Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clauen <lars@metafoo.de>
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
 
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/platform_device.h>
 
  23#include <linux/slab.h>
  24#include <linux/sysfs.h>
  25
  26#include <linux/iio/buffer.h>
  27#include <linux/iio/events.h>
  28#include <linux/iio/iio.h>
  29#include <linux/iio/sysfs.h>
  30#include <linux/iio/trigger.h>
  31#include <linux/iio/trigger_consumer.h>
  32#include <linux/iio/triggered_buffer.h>
  33
  34#include "xilinx-xadc.h"
  35
  36static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  37
  38/* ZYNQ register definitions */
  39#define XADC_ZYNQ_REG_CFG	0x00
  40#define XADC_ZYNQ_REG_INTSTS	0x04
  41#define XADC_ZYNQ_REG_INTMSK	0x08
  42#define XADC_ZYNQ_REG_STATUS	0x0c
  43#define XADC_ZYNQ_REG_CFIFO	0x10
  44#define XADC_ZYNQ_REG_DFIFO	0x14
  45#define XADC_ZYNQ_REG_CTL		0x18
  46
  47#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  48#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  49#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  50#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  51#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  52#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  53#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  54#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  55#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  56#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  59#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  60#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  61
  62#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  63#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  64#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  65#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  66
  67#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  68#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  69#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  70#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  71#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  72#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  73#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  74#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  75#define XADC_ZYNQ_STATUS_OT		BIT(7)
  76#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  77
  78#define XADC_ZYNQ_CTL_RESET		BIT(4)
  79
  80#define XADC_ZYNQ_CMD_NOP		0x00
  81#define XADC_ZYNQ_CMD_READ		0x01
  82#define XADC_ZYNQ_CMD_WRITE		0x02
  83
  84#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  85
  86/* AXI register definitions */
  87#define XADC_AXI_REG_RESET		0x00
  88#define XADC_AXI_REG_STATUS		0x04
  89#define XADC_AXI_REG_ALARM_STATUS	0x08
  90#define XADC_AXI_REG_CONVST		0x0c
  91#define XADC_AXI_REG_XADC_RESET		0x10
  92#define XADC_AXI_REG_GIER		0x5c
  93#define XADC_AXI_REG_IPISR		0x60
  94#define XADC_AXI_REG_IPIER		0x68
  95#define XADC_AXI_ADC_REG_OFFSET		0x200
 
 
 
 
 
  96
  97#define XADC_AXI_RESET_MAGIC		0xa
  98#define XADC_AXI_GIER_ENABLE		BIT(31)
  99
 100#define XADC_AXI_INT_EOS		BIT(4)
 101#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 102
 103#define XADC_FLAGS_BUFFERED BIT(0)
 
 
 
 
 
 
 
 
 
 
 
 104
 105static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 106	uint32_t val)
 107{
 108	writel(val, xadc->base + reg);
 109}
 110
 111static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 112	uint32_t *val)
 113{
 114	*val = readl(xadc->base + reg);
 115}
 116
 117/*
 118 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 119 * XADC. Reads and writes to the XADC register are performed by submitting a
 120 * request to the command FIFO (CFIFO), once the request has been completed the
 121 * result can be read from the data FIFO (DFIFO). The method currently used in
 122 * this driver is to submit the request for a read/write operation, then go to
 123 * sleep and wait for an interrupt that signals that a response is available in
 124 * the data FIFO.
 125 */
 126
 127static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 128	unsigned int n)
 129{
 130	unsigned int i;
 131
 132	for (i = 0; i < n; i++)
 133		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 134}
 135
 136static void xadc_zynq_drain_fifo(struct xadc *xadc)
 137{
 138	uint32_t status, tmp;
 139
 140	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 141
 142	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 143		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 144		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 145	}
 146}
 147
 148static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 149	unsigned int val)
 150{
 151	xadc->zynq_intmask &= ~mask;
 152	xadc->zynq_intmask |= val;
 153
 154	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 155		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 156}
 157
 158static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 159	uint16_t val)
 160{
 161	uint32_t cmd[1];
 162	uint32_t tmp;
 163	int ret;
 164
 165	spin_lock_irq(&xadc->lock);
 166	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 167			XADC_ZYNQ_INT_DFIFO_GTH);
 168
 169	reinit_completion(&xadc->completion);
 170
 171	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 172	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 173	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 174	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 175	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 176	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 177
 178	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 179	spin_unlock_irq(&xadc->lock);
 180
 181	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 182	if (ret == 0)
 183		ret = -EIO;
 184	else
 185		ret = 0;
 186
 187	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 188
 189	return ret;
 190}
 191
 192static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 193	uint16_t *val)
 194{
 195	uint32_t cmd[2];
 196	uint32_t resp, tmp;
 197	int ret;
 198
 199	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 200	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 201
 202	spin_lock_irq(&xadc->lock);
 203	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 204			XADC_ZYNQ_INT_DFIFO_GTH);
 205	xadc_zynq_drain_fifo(xadc);
 206	reinit_completion(&xadc->completion);
 207
 208	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 209	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 210	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 211	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 212	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 213
 214	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 215	spin_unlock_irq(&xadc->lock);
 216	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 217	if (ret == 0)
 218		ret = -EIO;
 219	if (ret < 0)
 220		return ret;
 221
 222	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 223	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 224
 225	*val = resp & 0xffff;
 226
 227	return 0;
 228}
 229
 230static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 231{
 232	return ((alarm & 0x80) >> 4) |
 233		((alarm & 0x78) << 1) |
 234		(alarm & 0x07);
 235}
 236
 237/*
 238 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 239 * threshold condition go way from within the interrupt handler, this means as
 240 * soon as a threshold condition is present we would enter the interrupt handler
 241 * again and again. To work around this we mask all active thresholds interrupts
 242 * in the interrupt handler and start a timer. In this timer we poll the
 243 * interrupt status and only if the interrupt is inactive we unmask it again.
 244 */
 245static void xadc_zynq_unmask_worker(struct work_struct *work)
 246{
 247	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 248	unsigned int misc_sts, unmask;
 249
 250	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 251
 252	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 253
 254	spin_lock_irq(&xadc->lock);
 255
 256	/* Clear those bits which are not active anymore */
 257	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 258	xadc->zynq_masked_alarm &= misc_sts;
 259
 260	/* Also clear those which are masked out anyway */
 261	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 262
 263	/* Clear the interrupts before we unmask them */
 264	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 265
 266	xadc_zynq_update_intmsk(xadc, 0, 0);
 267
 268	spin_unlock_irq(&xadc->lock);
 269
 270	/* if still pending some alarm re-trigger the timer */
 271	if (xadc->zynq_masked_alarm) {
 272		schedule_delayed_work(&xadc->zynq_unmask_work,
 273				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 274	}
 275
 276}
 277
 278static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 279{
 280	struct iio_dev *indio_dev = devid;
 281	struct xadc *xadc = iio_priv(indio_dev);
 282	uint32_t status;
 283
 284	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 285
 286	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 287
 288	if (!status)
 289		return IRQ_NONE;
 290
 291	spin_lock(&xadc->lock);
 292
 293	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 294
 295	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 296		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 297			XADC_ZYNQ_INT_DFIFO_GTH);
 298		complete(&xadc->completion);
 299	}
 300
 301	status &= XADC_ZYNQ_INT_ALARM_MASK;
 302	if (status) {
 303		xadc->zynq_masked_alarm |= status;
 304		/*
 305		 * mask the current event interrupt,
 306		 * unmask it when the interrupt is no more active.
 307		 */
 308		xadc_zynq_update_intmsk(xadc, 0, 0);
 309
 310		xadc_handle_events(indio_dev,
 311				xadc_zynq_transform_alarm(status));
 312
 313		/* unmask the required interrupts in timer. */
 314		schedule_delayed_work(&xadc->zynq_unmask_work,
 315				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 316	}
 317	spin_unlock(&xadc->lock);
 318
 319	return IRQ_HANDLED;
 320}
 321
 322#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 323#define XADC_ZYNQ_IGAP_DEFAULT 20
 324#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 325
 326static int xadc_zynq_setup(struct platform_device *pdev,
 327	struct iio_dev *indio_dev, int irq)
 328{
 329	struct xadc *xadc = iio_priv(indio_dev);
 330	unsigned long pcap_rate;
 331	unsigned int tck_div;
 332	unsigned int div;
 333	unsigned int igap;
 334	unsigned int tck_rate;
 335	int ret;
 336
 337	/* TODO: Figure out how to make igap and tck_rate configurable */
 338	igap = XADC_ZYNQ_IGAP_DEFAULT;
 339	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 340
 341	xadc->zynq_intmask = ~0;
 342
 343	pcap_rate = clk_get_rate(xadc->clk);
 344	if (!pcap_rate)
 345		return -EINVAL;
 346
 347	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 348		ret = clk_set_rate(xadc->clk,
 349				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 350		if (ret)
 351			return ret;
 352	}
 353
 354	if (tck_rate > pcap_rate / 2) {
 355		div = 2;
 356	} else {
 357		div = pcap_rate / tck_rate;
 358		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 359			div++;
 360	}
 361
 362	if (div <= 3)
 363		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 364	else if (div <= 7)
 365		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 366	else if (div <= 15)
 367		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 368	else
 369		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 370
 371	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 372	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 373	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 374	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 375	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 376			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 377			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 378
 379	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 380		ret = clk_set_rate(xadc->clk, pcap_rate);
 381		if (ret)
 382			return ret;
 383	}
 384
 385	return 0;
 386}
 387
 388static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 389{
 390	unsigned int div;
 391	uint32_t val;
 392
 393	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 394
 395	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 396	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 397		div = 4;
 398		break;
 399	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 400		div = 8;
 401		break;
 402	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 403		div = 16;
 404		break;
 405	default:
 406		div = 2;
 407		break;
 408	}
 409
 410	return clk_get_rate(xadc->clk) / div;
 411}
 412
 413static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 414{
 415	unsigned long flags;
 416	uint32_t status;
 417
 418	/* Move OT to bit 7 */
 419	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 420
 421	spin_lock_irqsave(&xadc->lock, flags);
 422
 423	/* Clear previous interrupts if any. */
 424	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 425	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 426
 427	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 428		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 429
 430	spin_unlock_irqrestore(&xadc->lock, flags);
 431}
 432
 433static const struct xadc_ops xadc_zynq_ops = {
 434	.read = xadc_zynq_read_adc_reg,
 435	.write = xadc_zynq_write_adc_reg,
 436	.setup = xadc_zynq_setup,
 437	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 438	.interrupt_handler = xadc_zynq_interrupt_handler,
 439	.update_alarm = xadc_zynq_update_alarm,
 
