scales based on this.
1145 */
1146 if (avg_wire_size <= 60) {
1147 /* Start at 250k ints/sec */
1148 avg_wire_size = 4096;
1149 } else if (avg_wire_size <= 380) {
1150 /* 250K ints/sec to 60K ints/sec */
1151 avg_wire_size *= 40;
1152 avg_wire_size += 1696;
1153 } else if (avg_wire_size <= 1084) {
1154 /* 60K ints/sec to 36K ints/sec */
1155 avg_wire_size *= 15;
1156 avg_wire_size += 11452;
1157 } else if (avg_wire_size <= 1980) {
1158 /* 36K ints/sec to 30K ints/sec */
1159 avg_wire_size *= 5;
1160 avg_wire_size += 22420;
1161 } else {
1162 /* plateau at a limit of 30K ints/sec */
1163 avg_wire_size = 32256;
1164 }
1165
1166 /* If we are in low latency mode halve our delay which doubles the
1167 * rate to somewhere between 100K to 16K ints/sec
1168 */
1169 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1170 avg_wire_size /= 2;
1171
1172 /* Resultant value is 256 times larger than it needs to be. This
1173 * gives us room to adjust the value as needed to either increase
1174 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1175 *
1176 * Use addition as we have already recorded the new latency flag
1177 * for the ITR value.
1178 */
1179 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1180 I40E_ITR_ADAPTIVE_MIN_INC;
1181
1182 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1183 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1184 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1185 }
1186
1187clear_counts:
1188 /* write back value */
1189 rc->target_itr = itr;
1190
1191 /* next update should occur within next jiffy */
1192 rc->next_update = next_update + 1;
1193
1194 rc->total_bytes = 0;
1195 rc->total_packets = 0;
1196}
1197
1198/**
1199 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1200 * @rx_ring: rx descriptor ring to store buffers on
1201 * @old_buff: donor buffer to have page reused
1202 *
1203 * Synchronizes page for reuse by the adapter
1204 **/
1205static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1206 struct i40e_rx_buffer *old_buff)
1207{
1208 struct i40e_rx_buffer *new_buff;
1209 u16 nta = rx_ring->next_to_alloc;
1210
1211 new_buff = &rx_ring->rx_bi[nta];
1212
1213 /* update, and store next to alloc */
1214 nta++;
1215 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1216
1217 /* transfer page from old buffer to new buffer */
1218 new_buff->dma = old_buff->dma;
1219 new_buff->page = old_buff->page;
1220 new_buff->page_offset = old_buff->page_offset;
1221 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1222
1223 rx_ring->rx_stats.page_reuse_count++;
1224
1225 /* clear contents of buffer_info */
1226 old_buff->page = NULL;
1227}
1228
1229/**
1230 * i40e_rx_is_programming_status - check for programming status descriptor
1231 * @qw: qword representing status_error_len in CPU ordering
1232 *
1233 * The value of in the descriptor length field indicate if this
1234 * is a programming status descriptor for flow director or FCoE
1235 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1236 * it is a packet descriptor.
1237 **/
1238static inline bool i40e_rx_is_programming_status(u64 qw)
1239{
1240 /* The Rx filter programming status and SPH bit occupy the same
1241 * spot in the descriptor. Since we don't support packet split we
1242 * can just reuse the bit as an indication that this is a
1243 * programming status descriptor.
1244 */
1245 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1246}
1247
1248/**
1249 * i40e_clean_programming_status - try clean the programming status descriptor
1250 * @rx_ring: the rx ring that has this descriptor
1251 * @rx_desc: the rx descriptor written back by HW
1252 * @qw: qword representing status_error_len in CPU ordering
1253 *
1254 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1255 * status being successful or not and take actions accordingly. FCoE should
1256 * handle its context/filter programming/invalidation status and take actions.
1257 *
1258 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1259 **/
1260struct i40e_rx_buffer *i40e_clean_programming_status(
1261 struct i40e_ring *rx_ring,
1262 union i40e_rx_desc *rx_desc,
1263 u64 qw)
1264{
1265 struct i40e_rx_buffer *rx_buffer;
1266 u32 ntc;
1267 u8 id;
1268
1269 if (!i40e_rx_is_programming_status(qw))
1270 return NULL;
1271
1272 ntc = rx_ring->next_to_clean;
1273
1274 /* fetch, update, and store next to clean */
1275 rx_buffer = &rx_ring->rx_bi[ntc++];
1276 ntc = (ntc < rx_ring->count) ? ntc : 0;
1277 rx_ring->next_to_clean = ntc;
1278
1279 prefetch(I40E_RX_DESC(rx_ring, ntc));
1280
1281 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1282 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1283
1284 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1285 i40e_fd_handle_status(rx_ring, rx_desc, id);
1286
1287 return rx_buffer;
1288}
1289
1290/**
1291 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1292 * @tx_ring: the tx ring to set up
1293 *
1294 * Return 0 on success, negative on error
1295 **/
1296int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1297{
1298 struct device *dev = tx_ring->dev;
1299 int bi_size;
1300
1301 if (!dev)
1302 return -ENOMEM;
1303
1304 /* warn if we are about to overwrite the pointer */
1305 WARN_ON(tx_ring->tx_bi);
1306 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1307 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1308 if (!tx_ring->tx_bi)
1309 goto err;
1310
1311 u64_stats_init(&tx_ring->syncp);
1312
1313 /* round up to nearest 4K */
1314 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1315 /* add u32 for head writeback, align after this takes care of
1316 * guaranteeing this is at least one cache line in size
1317 */
1318 tx_ring->size += sizeof(u32);
1319 tx_ring->size = ALIGN(tx_ring->size, 4096);
1320 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1321 &tx_ring->dma, GFP_KERNEL);
1322 if (!tx_ring->desc) {
1323 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1324 tx_ring->size);
1325 goto err;
1326 }
1327
1328 tx_ring->next_to_use = 0;
1329 tx_ring->next_to_clean = 0;
1330 tx_ring->tx_stats.prev_pkt_ctr = -1;
1331 return 0;
1332
1333err:
1334 kfree(tx_ring->tx_bi);
1335 tx_ring->tx_bi = NULL;
1336 return -ENOMEM;
1337}
1338
1339/**
1340 * i40e_clean_rx_ring - Free Rx buffers
1341 * @rx_ring: ring to be cleaned
1342 **/
1343void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1344{
1345 unsigned long bi_size;
1346 u16 i;
1347
1348 /* ring already cleared, nothing to do */
1349 if (!rx_ring->rx_bi)
1350 return;
1351
1352 if (rx_ring->skb) {
1353 dev_kfree_skb(rx_ring->skb);
1354 rx_ring->skb = NULL;
1355 }
1356
1357 if (rx_ring->xsk_umem) {
1358 i40e_xsk_clean_rx_ring(rx_ring);
1359 goto skip_free;
1360 }
1361
1362 /* Free all the Rx ring sk_buffs */
1363 for (i = 0; i < rx_ring->count; i++) {
1364 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1365
1366 if (!rx_bi->page)
1367 continue;
1368
1369 /* Invalidate cache lines that may have been written to by
1370 * device so that we avoid corrupting memory.
1371 */
1372 dma_sync_single_range_for_cpu(rx_ring->dev,
1373 rx_bi->dma,
1374 rx_bi->page_offset,
1375 rx_ring->rx_buf_len,
1376 DMA_FROM_DEVICE);
1377
1378 /* free resources associated with mapping */
1379 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1380 i40e_rx_pg_size(rx_ring),
1381 DMA_FROM_DEVICE,
1382 I40E_RX_DMA_ATTR);
1383
1384 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1385
1386 rx_bi->page = NULL;
1387 rx_bi->page_offset = 0;
1388 }
1389
1390skip_free:
1391 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1392 memset(rx_ring->rx_bi, 0, bi_size);
1393
1394 /* Zero out the descriptor ring */
1395 memset(rx_ring->desc, 0, rx_ring->size);
1396
1397 rx_ring->next_to_alloc = 0;
1398 rx_ring->next_to_clean = 0;
1399 rx_ring->next_to_use = 0;
1400}
1401
1402/**
1403 * i40e_free_rx_resources - Free Rx resources
1404 * @rx_ring: ring to clean the resources from
1405 *
1406 * Free all receive software resources
1407 **/
1408void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1409{
1410 i40e_clean_rx_ring(rx_ring);
1411 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1412 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1413 rx_ring->xdp_prog = NULL;
1414 kfree(rx_ring->rx_bi);
1415 rx_ring->rx_bi = NULL;
1416
1417 if (rx_ring->desc) {
1418 dma_free_coherent(rx_ring->dev, rx_ring->size,
1419 rx_ring->desc, rx_ring->dma);
1420 rx_ring->desc = NULL;
1421 }
1422}
1423
1424/**
1425 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1426 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1427 *
1428 * Returns 0 on success, negative on failure
1429 **/
1430int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1431{
1432 struct device *dev = rx_ring->dev;
1433 int err = -ENOMEM;
1434 int bi_size;
1435
1436 /* warn if we are about to overwrite the pointer */
1437 WARN_ON(rx_ring->rx_bi);
1438 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1439 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1440 if (!rx_ring->rx_bi)
1441 goto err;
1442
1443 u64_stats_init(&rx_ring->syncp);
1444
1445 /* Round up to nearest 4K */
1446 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1447 rx_ring->size = ALIGN(rx_ring->size, 4096);
1448 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1449 &rx_ring->dma, GFP_KERNEL);
1450
1451 if (!rx_ring->desc) {
1452 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1453 rx_ring->size);
1454 goto err;
1455 }
1456
1457 rx_ring->next_to_alloc = 0;
1458 rx_ring->next_to_clean = 0;
1459 rx_ring->next_to_use = 0;
1460
1461 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1462 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1463 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1464 rx_ring->queue_index);
1465 if (err < 0)
1466 goto err;
1467 }
1468
1469 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1470
1471 return 0;
1472err:
1473 kfree(rx_ring->rx_bi);
1474 rx_ring->rx_bi = NULL;
1475 return err;
1476}
1477
1478/**
1479 * i40e_release_rx_desc - Store the new tail and head values
1480 * @rx_ring: ring to bump
1481 * @val: new head index
1482 **/
1483void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1484{
1485 rx_ring->next_to_use = val;
1486
1487 /* update next to alloc since we have filled the ring */
1488 rx_ring->next_to_alloc = val;
1489
1490 /* Force memory writes to complete before letting h/w
1491 * know there are new descriptors to fetch. (Only
1492 * applicable for weak-ordered memory model archs,
1493 * such as IA-64).
1494 */
1495 wmb();
1496 writel(val, rx_ring->tail);
1497}
1498
1499/**
1500 * i40e_rx_offset - Return expected offset into page to access data
1501 * @rx_ring: Ring we are requesting offset of
1502 *
1503 * Returns the offset value for ring into the data buffer.
1504 */
1505static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1506{
1507 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1508}
1509
1510/**
1511 * i40e_alloc_mapped_page - recycle or make a new page
1512 * @rx_ring: ring to use
1513 * @bi: rx_buffer struct to modify
1514 *
1515 * Returns true if the page was successfully allocated or
1516 * reused.
1517 **/
1518static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1519 struct i40e_rx_buffer *bi)
1520{
1521 struct page *page = bi->page;
1522 dma_addr_t dma;
1523
1524 /* since we are recycling buffers we should seldom need to alloc */
1525 if (likely(page)) {
1526 rx_ring->rx_stats.page_reuse_count++;
1527 return true;
1528 }
1529
1530 /* alloc new page for storage */
1531 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1532 if (unlikely(!page)) {
1533 rx_ring->rx_stats.alloc_page_failed++;
1534 return false;
1535 }
1536
1537 /* map page for use */
1538 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1539 i40e_rx_pg_size(rx_ring),
1540 DMA_FROM_DEVICE,
1541 I40E_RX_DMA_ATTR);
1542
1543 /* if mapping failed free memory back to system since
1544 * there isn't much point in holding memory we can't use
1545 */
1546 if (dma_mapping_error(rx_ring->dev, dma)) {
1547 __free_pages(page, i40e_rx_pg_order(rx_ring));
1548 rx_ring->rx_stats.alloc_page_failed++;
1549 return false;
1550 }
1551
1552 bi->dma = dma;
1553 bi->page = page;
1554 bi->page_offset = i40e_rx_offset(rx_ring);
1555 page_ref_add(page, USHRT_MAX - 1);
1556 bi->pagecnt_bias = USHRT_MAX;
1557
1558 return true;
1559}
1560
1561/**
1562 * i40e_alloc_rx_buffers - Replace used receive buffers
1563 * @rx_ring: ring to place buffers on
1564 * @cleaned_count: number of buffers to replace
1565 *
1566 * Returns false if all allocations were successful, true if any fail
1567 **/
1568bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1569{
1570 u16 ntu = rx_ring->next_to_use;
1571 union i40e_rx_desc *rx_desc;
1572 struct i40e_rx_buffer *bi;
1573
1574 /* do nothing if no valid netdev defined */
1575 if (!rx_ring->netdev || !cleaned_count)
1576 return false;
1577
1578 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1579 bi = &rx_ring->rx_bi[ntu];
1580
1581 do {
1582 if (!i40e_alloc_mapped_page(rx_ring, bi))
1583 goto no_buffers;
1584
1585 /* sync the buffer for use by the device */
1586 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1587 bi->page_offset,
1588 rx_ring->rx_buf_len,
1589 DMA_FROM_DEVICE);
1590
1591 /* Refresh the desc even if buffer_addrs didn't change
1592 * because each write-back erases this info.
1593 */
1594 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1595
1596 rx_desc++;
1597 bi++;
1598 ntu++;
1599 if (unlikely(ntu == rx_ring->count)) {
1600 rx_desc = I40E_RX_DESC(rx_ring, 0);
1601 bi = rx_ring->rx_bi;
1602 ntu = 0;
1603 }
1604
1605 /* clear the status bits for the next_to_use descriptor */
1606 rx_desc->wb.qword1.status_error_len = 0;
1607
1608 cleaned_count--;
1609 } while (cleaned_count);
1610
1611 if (rx_ring->next_to_use != ntu)
1612 i40e_release_rx_desc(rx_ring, ntu);
1613
1614 return false;
1615
1616no_buffers:
1617 if (rx_ring->next_to_use != ntu)
1618 i40e_release_rx_desc(rx_ring, ntu);
1619
1620 /* make sure to come back via polling to try again after
1621 * allocation failure
1622 */
1623 return true;
1624}
1625
1626/**
1627 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1628 * @vsi: the VSI we care about
1629 * @skb: skb currently being received and modified
1630 * @rx_desc: the receive descriptor
1631 **/
1632static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1633 struct sk_buff *skb,
1634 union i40e_rx_desc *rx_desc)
1635{
1636 struct i40e_rx_ptype_decoded decoded;
1637 u32 rx_error, rx_status;
1638 bool ipv4, ipv6;
1639 u8 ptype;
1640 u64 qword;
1641
1642 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1643 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1644 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1645 I40E_RXD_QW1_ERROR_SHIFT;
1646 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1647 I40E_RXD_QW1_STATUS_SHIFT;
1648 decoded = decode_rx_desc_ptype(ptype);
1649
1650 skb->ip_summed = CHECKSUM_NONE;
1651
1652 skb_checksum_none_assert(skb);
1653
1654 /* Rx csum enabled and ip headers found? */
1655 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1656 return;
1657
1658 /* did the hardware decode the packet and checksum? */
1659 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1660 return;
1661
1662 /* both known and outer_ip must be set for the below code to work */
1663 if (!(decoded.known && decoded.outer_ip))
1664 return;
1665
1666 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1668 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1669 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1670
1671 if (ipv4 &&
1672 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1673 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1674 goto checksum_fail;
1675
1676 /* likely incorrect csum if alternate IP extension headers found */
1677 if (ipv6 &&
1678 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1679 /* don't increment checksum err here, non-fatal err */
1680 return;
1681
1682 /* there was some L4 error, count error and punt packet to the stack */
1683 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1684 goto checksum_fail;
1685
1686 /* handle packets that were not able to be checksummed due
1687 * to arrival speed, in this case the stack can compute
1688 * the csum.
1689 */
1690 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1691 return;
1692
1693 /* If there is an outer header present that might contain a checksum
1694 * we need to bump the checksum level by 1 to reflect the fact that
1695 * we are indicating we validated the inner checksum.
1696 */
1697 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1698 skb->csum_level = 1;
1699
1700 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1701 switch (decoded.inner_prot) {
1702 case I40E_RX_PTYPE_INNER_PROT_TCP:
1703 case I40E_RX_PTYPE_INNER_PROT_UDP:
1704 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1705 skb->ip_summed = CHECKSUM_UNNECESSARY;
1706 /* fall though */
1707 default:
1708 break;
1709 }
1710
1711 return;
1712
1713checksum_fail:
1714 vsi->back->hw_csum_rx_error++;
1715}
1716
1717/**
1718 * i40e_ptype_to_htype - get a hash type
1719 * @ptype: the ptype value from the descriptor
1720 *
1721 * Returns a hash type to be used by skb_set_hash
1722 **/
1723static inline int i40e_ptype_to_htype(u8 ptype)
1724{
1725 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1726
1727 if (!decoded.known)
1728 return PKT_HASH_TYPE_NONE;
1729
1730 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1731 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1732 return PKT_HASH_TYPE_L4;
1733 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1734 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1735 return PKT_HASH_TYPE_L3;
1736 else
1737 return PKT_HASH_TYPE_L2;
1738}
1739
1740/**
1741 * i40e_rx_hash - set the hash value in the skb
1742 * @ring: descriptor ring
1743 * @rx_desc: specific descriptor
1744 * @skb: skb currently being received and modified
1745 * @rx_ptype: Rx packet type
1746 **/
1747static inline void i40e_rx_hash(struct i40e_ring *ring,
1748 union i40e_rx_desc *rx_desc,
1749 struct sk_buff *skb,
1750 u8 rx_ptype)
1751{
1752 u32 hash;
1753 const __le64 rss_mask =
1754 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1755 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1756
1757 if (!(ring->netdev->features & NETIF_F_RXHASH))
1758 return;
1759
1760 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1761 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1762 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1763 }
1764}
1765
1766/**
1767 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1768 * @rx_ring: rx descriptor ring packet is being transacted on
1769 * @rx_desc: pointer to the EOP Rx descriptor
1770 * @skb: pointer to current skb being populated
1771 * @rx_ptype: the packet type decoded by hardware
1772 *
1773 * This function checks the ring, descriptor, and packet information in
1774 * order to populate the hash, checksum, VLAN, protocol, and
1775 * other fields within the skb.
1776 **/
1777void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1778 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1779{
1780 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1781 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1782 I40E_RXD_QW1_STATUS_SHIFT;
1783 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1784 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1785 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1786 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1787 I40E_RXD_QW1_PTYPE_SHIFT;
1788
1789 if (unlikely(tsynvalid))
1790 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1791
1792 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1793
1794 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1795
1796 skb_record_rx_queue(skb, rx_ring->queue_index);
1797
1798 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1799 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1800
1801 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1802 le16_to_cpu(vlan_tag));
1803 }
1804
1805 /* modifies the skb - consumes the enet header */
1806 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1807}
1808
1809/**
1810 * i40e_cleanup_headers - Correct empty headers
1811 * @rx_ring: rx descriptor ring packet is being transacted on
1812 * @skb: pointer to current skb being fixed
1813 * @rx_desc: pointer to the EOP Rx descriptor
1814 *
1815 * Also address the case where we are pulling data in on pages only
1816 * and as such no data is present in the skb header.
1817 *
1818 * In addition if skb is not at least 60 bytes we need to pad it so that
1819 * it is large enough to qualify as a valid Ethernet frame.
1820 *
1821 * Returns true if an error was encountered and skb was freed.
1822 **/
1823static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1824 union i40e_rx_desc *rx_desc)
1825
1826{
1827 /* XDP packets use error pointer so abort at this point */
1828 if (IS_ERR(skb))
1829 return true;
1830
1831 /* ERR_MASK will only have valid bits if EOP set, and
1832 * what we are doing here is actually checking
1833 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1834 * the error field
1835 */
1836 if (unlikely(i40e_test_staterr(rx_desc,
1837 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1838 dev_kfree_skb_any(skb);
1839 return true;
1840 }
1841
1842 /* if eth_skb_pad returns an error the skb was freed */
1843 if (eth_skb_pad(skb))
1844 return true;
1845
1846 return false;
1847}
1848
1849/**
1850 * i40e_page_is_reusable - check if any reuse is possible
1851 * @page: page struct to check
1852 *
1853 * A page is not reusable if it was allocated under low memory
1854 * conditions, or it's not in the same NUMA node as this CPU.
1855 */
1856static inline bool i40e_page_is_reusable(struct page *page)
1857{
1858 return (page_to_nid(page) == numa_mem_id()) &&
1859 !page_is_pfmemalloc(page);
1860}
1861
1862/**
1863 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1864 * the adapter for another receive
1865 *
1866 * @rx_buffer: buffer containing the page
1867 *
1868 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1869 * an unused region in the page.
1870 *
1871 * For small pages, @truesize will be a constant value, half the size
1872 * of the memory at page. We'll attempt to alternate between high and
1873 * low halves of the page, with one half ready for use by the hardware
1874 * and the other half being consumed by the stack. We use the page
1875 * ref count to determine whether the stack has finished consuming the
1876 * portion of this page that was passed up with a previous packet. If
1877 * the page ref count is >1, we'll assume the "other" half page is
1878 * still busy, and this page cannot be reused.
1879 *
1880 * For larger pages, @truesize will be the actual space used by the
1881 * received packet (adjusted upward to an even multiple of the cache
1882 * line size). This will advance through the page by the amount
1883 * actually consumed by the received packets while there is still
1884 * space for a buffer. Each region of larger pages will be used at
1885 * most once, after which the page will not be reused.
1886 *
1887 * In either case, if the page is reusable its refcount is increased.
1888 **/
1889static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1890{
1891 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1892 struct page *page = rx_buffer->page;
1893
1894 /* Is any reuse possible? */
1895 if (unlikely(!i40e_page_is_reusable(page)))
1896 return false;
1897
1898#if (PAGE_SIZE < 8192)
1899 /* if we are only owner of page we can reuse it */
1900 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1901 return false;
1902#else
1903#define I40E_LAST_OFFSET \
1904 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1905 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1906 return false;
1907#endif
1908
1909 /* If we have drained the page fragment pool we need to update
1910 * the pagecnt_bias and page count so that we fully restock the
1911 * number of references the driver holds.
1912 */
1913 if (unlikely(pagecnt_bias == 1)) {
1914 page_ref_add(page, USHRT_MAX - 1);
1915 rx_buffer->pagecnt_bias = USHRT_MAX;
1916 }
1917
1918 return true;
1919}
1920
1921/**
1922 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1923 * @rx_ring: rx descriptor ring to transact packets on
1924 * @rx_buffer: buffer containing page to add
1925 * @skb: sk_buff to place the data into
1926 * @size: packet length from rx_desc
1927 *
1928 * This function will add the data contained in rx_buffer->page to the skb.
1929 * It will just attach the page as a frag to the skb.
1930 *
1931 * The function will then update the page offset.
