Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2019 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
 
  14#include <net/dsa.h>
  15#include <net/switchdev.h>
  16
  17#include "ksz9477_reg.h"
  18#include "ksz_common.h"
  19
  20/* Used with variable features to indicate capabilities. */
  21#define GBIT_SUPPORT			BIT(0)
  22#define NEW_XMII			BIT(1)
  23#define IS_9893				BIT(2)
  24
  25static const struct {
  26	int index;
  27	char string[ETH_GSTRING_LEN];
  28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
  29	{ 0x00, "rx_hi" },
  30	{ 0x01, "rx_undersize" },
  31	{ 0x02, "rx_fragments" },
  32	{ 0x03, "rx_oversize" },
  33	{ 0x04, "rx_jabbers" },
  34	{ 0x05, "rx_symbol_err" },
  35	{ 0x06, "rx_crc_err" },
  36	{ 0x07, "rx_align_err" },
  37	{ 0x08, "rx_mac_ctrl" },
  38	{ 0x09, "rx_pause" },
  39	{ 0x0A, "rx_bcast" },
  40	{ 0x0B, "rx_mcast" },
  41	{ 0x0C, "rx_ucast" },
  42	{ 0x0D, "rx_64_or_less" },
  43	{ 0x0E, "rx_65_127" },
  44	{ 0x0F, "rx_128_255" },
  45	{ 0x10, "rx_256_511" },
  46	{ 0x11, "rx_512_1023" },
  47	{ 0x12, "rx_1024_1522" },
  48	{ 0x13, "rx_1523_2000" },
  49	{ 0x14, "rx_2001" },
  50	{ 0x15, "tx_hi" },
  51	{ 0x16, "tx_late_col" },
  52	{ 0x17, "tx_pause" },
  53	{ 0x18, "tx_bcast" },
  54	{ 0x19, "tx_mcast" },
  55	{ 0x1A, "tx_ucast" },
  56	{ 0x1B, "tx_deferred" },
  57	{ 0x1C, "tx_total_col" },
  58	{ 0x1D, "tx_exc_col" },
  59	{ 0x1E, "tx_single_col" },
  60	{ 0x1F, "tx_mult_col" },
  61	{ 0x80, "rx_total" },
  62	{ 0x81, "tx_total" },
  63	{ 0x82, "rx_discards" },
  64	{ 0x83, "tx_discards" },
  65};
  66
  67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  68{
  69	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
  70}
  71
  72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  73			 bool set)
  74{
  75	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
  76			   bits, set ? bits : 0);
  77}
  78
  79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  80{
  81	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
  82}
  83
  84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  85			       u32 bits, bool set)
  86{
  87	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
  88			   bits, set ? bits : 0);
  89}
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
  91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
  92{
  93	unsigned int val;
  94
  95	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
  96					val, !(val & VLAN_START), 10, 1000);
  97}
  98
  99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
 100				  u32 *vlan_table)
 101{
 102	int ret;
 103
 104	mutex_lock(&dev->vlan_mutex);
 105
 106	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 107	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
 108
 109	/* wait to be cleared */
 110	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 111	if (ret) {
 112		dev_dbg(dev->dev, "Failed to read vlan table\n");
 113		goto exit;
 114	}
 115
 116	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
 117	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
 118	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
 119
 120	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 121
 122exit:
 123	mutex_unlock(&dev->vlan_mutex);
 124
 125	return ret;
 126}
 127
 128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
 129				  u32 *vlan_table)
 130{
 131	int ret;
 132
 133	mutex_lock(&dev->vlan_mutex);
 134
 135	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 136	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 137	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 138
 139	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 140	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 141
 142	/* wait to be cleared */
 143	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 144	if (ret) {
 145		dev_dbg(dev->dev, "Failed to write vlan table\n");
 146		goto exit;
 147	}
 148
 149	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 150
 151	/* update vlan cache table */
 152	dev->vlan_cache[vid].table[0] = vlan_table[0];
 153	dev->vlan_cache[vid].table[1] = vlan_table[1];
 154	dev->vlan_cache[vid].table[2] = vlan_table[2];
 155
 156exit:
 157	mutex_unlock(&dev->vlan_mutex);
 158
 159	return ret;
 160}
 161
 162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 163{
 164	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 165	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 166	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 167	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 168}
 169
 170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 171{
 172	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 173	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 174	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 175	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 176}
 177
 178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 179{
 180	unsigned int val;
 181
 182	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
 183					val, !(val & ALU_START), 10, 1000);
 184}
 185
 186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 187{
 188	unsigned int val;
 189
 190	return regmap_read_poll_timeout(dev->regmap[2],
 191					REG_SW_ALU_STAT_CTRL__4,
 192					val, !(val & ALU_STAT_START),
 193					10, 1000);
 194}
 195
 196static int ksz9477_reset_switch(struct ksz_device *dev)
 197{
 198	u8 data8;
 199	u32 data32;
 200
 201	/* reset switch */
 202	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 203
 204	/* turn off SPI DO Edge select */
 205	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
 206			   SPI_AUTO_EDGE_DETECTION, 0);
 207
 208	/* default configuration */
 209	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 210	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 211	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 212	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 213
 214	/* disable interrupts */
 215	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 216	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 217	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 218
 219	/* set broadcast storm protection 10% rate */
 220	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
 221			   BROADCAST_STORM_RATE,
 222			   (BROADCAST_STORM_VALUE *
 223			   BROADCAST_STORM_PROT_RATE) / 100);
 224
 225	if (dev->synclko_125)
 226		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
 227			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
 
 
 
 228
 229	return 0;
 230}
 231
 232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
 233			      u64 *cnt)
 234{
 235	struct ksz_port *p = &dev->ports[port];
 236	unsigned int val;
 237	u32 data;
 238	int ret;
 239
 240	/* retain the flush/freeze bit */
 241	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 242	data |= MIB_COUNTER_READ;
 243	data |= (addr << MIB_COUNTER_INDEX_S);
 244	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 245
 246	ret = regmap_read_poll_timeout(dev->regmap[2],
 247			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 248			val, !(val & MIB_COUNTER_READ), 10, 1000);
 249	/* failed to read MIB. get out of loop */
 250	if (ret) {
 251		dev_dbg(dev->dev, "Failed to get MIB\n");
 252		return;
 253	}
 254
 255	/* count resets upon read */
 256	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 257	*cnt += data;
 258}
 259
 260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 261			      u64 *dropped, u64 *cnt)
 262{
 263	addr = ksz9477_mib_names[addr].index;
 264	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 265}
 266
 267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 268{
 269	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 270	struct ksz_port *p = &dev->ports[port];
 271
 272	/* enable/disable the port for flush/freeze function */
 273	mutex_lock(&p->mib.cnt_mutex);
 274	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 275
 276	/* used by MIB counter reading code to know freeze is enabled */
 277	p->freeze = freeze;
 278	mutex_unlock(&p->mib.cnt_mutex);
 279}
 280
 281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 282{
 283	struct ksz_port_mib *mib = &dev->ports[port].mib;
 284
 285	/* flush all enabled port MIB counters */
 286	mutex_lock(&mib->cnt_mutex);
 287	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 288		     MIB_COUNTER_FLUSH_FREEZE);
 289	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 290	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 291	mutex_unlock(&mib->cnt_mutex);
 292
 293	mib->cnt_ptr = 0;
 294	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
 295}
 296
 297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
 298						      int port)
 299{
 300	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
 301	struct ksz_device *dev = ds->priv;
 302
 303	if (dev->features & IS_9893)
 304		proto = DSA_TAG_PROTO_KSZ9893;
 305	return proto;
 306}
 307
 308static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
 309{
 310	struct ksz_device *dev = ds->priv;
 311	u16 val = 0xffff;
 