 
 
 
 
 
 440};
 441
 442static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 443	uint16_t *val)
 444{
 445	uint32_t val32;
 446
 447	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
 
 448	*val = val32 & 0xffff;
 449
 450	return 0;
 451}
 452
 453static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 454	uint16_t val)
 455{
 456	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
 
 457
 458	return 0;
 459}
 460
 461static int xadc_axi_setup(struct platform_device *pdev,
 462	struct iio_dev *indio_dev, int irq)
 463{
 464	struct xadc *xadc = iio_priv(indio_dev);
 465
 466	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 467	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 468
 469	return 0;
 470}
 471
 472static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 473{
 474	struct iio_dev *indio_dev = devid;
 475	struct xadc *xadc = iio_priv(indio_dev);
 476	uint32_t status, mask;
 477	unsigned int events;
 478
 479	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 480	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 481	status &= mask;
 482
 483	if (!status)
 484		return IRQ_NONE;
 485
 486	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 487		iio_trigger_poll(xadc->trigger);
 488
 489	if (status & XADC_AXI_INT_ALARM_MASK) {
 490		/*
 491		 * The order of the bits in the AXI-XADC status register does
 492		 * not match the order of the bits in the XADC alarm enable
 493		 * register. xadc_handle_events() expects the events to be in
 494		 * the same order as the XADC alarm enable register.
 495		 */
 496		events = (status & 0x000e) >> 1;
 497		events |= (status & 0x0001) << 3;
 498		events |= (status & 0x3c00) >> 6;
 499		xadc_handle_events(indio_dev, events);
 500	}
 501
 502	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 503
 504	return IRQ_HANDLED;
 505}
 506
 507static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 508{
 509	uint32_t val;
 510	unsigned long flags;
 511
 512	/*
 513	 * The order of the bits in the AXI-XADC status register does not match
 514	 * the order of the bits in the XADC alarm enable register. We get
 515	 * passed the alarm mask in the same order as in the XADC alarm enable
 516	 * register.
 517	 */
 518	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 519			((alarm & 0xf0) << 6);
 520
 521	spin_lock_irqsave(&xadc->lock, flags);
 522	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 523	val &= ~XADC_AXI_INT_ALARM_MASK;
 524	val |= alarm;
 525	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 526	spin_unlock_irqrestore(&xadc->lock, flags);
 527}
 528
 529static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 530{
 531	return clk_get_rate(xadc->clk);
 532}
 533
 534static const struct xadc_ops xadc_axi_ops = {
 535	.read = xadc_axi_read_adc_reg,
 536	.write = xadc_axi_write_adc_reg,
 537	.setup = xadc_axi_setup,
 538	.get_dclk_rate = xadc_axi_get_dclk,
 539	.update_alarm = xadc_axi_update_alarm,
 540	.interrupt_handler = xadc_axi_interrupt_handler,
 541	.flags = XADC_FLAGS_BUFFERED,
 
 
 
 
 
 
 
 
 
 
 
 
 542};
 543
 544static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 545	uint16_t mask, uint16_t val)
 546{
 547	uint16_t tmp;
 548	int ret;
 549
 550	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 551	if (ret)
 552		return ret;
 553
 554	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 555}
 556
 557static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 558	uint16_t mask, uint16_t val)
 559{
 560	int ret;
 561
 562	mutex_lock(&xadc->mutex);
 563	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 564	mutex_unlock(&xadc->mutex);
 565
 566	return ret;
 567}
 568
 569static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 570{
 571	return xadc->ops->get_dclk_rate(xadc);
 572}
 573
 574static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 575	const unsigned long *mask)
 576{
 577	struct xadc *xadc = iio_priv(indio_dev);
 578	unsigned int n;
 
 579
 580	n = bitmap_weight(mask, indio_dev->masklength);
 581
 582	kfree(xadc->data);
 583	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
 584	if (!xadc->data)
 585		return -ENOMEM;
 586
 
 
 
 
 
 
 
 
 587	return 0;
 588}
 589
 590static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 591{
 592	switch (scan_index) {
 593	case 5:
 594		return XADC_REG_VCCPINT;
 595	case 6:
 596		return XADC_REG_VCCPAUX;
 597	case 7:
 598		return XADC_REG_VCCO_DDR;
 599	case 8:
 600		return XADC_REG_TEMP;
 601	case 9:
 602		return XADC_REG_VCCINT;
 603	case 10:
 604		return XADC_REG_VCCAUX;
 605	case 11:
 606		return XADC_REG_VPVN;
 607	case 12:
 608		return XADC_REG_VREFP;
 609	case 13:
 610		return XADC_REG_VREFN;
 611	case 14:
 612		return XADC_REG_VCCBRAM;
 613	default:
 614		return XADC_REG_VAUX(scan_index - 16);
 615	}
 616}
 617
 618static irqreturn_t xadc_trigger_handler(int irq, void *p)
 619{
 620	struct iio_poll_func *pf = p;
 621	struct iio_dev *indio_dev = pf->indio_dev;
 622	struct xadc *xadc = iio_priv(indio_dev);
 623	unsigned int chan;
 624	int i, j;
 625
 626	if (!xadc->data)
 627		goto out;
 628
 629	j = 0;
 630	for_each_set_bit(i, indio_dev->active_scan_mask,
 631		indio_dev->masklength) {
 632		chan = xadc_scan_index_to_channel(i);
 633		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 634		j++;
 635	}
 636
 637	iio_push_to_buffers(indio_dev, xadc->data);
 638
 639out:
 640	iio_trigger_notify_done(indio_dev->trig);
 641
 642	return IRQ_HANDLED;
 643}
 644
 645static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 646{
 647	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 648	unsigned long flags;
 649	unsigned int convst;
 650	unsigned int val;
 651	int ret = 0;
 652
 653	mutex_lock(&xadc->mutex);
 654
 655	if (state) {
 656		/* Only one of the two triggers can be active at the a time. */
 657		if (xadc->trigger != NULL) {
 658			ret = -EBUSY;
 659			goto err_out;
 660		} else {
 661			xadc->trigger = trigger;
 662			if (trigger == xadc->convst_trigger)
 663				convst = XADC_CONF0_EC;
 664			else
 665				convst = 0;
 666		}
 667		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 668					convst);
 669		if (ret)
 670			goto err_out;
 671	} else {
 672		xadc->trigger = NULL;
 673	}
 674
 675	spin_lock_irqsave(&xadc->lock, flags);
 676	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 677	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
 678	if (state)
 679		val |= XADC_AXI_INT_EOS;
 680	else
 681		val &= ~XADC_AXI_INT_EOS;
 682	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 683	spin_unlock_irqrestore(&xadc->lock, flags);
 684
 685err_out:
 686	mutex_unlock(&xadc->mutex);
 687
 688	return ret;
 689}
 690
 691static const struct iio_trigger_ops xadc_trigger_ops = {
 692	.set_trigger_state = &xadc_trigger_set_state,
 693};
 694
 695static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 696	const char *name)
 697{
 
 698	struct iio_trigger *trig;
 699	int ret;
 700
 701	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
 702				indio_dev->id, name);
 703	if (trig == NULL)
 704		return ERR_PTR(-ENOMEM);
 705
 706	trig->dev.parent = indio_dev->dev.parent;
 707	trig->ops = &xadc_trigger_ops;
 708	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 709
 710	ret = iio_trigger_register(trig);
 711	if (ret)
 712		goto error_free_trig;
 713
 714	return trig;
 715
 716error_free_trig:
 717	iio_trigger_free(trig);
 718	return ERR_PTR(ret);
 719}
 720
 721static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 722{
 723	uint16_t val;
 724
 
 
 
 
 
 
 
 
 
 
 725	switch (seq_mode) {
 726	case XADC_CONF1_SEQ_SIMULTANEOUS:
 727	case XADC_CONF1_SEQ_INDEPENDENT:
 728		val = XADC_CONF2_PD_ADC_B;
 729		break;
 730	default:
 731		val = 0;
 732		break;
 733	}
 734
 735	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 736		val);
 737}
 738
 739static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 740{
 741	unsigned int aux_scan_mode = scan_mode >> 16;
 742
 
 
 
