Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Xilinx AMS driver
   4 *
   5 *  Copyright (C) 2021 Xilinx, Inc.
   6 *
   7 *  Manish Narani <mnarani@xilinx.com>
   8 *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/devm-helpers.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/iopoll.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/overflow.h>
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/slab.h>
  26
  27#include <linux/iio/events.h>
  28#include <linux/iio/iio.h>
  29
  30/* AMS registers definitions */
  31#define AMS_ISR_0			0x010
  32#define AMS_ISR_1			0x014
  33#define AMS_IER_0			0x020
  34#define AMS_IER_1			0x024
  35#define AMS_IDR_0			0x028
  36#define AMS_IDR_1			0x02C
  37#define AMS_PS_CSTS			0x040
  38#define AMS_PL_CSTS			0x044
  39
  40#define AMS_VCC_PSPLL0			0x060
  41#define AMS_VCC_PSPLL3			0x06C
  42#define AMS_VCCINT			0x078
  43#define AMS_VCCBRAM			0x07C
  44#define AMS_VCCAUX			0x080
  45#define AMS_PSDDRPLL			0x084
  46#define AMS_PSINTFPDDR			0x09C
  47
  48#define AMS_VCC_PSPLL0_CH		48
  49#define AMS_VCC_PSPLL3_CH		51
  50#define AMS_VCCINT_CH			54
  51#define AMS_VCCBRAM_CH			55
  52#define AMS_VCCAUX_CH			56
  53#define AMS_PSDDRPLL_CH			57
  54#define AMS_PSINTFPDDR_CH		63
  55
  56#define AMS_REG_CONFIG0			0x100
  57#define AMS_REG_CONFIG1			0x104
  58#define AMS_REG_CONFIG3			0x10C
  59#define AMS_REG_CONFIG4			0x110
  60#define AMS_REG_SEQ_CH0			0x120
  61#define AMS_REG_SEQ_CH1			0x124
  62#define AMS_REG_SEQ_CH2			0x118
  63
  64#define AMS_VUSER0_MASK			BIT(0)
  65#define AMS_VUSER1_MASK			BIT(1)
  66#define AMS_VUSER2_MASK			BIT(2)
  67#define AMS_VUSER3_MASK			BIT(3)
  68
  69#define AMS_TEMP			0x000
  70#define AMS_SUPPLY1			0x004
  71#define AMS_SUPPLY2			0x008
  72#define AMS_VP_VN			0x00C
  73#define AMS_VREFP			0x010
  74#define AMS_VREFN			0x014
  75#define AMS_SUPPLY3			0x018
  76#define AMS_SUPPLY4			0x034
  77#define AMS_SUPPLY5			0x038
  78#define AMS_SUPPLY6			0x03C
  79#define AMS_SUPPLY7			0x200
  80#define AMS_SUPPLY8			0x204
  81#define AMS_SUPPLY9			0x208
  82#define AMS_SUPPLY10			0x20C
  83#define AMS_VCCAMS			0x210
  84#define AMS_TEMP_REMOTE			0x214
  85
  86#define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
  87
  88#define AMS_PS_RESET_VALUE		0xFFFF
  89#define AMS_PL_RESET_VALUE		0xFFFF
  90
  91#define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
  92
  93#define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
  94#define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
  95#define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
  96#define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
  97
  98#define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
  99#define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
 100#define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
 101
 102#define AMS_PS_SEQ_MASK			GENMASK(21, 0)
 103#define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
 104
 105#define AMS_ALARM_TEMP			0x140
 106#define AMS_ALARM_SUPPLY1		0x144
 107#define AMS_ALARM_SUPPLY2		0x148
 108#define AMS_ALARM_SUPPLY3		0x160
 109#define AMS_ALARM_SUPPLY4		0x164
 110#define AMS_ALARM_SUPPLY5		0x168
 111#define AMS_ALARM_SUPPLY6		0x16C
 112#define AMS_ALARM_SUPPLY7		0x180
 113#define AMS_ALARM_SUPPLY8		0x184
 114#define AMS_ALARM_SUPPLY9		0x188
 115#define AMS_ALARM_SUPPLY10		0x18C
 116#define AMS_ALARM_VCCAMS		0x190
 117#define AMS_ALARM_TEMP_REMOTE		0x194
 118#define AMS_ALARM_THRESHOLD_OFF_10	0x10
 119#define AMS_ALARM_THRESHOLD_OFF_20	0x20
 120
 121#define AMS_ALARM_THR_DIRECT_MASK	BIT(1)
 122#define AMS_ALARM_THR_MIN		0x0000
 123#define AMS_ALARM_THR_MAX		(BIT(16) - 1)
 124
 125#define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
 126#define AMS_NO_OF_ALARMS		32
 127#define AMS_PL_ALARM_START		16
 128#define AMS_PL_ALARM_MASK		GENMASK(31, 16)
 129#define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
 130#define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
 131#define AMS_ISR1_EOC_MASK		BIT(3)
 132#define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
 133#define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
 134#define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
 135#define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
 136#define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
 137#define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
 138#define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
 139#define AMS_REGCFG1_ALARM_MASK  \
 140	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
 141#define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
 142
 143#define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
 144#define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
 145
 146#define AMS_PL_MAX_FIXED_CHANNEL	10
 147#define AMS_PL_MAX_EXT_CHANNEL		20
 148
 149#define AMS_INIT_POLL_TIME_US		200
 150#define AMS_INIT_TIMEOUT_US		10000
 151#define AMS_UNMASK_TIMEOUT_MS		500
 152
 153/*
 154 * Following scale and offset value is derived from
 155 * UG580 (v1.7) December 20, 2016
 156 */
 157#define AMS_SUPPLY_SCALE_1VOLT_mV		1000