 312
 313	/* No real PHY after this. Simulate the PHY.
 314	 * A fixed PHY can be setup in the device tree, but this function is
 315	 * still called for that port during initialization.
 316	 * For RGMII PHY there is no way to access it so the fixed PHY should
 317	 * be used.  For SGMII PHY the supporting code will be added later.
 318	 */
 319	if (addr >= dev->phy_port_cnt) {
 320		struct ksz_port *p = &dev->ports[addr];
 321
 322		switch (reg) {
 323		case MII_BMCR:
 324			val = 0x1140;
 325			break;
 326		case MII_BMSR:
 327			val = 0x796d;
 328			break;
 329		case MII_PHYSID1:
 330			val = 0x0022;
 331			break;
 332		case MII_PHYSID2:
 333			val = 0x1631;
 334			break;
 335		case MII_ADVERTISE:
 336			val = 0x05e1;
 337			break;
 338		case MII_LPA:
 339			val = 0xc5e1;
 340			break;
 341		case MII_CTRL1000:
 342			val = 0x0700;
 343			break;
 344		case MII_STAT1000:
 345			if (p->phydev.speed == SPEED_1000)
 346				val = 0x3800;
 347			else
 348				val = 0;
 349			break;
 350		}
 351	} else {
 352		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 353	}
 354
 355	return val;
 356}
 357
 358static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
 359			       u16 val)
 360{
 361	struct ksz_device *dev = ds->priv;
 362
 363	/* No real PHY after this. */
 364	if (addr >= dev->phy_port_cnt)
 365		return 0;
 366
 367	/* No gigabit support.  Do not write to this register. */
 368	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
 369		return 0;
 370	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 371
 372	return 0;
 373}
 374
 375static void ksz9477_get_strings(struct dsa_switch *ds, int port,
 376				u32 stringset, uint8_t *buf)
 377{
 378	int i;
 379
 380	if (stringset != ETH_SS_STATS)
 381		return;
 382
 383	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 384		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
 385		       ETH_GSTRING_LEN);
 386	}
 387}
 388
 389static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
 390				    u8 member)
 391{
 392	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 393	dev->ports[port].member = member;
 394}
 395
 396static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
 397				       u8 state)
 398{
 399	struct ksz_device *dev = ds->priv;
 400	struct ksz_port *p = &dev->ports[port];
 401	u8 data;
 402	int member = -1;
 403	int forward = dev->member;
 404
 405	ksz_pread8(dev, port, P_STP_CTRL, &data);
 406	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 407
 408	switch (state) {
 409	case BR_STATE_DISABLED:
 410		data |= PORT_LEARN_DISABLE;
 411		if (port != dev->cpu_port)
 412			member = 0;
 413		break;
 414	case BR_STATE_LISTENING:
 415		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 416		if (port != dev->cpu_port &&
 417		    p->stp_state == BR_STATE_DISABLED)
 418			member = dev->host_mask | p->vid_member;
 419		break;
 420	case BR_STATE_LEARNING:
 421		data |= PORT_RX_ENABLE;
 422		break;
 423	case BR_STATE_FORWARDING:
 424		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
 425
 426		/* This function is also used internally. */
 427		if (port == dev->cpu_port)
 428			break;
 429
 430		member = dev->host_mask | p->vid_member;
 431		mutex_lock(&dev->dev_mutex);
 432
 433		/* Port is a member of a bridge. */
 434		if (dev->br_member & (1 << port)) {
 435			dev->member |= (1 << port);
 436			member = dev->member;
 437		}
 438		mutex_unlock(&dev->dev_mutex);
 439		break;
 440	case BR_STATE_BLOCKING:
 441		data |= PORT_LEARN_DISABLE;
 442		if (port != dev->cpu_port &&
 443		    p->stp_state == BR_STATE_DISABLED)
 444			member = dev->host_mask | p->vid_member;
 445		break;
 446	default:
 447		dev_err(ds->dev, "invalid STP state: %d\n", state);
 448		return;
 449	}
 450
 451	ksz_pwrite8(dev, port, P_STP_CTRL, data);
 452	p->stp_state = state;
 453	mutex_lock(&dev->dev_mutex);
 454	if (data & PORT_RX_ENABLE)
 455		dev->rx_ports |= (1 << port);
 456	else
 457		dev->rx_ports &= ~(1 << port);
 458	if (data & PORT_TX_ENABLE)
 459		dev->tx_ports |= (1 << port);
 460	else
 461		dev->tx_ports &= ~(1 << port);
 462
 463	/* Port membership may share register with STP state. */
 464	if (member >= 0 && member != p->member)
 465		ksz9477_cfg_port_member(dev, port, (u8)member);
 466
 467	/* Check if forwarding needs to be updated. */
 468	if (state != BR_STATE_FORWARDING) {
 469		if (dev->br_member & (1 << port))
 470			dev->member &= ~(1 << port);
 471	}
 472
 473	/* When topology has changed the function ksz_update_port_member
 474	 * should be called to modify port forwarding behavior.
 475	 */
 476	if (forward != dev->member)
 477		ksz_update_port_member(dev, port);
 478	mutex_unlock(&dev->dev_mutex);
 479}
 480
 481static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 482{
 
 483	u8 data;
 484
 485	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
 486			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 487			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 488
 489	if (port < dev->mib_port_cnt) {
 490		/* flush individual port */
 491		ksz_pread8(dev, port, P_STP_CTRL, &data);
 492		if (!(data & PORT_LEARN_DISABLE))
 493			ksz_pwrite8(dev, port, P_STP_CTRL,
 494				    data | PORT_LEARN_DISABLE);
 495		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 496		ksz_pwrite8(dev, port, P_STP_CTRL, data);
 497	} else {
 498		/* flush all */
 499		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 500	}
 501}
 502
 503static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
 504				       bool flag)
 505{
 506	struct ksz_device *dev = ds->priv;
 507
 508	if (flag) {
 509		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 510			     PORT_VLAN_LOOKUP_VID_0, true);
 511		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 512	} else {
 513		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 514		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 515			     PORT_VLAN_LOOKUP_VID_0, false);
 516	}
 517
 518	return 0;
 519}
 520
 521static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
 522				  const struct switchdev_obj_port_vlan *vlan)
 
 523{
 524	struct ksz_device *dev = ds->priv;
 525	u32 vlan_table[3];
 526	u16 vid;
 527	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 
 528
 529	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 530		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
 531			dev_dbg(dev->dev, "Failed to get vlan table\n");
 532			return;
 533		}
 534
 535		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
 536		if (untagged)
 537			vlan_table[1] |= BIT(port);
 538		else
 539			vlan_table[1] &= ~BIT(port);
 540		vlan_table[1] &= ~(BIT(dev->cpu_port));
 541
 542		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 543
 544		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
 545			dev_dbg(dev->dev, "Failed to set vlan table\n");
 546			return;
 547		}
 548
 549		/* change PVID */
 550		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 551			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
 
 552	}
 
 
 
 
 
 
 553}
 554
 555static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
 556				 const struct switchdev_obj_port_vlan *vlan)
 557{
 558	struct ksz_device *dev = ds->priv;
 559	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 560	u32 vlan_table[3];
 561	u16 vid;
 562	u16 pvid;
 563
 564	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 565	pvid = pvid & 0xFFF;
 566
 567	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 568		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
 569			dev_dbg(dev->dev, "Failed to get vlan table\n");
 570			return -ETIMEDOUT;
 571		}
 572
 573		vlan_table[2] &= ~BIT(port);
 574
 575		if (pvid == vid)
 576			pvid = 1;
 577
 578		if (untagged)
 579			vlan_table[1] &= ~BIT(port);
 580
 581		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
 582			dev_dbg(dev->dev, "Failed to set vlan table\n");
 583			return -ETIMEDOUT;
 584		}
 585	}
 586
 587	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 588
 589	return 0;
 590}
 591
 592static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
 593				const unsigned char *addr, u16 vid)
 594{
 595	struct ksz_device *dev = ds->priv;
 596	u32 alu_table[4];
 597	u32 data;
 598	int ret = 0;
 599
 600	mutex_lock(&dev->alu_mutex);
 601
 602	/* find any entry with mac & vid */
 603	data = vid << ALU_FID_INDEX_S;
 604	data |= ((addr[0] << 8) | addr[1]);
 605	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 606
 607	data = ((addr[2] << 24) | (addr[3] << 16));
 608	data |= ((addr[4] << 8) | addr[5]);
 609	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 610
 611	/* start read operation */
 612	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 613
 614	/* wait to be finished */
 615	ret = ksz9477_wait_alu_ready(dev);
 616	if (ret) {
 617		dev_dbg(dev->dev, "Failed to read ALU\n");
 618		goto exit;
 619	}
 620
 621	/* read ALU entry */
 622	ksz9477_read_table(dev, alu_table);
 623
 624	/* update ALU entry */
 625	alu_table[0] = ALU_V_STATIC_VALID;
 626	alu_table[1] |= BIT(port);
 627	if (vid)
 628		alu_table[1] |= ALU_V_USE_FID;
 629	alu_table[2] = (vid << ALU_V_FID_S);
 630	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 631	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 632	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 633
 634	ksz9477_write_table(dev, alu_table);
 635
 636	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 637
 638	/* wait to be finished */
 639	ret = ksz9477_wait_alu_ready(dev);
 640	if (ret)
 641		dev_dbg(dev->dev, "Failed to write ALU\n");
 642
 643exit:
 644	mutex_unlock(&dev->alu_mutex);
 645
 646	return ret;
 647}
 648
 649static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
 650				const unsigned char *addr, u16 vid)
 651{
 652	struct ksz_device *dev = ds->priv;
 653	u32 alu_table[4];
 654	u32 data;
 655	int ret = 0;
 656
 657	mutex_lock(&dev->alu_mutex);
 658
 659	/* read any entry with mac & vid */
 660	data = vid << ALU_FID_INDEX_S;
 661	data |= ((addr[0] << 8) | addr[1]);
 662	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 663
 664	data = ((addr[2] << 24) | (addr[3] << 16));
 665	data |= ((addr[4] << 8) | addr[5]);
 666	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 667
 668	/* start read operation */
 669	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 670
 671	/* wait to be finished */
 672	ret = ksz9477_wait_alu_ready(dev);
 673	if (ret) {
 674		dev_dbg(dev->dev, "Failed to read ALU\n");
 675		goto exit;
 676	}
 677
 678	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 679	if (alu_table[0] & ALU_V_STATIC_VALID) {
 680		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 681		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 682		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 683
 684		/* clear forwarding port */
 685		alu_table[2] &= ~BIT(port);
 686
 687		/* if there is no port to forward, clear table */
 688		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
 689			alu_table[0] = 0;
 690			alu_table[1] = 0;
 691			alu_table[2] = 0;
 692			alu_table[3] = 0;
 693		}
 694	} else {
 695		alu_table[0] = 0;
 696		alu_table[1] = 0;
 697		alu_table[2] = 0;
 698		alu_table[3] = 0;
 699	}
 700
 701	ksz9477_write_table(dev, alu_table);
 702
 703	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 704
 705	/* wait to be finished */
 706	ret = ksz9477_wait_alu_ready(dev);
 707	if (ret)
 708		dev_dbg(dev->dev, "Failed to write ALU\n");
 709
 710exit:
 711	mutex_unlock(&dev->alu_mutex);
 712
 713	return ret;
 714}
 715
 716static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 717{
 718	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 719	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 720	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 721	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 722			ALU_V_PRIO_AGE_CNT_M;
 723	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 724
 725	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 726	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 727	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 728
 729	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 730
 731	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 732	alu->mac[1] = alu_table[2] & 0xFF;
 733	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 734	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 735	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 736	alu->mac[5] = alu_table[3] & 0xFF;
 737}
 738
 739static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
 740				 dsa_fdb_dump_cb_t *cb, void *data)
 741{
 742	struct ksz_device *dev = ds->priv;
 743	int ret = 0;
 744	u32 ksz_data;
 745	u32 alu_table[4];
 746	struct alu_struct alu;
 747	int timeout;
 748
 749	mutex_lock(&dev->alu_mutex);
 750
 751	/* start ALU search */
 752	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 753
 754	do {
 755		timeout = 1000;
 756		do {
 757			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 758			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 759				break;
 760			usleep_range(1, 10);
 761		} while (timeout-- > 0);
 762
 763		if (!timeout) {
 764			dev_dbg(dev->dev, "Failed to search ALU\n");
 765			ret = -ETIMEDOUT;
 766			goto exit;
 767		}
 768
 