 
 743	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 744		return XADC_CONF1_SEQ_SIMULTANEOUS;
 745
 746	if ((aux_scan_mode & 0xff00) == 0 ||
 747		(aux_scan_mode & 0x00ff) == 0)
 748		return XADC_CONF1_SEQ_CONTINUOUS;
 749
 750	return XADC_CONF1_SEQ_SIMULTANEOUS;
 751}
 752
 753static int xadc_postdisable(struct iio_dev *indio_dev)
 754{
 755	struct xadc *xadc = iio_priv(indio_dev);
 756	unsigned long scan_mask;
 757	int ret;
 758	int i;
 759
 760	scan_mask = 1; /* Run calibration as part of the sequence */
 761	for (i = 0; i < indio_dev->num_channels; i++)
 762		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 763
 764	/* Enable all channels and calibration */
 765	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 766	if (ret)
 767		return ret;
 768
 769	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 770	if (ret)
 771		return ret;
 772
 773	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 774		XADC_CONF1_SEQ_CONTINUOUS);
 775	if (ret)
 776		return ret;
 777
 778	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 779}
 780
 781static int xadc_preenable(struct iio_dev *indio_dev)
 782{
 783	struct xadc *xadc = iio_priv(indio_dev);
 784	unsigned long scan_mask;
 785	int seq_mode;
 786	int ret;
 787
 788	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 789		XADC_CONF1_SEQ_DEFAULT);
 790	if (ret)
 791		goto err;
 792
 793	scan_mask = *indio_dev->active_scan_mask;
 794	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 795
 796	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 797	if (ret)
 798		goto err;
 799
 
 
 
 
 
 
 
 
 
 
 800	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 801	if (ret)
 802		goto err;
 803
 804	ret = xadc_power_adc_b(xadc, seq_mode);
 805	if (ret)
 806		goto err;
 807
 808	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 809		seq_mode);
 810	if (ret)
 811		goto err;
 812
 813	return 0;
 814err:
 815	xadc_postdisable(indio_dev);
 816	return ret;
 817}
 818
 819static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 820	.preenable = &xadc_preenable,
 821	.postenable = &iio_triggered_buffer_postenable,
 822	.predisable = &iio_triggered_buffer_predisable,
 823	.postdisable = &xadc_postdisable,
 824};
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826static int xadc_read_raw(struct iio_dev *indio_dev,
 827	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 828{
 829	struct xadc *xadc = iio_priv(indio_dev);
 830	unsigned int div;
 831	uint16_t val16;
 832	int ret;
 833
 834	switch (info) {
 835	case IIO_CHAN_INFO_RAW:
 836		if (iio_buffer_enabled(indio_dev))
 837			return -EBUSY;
 838		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 839		if (ret < 0)
 840			return ret;
 841
 842		val16 >>= 4;
 843		if (chan->scan_type.sign == 'u')
 844			*val = val16;
 845		else
 846			*val = sign_extend32(val16, 11);
 847
 848		return IIO_VAL_INT;
 849	case IIO_CHAN_INFO_SCALE:
 850		switch (chan->type) {
 851		case IIO_VOLTAGE:
 852			/* V = (val * 3.0) / 4096 */
 853			switch (chan->address) {
 854			case XADC_REG_VCCINT:
 855			case XADC_REG_VCCAUX:
 856			case XADC_REG_VREFP:
 857			case XADC_REG_VREFN:
 858			case XADC_REG_VCCBRAM:
 859			case XADC_REG_VCCPINT:
 860			case XADC_REG_VCCPAUX:
 861			case XADC_REG_VCCO_DDR:
 862				*val = 3000;
 863				break;
 864			default:
 865				*val = 1000;
 866				break;
 867			}
 868			*val2 = 12;
 869			return IIO_VAL_FRACTIONAL_LOG2;
 870		case IIO_TEMP:
 871			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
 872			*val = 503975;
 873			*val2 = 12;
 874			return IIO_VAL_FRACTIONAL_LOG2;
 875		default:
 876			return -EINVAL;
 877		}
 878	case IIO_CHAN_INFO_OFFSET:
 879		/* Only the temperature channel has an offset */
 880		*val = -((273150 << 12) / 503975);
 881		return IIO_VAL_INT;
 882	case IIO_CHAN_INFO_SAMP_FREQ:
 883		ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 884		if (ret)
 885			return ret;
 886
 887		div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 888		if (div < 2)
 889			div = 2;
 890
 891		*val = xadc_get_dclk_rate(xadc) / div / 26;
 892
 893		return IIO_VAL_INT;
 894	default:
 895		return -EINVAL;
 896	}
 897}
 898
 899static int xadc_write_raw(struct iio_dev *indio_dev,
 900	struct iio_chan_spec const *chan, int val, int val2, long info)
 901{
 902	struct xadc *xadc = iio_priv(indio_dev);
 903	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 904	unsigned int div;
 905
 906	if (!clk_rate)
 907		return -EINVAL;
 908
 909	if (info != IIO_CHAN_INFO_SAMP_FREQ)
 910		return -EINVAL;
 911
 912	if (val <= 0)
 913		return -EINVAL;
 914
 915	/* Max. 150 kSPS */
 916	if (val > 150000)
 917		val = 150000;
 918
 919	val *= 26;
 920
 921	/* Min 1MHz */
 922	if (val < 1000000)
 923		val = 1000000;
 924
 925	/*
 926	 * We want to round down, but only if we do not exceed the 150 kSPS
 927	 * limit.
 928	 */
 929	div = clk_rate / val;
 930	if (clk_rate / div / 26 > 150000)
 931		div++;
 932	if (div < 2)
 933		div = 2;
 934	else if (div > 0xff)
 935		div = 0xff;
 936
 937	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
 938		div << XADC_CONF2_DIV_OFFSET);
 939}
 940
 
 
 
 
 
 
 
 
 
 
 
 941static const struct iio_event_spec xadc_temp_events[] = {
 942	{
 943		.type = IIO_EV_TYPE_THRESH,
 944		.dir = IIO_EV_DIR_RISING,
 945		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
 946				BIT(IIO_EV_INFO_VALUE) |
 947				BIT(IIO_EV_INFO_HYSTERESIS),
 948	},
 949};
 950
 951/* Separate values for upper and lower thresholds, but only a shared enabled */
 952static const struct iio_event_spec xadc_voltage_events[] = {
 953	{
 954		.type = IIO_EV_TYPE_THRESH,
 955		.dir = IIO_EV_DIR_RISING,
 956		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 957	}, {
 958		.type = IIO_EV_TYPE_THRESH,
 959		.dir = IIO_EV_DIR_FALLING,
 960		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 961	}, {
 962		.type = IIO_EV_TYPE_THRESH,
 963		.dir = IIO_EV_DIR_EITHER,
 964		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
 965	},
 966};
 967
 968#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
 969	.type = IIO_TEMP, \
 970	.indexed = 1, \
 971	.channel = (_chan), \
 972	.address = (_addr), \
 973	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 974		BIT(IIO_CHAN_INFO_SCALE) | \
 975		BIT(IIO_CHAN_INFO_OFFSET), \
 976	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 977	.event_spec = xadc_temp_events, \
 978	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
 979	.scan_index = (_scan_index), \
 980	.scan_type = { \
 981		.sign = 'u', \
 982		.realbits = 12, \
 983		.storagebits = 16, \
 984		.shift = 4, \
 985		.endianness = IIO_CPU, \
 986	}, \
 987}
 988
 989#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
 990	.type = IIO_VOLTAGE, \
 991	.indexed = 1, \
 992	.channel = (_chan), \
 993	.address = (_addr), \
 994	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 995		BIT(IIO_CHAN_INFO_SCALE), \
 996	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 997	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
 998	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
 999	.scan_index = (_scan_index), \
1000	.scan_type = { \
1001		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1002		.realbits = 12, \
1003		.storagebits = 16, \
1004		.shift = 4, \
1005		.endianness = IIO_CPU, \
1006	}, \
1007	.extend_name = _ext, \
1008}
1009
1010static const struct iio_chan_spec xadc_channels[] = {
1011	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1012	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1013	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1014	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1015	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1016	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1017	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1018	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1019	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1020	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1021	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1022	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1023	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1024	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1025	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1026	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1027	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1028	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1029	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1030	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1031	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1032	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1033	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1034	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1035	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1036	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037};
1038
1039static const struct iio_info xadc_info = {
1040	.read_raw = &xadc_read_raw,
1041	.write_raw = &xadc_write_raw,
1042	.read_event_config = &xadc_read_event_config,
1043	.write_event_config = &xadc_write_event_config,
1044	.read_event_value = &xadc_read_event_value,
1045	.write_event_value = &xadc_write_event_value,
1046	.update_scan_mode = &xadc_update_scan_mode,
1047};
1048
1049static const struct of_device_id xadc_of_match_table[] = {
1050	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1051	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
 
 
 
 
 
 
 
 
1052	{ },
1053};
1054MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1055
1056static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1057	unsigned int *conf)
1058{
 
1059	struct xadc *xadc = iio_priv(indio_dev);
 
1060	struct iio_chan_spec *channels, *chan;
1061	struct device_node *chan_node, *child;
 
1062	unsigned int num_channels;
1063	const char *external_mux;
1064	u32 ext_mux_chan;
1065	u32 reg;
1066	int ret;
 
1067
1068	*conf = 0;
1069
1070	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1071	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1072		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1073	else if (strcasecmp(external_mux, "single") == 0)
1074		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1075	else if (strcasecmp(external_mux, "dual") == 0)
1076		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1077	else
1078		return -EINVAL;
1079
1080	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1081		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1082					&ext_mux_chan);
1083		if (ret < 0)
1084			return ret;
1085
1086		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1087			if (ext_mux_chan == 0)
1088				ext_mux_chan = XADC_REG_VPVN;
1089			else if (ext_mux_chan <= 16)
1090				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1091			else
1092				return -EINVAL;
1093		} else {
1094			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1095				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1096			else
1097				return -EINVAL;
1098		}
1099
1100		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1101	}
1102
1103	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
 