1932 **/
1933static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1934 struct i40e_rx_buffer *rx_buffer,
1935 struct sk_buff *skb,
1936 unsigned int size)
1937{
1938#if (PAGE_SIZE < 8192)
1939 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1940#else
1941 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1942#endif
1943
1944 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1945 rx_buffer->page_offset, size, truesize);
1946
1947 /* page is being used so we must update the page offset */
1948#if (PAGE_SIZE < 8192)
1949 rx_buffer->page_offset ^= truesize;
1950#else
1951 rx_buffer->page_offset += truesize;
1952#endif
1953}
1954
1955/**
1956 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1957 * @rx_ring: rx descriptor ring to transact packets on
1958 * @size: size of buffer to add to skb
1959 *
1960 * This function will pull an Rx buffer from the ring and synchronize it
1961 * for use by the CPU.
1962 */
1963static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1964 const unsigned int size)
1965{
1966 struct i40e_rx_buffer *rx_buffer;
1967
1968 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1969 prefetchw(rx_buffer->page);
1970
1971 /* we are reusing so sync this buffer for CPU use */
1972 dma_sync_single_range_for_cpu(rx_ring->dev,
1973 rx_buffer->dma,
1974 rx_buffer->page_offset,
1975 size,
1976 DMA_FROM_DEVICE);
1977
1978 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1979 rx_buffer->pagecnt_bias--;
1980
1981 return rx_buffer;
1982}
1983
1984/**
1985 * i40e_construct_skb - Allocate skb and populate it
1986 * @rx_ring: rx descriptor ring to transact packets on
1987 * @rx_buffer: rx buffer to pull data from
1988 * @xdp: xdp_buff pointing to the data
1989 *
1990 * This function allocates an skb. It then populates it with the page
1991 * data from the current receive descriptor, taking care to set up the
1992 * skb correctly.
1993 */
1994static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1995 struct i40e_rx_buffer *rx_buffer,
1996 struct xdp_buff *xdp)
1997{
1998 unsigned int size = xdp->data_end - xdp->data;
1999#if (PAGE_SIZE < 8192)
2000 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2001#else
2002 unsigned int truesize = SKB_DATA_ALIGN(size);
2003#endif
2004 unsigned int headlen;
2005 struct sk_buff *skb;
2006
2007 /* prefetch first cache line of first page */
2008 prefetch(xdp->data);
2009#if L1_CACHE_BYTES < 128
2010 prefetch(xdp->data + L1_CACHE_BYTES);
2011#endif
2012 /* Note, we get here by enabling legacy-rx via:
2013 *
2014 * ethtool --set-priv-flags <dev> legacy-rx on
2015 *
2016 * In this mode, we currently get 0 extra XDP headroom as
2017 * opposed to having legacy-rx off, where we process XDP
2018 * packets going to stack via i40e_build_skb(). The latter
2019 * provides us currently with 192 bytes of headroom.
2020 *
2021 * For i40e_construct_skb() mode it means that the
2022 * xdp->data_meta will always point to xdp->data, since
2023 * the helper cannot expand the head. Should this ever
2024 * change in future for legacy-rx mode on, then lets also
2025 * add xdp->data_meta handling here.
2026 */
2027
2028 /* allocate a skb to store the frags */
2029 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2030 I40E_RX_HDR_SIZE,
2031 GFP_ATOMIC | __GFP_NOWARN);
2032 if (unlikely(!skb))
2033 return NULL;
2034
2035 /* Determine available headroom for copy */
2036 headlen = size;
2037 if (headlen > I40E_RX_HDR_SIZE)
2038 headlen = eth_get_headlen(skb->dev, xdp->data,
2039 I40E_RX_HDR_SIZE);
2040
2041 /* align pull length to size of long to optimize memcpy performance */
2042 memcpy(__skb_put(skb, headlen), xdp->data,
2043 ALIGN(headlen, sizeof(long)));
2044
2045 /* update all of the pointers */
2046 size -= headlen;
2047 if (size) {
2048 skb_add_rx_frag(skb, 0, rx_buffer->page,
2049 rx_buffer->page_offset + headlen,
2050 size, truesize);
2051
2052 /* buffer is used by skb, update page_offset */
2053#if (PAGE_SIZE < 8192)
2054 rx_buffer->page_offset ^= truesize;
2055#else
2056 rx_buffer->page_offset += truesize;
2057#endif
2058 } else {
2059 /* buffer is unused, reset bias back to rx_buffer */
2060 rx_buffer->pagecnt_bias++;
2061 }
2062
2063 return skb;
2064}
2065
2066/**
2067 * i40e_build_skb - Build skb around an existing buffer
2068 * @rx_ring: Rx descriptor ring to transact packets on
2069 * @rx_buffer: Rx buffer to pull data from
2070 * @xdp: xdp_buff pointing to the data
2071 *
2072 * This function builds an skb around an existing Rx buffer, taking care
2073 * to set up the skb correctly and avoid any memcpy overhead.
2074 */
2075static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2076 struct i40e_rx_buffer *rx_buffer,
2077 struct xdp_buff *xdp)
2078{
2079 unsigned int metasize = xdp->data - xdp->data_meta;
2080#if (PAGE_SIZE < 8192)
2081 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2082#else
2083 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2084 SKB_DATA_ALIGN(xdp->data_end -
2085 xdp->data_hard_start);
2086#endif
2087 struct sk_buff *skb;
2088
2089 /* Prefetch first cache line of first page. If xdp->data_meta
2090 * is unused, this points exactly as xdp->data, otherwise we
2091 * likely have a consumer accessing first few bytes of meta
2092 * data, and then actual data.
2093 */
2094 prefetch(xdp->data_meta);
2095#if L1_CACHE_BYTES < 128
2096 prefetch(xdp->data_meta + L1_CACHE_BYTES);
2097#endif
2098 /* build an skb around the page buffer */
2099 skb = build_skb(xdp->data_hard_start, truesize);
2100 if (unlikely(!skb))
2101 return NULL;
2102
2103 /* update pointers within the skb to store the data */
2104 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2105 __skb_put(skb, xdp->data_end - xdp->data);
2106 if (metasize)
2107 skb_metadata_set(skb, metasize);
2108
2109 /* buffer is used by skb, update page_offset */
2110#if (PAGE_SIZE < 8192)
2111 rx_buffer->page_offset ^= truesize;
2112#else
2113 rx_buffer->page_offset += truesize;
2114#endif
2115
2116 return skb;
2117}
2118
2119/**
2120 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2121 * @rx_ring: rx descriptor ring to transact packets on
2122 * @rx_buffer: rx buffer to pull data from
2123 *
2124 * This function will clean up the contents of the rx_buffer. It will
2125 * either recycle the buffer or unmap it and free the associated resources.
2126 */
2127static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2128 struct i40e_rx_buffer *rx_buffer)
2129{
2130 if (i40e_can_reuse_rx_page(rx_buffer)) {
2131 /* hand second half of page back to the ring */
2132 i40e_reuse_rx_page(rx_ring, rx_buffer);
2133 } else {
2134 /* we are not reusing the buffer so unmap it */
2135 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2136 i40e_rx_pg_size(rx_ring),
2137 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2138 __page_frag_cache_drain(rx_buffer->page,
2139 rx_buffer->pagecnt_bias);
2140 /* clear contents of buffer_info */
2141 rx_buffer->page = NULL;
2142 }
2143}
2144
2145/**
2146 * i40e_is_non_eop - process handling of non-EOP buffers
2147 * @rx_ring: Rx ring being processed
2148 * @rx_desc: Rx descriptor for current buffer
2149 * @skb: Current socket buffer containing buffer in progress
2150 *
2151 * This function updates next to clean. If the buffer is an EOP buffer
2152 * this function exits returning false, otherwise it will place the
2153 * sk_buff in the next buffer to be chained and return true indicating
2154 * that this is in fact a non-EOP buffer.
2155 **/
2156static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2157 union i40e_rx_desc *rx_desc,
2158 struct sk_buff *skb)
2159{
2160 u32 ntc = rx_ring->next_to_clean + 1;
2161
2162 /* fetch, update, and store next to clean */
2163 ntc = (ntc < rx_ring->count) ? ntc : 0;
2164 rx_ring->next_to_clean = ntc;
2165
2166 prefetch(I40E_RX_DESC(rx_ring, ntc));
2167
2168 /* if we are the last buffer then there is nothing else to do */
2169#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2170 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2171 return false;
2172
2173 rx_ring->rx_stats.non_eop_descs++;
2174
2175 return true;
2176}
2177
2178static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2179 struct i40e_ring *xdp_ring);
2180
2181int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2182{
2183 struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2184
2185 if (unlikely(!xdpf))
2186 return I40E_XDP_CONSUMED;
2187
2188 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2189}
2190
2191/**
2192 * i40e_run_xdp - run an XDP program
2193 * @rx_ring: Rx ring being processed
2194 * @xdp: XDP buffer containing the frame
2195 **/
2196static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2197 struct xdp_buff *xdp)
2198{
2199 int err, result = I40E_XDP_PASS;
2200 struct i40e_ring *xdp_ring;
2201 struct bpf_prog *xdp_prog;
2202 u32 act;
2203
2204 rcu_read_lock();
2205 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2206
2207 if (!xdp_prog)
2208 goto xdp_out;
2209
2210 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2211
2212 act = bpf_prog_run_xdp(xdp_prog, xdp);
2213 switch (act) {
2214 case XDP_PASS:
2215 break;
2216 case XDP_TX:
2217 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2218 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2219 break;
2220 case XDP_REDIRECT:
2221 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2222 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2223 break;
2224 default:
2225 bpf_warn_invalid_xdp_action(act);
2226 /* fall through */
2227 case XDP_ABORTED:
2228 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2229 /* fall through -- handle aborts by dropping packet */
2230 case XDP_DROP:
2231 result = I40E_XDP_CONSUMED;
2232 break;
2233 }
2234xdp_out:
2235 rcu_read_unlock();
2236 return ERR_PTR(-result);
2237}
2238
2239/**
2240 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2241 * @rx_ring: Rx ring
2242 * @rx_buffer: Rx buffer to adjust
2243 * @size: Size of adjustment
2244 **/
2245static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2246 struct i40e_rx_buffer *rx_buffer,
2247 unsigned int size)
2248{
2249#if (PAGE_SIZE < 8192)
2250 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2251
2252 rx_buffer->page_offset ^= truesize;
2253#else
2254 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2255
2256 rx_buffer->page_offset += truesize;
2257#endif
2258}
2259
2260/**
2261 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2262 * @xdp_ring: XDP Tx ring
2263 *
2264 * This function updates the XDP Tx ring tail register.
2265 **/
2266void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2267{
2268 /* Force memory writes to complete before letting h/w
2269 * know there are new descriptors to fetch.
2270 */
2271 wmb();
2272 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2273}
2274
2275/**
2276 * i40e_update_rx_stats - Update Rx ring statistics
2277 * @rx_ring: rx descriptor ring
2278 * @total_rx_bytes: number of bytes received
2279 * @total_rx_packets: number of packets received
2280 *
2281 * This function updates the Rx ring statistics.
2282 **/
2283void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2284 unsigned int total_rx_bytes,
2285 unsigned int total_rx_packets)
2286{
2287 u64_stats_update_begin(&rx_ring->syncp);
2288 rx_ring->stats.packets += total_rx_packets;
2289 rx_ring->stats.bytes += total_rx_bytes;
2290 u64_stats_update_end(&rx_ring->syncp);
2291 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2292 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2293}
2294
2295/**
2296 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2297 * @rx_ring: Rx ring
2298 * @xdp_res: Result of the receive batch
2299 *
2300 * This function bumps XDP Tx tail and/or flush redirect map, and
2301 * should be called when a batch of packets has been processed in the
2302 * napi loop.
2303 **/
2304void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2305{
2306 if (xdp_res & I40E_XDP_REDIR)
2307 xdp_do_flush_map();
2308
2309 if (xdp_res & I40E_XDP_TX) {
2310 struct i40e_ring *xdp_ring =
2311 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2312
2313 i40e_xdp_ring_update_tail(xdp_ring);
2314 }
2315}
2316
2317/**
2318 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2319 * @rx_ring: rx descriptor ring to transact packets on
2320 * @budget: Total limit on number of packets to process
2321 *
2322 * This function provides a "bounce buffer" approach to Rx interrupt
2323 * processing. The advantage to this is that on systems that have
2324 * expensive overhead for IOMMU access this provides a means of avoiding
2325 * it by maintaining the mapping of the page to the system.
2326 *
2327 * Returns amount of work completed
2328 **/
2329static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2330{
2331 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2332 struct sk_buff *skb = rx_ring->skb;
2333 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2334 unsigned int xdp_xmit = 0;
2335 bool failure = false;
2336 struct xdp_buff xdp;
2337
2338 xdp.rxq = &rx_ring->xdp_rxq;
2339
2340 while (likely(total_rx_packets < (unsigned int)budget)) {
2341 struct i40e_rx_buffer *rx_buffer;
2342 union i40e_rx_desc *rx_desc;
2343 unsigned int size;
2344 u64 qword;
2345
2346 /* return some buffers to hardware, one at a time is too slow */
2347 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2348 failure = failure ||
2349 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2350 cleaned_count = 0;
2351 }
2352
2353 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2354
2355 /* status_error_len will always be zero for unused descriptors
2356 * because it's cleared in cleanup, and overlaps with hdr_addr
2357 * which is always zero because packet split isn't used, if the
2358 * hardware wrote DD then the length will be non-zero
2359 */
2360 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2361
2362 /* This memory barrier is needed to keep us from reading
2363 * any other fields out of the rx_desc until we have
2364 * verified the descriptor has been written back.
2365 */
2366 dma_rmb();
2367
2368 rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2369 qword);
2370 if (unlikely(rx_buffer)) {
2371 i40e_reuse_rx_page(rx_ring, rx_buffer);
2372 cleaned_count++;
2373 continue;
2374 }
2375
2376 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2377 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2378 if (!size)
2379 break;
2380
2381 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2382 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2383
2384 /* retrieve a buffer from the ring */
2385 if (!skb) {
2386 xdp.data = page_address(rx_buffer->page) +
2387 rx_buffer->page_offset;
2388 xdp.data_meta = xdp.data;
2389 xdp.data_hard_start = xdp.data -
2390 i40e_rx_offset(rx_ring);
2391 xdp.data_end = xdp.data + size;
2392
2393 skb = i40e_run_xdp(rx_ring, &xdp);
2394 }
2395
2396 if (IS_ERR(skb)) {
2397 unsigned int xdp_res = -PTR_ERR(skb);
2398
2399 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2400 xdp_xmit |= xdp_res;
2401 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2402 } else {
2403 rx_buffer->pagecnt_bias++;
2404 }
2405 total_rx_bytes += size;
2406 total_rx_packets++;
2407 } else if (skb) {
2408 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2409 } else if (ring_uses_build_skb(rx_ring)) {
2410 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2411 } else {
2412 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2413 }
2414
2415 /* exit if we failed to retrieve a buffer */
2416 if (!skb) {
2417 rx_ring->rx_stats.alloc_buff_failed++;
2418 rx_buffer->pagecnt_bias++;
2419 break;
2420 }
2421
2422 i40e_put_rx_buffer(rx_ring, rx_buffer);
2423 cleaned_count++;
2424
2425 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2426 continue;
2427
2428 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2429 skb = NULL;
2430 continue;
2431 }
2432
2433 /* probably a little skewed due to removing CRC */
2434 total_rx_bytes += skb->len;
2435
2436 /* populate checksum, VLAN, and protocol */
2437 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2438
2439 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2440 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2441 skb = NULL;
2442
2443 /* update budget accounting */
2444 total_rx_packets++;
2445 }
2446
2447 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2448 rx_ring->skb = skb;
2449
2450 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2451
2452 /* guarantee a trip back through this routine if there was a failure */
2453 return failure ? budget : (int)total_rx_packets;
2454}
2455
2456static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2457{
2458 u32 val;
2459
2460 /* We don't bother with setting the CLEARPBA bit as the data sheet
2461 * points out doing so is "meaningless since it was already
2462 * auto-cleared". The auto-clearing happens when the interrupt is
2463 * asserted.
2464 *
2465 * Hardware errata 28 for also indicates that writing to a
2466 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2467 * an event in the PBA anyway so we need to rely on the automask
2468 * to hold pending events for us until the interrupt is re-enabled
2469 *
2470 * The itr value is reported in microseconds, and the register
2471 * value is recorded in 2 microsecond units. For this reason we
2472 * only need to shift by the interval shift - 1 instead of the
2473 * full value.
2474 */
2475 itr &= I40E_ITR_MASK;
2476
2477 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2478 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2479 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2480
2481 return val;
2482}
2483
2484/* a small macro to shorten up some long lines */
2485#define INTREG I40E_PFINT_DYN_CTLN
2486
2487/* The act of updating the ITR will cause it to immediately trigger. In order
2488 * to prevent this from throwing off adaptive update statistics we defer the
2489 * update so that it can only happen so often. So after either Tx or Rx are
2490 * updated we make the adaptive scheme wait until either the ITR completely
2491 * expires via the next_update expiration or we have been through at least
2492 * 3 interrupts.
2493 */
2494#define ITR_COUNTDOWN_START 3
2495
2496/**
2497 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2498 * @vsi: the VSI we care about
2499 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2500 *
2501 **/
2502static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2503 struct i40e_q_vector *q_vector)
2504{
2505 struct i40e_hw *hw = &vsi->back->hw;
2506 u32 intval;
2507
2508 /* If we don't have MSIX, then we only need to re-enable icr0 */
2509 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2510 i40e_irq_dynamic_enable_icr0(vsi->back);
2511 return;
2512 }
2513
2514 /* These will do nothing if dynamic updates are not enabled */
2515 i40e_update_itr(q_vector, &q_vector->tx);
2516 i40e_update_itr(q_vector, &q_vector->rx);
2517
2518 /* This block of logic allows us to get away with only updating
2519 * one ITR value with each interrupt. The idea is to perform a
2520 * pseudo-lazy update with the following criteria.
2521 *
2522 * 1. Rx is given higher priority than Tx if both are in same state
2523 * 2. If we must reduce an ITR that is given highest priority.
2524 * 3. We then give priority to increasing ITR based on amount.
2525 */
2526 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2527 /* Rx ITR needs to be reduced, this is highest priority */
2528 intval = i40e_buildreg_itr(I40E_RX_ITR,
2529 q_vector->rx.target_itr);
2530 q_vector->rx.current_itr = q_vector->rx.target_itr;
2531 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2532 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2533 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2534 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2535 /* Tx ITR needs to be reduced, this is second priority
2536 * Tx ITR needs to be increased more than Rx, fourth priority
2537 */
2538 intval = i40e_buildreg_itr(I40E_TX_ITR,
2539 q_vector->tx.target_itr);
2540 q_vector->tx.current_itr = q_vector->tx.target_itr;
2541 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2543 /* Rx ITR needs to be increased, third priority */
2544 intval = i40e_buildreg_itr(I40E_RX_ITR,
2545 q_vector->rx.target_itr);
2546 q_vector->rx.current_itr = q_vector->rx.target_itr;
2547 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2548 } else {
2549 /* No ITR update, lowest priority */
2550 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2551 if (q_vector->itr_countdown)
2552 q_vector->itr_countdown--;
2553 }
2554
2555 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2556 wr32(hw, INTREG(q_vector->reg_idx), intval);
2557}
2558
2559/**
2560 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2561 * @napi: napi struct with our devices info in it
2562 * @budget: amount of work driver is allowed to do this pass, in packets
2563 *
2564 * This function will clean all queues associated with a q_vector.
2565 *
2566 * Returns the amount of work done
2567 **/
2568int i40e_napi_poll(struct napi_struct *napi, int budget)
2569{
2570 struct i40e_q_vector *q_vector =
2571 container_of(napi, struct i40e_q_vector, napi);
2572 struct i40e_vsi *vsi = q_vector->vsi;
2573 struct i40e_ring *ring;
2574 bool clean_complete = true;
2575 bool arm_wb = false;
2576 int budget_per_ring;
2577 int work_done = 0;
2578
2579 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2580 napi_complete(napi);
2581 return 0;
2582 }
2583
2584 /* Since the actual Tx work is minimal, we can give the Tx a larger
2585 * budget and be more aggressive about cleaning up the Tx descriptors.
2586 */
2587 i40e_for_each_ring(ring, q_vector->tx) {
2588 bool wd = ring->xsk_umem ?
2589 i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2590 i40e_clean_tx_irq(vsi, ring, budget);
2591
2592 if (!wd) {
2593 clean_complete = false;
2594 continue;
2595 }
2596 arm_wb |= ring->arm_wb;
2597 ring->arm_wb = false;
2598 }
2599
2600 /* Handle case where we are called by netpoll with a budget of 0 */
2601 if (budget <= 0)
2602 goto tx_only;
2603
2604 /* We attempt to distribute budget to each Rx queue fairly, but don't
2605 * allow the budget to go below 1 because that would exit polling early.
2606 */
2607 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2608
2609 i40e_for_each_ring(ring, q_vector->rx) {
2610 int cleaned = ring->xsk_umem ?
2611 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612 i40e_clean_rx_irq(ring, budget_per_ring);
2613
2614 work_done += cleaned;
2615 /* if we clean as many as budgeted, we must not be done */
2616 if (cleaned >= budget_per_ring)
2617 clean_complete = false;
2618 }
2619
2620 /* If work not completed, return budget and polling will return */
2621 if (!clean_complete) {
2622 int cpu_id = smp_processor_id();
2623
2624 /* It is possible that the interrupt affinity has changed but,
2625 * if the cpu is pegged at 100%, polling will never exit while
2626 * traffic continues and the interrupt will be stuck on this
2627 * cpu. We check to make sure affinity is correct before we
2628 * continue to poll, otherwise we must stop polling so the
2629 * interrupt can move to the correct cpu.
2630 */
2631 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632 /* Tell napi that we are done polling */
2633 napi_complete_done(napi, work_done);
2634
2635 /* Force an interrupt */
2636 i40e_force_wb(vsi, q_vector);
2637
2638 /* Return budget-1 so that polling stops */
2639 return budget - 1;
2640 }
2641tx_only:
2642 if (arm_wb) {
2643 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644 i40e_enable_wb_on_itr(vsi, q_vector);
2645 }
2646 return budget;
2647 }
2648
2649 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650 q_vector->arm_wb_state = false;
2651
2652 /* Exit the polling mode, but don't re-enable interrupts if stack might
2653 * poll us due to busy-polling
2654 */
2655 if (likely(napi_complete_done(napi, work_done)))
2656 i40e_update_enable_itr(vsi, q_vector);
2657
2658 return min(work_done, budget - 1);
2659}
2660
2661/**
2662 * i40e_atr - Add a Flow Director ATR filter
2663 * @tx_ring: ring to add programming descriptor to
2664 * @skb: send buffer
2665 * @tx_flags: send tx flags
2666 **/
2667static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2668 u32 tx_flags)
2669{
2670 struct i40e_filter_program_desc *fdir_desc;
2671 struct i40e_pf *pf = tx_ring->vsi->back;
2672 union {
2673 unsigned char *network;
2674 struct iphdr *ipv4;
2675 struct ipv6hdr *ipv6;
2676 } hdr;
2677 struct tcphdr *th;
2678 unsigned int hlen;
2679 u32 flex_ptype, dtype_cmd;
2680 int l4_proto;
2681 u16 i;
2682
2683 /* make sure ATR is enabled */
2684 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2685 return;
2686
2687 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2688 return;
2689
2690 /* if sampling is disabled do nothing */
2691 if (!tx_ring->atr_sample_rate)
2692 return;
2693
2694 /* Currently only IPv4/IPv6 with TCP is supported */
2695 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696 return;
2697
2698 /* snag network header to get L4 type and address */
2699 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700 skb_inner_network_header(skb) : skb_network_header(skb);
2701
2702 /* Note: tx_flags gets modified to reflect inner protocols in
2703 * tx_enable_csum function if encap is enabled.