 
 
 769		/* read ALU table */
 770		ksz9477_read_table(dev, alu_table);
 771
 772		ksz9477_convert_alu(&alu, alu_table);
 773
 774		if (alu.port_forward & BIT(port)) {
 775			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 776			if (ret)
 777				goto exit;
 778		}
 779	} while (ksz_data & ALU_START);
 780
 781exit:
 782
 783	/* stop ALU search */
 784	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 785
 786	mutex_unlock(&dev->alu_mutex);
 787
 788	return ret;
 789}
 790
 791static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
 792				 const struct switchdev_obj_port_mdb *mdb)
 793{
 794	struct ksz_device *dev = ds->priv;
 795	u32 static_table[4];
 
 
 796	u32 data;
 797	int index;
 798	u32 mac_hi, mac_lo;
 
 
 
 
 799
 800	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 801	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 802	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 803
 804	mutex_lock(&dev->alu_mutex);
 805
 806	for (index = 0; index < dev->num_statics; index++) {
 807		/* find empty slot first */
 808		data = (index << ALU_STAT_INDEX_S) |
 809			ALU_STAT_READ | ALU_STAT_START;
 810		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 811
 812		/* wait to be finished */
 813		if (ksz9477_wait_alu_sta_ready(dev)) {
 
 814			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 815			goto exit;
 816		}
 817
 818		/* read ALU static table */
 819		ksz9477_read_table(dev, static_table);
 820
 821		if (static_table[0] & ALU_V_STATIC_VALID) {
 822			/* check this has same vid & mac address */
 823			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 824			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 825			    static_table[3] == mac_lo) {
 826				/* found matching one */
 827				break;
 828			}
 829		} else {
 830			/* found empty one */
 831			break;
 832		}
 833	}
 834
 835	/* no available entry */
 836	if (index == dev->num_statics)
 
 837		goto exit;
 
 838
 839	/* add entry */
 840	static_table[0] = ALU_V_STATIC_VALID;
 841	static_table[1] |= BIT(port);
 842	if (mdb->vid)
 843		static_table[1] |= ALU_V_USE_FID;
 844	static_table[2] = (mdb->vid << ALU_V_FID_S);
 845	static_table[2] |= mac_hi;
 846	static_table[3] = mac_lo;
 847
 848	ksz9477_write_table(dev, static_table);
 849
 850	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 851	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 852
 853	/* wait to be finished */
 854	if (ksz9477_wait_alu_sta_ready(dev))
 855		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 856
 857exit:
 858	mutex_unlock(&dev->alu_mutex);
 
 859}
 860
 861static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
 862				const struct switchdev_obj_port_mdb *mdb)
 863{
 864	struct ksz_device *dev = ds->priv;
 865	u32 static_table[4];
 
 
 866	u32 data;
 867	int index;
 868	int ret = 0;
 869	u32 mac_hi, mac_lo;
 870
 
 
 
 871	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 872	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 873	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 874
 875	mutex_lock(&dev->alu_mutex);
 876
 877	for (index = 0; index < dev->num_statics; index++) {
 878		/* find empty slot first */
 879		data = (index << ALU_STAT_INDEX_S) |
 880			ALU_STAT_READ | ALU_STAT_START;
 881		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 882
 883		/* wait to be finished */
 884		ret = ksz9477_wait_alu_sta_ready(dev);
 885		if (ret) {
 886			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 887			goto exit;
 888		}
 889
 890		/* read ALU static table */
 891		ksz9477_read_table(dev, static_table);
 892
 893		if (static_table[0] & ALU_V_STATIC_VALID) {
 894			/* check this has same vid & mac address */
 895
 896			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 897			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 898			    static_table[3] == mac_lo) {
 899				/* found matching one */
 900				break;
 901			}
 902		}
 903	}
 904
 905	/* no available entry */
 906	if (index == dev->num_statics)
 907		goto exit;
 908
 909	/* clear port */
 910	static_table[1] &= ~BIT(port);
 911
 912	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 913		/* delete entry */
 914		static_table[0] = 0;
 915		static_table[1] = 0;
 916		static_table[2] = 0;
 917		static_table[3] = 0;
 918	}
 919
 920	ksz9477_write_table(dev, static_table);
 921
 922	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 923	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 924
 925	/* wait to be finished */
 926	ret = ksz9477_wait_alu_sta_ready(dev);
 927	if (ret)
 928		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 929
 930exit:
 931	mutex_unlock(&dev->alu_mutex);
 932
 933	return ret;
 934}
 935
 936static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
 937				   struct dsa_mall_mirror_tc_entry *mirror,
 938				   bool ingress)
 939{
 940	struct ksz_device *dev = ds->priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942	if (ingress)
 943		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
 944	else
 945		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 946
 947	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
 948
 949	/* configure mirror port */
 950	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 951		     PORT_MIRROR_SNIFFER, true);
 952
 953	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 954
 955	return 0;
 956}
 957
 958static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
 959				    struct dsa_mall_mirror_tc_entry *mirror)
 960{
 961	struct ksz_device *dev = ds->priv;
 962	u8 data;
 