 
 
 
 
 
 
1104	if (!channels)
1105		return -ENOMEM;
1106
1107	num_channels = 9;
1108	chan = &channels[9];
1109
1110	chan_node = of_get_child_by_name(np, "xlnx,channels");
1111	if (chan_node) {
1112		for_each_child_of_node(chan_node, child) {
1113			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1114				of_node_put(child);
1115				break;
1116			}
1117
1118			ret = of_property_read_u32(child, "reg", &reg);
1119			if (ret || reg > 16)
1120				continue;
1121
1122			if (of_property_read_bool(child, "xlnx,bipolar"))
1123				chan->scan_type.sign = 's';
1124
1125			if (reg == 0) {
1126				chan->scan_index = 11;
1127				chan->address = XADC_REG_VPVN;
1128			} else {
1129				chan->scan_index = 15 + reg;
1130				chan->address = XADC_REG_VAUX(reg - 1);
1131			}
1132			num_channels++;
1133			chan++;
 
 
 
 
 
 
 
 
1134		}
1135	}
1136	of_node_put(chan_node);
1137
1138	indio_dev->num_channels = num_channels;
1139	indio_dev->channels = krealloc(channels, sizeof(*channels) *
1140					num_channels, GFP_KERNEL);
 
1141	/* If we can't resize the channels array, just use the original */
1142	if (!indio_dev->channels)
1143		indio_dev->channels = channels;
1144
1145	return 0;
1146}
1147
 
 
 
 
 
 
 
 
 
 
 
 
1148static int xadc_probe(struct platform_device *pdev)
1149{
1150	const struct of_device_id *id;
 
1151	struct iio_dev *indio_dev;
1152	unsigned int bipolar_mask;
1153	struct resource *mem;
1154	unsigned int conf0;
1155	struct xadc *xadc;
1156	int ret;
1157	int irq;
1158	int i;
1159
1160	if (!pdev->dev.of_node)
1161		return -ENODEV;
1162
1163	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1164	if (!id)
1165		return -EINVAL;
1166
1167	irq = platform_get_irq(pdev, 0);
1168	if (irq <= 0)
1169		return -ENXIO;
 
1170
1171	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1172	if (!indio_dev)
1173		return -ENOMEM;
1174
1175	xadc = iio_priv(indio_dev);
1176	xadc->ops = id->data;
1177	xadc->irq = irq;
1178	init_completion(&xadc->completion);
1179	mutex_init(&xadc->mutex);
1180	spin_lock_init(&xadc->lock);
1181	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1182
1183	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1184	xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1185	if (IS_ERR(xadc->base))
1186		return PTR_ERR(xadc->base);
1187
1188	indio_dev->dev.parent = &pdev->dev;
1189	indio_dev->dev.of_node = pdev->dev.of_node;
1190	indio_dev->name = "xadc";
1191	indio_dev->modes = INDIO_DIRECT_MODE;
1192	indio_dev->info = &xadc_info;
1193
1194	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1195	if (ret)
1196		goto err_device_free;
1197
1198	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1199		ret = iio_triggered_buffer_setup(indio_dev,
1200			&iio_pollfunc_store_time, &xadc_trigger_handler,
1201			&xadc_buffer_ops);
 
1202		if (ret)
1203			goto err_device_free;
1204
1205		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1206		if (IS_ERR(xadc->convst_trigger)) {
1207			ret = PTR_ERR(xadc->convst_trigger);
1208			goto err_triggered_buffer_cleanup;
1209		}
1210		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1211			"samplerate");
1212		if (IS_ERR(xadc->samplerate_trigger)) {
1213			ret = PTR_ERR(xadc->samplerate_trigger);
1214			goto err_free_convst_trigger;
1215		}
1216	}
1217
1218	xadc->clk = devm_clk_get(&pdev->dev, NULL);
1219	if (IS_ERR(xadc->clk)) {
1220		ret = PTR_ERR(xadc->clk);
1221		goto err_free_samplerate_trigger;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222	}
1223
1224	ret = clk_prepare_enable(xadc->clk);
1225	if (ret)
1226		goto err_free_samplerate_trigger;
 
 
1227
1228	ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1229			dev_name(&pdev->dev), indio_dev);
1230	if (ret)
1231		goto err_clk_disable_unprepare;
 
1232
1233	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1234	if (ret)
1235		goto err_free_irq;
1236
1237	for (i = 0; i < 16; i++)
1238		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1239			&xadc->threshold[i]);
1240
1241	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1242	if (ret)
1243		goto err_free_irq;
1244
1245	bipolar_mask = 0;
1246	for (i = 0; i < indio_dev->num_channels; i++) {
1247		if (indio_dev->channels[i].scan_type.sign == 's')
1248			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1249	}
1250
1251	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1252	if (ret)
1253		goto err_free_irq;
 