2704 */
2705 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2706 /* access ihl as u8 to avoid unaligned access on ia64 */
2707 hlen = (hdr.network[0] & 0x0F) << 2;
2708 l4_proto = hdr.ipv4->protocol;
2709 } else {
2710 /* find the start of the innermost ipv6 header */
2711 unsigned int inner_hlen = hdr.network - skb->data;
2712 unsigned int h_offset = inner_hlen;
2713
2714 /* this function updates h_offset to the end of the header */
2715 l4_proto =
2716 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717 /* hlen will contain our best estimate of the tcp header */
2718 hlen = h_offset - inner_hlen;
2719 }
2720
2721 if (l4_proto != IPPROTO_TCP)
2722 return;
2723
2724 th = (struct tcphdr *)(hdr.network + hlen);
2725
2726 /* Due to lack of space, no more new filters can be programmed */
2727 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2728 return;
2729 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2730 /* HW ATR eviction will take care of removing filters on FIN
2731 * and RST packets.
2732 */
2733 if (th->fin || th->rst)
2734 return;
2735 }
2736
2737 tx_ring->atr_count++;
2738
2739 /* sample on all syn/fin/rst packets or once every atr sample rate */
2740 if (!th->fin &&
2741 !th->syn &&
2742 !th->rst &&
2743 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2744 return;
2745
2746 tx_ring->atr_count = 0;
2747
2748 /* grab the next descriptor */
2749 i = tx_ring->next_to_use;
2750 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751
2752 i++;
2753 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2754
2755 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2757 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2758 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762
2763 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764
2765 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766
2767 dtype_cmd |= (th->fin || th->rst) ?
2768 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772
2773 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775
2776 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778
2779 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2780 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2781 dtype_cmd |=
2782 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785 else
2786 dtype_cmd |=
2787 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2790
2791 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2792 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793
2794 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2795 fdir_desc->rsvd = cpu_to_le32(0);
2796 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2797 fdir_desc->fd_id = cpu_to_le32(0);
2798}
2799
2800/**
2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802 * @skb: send buffer
2803 * @tx_ring: ring to send buffer on
2804 * @flags: the tx flags to be set
2805 *
2806 * Checks the skb and set up correspondingly several generic transmit flags
2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808 *
2809 * Returns error code indicate the frame should be dropped upon error and the
2810 * otherwise returns 0 to indicate the flags has been set properly.
2811 **/
2812static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813 struct i40e_ring *tx_ring,
2814 u32 *flags)
2815{
2816 __be16 protocol = skb->protocol;
2817 u32 tx_flags = 0;
2818
2819 if (protocol == htons(ETH_P_8021Q) &&
2820 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821 /* When HW VLAN acceleration is turned off by the user the
2822 * stack sets the protocol to 8021q so that the driver
2823 * can take any steps required to support the SW only
2824 * VLAN handling. In our case the driver doesn't need
2825 * to take any further steps so just set the protocol
2826 * to the encapsulated ethertype.
2827 */
2828 skb->protocol = vlan_get_protocol(skb);
2829 goto out;
2830 }
2831
2832 /* if we have a HW VLAN tag being added, default to the HW one */
2833 if (skb_vlan_tag_present(skb)) {
2834 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2835 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836 /* else if it is a SW VLAN, check the next protocol and store the tag */
2837 } else if (protocol == htons(ETH_P_8021Q)) {
2838 struct vlan_hdr *vhdr, _vhdr;
2839
2840 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841 if (!vhdr)
2842 return -EINVAL;
2843
2844 protocol = vhdr->h_vlan_encapsulated_proto;
2845 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847 }
2848
2849 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850 goto out;
2851
2852 /* Insert 802.1p priority into VLAN header */
2853 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854 (skb->priority != TC_PRIO_CONTROL)) {
2855 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856 tx_flags |= (skb->priority & 0x7) <<
2857 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859 struct vlan_ethhdr *vhdr;
2860 int rc;
2861
2862 rc = skb_cow_head(skb, 0);
2863 if (rc < 0)
2864 return rc;
2865 vhdr = (struct vlan_ethhdr *)skb->data;
2866 vhdr->h_vlan_TCI = htons(tx_flags >>
2867 I40E_TX_FLAGS_VLAN_SHIFT);
2868 } else {
2869 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870 }
2871 }
2872
2873out:
2874 *flags = tx_flags;
2875 return 0;
2876}
2877
2878/**
2879 * i40e_tso - set up the tso context descriptor
2880 * @first: pointer to first Tx buffer for xmit
2881 * @hdr_len: ptr to the size of the packet header
2882 * @cd_type_cmd_tso_mss: Quad Word 1
2883 *
2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885 **/
2886static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887 u64 *cd_type_cmd_tso_mss)
2888{
2889 struct sk_buff *skb = first->skb;
2890 u64 cd_cmd, cd_tso_len, cd_mss;
2891 union {
2892 struct iphdr *v4;
2893 struct ipv6hdr *v6;
2894 unsigned char *hdr;
2895 } ip;
2896 union {
2897 struct tcphdr *tcp;
2898 struct udphdr *udp;
2899 unsigned char *hdr;
2900 } l4;
2901 u32 paylen, l4_offset;
2902 u16 gso_segs, gso_size;
2903 int err;
2904
2905 if (skb->ip_summed != CHECKSUM_PARTIAL)
2906 return 0;
2907
2908 if (!skb_is_gso(skb))
2909 return 0;
2910
2911 err = skb_cow_head(skb, 0);
2912 if (err < 0)
2913 return err;
2914
2915 ip.hdr = skb_network_header(skb);
2916 l4.hdr = skb_transport_header(skb);
2917
2918 /* initialize outer IP header fields */
2919 if (ip.v4->version == 4) {
2920 ip.v4->tot_len = 0;
2921 ip.v4->check = 0;
2922 } else {
2923 ip.v6->payload_len = 0;
2924 }
2925
2926 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2927 SKB_GSO_GRE_CSUM |
2928 SKB_GSO_IPXIP4 |
2929 SKB_GSO_IPXIP6 |
2930 SKB_GSO_UDP_TUNNEL |
2931 SKB_GSO_UDP_TUNNEL_CSUM)) {
2932 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934 l4.udp->len = 0;
2935
2936 /* determine offset of outer transport header */
2937 l4_offset = l4.hdr - skb->data;
2938
2939 /* remove payload length from outer checksum */
2940 paylen = skb->len - l4_offset;
2941 csum_replace_by_diff(&l4.udp->check,
2942 (__force __wsum)htonl(paylen));
2943 }
2944
2945 /* reset pointers to inner headers */
2946 ip.hdr = skb_inner_network_header(skb);
2947 l4.hdr = skb_inner_transport_header(skb);
2948
2949 /* initialize inner IP header fields */
2950 if (ip.v4->version == 4) {
2951 ip.v4->tot_len = 0;
2952 ip.v4->check = 0;
2953 } else {
2954 ip.v6->payload_len = 0;
2955 }
2956 }
2957
2958 /* determine offset of inner transport header */
2959 l4_offset = l4.hdr - skb->data;
2960
2961 /* remove payload length from inner checksum */
2962 paylen = skb->len - l4_offset;
2963 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2964
2965 /* compute length of segmentation header */
2966 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2967
2968 /* pull values out of skb_shinfo */
2969 gso_size = skb_shinfo(skb)->gso_size;
2970 gso_segs = skb_shinfo(skb)->gso_segs;
2971
2972 /* update GSO size and bytecount with header size */
2973 first->gso_segs = gso_segs;
2974 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2975
2976 /* find the field values */
2977 cd_cmd = I40E_TX_CTX_DESC_TSO;
2978 cd_tso_len = skb->len - *hdr_len;
2979 cd_mss = gso_size;
2980 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2981 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2982 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2983 return 1;
2984}
2985
2986/**
2987 * i40e_tsyn - set up the tsyn context descriptor
2988 * @tx_ring: ptr to the ring to send
2989 * @skb: ptr to the skb we're sending
2990 * @tx_flags: the collected send information
2991 * @cd_type_cmd_tso_mss: Quad Word 1
2992 *
2993 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2994 **/
2995static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2996 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2997{
2998 struct i40e_pf *pf;
2999
3000 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3001 return 0;
3002
3003 /* Tx timestamps cannot be sampled when doing TSO */
3004 if (tx_flags & I40E_TX_FLAGS_TSO)
3005 return 0;
3006
3007 /* only timestamp the outbound packet if the user has requested it and
3008 * we are not already transmitting a packet to be timestamped
3009 */
3010 pf = i40e_netdev_to_pf(tx_ring->netdev);
3011 if (!(pf->flags & I40E_FLAG_PTP))
3012 return 0;
3013
3014 if (pf->ptp_tx &&
3015 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3016 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3017 pf->ptp_tx_start = jiffies;
3018 pf->ptp_tx_skb = skb_get(skb);
3019 } else {
3020 pf->tx_hwtstamp_skipped++;
3021 return 0;
3022 }
3023
3024 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3025 I40E_TXD_CTX_QW1_CMD_SHIFT;
3026
3027 return 1;
3028}
3029
3030/**
3031 * i40e_tx_enable_csum - Enable Tx checksum offloads
3032 * @skb: send buffer
3033 * @tx_flags: pointer to Tx flags currently set
3034 * @td_cmd: Tx descriptor command bits to set
3035 * @td_offset: Tx descriptor header offsets to set
3036 * @tx_ring: Tx descriptor ring
3037 * @cd_tunneling: ptr to context desc bits
3038 **/
3039static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3040 u32 *td_cmd, u32 *td_offset,
3041 struct i40e_ring *tx_ring,
3042 u32 *cd_tunneling)
3043{
3044 union {
3045 struct iphdr *v4;
3046 struct ipv6hdr *v6;
3047 unsigned char *hdr;
3048 } ip;
3049 union {
3050 struct tcphdr *tcp;
3051 struct udphdr *udp;
3052 unsigned char *hdr;
3053 } l4;
3054 unsigned char *exthdr;
3055 u32 offset, cmd = 0;
3056 __be16 frag_off;
3057 u8 l4_proto = 0;
3058
3059 if (skb->ip_summed != CHECKSUM_PARTIAL)
3060 return 0;
3061
3062 ip.hdr = skb_network_header(skb);
3063 l4.hdr = skb_transport_header(skb);
3064
3065 /* compute outer L2 header size */
3066 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3067
3068 if (skb->encapsulation) {
3069 u32 tunnel = 0;
3070 /* define outer network header type */
3071 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3072 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3073 I40E_TX_CTX_EXT_IP_IPV4 :
3074 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3075
3076 l4_proto = ip.v4->protocol;
3077 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3078 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3079
3080 exthdr = ip.hdr + sizeof(*ip.v6);
3081 l4_proto = ip.v6->nexthdr;
3082 if (l4.hdr != exthdr)
3083 ipv6_skip_exthdr(skb, exthdr - skb->data,
3084 &l4_proto, &frag_off);
3085 }
3086
3087 /* define outer transport */
3088 switch (l4_proto) {
3089 case IPPROTO_UDP:
3090 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3091 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3092 break;
3093 case IPPROTO_GRE:
3094 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3095 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3096 break;
3097 case IPPROTO_IPIP:
3098 case IPPROTO_IPV6:
3099 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3100 l4.hdr = skb_inner_network_header(skb);
3101 break;
3102 default:
3103 if (*tx_flags & I40E_TX_FLAGS_TSO)
3104 return -1;
3105
3106 skb_checksum_help(skb);
3107 return 0;
3108 }
3109
3110 /* compute outer L3 header size */
3111 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3112 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3113
3114 /* switch IP header pointer from outer to inner header */
3115 ip.hdr = skb_inner_network_header(skb);
3116
3117 /* compute tunnel header size */
3118 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3119 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3120
3121 /* indicate if we need to offload outer UDP header */
3122 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3123 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3124 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3125 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3126
3127 /* record tunnel offload values */
3128 *cd_tunneling |= tunnel;
3129
3130 /* switch L4 header pointer from outer to inner */
3131 l4.hdr = skb_inner_transport_header(skb);
3132 l4_proto = 0;
3133
3134 /* reset type as we transition from outer to inner headers */
3135 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3136 if (ip.v4->version == 4)
3137 *tx_flags |= I40E_TX_FLAGS_IPV4;
3138 if (ip.v6->version == 6)
3139 *tx_flags |= I40E_TX_FLAGS_IPV6;
3140 }
3141
3142 /* Enable IP checksum offloads */
3143 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3144 l4_proto = ip.v4->protocol;
3145 /* the stack computes the IP header already, the only time we
3146 * need the hardware to recompute it is in the case of TSO.
3147 */
3148 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3149 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3150 I40E_TX_DESC_CMD_IIPT_IPV4;
3151 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3152 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3153
3154 exthdr = ip.hdr + sizeof(*ip.v6);
3155 l4_proto = ip.v6->nexthdr;
3156 if (l4.hdr != exthdr)
3157 ipv6_skip_exthdr(skb, exthdr - skb->data,
3158 &l4_proto, &frag_off);
3159 }
3160
3161 /* compute inner L3 header size */
3162 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3163
3164 /* Enable L4 checksum offloads */
3165 switch (l4_proto) {
3166 case IPPROTO_TCP:
3167 /* enable checksum offloads */
3168 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3169 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3170 break;
3171 case IPPROTO_SCTP:
3172 /* enable SCTP checksum offload */
3173 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3174 offset |= (sizeof(struct sctphdr) >> 2) <<
3175 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176 break;
3177 case IPPROTO_UDP:
3178 /* enable UDP checksum offload */
3179 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3180 offset |= (sizeof(struct udphdr) >> 2) <<
3181 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182 break;
3183 default:
3184 if (*tx_flags & I40E_TX_FLAGS_TSO)
3185 return -1;
3186 skb_checksum_help(skb);
3187 return 0;
3188 }
3189
3190 *td_cmd |= cmd;
3191 *td_offset |= offset;
3192
3193 return 1;
3194}
3195
3196/**
3197 * i40e_create_tx_ctx Build the Tx context descriptor
3198 * @tx_ring: ring to create the descriptor on
3199 * @cd_type_cmd_tso_mss: Quad Word 1
3200 * @cd_tunneling: Quad Word 0 - bits 0-31
3201 * @cd_l2tag2: Quad Word 0 - bits 32-63
3202 **/
3203static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3204 const u64 cd_type_cmd_tso_mss,
3205 const u32 cd_tunneling, const u32 cd_l2tag2)
3206{
3207 struct i40e_tx_context_desc *context_desc;
3208 int i = tx_ring->next_to_use;
3209
3210 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3211 !cd_tunneling && !cd_l2tag2)
3212 return;
3213
3214 /* grab the next descriptor */
3215 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3216
3217 i++;
3218 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3219
3220 /* cpu_to_le32 and assign to struct fields */
3221 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3222 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3223 context_desc->rsvd = cpu_to_le16(0);
3224 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3225}
3226
3227/**
3228 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3229 * @tx_ring: the ring to be checked
3230 * @size: the size buffer we want to assure is available
3231 *
3232 * Returns -EBUSY if a stop is needed, else 0
3233 **/
3234int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3235{
3236 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3237 /* Memory barrier before checking head and tail */
3238 smp_mb();
3239
3240 /* Check again in a case another CPU has just made room available. */
3241 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3242 return -EBUSY;
3243
3244 /* A reprieve! - use start_queue because it doesn't call schedule */
3245 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3246 ++tx_ring->tx_stats.restart_queue;
3247 return 0;
3248}
3249
3250/**
3251 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3252 * @skb: send buffer
3253 *
3254 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3255 * and so we need to figure out the cases where we need to linearize the skb.
3256 *
3257 * For TSO we need to count the TSO header and segment payload separately.
3258 * As such we need to check cases where we have 7 fragments or more as we
3259 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3260 * the segment payload in the first descriptor, and another 7 for the
3261 * fragments.
3262 **/
3263bool __i40e_chk_linearize(struct sk_buff *skb)
3264{
3265 const skb_frag_t *frag, *stale;
3266 int nr_frags, sum;
3267
3268 /* no need to check if number of frags is less than 7 */
3269 nr_frags = skb_shinfo(skb)->nr_frags;
3270 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3271 return false;
3272
3273 /* We need to walk through the list and validate that each group
3274 * of 6 fragments totals at least gso_size.
3275 */
3276 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3277 frag = &skb_shinfo(skb)->frags[0];
3278
3279 /* Initialize size to the negative value of gso_size minus 1. We
3280 * use this as the worst case scenerio in which the frag ahead
3281 * of us only provides one byte which is why we are limited to 6
3282 * descriptors for a single transmit as the header and previous
3283 * fragment are already consuming 2 descriptors.
3284 */
3285 sum = 1 - skb_shinfo(skb)->gso_size;
3286
3287 /* Add size of frags 0 through 4 to create our initial sum */
3288 sum += skb_frag_size(frag++);
3289 sum += skb_frag_size(frag++);
3290 sum += skb_frag_size(frag++);
3291 sum += skb_frag_size(frag++);
3292 sum += skb_frag_size(frag++);
3293
3294 /* Walk through fragments adding latest fragment, testing it, and
3295 * then removing stale fragments from the sum.
3296 */
3297 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3298 int stale_size = skb_frag_size(stale);
3299
3300 sum += skb_frag_size(frag++);
3301
3302 /* The stale fragment may present us with a smaller
3303 * descriptor than the actual fragment size. To account
3304 * for that we need to remove all the data on the front and
3305 * figure out what the remainder would be in the last
3306 * descriptor associated with the fragment.
3307 */
3308 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3309 int align_pad = -(skb_frag_off(stale)) &
3310 (I40E_MAX_READ_REQ_SIZE - 1);
3311
3312 sum -= align_pad;
3313 stale_size -= align_pad;
3314
3315 do {
3316 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3317 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3318 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3319 }
3320
3321 /* if sum is negative we failed to make sufficient progress */
3322 if (sum < 0)
3323 return true;
3324
3325 if (!nr_frags--)
3326 break;
3327
3328 sum -= stale_size;
3329 }
3330
3331 return false;
3332}
3333
3334/**
3335 * i40e_tx_map - Build the Tx descriptor
3336 * @tx_ring: ring to send buffer on
3337 * @skb: send buffer
3338 * @first: first buffer info buffer to use
3339 * @tx_flags: collected send information
3340 * @hdr_len: size of the packet header
3341 * @td_cmd: the command field in the descriptor
3342 * @td_offset: offset for checksum or crc
3343 *
3344 * Returns 0 on success, -1 on failure to DMA
3345 **/
3346static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3347 struct i40e_tx_buffer *first, u32 tx_flags,
3348 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3349{
3350 unsigned int data_len = skb->data_len;
3351 unsigned int size = skb_headlen(skb);
3352 skb_frag_t *frag;
3353 struct i40e_tx_buffer *tx_bi;
3354 struct i40e_tx_desc *tx_desc;
3355 u16 i = tx_ring->next_to_use;
3356 u32 td_tag = 0;
3357 dma_addr_t dma;
3358 u16 desc_count = 1;
3359
3360 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3361 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3362 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3363 I40E_TX_FLAGS_VLAN_SHIFT;
3364 }
3365
3366 first->tx_flags = tx_flags;
3367
3368 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3369
3370 tx_desc = I40E_TX_DESC(tx_ring, i);
3371 tx_bi = first;
3372
3373 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3374 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3375
3376 if (dma_mapping_error(tx_ring->dev, dma))
3377 goto dma_error;
3378
3379 /* record length, and DMA address */
3380 dma_unmap_len_set(tx_bi, len, size);
3381 dma_unmap_addr_set(tx_bi, dma, dma);
3382
3383 /* align size to end of page */
3384 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3385 tx_desc->buffer_addr = cpu_to_le64(dma);
3386
3387 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3388 tx_desc->cmd_type_offset_bsz =
3389 build_ctob(td_cmd, td_offset,
3390 max_data, td_tag);
3391
3392 tx_desc++;
3393 i++;
3394 desc_count++;
3395
3396 if (i == tx_ring->count) {
3397 tx_desc = I40E_TX_DESC(tx_ring, 0);
3398 i = 0;
3399 }
3400
3401 dma += max_data;
3402 size -= max_data;
3403
3404 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3405 tx_desc->buffer_addr = cpu_to_le64(dma);
3406 }
3407
3408 if (likely(!data_len))
3409 break;
3410
3411 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3412 size, td_tag);
3413
3414 tx_desc++;
3415 i++;
3416 desc_count++;
3417
3418 if (i == tx_ring->count) {
3419 tx_desc = I40E_TX_DESC(tx_ring, 0);
3420 i = 0;
3421 }
3422
3423 size = skb_frag_size(frag);
3424 data_len -= size;
3425
3426 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3427 DMA_TO_DEVICE);
3428
3429 tx_bi = &tx_ring->tx_bi[i];
3430 }
3431
3432 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3433
3434 i++;
3435 if (i == tx_ring->count)
3436 i = 0;
3437
3438 tx_ring->next_to_use = i;
3439
3440 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3441
3442 /* write last descriptor with EOP bit */
3443 td_cmd |= I40E_TX_DESC_CMD_EOP;
3444
3445 /* We OR these values together to check both against 4 (WB_STRIDE)
3446 * below. This is safe since we don't re-use desc_count afterwards.
3447 */
3448 desc_count |= ++tx_ring->packet_stride;
3449
3450 if (desc_count >= WB_STRIDE) {
3451 /* write last descriptor with RS bit set */
3452 td_cmd |= I40E_TX_DESC_CMD_RS;
3453 tx_ring->packet_stride = 0;
3454 }
3455
3456 tx_desc->cmd_type_offset_bsz =
3457 build_ctob(td_cmd, td_offset, size, td_tag);
3458
3459 skb_tx_timestamp(skb);
3460
3461 /* Force memory writes to complete before letting h/w know there
3462 * are new descriptors to fetch.
3463 *
3464 * We also use this memory barrier to make certain all of the
3465 * status bits have been updated before next_to_watch is written.
3466 */
3467 wmb();
3468
3469 /* set next_to_watch value indicating a packet is present */
3470 first->next_to_watch = tx_desc;
3471
3472 /* notify HW of packet */
3473 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3474 writel(i, tx_ring->tail);
3475 }
3476
3477 return 0;
3478
3479dma_error:
3480 dev_info(tx_ring->dev, "TX DMA map failed\n");
3481
3482 /* clear dma mappings for failed tx_bi map */
3483 for (;;) {
3484 tx_bi = &tx_ring->tx_bi[i];
3485 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3486 if (tx_bi == first)
3487 break;
3488 if (i == 0)
3489 i = tx_ring->count;
3490 i--;
3491 }
3492
3493 tx_ring->next_to_use = i;
3494
3495 return -1;
3496}
3497
3498/**
3499 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3500 * @xdp: data to transmit
3501 * @xdp_ring: XDP Tx ring
3502 **/
3503static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3504 struct i40e_ring *xdp_ring)
3505{
3506 u16 i = xdp_ring->next_to_use;
3507 struct i40e_tx_buffer *tx_bi;
3508 struct i40e_tx_desc *tx_desc;
3509 void *data = xdpf->data;
3510 u32 size = xdpf->len;
3511 dma_addr_t dma;
3512
3513 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3514 xdp_ring->tx_stats.tx_busy++;
3515 return I40E_XDP_CONSUMED;
3516 }
3517 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3518 if (dma_mapping_error(xdp_ring->dev, dma))
3519 return I40E_XDP_CONSUMED;
3520
3521 tx_bi = &xdp_ring->tx_bi[i];
3522 tx_bi->bytecount = size;
3523 tx_bi->gso_segs = 1;
3524 tx_bi->xdpf = xdpf;
3525
3526 /* record length, and DMA address */
3527 dma_unmap_len_set(tx_bi, len, size);
3528 dma_unmap_addr_set(tx_bi, dma, dma);
3529
3530 tx_desc = I40E_TX_DESC(xdp_ring, i);
3531 tx_desc->buffer_addr = cpu_to_le64(dma);
3532 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3533 | I40E_TXD_CMD,
3534 0, size, 0);
3535
3536 /* Make certain all of the status bits have been updated
3537 * before next_to_watch is written.