 963
 964	if (mirror->ingress)
 965		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
 966	else
 967		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 968
 969	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
 970
 971	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
 972		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 973			     PORT_MIRROR_SNIFFER, false);
 974}
 975
 976static void ksz9477_phy_setup(struct ksz_device *dev, int port,
 977			      struct phy_device *phy)
 978{
 979	/* Only apply to port with PHY. */
 980	if (port >= dev->phy_port_cnt)
 981		return;
 982
 983	/* The MAC actually cannot run in 1000 half-duplex mode. */
 984	phy_remove_link_mode(phy,
 985			     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
 986
 987	/* PHY does not support gigabit. */
 988	if (!(dev->features & GBIT_SUPPORT))
 989		phy_remove_link_mode(phy,
 990				     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
 991}
 992
 993static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
 994{
 995	bool gbit;
 996
 997	if (dev->features & NEW_XMII)
 998		gbit = !(data & PORT_MII_NOT_1GBIT);
 999	else
1000		gbit = !!(data & PORT_MII_1000MBIT_S1);
1001	return gbit;
1002}
1003
1004static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1005{
1006	if (dev->features & NEW_XMII) {
1007		if (gbit)
1008			*data &= ~PORT_MII_NOT_1GBIT;
1009		else
1010			*data |= PORT_MII_NOT_1GBIT;
1011	} else {
1012		if (gbit)
1013			*data |= PORT_MII_1000MBIT_S1;
1014		else
1015			*data &= ~PORT_MII_1000MBIT_S1;
1016	}
1017}
1018
1019static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1020{
1021	int mode;
1022
1023	if (dev->features & NEW_XMII) {
1024		switch (data & PORT_MII_SEL_M) {
1025		case PORT_MII_SEL:
1026			mode = 0;
1027			break;
1028		case PORT_RMII_SEL:
1029			mode = 1;
1030			break;
1031		case PORT_GMII_SEL:
1032			mode = 2;
1033			break;
1034		default:
1035			mode = 3;
1036		}
1037	} else {
1038		switch (data & PORT_MII_SEL_M) {
1039		case PORT_MII_SEL_S1:
1040			mode = 0;
1041			break;
1042		case PORT_RMII_SEL_S1:
1043			mode = 1;
1044			break;
1045		case PORT_GMII_SEL_S1:
1046			mode = 2;
1047			break;
1048		default:
1049			mode = 3;
1050		}
1051	}
1052	return mode;
1053}
1054
1055static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1056{
1057	u8 xmii;
1058
1059	if (dev->features & NEW_XMII) {
1060		switch (mode) {
1061		case 0:
1062			xmii = PORT_MII_SEL;
1063			break;
1064		case 1:
1065			xmii = PORT_RMII_SEL;
1066			break;
1067		case 2:
1068			xmii = PORT_GMII_SEL;
1069			break;
1070		default:
1071			xmii = PORT_RGMII_SEL;
1072			break;
1073		}
1074	} else {
1075		switch (mode) {
1076		case 0:
1077			xmii = PORT_MII_SEL_S1;
1078			break;
1079		case 1:
1080			xmii = PORT_RMII_SEL_S1;
1081			break;
1082		case 2:
1083			xmii = PORT_GMII_SEL_S1;
1084			break;
1085		default:
1086			xmii = PORT_RGMII_SEL_S1;
1087			break;
1088		}
1089	}
1090	*data &= ~PORT_MII_SEL_M;
1091	*data |= xmii;
1092}
1093
1094static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1095{
1096	phy_interface_t interface;
1097	bool gbit;
1098	int mode;
1099	u8 data8;
1100
1101	if (port < dev->phy_port_cnt)
1102		return PHY_INTERFACE_MODE_NA;
1103	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1104	gbit = ksz9477_get_gbit(dev, data8);
1105	mode = ksz9477_get_xmii(dev, data8);
1106	switch (mode) {
1107	case 2:
1108		interface = PHY_INTERFACE_MODE_GMII;
1109		if (gbit)
1110			break;
1111		/* fall through */
1112	case 0:
1113		interface = PHY_INTERFACE_MODE_MII;
1114		break;
1115	case 1:
1116		interface = PHY_INTERFACE_MODE_RMII;
1117		break;
1118	default:
1119		interface = PHY_INTERFACE_MODE_RGMII;
1120		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1121			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1122		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1123			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1124			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1125				interface = PHY_INTERFACE_MODE_RGMII_ID;
1126		}
1127		break;
1128	}
1129	return interface;
1130}
1131
1132static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1133				   u8 dev_addr, u16 reg_addr, u16 val)
1134{
1135	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1136		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1137	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1138	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1139		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1140	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1141}
1142
1143static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1144{
1145	/* Apply PHY settings to address errata listed in
1146	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1147	 * Silicon Errata and Data Sheet Clarification documents:
1148	 *
1149	 * Register settings are needed to improve PHY receive performance
1150	 */
1151	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1152	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1153	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1154	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1155	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1156	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1157	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1158
1159	/* Transmit waveform amplitude can be improved
1160	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1161	 */
1162	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1163
1164	/* Energy Efficient Ethernet (EEE) feature select must
1165	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1166	 */
1167	if (dev->features & GBIT_SUPPORT)
1168		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1169
1170	/* Register settings are required to meet data sheet
1171	 * supply current specifications
1172	 */
1173	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1174	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1175	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1176	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1177	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1178	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1179	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1180	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1181	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1182	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1183	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1184	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1185	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1186}
1187
1188static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
 
1189{
1190	u8 data8;
1191	u8 member;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192	u16 data16;
1193	struct ksz_port *p = &dev->ports[port];
1194
1195	/* enable tag tail for host port */
1196	if (cpu_port)
1197		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1198			     true);
1199
1200	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1201
1202	/* set back pressure */
1203	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1204
1205	/* enable broadcast storm limit */
1206	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1207
1208	/* disable DiffServ priority */
1209	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1210
1211	/* replace priority */
1212	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1213		     false);
1214	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1215			   MTI_PVID_REPLACE, false);
1216
1217	/* enable 802.1p priority */
1218	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1219
1220	if (port < dev->phy_port_cnt) {
1221		/* do not force flow control */
1222		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1223			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1224			     false);
1225
1226		if (dev->phy_errata_9477)
1227			ksz9477_phy_errata_setup(dev, port);
1228	} else {
1229		/* force flow control */
1230		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1231			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1232			     true);
1233
1234		/* configure MAC to 1G & RGMII mode */
1235		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1236		switch (dev->interface) {
1237		case PHY_INTERFACE_MODE_MII:
1238			ksz9477_set_xmii(dev, 0, &data8);
1239			ksz9477_set_gbit(dev, false, &data8);
1240			p->phydev.speed = SPEED_100;
1241			break;
1242		case PHY_INTERFACE_MODE_RMII:
1243			ksz9477_set_xmii(dev, 1, &data8);
1244			ksz9477_set_gbit(dev, false, &data8);
1245			p->phydev.speed = SPEED_100;
1246			break;
1247		case PHY_INTERFACE_MODE_GMII:
1248			ksz9477_set_xmii(dev, 2, &data8);
1249			ksz9477_set_gbit(dev, true, &data8);
1250			p->phydev.speed = SPEED_1000;
1251			break;
1252		default:
1253			ksz9477_set_xmii(dev, 3, &data8);
1254			ksz9477_set_gbit(dev, true, &data8);
1255			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1256			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1257			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1258			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1259				data8 |= PORT_RGMII_ID_IG_ENABLE;
1260			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1261			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1262				data8 |= PORT_RGMII_ID_EG_ENABLE;
1263			p->phydev.speed = SPEED_1000;
1264			break;
1265		}
1266		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1267		p->phydev.duplex = 1;
1268	}
1269	mutex_lock(&dev->dev_mutex);
1270	if (cpu_port) {
1271		member = dev->port_mask;
1272		dev->on_ports = dev->host_mask;
1273		dev->live_ports = dev->host_mask;
1274	} else {
1275		member = dev->host_mask | p->vid_member;
1276		dev->on_ports |= (1 << port);
1277
1278		/* Link was detected before port is enabled. */
1279		if (p->phydev.link)
1280			dev->live_ports |= (1 << port);
1281	}
1282	mutex_unlock(&dev->dev_mutex);
1283	ksz9477_cfg_port_member(dev, port, member);
1284
1285	/* clear pending interrupts */
1286	if (port < dev->phy_port_cnt)
1287		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1288}
1289
1290static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1291{
1292	struct ksz_device *dev = ds->priv;
1293	struct ksz_port *p;
1294	int i;
1295
1296	ds->num_ports = dev->port_cnt;
1297
1298	for (i = 0; i < dev->port_cnt; i++) {
1299		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1300			phy_interface_t interface;
 
 
1301
1302			dev->cpu_port = i;
1303			dev->host_mask = (1 << dev->cpu_port);
1304			dev->port_mask |= dev->host_mask;
1305
1306			/* Read from XMII register to determine host port
1307			 * interface.  If set specifically in device tree
1308			 * note the difference to help debugging.
1309			 */
1310			interface = ksz9477_get_interface(dev, i);
1311			if (!dev->interface)
1312				dev->interface = interface;
1313			if (interface && interface != dev->interface)
1314				dev_info(dev->dev,
1315					 "use %s instead of %s\n",
1316					  phy_modes(dev->interface),
1317					  phy_modes(interface));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318
1319			/* enable cpu port */
1320			ksz9477_port_setup(dev, i, true);
1321			p = &dev->ports[dev->cpu_port];
1322			p->vid_member = dev->port_mask;
1323			p->on = 1;
1324		}
1325	}
1326
1327	dev->member = dev->host_mask;
1328
1329	for (i = 0; i < dev->mib_port_cnt; i++) {
1330		if (i == dev->cpu_port)
1331			continue;
1332		p = &dev->ports[i];
 
 
 
 
 
 
 
 
1333
1334		/* Initialize to non-zero so that ksz_cfg_port_member() will
1335		 * be called.
1336		 */
1337		p->vid_member = (1 << i);
1338		p->member = dev->port_mask;
1339		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1340		p->on = 1;
1341		if (i < dev->phy_port_cnt)
1342			p->phy = 1;
1343		if (dev->chip_id == 0x00947700 && i == 6) {
1344			p->sgmii = 1;
1345
1346			/* SGMII PHY detection code is not implemented yet. */
1347			p->phy = 0;
1348		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349	}
 
 
1350}
1351
1352static int ksz9477_setup(struct dsa_switch *ds)
1353{
1354	struct ksz_device *dev = ds->priv;
1355	int ret = 0;
1356
1357	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1358				       dev->num_vlans, GFP_KERNEL);
1359	if (!dev->vlan_cache)
1360		return -ENOMEM;
1361
1362	ret = ksz9477_reset_switch(dev);
1363	if (ret) {
1364		dev_err(ds->dev, "failed to reset switch\n");
1365		return ret;
1366	}
1367
1368	/* Required for port partitioning. */
1369	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1370		      true);
1371
1372	/* Do not work correctly with tail tagging. */
1373	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1374
1375	/* accept packet up to 2000bytes */
1376	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1377
1378	ksz9477_config_cpu_port(ds);
1379
1380	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
 
 
 