1254	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1255		bipolar_mask >> 16);
1256	if (ret)
1257		goto err_free_irq;
1258
1259	/* Disable all alarms */
1260	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1261				  XADC_CONF1_ALARM_MASK);
1262	if (ret)
1263		goto err_free_irq;
1264
1265	/* Set thresholds to min/max */
1266	for (i = 0; i < 16; i++) {
1267		/*
1268		 * Set max voltage threshold and both temperature thresholds to
1269		 * 0xffff, min voltage threshold to 0.
1270		 */
1271		if (i % 8 < 4 || i == 7)
1272			xadc->threshold[i] = 0xffff;
1273		else
1274			xadc->threshold[i] = 0;
1275		ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1276			xadc->threshold[i]);
1277		if (ret)
1278			goto err_free_irq;
1279	}
1280
1281	/* Go to non-buffered mode */
1282	xadc_postdisable(indio_dev);
1283
1284	ret = iio_device_register(indio_dev);
1285	if (ret)
1286		goto err_free_irq;
1287
1288	platform_set_drvdata(pdev, indio_dev);
1289
1290	return 0;
1291
1292err_free_irq:
1293	free_irq(xadc->irq, indio_dev);
1294	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1295err_clk_disable_unprepare:
1296	clk_disable_unprepare(xadc->clk);
1297err_free_samplerate_trigger:
1298	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1299		iio_trigger_free(xadc->samplerate_trigger);
1300err_free_convst_trigger:
1301	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1302		iio_trigger_free(xadc->convst_trigger);
1303err_triggered_buffer_cleanup:
1304	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1305		iio_triggered_buffer_cleanup(indio_dev);
1306err_device_free:
1307	kfree(indio_dev->channels);
1308
1309	return ret;
1310}
1311
1312static int xadc_remove(struct platform_device *pdev)
1313{
1314	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1315	struct xadc *xadc = iio_priv(indio_dev);
1316
1317	iio_device_unregister(indio_dev);
1318	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1319		iio_trigger_free(xadc->samplerate_trigger);
1320		iio_trigger_free(xadc->convst_trigger);
1321		iio_triggered_buffer_cleanup(indio_dev);
1322	}
1323	free_irq(xadc->irq, indio_dev);
1324	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1325	clk_disable_unprepare(xadc->clk);
1326	kfree(xadc->data);
1327	kfree(indio_dev->channels);
1328
1329	return 0;
1330}
1331
1332static struct platform_driver xadc_driver = {
1333	.probe = xadc_probe,
1334	.remove = xadc_remove,
1335	.driver = {
1336		.name = "xadc",
1337		.of_match_table = xadc_of_match_table,
1338	},
1339};
1340module_platform_driver(xadc_driver);
1341
1342MODULE_LICENSE("GPL v2");
1343MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1344MODULE_DESCRIPTION("Xilinx XADC IIO driver");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/mod_devicetable.h>
  21#include <linux/module.h>
  22#include <linux/overflow.h>
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/slab.h>
  26#include <linux/sysfs.h>
  27
  28#include <linux/iio/buffer.h>
  29#include <linux/iio/events.h>
  30#include <linux/iio/iio.h>
  31#include <linux/iio/sysfs.h>
  32#include <linux/iio/trigger.h>
  33#include <linux/iio/trigger_consumer.h>
  34#include <linux/iio/triggered_buffer.h>
  35
  36#include "xilinx-xadc.h"
  37
  38static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  39
  40/* ZYNQ register definitions */
  41#define XADC_ZYNQ_REG_CFG	0x00
  42#define XADC_ZYNQ_REG_INTSTS	0x04
  43#define XADC_ZYNQ_REG_INTMSK	0x08
  44#define XADC_ZYNQ_REG_STATUS	0x0c
  45#define XADC_ZYNQ_REG_CFIFO	0x10
  46#define XADC_ZYNQ_REG_DFIFO	0x14
  47#define XADC_ZYNQ_REG_CTL		0x18
  48
  49#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  50#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  51#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  52#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  53#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  54#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  55#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  56#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  59#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  60#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  61#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  62#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  63
  64#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  65#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  66#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  67#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  68
  69#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  70#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  71#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  72#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  73#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  74#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  75#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  76#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  77#define XADC_ZYNQ_STATUS_OT		BIT(7)
  78#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  79
  80#define XADC_ZYNQ_CTL_RESET		BIT(4)
  81
  82#define XADC_ZYNQ_CMD_NOP		0x00
  83#define XADC_ZYNQ_CMD_READ		0x01
  84#define XADC_ZYNQ_CMD_WRITE		0x02
  85
  86#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  87
  88/* AXI register definitions */
  89#define XADC_AXI_REG_RESET		0x00
  90#define XADC_AXI_REG_STATUS		0x04
  91#define XADC_AXI_REG_ALARM_STATUS	0x08
  92#define XADC_AXI_REG_CONVST		0x0c
  93#define XADC_AXI_REG_XADC_RESET		0x10
  94#define XADC_AXI_REG_GIER		0x5c
  95#define XADC_AXI_REG_IPISR		0x60
  96#define XADC_AXI_REG_IPIER		0x68
  97
  98/* 7 Series */
  99#define XADC_7S_AXI_ADC_REG_OFFSET	0x200
 100
 101/* UltraScale */
 102#define XADC_US_AXI_ADC_REG_OFFSET	0x400
 103
 104#define XADC_AXI_RESET_MAGIC		0xa
 105#define XADC_AXI_GIER_ENABLE		BIT(31)
 106
 107#define XADC_AXI_INT_EOS		BIT(4)
 108#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 109
 110#define XADC_FLAGS_BUFFERED BIT(0)
 111#define XADC_FLAGS_IRQ_OPTIONAL BIT(1)
 112
 113/*
 114 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
 115 * not have a hardware FIFO. Which means an interrupt is generated for each
 116 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
 117 * overloaded by the interrupts that it soft-lockups. For this reason the driver
 118 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
 119 * but still responsive.
 120 */
 121#define XADC_MAX_SAMPLERATE 150000
 122
 123static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 124	uint32_t val)
 125{
 126	writel(val, xadc->base + reg);
 127}
 128
 129static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 130	uint32_t *val)
 131{
 132	*val = readl(xadc->base + reg);
 133}
 134
 135/*
 136 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 137 * XADC. Reads and writes to the XADC register are performed by submitting a
 138 * request to the command FIFO (CFIFO), once the request has been completed the
 139 * result can be read from the data FIFO (DFIFO). The method currently used in
 140 * this driver is to submit the request for a read/write operation, then go to
 141 * sleep and wait for an interrupt that signals that a response is available in
 142 * the data FIFO.
 143 */
 144
 145static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149
 150	for (i = 0; i < n; i++)
 151		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 152}
 153
 154static void xadc_zynq_drain_fifo(struct xadc *xadc)
 155{
 156	uint32_t status, tmp;
 157
 158	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 159
 160	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 161		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 162		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 163	}
 164}
 165
 166static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 167	unsigned int val)
 168{
 169	xadc->zynq_intmask &= ~mask;
 170	xadc->zynq_intmask |= val;
 171
 172	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 173		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 174}
 175
 176static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 177	uint16_t val)
 178{
 179	uint32_t cmd[1];
 180	uint32_t tmp;
 181	int ret;
 182
 183	spin_lock_irq(&xadc->lock);
 184	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 185			XADC_ZYNQ_INT_DFIFO_GTH);
 186
 187	reinit_completion(&xadc->completion);
 188
 189	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 190	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 191	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 192	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 193	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 194	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 195
 196	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 197	spin_unlock_irq(&xadc->lock);
 198
 199	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 200	if (ret == 0)
 201		ret = -EIO;
 202	else
 203		ret = 0;
 204
 205	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 206
 207	return ret;
 208}
 209
 210static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 211	uint16_t *val)
 212{
 213	uint32_t cmd[2];
 214	uint32_t resp, tmp;
 215	int ret;
 216
 217	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 218	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 219
 220	spin_lock_irq(&xadc->lock);
 221	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 222			XADC_ZYNQ_INT_DFIFO_GTH);
 223	xadc_zynq_drain_fifo(xadc);
 224	reinit_completion(&xadc->completion);
 225
 226	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 227	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 228	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 229	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 230	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 231
 232	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 233	spin_unlock_irq(&xadc->lock);
 234	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 235	if (ret == 0)
 236		ret = -EIO;
 237	if (ret < 0)
 238		return ret;
 239
 240	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 241	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 242
 243	*val = resp & 0xffff;
 244
 245	return 0;
 246}
 247
 248static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 249{
 250	return ((alarm & 0x80) >> 4) |
 251		((alarm & 0x78) << 1) |
 252		(alarm & 0x07);
 253}
 254
 255/*
 256 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 257 * threshold condition go way from within the interrupt handler, this means as
 258 * soon as a threshold condition is present we would enter the interrupt handler
 259 * again and again. To work around this we mask all active thresholds interrupts
 260 * in the interrupt handler and start a timer. In this timer we poll the
 261 * interrupt status and only if the interrupt is inactive we unmask it again.
 262 */
 263static void xadc_zynq_unmask_worker(struct work_struct *work)
 264{
 265	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 266	unsigned int misc_sts, unmask;
 267
 268	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 269
 270	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 271
 272	spin_lock_irq(&xadc->lock);
 273
 274	/* Clear those bits which are not active anymore */
 275	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 276	xadc->zynq_masked_alarm &= misc_sts;
 277
 278	/* Also clear those which are masked out anyway */
 279	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 280
 281	/* Clear the interrupts before we unmask them */
 282	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 283
 284	xadc_zynq_update_intmsk(xadc, 0, 0);
 285
 286	spin_unlock_irq(&xadc->lock);
 287
 288	/* if still pending some alarm re-trigger the timer */
 289	if (xadc->zynq_masked_alarm) {
 290		schedule_delayed_work(&xadc->zynq_unmask_work,
 291				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 292	}
 293
 294}
 295
 296static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 297{
 298	struct iio_dev *indio_dev = devid;
 299	struct xadc *xadc = iio_priv(indio_dev);
 300	uint32_t status;
 301
 302	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 303
 304	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 305
 306	if (!status)
 307		return IRQ_NONE;
 308
 309	spin_lock(&xadc->lock);
 310
 311	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 312
 313	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 314		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 315			XADC_ZYNQ_INT_DFIFO_GTH);
 316		complete(&xadc->completion);
 317	}
 318
 319	status &= XADC_ZYNQ_INT_ALARM_MASK;
 320	if (status) {
 321		xadc->zynq_masked_alarm |= status;
 322		/*
 323		 * mask the current event interrupt,
 324		 * unmask it when the interrupt is no more active.
 325		 */
 326		xadc_zynq_update_intmsk(xadc, 0, 0);
 327
 328		xadc_handle_events(indio_dev,
 329				xadc_zynq_transform_alarm(status));
 330
 331		/* unmask the required interrupts in timer. */
 332		schedule_delayed_work(&xadc->zynq_unmask_work,
 333				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 334	}
 335	spin_unlock(&xadc->lock);
 336
 337	return IRQ_HANDLED;
 338}
 339
 340#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 341#define XADC_ZYNQ_IGAP_DEFAULT 20
 342#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 343
 344static int xadc_zynq_setup(struct platform_device *pdev,
 345	struct iio_dev *indio_dev, int irq)
 346{
 347	struct xadc *xadc = iio_priv(indio_dev);
 348	unsigned long pcap_rate;
 349	unsigned int tck_div;
 350	unsigned int div;
 351	unsigned int igap;
 352	unsigned int tck_rate;
 353	int ret;
 354
 355	/* TODO: Figure out how to make igap and tck_rate configurable */
 356	igap = XADC_ZYNQ_IGAP_DEFAULT;
 357	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 358
 359	xadc->zynq_intmask = ~0;
 360
 361	pcap_rate = clk_get_rate(xadc->clk);
 362	if (!pcap_rate)
 363		return -EINVAL;
 364
 365	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 366		ret = clk_set_rate(xadc->clk,
 367				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 368		if (ret)
 369			return ret;
 370	}
 371
 372	if (tck_rate > pcap_rate / 2) {
 373		div = 2;
 374	} else {
 375		div = pcap_rate / tck_rate;
 376		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 377			div++;
 378	}
 379
 380	if (div <= 3)
 381		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 382	else if (div <= 7)
 383		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 384	else if (div <= 15)
 385		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 386	else
 387		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 388
 389	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 390	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 391	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 392	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 393	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 394			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 395			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 396
 397	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 398		ret = clk_set_rate(xadc->clk, pcap_rate);
 399		if (ret)
 400			return ret;
 401	}
 402
 403	return 0;
 404}
 405
 406static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 407{
 408	unsigned int div;
 409	uint32_t val;
 410
 411	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 412
 413	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 414	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 415		div = 4;
 416		break;
 417	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 418		div = 8;
 419		break;
 420	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 421		div = 16;
 422		break;
 423	default:
 424		div = 2;
 425		break;
 426	}
 427
 428	return clk_get_rate(xadc->clk) / div;
 429}
 430
 431static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 432{
 433	unsigned long flags;
 434	uint32_t status;
 435
 436	/* Move OT to bit 7 */
 437	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 438
 439	spin_lock_irqsave(&xadc->lock, flags);
 440
 441	/* Clear previous interrupts if any. */
 442	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 443	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 444
 445	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 446		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 447
 448	spin_unlock_irqrestore(&xadc->lock, flags);
 449}
 450
 451static const struct xadc_ops xadc_zynq_ops = {
 452	.read = xadc_zynq_read_adc_reg,
 453	.write = xadc_zynq_write_adc_reg,
 454	.setup = xadc_zynq_setup,
 455	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 456	.interrupt_handler = xadc_zynq_interrupt_handler,
 457	.update_alarm = xadc_zynq_update_alarm,
 458	.type = XADC_TYPE_S7,
 459};
 460
 461static const unsigned int xadc_axi_reg_offsets[] = {
 462	[XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
 463	[XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
 464};
 465
 466static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 467	uint16_t *val)
 468{
 469	uint32_t val32;
 470
 471	xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 472		&val32);
 473	*val = val32 & 0xffff;
 474
 475	return 0;
 476}
 477
 478static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 479	uint16_t val)
 480{
 481	xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 482		val);
 483
 484	return 0;
 485}
 486
 487static int xadc_axi_setup(struct platform_device *pdev,
 488	struct iio_dev *indio_dev, int irq)
 489{
 490	struct xadc *xadc = iio_priv(indio_dev);
 491
 492	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 493	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 494
 495	return 0;
 496}
 497
 498static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 499{
 500	struct iio_dev *indio_dev = devid;
 501	struct xadc *xadc = iio_priv(indio_dev);
 502	uint32_t status, mask;
 503	unsigned int events;
 504
 505	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 506	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 507	status &= mask;
 508
 509	if (!status)
 510		return IRQ_NONE;
 511
 512	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 513		iio_trigger_poll(xadc->trigger);
 514
 515	if (status & XADC_AXI_INT_ALARM_MASK) {
 516		/*
 517		 * The order of the bits in the AXI-XADC status register does
 518		 * not match the order of the bits in the XADC alarm enable
 519		 * register. xadc_handle_events() expects the events to be in
 520		 * the same order as the XADC alarm enable register.
 521		 */
 522		events = (status & 0x000e) >> 1;
 523		events |= (status & 0x0001) << 3;
 524		events |= (status & 0x3c00) >> 6;
 525		xadc_handle_events(indio_dev, events);
 526	}
 527
 528	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 529
 530	return IRQ_HANDLED;
 531}
 532
 533static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 534{
 535	uint32_t val;
 536	unsigned long flags;
 537
 538	/*
 539	 * The order of the bits in the AXI-XADC status register does not match
 540	 * the order of the bits in the XADC alarm enable register. We get
 541	 * passed the alarm mask in the same order as in the XADC alarm enable
 542	 * register.
 543	 */
 544	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 545			((alarm & 0xf0) << 6);
 546
 547	spin_lock_irqsave(&xadc->lock, flags);
 548	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 549	val &= ~XADC_AXI_INT_ALARM_MASK;
 550	val |= alarm;
 551	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 552	spin_unlock_irqrestore(&xadc->lock, flags);
 553}
 554
 555static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 556{
 557	return clk_get_rate(xadc->clk);
 558}
 559
 560static const struct xadc_ops xadc_7s_axi_ops = {
 561	.read = xadc_axi_read_adc_reg,
 562	.write = xadc_axi_write_adc_reg,
 563	.setup = xadc_axi_setup,
 564	.get_dclk_rate = xadc_axi_get_dclk,
 565	.update_alarm = xadc_axi_update_alarm,
 566	.interrupt_handler = xadc_axi_interrupt_handler,
 567	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
 568	.type = XADC_TYPE_S7,
 569};
 570
 571static const struct xadc_ops xadc_us_axi_ops = {
 572	.read = xadc_axi_read_adc_reg,
 573	.write = xadc_axi_write_adc_reg,
 574	.setup = xadc_axi_setup,
 575	.get_dclk_rate = xadc_axi_get_dclk,
 576	.update_alarm = xadc_axi_update_alarm,
 577	.interrupt_handler = xadc_axi_interrupt_handler,
 578	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
 579	.type = XADC_TYPE_US,
 580};
 581
 582static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 583	uint16_t mask, uint16_t val)
 584{
 585	uint16_t tmp;
 586	int ret;
 587
 588	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 589	if (ret)
 590		return ret;
 591
 592	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 593}
 594
 595static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 596	uint16_t mask, uint16_t val)
 597{
 598	int ret;
 599
 600	mutex_lock(&xadc->mutex);
 601	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 602	mutex_unlock(&xadc->mutex);
 603
 604	return ret;
 605}
 606
 607static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 608{
 609	return xadc->ops->get_dclk_rate(xadc);
 610}
 611
 612static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 613	const unsigned long *mask)
 614{
 615	struct xadc *xadc = iio_priv(indio_dev);
 616	size_t new_size, n;
 617	void *data;
 618
 619	n = bitmap_weight(mask, indio_dev->masklength);
 620
 621	if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
 