3538 */
3539 smp_wmb();
3540
3541 i++;
3542 if (i == xdp_ring->count)
3543 i = 0;
3544
3545 tx_bi->next_to_watch = tx_desc;
3546 xdp_ring->next_to_use = i;
3547
3548 return I40E_XDP_TX;
3549}
3550
3551/**
3552 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3553 * @skb: send buffer
3554 * @tx_ring: ring to send buffer on
3555 *
3556 * Returns NETDEV_TX_OK if sent, else an error code
3557 **/
3558static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3559 struct i40e_ring *tx_ring)
3560{
3561 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3562 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3563 struct i40e_tx_buffer *first;
3564 u32 td_offset = 0;
3565 u32 tx_flags = 0;
3566 __be16 protocol;
3567 u32 td_cmd = 0;
3568 u8 hdr_len = 0;
3569 int tso, count;
3570 int tsyn;
3571
3572 /* prefetch the data, we'll need it later */
3573 prefetch(skb->data);
3574
3575 i40e_trace(xmit_frame_ring, skb, tx_ring);
3576
3577 count = i40e_xmit_descriptor_count(skb);
3578 if (i40e_chk_linearize(skb, count)) {
3579 if (__skb_linearize(skb)) {
3580 dev_kfree_skb_any(skb);
3581 return NETDEV_TX_OK;
3582 }
3583 count = i40e_txd_use_count(skb->len);
3584 tx_ring->tx_stats.tx_linearize++;
3585 }
3586
3587 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3588 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3589 * + 4 desc gap to avoid the cache line where head is,
3590 * + 1 desc for context descriptor,
3591 * otherwise try next time
3592 */
3593 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3594 tx_ring->tx_stats.tx_busy++;
3595 return NETDEV_TX_BUSY;
3596 }
3597
3598 /* record the location of the first descriptor for this packet */
3599 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3600 first->skb = skb;
3601 first->bytecount = skb->len;
3602 first->gso_segs = 1;
3603
3604 /* prepare the xmit flags */
3605 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3606 goto out_drop;
3607
3608 /* obtain protocol of skb */
3609 protocol = vlan_get_protocol(skb);
3610
3611 /* setup IPv4/IPv6 offloads */
3612 if (protocol == htons(ETH_P_IP))
3613 tx_flags |= I40E_TX_FLAGS_IPV4;
3614 else if (protocol == htons(ETH_P_IPV6))
3615 tx_flags |= I40E_TX_FLAGS_IPV6;
3616
3617 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3618
3619 if (tso < 0)
3620 goto out_drop;
3621 else if (tso)
3622 tx_flags |= I40E_TX_FLAGS_TSO;
3623
3624 /* Always offload the checksum, since it's in the data descriptor */
3625 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3626 tx_ring, &cd_tunneling);
3627 if (tso < 0)
3628 goto out_drop;
3629
3630 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3631
3632 if (tsyn)
3633 tx_flags |= I40E_TX_FLAGS_TSYN;
3634
3635 /* always enable CRC insertion offload */
3636 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3637
3638 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3639 cd_tunneling, cd_l2tag2);
3640
3641 /* Add Flow Director ATR if it's enabled.
3642 *
3643 * NOTE: this must always be directly before the data descriptor.
3644 */
3645 i40e_atr(tx_ring, skb, tx_flags);
3646
3647 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3648 td_cmd, td_offset))
3649 goto cleanup_tx_tstamp;
3650
3651 return NETDEV_TX_OK;
3652
3653out_drop:
3654 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3655 dev_kfree_skb_any(first->skb);
3656 first->skb = NULL;
3657cleanup_tx_tstamp:
3658 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3659 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3660
3661 dev_kfree_skb_any(pf->ptp_tx_skb);
3662 pf->ptp_tx_skb = NULL;
3663 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3664 }
3665
3666 return NETDEV_TX_OK;
3667}
3668
3669/**
3670 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3671 * @skb: send buffer
3672 * @netdev: network interface device structure
3673 *
3674 * Returns NETDEV_TX_OK if sent, else an error code
3675 **/
3676netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3677{
3678 struct i40e_netdev_priv *np = netdev_priv(netdev);
3679 struct i40e_vsi *vsi = np->vsi;
3680 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3681
3682 /* hardware can't handle really short frames, hardware padding works
3683 * beyond this point
3684 */
3685 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3686 return NETDEV_TX_OK;
3687
3688 return i40e_xmit_frame_ring(skb, tx_ring);
3689}
3690
3691/**
3692 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3693 * @dev: netdev
3694 * @xdp: XDP buffer
3695 *
3696 * Returns number of frames successfully sent. Frames that fail are
3697 * free'ed via XDP return API.
3698 *
3699 * For error cases, a negative errno code is returned and no-frames
3700 * are transmitted (caller must handle freeing frames).
3701 **/
3702int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3703 u32 flags)
3704{
3705 struct i40e_netdev_priv *np = netdev_priv(dev);
3706 unsigned int queue_index = smp_processor_id();
3707 struct i40e_vsi *vsi = np->vsi;
3708 struct i40e_pf *pf = vsi->back;
3709 struct i40e_ring *xdp_ring;
3710 int drops = 0;
3711 int i;
3712
3713 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3714 return -ENETDOWN;
3715
3716 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3717 test_bit(__I40E_CONFIG_BUSY, pf->state))
3718 return -ENXIO;
3719
3720 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3721 return -EINVAL;
3722
3723 xdp_ring = vsi->xdp_rings[queue_index];
3724
3725 for (i = 0; i < n; i++) {
3726 struct xdp_frame *xdpf = frames[i];
3727 int err;
3728
3729 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3730 if (err != I40E_XDP_TX) {
3731 xdp_return_frame_rx_napi(xdpf);
3732 drops++;
3733 }
3734 }
3735
3736 if (unlikely(flags & XDP_XMIT_FLUSH))
3737 i40e_xdp_ring_update_tail(xdp_ring);
3738
3739 return n - drops;
3740}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5#include <linux/bpf_trace.h>
6#include <net/mpls.h>
7#include <net/xdp.h>
8#include "i40e.h"
9#include "i40e_trace.h"
10#include "i40e_prototype.h"
11#include "i40e_txrx_common.h"
12#include "i40e_xsk.h"
13
14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15/**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
22static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24{
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39
40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42
43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45
46 /* Use LAN VSI Id if not programmed by user */
47 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50
51 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52
53 dtype_cmd |= add ?
54 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58
59 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61
62 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64
65 if (fdata->cnt_index) {
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 ((u32)fdata->cnt_index <<
69 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 }
71
72 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 fdir_desc->rsvd = cpu_to_le32(0);
74 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76}
77
78#define I40E_FD_CLEAN_DELAY 10
79/**
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
83 * @pf: The PF pointer
84 * @add: True for add/update, False for remove
85 **/
86static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 u8 *raw_packet, struct i40e_pf *pf,
88 bool add)
89{
90 struct i40e_tx_buffer *tx_buf, *first;
91 struct i40e_tx_desc *tx_desc;
92 struct i40e_ring *tx_ring;
93 struct i40e_vsi *vsi;
94 struct device *dev;
95 dma_addr_t dma;
96 u32 td_cmd = 0;
97 u16 i;
98
99 /* find existing FDIR VSI */
100 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 if (!vsi)
102 return -ENOENT;
103
104 tx_ring = vsi->tx_rings[0];
105 dev = tx_ring->dev;
106
107 /* we need two descriptors to add/del a filter and we can wait */
108 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 if (!i)
110 return -EAGAIN;
111 msleep_interruptible(1);
112 }
113
114 dma = dma_map_single(dev, raw_packet,
115 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 if (dma_mapping_error(dev, dma))
117 goto dma_fail;
118
119 /* grab the next descriptor */
120 i = tx_ring->next_to_use;
121 first = &tx_ring->tx_bi[i];
122 i40e_fdir(tx_ring, fdir_data, add);
123
124 /* Now program a dummy descriptor */
125 i = tx_ring->next_to_use;
126 tx_desc = I40E_TX_DESC(tx_ring, i);
127 tx_buf = &tx_ring->tx_bi[i];
128
129 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130
131 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132
133 /* record length, and DMA address */
134 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 dma_unmap_addr_set(tx_buf, dma, dma);
136
137 tx_desc->buffer_addr = cpu_to_le64(dma);
138 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139
140 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 tx_buf->raw_buf = (void *)raw_packet;
142
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146 /* Force memory writes to complete before letting h/w
147 * know there are new descriptors to fetch.
148 */
149 wmb();
150
151 /* Mark the data descriptor to be watched */
152 first->next_to_watch = tx_desc;
153
154 writel(tx_ring->next_to_use, tx_ring->tail);
155 return 0;
156
157dma_fail:
158 return -1;
159}
160
161/**
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
166 * @data: filter data
167 *
168 * Returns address of layer 4 protocol dummy packet.
169 **/
170static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 struct i40e_fdir_filter *data)
172{
173 bool is_vlan = !!data->vlan_tag;
174 struct vlan_hdr vlan;
175 struct ipv6hdr ipv6;
176 struct ethhdr eth;
177 struct iphdr ip;
178 u8 *tmp;
179
180 if (ipv4) {
181 eth.h_proto = cpu_to_be16(ETH_P_IP);
182 ip.protocol = l4proto;
183 ip.version = 0x4;
184 ip.ihl = 0x5;
185
186 ip.daddr = data->dst_ip;
187 ip.saddr = data->src_ip;
188 } else {
189 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 ipv6.nexthdr = l4proto;
191 ipv6.version = 0x6;
192
193 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 sizeof(__be32) * 4);
195 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 sizeof(__be32) * 4);
197 }
198
199 if (is_vlan) {
200 vlan.h_vlan_TCI = data->vlan_tag;
201 vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 eth.h_proto = data->vlan_etype;
203 }
204
205 tmp = dummy_packet;
206 memcpy(tmp, ð, sizeof(eth));
207 tmp += sizeof(eth);
208
209 if (is_vlan) {
210 memcpy(tmp, &vlan, sizeof(vlan));
211 tmp += sizeof(vlan);
212 }
213
214 if (ipv4) {
215 memcpy(tmp, &ip, sizeof(ip));
216 tmp += sizeof(ip);
217 } else {
218 memcpy(tmp, &ipv6, sizeof(ipv6));
219 tmp += sizeof(ipv6);
220 }
221
222 return tmp;
223}
224
225/**
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
230 * @data: filter data
231 *
232 * Helper function to populate udp fields.
233 **/
234static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 struct i40e_fdir_filter *data)
236{
237 struct udphdr *udp;
238 u8 *tmp;
239
240 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 udp = (struct udphdr *)(tmp);
242 udp->dest = data->dst_port;
243 udp->source = data->src_port;
244}
245
246/**
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
251 * @data: filter data
252 *
253 * Helper function to populate tcp fields.
254 **/
255static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 struct i40e_fdir_filter *data)
257{
258 struct tcphdr *tcp;
259 u8 *tmp;
260 /* Dummy tcp packet */
261 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263
264 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265
266 tcp = (struct tcphdr *)tmp;
267 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 tcp->dest = data->dst_port;
269 tcp->source = data->src_port;
270}
271
272/**
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
277 * @data: filter data
278 *
279 * Helper function to populate sctp fields.
280 **/
281static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 u8 l4proto,
283 struct i40e_fdir_filter *data)
284{
285 struct sctphdr *sctp;
286 u8 *tmp;
287
288 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289
290 sctp = (struct sctphdr *)tmp;
291 sctp->dest = data->dst_port;
292 sctp->source = data->src_port;
293}
294
295/**
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
303 *
304 * Helper function to offset data of dummy packet, program it and
305 * handle errors.
306 **/
307static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 struct i40e_fdir_filter *fd_data,
309 bool add, char *packet_addr,
310 int payload_offset, u8 pctype)
311{
312 int ret;
313
314 if (fd_data->flex_filter) {
315 u8 *payload;
316 __be16 pattern = fd_data->flex_word;
317 u16 off = fd_data->flex_offset;
318
319 payload = packet_addr + payload_offset;
320
321 /* If user provided vlan, offset payload by vlan header length */
322 if (!!fd_data->vlan_tag)
323 payload += VLAN_HLEN;
324
325 *((__force __be16 *)(payload + off)) = pattern;
326 }
327
328 fd_data->pctype = pctype;
329 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 if (ret) {
331 dev_info(&pf->pdev->dev,
332 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 fd_data->pctype, fd_data->fd_id, ret);
334 /* Free the packet buffer since it wasn't added to the ring */
335 return -EOPNOTSUPP;
336 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 if (add)
338 dev_info(&pf->pdev->dev,
339 "Filter OK for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
341 else
342 dev_info(&pf->pdev->dev,
343 "Filter deleted for PCTYPE %d loc = %d\n",
344 fd_data->pctype, fd_data->fd_id);
345 }
346
347 return ret;
348}
349
350/**
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
356 *
357 * Update filter number field for pf.
358 **/
359static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 u16 *ipv6_filter_num)
361{
362 if (add) {
363 if (ipv4)
364 (*ipv4_filter_num)++;
365 else
366 (*ipv6_filter_num)++;
367 } else {
368 if (ipv4)
369 (*ipv4_filter_num)--;
370 else
371 (*ipv6_filter_num)--;
372 }
373}
374
375#define I40E_UDPIP_DUMMY_PACKET_LEN 42
376#define I40E_UDPIP6_DUMMY_PACKET_LEN 62
377/**
378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
379 * @vsi: pointer to the targeted VSI
380 * @fd_data: the flow director data required for the FDir descriptor
381 * @add: true adds a filter, false removes it
382 * @ipv4: true is v4, false is v6
383 *
384 * Returns 0 if the filters were successfully added or removed
385 **/
386static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 struct i40e_fdir_filter *fd_data,
388 bool add,
389 bool ipv4)
390{
391 struct i40e_pf *pf = vsi->back;
392 u8 *raw_packet;
393 int ret;
394
395 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 if (!raw_packet)
397 return -ENOMEM;
398
399 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400
401 if (ipv4)
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 else
407 ret = i40e_prepare_fdir_filter
408 (pf, fd_data, add, raw_packet,
409 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411
412 if (ret) {
413 kfree(raw_packet);
414 return ret;
415 }
416
417 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 &pf->fd_udp6_filter_cnt);
419
420 return 0;
421}
422
423#define I40E_TCPIP_DUMMY_PACKET_LEN 54
424#define I40E_TCPIP6_DUMMY_PACKET_LEN 74
425/**
426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
429 * @add: true adds a filter, false removes it
430 * @ipv4: true is v4, false is v6
431 *
432 * Returns 0 if the filters were successfully added or removed
433 **/
434static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 struct i40e_fdir_filter *fd_data,
436 bool add,
437 bool ipv4)
438{
439 struct i40e_pf *pf = vsi->back;
440 u8 *raw_packet;
441 int ret;
442
443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 if (!raw_packet)
445 return -ENOMEM;
446
447 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 if (ipv4)
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 else
454 ret = i40e_prepare_fdir_filter
455 (pf, fd_data, add, raw_packet,
456 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458
459 if (ret) {
460 kfree(raw_packet);
461 return ret;
462 }
463
464 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 &pf->fd_tcp6_filter_cnt);
466
467 if (add) {
468 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 I40E_DEBUG_FD & pf->hw.debug_mask)
470 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 }
473 return 0;
474}
475
476#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
477#define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
478/**
479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480 * a specific flow spec
481 * @vsi: pointer to the targeted VSI
482 * @fd_data: the flow director data required for the FDir descriptor
483 * @add: true adds a filter, false removes it
484 * @ipv4: true is v4, false is v6
485 *
486 * Returns 0 if the filters were successfully added or removed
487 **/
488static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 struct i40e_fdir_filter *fd_data,
490 bool add,
491 bool ipv4)
492{
493 struct i40e_pf *pf = vsi->back;
494 u8 *raw_packet;
495 int ret;
496
497 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 if (!raw_packet)
499 return -ENOMEM;
500
501 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502
503 if (ipv4)
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 else
509 ret = i40e_prepare_fdir_filter
510 (pf, fd_data, add, raw_packet,
511 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513
514 if (ret) {
515 kfree(raw_packet);
516 return ret;
517 }
518
519 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 &pf->fd_sctp6_filter_cnt);
521
522 return 0;
523}
524
525#define I40E_IP_DUMMY_PACKET_LEN 34
526#define I40E_IP6_DUMMY_PACKET_LEN 54
527/**
528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529 * a specific flow spec
530 * @vsi: pointer to the targeted VSI
531 * @fd_data: the flow director data required for the FDir descriptor
532 * @add: true adds a filter, false removes it
533 * @ipv4: true is v4, false is v6
534 *
535 * Returns 0 if the filters were successfully added or removed
536 **/
537static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 struct i40e_fdir_filter *fd_data,
539 bool add,
540 bool ipv4)
541{
542 struct i40e_pf *pf = vsi->back;
543 int payload_offset;
544 u8 *raw_packet;
545 int iter_start;
546 int iter_end;
547 int ret;
548 int i;
549
550 if (ipv4) {
551 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 } else {
554 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 }
557
558 for (i = iter_start; i <= iter_end; i++) {
559 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 if (!raw_packet)
561 return -ENOMEM;
562
563 /* IPv6 no header option differs from IPv4 */
564 (void)i40e_create_dummy_packet
565 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 fd_data);
567
568 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 I40E_IP6_DUMMY_PACKET_LEN;
570 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 payload_offset, i);
572 if (ret)
573 goto err;
574 }
575
576 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 &pf->fd_ip6_filter_cnt);
578
579 return 0;
580err:
581 kfree(raw_packet);
582 return ret;
583}
584
585/**
586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587 * @vsi: pointer to the targeted VSI
588 * @input: filter to add or delete
589 * @add: true adds a filter, false removes it
590 *
591 **/
592int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 struct i40e_fdir_filter *input, bool add)
594{
595 enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 struct i40e_pf *pf = vsi->back;
597 int ret;
598
599 switch (input->flow_type & ~FLOW_EXT) {
600 case TCP_V4_FLOW:
601 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 break;
603 case UDP_V4_FLOW:
604 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 break;
606 case SCTP_V4_FLOW:
607 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 break;
609 case TCP_V6_FLOW:
610 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 break;
612 case UDP_V6_FLOW:
613 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 break;
615 case SCTP_V6_FLOW:
616 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 break;
618 case IP_USER_FLOW:
619 switch (input->ipl4_proto) {
620 case IPPROTO_TCP:
621 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 break;
623 case IPPROTO_UDP:
624 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 break;
626 case IPPROTO_SCTP:
627 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 break;
629 case IPPROTO_IP:
630 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 break;
632 default:
633 /* We cannot support masking based on protocol */
634 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 input->ipl4_proto);
636 return -EINVAL;
637 }
638 break;
639 case IPV6_USER_FLOW:
640 switch (input->ipl4_proto) {
641 case IPPROTO_TCP:
642 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 break;
644 case IPPROTO_UDP:
645 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 break;
647 case IPPROTO_SCTP:
648 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 break;
650 case IPPROTO_IP:
651 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 break;
653 default:
654 /* We cannot support masking based on protocol */
655 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 input->ipl4_proto);
657 return -EINVAL;
658 }
659 break;
660 default:
661 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 input->flow_type);
663 return -EINVAL;
664 }
665
666 /* The buffer allocated here will be normally be freed by
667 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 * completion. In the event of an error adding the buffer to the FDIR
669 * ring, it will immediately be freed. It may also be freed by
670 * i40e_clean_tx_ring() when closing the VSI.
671 */
672 return ret;
673}
674
675/**
676 * i40e_fd_handle_status - check the Programming Status for FD
677 * @rx_ring: the Rx ring for this descriptor
678 * @qword0_raw: qword0
679 * @qword1: qword1 after le_to_cpu
680 * @prog_id: the id originally used for programming
681 *
682 * This is used to verify if the FD programming or invalidation
683 * requested by SW to the HW is successful or not and take actions accordingly.
684 **/
685static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 u64 qword1, u8 prog_id)
687{
688 struct i40e_pf *pf = rx_ring->vsi->back;
689 struct pci_dev *pdev = pf->pdev;
690 struct i40e_16b_rx_wb_qw0 *qw0;
691 u32 fcnt_prog, fcnt_avail;
692 u32 error;
693
694 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697
698 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 if (qw0->hi_dword.fd_id != 0 ||
701 (I40E_DEBUG_FD & pf->hw.debug_mask))
702 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 pf->fd_inv);
704
705 /* Check if the programming error is for ATR.
706 * If so, auto disable ATR and set a state for
707 * flush in progress. Next time we come here if flush is in
708 * progress do nothing, once flush is complete the state will
709 * be cleared.
710 */
711 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 return;
713
714 pf->fd_add_err++;
715 /* store the current atr filter count */
716 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717
718 if (qw0->hi_dword.fd_id == 0 &&
719 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 /* These set_bit() calls aren't atomic with the
721 * test_bit() here, but worse case we potentially
722 * disable ATR and queue a flush right after SB
723 * support is re-enabled. That shouldn't cause an
724 * issue in practice
725 */
726 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 }
729
730 /* filter programming failed most likely due to table full */
731 fcnt_prog = i40e_get_global_fd_count(pf);
732 fcnt_avail = pf->fdir_pf_filter_count;
733 /* If ATR is running fcnt_prog can quickly change,
734 * if we are very close to full, it makes sense to disable
735 * FD ATR/SB and then re-enable it when there is room.