 
1381
1382	/* queue based egress rate limit */
1383	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1384
1385	/* enable global MIB counter freeze function */
1386	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1387
1388	/* start switch */
1389	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1390
1391	ksz_init_mib_timer(dev);
1392
1393	return 0;
1394}
1395
1396static const struct dsa_switch_ops ksz9477_switch_ops = {
1397	.get_tag_protocol	= ksz9477_get_tag_protocol,
1398	.setup			= ksz9477_setup,
1399	.phy_read		= ksz9477_phy_read16,
1400	.phy_write		= ksz9477_phy_write16,
1401	.adjust_link		= ksz_adjust_link,
1402	.port_enable		= ksz_enable_port,
1403	.port_disable		= ksz_disable_port,
1404	.get_strings		= ksz9477_get_strings,
1405	.get_ethtool_stats	= ksz_get_ethtool_stats,
1406	.get_sset_count		= ksz_sset_count,
1407	.port_bridge_join	= ksz_port_bridge_join,
1408	.port_bridge_leave	= ksz_port_bridge_leave,
1409	.port_stp_state_set	= ksz9477_port_stp_state_set,
1410	.port_fast_age		= ksz_port_fast_age,
1411	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1412	.port_vlan_prepare	= ksz_port_vlan_prepare,
1413	.port_vlan_add		= ksz9477_port_vlan_add,
1414	.port_vlan_del		= ksz9477_port_vlan_del,
1415	.port_fdb_dump		= ksz9477_port_fdb_dump,
1416	.port_fdb_add		= ksz9477_port_fdb_add,
1417	.port_fdb_del		= ksz9477_port_fdb_del,
1418	.port_mdb_prepare       = ksz_port_mdb_prepare,
1419	.port_mdb_add           = ksz9477_port_mdb_add,
1420	.port_mdb_del           = ksz9477_port_mdb_del,
1421	.port_mirror_add	= ksz9477_port_mirror_add,
1422	.port_mirror_del	= ksz9477_port_mirror_del,
1423};
1424
1425static u32 ksz9477_get_port_addr(int port, int offset)
1426{
1427	return PORT_CTRL_ADDR(port, offset);
1428}
1429
1430static int ksz9477_switch_detect(struct ksz_device *dev)
1431{
1432	u8 data8;
1433	u8 id_hi;
1434	u8 id_lo;
1435	u32 id32;
1436	int ret;
1437
 
 
1438	/* turn off SPI DO Edge select */
1439	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1440	if (ret)
1441		return ret;
1442
1443	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1444	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1445	if (ret)
1446		return ret;
1447
1448	/* read chip id */
1449	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1450	if (ret)
1451		return ret;
1452	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1453	if (ret)
1454		return ret;
1455
1456	/* Number of ports can be reduced depending on chip. */
1457	dev->mib_port_cnt = TOTAL_PORT_NUM;
1458	dev->phy_port_cnt = 5;
1459
1460	/* Default capability is gigabit capable. */
1461	dev->features = GBIT_SUPPORT;
1462
1463	id_hi = (u8)(id32 >> 16);
1464	id_lo = (u8)(id32 >> 8);
1465	if ((id_lo & 0xf) == 3) {
1466		/* Chip is from KSZ9893 design. */
1467		dev->features |= IS_9893;
1468
1469		/* Chip does not support gigabit. */
1470		if (data8 & SW_QW_ABLE)
1471			dev->features &= ~GBIT_SUPPORT;
1472		dev->mib_port_cnt = 3;
1473		dev->phy_port_cnt = 2;
1474	} else {
1475		/* Chip uses new XMII register definitions. */
1476		dev->features |= NEW_XMII;
1477
1478		/* Chip does not support gigabit. */
1479		if (!(data8 & SW_GIGABIT_ABLE))
1480			dev->features &= ~GBIT_SUPPORT;
1481	}
1482
1483	/* Change chip id to known ones so it can be matched against them. */
1484	id32 = (id_hi << 16) | (id_lo << 8);
1485
1486	dev->chip_id = id32;
1487
1488	return 0;
1489}
1490
1491struct ksz_chip_data {
1492	u32 chip_id;
1493	const char *dev_name;
1494	int num_vlans;
1495	int num_alus;
1496	int num_statics;
1497	int cpu_ports;
1498	int port_cnt;
1499	bool phy_errata_9477;
1500};
1501
1502static const struct ksz_chip_data ksz9477_switch_chips[] = {
1503	{
1504		.chip_id = 0x00947700,
1505		.dev_name = "KSZ9477",
1506		.num_vlans = 4096,
1507		.num_alus = 4096,
1508		.num_statics = 16,
1509		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1510		.port_cnt = 7,		/* total physical port count */
1511		.phy_errata_9477 = true,
1512	},
1513	{
1514		.chip_id = 0x00989700,
1515		.dev_name = "KSZ9897",
1516		.num_vlans = 4096,
1517		.num_alus = 4096,
1518		.num_statics = 16,
1519		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1520		.port_cnt = 7,		/* total physical port count */
1521		.phy_errata_9477 = true,
1522	},
1523	{
1524		.chip_id = 0x00989300,
1525		.dev_name = "KSZ9893",
1526		.num_vlans = 4096,
1527		.num_alus = 4096,
1528		.num_statics = 16,
1529		.cpu_ports = 0x07,	/* can be configured as cpu port */
1530		.port_cnt = 3,		/* total port count */
1531	},
1532	{
1533		.chip_id = 0x00956700,
1534		.dev_name = "KSZ9567",
1535		.num_vlans = 4096,
1536		.num_alus = 4096,
1537		.num_statics = 16,
1538		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1539		.port_cnt = 7,		/* total physical port count */
1540	},
1541};
1542
1543static int ksz9477_switch_init(struct ksz_device *dev)
1544{
1545	int i;
1546
1547	dev->ds->ops = &ksz9477_switch_ops;
1548
1549	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1550		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1551
1552		if (dev->chip_id == chip->chip_id) {
1553			dev->name = chip->dev_name;
1554			dev->num_vlans = chip->num_vlans;
1555			dev->num_alus = chip->num_alus;
1556			dev->num_statics = chip->num_statics;
1557			dev->port_cnt = chip->port_cnt;
1558			dev->cpu_ports = chip->cpu_ports;
1559			dev->phy_errata_9477 = chip->phy_errata_9477;
1560
1561			break;
1562		}
1563	}
1564
1565	/* no switch found */
1566	if (!dev->port_cnt)
1567		return -ENODEV;
1568
1569	dev->port_mask = (1 << dev->port_cnt) - 1;
1570
1571	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1572	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1573
1574	i = dev->mib_port_cnt;
1575	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1576				  GFP_KERNEL);
1577	if (!dev->ports)
1578		return -ENOMEM;
1579	for (i = 0; i < dev->mib_port_cnt; i++) {
1580		mutex_init(&dev->ports[i].mib.cnt_mutex);
1581		dev->ports[i].mib.counters =
1582			devm_kzalloc(dev->dev,
1583				     sizeof(u64) *
1584				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1585				     GFP_KERNEL);
1586		if (!dev->ports[i].mib.counters)
1587			return -ENOMEM;
1588	}
1589
1590	return 0;
1591}
1592
1593static void ksz9477_switch_exit(struct ksz_device *dev)
1594{
1595	ksz9477_reset_switch(dev);
1596}
1597
1598static const struct ksz_dev_ops ksz9477_dev_ops = {
1599	.get_port_addr = ksz9477_get_port_addr,
1600	.cfg_port_member = ksz9477_cfg_port_member,
1601	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1602	.phy_setup = ksz9477_phy_setup,
1603	.port_setup = ksz9477_port_setup,
1604	.r_mib_cnt = ksz9477_r_mib_cnt,
1605	.r_mib_pkt = ksz9477_r_mib_pkt,
1606	.freeze_mib = ksz9477_freeze_mib,
1607	.port_init_cnt = ksz9477_port_init_cnt,
1608	.shutdown = ksz9477_reset_switch,
1609	.detect = ksz9477_switch_detect,
1610	.init = ksz9477_switch_init,
1611	.exit = ksz9477_switch_exit,
1612};
1613
1614int ksz9477_switch_register(struct ksz_device *dev)
1615{
1616	return ksz_switch_register(dev, &ksz9477_dev_ops);
1617}
1618EXPORT_SYMBOL(ksz9477_switch_register);
1619
1620MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1621MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1622MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2019 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
  14#include <linux/if_vlan.h>
  15#include <net/dsa.h>
  16#include <net/switchdev.h>
  17
  18#include "ksz9477_reg.h"
  19#include "ksz_common.h"
  20#include "ksz9477.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21
  22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  23{
  24	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
  25}
  26
  27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  28			 bool set)
  29{
  30	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
  31			   bits, set ? bits : 0);
  32}
  33
  34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  35{
  36	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
  37}
  38
  39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  40			       u32 bits, bool set)
  41{
  42	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
  43			   bits, set ? bits : 0);
  44}
  45
  46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
  47{
  48	u16 frame_size;
  49
  50	if (!dsa_is_cpu_port(dev->ds, port))
  51		return 0;
  52
  53	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
  54
  55	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
  56				  REG_SW_MTU_MASK, frame_size);
  57}
  58
  59static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
  60{
  61	unsigned int val;
  62
  63	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
  64					val, !(val & VLAN_START), 10, 1000);
  65}
  66
  67static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
  68				  u32 *vlan_table)
  69{
  70	int ret;
  71
  72	mutex_lock(&dev->vlan_mutex);
  73
  74	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
  75	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
  76
  77	/* wait to be cleared */
  78	ret = ksz9477_wait_vlan_ctrl_ready(dev);
  79	if (ret) {
  80		dev_dbg(dev->dev, "Failed to read vlan table\n");
  81		goto exit;
  82	}
  83
  84	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
  85	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
  86	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
  87
  88	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
  89
  90exit:
  91	mutex_unlock(&dev->vlan_mutex);
  92
  93	return ret;
  94}
  95
  96static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
  97				  u32 *vlan_table)
  98{
  99	int ret;
 100
 101	mutex_lock(&dev->vlan_mutex);
 102
 103	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 104	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 105	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 106
 107	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 108	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 109
 110	/* wait to be cleared */
 111	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 112	if (ret) {
 113		dev_dbg(dev->dev, "Failed to write vlan table\n");
 114		goto exit;
 115	}
 116
 117	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 118
 119	/* update vlan cache table */
 120	dev->vlan_cache[vid].table[0] = vlan_table[0];
 121	dev->vlan_cache[vid].table[1] = vlan_table[1];
 122	dev->vlan_cache[vid].table[2] = vlan_table[2];
 123
 124exit:
 125	mutex_unlock(&dev->vlan_mutex);
 126
 127	return ret;
 128}
 129
 130static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 131{
 132	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 133	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 134	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 135	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 136}
 137
 138static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 139{
 140	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 141	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 142	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 143	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 144}
 145
 146static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 147{
 148	unsigned int val;
 149
 150	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
 151					val, !(val & ALU_START), 10, 1000);
 152}
 153
 154static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 155{
 156	unsigned int val;
 157
 158	return regmap_read_poll_timeout(dev->regmap[2],
 159					REG_SW_ALU_STAT_CTRL__4,
 160					val, !(val & ALU_STAT_START),
 161					10, 1000);
 162}
 163
 164int ksz9477_reset_switch(struct ksz_device *dev)
 165{
 166	u8 data8;
 167	u32 data32;
 168
 169	/* reset switch */
 170	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 171
 172	/* turn off SPI DO Edge select */
 173	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
 174			   SPI_AUTO_EDGE_DETECTION, 0);
 175
 176	/* default configuration */
 177	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 178	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 179	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 180	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 181
 182	/* disable interrupts */
 183	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 184	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 185	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 186
 187	/* KSZ9893 compatible chips do not support refclk configuration */
 188	if (dev->chip_id == KSZ9893_CHIP_ID ||
 189	    dev->chip_id == KSZ8563_CHIP_ID ||
 190	    dev->chip_id == KSZ9563_CHIP_ID)
 191		return 0;
 192
 193	data8 = SW_ENABLE_REFCLKO;
 194	if (dev->synclko_disable)
 195		data8 = 0;
 196	else if (dev->synclko_125)
 197		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
 198	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
 199
 200	return 0;
 201}
 202
 203void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
 