 
 622		return -ENOMEM;
 623
 624	data = devm_krealloc(indio_dev->dev.parent, xadc->data,
 625			     new_size, GFP_KERNEL);
 626	if (!data)
 627		return -ENOMEM;
 628
 629	memset(data, 0, new_size);
 630	xadc->data = data;
 631
 632	return 0;
 633}
 634
 635static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 636{
 637	switch (scan_index) {
 638	case 5:
 639		return XADC_REG_VCCPINT;
 640	case 6:
 641		return XADC_REG_VCCPAUX;
 642	case 7:
 643		return XADC_REG_VCCO_DDR;
 644	case 8:
 645		return XADC_REG_TEMP;
 646	case 9:
 647		return XADC_REG_VCCINT;
 648	case 10:
 649		return XADC_REG_VCCAUX;
 650	case 11:
 651		return XADC_REG_VPVN;
 652	case 12:
 653		return XADC_REG_VREFP;
 654	case 13:
 655		return XADC_REG_VREFN;
 656	case 14:
 657		return XADC_REG_VCCBRAM;
 658	default:
 659		return XADC_REG_VAUX(scan_index - 16);
 660	}
 661}
 662
 663static irqreturn_t xadc_trigger_handler(int irq, void *p)
 664{
 665	struct iio_poll_func *pf = p;
 666	struct iio_dev *indio_dev = pf->indio_dev;
 667	struct xadc *xadc = iio_priv(indio_dev);
 668	unsigned int chan;
 669	int i, j;
 670
 671	if (!xadc->data)
 672		goto out;
 673
 674	j = 0;
 675	for_each_set_bit(i, indio_dev->active_scan_mask,
 676		indio_dev->masklength) {
 677		chan = xadc_scan_index_to_channel(i);
 678		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 679		j++;
 680	}
 681
 682	iio_push_to_buffers(indio_dev, xadc->data);
 683
 684out:
 685	iio_trigger_notify_done(indio_dev->trig);
 686
 687	return IRQ_HANDLED;
 688}
 689
 690static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 691{
 692	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 693	unsigned long flags;
 694	unsigned int convst;
 695	unsigned int val;
 696	int ret = 0;
 697
 698	mutex_lock(&xadc->mutex);
 699
 700	if (state) {
 701		/* Only one of the two triggers can be active at a time. */
 702		if (xadc->trigger != NULL) {
 703			ret = -EBUSY;
 704			goto err_out;
 705		} else {
 706			xadc->trigger = trigger;
 707			if (trigger == xadc->convst_trigger)
 708				convst = XADC_CONF0_EC;
 709			else
 710				convst = 0;
 711		}
 712		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 713					convst);
 714		if (ret)
 715			goto err_out;
 716	} else {
 717		xadc->trigger = NULL;
 718	}
 719
 720	spin_lock_irqsave(&xadc->lock, flags);
 721	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 722	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
 723	if (state)
 724		val |= XADC_AXI_INT_EOS;
 725	else
 726		val &= ~XADC_AXI_INT_EOS;
 727	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 728	spin_unlock_irqrestore(&xadc->lock, flags);
 729
 730err_out:
 731	mutex_unlock(&xadc->mutex);
 732
 733	return ret;
 734}
 735
 736static const struct iio_trigger_ops xadc_trigger_ops = {
 737	.set_trigger_state = &xadc_trigger_set_state,
 738};
 739
 740static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 741	const char *name)
 742{
 743	struct device *dev = indio_dev->dev.parent;
 744	struct iio_trigger *trig;
 745	int ret;
 746
 747	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
 748				      iio_device_id(indio_dev), name);
 749	if (trig == NULL)
 750		return ERR_PTR(-ENOMEM);
 751
 
 752	trig->ops = &xadc_trigger_ops;
 753	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 754
 755	ret = devm_iio_trigger_register(dev, trig);
 756	if (ret)
 757		return ERR_PTR(ret);
 758
 759	return trig;
 
 
 