736 */
737 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 pf->state))
741 if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 }
744 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 qw0->hi_dword.fd_id);
748 }
749}
750
751/**
752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753 * @ring: the ring that owns the buffer
754 * @tx_buffer: the buffer to free
755 **/
756static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 struct i40e_tx_buffer *tx_buffer)
758{
759 if (tx_buffer->skb) {
760 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 kfree(tx_buffer->raw_buf);
762 else if (ring_is_xdp(ring))
763 xdp_return_frame(tx_buffer->xdpf);
764 else
765 dev_kfree_skb_any(tx_buffer->skb);
766 if (dma_unmap_len(tx_buffer, len))
767 dma_unmap_single(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
770 DMA_TO_DEVICE);
771 } else if (dma_unmap_len(tx_buffer, len)) {
772 dma_unmap_page(ring->dev,
773 dma_unmap_addr(tx_buffer, dma),
774 dma_unmap_len(tx_buffer, len),
775 DMA_TO_DEVICE);
776 }
777
778 tx_buffer->next_to_watch = NULL;
779 tx_buffer->skb = NULL;
780 dma_unmap_len_set(tx_buffer, len, 0);
781 /* tx_buffer must be completely set up in the transmit path */
782}
783
784/**
785 * i40e_clean_tx_ring - Free any empty Tx buffers
786 * @tx_ring: ring to be cleaned
787 **/
788void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789{
790 unsigned long bi_size;
791 u16 i;
792
793 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 i40e_xsk_clean_tx_ring(tx_ring);
795 } else {
796 /* ring already cleared, nothing to do */
797 if (!tx_ring->tx_bi)
798 return;
799
800 /* Free all the Tx ring sk_buffs */
801 for (i = 0; i < tx_ring->count; i++)
802 i40e_unmap_and_free_tx_resource(tx_ring,
803 &tx_ring->tx_bi[i]);
804 }
805
806 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 memset(tx_ring->tx_bi, 0, bi_size);
808
809 /* Zero out the descriptor ring */
810 memset(tx_ring->desc, 0, tx_ring->size);
811
812 tx_ring->next_to_use = 0;
813 tx_ring->next_to_clean = 0;
814
815 if (!tx_ring->netdev)
816 return;
817
818 /* cleanup Tx queue statistics */
819 netdev_tx_reset_queue(txring_txq(tx_ring));
820}
821
822/**
823 * i40e_free_tx_resources - Free Tx resources per queue
824 * @tx_ring: Tx descriptor ring for a specific queue
825 *
826 * Free all transmit software resources
827 **/
828void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829{
830 i40e_clean_tx_ring(tx_ring);
831 kfree(tx_ring->tx_bi);
832 tx_ring->tx_bi = NULL;
833
834 if (tx_ring->desc) {
835 dma_free_coherent(tx_ring->dev, tx_ring->size,
836 tx_ring->desc, tx_ring->dma);
837 tx_ring->desc = NULL;
838 }
839}
840
841/**
842 * i40e_get_tx_pending - how many tx descriptors not processed
843 * @ring: the ring of descriptors
844 * @in_sw: use SW variables
845 *
846 * Since there is no access to the ring head register
847 * in XL710, we need to use our local copies
848 **/
849u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850{
851 u32 head, tail;
852
853 if (!in_sw) {
854 head = i40e_get_head(ring);
855 tail = readl(ring->tail);
856 } else {
857 head = ring->next_to_clean;
858 tail = ring->next_to_use;
859 }
860
861 if (head != tail)
862 return (head < tail) ?
863 tail - head : (tail + ring->count - head);
864
865 return 0;
866}
867
868/**
869 * i40e_detect_recover_hung - Function to detect and recover hung_queues
870 * @vsi: pointer to vsi struct with tx queues
871 *
872 * VSI has netdev and netdev has TX queues. This function is to check each of
873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874 **/
875void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876{
877 struct i40e_ring *tx_ring = NULL;
878 struct net_device *netdev;
879 unsigned int i;
880 int packets;
881
882 if (!vsi)
883 return;
884
885 if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 return;
887
888 netdev = vsi->netdev;
889 if (!netdev)
890 return;
891
892 if (!netif_carrier_ok(netdev))
893 return;
894
895 for (i = 0; i < vsi->num_queue_pairs; i++) {
896 tx_ring = vsi->tx_rings[i];
897 if (tx_ring && tx_ring->desc) {
898 /* If packet counter has not changed the queue is
899 * likely stalled, so force an interrupt for this
900 * queue.
901 *
902 * prev_pkt_ctr would be negative if there was no
903 * pending work.
904 */
905 packets = tx_ring->stats.packets & INT_MAX;
906 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 i40e_force_wb(vsi, tx_ring->q_vector);
908 continue;
909 }
910
911 /* Memory barrier between read of packet count and call
912 * to i40e_get_tx_pending()
913 */
914 smp_rmb();
915 tx_ring->tx_stats.prev_pkt_ctr =
916 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 }
918 }
919}
920
921/**
922 * i40e_clean_tx_irq - Reclaim resources after transmit completes
923 * @vsi: the VSI we care about
924 * @tx_ring: Tx ring to clean
925 * @napi_budget: Used to determine if we are in netpoll
926 * @tx_cleaned: Out parameter set to the number of TXes cleaned
927 *
928 * Returns true if there's any budget left (e.g. the clean is finished)
929 **/
930static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931 struct i40e_ring *tx_ring, int napi_budget,
932 unsigned int *tx_cleaned)
933{
934 int i = tx_ring->next_to_clean;
935 struct i40e_tx_buffer *tx_buf;
936 struct i40e_tx_desc *tx_head;
937 struct i40e_tx_desc *tx_desc;
938 unsigned int total_bytes = 0, total_packets = 0;
939 unsigned int budget = vsi->work_limit;
940
941 tx_buf = &tx_ring->tx_bi[i];
942 tx_desc = I40E_TX_DESC(tx_ring, i);
943 i -= tx_ring->count;
944
945 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946
947 do {
948 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
949
950 /* if next_to_watch is not set then there is no work pending */
951 if (!eop_desc)
952 break;
953
954 /* prevent any other reads prior to eop_desc */
955 smp_rmb();
956
957 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958 /* we have caught up to head, no work left to do */
959 if (tx_head == tx_desc)
960 break;
961
962 /* clear next_to_watch to prevent false hangs */
963 tx_buf->next_to_watch = NULL;
964
965 /* update the statistics for this packet */
966 total_bytes += tx_buf->bytecount;
967 total_packets += tx_buf->gso_segs;
968
969 /* free the skb/XDP data */
970 if (ring_is_xdp(tx_ring))
971 xdp_return_frame(tx_buf->xdpf);
972 else
973 napi_consume_skb(tx_buf->skb, napi_budget);
974
975 /* unmap skb header data */
976 dma_unmap_single(tx_ring->dev,
977 dma_unmap_addr(tx_buf, dma),
978 dma_unmap_len(tx_buf, len),
979 DMA_TO_DEVICE);
980
981 /* clear tx_buffer data */
982 tx_buf->skb = NULL;
983 dma_unmap_len_set(tx_buf, len, 0);
984
985 /* unmap remaining buffers */
986 while (tx_desc != eop_desc) {
987 i40e_trace(clean_tx_irq_unmap,
988 tx_ring, tx_desc, tx_buf);
989
990 tx_buf++;
991 tx_desc++;
992 i++;
993 if (unlikely(!i)) {
994 i -= tx_ring->count;
995 tx_buf = tx_ring->tx_bi;
996 tx_desc = I40E_TX_DESC(tx_ring, 0);
997 }
998
999 /* unmap any remaining paged data */
1000 if (dma_unmap_len(tx_buf, len)) {
1001 dma_unmap_page(tx_ring->dev,
1002 dma_unmap_addr(tx_buf, dma),
1003 dma_unmap_len(tx_buf, len),
1004 DMA_TO_DEVICE);
1005 dma_unmap_len_set(tx_buf, len, 0);
1006 }
1007 }
1008
1009 /* move us one more past the eop_desc for start of next pkt */
1010 tx_buf++;
1011 tx_desc++;
1012 i++;
1013 if (unlikely(!i)) {
1014 i -= tx_ring->count;
1015 tx_buf = tx_ring->tx_bi;
1016 tx_desc = I40E_TX_DESC(tx_ring, 0);
1017 }
1018
1019 prefetch(tx_desc);
1020
1021 /* update budget accounting */
1022 budget--;
1023 } while (likely(budget));
1024
1025 i += tx_ring->count;
1026 tx_ring->next_to_clean = i;
1027 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028 i40e_arm_wb(tx_ring, vsi, budget);
1029
1030 if (ring_is_xdp(tx_ring))
1031 return !!budget;
1032
1033 /* notify netdev of completed buffers */
1034 netdev_tx_completed_queue(txring_txq(tx_ring),
1035 total_packets, total_bytes);
1036
1037#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040 /* Make sure that anybody stopping the queue after this
1041 * sees the new next_to_clean.
1042 */
1043 smp_mb();
1044 if (__netif_subqueue_stopped(tx_ring->netdev,
1045 tx_ring->queue_index) &&
1046 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047 netif_wake_subqueue(tx_ring->netdev,
1048 tx_ring->queue_index);
1049 ++tx_ring->tx_stats.restart_queue;
1050 }
1051 }
1052
1053 *tx_cleaned = total_packets;
1054 return !!budget;
1055}
1056
1057/**
1058 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1059 * @vsi: the VSI we care about
1060 * @q_vector: the vector on which to enable writeback
1061 *
1062 **/
1063static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1064 struct i40e_q_vector *q_vector)
1065{
1066 u16 flags = q_vector->tx.ring[0].flags;
1067 u32 val;
1068
1069 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1070 return;
1071
1072 if (q_vector->arm_wb_state)
1073 return;
1074
1075 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1076 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1077 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1078
1079 wr32(&vsi->back->hw,
1080 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1081 val);
1082 } else {
1083 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1084 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1085
1086 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1087 }
1088 q_vector->arm_wb_state = true;
1089}
1090
1091/**
1092 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1093 * @vsi: the VSI we care about
1094 * @q_vector: the vector on which to force writeback
1095 *
1096 **/
1097void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1098{
1099 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1100 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1101 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1102 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1103 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1104 /* allow 00 to be written to the index */
1105
1106 wr32(&vsi->back->hw,
1107 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1108 } else {
1109 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1110 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1111 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1112 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1113 /* allow 00 to be written to the index */
1114
1115 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1116 }
1117}
1118
1119static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1120 struct i40e_ring_container *rc)
1121{
1122 return &q_vector->rx == rc;
1123}
1124
1125static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1126{
1127 unsigned int divisor;
1128
1129 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1130 case I40E_LINK_SPEED_40GB:
1131 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1132 break;
1133 case I40E_LINK_SPEED_25GB:
1134 case I40E_LINK_SPEED_20GB:
1135 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1136 break;
1137 default:
1138 case I40E_LINK_SPEED_10GB:
1139 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1140 break;
1141 case I40E_LINK_SPEED_1GB:
1142 case I40E_LINK_SPEED_100MB:
1143 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1144 break;
1145 }
1146
1147 return divisor;
1148}
1149
1150/**
1151 * i40e_update_itr - update the dynamic ITR value based on statistics
1152 * @q_vector: structure containing interrupt and ring information
1153 * @rc: structure containing ring performance data
1154 *
1155 * Stores a new ITR value based on packets and byte
1156 * counts during the last interrupt. The advantage of per interrupt
1157 * computation is faster updates and more accurate ITR for the current
1158 * traffic pattern. Constants in this function were computed
1159 * based on theoretical maximum wire speed and thresholds were set based
1160 * on testing data as well as attempting to minimize response time
1161 * while increasing bulk throughput.
1162 **/
1163static void i40e_update_itr(struct i40e_q_vector *q_vector,
1164 struct i40e_ring_container *rc)
1165{
1166 unsigned int avg_wire_size, packets, bytes, itr;
1167 unsigned long next_update = jiffies;
1168
1169 /* If we don't have any rings just leave ourselves set for maximum
1170 * possible latency so we take ourselves out of the equation.
1171 */
1172 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1173 return;
1174
1175 /* For Rx we want to push the delay up and default to low latency.
1176 * for Tx we want to pull the delay down and default to high latency.
1177 */
1178 itr = i40e_container_is_rx(q_vector, rc) ?
1179 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1180 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1181
1182 /* If we didn't update within up to 1 - 2 jiffies we can assume
1183 * that either packets are coming in so slow there hasn't been
1184 * any work, or that there is so much work that NAPI is dealing
1185 * with interrupt moderation and we don't need to do anything.
1186 */
1187 if (time_after(next_update, rc->next_update))
1188 goto clear_counts;
1189
1190 /* If itr_countdown is set it means we programmed an ITR within
1191 * the last 4 interrupt cycles. This has a side effect of us
1192 * potentially firing an early interrupt. In order to work around
1193 * this we need to throw out any data received for a few
1194 * interrupts following the update.
1195 */
1196 if (q_vector->itr_countdown) {
1197 itr = rc->target_itr;
1198 goto clear_counts;
1199 }
1200
1201 packets = rc->total_packets;
1202 bytes = rc->total_bytes;
1203
1204 if (i40e_container_is_rx(q_vector, rc)) {
1205 /* If Rx there are 1 to 4 packets and bytes are less than
1206 * 9000 assume insufficient data to use bulk rate limiting
1207 * approach unless Tx is already in bulk rate limiting. We
1208 * are likely latency driven.
1209 */
1210 if (packets && packets < 4 && bytes < 9000 &&
1211 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1212 itr = I40E_ITR_ADAPTIVE_LATENCY;
1213 goto adjust_by_size;
1214 }
1215 } else if (packets < 4) {
1216 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1217 * bulk mode and we are receiving 4 or fewer packets just
1218 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1219 * that the Rx can relax.
1220 */
1221 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1222 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1223 I40E_ITR_ADAPTIVE_MAX_USECS)
1224 goto clear_counts;
1225 } else if (packets > 32) {
1226 /* If we have processed over 32 packets in a single interrupt
1227 * for Tx assume we need to switch over to "bulk" mode.
1228 */
1229 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1230 }
1231
1232 /* We have no packets to actually measure against. This means
1233 * either one of the other queues on this vector is active or
1234 * we are a Tx queue doing TSO with too high of an interrupt rate.
1235 *
1236 * Between 4 and 56 we can assume that our current interrupt delay
1237 * is only slightly too low. As such we should increase it by a small
1238 * fixed amount.
1239 */
1240 if (packets < 56) {
1241 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1242 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1243 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1244 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1245 }
1246 goto clear_counts;
1247 }
1248
1249 if (packets <= 256) {
1250 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1251 itr &= I40E_ITR_MASK;
1252
1253 /* Between 56 and 112 is our "goldilocks" zone where we are
1254 * working out "just right". Just report that our current
1255 * ITR is good for us.
1256 */
1257 if (packets <= 112)
1258 goto clear_counts;
1259
1260 /* If packet count is 128 or greater we are likely looking
1261 * at a slight overrun of the delay we want. Try halving
1262 * our delay to see if that will cut the number of packets
1263 * in half per interrupt.
1264 */
1265 itr /= 2;
1266 itr &= I40E_ITR_MASK;
1267 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1268 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1269
1270 goto clear_counts;
1271 }
1272
1273 /* The paths below assume we are dealing with a bulk ITR since
1274 * number of packets is greater than 256. We are just going to have
1275 * to compute a value and try to bring the count under control,
1276 * though for smaller packet sizes there isn't much we can do as
1277 * NAPI polling will likely be kicking in sooner rather than later.
1278 */
1279 itr = I40E_ITR_ADAPTIVE_BULK;
1280
1281adjust_by_size:
1282 /* If packet counts are 256 or greater we can assume we have a gross
1283 * overestimation of what the rate should be. Instead of trying to fine
1284 * tune it just use the formula below to try and dial in an exact value
1285 * give the current packet size of the frame.
1286 */
1287 avg_wire_size = bytes / packets;
1288
1289 /* The following is a crude approximation of:
1290 * wmem_default / (size + overhead) = desired_pkts_per_int
1291 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1292 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1293 *
1294 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1295 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1296 * formula down to
1297 *
1298 * (170 * (size + 24)) / (size + 640) = ITR
1299 *
1300 * We first do some math on the packet size and then finally bitshift
1301 * by 8 after rounding up. We also have to account for PCIe link speed
1302 * difference as ITR scales based on this.
1303 */
1304 if (avg_wire_size <= 60) {
1305 /* Start at 250k ints/sec */
1306 avg_wire_size = 4096;
1307 } else if (avg_wire_size <= 380) {
1308 /* 250K ints/sec to 60K ints/sec */
1309 avg_wire_size *= 40;
1310 avg_wire_size += 1696;
1311 } else if (avg_wire_size <= 1084) {
1312 /* 60K ints/sec to 36K ints/sec */
1313 avg_wire_size *= 15;
1314 avg_wire_size += 11452;
1315 } else if (avg_wire_size <= 1980) {
1316 /* 36K ints/sec to 30K ints/sec */
1317 avg_wire_size *= 5;
1318 avg_wire_size += 22420;
1319 } else {
1320 /* plateau at a limit of 30K ints/sec */
1321 avg_wire_size = 32256;
1322 }
1323
1324 /* If we are in low latency mode halve our delay which doubles the
1325 * rate to somewhere between 100K to 16K ints/sec
1326 */
1327 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1328 avg_wire_size /= 2;
1329
1330 /* Resultant value is 256 times larger than it needs to be. This
1331 * gives us room to adjust the value as needed to either increase
1332 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1333 *
1334 * Use addition as we have already recorded the new latency flag
1335 * for the ITR value.
1336 */
1337 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1338 I40E_ITR_ADAPTIVE_MIN_INC;
1339
1340 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1341 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1342 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1343 }
1344
1345clear_counts:
1346 /* write back value */
1347 rc->target_itr = itr;
1348
1349 /* next update should occur within next jiffy */
1350 rc->next_update = next_update + 1;
1351
1352 rc->total_bytes = 0;
1353 rc->total_packets = 0;
1354}
1355
1356static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1357{
1358 return &rx_ring->rx_bi[idx];
1359}
1360
1361/**
1362 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1363 * @rx_ring: rx descriptor ring to store buffers on
1364 * @old_buff: donor buffer to have page reused
1365 *
1366 * Synchronizes page for reuse by the adapter
1367 **/
1368static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1369 struct i40e_rx_buffer *old_buff)
1370{
1371 struct i40e_rx_buffer *new_buff;
1372 u16 nta = rx_ring->next_to_alloc;
1373
1374 new_buff = i40e_rx_bi(rx_ring, nta);
1375
1376 /* update, and store next to alloc */
1377 nta++;
1378 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1379
1380 /* transfer page from old buffer to new buffer */
1381 new_buff->dma = old_buff->dma;
1382 new_buff->page = old_buff->page;
1383 new_buff->page_offset = old_buff->page_offset;
1384 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1385
1386 /* clear contents of buffer_info */
1387 old_buff->page = NULL;
1388}
1389
1390/**
1391 * i40e_clean_programming_status - clean the programming status descriptor
1392 * @rx_ring: the rx ring that has this descriptor
1393 * @qword0_raw: qword0
1394 * @qword1: qword1 representing status_error_len in CPU ordering
1395 *
1396 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1397 * status being successful or not and take actions accordingly. FCoE should
1398 * handle its context/filter programming/invalidation status and take actions.
1399 *
1400 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1401 **/
1402void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1403 u64 qword1)
1404{
1405 u8 id;
1406
1407 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1408 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1409
1410 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1411 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1412}
1413
1414/**
1415 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1416 * @tx_ring: the tx ring to set up
1417 *
1418 * Return 0 on success, negative on error
1419 **/
1420int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1421{
1422 struct device *dev = tx_ring->dev;
1423 int bi_size;
1424
1425 if (!dev)
1426 return -ENOMEM;
1427
1428 /* warn if we are about to overwrite the pointer */
1429 WARN_ON(tx_ring->tx_bi);
1430 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1431 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1432 if (!tx_ring->tx_bi)
1433 goto err;
1434
1435 u64_stats_init(&tx_ring->syncp);
1436
1437 /* round up to nearest 4K */
1438 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1439 /* add u32 for head writeback, align after this takes care of
1440 * guaranteeing this is at least one cache line in size
1441 */
1442 tx_ring->size += sizeof(u32);
1443 tx_ring->size = ALIGN(tx_ring->size, 4096);
1444 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1445 &tx_ring->dma, GFP_KERNEL);
1446 if (!tx_ring->desc) {
1447 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1448 tx_ring->size);
1449 goto err;
1450 }
1451
1452 tx_ring->next_to_use = 0;
1453 tx_ring->next_to_clean = 0;
1454 tx_ring->tx_stats.prev_pkt_ctr = -1;
1455 return 0;
1456
1457err:
1458 kfree(tx_ring->tx_bi);
1459 tx_ring->tx_bi = NULL;
1460 return -ENOMEM;
1461}
1462
1463static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1464{
1465 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1466}
1467
1468/**
1469 * i40e_clean_rx_ring - Free Rx buffers
1470 * @rx_ring: ring to be cleaned
1471 **/
1472void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1473{
1474 u16 i;
1475
1476 /* ring already cleared, nothing to do */
1477 if (!rx_ring->rx_bi)
1478 return;
1479
1480 dev_kfree_skb(rx_ring->skb);
1481 rx_ring->skb = NULL;
1482
1483 if (rx_ring->xsk_pool) {
1484 i40e_xsk_clean_rx_ring(rx_ring);
1485 goto skip_free;
1486 }
1487
1488 /* Free all the Rx ring sk_buffs */
1489 for (i = 0; i < rx_ring->count; i++) {
1490 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1491
1492 if (!rx_bi->page)
1493 continue;
1494
1495 /* Invalidate cache lines that may have been written to by
1496 * device so that we avoid corrupting memory.
1497 */
1498 dma_sync_single_range_for_cpu(rx_ring->dev,
1499 rx_bi->dma,
1500 rx_bi->page_offset,
1501 rx_ring->rx_buf_len,
1502 DMA_FROM_DEVICE);
1503
1504 /* free resources associated with mapping */
1505 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1506 i40e_rx_pg_size(rx_ring),
1507 DMA_FROM_DEVICE,
1508 I40E_RX_DMA_ATTR);
1509
1510 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1511
1512 rx_bi->page = NULL;
1513 rx_bi->page_offset = 0;
1514 }
1515
1516skip_free:
1517 if (rx_ring->xsk_pool)
1518 i40e_clear_rx_bi_zc(rx_ring);
1519 else
1520 i40e_clear_rx_bi(rx_ring);
1521
1522 /* Zero out the descriptor ring */
1523 memset(rx_ring->desc, 0, rx_ring->size);
1524
1525 rx_ring->next_to_alloc = 0;
1526 rx_ring->next_to_clean = 0;
1527 rx_ring->next_to_use = 0;
1528}
1529
1530/**
1531 * i40e_free_rx_resources - Free Rx resources
1532 * @rx_ring: ring to clean the resources from
1533 *
1534 * Free all receive software resources
1535 **/
1536void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1537{
1538 i40e_clean_rx_ring(rx_ring);
1539 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1540 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1541 rx_ring->xdp_prog = NULL;
1542 kfree(rx_ring->rx_bi);
1543 rx_ring->rx_bi = NULL;
1544
1545 if (rx_ring->desc) {
1546 dma_free_coherent(rx_ring->dev, rx_ring->size,
1547 rx_ring->desc, rx_ring->dma);
1548 rx_ring->desc = NULL;
1549 }
1550}
1551
1552/**
1553 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1554 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1555 *
1556 * Returns 0 on success, negative on failure
1557 **/
1558int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1559{
1560 struct device *dev = rx_ring->dev;
1561 int err;
1562
1563 u64_stats_init(&rx_ring->syncp);
1564
1565 /* Round up to nearest 4K */
1566 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1567 rx_ring->size = ALIGN(rx_ring->size, 4096);
1568 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1569 &rx_ring->dma, GFP_KERNEL);
1570
1571 if (!rx_ring->desc) {
1572 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1573 rx_ring->size);
1574 return -ENOMEM;
1575 }
1576
1577 rx_ring->next_to_alloc = 0;
1578 rx_ring->next_to_clean = 0;
1579 rx_ring->next_to_use = 0;
1580
1581 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1582 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1583 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1584 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1585 if (err < 0)
1586 return err;
1587 }
1588
1589 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1590
1591 rx_ring->rx_bi =
1592 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1593 if (!rx_ring->rx_bi)
1594 return -ENOMEM;
1595
1596 return 0;
1597}
1598
1599/**
1600 * i40e_release_rx_desc - Store the new tail and head values
1601 * @rx_ring: ring to bump
1602 * @val: new head index
1603 **/
1604void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1605{
1606 rx_ring->next_to_use = val;
1607
1608 /* update next to alloc since we have filled the ring */
1609 rx_ring->next_to_alloc = val;
1610
1611 /* Force memory writes to complete before letting h/w
1612 * know there are new descriptors to fetch. (Only
1613 * applicable for weak-ordered memory model archs,
1614 * such as IA-64).