 158#define AMS_SUPPLY_SCALE_3VOLT_mV		3000
 159#define AMS_SUPPLY_SCALE_6VOLT_mV		6000
 160#define AMS_SUPPLY_SCALE_DIV_BIT	16
 161
 162#define AMS_TEMP_SCALE			509314
 163#define AMS_TEMP_SCALE_DIV_BIT		16
 164#define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
 165
 166enum ams_alarm_bit {
 167	AMS_ALARM_BIT_TEMP = 0,
 168	AMS_ALARM_BIT_SUPPLY1 = 1,
 169	AMS_ALARM_BIT_SUPPLY2 = 2,
 170	AMS_ALARM_BIT_SUPPLY3 = 3,
 171	AMS_ALARM_BIT_SUPPLY4 = 4,
 172	AMS_ALARM_BIT_SUPPLY5 = 5,
 173	AMS_ALARM_BIT_SUPPLY6 = 6,
 174	AMS_ALARM_BIT_RESERVED = 7,
 175	AMS_ALARM_BIT_SUPPLY7 = 8,
 176	AMS_ALARM_BIT_SUPPLY8 = 9,
 177	AMS_ALARM_BIT_SUPPLY9 = 10,
 178	AMS_ALARM_BIT_SUPPLY10 = 11,
 179	AMS_ALARM_BIT_VCCAMS = 12,
 180	AMS_ALARM_BIT_TEMP_REMOTE = 13,
 181};
 182
 183enum ams_seq {
 184	AMS_SEQ_VCC_PSPLL = 0,
 185	AMS_SEQ_VCC_PSBATT = 1,
 186	AMS_SEQ_VCCINT = 2,
 187	AMS_SEQ_VCCBRAM = 3,
 188	AMS_SEQ_VCCAUX = 4,
 189	AMS_SEQ_PSDDRPLL = 5,
 190	AMS_SEQ_INTDDR = 6,
 191};
 192
 193enum ams_ps_pl_seq {
 194	AMS_SEQ_CALIB = 0,
 195	AMS_SEQ_RSVD_1 = 1,
 196	AMS_SEQ_RSVD_2 = 2,
 197	AMS_SEQ_TEST = 3,
 198	AMS_SEQ_RSVD_4 = 4,
 199	AMS_SEQ_SUPPLY4 = 5,
 200	AMS_SEQ_SUPPLY5 = 6,
 201	AMS_SEQ_SUPPLY6 = 7,
 202	AMS_SEQ_TEMP = 8,
 203	AMS_SEQ_SUPPLY2 = 9,
 204	AMS_SEQ_SUPPLY1 = 10,
 205	AMS_SEQ_VP_VN = 11,
 206	AMS_SEQ_VREFP = 12,
 207	AMS_SEQ_VREFN = 13,
 208	AMS_SEQ_SUPPLY3 = 14,
 209	AMS_SEQ_CURRENT_MON = 15,
 210	AMS_SEQ_SUPPLY7 = 16,
 211	AMS_SEQ_SUPPLY8 = 17,
 212	AMS_SEQ_SUPPLY9 = 18,
 213	AMS_SEQ_SUPPLY10 = 19,
 214	AMS_SEQ_VCCAMS = 20,
 215	AMS_SEQ_TEMP_REMOTE = 21,
 216	AMS_SEQ_MAX = 22
 217};
 218
 219#define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
 220#define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
 221#define PS_SEQ(x)		(x)
 222#define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
 223#define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
 224
 225#define AMS_CHAN_TEMP(_scan_index, _addr) { \
 226	.type = IIO_TEMP, \
 227	.indexed = 1, \
 228	.address = (_addr), \
 229	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 230		BIT(IIO_CHAN_INFO_SCALE) | \
 231		BIT(IIO_CHAN_INFO_OFFSET), \
 232	.event_spec = ams_temp_events, \
 233	.scan_index = _scan_index, \
 234	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
 235}
 236
 237#define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
 238	.type = IIO_VOLTAGE, \
 239	.indexed = 1, \
 240	.address = (_addr), \
 241	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 242		BIT(IIO_CHAN_INFO_SCALE), \
 243	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
 244	.scan_index = _scan_index, \
 245	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
 246}
 247
 248#define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
 249	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
 250#define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
 251	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
 252
 253#define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
 254	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
 255#define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
 256	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
 257#define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
 258	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
 259#define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
 260	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
 261
 262/**
 263 * struct ams - This structure contains necessary state for xilinx-ams to operate
 264 * @base: physical base address of device
 265 * @ps_base: physical base address of PS device
 266 * @pl_base: physical base address of PL device
 267 * @clk: clocks associated with the device
 268 * @dev: pointer to device struct
 269 * @lock: to handle multiple user interaction
 270 * @intr_lock: to protect interrupt mask values
 271 * @alarm_mask: alarm configuration
 272 * @current_masked_alarm: currently masked due to alarm
 273 * @intr_mask: interrupt configuration
 274 * @ams_unmask_work: re-enables event once the event condition disappears
 275 *
 276 */
 277struct ams {
 278	void __iomem *base;
 279	void __iomem *ps_base;
 280	void __iomem *pl_base;
 281	struct clk *clk;
 282	struct device *dev;
 283	struct mutex lock;
 284	spinlock_t intr_lock;
 285	unsigned int alarm_mask;
 286	unsigned int current_masked_alarm;
 287	u64 intr_mask;
 288	struct delayed_work ams_unmask_work;
 289};
 290
 291static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
 292				     u32 mask, u32 data)
 293{
 294	u32 val, regval;
 295
 296	val = readl(ams->ps_base + offset);
 297	regval = (val & ~mask) | (data & mask);
 298	writel(regval, ams->ps_base + offset);
 299}
 300
 301static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
 302				     u32 mask, u32 data)
 303{
 304	u32 val, regval;
 305
 306	val = readl(ams->pl_base + offset);
 307	regval = (val & ~mask) | (data & mask);
 308	writel(regval, ams->pl_base + offset);
 309}
 310
 311static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
 312{
 313	u32 regval;
 314
 315	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
 316