 
 760}
 761
 762static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 763{
 764	uint16_t val;
 765
 766	/*
 767	 * As per datasheet the power-down bits are don't care in the
 768	 * UltraScale, but as per reality setting the power-down bit for the
 769	 * non-existing ADC-B powers down the main ADC, so just return and don't
 770	 * do anything.
 771	 */
 772	if (xadc->ops->type == XADC_TYPE_US)
 773		return 0;
 774
 775	/* Powerdown the ADC-B when it is not needed. */
 776	switch (seq_mode) {
 777	case XADC_CONF1_SEQ_SIMULTANEOUS:
 778	case XADC_CONF1_SEQ_INDEPENDENT:
 779		val = 0;
 780		break;
 781	default:
 782		val = XADC_CONF2_PD_ADC_B;
 783		break;
 784	}
 785
 786	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 787		val);
 788}
 789
 790static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 791{
 792	unsigned int aux_scan_mode = scan_mode >> 16;
 793
 794	/* UltraScale has only one ADC and supports only continuous mode */
 795	if (xadc->ops->type == XADC_TYPE_US)
 796		return XADC_CONF1_SEQ_CONTINUOUS;
 797
 798	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 799		return XADC_CONF1_SEQ_SIMULTANEOUS;
 800
 801	if ((aux_scan_mode & 0xff00) == 0 ||
 802		(aux_scan_mode & 0x00ff) == 0)
 803		return XADC_CONF1_SEQ_CONTINUOUS;
 804
 805	return XADC_CONF1_SEQ_SIMULTANEOUS;
 806}
 807
 808static int xadc_postdisable(struct iio_dev *indio_dev)
 809{
 810	struct xadc *xadc = iio_priv(indio_dev);
 811	unsigned long scan_mask;
 812	int ret;
 813	int i;
 814
 815	scan_mask = 1; /* Run calibration as part of the sequence */
 816	for (i = 0; i < indio_dev->num_channels; i++)
 817		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 818
 819	/* Enable all channels and calibration */
 820	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 821	if (ret)
 822		return ret;
 823
 824	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 825	if (ret)
 826		return ret;
 827
 828	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 829		XADC_CONF1_SEQ_CONTINUOUS);
 830	if (ret)
 831		return ret;
 832
 833	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 834}
 835
 836static int xadc_preenable(struct iio_dev *indio_dev)
 837{
 838	struct xadc *xadc = iio_priv(indio_dev);
 839	unsigned long scan_mask;
 840	int seq_mode;
 841	int ret;
 842
 843	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 844		XADC_CONF1_SEQ_DEFAULT);
 845	if (ret)
 846		goto err;
 847
 848	scan_mask = *indio_dev->active_scan_mask;
 849	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 850
 851	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 852	if (ret)
 853		goto err;
 854
 855	/*
 856	 * In simultaneous mode the upper and lower aux channels are samples at
 857	 * the same time. In this mode the upper 8 bits in the sequencer
 858	 * register are don't care and the lower 8 bits control two channels
 859	 * each. As such we must set the bit if either the channel in the lower
 860	 * group or the upper group is enabled.
 861	 */
 862	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
 863		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
 864
 865	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 866	if (ret)
 867		goto err;
 868
 869	ret = xadc_power_adc_b(xadc, seq_mode);
 870	if (ret)
 871		goto err;
 872
 873	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 874		seq_mode);
 875	if (ret)
 876		goto err;
 877
 878	return 0;
 879err:
 880	xadc_postdisable(indio_dev);
 881	return ret;
 882}
 883
 884static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 885	.preenable = &xadc_preenable,
 
 
 886	.postdisable = &xadc_postdisable,
 887};
 888
 889static int xadc_read_samplerate(struct xadc *xadc)
 890{
 891	unsigned int div;
 892	uint16_t val16;
 893	int ret;
 894
 895	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 896	if (ret)
 897		return ret;
 898
 899	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 900	if (div < 2)
 901		div = 2;
 902
 903	return xadc_get_dclk_rate(xadc) / div / 26;
 904}
 905
 906static int xadc_read_raw(struct iio_dev *indio_dev,
 907	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 908{
 909	struct xadc *xadc = iio_priv(indio_dev);
 910	unsigned int bits = chan->scan_type.realbits;
 911	uint16_t val16;
 912	int ret;
 913
 914	switch (info) {
 915	case IIO_CHAN_INFO_RAW:
 916		if (iio_buffer_enabled(indio_dev))
 917			return -EBUSY;
 918		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 919		if (ret < 0)
 920			return ret;
 921
 922		val16 >>= chan->scan_type.shift;
 923		if (chan->scan_type.sign == 'u')
 924			*val = val16;
 925		else
 926			*val = sign_extend32(val16, bits - 1);
 927
 928		return IIO_VAL_INT;
 929	case IIO_CHAN_INFO_SCALE:
 930		switch (chan->type) {
 931		case IIO_VOLTAGE:
 932			/* V = (val * 3.0) / 2**bits */
 933			switch (chan->address) {
 934			case XADC_REG_VCCINT:
 935			case XADC_REG_VCCAUX:
 936			case XADC_REG_VREFP:
 937			case XADC_REG_VREFN:
 938			case XADC_REG_VCCBRAM:
 939			case XADC_REG_VCCPINT:
 940			case XADC_REG_VCCPAUX:
 941			case XADC_REG_VCCO_DDR:
 942				*val = 3000;
 943				break;
 944			default:
 945				*val = 1000;
 946				break;
 947			}
 948			*val2 = bits;
 949			return IIO_VAL_FRACTIONAL_LOG2;
 950		case IIO_TEMP:
 951			/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
 952			*val = 503975;
 953			*val2 = bits;
 954			return IIO_VAL_FRACTIONAL_LOG2;
 955		default:
 956			return -EINVAL;
 957		}
 958	case IIO_CHAN_INFO_OFFSET:
 959		/* Only the temperature channel has an offset */
 960		*val = -((273150 << bits) / 503975);
 961		return IIO_VAL_INT;
 962	case IIO_CHAN_INFO_SAMP_FREQ:
 963		ret = xadc_read_samplerate(xadc);
 964		if (ret < 0)
 965			return ret;
 966
 967		*val = ret;
 
 
 
 
 
 968		return IIO_VAL_INT;
 969	default:
 970		return -EINVAL;
 971	}
 972}
 973
 974static int xadc_write_samplerate(struct xadc *xadc, int val)
 
 975{
 
 976	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 977	unsigned int div;
 978
 979	if (!clk_rate)
 980		return -EINVAL;
 981
 
 
 
 982	if (val <= 0)
 983		return -EINVAL;
 984
 985	/* Max. 150 kSPS */
 986	if (val > XADC_MAX_SAMPLERATE)
 987		val = XADC_MAX_SAMPLERATE;
 988
 989	val *= 26;
 990
 991	/* Min 1MHz */
 992	if (val < 1000000)
 993		val = 1000000;
 994
 995	/*
 996	 * We want to round down, but only if we do not exceed the 150 kSPS
 997	 * limit.
 998	 */
 999	div = clk_rate / val;
1000	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
1001		div++;
1002	if (div < 2)
1003		div = 2;
1004	else if (div > 0xff)
1005		div = 0xff;
1006
1007	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1008		div << XADC_CONF2_DIV_OFFSET);
1009}
1010
1011static int xadc_write_raw(struct iio_dev *indio_dev,
1012	struct iio_chan_spec const *chan, int val, int val2, long info)
1013{
1014	struct xadc *xadc = iio_priv(indio_dev);
1015
1016	if (info != IIO_CHAN_INFO_SAMP_FREQ)
1017		return -EINVAL;
1018
1019	return xadc_write_samplerate(xadc, val);
1020}
1021
1022static const struct iio_event_spec xadc_temp_events[] = {
1023	{
1024		.type = IIO_EV_TYPE_THRESH,
1025		.dir = IIO_EV_DIR_RISING,
1026		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1027				BIT(IIO_EV_INFO_VALUE) |
1028				BIT(IIO_EV_INFO_HYSTERESIS),
1029	},
1030};
1031
1032/* Separate values for upper and lower thresholds, but only a shared enabled */
1033static const struct iio_event_spec xadc_voltage_events[] = {
1034	{
1035		.type = IIO_EV_TYPE_THRESH,
1036		.dir = IIO_EV_DIR_RISING,
1037		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1038	}, {
1039		.type = IIO_EV_TYPE_THRESH,
1040		.dir = IIO_EV_DIR_FALLING,
1041		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1042	}, {
1043		.type = IIO_EV_TYPE_THRESH,
1044		.dir = IIO_EV_DIR_EITHER,
1045		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1046	},
1047};
1048
1049#define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1050	.type = IIO_TEMP, \
1051	.indexed = 1, \
1052	.channel = (_chan), \
1053	.address = (_addr), \
1054	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1055		BIT(IIO_CHAN_INFO_SCALE) | \
1056		BIT(IIO_CHAN_INFO_OFFSET), \
1057	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1058	.event_spec = xadc_temp_events, \
1059	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1060	.scan_index = (_scan_index), \
1061	.scan_type = { \
1062		.sign = 'u', \
1063		.realbits = (_bits), \
1064		.storagebits = 16, \
1065		.shift = 16 - (_bits), \
1066		.endianness = IIO_CPU, \
1067	}, \
1068}
1069
1070#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1071	.type = IIO_VOLTAGE, \
1072	.indexed = 1, \
1073	.channel = (_chan), \
1074	.address = (_addr), \
1075	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1076		BIT(IIO_CHAN_INFO_SCALE), \
1077	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1078	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1079	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1080	.scan_index = (_scan_index), \
1081	.scan_type = { \
1082		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1083		.realbits = (_bits), \
1084		.storagebits = 16, \
1085		.shift = 16 - (_bits), \
1086		.endianness = IIO_CPU, \
1087	}, \
1088	.extend_name = _ext, \
1089}
1090
1091/* 7 Series */
1092#define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1093	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1094#define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1095	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1096
1097static const struct iio_chan_spec xadc_7s_channels[] = {
1098	XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1099	XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1100	XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1101	XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1102	XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1103	XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1104	XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1105	XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1106	XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1107	XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1108	XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1109	XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1110	XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1111	XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1112	XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1113	XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1114	XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1115	XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1116	XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1117	XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1118	XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1119	XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1120	XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1121	XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1122	XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1123	XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1124};
1125
1126/* UltraScale */
1127#define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1128	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1129#define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1130	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1131
1132static const struct iio_chan_spec xadc_us_channels[] = {
1133	XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1134	XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1135	XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1136	XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1137	XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1138	XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1139	XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1140	XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1141	XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1142	XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1143	XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1144	XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1145	XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1146	XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1147	XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1148	XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1149	XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1150	XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1151	XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1152	XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1153	XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1154	XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1155	XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1156	XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1157	XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1158	XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1159};
1160
1161static const struct iio_info xadc_info = {
1162	.read_raw = &xadc_read_raw,
1163	.write_raw = &xadc_write_raw,
1164	.read_event_config = &xadc_read_event_config,
1165	.write_event_config = &xadc_write_event_config,
1166	.read_event_value = &xadc_read_event_value,
1167	.write_event_value = &xadc_write_event_value,
1168	.update_scan_mode = &xadc_update_scan_mode,
1169};
1170
1171static const struct of_device_id xadc_of_match_table[] = {
1172	{
1173		.compatible = "xlnx,zynq-xadc-1.00.a",
1174		.data = &xadc_zynq_ops
1175	}, {
1176		.compatible = "xlnx,axi-xadc-1.00.a",
1177		.data = &xadc_7s_axi_ops
1178	}, {
1179		.compatible = "xlnx,system-management-wiz-1.3",
1180		.data = &xadc_us_axi_ops
1181	},
1182	{ },
1183};
1184MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1185
1186static int xadc_parse_dt(struct iio_dev *indio_dev, unsigned int *conf, int irq)
 