1615 */
1616 wmb();
1617 writel(val, rx_ring->tail);
1618}
1619
1620static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1621 unsigned int size)
1622{
1623 unsigned int truesize;
1624
1625#if (PAGE_SIZE < 8192)
1626 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1627#else
1628 truesize = rx_ring->rx_offset ?
1629 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1630 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1631 SKB_DATA_ALIGN(size);
1632#endif
1633 return truesize;
1634}
1635
1636/**
1637 * i40e_alloc_mapped_page - recycle or make a new page
1638 * @rx_ring: ring to use
1639 * @bi: rx_buffer struct to modify
1640 *
1641 * Returns true if the page was successfully allocated or
1642 * reused.
1643 **/
1644static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1645 struct i40e_rx_buffer *bi)
1646{
1647 struct page *page = bi->page;
1648 dma_addr_t dma;
1649
1650 /* since we are recycling buffers we should seldom need to alloc */
1651 if (likely(page)) {
1652 rx_ring->rx_stats.page_reuse_count++;
1653 return true;
1654 }
1655
1656 /* alloc new page for storage */
1657 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1658 if (unlikely(!page)) {
1659 rx_ring->rx_stats.alloc_page_failed++;
1660 return false;
1661 }
1662
1663 rx_ring->rx_stats.page_alloc_count++;
1664
1665 /* map page for use */
1666 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1667 i40e_rx_pg_size(rx_ring),
1668 DMA_FROM_DEVICE,
1669 I40E_RX_DMA_ATTR);
1670
1671 /* if mapping failed free memory back to system since
1672 * there isn't much point in holding memory we can't use
1673 */
1674 if (dma_mapping_error(rx_ring->dev, dma)) {
1675 __free_pages(page, i40e_rx_pg_order(rx_ring));
1676 rx_ring->rx_stats.alloc_page_failed++;
1677 return false;
1678 }
1679
1680 bi->dma = dma;
1681 bi->page = page;
1682 bi->page_offset = rx_ring->rx_offset;
1683 page_ref_add(page, USHRT_MAX - 1);
1684 bi->pagecnt_bias = USHRT_MAX;
1685
1686 return true;
1687}
1688
1689/**
1690 * i40e_alloc_rx_buffers - Replace used receive buffers
1691 * @rx_ring: ring to place buffers on
1692 * @cleaned_count: number of buffers to replace
1693 *
1694 * Returns false if all allocations were successful, true if any fail
1695 **/
1696bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1697{
1698 u16 ntu = rx_ring->next_to_use;
1699 union i40e_rx_desc *rx_desc;
1700 struct i40e_rx_buffer *bi;
1701
1702 /* do nothing if no valid netdev defined */
1703 if (!rx_ring->netdev || !cleaned_count)
1704 return false;
1705
1706 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1707 bi = i40e_rx_bi(rx_ring, ntu);
1708
1709 do {
1710 if (!i40e_alloc_mapped_page(rx_ring, bi))
1711 goto no_buffers;
1712
1713 /* sync the buffer for use by the device */
1714 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1715 bi->page_offset,
1716 rx_ring->rx_buf_len,
1717 DMA_FROM_DEVICE);
1718
1719 /* Refresh the desc even if buffer_addrs didn't change
1720 * because each write-back erases this info.
1721 */
1722 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1723
1724 rx_desc++;
1725 bi++;
1726 ntu++;
1727 if (unlikely(ntu == rx_ring->count)) {
1728 rx_desc = I40E_RX_DESC(rx_ring, 0);
1729 bi = i40e_rx_bi(rx_ring, 0);
1730 ntu = 0;
1731 }
1732
1733 /* clear the status bits for the next_to_use descriptor */
1734 rx_desc->wb.qword1.status_error_len = 0;
1735
1736 cleaned_count--;
1737 } while (cleaned_count);
1738
1739 if (rx_ring->next_to_use != ntu)
1740 i40e_release_rx_desc(rx_ring, ntu);
1741
1742 return false;
1743
1744no_buffers:
1745 if (rx_ring->next_to_use != ntu)
1746 i40e_release_rx_desc(rx_ring, ntu);
1747
1748 /* make sure to come back via polling to try again after
1749 * allocation failure
1750 */
1751 return true;
1752}
1753
1754/**
1755 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1756 * @vsi: the VSI we care about
1757 * @skb: skb currently being received and modified
1758 * @rx_desc: the receive descriptor
1759 **/
1760static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1761 struct sk_buff *skb,
1762 union i40e_rx_desc *rx_desc)
1763{
1764 struct i40e_rx_ptype_decoded decoded;
1765 u32 rx_error, rx_status;
1766 bool ipv4, ipv6;
1767 u8 ptype;
1768 u64 qword;
1769
1770 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1771 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1772 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1773 I40E_RXD_QW1_ERROR_SHIFT;
1774 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1775 I40E_RXD_QW1_STATUS_SHIFT;
1776 decoded = decode_rx_desc_ptype(ptype);
1777
1778 skb->ip_summed = CHECKSUM_NONE;
1779
1780 skb_checksum_none_assert(skb);
1781
1782 /* Rx csum enabled and ip headers found? */
1783 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1784 return;
1785
1786 /* did the hardware decode the packet and checksum? */
1787 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1788 return;
1789
1790 /* both known and outer_ip must be set for the below code to work */
1791 if (!(decoded.known && decoded.outer_ip))
1792 return;
1793
1794 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1795 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1796 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1797 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1798
1799 if (ipv4 &&
1800 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1801 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1802 goto checksum_fail;
1803
1804 /* likely incorrect csum if alternate IP extension headers found */
1805 if (ipv6 &&
1806 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1807 /* don't increment checksum err here, non-fatal err */
1808 return;
1809
1810 /* there was some L4 error, count error and punt packet to the stack */
1811 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1812 goto checksum_fail;
1813
1814 /* handle packets that were not able to be checksummed due
1815 * to arrival speed, in this case the stack can compute
1816 * the csum.
1817 */
1818 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1819 return;
1820
1821 /* If there is an outer header present that might contain a checksum
1822 * we need to bump the checksum level by 1 to reflect the fact that
1823 * we are indicating we validated the inner checksum.
1824 */
1825 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1826 skb->csum_level = 1;
1827
1828 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1829 switch (decoded.inner_prot) {
1830 case I40E_RX_PTYPE_INNER_PROT_TCP:
1831 case I40E_RX_PTYPE_INNER_PROT_UDP:
1832 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1833 skb->ip_summed = CHECKSUM_UNNECESSARY;
1834 fallthrough;
1835 default:
1836 break;
1837 }
1838
1839 return;
1840
1841checksum_fail:
1842 vsi->back->hw_csum_rx_error++;
1843}
1844
1845/**
1846 * i40e_ptype_to_htype - get a hash type
1847 * @ptype: the ptype value from the descriptor
1848 *
1849 * Returns a hash type to be used by skb_set_hash
1850 **/
1851static inline int i40e_ptype_to_htype(u8 ptype)
1852{
1853 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1854
1855 if (!decoded.known)
1856 return PKT_HASH_TYPE_NONE;
1857
1858 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1860 return PKT_HASH_TYPE_L4;
1861 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1862 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1863 return PKT_HASH_TYPE_L3;
1864 else
1865 return PKT_HASH_TYPE_L2;
1866}
1867
1868/**
1869 * i40e_rx_hash - set the hash value in the skb
1870 * @ring: descriptor ring
1871 * @rx_desc: specific descriptor
1872 * @skb: skb currently being received and modified
1873 * @rx_ptype: Rx packet type
1874 **/
1875static inline void i40e_rx_hash(struct i40e_ring *ring,
1876 union i40e_rx_desc *rx_desc,
1877 struct sk_buff *skb,
1878 u8 rx_ptype)
1879{
1880 u32 hash;
1881 const __le64 rss_mask =
1882 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1883 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1884
1885 if (!(ring->netdev->features & NETIF_F_RXHASH))
1886 return;
1887
1888 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1889 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1890 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1891 }
1892}
1893
1894/**
1895 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1896 * @rx_ring: rx descriptor ring packet is being transacted on
1897 * @rx_desc: pointer to the EOP Rx descriptor
1898 * @skb: pointer to current skb being populated
1899 *
1900 * This function checks the ring, descriptor, and packet information in
1901 * order to populate the hash, checksum, VLAN, protocol, and
1902 * other fields within the skb.
1903 **/
1904void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1905 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1906{
1907 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1908 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1909 I40E_RXD_QW1_STATUS_SHIFT;
1910 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1911 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1912 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1913 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1914 I40E_RXD_QW1_PTYPE_SHIFT;
1915
1916 if (unlikely(tsynvalid))
1917 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1918
1919 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1920
1921 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1922
1923 skb_record_rx_queue(skb, rx_ring->queue_index);
1924
1925 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1926 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1927
1928 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1929 le16_to_cpu(vlan_tag));
1930 }
1931
1932 /* modifies the skb - consumes the enet header */
1933 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1934}
1935
1936/**
1937 * i40e_cleanup_headers - Correct empty headers
1938 * @rx_ring: rx descriptor ring packet is being transacted on
1939 * @skb: pointer to current skb being fixed
1940 * @rx_desc: pointer to the EOP Rx descriptor
1941 *
1942 * In addition if skb is not at least 60 bytes we need to pad it so that
1943 * it is large enough to qualify as a valid Ethernet frame.
1944 *
1945 * Returns true if an error was encountered and skb was freed.
1946 **/
1947static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1948 union i40e_rx_desc *rx_desc)
1949
1950{
1951 /* ERR_MASK will only have valid bits if EOP set, and
1952 * what we are doing here is actually checking
1953 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1954 * the error field
1955 */
1956 if (unlikely(i40e_test_staterr(rx_desc,
1957 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1958 dev_kfree_skb_any(skb);
1959 return true;
1960 }
1961
1962 /* if eth_skb_pad returns an error the skb was freed */
1963 if (eth_skb_pad(skb))
1964 return true;
1965
1966 return false;
1967}
1968
1969/**
1970 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1971 * @rx_buffer: buffer containing the page
1972 * @rx_stats: rx stats structure for the rx ring
1973 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1974 *
1975 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1976 * which will assign the current buffer to the buffer that next_to_alloc is
1977 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1978 * page freed.
1979 *
1980 * rx_stats will be updated to indicate whether the page was waived
1981 * or busy if it could not be reused.
1982 */
1983static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1984 struct i40e_rx_queue_stats *rx_stats,
1985 int rx_buffer_pgcnt)
1986{
1987 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1988 struct page *page = rx_buffer->page;
1989
1990 /* Is any reuse possible? */
1991 if (!dev_page_is_reusable(page)) {
1992 rx_stats->page_waive_count++;
1993 return false;
1994 }
1995
1996#if (PAGE_SIZE < 8192)
1997 /* if we are only owner of page we can reuse it */
1998 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
1999 rx_stats->page_busy_count++;
2000 return false;
2001 }
2002#else
2003#define I40E_LAST_OFFSET \
2004 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2005 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2006 rx_stats->page_busy_count++;
2007 return false;
2008 }
2009#endif
2010
2011 /* If we have drained the page fragment pool we need to update
2012 * the pagecnt_bias and page count so that we fully restock the
2013 * number of references the driver holds.
2014 */
2015 if (unlikely(pagecnt_bias == 1)) {
2016 page_ref_add(page, USHRT_MAX - 1);
2017 rx_buffer->pagecnt_bias = USHRT_MAX;
2018 }
2019
2020 return true;
2021}
2022
2023/**
2024 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2025 * @rx_ring: rx descriptor ring to transact packets on
2026 * @rx_buffer: buffer containing page to add
2027 * @skb: sk_buff to place the data into
2028 * @size: packet length from rx_desc
2029 *
2030 * This function will add the data contained in rx_buffer->page to the skb.
2031 * It will just attach the page as a frag to the skb.
2032 *
2033 * The function will then update the page offset.
2034 **/
2035static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2036 struct i40e_rx_buffer *rx_buffer,
2037 struct sk_buff *skb,
2038 unsigned int size)
2039{
2040#if (PAGE_SIZE < 8192)
2041 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2042#else
2043 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2044#endif
2045
2046 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2047 rx_buffer->page_offset, size, truesize);
2048
2049 /* page is being used so we must update the page offset */
2050#if (PAGE_SIZE < 8192)
2051 rx_buffer->page_offset ^= truesize;
2052#else
2053 rx_buffer->page_offset += truesize;
2054#endif
2055}
2056
2057/**
2058 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2059 * @rx_ring: rx descriptor ring to transact packets on
2060 * @size: size of buffer to add to skb
2061 * @rx_buffer_pgcnt: buffer page refcount
2062 *
2063 * This function will pull an Rx buffer from the ring and synchronize it
2064 * for use by the CPU.
2065 */
2066static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2067 const unsigned int size,
2068 int *rx_buffer_pgcnt)
2069{
2070 struct i40e_rx_buffer *rx_buffer;
2071
2072 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2073 *rx_buffer_pgcnt =
2074#if (PAGE_SIZE < 8192)
2075 page_count(rx_buffer->page);
2076#else
2077 0;
2078#endif
2079 prefetch_page_address(rx_buffer->page);
2080
2081 /* we are reusing so sync this buffer for CPU use */
2082 dma_sync_single_range_for_cpu(rx_ring->dev,
2083 rx_buffer->dma,
2084 rx_buffer->page_offset,
2085 size,
2086 DMA_FROM_DEVICE);
2087
2088 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2089 rx_buffer->pagecnt_bias--;
2090
2091 return rx_buffer;
2092}
2093
2094/**
2095 * i40e_construct_skb - Allocate skb and populate it
2096 * @rx_ring: rx descriptor ring to transact packets on
2097 * @rx_buffer: rx buffer to pull data from
2098 * @xdp: xdp_buff pointing to the data
2099 *
2100 * This function allocates an skb. It then populates it with the page
2101 * data from the current receive descriptor, taking care to set up the
2102 * skb correctly.
2103 */
2104static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2105 struct i40e_rx_buffer *rx_buffer,
2106 struct xdp_buff *xdp)
2107{
2108 unsigned int size = xdp->data_end - xdp->data;
2109#if (PAGE_SIZE < 8192)
2110 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2111#else
2112 unsigned int truesize = SKB_DATA_ALIGN(size);
2113#endif
2114 unsigned int headlen;
2115 struct sk_buff *skb;
2116
2117 /* prefetch first cache line of first page */
2118 net_prefetch(xdp->data);
2119
2120 /* Note, we get here by enabling legacy-rx via:
2121 *
2122 * ethtool --set-priv-flags <dev> legacy-rx on
2123 *
2124 * In this mode, we currently get 0 extra XDP headroom as
2125 * opposed to having legacy-rx off, where we process XDP
2126 * packets going to stack via i40e_build_skb(). The latter
2127 * provides us currently with 192 bytes of headroom.
2128 *
2129 * For i40e_construct_skb() mode it means that the
2130 * xdp->data_meta will always point to xdp->data, since
2131 * the helper cannot expand the head. Should this ever
2132 * change in future for legacy-rx mode on, then lets also
2133 * add xdp->data_meta handling here.
2134 */
2135
2136 /* allocate a skb to store the frags */
2137 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2138 I40E_RX_HDR_SIZE,
2139 GFP_ATOMIC | __GFP_NOWARN);
2140 if (unlikely(!skb))
2141 return NULL;
2142
2143 /* Determine available headroom for copy */
2144 headlen = size;
2145 if (headlen > I40E_RX_HDR_SIZE)
2146 headlen = eth_get_headlen(skb->dev, xdp->data,
2147 I40E_RX_HDR_SIZE);
2148
2149 /* align pull length to size of long to optimize memcpy performance */
2150 memcpy(__skb_put(skb, headlen), xdp->data,
2151 ALIGN(headlen, sizeof(long)));
2152
2153 /* update all of the pointers */
2154 size -= headlen;
2155 if (size) {
2156 skb_add_rx_frag(skb, 0, rx_buffer->page,
2157 rx_buffer->page_offset + headlen,
2158 size, truesize);
2159
2160 /* buffer is used by skb, update page_offset */
2161#if (PAGE_SIZE < 8192)
2162 rx_buffer->page_offset ^= truesize;
2163#else
2164 rx_buffer->page_offset += truesize;
2165#endif
2166 } else {
2167 /* buffer is unused, reset bias back to rx_buffer */
2168 rx_buffer->pagecnt_bias++;
2169 }
2170
2171 return skb;
2172}
2173
2174/**
2175 * i40e_build_skb - Build skb around an existing buffer
2176 * @rx_ring: Rx descriptor ring to transact packets on
2177 * @rx_buffer: Rx buffer to pull data from
2178 * @xdp: xdp_buff pointing to the data
2179 *
2180 * This function builds an skb around an existing Rx buffer, taking care
2181 * to set up the skb correctly and avoid any memcpy overhead.
2182 */
2183static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2184 struct i40e_rx_buffer *rx_buffer,
2185 struct xdp_buff *xdp)
2186{
2187 unsigned int metasize = xdp->data - xdp->data_meta;
2188#if (PAGE_SIZE < 8192)
2189 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2190#else
2191 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2192 SKB_DATA_ALIGN(xdp->data_end -
2193 xdp->data_hard_start);
2194#endif
2195 struct sk_buff *skb;
2196
2197 /* Prefetch first cache line of first page. If xdp->data_meta
2198 * is unused, this points exactly as xdp->data, otherwise we
2199 * likely have a consumer accessing first few bytes of meta
2200 * data, and then actual data.
2201 */
2202 net_prefetch(xdp->data_meta);
2203
2204 /* build an skb around the page buffer */
2205 skb = napi_build_skb(xdp->data_hard_start, truesize);
2206 if (unlikely(!skb))
2207 return NULL;
2208
2209 /* update pointers within the skb to store the data */
2210 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2211 __skb_put(skb, xdp->data_end - xdp->data);
2212 if (metasize)
2213 skb_metadata_set(skb, metasize);
2214
2215 /* buffer is used by skb, update page_offset */
2216#if (PAGE_SIZE < 8192)
2217 rx_buffer->page_offset ^= truesize;
2218#else
2219 rx_buffer->page_offset += truesize;
2220#endif
2221
2222 return skb;
2223}
2224
2225/**
2226 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2227 * @rx_ring: rx descriptor ring to transact packets on
2228 * @rx_buffer: rx buffer to pull data from
2229 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2230 *
2231 * This function will clean up the contents of the rx_buffer. It will
2232 * either recycle the buffer or unmap it and free the associated resources.
2233 */
2234static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2235 struct i40e_rx_buffer *rx_buffer,
2236 int rx_buffer_pgcnt)
2237{
2238 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
2239 /* hand second half of page back to the ring */
2240 i40e_reuse_rx_page(rx_ring, rx_buffer);
2241 } else {
2242 /* we are not reusing the buffer so unmap it */
2243 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2244 i40e_rx_pg_size(rx_ring),
2245 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2246 __page_frag_cache_drain(rx_buffer->page,
2247 rx_buffer->pagecnt_bias);
2248 /* clear contents of buffer_info */
2249 rx_buffer->page = NULL;
2250 }
2251}
2252
2253/**
2254 * i40e_is_non_eop - process handling of non-EOP buffers
2255 * @rx_ring: Rx ring being processed
2256 * @rx_desc: Rx descriptor for current buffer
2257 *
2258 * If the buffer is an EOP buffer, this function exits returning false,
2259 * otherwise return true indicating that this is in fact a non-EOP buffer.
2260 */
2261static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2262 union i40e_rx_desc *rx_desc)
2263{
2264 /* if we are the last buffer then there is nothing else to do */
2265#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2266 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2267 return false;
2268
2269 rx_ring->rx_stats.non_eop_descs++;
2270
2271 return true;
2272}
2273
2274static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2275 struct i40e_ring *xdp_ring);
2276
2277int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2278{
2279 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2280
2281 if (unlikely(!xdpf))
2282 return I40E_XDP_CONSUMED;
2283
2284 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2285}
2286
2287/**
2288 * i40e_run_xdp - run an XDP program
2289 * @rx_ring: Rx ring being processed
2290 * @xdp: XDP buffer containing the frame
2291 * @xdp_prog: XDP program to run
2292 **/
2293static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2294{
2295 int err, result = I40E_XDP_PASS;
2296 struct i40e_ring *xdp_ring;
2297 u32 act;
2298
2299 if (!xdp_prog)
2300 goto xdp_out;
2301
2302 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2303
2304 act = bpf_prog_run_xdp(xdp_prog, xdp);
2305 switch (act) {
2306 case XDP_PASS:
2307 break;
2308 case XDP_TX:
2309 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2310 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2311 if (result == I40E_XDP_CONSUMED)
2312 goto out_failure;
2313 break;
2314 case XDP_REDIRECT:
2315 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2316 if (err)
2317 goto out_failure;
2318 result = I40E_XDP_REDIR;
2319 break;
2320 default:
2321 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2322 fallthrough;
2323 case XDP_ABORTED:
2324out_failure:
2325 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2326 fallthrough; /* handle aborts by dropping packet */
2327 case XDP_DROP:
2328 result = I40E_XDP_CONSUMED;
2329 break;
2330 }
2331xdp_out:
2332 return result;
2333}
2334
2335/**
2336 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2337 * @rx_ring: Rx ring
2338 * @rx_buffer: Rx buffer to adjust
2339 * @size: Size of adjustment
2340 **/
2341static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2342 struct i40e_rx_buffer *rx_buffer,
2343 unsigned int size)
2344{
2345 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2346
2347#if (PAGE_SIZE < 8192)
2348 rx_buffer->page_offset ^= truesize;
2349#else
2350 rx_buffer->page_offset += truesize;
2351#endif
2352}
2353
2354/**
2355 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2356 * @xdp_ring: XDP Tx ring
2357 *
2358 * This function updates the XDP Tx ring tail register.
2359 **/
2360void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2361{
2362 /* Force memory writes to complete before letting h/w
2363 * know there are new descriptors to fetch.
2364 */
2365 wmb();
2366 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2367}
2368
2369/**
2370 * i40e_update_rx_stats - Update Rx ring statistics
2371 * @rx_ring: rx descriptor ring
2372 * @total_rx_bytes: number of bytes received
2373 * @total_rx_packets: number of packets received
2374 *
2375 * This function updates the Rx ring statistics.
2376 **/
2377void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2378 unsigned int total_rx_bytes,
2379 unsigned int total_rx_packets)
2380{
2381 u64_stats_update_begin(&rx_ring->syncp);
2382 rx_ring->stats.packets += total_rx_packets;
2383 rx_ring->stats.bytes += total_rx_bytes;
2384 u64_stats_update_end(&rx_ring->syncp);
2385 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2386 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2387}
2388
2389/**
2390 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2391 * @rx_ring: Rx ring
2392 * @xdp_res: Result of the receive batch
2393 *
2394 * This function bumps XDP Tx tail and/or flush redirect map, and
2395 * should be called when a batch of packets has been processed in the
2396 * napi loop.