 204{
 205	struct ksz_port *p = &dev->ports[port];
 206	unsigned int val;
 207	u32 data;
 208	int ret;
 209
 210	/* retain the flush/freeze bit */
 211	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 212	data |= MIB_COUNTER_READ;
 213	data |= (addr << MIB_COUNTER_INDEX_S);
 214	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 215
 216	ret = regmap_read_poll_timeout(dev->regmap[2],
 217			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 218			val, !(val & MIB_COUNTER_READ), 10, 1000);
 219	/* failed to read MIB. get out of loop */
 220	if (ret) {
 221		dev_dbg(dev->dev, "Failed to get MIB\n");
 222		return;
 223	}
 224
 225	/* count resets upon read */
 226	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 227	*cnt += data;
 228}
 229
 230void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 231		       u64 *dropped, u64 *cnt)
 232{
 233	addr = dev->info->mib_names[addr].index;
 234	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 235}
 236
 237void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 238{
 239	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 240	struct ksz_port *p = &dev->ports[port];
 241
 242	/* enable/disable the port for flush/freeze function */
 243	mutex_lock(&p->mib.cnt_mutex);
 244	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 245
 246	/* used by MIB counter reading code to know freeze is enabled */
 247	p->freeze = freeze;
 248	mutex_unlock(&p->mib.cnt_mutex);
 249}
 250
 251void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 252{
 253	struct ksz_port_mib *mib = &dev->ports[port].mib;
 254
 255	/* flush all enabled port MIB counters */
 256	mutex_lock(&mib->cnt_mutex);
 257	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 258		     MIB_COUNTER_FLUSH_FREEZE);
 259	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 260	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 261	mutex_unlock(&mib->cnt_mutex);
 
 
 
 262}
 263
 264static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
 265				 u16 *data)
 266{
 267	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
 268	 * BMSR_ERCAP bits are set.
 269	 */
 270	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
 271		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
 
 272}
 273
 274int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
 275{
 
 276	u16 val = 0xffff;
 277	int ret;
 278
 279	/* No real PHY after this. Simulate the PHY.
 280	 * A fixed PHY can be setup in the device tree, but this function is
 281	 * still called for that port during initialization.
 282	 * For RGMII PHY there is no way to access it so the fixed PHY should
 283	 * be used.  For SGMII PHY the supporting code will be added later.
 284	 */
 285	if (!dev->info->internal_phy[addr]) {
 286		struct ksz_port *p = &dev->ports[addr];
 287
 288		switch (reg) {
 289		case MII_BMCR:
 290			val = 0x1140;
 291			break;
 292		case MII_BMSR:
 293			val = 0x796d;
 294			break;
 295		case MII_PHYSID1:
 296			val = 0x0022;
 297			break;
 298		case MII_PHYSID2:
 299			val = 0x1631;
 300			break;
 301		case MII_ADVERTISE:
 302			val = 0x05e1;
 303			break;
 304		case MII_LPA:
 305			val = 0xc5e1;
 306			break;
 307		case MII_CTRL1000:
 308			val = 0x0700;
 309			break;
 310		case MII_STAT1000:
 311			if (p->phydev.speed == SPEED_1000)
 312				val = 0x3800;
 313			else
 314				val = 0;
 315			break;
 316		}
 317	} else {
 318		ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 319		if (ret)
 320			return ret;
 
 
 
 
 
 
 
 321
 322		ksz9477_r_phy_quirks(dev, addr, reg, &val);
 323	}
 
 324
 325	*data = val;
 
 
 
 326
 327	return 0;
 328}
 329
 330int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
 
 331{
 332	/* No real PHY after this. */
 333	if (!dev->info->internal_phy[addr])
 334		return 0;
 
 335
 336	return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 
 
 
 337}
 338
 339void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
 
 340{
 341	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342}
 343
 344void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 345{
 346	const u16 *regs = dev->info->regs;
 347	u8 data;
 348
 349	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
 350			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 351			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 352
 353	if (port < dev->info->port_cnt) {
 354		/* flush individual port */
 355		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
 356		if (!(data & PORT_LEARN_DISABLE))
 357			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
 358				    data | PORT_LEARN_DISABLE);
 359		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 360		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
 361	} else {
 362		/* flush all */
 363		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 364	}
 365}
 366
 367int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
 368				bool flag, struct netlink_ext_ack *extack)
 369{
 
 
 370	if (flag) {
 371		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 372			     PORT_VLAN_LOOKUP_VID_0, true);
 373		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 374	} else {
 375		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 376		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 377			     PORT_VLAN_LOOKUP_VID_0, false);
 378	}
 379
 380	return 0;
 381}
 382
 383int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
 384			  const struct switchdev_obj_port_vlan *vlan,
 385			  struct netlink_ext_ack *extack)
 386{
 
 387	u32 vlan_table[3];
 
 388	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 389	int err;
 390
 391	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
 392	if (err) {
 393		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
 394		return err;
 395	}
 396
 397	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
 398	if (untagged)
 399		vlan_table[1] |= BIT(port);
 400	else
 401		vlan_table[1] &= ~BIT(port);
 402	vlan_table[1] &= ~(BIT(dev->cpu_port));
 403
 404	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 
 
 
 
 
 405
 406	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
 407	if (err) {
 408		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
 409		return err;
 410	}
 411
 412	/* change PVID */
 413	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 414		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
 415
 416	return 0;
 417}
 418
 419int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
 420			  const struct switchdev_obj_port_vlan *vlan)
 421{
 
 422	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 423	u32 vlan_table[3];
 
 424	u16 pvid;
 425
 426	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 427	pvid = pvid & 0xFFF;
 428
 429	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
 430		dev_dbg(dev->dev, "Failed to get vlan table\n");
 431		return -ETIMEDOUT;
 432	}
 
 433
 434	vlan_table[2] &= ~BIT(port);
 435
 436	if (pvid == vlan->vid)
 437		pvid = 1;
 438
 439	if (untagged)
 440		vlan_table[1] &= ~BIT(port);
 441
 442	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
 443		dev_dbg(dev->dev, "Failed to set vlan table\n");
 444		return -ETIMEDOUT;
 
 445	}
 446
 447	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 448
 449	return 0;
 450}
 451
 452int ksz9477_fdb_add(struct ksz_device *dev, int port,
 453		    const unsigned char *addr, u16 vid, struct dsa_db db)
 454{
 