 317	regval = ~(ams->intr_mask | ams->current_masked_alarm);
 318	writel(regval, ams->base + AMS_IER_0);
 319
 320	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
 321	writel(regval, ams->base + AMS_IER_1);
 322
 323	regval = ams->intr_mask | ams->current_masked_alarm;
 324	writel(regval, ams->base + AMS_IDR_0);
 325
 326	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
 327	writel(regval, ams->base + AMS_IDR_1);
 328}
 329
 330static void ams_disable_all_alarms(struct ams *ams)
 331{
 332	/* disable PS module alarm */
 333	if (ams->ps_base) {
 334		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
 335				  AMS_REGCFG1_ALARM_MASK);
 336		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
 337				  AMS_REGCFG3_ALARM_MASK);
 338	}
 339
 340	/* disable PL module alarm */
 341	if (ams->pl_base) {
 342		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
 343				  AMS_REGCFG1_ALARM_MASK);
 344		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
 345				  AMS_REGCFG3_ALARM_MASK);
 346	}
 347}
 348
 349static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
 350{
 351	u32 cfg;
 352	u32 val;
 353
 354	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
 355	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
 356
 357	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
 358	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
 359
 360	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
 361
 362	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
 363	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
 364	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
 365}
 366
 367static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
 368{
 369	unsigned long pl_alarm_mask;
 370	u32 cfg;
 371	u32 val;
 372
 373	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
 374
 375	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
 376	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
 377
 378	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
 379	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
 380
 381	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
 382
 383	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
 384	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
 385	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
 386}
 387
 388static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
 389{
 390	unsigned long flags;
 391
 392	if (ams->ps_base)
 393		ams_update_ps_alarm(ams, alarm_mask);
 394
 395	if (ams->pl_base)
 396		ams_update_pl_alarm(ams, alarm_mask);
 397
 398	spin_lock_irqsave(&ams->intr_lock, flags);
 399	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
 400	spin_unlock_irqrestore(&ams->intr_lock, flags);
 401}
 402
 403static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
 404{
 405	struct ams *ams = iio_priv(indio_dev);
 406	unsigned long long scan_mask;
 407	int i;
 408	u32 regval;
 409
 410	/*
 411	 * Enable channel sequence. First 22 bits of scan_mask represent
 412	 * PS channels, and next remaining bits represent PL channels.
 413	 */
 414
 415	/* Run calibration of PS & PL as part of the sequence */
 416	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
 417	for (i = 0; i < indio_dev->num_channels; i++)
 418		scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
 419
 420	if (ams->ps_base) {
 421		/* put sysmon in a soft reset to change the sequence */
 422		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 423				  AMS_CONF1_SEQ_DEFAULT);
 424
 425		/* configure basic channels */
 426		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
 427		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
 428
 429		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
 430		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
 431
 432		/* set continuous sequence mode */
 433		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 434				  AMS_CONF1_SEQ_CONTINUOUS);
 435	}
 436
 437	if (ams->pl_base) {
 438		/* put sysmon in a soft reset to change the sequence */
 439		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 440				  AMS_CONF1_SEQ_DEFAULT);
 441
 442		/* configure basic channels */
 443		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
 444
 445		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
 446		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
 447
 448		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
 449		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
 450
 451		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
 452		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
 453
 454		/* set continuous sequence mode */
 455		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 456				  AMS_CONF1_SEQ_CONTINUOUS);
 457	}
 458}
 459
 460static int ams_init_device(struct ams *ams)
 461{
 462	u32 expect = AMS_PS_CSTS_PS_READY;
 463	u32 reg, value;
 464	int ret;
 465
 466	/* reset AMS */
 467	if (ams->ps_base) {
 468		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
 469
 470		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
 471					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
 472		if (ret)
 473			return ret;
 474