2397 **/
2398void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2399{
2400 if (xdp_res & I40E_XDP_REDIR)
2401 xdp_do_flush_map();
2402
2403 if (xdp_res & I40E_XDP_TX) {
2404 struct i40e_ring *xdp_ring =
2405 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2406
2407 i40e_xdp_ring_update_tail(xdp_ring);
2408 }
2409}
2410
2411/**
2412 * i40e_inc_ntc: Advance the next_to_clean index
2413 * @rx_ring: Rx ring
2414 **/
2415static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2416{
2417 u32 ntc = rx_ring->next_to_clean + 1;
2418
2419 ntc = (ntc < rx_ring->count) ? ntc : 0;
2420 rx_ring->next_to_clean = ntc;
2421 prefetch(I40E_RX_DESC(rx_ring, ntc));
2422}
2423
2424/**
2425 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2426 * @rx_ring: rx descriptor ring to transact packets on
2427 * @budget: Total limit on number of packets to process
2428 * @rx_cleaned: Out parameter of the number of packets processed
2429 *
2430 * This function provides a "bounce buffer" approach to Rx interrupt
2431 * processing. The advantage to this is that on systems that have
2432 * expensive overhead for IOMMU access this provides a means of avoiding
2433 * it by maintaining the mapping of the page to the system.
2434 *
2435 * Returns amount of work completed
2436 **/
2437static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2438 unsigned int *rx_cleaned)
2439{
2440 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2441 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2442 unsigned int offset = rx_ring->rx_offset;
2443 struct sk_buff *skb = rx_ring->skb;
2444 unsigned int xdp_xmit = 0;
2445 struct bpf_prog *xdp_prog;
2446 bool failure = false;
2447 struct xdp_buff xdp;
2448 int xdp_res = 0;
2449
2450#if (PAGE_SIZE < 8192)
2451 frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2452#endif
2453 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2454
2455 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2456
2457 while (likely(total_rx_packets < (unsigned int)budget)) {
2458 struct i40e_rx_buffer *rx_buffer;
2459 union i40e_rx_desc *rx_desc;
2460 int rx_buffer_pgcnt;
2461 unsigned int size;
2462 u64 qword;
2463
2464 /* return some buffers to hardware, one at a time is too slow */
2465 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2466 failure = failure ||
2467 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468 cleaned_count = 0;
2469 }
2470
2471 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2472
2473 /* status_error_len will always be zero for unused descriptors
2474 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 * which is always zero because packet split isn't used, if the
2476 * hardware wrote DD then the length will be non-zero
2477 */
2478 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480 /* This memory barrier is needed to keep us from reading
2481 * any other fields out of the rx_desc until we have
2482 * verified the descriptor has been written back.
2483 */
2484 dma_rmb();
2485
2486 if (i40e_rx_is_programming_status(qword)) {
2487 i40e_clean_programming_status(rx_ring,
2488 rx_desc->raw.qword[0],
2489 qword);
2490 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2491 i40e_inc_ntc(rx_ring);
2492 i40e_reuse_rx_page(rx_ring, rx_buffer);
2493 cleaned_count++;
2494 continue;
2495 }
2496
2497 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2498 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2499 if (!size)
2500 break;
2501
2502 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2503 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2504
2505 /* retrieve a buffer from the ring */
2506 if (!skb) {
2507 unsigned char *hard_start;
2508
2509 hard_start = page_address(rx_buffer->page) +
2510 rx_buffer->page_offset - offset;
2511 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2512 xdp_buff_clear_frags_flag(&xdp);
2513#if (PAGE_SIZE > 4096)
2514 /* At larger PAGE_SIZE, frame_sz depend on len size */
2515 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2516#endif
2517 xdp_res = i40e_run_xdp(rx_ring, &xdp, xdp_prog);
2518 }
2519
2520 if (xdp_res) {
2521 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2522 xdp_xmit |= xdp_res;
2523 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2524 } else {
2525 rx_buffer->pagecnt_bias++;
2526 }
2527 total_rx_bytes += size;
2528 total_rx_packets++;
2529 } else if (skb) {
2530 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2531 } else if (ring_uses_build_skb(rx_ring)) {
2532 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2533 } else {
2534 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2535 }
2536
2537 /* exit if we failed to retrieve a buffer */
2538 if (!xdp_res && !skb) {
2539 rx_ring->rx_stats.alloc_buff_failed++;
2540 rx_buffer->pagecnt_bias++;
2541 break;
2542 }
2543
2544 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2545 cleaned_count++;
2546
2547 i40e_inc_ntc(rx_ring);
2548 if (i40e_is_non_eop(rx_ring, rx_desc))
2549 continue;
2550
2551 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2552 skb = NULL;
2553 continue;
2554 }
2555
2556 /* probably a little skewed due to removing CRC */
2557 total_rx_bytes += skb->len;
2558
2559 /* populate checksum, VLAN, and protocol */
2560 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2561
2562 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2563 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2564 skb = NULL;
2565
2566 /* update budget accounting */
2567 total_rx_packets++;
2568 }
2569
2570 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2571 rx_ring->skb = skb;
2572
2573 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2574
2575 *rx_cleaned = total_rx_packets;
2576
2577 /* guarantee a trip back through this routine if there was a failure */
2578 return failure ? budget : (int)total_rx_packets;
2579}
2580
2581static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2582{
2583 u32 val;
2584
2585 /* We don't bother with setting the CLEARPBA bit as the data sheet
2586 * points out doing so is "meaningless since it was already
2587 * auto-cleared". The auto-clearing happens when the interrupt is
2588 * asserted.
2589 *
2590 * Hardware errata 28 for also indicates that writing to a
2591 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2592 * an event in the PBA anyway so we need to rely on the automask
2593 * to hold pending events for us until the interrupt is re-enabled
2594 *
2595 * The itr value is reported in microseconds, and the register
2596 * value is recorded in 2 microsecond units. For this reason we
2597 * only need to shift by the interval shift - 1 instead of the
2598 * full value.
2599 */
2600 itr &= I40E_ITR_MASK;
2601
2602 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2603 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2604 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2605
2606 return val;
2607}
2608
2609/* a small macro to shorten up some long lines */
2610#define INTREG I40E_PFINT_DYN_CTLN
2611
2612/* The act of updating the ITR will cause it to immediately trigger. In order
2613 * to prevent this from throwing off adaptive update statistics we defer the
2614 * update so that it can only happen so often. So after either Tx or Rx are
2615 * updated we make the adaptive scheme wait until either the ITR completely
2616 * expires via the next_update expiration or we have been through at least
2617 * 3 interrupts.
2618 */
2619#define ITR_COUNTDOWN_START 3
2620
2621/**
2622 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2623 * @vsi: the VSI we care about
2624 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2625 *
2626 **/
2627static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2628 struct i40e_q_vector *q_vector)
2629{
2630 struct i40e_hw *hw = &vsi->back->hw;
2631 u32 intval;
2632
2633 /* If we don't have MSIX, then we only need to re-enable icr0 */
2634 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2635 i40e_irq_dynamic_enable_icr0(vsi->back);
2636 return;
2637 }
2638
2639 /* These will do nothing if dynamic updates are not enabled */
2640 i40e_update_itr(q_vector, &q_vector->tx);
2641 i40e_update_itr(q_vector, &q_vector->rx);
2642
2643 /* This block of logic allows us to get away with only updating
2644 * one ITR value with each interrupt. The idea is to perform a
2645 * pseudo-lazy update with the following criteria.
2646 *
2647 * 1. Rx is given higher priority than Tx if both are in same state
2648 * 2. If we must reduce an ITR that is given highest priority.
2649 * 3. We then give priority to increasing ITR based on amount.
2650 */
2651 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2652 /* Rx ITR needs to be reduced, this is highest priority */
2653 intval = i40e_buildreg_itr(I40E_RX_ITR,
2654 q_vector->rx.target_itr);
2655 q_vector->rx.current_itr = q_vector->rx.target_itr;
2656 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2657 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2658 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2659 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2660 /* Tx ITR needs to be reduced, this is second priority
2661 * Tx ITR needs to be increased more than Rx, fourth priority
2662 */
2663 intval = i40e_buildreg_itr(I40E_TX_ITR,
2664 q_vector->tx.target_itr);
2665 q_vector->tx.current_itr = q_vector->tx.target_itr;
2666 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2667 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2668 /* Rx ITR needs to be increased, third priority */
2669 intval = i40e_buildreg_itr(I40E_RX_ITR,
2670 q_vector->rx.target_itr);
2671 q_vector->rx.current_itr = q_vector->rx.target_itr;
2672 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2673 } else {
2674 /* No ITR update, lowest priority */
2675 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2676 if (q_vector->itr_countdown)
2677 q_vector->itr_countdown--;
2678 }
2679
2680 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2681 wr32(hw, INTREG(q_vector->reg_idx), intval);
2682}
2683
2684/**
2685 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2686 * @napi: napi struct with our devices info in it
2687 * @budget: amount of work driver is allowed to do this pass, in packets
2688 *
2689 * This function will clean all queues associated with a q_vector.
2690 *
2691 * Returns the amount of work done
2692 **/
2693int i40e_napi_poll(struct napi_struct *napi, int budget)
2694{
2695 struct i40e_q_vector *q_vector =
2696 container_of(napi, struct i40e_q_vector, napi);
2697 struct i40e_vsi *vsi = q_vector->vsi;
2698 struct i40e_ring *ring;
2699 bool tx_clean_complete = true;
2700 bool rx_clean_complete = true;
2701 unsigned int tx_cleaned = 0;
2702 unsigned int rx_cleaned = 0;
2703 bool clean_complete = true;
2704 bool arm_wb = false;
2705 int budget_per_ring;
2706 int work_done = 0;
2707
2708 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2709 napi_complete(napi);
2710 return 0;
2711 }
2712
2713 /* Since the actual Tx work is minimal, we can give the Tx a larger
2714 * budget and be more aggressive about cleaning up the Tx descriptors.
2715 */
2716 i40e_for_each_ring(ring, q_vector->tx) {
2717 bool wd = ring->xsk_pool ?
2718 i40e_clean_xdp_tx_irq(vsi, ring) :
2719 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2720
2721 if (!wd) {
2722 clean_complete = tx_clean_complete = false;
2723 continue;
2724 }
2725 arm_wb |= ring->arm_wb;
2726 ring->arm_wb = false;
2727 }
2728
2729 /* Handle case where we are called by netpoll with a budget of 0 */
2730 if (budget <= 0)
2731 goto tx_only;
2732
2733 /* normally we have 1 Rx ring per q_vector */
2734 if (unlikely(q_vector->num_ringpairs > 1))
2735 /* We attempt to distribute budget to each Rx queue fairly, but
2736 * don't allow the budget to go below 1 because that would exit
2737 * polling early.
2738 */
2739 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2740 else
2741 /* Max of 1 Rx ring in this q_vector so give it the budget */
2742 budget_per_ring = budget;
2743
2744 i40e_for_each_ring(ring, q_vector->rx) {
2745 int cleaned = ring->xsk_pool ?
2746 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2747 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2748
2749 work_done += cleaned;
2750 /* if we clean as many as budgeted, we must not be done */
2751 if (cleaned >= budget_per_ring)
2752 clean_complete = rx_clean_complete = false;
2753 }
2754
2755 if (!i40e_enabled_xdp_vsi(vsi))
2756 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2757 tx_cleaned, rx_clean_complete, tx_clean_complete);
2758
2759 /* If work not completed, return budget and polling will return */
2760 if (!clean_complete) {
2761 int cpu_id = smp_processor_id();
2762
2763 /* It is possible that the interrupt affinity has changed but,
2764 * if the cpu is pegged at 100%, polling will never exit while
2765 * traffic continues and the interrupt will be stuck on this
2766 * cpu. We check to make sure affinity is correct before we
2767 * continue to poll, otherwise we must stop polling so the
2768 * interrupt can move to the correct cpu.
2769 */
2770 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2771 /* Tell napi that we are done polling */
2772 napi_complete_done(napi, work_done);
2773
2774 /* Force an interrupt */
2775 i40e_force_wb(vsi, q_vector);
2776
2777 /* Return budget-1 so that polling stops */
2778 return budget - 1;
2779 }
2780tx_only:
2781 if (arm_wb) {
2782 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2783 i40e_enable_wb_on_itr(vsi, q_vector);
2784 }
2785 return budget;
2786 }
2787
2788 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2789 q_vector->arm_wb_state = false;
2790
2791 /* Exit the polling mode, but don't re-enable interrupts if stack might
2792 * poll us due to busy-polling
2793 */
2794 if (likely(napi_complete_done(napi, work_done)))
2795 i40e_update_enable_itr(vsi, q_vector);
2796
2797 return min(work_done, budget - 1);
2798}
2799
2800/**
2801 * i40e_atr - Add a Flow Director ATR filter
2802 * @tx_ring: ring to add programming descriptor to
2803 * @skb: send buffer
2804 * @tx_flags: send tx flags
2805 **/
2806static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2807 u32 tx_flags)
2808{
2809 struct i40e_filter_program_desc *fdir_desc;
2810 struct i40e_pf *pf = tx_ring->vsi->back;
2811 union {
2812 unsigned char *network;
2813 struct iphdr *ipv4;
2814 struct ipv6hdr *ipv6;
2815 } hdr;
2816 struct tcphdr *th;
2817 unsigned int hlen;
2818 u32 flex_ptype, dtype_cmd;
2819 int l4_proto;
2820 u16 i;
2821
2822 /* make sure ATR is enabled */
2823 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2824 return;
2825
2826 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2827 return;
2828
2829 /* if sampling is disabled do nothing */
2830 if (!tx_ring->atr_sample_rate)
2831 return;
2832
2833 /* Currently only IPv4/IPv6 with TCP is supported */
2834 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2835 return;
2836
2837 /* snag network header to get L4 type and address */
2838 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2839 skb_inner_network_header(skb) : skb_network_header(skb);
2840
2841 /* Note: tx_flags gets modified to reflect inner protocols in
2842 * tx_enable_csum function if encap is enabled.
2843 */
2844 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2845 /* access ihl as u8 to avoid unaligned access on ia64 */
2846 hlen = (hdr.network[0] & 0x0F) << 2;
2847 l4_proto = hdr.ipv4->protocol;
2848 } else {
2849 /* find the start of the innermost ipv6 header */
2850 unsigned int inner_hlen = hdr.network - skb->data;
2851 unsigned int h_offset = inner_hlen;
2852
2853 /* this function updates h_offset to the end of the header */
2854 l4_proto =
2855 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2856 /* hlen will contain our best estimate of the tcp header */
2857 hlen = h_offset - inner_hlen;
2858 }
2859
2860 if (l4_proto != IPPROTO_TCP)
2861 return;
2862
2863 th = (struct tcphdr *)(hdr.network + hlen);
2864
2865 /* Due to lack of space, no more new filters can be programmed */
2866 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2867 return;
2868 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2869 /* HW ATR eviction will take care of removing filters on FIN
2870 * and RST packets.
2871 */
2872 if (th->fin || th->rst)
2873 return;
2874 }
2875
2876 tx_ring->atr_count++;
2877
2878 /* sample on all syn/fin/rst packets or once every atr sample rate */
2879 if (!th->fin &&
2880 !th->syn &&
2881 !th->rst &&
2882 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2883 return;
2884
2885 tx_ring->atr_count = 0;
2886
2887 /* grab the next descriptor */
2888 i = tx_ring->next_to_use;
2889 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2890
2891 i++;
2892 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2893
2894 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2895 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2896 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2897 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2898 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2899 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2900 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2901
2902 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2903
2904 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2905
2906 dtype_cmd |= (th->fin || th->rst) ?
2907 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2908 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2909 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2910 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2911
2912 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2913 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2914
2915 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2916 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2917
2918 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2919 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2920 dtype_cmd |=
2921 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2922 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2923 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2924 else
2925 dtype_cmd |=
2926 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2927 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2928 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2929
2930 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2931 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2932
2933 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2934 fdir_desc->rsvd = cpu_to_le32(0);
2935 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2936 fdir_desc->fd_id = cpu_to_le32(0);
2937}
2938
2939/**
2940 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2941 * @skb: send buffer
2942 * @tx_ring: ring to send buffer on
2943 * @flags: the tx flags to be set
2944 *
2945 * Checks the skb and set up correspondingly several generic transmit flags
2946 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2947 *
2948 * Returns error code indicate the frame should be dropped upon error and the
2949 * otherwise returns 0 to indicate the flags has been set properly.
2950 **/
2951static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2952 struct i40e_ring *tx_ring,
2953 u32 *flags)
2954{
2955 __be16 protocol = skb->protocol;
2956 u32 tx_flags = 0;
2957
2958 if (protocol == htons(ETH_P_8021Q) &&
2959 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2960 /* When HW VLAN acceleration is turned off by the user the
2961 * stack sets the protocol to 8021q so that the driver
2962 * can take any steps required to support the SW only
2963 * VLAN handling. In our case the driver doesn't need
2964 * to take any further steps so just set the protocol
2965 * to the encapsulated ethertype.
2966 */
2967 skb->protocol = vlan_get_protocol(skb);
2968 goto out;
2969 }
2970
2971 /* if we have a HW VLAN tag being added, default to the HW one */
2972 if (skb_vlan_tag_present(skb)) {
2973 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2974 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2975 /* else if it is a SW VLAN, check the next protocol and store the tag */
2976 } else if (protocol == htons(ETH_P_8021Q)) {
2977 struct vlan_hdr *vhdr, _vhdr;
2978
2979 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2980 if (!vhdr)
2981 return -EINVAL;
2982
2983 protocol = vhdr->h_vlan_encapsulated_proto;
2984 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2985 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2986 }
2987
2988 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2989 goto out;
2990
2991 /* Insert 802.1p priority into VLAN header */
2992 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2993 (skb->priority != TC_PRIO_CONTROL)) {
2994 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2995 tx_flags |= (skb->priority & 0x7) <<
2996 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2997 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2998 struct vlan_ethhdr *vhdr;
2999 int rc;
3000
3001 rc = skb_cow_head(skb, 0);
3002 if (rc < 0)
3003 return rc;
3004 vhdr = (struct vlan_ethhdr *)skb->data;
3005 vhdr->h_vlan_TCI = htons(tx_flags >>
3006 I40E_TX_FLAGS_VLAN_SHIFT);
3007 } else {
3008 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3009 }
3010 }
3011
3012out:
3013 *flags = tx_flags;
3014 return 0;
3015}
3016
3017/**
3018 * i40e_tso - set up the tso context descriptor
3019 * @first: pointer to first Tx buffer for xmit
3020 * @hdr_len: ptr to the size of the packet header
3021 * @cd_type_cmd_tso_mss: Quad Word 1
3022 *
3023 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3024 **/
3025static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3026 u64 *cd_type_cmd_tso_mss)
3027{
3028 struct sk_buff *skb = first->skb;
3029 u64 cd_cmd, cd_tso_len, cd_mss;
3030 __be16 protocol;
3031 union {
3032 struct iphdr *v4;
3033 struct ipv6hdr *v6;
3034 unsigned char *hdr;
3035 } ip;
3036 union {
3037 struct tcphdr *tcp;
3038 struct udphdr *udp;
3039 unsigned char *hdr;
3040 } l4;
3041 u32 paylen, l4_offset;
3042 u16 gso_size;
3043 int err;
3044
3045 if (skb->ip_summed != CHECKSUM_PARTIAL)
3046 return 0;
3047
3048 if (!skb_is_gso(skb))
3049 return 0;
3050
3051 err = skb_cow_head(skb, 0);
3052 if (err < 0)
3053 return err;
3054
3055 protocol = vlan_get_protocol(skb);
3056
3057 if (eth_p_mpls(protocol))
3058 ip.hdr = skb_inner_network_header(skb);
3059 else
3060 ip.hdr = skb_network_header(skb);
3061 l4.hdr = skb_checksum_start(skb);
3062
3063 /* initialize outer IP header fields */
3064 if (ip.v4->version == 4) {
3065 ip.v4->tot_len = 0;
3066 ip.v4->check = 0;
3067
3068 first->tx_flags |= I40E_TX_FLAGS_TSO;
3069 } else {
3070 ip.v6->payload_len = 0;
3071 first->tx_flags |= I40E_TX_FLAGS_TSO;
3072 }
3073
3074 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3075 SKB_GSO_GRE_CSUM |
3076 SKB_GSO_IPXIP4 |
3077 SKB_GSO_IPXIP6 |
3078 SKB_GSO_UDP_TUNNEL |
3079 SKB_GSO_UDP_TUNNEL_CSUM)) {
3080 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3081 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3082 l4.udp->len = 0;
3083
3084 /* determine offset of outer transport header */
3085 l4_offset = l4.hdr - skb->data;
3086
3087 /* remove payload length from outer checksum */
3088 paylen = skb->len - l4_offset;
3089 csum_replace_by_diff(&l4.udp->check,
3090 (__force __wsum)htonl(paylen));
3091 }
3092
3093 /* reset pointers to inner headers */
3094 ip.hdr = skb_inner_network_header(skb);
3095 l4.hdr = skb_inner_transport_header(skb);
3096
3097 /* initialize inner IP header fields */
3098 if (ip.v4->version == 4) {
3099 ip.v4->tot_len = 0;
3100 ip.v4->check = 0;
3101 } else {
3102 ip.v6->payload_len = 0;
3103 }
3104 }
3105
3106 /* determine offset of inner transport header */
3107 l4_offset = l4.hdr - skb->data;
3108
3109 /* remove payload length from inner checksum */
3110 paylen = skb->len - l4_offset;
3111
3112 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3113 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3114 /* compute length of segmentation header */
3115 *hdr_len = sizeof(*l4.udp) + l4_offset;
3116 } else {
3117 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3118 /* compute length of segmentation header */
3119 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3120 }
3121
3122 /* pull values out of skb_shinfo */
3123 gso_size = skb_shinfo(skb)->gso_size;
3124
3125 /* update GSO size and bytecount with header size */
3126 first->gso_segs = skb_shinfo(skb)->gso_segs;
3127 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3128
3129 /* find the field values */
3130 cd_cmd = I40E_TX_CTX_DESC_TSO;
3131 cd_tso_len = skb->len - *hdr_len;
3132 cd_mss = gso_size;
3133 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3134 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3135 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3136 return 1;
3137}
3138
3139/**
3140 * i40e_tsyn - set up the tsyn context descriptor
3141 * @tx_ring: ptr to the ring to send
3142 * @skb: ptr to the skb we're sending
3143 * @tx_flags: the collected send information
3144 * @cd_type_cmd_tso_mss: Quad Word 1
3145 *
3146 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3147 **/
3148static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3149 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3150{
3151 struct i40e_pf *pf;
3152
3153 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3154 return 0;
3155
3156 /* Tx timestamps cannot be sampled when doing TSO */
3157 if (tx_flags & I40E_TX_FLAGS_TSO)
3158 return 0;
3159
3160 /* only timestamp the outbound packet if the user has requested it and
3161 * we are not already transmitting a packet to be timestamped
3162 */
3163 pf = i40e_netdev_to_pf(tx_ring->netdev);
3164 if (!(pf->flags & I40E_FLAG_PTP))
3165 return 0;
3166
3167 if (pf->ptp_tx &&
3168 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3169 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3170 pf->ptp_tx_start = jiffies;
3171 pf->ptp_tx_skb = skb_get(skb);
3172 } else {
3173 pf->tx_hwtstamp_skipped++;
3174 return 0;
3175 }
3176
3177 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3178 I40E_TXD_CTX_QW1_CMD_SHIFT;
3179
3180 return 1;
3181}
3182
3183/**
3184 * i40e_tx_enable_csum - Enable Tx checksum offloads
3185 * @skb: send buffer
3186 * @tx_flags: pointer to Tx flags currently set
3187 * @td_cmd: Tx descriptor command bits to set
3188 * @td_offset: Tx descriptor header offsets to set
3189 * @tx_ring: Tx descriptor ring
3190 * @cd_tunneling: ptr to context desc bits
3191 **/
3192static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3193 u32 *td_cmd, u32 *td_offset,
3194 struct i40e_ring *tx_ring,
3195 u32 *cd_tunneling)
3196{
3197 union {
3198 struct iphdr *v4;
3199 struct ipv6hdr *v6;
3200 unsigned char *hdr;
3201 } ip;
3202 union {
3203 struct tcphdr *tcp;
3204 struct udphdr *udp;
3205 unsigned char *hdr;
3206 } l4;
3207 unsigned char *exthdr;
3208 u32 offset, cmd = 0;
3209 __be16 frag_off;
3210 __be16 protocol;
3211 u8 l4_proto = 0;
3212
3213 if (skb->ip_summed != CHECKSUM_PARTIAL)
3214 return 0;
3215
3216 protocol = vlan_get_protocol(skb);
3217
3218 if (eth_p_mpls(protocol)) {
3219 ip.hdr = skb_inner_network_header(skb);
3220 l4.hdr = skb_checksum_start(skb);
3221 } else {
3222 ip.hdr = skb_network_header(skb);
3223 l4.hdr = skb_transport_header(skb);
3224 }
3225
3226 /* set the tx_flags to indicate the IP protocol type. this is
3227 * required so that checksum header computation below is accurate.