 455	u32 alu_table[4];
 456	u32 data;
 457	int ret = 0;
 458
 459	mutex_lock(&dev->alu_mutex);
 460
 461	/* find any entry with mac & vid */
 462	data = vid << ALU_FID_INDEX_S;
 463	data |= ((addr[0] << 8) | addr[1]);
 464	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 465
 466	data = ((addr[2] << 24) | (addr[3] << 16));
 467	data |= ((addr[4] << 8) | addr[5]);
 468	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 469
 470	/* start read operation */
 471	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 472
 473	/* wait to be finished */
 474	ret = ksz9477_wait_alu_ready(dev);
 475	if (ret) {
 476		dev_dbg(dev->dev, "Failed to read ALU\n");
 477		goto exit;
 478	}
 479
 480	/* read ALU entry */
 481	ksz9477_read_table(dev, alu_table);
 482
 483	/* update ALU entry */
 484	alu_table[0] = ALU_V_STATIC_VALID;
 485	alu_table[1] |= BIT(port);
 486	if (vid)
 487		alu_table[1] |= ALU_V_USE_FID;
 488	alu_table[2] = (vid << ALU_V_FID_S);
 489	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 490	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 491	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 492
 493	ksz9477_write_table(dev, alu_table);
 494
 495	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 496
 497	/* wait to be finished */
 498	ret = ksz9477_wait_alu_ready(dev);
 499	if (ret)
 500		dev_dbg(dev->dev, "Failed to write ALU\n");
 501
 502exit:
 503	mutex_unlock(&dev->alu_mutex);
 504
 505	return ret;
 506}
 507
 508int ksz9477_fdb_del(struct ksz_device *dev, int port,
 509		    const unsigned char *addr, u16 vid, struct dsa_db db)
 510{
 
 511	u32 alu_table[4];
 512	u32 data;
 513	int ret = 0;
 514
 515	mutex_lock(&dev->alu_mutex);
 516
 517	/* read any entry with mac & vid */
 518	data = vid << ALU_FID_INDEX_S;
 519	data |= ((addr[0] << 8) | addr[1]);
 520	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 521
 522	data = ((addr[2] << 24) | (addr[3] << 16));
 523	data |= ((addr[4] << 8) | addr[5]);
 524	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 525
 526	/* start read operation */
 527	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 528
 529	/* wait to be finished */
 530	ret = ksz9477_wait_alu_ready(dev);
 531	if (ret) {
 532		dev_dbg(dev->dev, "Failed to read ALU\n");
 533		goto exit;
 534	}
 535
 536	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 537	if (alu_table[0] & ALU_V_STATIC_VALID) {
 538		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 539		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 540		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 541
 542		/* clear forwarding port */
 543		alu_table[1] &= ~BIT(port);
 544
 545		/* if there is no port to forward, clear table */
 546		if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
 547			alu_table[0] = 0;
 548			alu_table[1] = 0;
 549			alu_table[2] = 0;
 550			alu_table[3] = 0;
 551		}
 552	} else {
 553		alu_table[0] = 0;
 554		alu_table[1] = 0;
 555		alu_table[2] = 0;
 556		alu_table[3] = 0;
 557	}
 558
 559	ksz9477_write_table(dev, alu_table);
 560
 561	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 562
 563	/* wait to be finished */
 564	ret = ksz9477_wait_alu_ready(dev);
 565	if (ret)
 566		dev_dbg(dev->dev, "Failed to write ALU\n");
 567
 568exit:
 569	mutex_unlock(&dev->alu_mutex);
 570
 571	return ret;
 572}
 573
 574static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 575{
 576	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 577	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 578	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 579	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 580			ALU_V_PRIO_AGE_CNT_M;
 581	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 582
 583	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 584	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 585	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 586
 587	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 588
 589	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 590	alu->mac[1] = alu_table[2] & 0xFF;
 591	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 592	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 593	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 594	alu->mac[5] = alu_table[3] & 0xFF;
 595}
 596
 597int ksz9477_fdb_dump(struct ksz_device *dev, int port,
 598		     dsa_fdb_dump_cb_t *cb, void *data)
 599{
 
 600	int ret = 0;
 601	u32 ksz_data;
 602	u32 alu_table[4];
 603	struct alu_struct alu;
 604	int timeout;
 605
 606	mutex_lock(&dev->alu_mutex);
 607
 608	/* start ALU search */
 609	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 610
 611	do {
 612		timeout = 1000;
 613		do {
 614			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 615			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 616				break;
 617			usleep_range(1, 10);
 618		} while (timeout-- > 0);
 619
 620		if (!timeout) {
 621			dev_dbg(dev->dev, "Failed to search ALU\n");
 622			ret = -ETIMEDOUT;
 623			goto exit;
 624		}
 625
 626		if (!(ksz_data & ALU_VALID))
 627			continue;
 628
 629		/* read ALU table */
 630		ksz9477_read_table(dev, alu_table);
 631
 632		ksz9477_convert_alu(&alu, alu_table);
 633
 634		if (alu.port_forward & BIT(port)) {
 635			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 636			if (ret)
 637				goto exit;
 638		}
 639	} while (ksz_data & ALU_START);
 640
 641exit:
 642
 643	/* stop ALU search */
 644	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 645
 646	mutex_unlock(&dev->alu_mutex);
 647
 648	return ret;
 649}
 650
 651int ksz9477_mdb_add(struct ksz_device *dev, int port,
 652		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 653{
 
 654	u32 static_table[4];
 655	const u8 *shifts;
 656	const u32 *masks;
 657	u32 data;
 658	int index;
 659	u32 mac_hi, mac_lo;
 660	int err = 0;
 661
 662	shifts = dev->info->shifts;
 663	masks = dev->info->masks;
 664
 665	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 666	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 667	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 668
 669	mutex_lock(&dev->alu_mutex);
 670
 671	for (index = 0; index < dev->info->num_statics; index++) {
 672		/* find empty slot first */
 673		data = (index << shifts[ALU_STAT_INDEX]) |
 674			masks[ALU_STAT_READ] | ALU_STAT_START;
 675		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 676
 677		/* wait to be finished */
 678		err = ksz9477_wait_alu_sta_ready(dev);
 679		if (err) {
 680			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 681			goto exit;
 682		}
 683
 684		/* read ALU static table */
 685		ksz9477_read_table(dev, static_table);
 686
 687		if (static_table[0] & ALU_V_STATIC_VALID) {
 688			/* check this has same vid & mac address */
 689			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 690			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 691			    static_table[3] == mac_lo) {
 692				/* found matching one */
 693				break;
 694			}
 695		} else {
 696			/* found empty one */
 697			break;
 698		}
 699	}
 700
 701	/* no available entry */
 702	if (index == dev->info->num_statics) {
 703		err = -ENOSPC;
 704		goto exit;
 705	}
 706
 707	/* add entry */
 708	static_table[0] = ALU_V_STATIC_VALID;
 709	static_table[1] |= BIT(port);
 710	if (mdb->vid)
 711		static_table[1] |= ALU_V_USE_FID;
 712	static_table[2] = (mdb->vid << ALU_V_FID_S);
 713	static_table[2] |= mac_hi;
 714	static_table[3] = mac_lo;
 715
 716	ksz9477_write_table(dev, static_table);
 717
 718	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 719	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 720
 721	/* wait to be finished */
 722	if (ksz9477_wait_alu_sta_ready(dev))
 723		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 724
 725exit:
 726	mutex_unlock(&dev->alu_mutex);
 727	return err;
 728}
 729
 730int ksz9477_mdb_del(struct ksz_device *dev, int port,
 731		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 732{
 
 733	u32 static_table[4];
 734	const u8 *shifts;
 735	const u32 *masks;
 736	u32 data;
 737	int index;
 738	int ret = 0;
 739	u32 mac_hi, mac_lo;
 740
 741	shifts = dev->info->shifts;
 742	masks = dev->info->masks;
 743
 744	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 745	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 746	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 747
 748	mutex_lock(&dev->alu_mutex);
 749
 750	for (index = 0; index < dev->info->num_statics; index++) {
 751		/* find empty slot first */
 752		data = (index << shifts[ALU_STAT_INDEX]) |
 753			masks[ALU_STAT_READ] | ALU_STAT_START;
 754		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 755
 756		/* wait to be finished */
 757		ret = ksz9477_wait_alu_sta_ready(dev);
 758		if (ret) {
 759			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 760			goto exit;
 761		}
 762
 763		/* read ALU static table */
 764		ksz9477_read_table(dev, static_table);
 765
 766		if (static_table[0] & ALU_V_STATIC_VALID) {
 767			/* check this has same vid & mac address */
 768
 769			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 770			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 771			    static_table[3] == mac_lo) {
 772				/* found matching one */
 773				break;
 774			}
 775		}
 776	}
 777
 778	/* no available entry */
 779	if (index == dev->info->num_statics)
 780		goto exit;
 781
 782	/* clear port */
 783	static_table[1] &= ~BIT(port);
 784
 785	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 786		/* delete entry */
 787		static_table[0] = 0;
 788		static_table[1] = 0;
 789		static_table[2] = 0;
 790		static_table[3] = 0;
 791	}
 792
 793	ksz9477_write_table(dev, static_table);
 794
 795	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 796	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 797
 798	/* wait to be finished */
 799	ret = ksz9477_wait_alu_sta_ready(dev);
 800	if (ret)
 801		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 802
 803exit:
 804	mutex_unlock(&dev->alu_mutex);
 805
 806	return ret;
 807}
 808
 809int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
 810			    struct dsa_mall_mirror_tc_entry *mirror,
 811			    bool ingress, struct netlink_ext_ack *extack)
 812{
 813	u8 data;
 814	int p;
 815
 816	/* Limit to one sniffer port
 817	 * Check if any of the port is already set for sniffing
 818	 * If yes, instruct the user to remove the previous entry & exit
 819	 */
 820	for (p = 0; p < dev->info->port_cnt; p++) {
 821		/* Skip the current sniffing port */
 822		if (p == mirror->to_local_port)
 823			continue;
 824
 825		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
 826
 827		if (data & PORT_MIRROR_SNIFFER) {
 828			NL_SET_ERR_MSG_MOD(extack,
 829					   "Sniffer port is already configured, delete existing rules & retry");
 830			return -EBUSY;
 831		}
 832	}
 833
 834	if (ingress)
 835		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
 836	else
 837		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 838
 