 475		/* put sysmon in a default state */
 476		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 477				  AMS_CONF1_SEQ_DEFAULT);
 478	}
 479
 480	if (ams->pl_base) {
 481		value = readl(ams->base + AMS_PL_CSTS);
 482		if (value == 0)
 483			return 0;
 484
 485		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
 486
 487		/* put sysmon in a default state */
 488		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 489				  AMS_CONF1_SEQ_DEFAULT);
 490	}
 491
 492	ams_disable_all_alarms(ams);
 493
 494	/* Disable interrupt */
 495	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
 496
 497	/* Clear any pending interrupt */
 498	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
 499	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
 500
 501	return 0;
 502}
 503
 504static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
 505{
 506	u8 channel_num;
 507
 508	switch (offset) {
 509	case AMS_VCC_PSPLL0:
 510		channel_num = AMS_VCC_PSPLL0_CH;
 511		break;
 512	case AMS_VCC_PSPLL3:
 513		channel_num = AMS_VCC_PSPLL3_CH;
 514		break;
 515	case AMS_VCCINT:
 516		channel_num = AMS_VCCINT_CH;
 517		break;
 518	case AMS_VCCBRAM:
 519		channel_num = AMS_VCCBRAM_CH;
 520		break;
 521	case AMS_VCCAUX:
 522		channel_num = AMS_VCCAUX_CH;
 523		break;
 524	case AMS_PSDDRPLL:
 525		channel_num = AMS_PSDDRPLL_CH;
 526		break;
 527	case AMS_PSINTFPDDR:
 528		channel_num = AMS_PSINTFPDDR_CH;
 529		break;
 530	default:
 531		return -EINVAL;
 532	}
 533
 534	/* put sysmon in a soft reset to change the sequence */
 535	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 536			  AMS_CONF1_SEQ_DEFAULT);
 537
 538	/* write the channel number */
 539	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
 540			  channel_num);
 541
 542	/* set single channel, sequencer off mode */
 543	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 544			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
 545
 546	return 0;
 547}
 548
 549static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
 550{
 551	u32 expect = AMS_ISR1_EOC_MASK;
 552	u32 reg;
 553	int ret;
 554
 555	ret = ams_enable_single_channel(ams, offset);
 556	if (ret)
 557		return ret;
 558
 559	/* clear end-of-conversion flag, wait for next conversion to complete */
 560	writel(expect, ams->base + AMS_ISR_1);
 561	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
 562				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
 563	if (ret)
 564		return ret;
 565
 566	*data = readl(ams->base + offset);
 567
 568	return 0;
 569}
 570
 571static int ams_get_ps_scale(int address)
 572{
 573	int val;
 574
 575	switch (address) {
 576	case AMS_SUPPLY1:
 577	case AMS_SUPPLY2:
 578	case AMS_SUPPLY3:
 579	case AMS_SUPPLY4:
 580	case AMS_SUPPLY9:
 581	case AMS_SUPPLY10:
 582	case AMS_VCCAMS:
 583		val = AMS_SUPPLY_SCALE_3VOLT_mV;
 584		break;
 585	case AMS_SUPPLY5:
 586	case AMS_SUPPLY6:
 587	case AMS_SUPPLY7:
 588	case AMS_SUPPLY8:
 589		val = AMS_SUPPLY_SCALE_6VOLT_mV;
 590		break;
 591	default:
 592		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 593		break;
 594	}
 595
 596	return val;
 597}
 598
 599static int ams_get_pl_scale(struct ams *ams, int address)
 600{
 601	int val, regval;
 602
 603	switch (address) {
 604	case AMS_SUPPLY1:
 605	case AMS_SUPPLY2:
 606	case AMS_SUPPLY3:
 607	case AMS_SUPPLY4:
 608	case AMS_SUPPLY5:
 609	case AMS_SUPPLY6:
 610	case AMS_VCCAMS:
 611	case AMS_VREFP:
 612	case AMS_VREFN:
 613		val = AMS_SUPPLY_SCALE_3VOLT_mV;
 614		break;
 615	case AMS_SUPPLY7:
 616		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 617		if (FIELD_GET(AMS_VUSER0_MASK, regval))
 618			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 619		else
 620			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 621		break;
 622	case AMS_SUPPLY8:
 623		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 624		if (FIELD_GET(AMS_VUSER1_MASK, regval))
 625			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 626		else
 627			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 628		break;
 629	case AMS_SUPPLY9:
 630		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 631		if (FIELD_GET(AMS_VUSER2_MASK, regval))
 632			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 633		else
 634			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 635		break;
 636	case AMS_SUPPLY10:
 637		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 638		if (FIELD_GET(AMS_VUSER3_MASK, regval))
 639			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 640		else
 641			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 642		break;
 643	case AMS_VP_VN:
 644	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
 645		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 646		break;
 647	default:
 648		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 649		break;
 650	}
 651
 652	return val;
 653}
 654
 655static int ams_get_ctrl_scale(int address)
 656{
 657	int val;
 658
 659	switch (address) {
 660	case AMS_VCC_PSPLL0:
 661	case AMS_VCC_PSPLL3:
 662	case AMS_VCCINT:
 663	case AMS_VCCBRAM:
 664	case AMS_VCCAUX:
 665	case AMS_PSDDRPLL:
 666	case AMS_PSINTFPDDR:
 667		val = AMS_SUPPLY_SCALE_3VOLT_mV;
 668		break;
 669	default:
 670		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 671		break;
 672	}
 673
 674	return val;
 675}
 676
 677static int ams_read_raw(struct iio_dev *indio_dev,
 678			struct iio_chan_spec const *chan,
 679			int *val, int *val2, long mask)
 680{
 681	struct ams *ams = iio_priv(indio_dev);
 682	int ret;
 683
 684	switch (mask) {
 685	case IIO_CHAN_INFO_RAW:
 686		mutex_lock(&ams->lock);
 687		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
 688			ret = ams_read_vcc_reg(ams, chan->address, val);
 689			if (ret)
 690				goto unlock_mutex;
 691			ams_enable_channel_sequence(indio_dev);
 692		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
 693			*val = readl(ams->pl_base + chan->address);
 694		else
 695			*val = readl(ams->ps_base + chan->address);
 696
 697		ret = IIO_VAL_INT;
 698unlock_mutex:
 699		mutex_unlock(&ams->lock);
 700		return ret;
 701	case IIO_CHAN_INFO_SCALE:
 702		switch (chan->type) {
 703		case IIO_VOLTAGE:
 704			if (chan->scan_index < AMS_PS_SEQ_MAX)
 705				*val = ams_get_ps_scale(chan->address);
 706			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
 707				 chan->scan_index < AMS_CTRL_SEQ_BASE)
 708				*val = ams_get_pl_scale(ams, chan->address);
 709			else
 710				*val = ams_get_ctrl_scale(chan->address);
 711
 712			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
 713			return IIO_VAL_FRACTIONAL_LOG2;
 714		case IIO_TEMP:
 715			*val = AMS_TEMP_SCALE;
 716			*val2 = AMS_TEMP_SCALE_DIV_BIT;
 717			return IIO_VAL_FRACTIONAL_LOG2;
 718		default:
 719			return -EINVAL;
 720		}
 721	case IIO_CHAN_INFO_OFFSET:
 722		/* Only the temperature channel has an offset */
 723		*val = AMS_TEMP_OFFSET;
 724		return IIO_VAL_INT;
 725	default:
 726		return -EINVAL;
 727	}
 728}
 729
 730static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
 731{
 732	int offset;
 733
 734	if (scan_index >= AMS_PS_SEQ_MAX)
 735		scan_index -= AMS_PS_SEQ_MAX;
 736
 737	if (dir == IIO_EV_DIR_FALLING) {
 738		if (scan_index < AMS_SEQ_SUPPLY7)
 739			offset = AMS_ALARM_THRESHOLD_OFF_10;
 740		else
 741			offset = AMS_ALARM_THRESHOLD_OFF_20;
 742	} else {
 743		offset = 0;
 744	}
 745
 746	switch (scan_index) {
 747	case AMS_SEQ_TEMP:
 748		return AMS_ALARM_TEMP + offset;
 749	case AMS_SEQ_SUPPLY1:
 750		return AMS_ALARM_SUPPLY1 + offset;
 751	case AMS_SEQ_SUPPLY2:
 752		return AMS_ALARM_SUPPLY2 + offset;
 753	case AMS_SEQ_SUPPLY3:
 754		return AMS_ALARM_SUPPLY3 + offset;
 755	case AMS_SEQ_SUPPLY4:
 756		return AMS_ALARM_SUPPLY4 + offset;
 757	case AMS_SEQ_SUPPLY5:
 758		return AMS_ALARM_SUPPLY5 + offset;
 759	case AMS_SEQ_SUPPLY6:
 760		return AMS_ALARM_SUPPLY6 + offset;
 761	case AMS_SEQ_SUPPLY7:
 762		return AMS_ALARM_SUPPLY7 + offset;
 763	case AMS_SEQ_SUPPLY8:
 764		return AMS_ALARM_SUPPLY8 + offset;
 765	case AMS_SEQ_SUPPLY9:
 766		return AMS_ALARM_SUPPLY9 + offset;
 767	case AMS_SEQ_SUPPLY10:
 768		return AMS_ALARM_SUPPLY10 + offset;
 769	case AMS_SEQ_VCCAMS:
 770		return AMS_ALARM_VCCAMS + offset;
 771	case AMS_SEQ_TEMP_REMOTE:
 772		return AMS_ALARM_TEMP_REMOTE + offset;
 773	default:
 774		return 0;
 775	}
 776}
 777
 778static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
 779							u32 event)
 780{
 781	int scan_index = 0, i;
 782
 783	if (event >= AMS_PL_ALARM_START) {
 784		event -= AMS_PL_ALARM_START;
 785		scan_index = AMS_PS_SEQ_MAX;
 786	}
 787
 788	switch (event) {
 789	case AMS_ALARM_BIT_TEMP:
 790		scan_index += AMS_SEQ_TEMP;
 791		break;
 792	case AMS_ALARM_BIT_SUPPLY1:
 793		scan_index += AMS_SEQ_SUPPLY1;
 794		break;
 795	case AMS_ALARM_BIT_SUPPLY2:
 796		scan_index += AMS_SEQ_SUPPLY2;
 797		break;
 798	case AMS_ALARM_BIT_SUPPLY3:
 799		scan_index += AMS_SEQ_SUPPLY3;
 800		break;
 801	case AMS_ALARM_BIT_SUPPLY4:
 802		scan_index += AMS_SEQ_SUPPLY4;
 803		break;
 804	case AMS_ALARM_BIT_SUPPLY5:
 805		scan_index += AMS_SEQ_SUPPLY5;
 806		break;
 807	case AMS_ALARM_BIT_SUPPLY6:
 808		scan_index += AMS_SEQ_SUPPLY6;
 809		break;
 810	case AMS_ALARM_BIT_SUPPLY7:
 811		scan_index += AMS_SEQ_SUPPLY7;
 812		break;
 813	case AMS_ALARM_BIT_SUPPLY8:
 814		scan_index += AMS_SEQ_SUPPLY8;
 815		break;
 816	case AMS_ALARM_BIT_SUPPLY9:
 817		scan_index += AMS_SEQ_SUPPLY9;
 818		break;
 819	case AMS_ALARM_BIT_SUPPLY10:
 820		scan_index += AMS_SEQ_SUPPLY10;
 821		break;
 822	case AMS_ALARM_BIT_VCCAMS:
 823		scan_index += AMS_SEQ_VCCAMS;
 824		break;
 825	case AMS_ALARM_BIT_TEMP_REMOTE:
 826		scan_index += AMS_SEQ_TEMP_REMOTE;
 827		break;
 828	default:
 829		break;
 830	}
 831
 832	for (i = 0; i < dev->num_channels; i++)
 833		if (dev->channels[i].scan_index == scan_index)
 834			break;
 835
 836	return &dev->channels[i];
 837}
 838
 839static int ams_get_alarm_mask(int scan_index)
 840{
 841	int bit = 0;
 842
 843	if (scan_index >= AMS_PS_SEQ_MAX) {
 844		bit = AMS_PL_ALARM_START;
 845		scan_index -= AMS_PS_SEQ_MAX;
 846	}
 847
 848	switch (scan_index) {
 849	case AMS_SEQ_TEMP:
 850		return BIT(AMS_ALARM_BIT_TEMP + bit);
 851	case AMS_SEQ_SUPPLY1:
 852		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
 853	case AMS_SEQ_SUPPLY2:
 854		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
 855	case AMS_SEQ_SUPPLY3:
 856		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
 857	case AMS_SEQ_SUPPLY4:
 858		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
 859	case AMS_SEQ_SUPPLY5:
 860		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
 861	case AMS_SEQ_SUPPLY6:
 862		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
 863	case AMS_SEQ_SUPPLY7:
 864		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
 865	case AMS_SEQ_SUPPLY8:
 866		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
 867	case AMS_SEQ_SUPPLY9:
 868		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
 869	case AMS_SEQ_SUPPLY10:
 870		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
 871	case AMS_SEQ_VCCAMS:
 872		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
 873	case AMS_SEQ_TEMP_REMOTE:
 874		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
 875	default:
 876		return 0;
 877	}
 878}
 879
 880static int ams_read_event_config(struct iio_dev *indio_dev,
 881				 const struct iio_chan_spec *chan,
 882				 enum iio_event_type type,
 883				 enum iio_event_direction dir)
 884{
 885	struct ams *ams = iio_priv(indio_dev);
 886
 887	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
 888}
 889
 890static int ams_write_event_config(struct iio_dev *indio_dev,
 891				  const struct iio_chan_spec *chan,
 892				  enum iio_event_type type,
 893				  enum iio_event_direction dir,
 894				  int state)
 895{
 896	struct ams *ams = iio_priv(indio_dev);
 897	unsigned int alarm;
 898
 899	alarm = ams_get_alarm_mask(chan->scan_index);
 900
 901	mutex_lock(&ams->lock);
 902
 903	if (state)
 904		ams->alarm_mask |= alarm;
 905	else
 906		ams->alarm_mask &= ~alarm;
 907
 908	ams_update_alarm(ams, ams->alarm_mask);
 909
 910	mutex_unlock(&ams->lock);
 911
 912	return 0;
 913}
 914
 915static int ams_read_event_value(struct iio_dev *indio_dev,
 916				const struct iio_chan_spec *chan,
 917				enum iio_event_type type,
 918				enum iio_event_direction dir,
 919				enum iio_event_info info, int *val, int *val2)
 920{
 921	struct ams *ams = iio_priv(indio_dev);
 922	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
 923
 924	mutex_lock(&ams->lock);
 925
 926	if (chan->scan_index >= AMS_PS_SEQ_MAX)
 927		*val = readl(ams->pl_base + offset);
 928	else
 929		*val = readl(ams->ps_base + offset);
 930
 931	mutex_unlock(&ams->lock);
 932
 933	return IIO_VAL_INT;
 934}
 935
 936static int ams_write_event_value(struct iio_dev *indio_dev,
 937				 const struct iio_chan_spec *chan,
 938				 enum iio_event_type type,
 939				 enum iio_event_direction dir,
 940				 enum iio_event_info info, int val, int val2)
 941{
 942	struct ams *ams = iio_priv(indio_dev);
 943	unsigned int offset;
 944
 945	mutex_lock(&ams->lock);
 946
 947	/* Set temperature channel threshold to direct threshold */
 948	if (chan->type == IIO_TEMP) {
 949		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
 950
 951		if (chan->scan_index >= AMS_PS_SEQ_MAX)
 952			ams_pl_update_reg(ams, offset,
 953					  AMS_ALARM_THR_DIRECT_MASK,
 954					  AMS_ALARM_THR_DIRECT_MASK);
 955		else
 956			ams_ps_update_reg(ams, offset,
 957					  AMS_ALARM_THR_DIRECT_MASK,
 958					  AMS_ALARM_THR_DIRECT_MASK);
 959	}
 960
 961	offset = ams_get_alarm_offset(chan->scan_index, dir);
 962	if (chan->scan_index >= AMS_PS_SEQ_MAX)
 963		writel(val, ams->pl_base + offset);
 964	else
 965		writel(val, ams->ps_base + offset);
 966
 967	mutex_unlock(&ams->lock);
 968
 969	return 0;
 970}
 971
 972static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
 973{
 974	const struct iio_chan_spec *chan;
 975
 976	chan = ams_event_to_channel(indio_dev, event);
 977
 978	if (chan->type == IIO_TEMP) {
 979		/*
 980		 * The temperature channel only supports over-temperature
 981		 * events.
 982		 */
 983		iio_push_event(indio_dev,
 984			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
 985						    IIO_EV_TYPE_THRESH,
 986						    IIO_EV_DIR_RISING),
 987			       iio_get_time_ns(indio_dev));
 988	} else {
 989		/*
 990		 * For other channels we don't know whether it is a upper or
 991		 * lower threshold event. Userspace will have to check the
 992		 * channel value if it wants to know.
 993		 */
 994		iio_push_event(indio_dev,
 995			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
 996						    IIO_EV_TYPE_THRESH,
 997						    IIO_EV_DIR_EITHER),
 998			       iio_get_time_ns(indio_dev));
 999	}
1000}
1001
1002static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1003{
1004	unsigned int bit;
1005
1006	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1007		ams_handle_event(indio_dev, bit);
1008}
1009
1010/**
1011 * ams_unmask_worker - ams alarm interrupt unmask worker
1012 * @work: work to be done
1013 *
1014 * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1015 * threshold condition go way from within the interrupt handler, this means as
1016 * soon as a threshold condition is present we would enter the interrupt handler
1017 * again and again. To work around this we mask all active threshold interrupts
1018 * in the interrupt handler and start a timer. In this timer we poll the
1019 * interrupt status and only if the interrupt is inactive we unmask it again.