3228 */
3229 if (ip.v4->version == 4)
3230 *tx_flags |= I40E_TX_FLAGS_IPV4;
3231 else
3232 *tx_flags |= I40E_TX_FLAGS_IPV6;
3233
3234 /* compute outer L2 header size */
3235 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3236
3237 if (skb->encapsulation) {
3238 u32 tunnel = 0;
3239 /* define outer network header type */
3240 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3241 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3242 I40E_TX_CTX_EXT_IP_IPV4 :
3243 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3244
3245 l4_proto = ip.v4->protocol;
3246 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3247 int ret;
3248
3249 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3250
3251 exthdr = ip.hdr + sizeof(*ip.v6);
3252 l4_proto = ip.v6->nexthdr;
3253 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3254 &l4_proto, &frag_off);
3255 if (ret < 0)
3256 return -1;
3257 }
3258
3259 /* define outer transport */
3260 switch (l4_proto) {
3261 case IPPROTO_UDP:
3262 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3263 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3264 break;
3265 case IPPROTO_GRE:
3266 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3267 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3268 break;
3269 case IPPROTO_IPIP:
3270 case IPPROTO_IPV6:
3271 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3272 l4.hdr = skb_inner_network_header(skb);
3273 break;
3274 default:
3275 if (*tx_flags & I40E_TX_FLAGS_TSO)
3276 return -1;
3277
3278 skb_checksum_help(skb);
3279 return 0;
3280 }
3281
3282 /* compute outer L3 header size */
3283 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3284 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3285
3286 /* switch IP header pointer from outer to inner header */
3287 ip.hdr = skb_inner_network_header(skb);
3288
3289 /* compute tunnel header size */
3290 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3291 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3292
3293 /* indicate if we need to offload outer UDP header */
3294 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3295 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3296 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3297 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3298
3299 /* record tunnel offload values */
3300 *cd_tunneling |= tunnel;
3301
3302 /* switch L4 header pointer from outer to inner */
3303 l4.hdr = skb_inner_transport_header(skb);
3304 l4_proto = 0;
3305
3306 /* reset type as we transition from outer to inner headers */
3307 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3308 if (ip.v4->version == 4)
3309 *tx_flags |= I40E_TX_FLAGS_IPV4;
3310 if (ip.v6->version == 6)
3311 *tx_flags |= I40E_TX_FLAGS_IPV6;
3312 }
3313
3314 /* Enable IP checksum offloads */
3315 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3316 l4_proto = ip.v4->protocol;
3317 /* the stack computes the IP header already, the only time we
3318 * need the hardware to recompute it is in the case of TSO.
3319 */
3320 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3321 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3322 I40E_TX_DESC_CMD_IIPT_IPV4;
3323 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3324 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3325
3326 exthdr = ip.hdr + sizeof(*ip.v6);
3327 l4_proto = ip.v6->nexthdr;
3328 if (l4.hdr != exthdr)
3329 ipv6_skip_exthdr(skb, exthdr - skb->data,
3330 &l4_proto, &frag_off);
3331 }
3332
3333 /* compute inner L3 header size */
3334 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3335
3336 /* Enable L4 checksum offloads */
3337 switch (l4_proto) {
3338 case IPPROTO_TCP:
3339 /* enable checksum offloads */
3340 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3341 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3342 break;
3343 case IPPROTO_SCTP:
3344 /* enable SCTP checksum offload */
3345 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3346 offset |= (sizeof(struct sctphdr) >> 2) <<
3347 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3348 break;
3349 case IPPROTO_UDP:
3350 /* enable UDP checksum offload */
3351 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3352 offset |= (sizeof(struct udphdr) >> 2) <<
3353 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3354 break;
3355 default:
3356 if (*tx_flags & I40E_TX_FLAGS_TSO)
3357 return -1;
3358 skb_checksum_help(skb);
3359 return 0;
3360 }
3361
3362 *td_cmd |= cmd;
3363 *td_offset |= offset;
3364
3365 return 1;
3366}
3367
3368/**
3369 * i40e_create_tx_ctx - Build the Tx context descriptor
3370 * @tx_ring: ring to create the descriptor on
3371 * @cd_type_cmd_tso_mss: Quad Word 1
3372 * @cd_tunneling: Quad Word 0 - bits 0-31
3373 * @cd_l2tag2: Quad Word 0 - bits 32-63
3374 **/
3375static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3376 const u64 cd_type_cmd_tso_mss,
3377 const u32 cd_tunneling, const u32 cd_l2tag2)
3378{
3379 struct i40e_tx_context_desc *context_desc;
3380 int i = tx_ring->next_to_use;
3381
3382 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3383 !cd_tunneling && !cd_l2tag2)
3384 return;
3385
3386 /* grab the next descriptor */
3387 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3388
3389 i++;
3390 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3391
3392 /* cpu_to_le32 and assign to struct fields */
3393 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3394 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3395 context_desc->rsvd = cpu_to_le16(0);
3396 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3397}
3398
3399/**
3400 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3401 * @tx_ring: the ring to be checked
3402 * @size: the size buffer we want to assure is available
3403 *
3404 * Returns -EBUSY if a stop is needed, else 0
3405 **/
3406int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3407{
3408 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3409 /* Memory barrier before checking head and tail */
3410 smp_mb();
3411
3412 ++tx_ring->tx_stats.tx_stopped;
3413
3414 /* Check again in a case another CPU has just made room available. */
3415 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3416 return -EBUSY;
3417
3418 /* A reprieve! - use start_queue because it doesn't call schedule */
3419 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3420 ++tx_ring->tx_stats.restart_queue;
3421 return 0;
3422}
3423
3424/**
3425 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3426 * @skb: send buffer
3427 *
3428 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3429 * and so we need to figure out the cases where we need to linearize the skb.
3430 *
3431 * For TSO we need to count the TSO header and segment payload separately.
3432 * As such we need to check cases where we have 7 fragments or more as we
3433 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3434 * the segment payload in the first descriptor, and another 7 for the
3435 * fragments.
3436 **/
3437bool __i40e_chk_linearize(struct sk_buff *skb)
3438{
3439 const skb_frag_t *frag, *stale;
3440 int nr_frags, sum;
3441
3442 /* no need to check if number of frags is less than 7 */
3443 nr_frags = skb_shinfo(skb)->nr_frags;
3444 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3445 return false;
3446
3447 /* We need to walk through the list and validate that each group
3448 * of 6 fragments totals at least gso_size.
3449 */
3450 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3451 frag = &skb_shinfo(skb)->frags[0];
3452
3453 /* Initialize size to the negative value of gso_size minus 1. We
3454 * use this as the worst case scenerio in which the frag ahead
3455 * of us only provides one byte which is why we are limited to 6
3456 * descriptors for a single transmit as the header and previous
3457 * fragment are already consuming 2 descriptors.
3458 */
3459 sum = 1 - skb_shinfo(skb)->gso_size;
3460
3461 /* Add size of frags 0 through 4 to create our initial sum */
3462 sum += skb_frag_size(frag++);
3463 sum += skb_frag_size(frag++);
3464 sum += skb_frag_size(frag++);
3465 sum += skb_frag_size(frag++);
3466 sum += skb_frag_size(frag++);
3467
3468 /* Walk through fragments adding latest fragment, testing it, and
3469 * then removing stale fragments from the sum.
3470 */
3471 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3472 int stale_size = skb_frag_size(stale);
3473
3474 sum += skb_frag_size(frag++);
3475
3476 /* The stale fragment may present us with a smaller
3477 * descriptor than the actual fragment size. To account
3478 * for that we need to remove all the data on the front and
3479 * figure out what the remainder would be in the last
3480 * descriptor associated with the fragment.
3481 */
3482 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3483 int align_pad = -(skb_frag_off(stale)) &
3484 (I40E_MAX_READ_REQ_SIZE - 1);
3485
3486 sum -= align_pad;
3487 stale_size -= align_pad;
3488
3489 do {
3490 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3491 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3492 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3493 }
3494
3495 /* if sum is negative we failed to make sufficient progress */
3496 if (sum < 0)
3497 return true;
3498
3499 if (!nr_frags--)
3500 break;
3501
3502 sum -= stale_size;
3503 }
3504
3505 return false;
3506}
3507
3508/**
3509 * i40e_tx_map - Build the Tx descriptor
3510 * @tx_ring: ring to send buffer on
3511 * @skb: send buffer
3512 * @first: first buffer info buffer to use
3513 * @tx_flags: collected send information
3514 * @hdr_len: size of the packet header
3515 * @td_cmd: the command field in the descriptor
3516 * @td_offset: offset for checksum or crc
3517 *
3518 * Returns 0 on success, -1 on failure to DMA
3519 **/
3520static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3521 struct i40e_tx_buffer *first, u32 tx_flags,
3522 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3523{
3524 unsigned int data_len = skb->data_len;
3525 unsigned int size = skb_headlen(skb);
3526 skb_frag_t *frag;
3527 struct i40e_tx_buffer *tx_bi;
3528 struct i40e_tx_desc *tx_desc;
3529 u16 i = tx_ring->next_to_use;
3530 u32 td_tag = 0;
3531 dma_addr_t dma;
3532 u16 desc_count = 1;
3533
3534 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3535 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3536 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3537 I40E_TX_FLAGS_VLAN_SHIFT;
3538 }
3539
3540 first->tx_flags = tx_flags;
3541
3542 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3543
3544 tx_desc = I40E_TX_DESC(tx_ring, i);
3545 tx_bi = first;
3546
3547 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3548 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3549
3550 if (dma_mapping_error(tx_ring->dev, dma))
3551 goto dma_error;
3552
3553 /* record length, and DMA address */
3554 dma_unmap_len_set(tx_bi, len, size);
3555 dma_unmap_addr_set(tx_bi, dma, dma);
3556
3557 /* align size to end of page */
3558 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3559 tx_desc->buffer_addr = cpu_to_le64(dma);
3560
3561 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3562 tx_desc->cmd_type_offset_bsz =
3563 build_ctob(td_cmd, td_offset,
3564 max_data, td_tag);
3565
3566 tx_desc++;
3567 i++;
3568 desc_count++;
3569
3570 if (i == tx_ring->count) {
3571 tx_desc = I40E_TX_DESC(tx_ring, 0);
3572 i = 0;
3573 }
3574
3575 dma += max_data;
3576 size -= max_data;
3577
3578 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3579 tx_desc->buffer_addr = cpu_to_le64(dma);
3580 }
3581
3582 if (likely(!data_len))
3583 break;
3584
3585 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3586 size, td_tag);
3587
3588 tx_desc++;
3589 i++;
3590 desc_count++;
3591
3592 if (i == tx_ring->count) {
3593 tx_desc = I40E_TX_DESC(tx_ring, 0);
3594 i = 0;
3595 }
3596
3597 size = skb_frag_size(frag);
3598 data_len -= size;
3599
3600 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3601 DMA_TO_DEVICE);
3602
3603 tx_bi = &tx_ring->tx_bi[i];
3604 }
3605
3606 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3607
3608 i++;
3609 if (i == tx_ring->count)
3610 i = 0;
3611
3612 tx_ring->next_to_use = i;
3613
3614 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3615
3616 /* write last descriptor with EOP bit */
3617 td_cmd |= I40E_TX_DESC_CMD_EOP;
3618
3619 /* We OR these values together to check both against 4 (WB_STRIDE)
3620 * below. This is safe since we don't re-use desc_count afterwards.
3621 */
3622 desc_count |= ++tx_ring->packet_stride;
3623
3624 if (desc_count >= WB_STRIDE) {
3625 /* write last descriptor with RS bit set */
3626 td_cmd |= I40E_TX_DESC_CMD_RS;
3627 tx_ring->packet_stride = 0;
3628 }
3629
3630 tx_desc->cmd_type_offset_bsz =
3631 build_ctob(td_cmd, td_offset, size, td_tag);
3632
3633 skb_tx_timestamp(skb);
3634
3635 /* Force memory writes to complete before letting h/w know there
3636 * are new descriptors to fetch.
3637 *
3638 * We also use this memory barrier to make certain all of the
3639 * status bits have been updated before next_to_watch is written.
3640 */
3641 wmb();
3642
3643 /* set next_to_watch value indicating a packet is present */
3644 first->next_to_watch = tx_desc;
3645
3646 /* notify HW of packet */
3647 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3648 writel(i, tx_ring->tail);
3649 }
3650
3651 return 0;
3652
3653dma_error:
3654 dev_info(tx_ring->dev, "TX DMA map failed\n");
3655
3656 /* clear dma mappings for failed tx_bi map */
3657 for (;;) {
3658 tx_bi = &tx_ring->tx_bi[i];
3659 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3660 if (tx_bi == first)
3661 break;
3662 if (i == 0)
3663 i = tx_ring->count;
3664 i--;
3665 }
3666
3667 tx_ring->next_to_use = i;
3668
3669 return -1;
3670}
3671
3672static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3673 const struct sk_buff *skb,
3674 u16 num_tx_queues)
3675{
3676 u32 jhash_initval_salt = 0xd631614b;
3677 u32 hash;
3678
3679 if (skb->sk && skb->sk->sk_hash)
3680 hash = skb->sk->sk_hash;
3681 else
3682 hash = (__force u16)skb->protocol ^ skb->hash;
3683
3684 hash = jhash_1word(hash, jhash_initval_salt);
3685
3686 return (u16)(((u64)hash * num_tx_queues) >> 32);
3687}
3688
3689u16 i40e_lan_select_queue(struct net_device *netdev,
3690 struct sk_buff *skb,
3691 struct net_device __always_unused *sb_dev)
3692{
3693 struct i40e_netdev_priv *np = netdev_priv(netdev);
3694 struct i40e_vsi *vsi = np->vsi;
3695 struct i40e_hw *hw;
3696 u16 qoffset;
3697 u16 qcount;
3698 u8 tclass;
3699 u16 hash;
3700 u8 prio;
3701
3702 /* is DCB enabled at all? */
3703 if (vsi->tc_config.numtc == 1 ||
3704 i40e_is_tc_mqprio_enabled(vsi->back))
3705 return netdev_pick_tx(netdev, skb, sb_dev);
3706
3707 prio = skb->priority;
3708 hw = &vsi->back->hw;
3709 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3710 /* sanity check */
3711 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3712 tclass = 0;
3713
3714 /* select a queue assigned for the given TC */
3715 qcount = vsi->tc_config.tc_info[tclass].qcount;
3716 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3717
3718 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3719 return qoffset + hash;
3720}
3721
3722/**
3723 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3724 * @xdpf: data to transmit
3725 * @xdp_ring: XDP Tx ring
3726 **/
3727static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3728 struct i40e_ring *xdp_ring)
3729{
3730 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3731 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3732 u16 i = 0, index = xdp_ring->next_to_use;
3733 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3734 struct i40e_tx_buffer *tx_bi = tx_head;
3735 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3736 void *data = xdpf->data;
3737 u32 size = xdpf->len;
3738
3739 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3740 xdp_ring->tx_stats.tx_busy++;
3741 return I40E_XDP_CONSUMED;
3742 }
3743
3744 tx_head->bytecount = xdp_get_frame_len(xdpf);
3745 tx_head->gso_segs = 1;
3746 tx_head->xdpf = xdpf;
3747
3748 for (;;) {
3749 dma_addr_t dma;
3750
3751 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3752 if (dma_mapping_error(xdp_ring->dev, dma))
3753 goto unmap;
3754
3755 /* record length, and DMA address */
3756 dma_unmap_len_set(tx_bi, len, size);
3757 dma_unmap_addr_set(tx_bi, dma, dma);
3758
3759 tx_desc->buffer_addr = cpu_to_le64(dma);
3760 tx_desc->cmd_type_offset_bsz =
3761 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3762
3763 if (++index == xdp_ring->count)
3764 index = 0;
3765
3766 if (i == nr_frags)
3767 break;
3768
3769 tx_bi = &xdp_ring->tx_bi[index];
3770 tx_desc = I40E_TX_DESC(xdp_ring, index);
3771
3772 data = skb_frag_address(&sinfo->frags[i]);
3773 size = skb_frag_size(&sinfo->frags[i]);
3774 i++;
3775 }
3776
3777 tx_desc->cmd_type_offset_bsz |=
3778 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3779
3780 /* Make certain all of the status bits have been updated
3781 * before next_to_watch is written.
3782 */
3783 smp_wmb();
3784
3785 xdp_ring->xdp_tx_active++;
3786
3787 tx_head->next_to_watch = tx_desc;
3788 xdp_ring->next_to_use = index;
3789
3790 return I40E_XDP_TX;
3791
3792unmap:
3793 for (;;) {
3794 tx_bi = &xdp_ring->tx_bi[index];
3795 if (dma_unmap_len(tx_bi, len))
3796 dma_unmap_page(xdp_ring->dev,
3797 dma_unmap_addr(tx_bi, dma),
3798 dma_unmap_len(tx_bi, len),
3799 DMA_TO_DEVICE);
3800 dma_unmap_len_set(tx_bi, len, 0);
3801 if (tx_bi == tx_head)
3802 break;
3803
3804 if (!index)
3805 index += xdp_ring->count;
3806 index--;
3807 }
3808
3809 return I40E_XDP_CONSUMED;
3810}
3811
3812/**
3813 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3814 * @skb: send buffer
3815 * @tx_ring: ring to send buffer on
3816 *
3817 * Returns NETDEV_TX_OK if sent, else an error code
3818 **/
3819static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3820 struct i40e_ring *tx_ring)
3821{
3822 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3823 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3824 struct i40e_tx_buffer *first;
3825 u32 td_offset = 0;
3826 u32 tx_flags = 0;
3827 u32 td_cmd = 0;
3828 u8 hdr_len = 0;
3829 int tso, count;
3830 int tsyn;
3831
3832 /* prefetch the data, we'll need it later */
3833 prefetch(skb->data);
3834
3835 i40e_trace(xmit_frame_ring, skb, tx_ring);
3836
3837 count = i40e_xmit_descriptor_count(skb);
3838 if (i40e_chk_linearize(skb, count)) {
3839 if (__skb_linearize(skb)) {
3840 dev_kfree_skb_any(skb);
3841 return NETDEV_TX_OK;
3842 }
3843 count = i40e_txd_use_count(skb->len);
3844 tx_ring->tx_stats.tx_linearize++;
3845 }
3846
3847 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3848 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3849 * + 4 desc gap to avoid the cache line where head is,
3850 * + 1 desc for context descriptor,
3851 * otherwise try next time
3852 */
3853 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3854 tx_ring->tx_stats.tx_busy++;
3855 return NETDEV_TX_BUSY;
3856 }
3857
3858 /* record the location of the first descriptor for this packet */
3859 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3860 first->skb = skb;
3861 first->bytecount = skb->len;
3862 first->gso_segs = 1;
3863
3864 /* prepare the xmit flags */
3865 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3866 goto out_drop;
3867
3868 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3869
3870 if (tso < 0)
3871 goto out_drop;
3872 else if (tso)
3873 tx_flags |= I40E_TX_FLAGS_TSO;
3874
3875 /* Always offload the checksum, since it's in the data descriptor */
3876 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3877 tx_ring, &cd_tunneling);
3878 if (tso < 0)
3879 goto out_drop;
3880
3881 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3882
3883 if (tsyn)
3884 tx_flags |= I40E_TX_FLAGS_TSYN;
3885
3886 /* always enable CRC insertion offload */
3887 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3888
3889 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3890 cd_tunneling, cd_l2tag2);
3891
3892 /* Add Flow Director ATR if it's enabled.
3893 *
3894 * NOTE: this must always be directly before the data descriptor.
3895 */
3896 i40e_atr(tx_ring, skb, tx_flags);
3897
3898 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3899 td_cmd, td_offset))
3900 goto cleanup_tx_tstamp;
3901
3902 return NETDEV_TX_OK;
3903
3904out_drop:
3905 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3906 dev_kfree_skb_any(first->skb);
3907 first->skb = NULL;
3908cleanup_tx_tstamp:
3909 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3910 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3911
3912 dev_kfree_skb_any(pf->ptp_tx_skb);
3913 pf->ptp_tx_skb = NULL;
3914 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3915 }
3916
3917 return NETDEV_TX_OK;
3918}
3919
3920/**
3921 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3922 * @skb: send buffer
3923 * @netdev: network interface device structure
3924 *
3925 * Returns NETDEV_TX_OK if sent, else an error code
3926 **/
3927netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3928{
3929 struct i40e_netdev_priv *np = netdev_priv(netdev);
3930 struct i40e_vsi *vsi = np->vsi;
3931 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3932
3933 /* hardware can't handle really short frames, hardware padding works
3934 * beyond this point
3935 */
3936 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3937 return NETDEV_TX_OK;
3938
3939 return i40e_xmit_frame_ring(skb, tx_ring);
3940}
3941
3942/**
3943 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3944 * @dev: netdev
3945 * @n: number of frames
3946 * @frames: array of XDP buffer pointers
3947 * @flags: XDP extra info
3948 *
3949 * Returns number of frames successfully sent. Failed frames
3950 * will be free'ed by XDP core.
3951 *
3952 * For error cases, a negative errno code is returned and no-frames
3953 * are transmitted (caller must handle freeing frames).
3954 **/
3955int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3956 u32 flags)
3957{
3958 struct i40e_netdev_priv *np = netdev_priv(dev);
3959 unsigned int queue_index = smp_processor_id();
3960 struct i40e_vsi *vsi = np->vsi;
3961 struct i40e_pf *pf = vsi->back;
3962 struct i40e_ring *xdp_ring;
3963 int nxmit = 0;
3964 int i;
3965
3966 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3967 return -ENETDOWN;
3968
3969 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3970 test_bit(__I40E_CONFIG_BUSY, pf->state))
3971 return -ENXIO;
3972
3973 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3974 return -EINVAL;
3975
3976 xdp_ring = vsi->xdp_rings[queue_index];
3977
3978 for (i = 0; i < n; i++) {
3979 struct xdp_frame *xdpf = frames[i];
3980 int err;
3981
3982 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3983 if (err != I40E_XDP_TX)
3984 break;
3985 nxmit++;
3986 }
3987
3988 if (unlikely(flags & XDP_XMIT_FLUSH))
3989 i40e_xdp_ring_update_tail(xdp_ring);
3990
3991 return nxmit;
3992}