 
 839	/* configure mirror port */
 840	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 841		     PORT_MIRROR_SNIFFER, true);
 842
 843	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 844
 845	return 0;
 846}
 847
 848void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
 849			     struct dsa_mall_mirror_tc_entry *mirror)
 850{
 851	bool in_use = false;
 852	u8 data;
 853	int p;
 854
 855	if (mirror->ingress)
 856		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
 857	else
 858		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860
 861	/* Check if any of the port is still referring to sniffer port */
 862	for (p = 0; p < dev->info->port_cnt; p++) {
 863		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
 
 
 
 
 
 
 
 
 
 
 
 864
 865		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
 866			in_use = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867			break;
 
 
 
 
 
 868		}
 869	}
 
 
 
 
 
 
 870
 871	/* delete sniffing if there are no other mirroring rules */
 872	if (!in_use)
 873		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 874			     PORT_MIRROR_SNIFFER, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875}
 876
 877static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
 878{
 879	phy_interface_t interface;
 880	bool gbit;
 
 
 881
 882	if (dev->info->internal_phy[port])
 883		return PHY_INTERFACE_MODE_NA;
 884
 885	gbit = ksz_get_gbit(dev, port);
 886
 887	interface = ksz_get_xmii(dev, port, gbit);
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889	return interface;
 890}
 891
 892static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
 893				   u8 dev_addr, u16 reg_addr, u16 val)
 894{
 895	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
 896		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
 897	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
 898	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
 899		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
 900	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
 901}
 902
 903static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
 904{
 905	/* Apply PHY settings to address errata listed in
 906	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
 907	 * Silicon Errata and Data Sheet Clarification documents:
 908	 *
 909	 * Register settings are needed to improve PHY receive performance
 910	 */
 911	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
 912	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
 913	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
 914	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
 915	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
 916	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
 917	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
 918
 919	/* Transmit waveform amplitude can be improved
 920	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
 921	 */
 922	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
 923
 924	/* Energy Efficient Ethernet (EEE) feature select must
 925	 * be manually disabled (except on KSZ8565 which is 100Mbit)
 926	 */
 927	if (dev->info->gbit_capable[port])
 928		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
 929
 930	/* Register settings are required to meet data sheet
 931	 * supply current specifications
 932	 */
 933	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
 934	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
 935	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
 936	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
 937	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
 938	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
 939	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
 940	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
 941	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
 942	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
 943	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
 944	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
 945	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
 946}
 947
 948void ksz9477_get_caps(struct ksz_device *dev, int port,
 949		      struct phylink_config *config)
 950{
 951	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
 952				   MAC_SYM_PAUSE;
 953
 954	if (dev->info->gbit_capable[port])
 955		config->mac_capabilities |= MAC_1000FD;
 956}
 957
 958int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
 959{
 960	u32 secs = msecs / 1000;
 961	u8 value;
 962	u8 data;
 963	int ret;
 964
 965	value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
 966
 967	ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
 968	if (ret < 0)
 969		return ret;
 970
 971	data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
 972
 973	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
 974	if (ret < 0)
 975		return ret;
 976
 977	value &= ~SW_AGE_CNT_M;
 978	value |= FIELD_PREP(SW_AGE_CNT_M, data);
 979
 980	return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
 981}
 982
 983void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
 984{
 985	struct dsa_switch *ds = dev->ds;
 986	u16 data16;
 987	u8 member;
 988
 989	/* enable tag tail for host port */
 990	if (cpu_port)
 991		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
 992			     true);
 993
 994	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
 995
 996	/* set back pressure */
 997	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
 998
 999	/* enable broadcast storm limit */
1000	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1001
1002	/* disable DiffServ priority */
1003	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1004
1005	/* replace priority */
1006	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1007		     false);
1008	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1009			   MTI_PVID_REPLACE, false);
1010
1011	/* enable 802.1p priority */
1012	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1013
1014	if (dev->info->internal_phy[port]) {
1015		/* do not force flow control */
1016		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1017			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1018			     false);
1019
1020		if (dev->info->phy_errata_9477)
1021			ksz9477_phy_errata_setup(dev, port);
1022	} else {
1023		/* force flow control */
1024		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1025			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1026			     true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027	}
 
 
 
 
 
 
 
 
1028
1029	if (cpu_port)
1030		member = dsa_user_ports(ds);
1031	else
1032		member = BIT(dsa_upstream_port(ds, port));
1033
1034	ksz9477_cfg_port_member(dev, port, member);
1035
1036	/* clear pending interrupts */
1037	if (dev->info->internal_phy[port])
1038		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1039}
1040
1041void ksz9477_config_cpu_port(struct dsa_switch *ds)
1042{
1043	struct ksz_device *dev = ds->priv;
1044	struct ksz_port *p;
1045	int i;
1046
1047	for (i = 0; i < dev->info->port_cnt; i++) {
1048		if (dsa_is_cpu_port(ds, i) &&
1049		    (dev->info->cpu_ports & (1 << i))) {
 
1050			phy_interface_t interface;
1051			const char *prev_msg;
1052			const char *prev_mode;
1053
1054			dev->cpu_port = i;
1055			p = &dev->ports[i];
 
1056
1057			/* Read from XMII register to determine host port
1058			 * interface.  If set specifically in device tree
1059			 * note the difference to help debugging.
1060			 */
1061			interface = ksz9477_get_interface(dev, i);
1062			if (!p->interface) {
1063				if (dev->compat_interface) {
1064					dev_warn(dev->dev,
1065						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1066						 "Please update your device tree.\n",
1067						 i);
1068					p->interface = dev->compat_interface;
1069				} else {
1070					p->interface = interface;
1071				}
1072			}
1073			if (interface && interface != p->interface) {
1074				prev_msg = " instead of ";
1075				prev_mode = phy_modes(interface);
1076			} else {
1077				prev_msg = "";
1078				prev_mode = "";
1079			}
1080			dev_info(dev->dev,
1081				 "Port%d: using phy mode %s%s%s\n",
1082				 i,
1083				 phy_modes(p->interface),
1084				 prev_msg,
1085				 prev_mode);
1086
1087			/* enable cpu port */
1088			ksz9477_port_setup(dev, i, true);
 
 
 
1089		}
1090	}
1091
1092	for (i = 0; i < dev->info->port_cnt; i++) {
 
 
1093		if (i == dev->cpu_port)
1094			continue;
1095		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1096	}
1097}
1098
1099int ksz9477_enable_stp_addr(struct ksz_device *dev)
1100{
1101	const u32 *masks;
1102	u32 data;
1103	int ret;
1104
1105	masks = dev->info->masks;
 
 
 
 
 
 
 
 
 
 
1106
1107	/* Enable Reserved multicast table */
1108	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1109
1110	/* Set the Override bit for forwarding BPDU packet to CPU */
1111	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1112			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1113	if (ret < 0)
1114		return ret;
1115
1116	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1117
1118	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1119	if (ret < 0)
1120		return ret;
1121
1122	/* wait to be finished */
1123	ret = ksz9477_wait_alu_sta_ready(dev);
1124	if (ret < 0) {
1125		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1126		return ret;
1127	}
1128
1129	return 0;
1130}
1131
1132int ksz9477_setup(struct dsa_switch *ds)
1133{
1134	struct ksz_device *dev = ds->priv;
1135	int ret = 0;
1136
1137	ds->mtu_enforcement_ingress = true;
 
 
 
 
 
 
 
 
 
1138
1139	/* Required for port partitioning. */
1140	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1141		      true);
1142
1143	/* Do not work correctly with tail tagging. */
1144	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1145
1146	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1147	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
 
 
1148
1149	/* Now we can configure default MTU value */
1150	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1151				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1152	if (ret)
1153		return ret;
1154
1155	/* queue based egress rate limit */
1156	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1157
1158	/* enable global MIB counter freeze function */
1159	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1160
 
 
 
 
 
1161	return 0;
1162}
1163
1164u32 ksz9477_get_port_addr(int port, int offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165{
1166	return PORT_CTRL_ADDR(port, offset);
1167}
1168
1169int ksz9477_switch_init(struct ksz_device *dev)
1170{
1171	u8 data8;
 
 
 
1172	int ret;
1173
1174	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1175
1176	/* turn off SPI DO Edge select */
1177	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1178	if (ret)
1179		return ret;
1180
1181	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1182	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1183	if (ret)
1184		return ret;
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186	return 0;
1187}
1188
1189void ksz9477_switch_exit(struct ksz_device *dev)
1190{
1191	ksz9477_reset_switch(dev);
1192}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193
1194MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1195MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1196MODULE_LICENSE("GPL");