1020 */
1021static void ams_unmask_worker(struct work_struct *work)
1022{
1023	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1024	unsigned int status, unmask;
1025
1026	spin_lock_irq(&ams->intr_lock);
1027
1028	status = readl(ams->base + AMS_ISR_0);
1029
1030	/* Clear those bits which are not active anymore */
1031	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1032
1033	/* Clear status of disabled alarm */
1034	unmask |= ams->intr_mask;
1035
1036	ams->current_masked_alarm &= status;
1037
1038	/* Also clear those which are masked out anyway */
1039	ams->current_masked_alarm &= ~ams->intr_mask;
1040
1041	/* Clear the interrupts before we unmask them */
1042	writel(unmask, ams->base + AMS_ISR_0);
1043
1044	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1045
1046	spin_unlock_irq(&ams->intr_lock);
1047
1048	/* If still pending some alarm re-trigger the timer */
1049	if (ams->current_masked_alarm)
1050		schedule_delayed_work(&ams->ams_unmask_work,
1051				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1052}
1053
1054static irqreturn_t ams_irq(int irq, void *data)
1055{
1056	struct iio_dev *indio_dev = data;
1057	struct ams *ams = iio_priv(indio_dev);
1058	u32 isr0;
1059
1060	spin_lock(&ams->intr_lock);
1061
1062	isr0 = readl(ams->base + AMS_ISR_0);
1063
1064	/* Only process alarms that are not masked */
1065	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1066	if (!isr0) {
1067		spin_unlock(&ams->intr_lock);
1068		return IRQ_NONE;
1069	}
1070
1071	/* Clear interrupt */
1072	writel(isr0, ams->base + AMS_ISR_0);
1073
1074	/* Mask the alarm interrupts until cleared */
1075	ams->current_masked_alarm |= isr0;
1076	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1077
1078	ams_handle_events(indio_dev, isr0);
1079
1080	schedule_delayed_work(&ams->ams_unmask_work,
1081			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1082
1083	spin_unlock(&ams->intr_lock);
1084
1085	return IRQ_HANDLED;
1086}
1087
1088static const struct iio_event_spec ams_temp_events[] = {
1089	{
1090		.type = IIO_EV_TYPE_THRESH,
1091		.dir = IIO_EV_DIR_RISING,
1092		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1093	},
1094};
1095
1096static const struct iio_event_spec ams_voltage_events[] = {
1097	{
1098		.type = IIO_EV_TYPE_THRESH,
1099		.dir = IIO_EV_DIR_RISING,
1100		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1101	},
1102	{
1103		.type = IIO_EV_TYPE_THRESH,
1104		.dir = IIO_EV_DIR_FALLING,
1105		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1106	},
1107	{
1108		.type = IIO_EV_TYPE_THRESH,
1109		.dir = IIO_EV_DIR_EITHER,
1110		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1111	},
1112};
1113
1114static const struct iio_chan_spec ams_ps_channels[] = {
1115	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1116	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
1117	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
1118	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
1119	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
1120	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
1121	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
1122	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
1123	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
1124	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
1125	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
1126	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
1127	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
1128};
1129
1130static const struct iio_chan_spec ams_pl_channels[] = {
1131	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1132	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
1133	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
1134	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
1135	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
1136	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
1137	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
1138	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
1139	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
1140	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
1141	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
1142	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
1143	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
1144	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
1145	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
1146	AMS_PL_AUX_CHAN_VOLTAGE(0),
1147	AMS_PL_AUX_CHAN_VOLTAGE(1),
1148	AMS_PL_AUX_CHAN_VOLTAGE(2),
1149	AMS_PL_AUX_CHAN_VOLTAGE(3),
1150	AMS_PL_AUX_CHAN_VOLTAGE(4),
1151	AMS_PL_AUX_CHAN_VOLTAGE(5),
1152	AMS_PL_AUX_CHAN_VOLTAGE(6),
1153	AMS_PL_AUX_CHAN_VOLTAGE(7),
1154	AMS_PL_AUX_CHAN_VOLTAGE(8),
1155	AMS_PL_AUX_CHAN_VOLTAGE(9),
1156	AMS_PL_AUX_CHAN_VOLTAGE(10),
1157	AMS_PL_AUX_CHAN_VOLTAGE(11),
1158	AMS_PL_AUX_CHAN_VOLTAGE(12),
1159	AMS_PL_AUX_CHAN_VOLTAGE(13),
1160	AMS_PL_AUX_CHAN_VOLTAGE(14),
1161	AMS_PL_AUX_CHAN_VOLTAGE(15),
1162};
1163
1164static const struct iio_chan_spec ams_ctrl_channels[] = {
1165	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
1166	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
1167	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
1168	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
1169	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
1170	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
1171	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
1172};
1173
1174static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1175			    struct iio_chan_spec *channels, int num_channels)
1176{
1177	struct iio_chan_spec *chan;
1178	struct fwnode_handle *child;
1179	unsigned int reg, ext_chan;
1180	int ret;
1181
1182	fwnode_for_each_child_node(chan_node, child) {
1183		ret = fwnode_property_read_u32(child, "reg", &reg);
1184		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1185			continue;
1186
1187		chan = &channels[num_channels];
1188		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1189		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1190
1191		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1192			chan->scan_type.sign = 's';
1193
1194		num_channels++;
1195	}
1196
1197	return num_channels;
1198}
1199
1200static void ams_iounmap_ps(void *data)
1201{
1202	struct ams *ams = data;
1203
1204	iounmap(ams->ps_base);
1205}
1206
1207static void ams_iounmap_pl(void *data)
1208{
1209	struct ams *ams = data;
1210
1211	iounmap(ams->pl_base);
1212}
1213
1214static int ams_init_module(struct iio_dev *indio_dev,
1215			   struct fwnode_handle *fwnode,
1216			   struct iio_chan_spec *channels)