1187{
1188	struct device *dev = indio_dev->dev.parent;
1189	struct xadc *xadc = iio_priv(indio_dev);
1190	const struct iio_chan_spec *channel_templates;
1191	struct iio_chan_spec *channels, *chan;
1192	struct fwnode_handle *chan_node, *child;
1193	unsigned int max_channels;
1194	unsigned int num_channels;
1195	const char *external_mux;
1196	u32 ext_mux_chan;
1197	u32 reg;
1198	int ret;
1199	int i;
1200
1201	*conf = 0;
1202
1203	ret = device_property_read_string(dev, "xlnx,external-mux", &external_mux);
1204	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1205		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1206	else if (strcasecmp(external_mux, "single") == 0)
1207		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1208	else if (strcasecmp(external_mux, "dual") == 0)
1209		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1210	else
1211		return -EINVAL;
1212
1213	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1214		ret = device_property_read_u32(dev, "xlnx,external-mux-channel", &ext_mux_chan);
 
1215		if (ret < 0)
1216			return ret;
1217
1218		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1219			if (ext_mux_chan == 0)
1220				ext_mux_chan = XADC_REG_VPVN;
1221			else if (ext_mux_chan <= 16)
1222				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1223			else
1224				return -EINVAL;
1225		} else {
1226			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1227				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1228			else
1229				return -EINVAL;
1230		}
1231
1232		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1233	}
1234	if (xadc->ops->type == XADC_TYPE_S7) {
1235		channel_templates = xadc_7s_channels;
1236		max_channels = ARRAY_SIZE(xadc_7s_channels);
1237	} else {
1238		channel_templates = xadc_us_channels;
1239		max_channels = ARRAY_SIZE(xadc_us_channels);
1240	}
1241	channels = devm_kmemdup(dev, channel_templates,
1242				sizeof(channels[0]) * max_channels, GFP_KERNEL);
1243	if (!channels)
1244		return -ENOMEM;
1245
1246	num_channels = 9;
1247	chan = &channels[9];
1248
1249	chan_node = device_get_named_child_node(dev, "xlnx,channels");
1250	fwnode_for_each_child_node(chan_node, child) {
1251		if (num_channels >= max_channels) {
1252			fwnode_handle_put(child);
1253			break;
1254		}
 
1255
1256		ret = fwnode_property_read_u32(child, "reg", &reg);
1257		if (ret || reg > 16)
1258			continue;
1259
1260		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1261			chan->scan_type.sign = 's';
1262
1263		if (reg == 0) {
1264			chan->scan_index = 11;
1265			chan->address = XADC_REG_VPVN;
1266		} else {
1267			chan->scan_index = 15 + reg;
1268			chan->address = XADC_REG_VAUX(reg - 1);
1269		}
1270		num_channels++;
1271		chan++;
1272	}
1273	fwnode_handle_put(chan_node);
1274
1275	/* No IRQ => no events */
1276	if (irq <= 0) {
1277		for (i = 0; i < num_channels; i++) {
1278			channels[i].event_spec = NULL;
1279			channels[i].num_event_specs = 0;
1280		}
1281	}
 
1282
1283	indio_dev->num_channels = num_channels;
1284	indio_dev->channels = devm_krealloc(dev, channels,
1285					    sizeof(*channels) * num_channels,
1286					    GFP_KERNEL);
1287	/* If we can't resize the channels array, just use the original */
1288	if (!indio_dev->channels)
1289		indio_dev->channels = channels;
1290
1291	return 0;
1292}
1293
1294static const char * const xadc_type_names[] = {
1295	[XADC_TYPE_S7] = "xadc",
1296	[XADC_TYPE_US] = "xilinx-system-monitor",
1297};
1298
1299static void xadc_cancel_delayed_work(void *data)
1300{
1301	struct delayed_work *work = data;
1302
1303	cancel_delayed_work_sync(work);
1304}
1305
1306static int xadc_probe(struct platform_device *pdev)
1307{
1308	struct device *dev = &pdev->dev;
1309	const struct xadc_ops *ops;
1310	struct iio_dev *indio_dev;
1311	unsigned int bipolar_mask;
 
1312	unsigned int conf0;
1313	struct xadc *xadc;
1314	int ret;
1315	int irq;
1316	int i;
1317
1318	ops = device_get_match_data(dev);
1319	if (!ops)
 
 
 
1320		return -EINVAL;
1321
1322	irq = platform_get_irq_optional(pdev, 0);
1323	if (irq < 0 &&
1324	    (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL)))
1325		return irq;
1326
1327	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1328	if (!indio_dev)
1329		return -ENOMEM;
1330
1331	xadc = iio_priv(indio_dev);
1332	xadc->ops = ops;
 
1333	init_completion(&xadc->completion);
1334	mutex_init(&xadc->mutex);
1335	spin_lock_init(&xadc->lock);
1336	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1337
1338	xadc->base = devm_platform_ioremap_resource(pdev, 0);
 
1339	if (IS_ERR(xadc->base))
1340		return PTR_ERR(xadc->base);
1341
1342	indio_dev->name = xadc_type_names[xadc->ops->type];
 
 
1343	indio_dev->modes = INDIO_DIRECT_MODE;
1344	indio_dev->info = &xadc_info;
1345
1346	ret = xadc_parse_dt(indio_dev, &conf0, irq);
1347	if (ret)
1348		return ret;
1349
1350	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1351		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1352						      &iio_pollfunc_store_time,
1353						      &xadc_trigger_handler,
1354						      &xadc_buffer_ops);
1355		if (ret)
1356			return ret;
1357
1358		if (irq > 0) {
1359			xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1360			if (IS_ERR(xadc->convst_trigger))
1361				return PTR_ERR(xadc->convst_trigger);
1362
1363			xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1364				"samplerate");
1365			if (IS_ERR(xadc->samplerate_trigger))
1366				return PTR_ERR(xadc->samplerate_trigger);
 
1367		}
1368	}
1369
1370	xadc->clk = devm_clk_get_enabled(dev, NULL);
1371	if (IS_ERR(xadc->clk))
1372		return PTR_ERR(xadc->clk);
1373
1374	/*
1375	 * Make sure not to exceed the maximum samplerate since otherwise the
1376	 * resulting interrupt storm will soft-lock the system.
1377	 */
1378	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1379		ret = xadc_read_samplerate(xadc);
1380		if (ret < 0)
1381			return ret;
1382
1383		if (ret > XADC_MAX_SAMPLERATE) {
1384			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1385			if (ret < 0)
1386				return ret;
1387		}
1388	}
1389
1390	if (irq > 0) {
1391		ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler,
1392				       0, dev_name(dev), indio_dev);
1393		if (ret)
1394			return ret;
1395
1396		ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1397					       &xadc->zynq_unmask_work);
1398		if (ret)
1399			return ret;
1400	}
1401
1402	ret = xadc->ops->setup(pdev, indio_dev, irq);
1403	if (ret)
1404		return ret;
1405
1406	for (i = 0; i < 16; i++)
1407		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1408			&xadc->threshold[i]);
1409
1410	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1411	if (ret)
1412		return ret;
1413
1414	bipolar_mask = 0;
1415	for (i = 0; i < indio_dev->num_channels; i++) {
1416		if (indio_dev->channels[i].scan_type.sign == 's')
1417			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1418	}
1419
1420	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1421	if (ret)
1422		return ret;
1423
1424	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1425		bipolar_mask >> 16);
1426	if (ret)
1427		return ret;
1428
1429	/* Disable all alarms */
1430	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1431				  XADC_CONF1_ALARM_MASK);
1432	if (ret)
1433		return ret;
1434
1435	/* Set thresholds to min/max */
1436	for (i = 0; i < 16; i++) {
1437		/*
1438		 * Set max voltage threshold and both temperature thresholds to
1439		 * 0xffff, min voltage threshold to 0.
1440		 */
1441		if (i % 8 < 4 || i == 7)
1442			xadc->threshold[i] = 0xffff;
1443		else
1444			xadc->threshold[i] = 0;
1445		ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1446			xadc->threshold[i]);
1447		if (ret)
1448			return ret;
1449	}
1450
1451	/* Go to non-buffered mode */
1452	xadc_postdisable(indio_dev);
1453
1454	return devm_iio_device_register(dev, indio_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455}
1456
1457static struct platform_driver xadc_driver = {
1458	.probe = xadc_probe,
 
1459	.driver = {
1460		.name = "xadc",
1461		.of_match_table = xadc_of_match_table,
1462	},
1463};
1464module_platform_driver(xadc_driver);
1465
1466MODULE_LICENSE("GPL v2");
1467MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1468MODULE_DESCRIPTION("Xilinx XADC IIO driver");