1217{
1218	struct device *dev = indio_dev->dev.parent;
1219	struct ams *ams = iio_priv(indio_dev);
1220	int num_channels = 0;
1221	int ret;
1222
1223	if (fwnode_property_match_string(fwnode, "compatible",
1224					 "xlnx,zynqmp-ams-ps") == 0) {
1225		ams->ps_base = fwnode_iomap(fwnode, 0);
1226		if (!ams->ps_base)
1227			return -ENXIO;
1228		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1229		if (ret < 0)
1230			return ret;
1231
1232		/* add PS channels to iio device channels */
1233		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1234		num_channels = ARRAY_SIZE(ams_ps_channels);
1235	} else if (fwnode_property_match_string(fwnode, "compatible",
1236						"xlnx,zynqmp-ams-pl") == 0) {
1237		ams->pl_base = fwnode_iomap(fwnode, 0);
1238		if (!ams->pl_base)
1239			return -ENXIO;
1240
1241		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1242		if (ret < 0)
1243			return ret;
1244
1245		/* Copy only first 10 fix channels */
1246		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1247		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1248		num_channels = ams_get_ext_chan(fwnode, channels,
1249						num_channels);
1250	} else if (fwnode_property_match_string(fwnode, "compatible",
1251						"xlnx,zynqmp-ams") == 0) {
1252		/* add AMS channels to iio device channels */
1253		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1254		num_channels += ARRAY_SIZE(ams_ctrl_channels);
1255	} else {
1256		return -EINVAL;
1257	}
1258
1259	return num_channels;
1260}
1261
1262static int ams_parse_firmware(struct iio_dev *indio_dev)
1263{
1264	struct ams *ams = iio_priv(indio_dev);
1265	struct iio_chan_spec *ams_channels, *dev_channels;
1266	struct device *dev = indio_dev->dev.parent;
1267	struct fwnode_handle *child = NULL;
1268	struct fwnode_handle *fwnode = dev_fwnode(dev);
1269	size_t ams_size, dev_size;
1270	int ret, ch_cnt = 0, i, rising_off, falling_off;
1271	unsigned int num_channels = 0;
1272
1273	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1274		ARRAY_SIZE(ams_ctrl_channels);
1275
1276	/* Initialize buffer for channel specification */
1277	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1278	if (!ams_channels)
1279		return -ENOMEM;
1280
1281	if (fwnode_device_is_available(fwnode)) {
1282		ret = ams_init_module(indio_dev, fwnode, ams_channels);
1283		if (ret < 0)
1284			return ret;
1285
1286		num_channels += ret;
1287	}
1288
1289	fwnode_for_each_child_node(fwnode, child) {
1290		if (fwnode_device_is_available(child)) {
1291			ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1292			if (ret < 0) {
1293				fwnode_handle_put(child);
1294				return ret;
1295			}
1296
1297			num_channels += ret;
1298		}
1299	}
1300
1301	for (i = 0; i < num_channels; i++) {
1302		ams_channels[i].channel = ch_cnt++;
1303
1304		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1305			/* set threshold to max and min for each channel */
1306			falling_off =
1307				ams_get_alarm_offset(ams_channels[i].scan_index,
1308						     IIO_EV_DIR_FALLING);
1309			rising_off =
1310				ams_get_alarm_offset(ams_channels[i].scan_index,
1311						     IIO_EV_DIR_RISING);
1312			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1313				writel(AMS_ALARM_THR_MIN,
1314				       ams->pl_base + falling_off);
1315				writel(AMS_ALARM_THR_MAX,
1316				       ams->pl_base + rising_off);
1317			} else {
1318				writel(AMS_ALARM_THR_MIN,
1319				       ams->ps_base + falling_off);
1320				writel(AMS_ALARM_THR_MAX,
1321				       ams->ps_base + rising_off);
1322			}
1323		}
1324	}
1325
1326	dev_size = array_size(sizeof(*dev_channels), num_channels);
1327	if (dev_size == SIZE_MAX)
1328		return -ENOMEM;
1329
1330	dev_channels = devm_krealloc(dev, ams_channels, dev_size, GFP_KERNEL);
1331	if (!dev_channels)
1332		return -ENOMEM;
1333
1334	indio_dev->channels = dev_channels;
1335	indio_dev->num_channels = num_channels;
1336
1337	return 0;
1338}
1339
1340static const struct iio_info iio_ams_info = {
1341	.read_raw = &ams_read_raw,
1342	.read_event_config = &ams_read_event_config,
1343	.write_event_config = &ams_write_event_config,
1344	.read_event_value = &ams_read_event_value,
1345	.write_event_value = &ams_write_event_value,
1346};
1347
1348static const struct of_device_id ams_of_match_table[] = {
1349	{ .compatible = "xlnx,zynqmp-ams" },
1350	{ }
1351};
1352MODULE_DEVICE_TABLE(of, ams_of_match_table);
1353
1354static int ams_probe(struct platform_device *pdev)
1355{
1356	struct iio_dev *indio_dev;
1357	struct ams *ams;
1358	int ret;
1359	int irq;
1360
1361	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1362	if (!indio_dev)
1363		return -ENOMEM;
1364
1365	ams = iio_priv(indio_dev);
1366	mutex_init(&ams->lock);
1367	spin_lock_init(&ams->intr_lock);
1368
1369	indio_dev->name = "xilinx-ams";
1370
1371	indio_dev->info = &iio_ams_info;
1372	indio_dev->modes = INDIO_DIRECT_MODE;
1373
1374	ams->base = devm_platform_ioremap_resource(pdev, 0);
1375	if (IS_ERR(ams->base))
1376		return PTR_ERR(ams->base);
1377
1378	ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1379	if (IS_ERR(ams->clk))
1380		return PTR_ERR(ams->clk);
1381
1382	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1383					   ams_unmask_worker);
1384	if (ret < 0)
1385		return ret;
1386
1387	ret = ams_parse_firmware(indio_dev);
1388	if (ret)
1389		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1390
1391	ret = ams_init_device(ams);
1392	if (ret)
1393		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1394
1395	ams_enable_channel_sequence(indio_dev);
1396
1397	irq = platform_get_irq(pdev, 0);
1398	if (irq < 0)
1399		return irq;
1400
1401	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1402			       indio_dev);
1403	if (ret < 0)
1404		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1405
1406	platform_set_drvdata(pdev, indio_dev);
1407
1408	return devm_iio_device_register(&pdev->dev, indio_dev);
1409}
1410
1411static int ams_suspend(struct device *dev)
1412{
1413	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1414
1415	clk_disable_unprepare(ams->clk);
1416
1417	return 0;
1418}
1419
1420static int ams_resume(struct device *dev)
1421{
1422	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1423
1424	return clk_prepare_enable(ams->clk);
1425}
1426
1427static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1428
1429static struct platform_driver ams_driver = {
1430	.probe = ams_probe,
1431	.driver = {
1432		.name = "xilinx-ams",
1433		.pm = pm_sleep_ptr(&ams_pm_ops),
1434		.of_match_table = ams_of_match_table,
1435	},
1436};
1437module_platform_driver(ams_driver);
1438
1439MODULE_LICENSE("GPL v2");
1440MODULE_AUTHOR("Xilinx, Inc.");