Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is the ADC part of the STM32 DFSDM driver
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
   7 */
   8
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iio/adc/stm32-dfsdm-adc.h>
  12#include <linux/iio/buffer.h>
  13#include <linux/iio/hw-consumer.h>
  14#include <linux/iio/sysfs.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/module.h>
  22#include <linux/of_device.h>
  23#include <linux/platform_device.h>
  24#include <linux/regmap.h>
  25#include <linux/slab.h>
  26
  27#include "stm32-dfsdm.h"
  28
  29#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
  30
  31/* Conversion timeout */
  32#define DFSDM_TIMEOUT_US 100000
  33#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
  34
  35/* Oversampling attribute default */
  36#define DFSDM_DEFAULT_OVERSAMPLING  100
  37
  38/* Oversampling max values */
  39#define DFSDM_MAX_INT_OVERSAMPLING 256
  40#define DFSDM_MAX_FL_OVERSAMPLING 1024
  41
  42/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
  43#define DFSDM_DATA_MAX BIT(30)
  44/*
  45 * Data are output as two's complement data in a 24 bit field.
  46 * Data from filters are in the range +/-2^(n-1)
  47 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
  48 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
  49 * So, the resolution of samples from filter is actually limited to 23 bits
  50 */
  51#define DFSDM_DATA_RES 24
  52
  53/* Filter configuration */
  54#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
  55			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
  56			    DFSDM_CR1_JSCAN_MASK)
  57
  58enum sd_converter_type {
  59	DFSDM_AUDIO,
  60	DFSDM_IIO,
  61};
  62
  63struct stm32_dfsdm_dev_data {
  64	int type;
  65	int (*init)(struct iio_dev *indio_dev);
  66	unsigned int num_channels;
  67	const struct regmap_config *regmap_cfg;
  68};
  69
  70struct stm32_dfsdm_adc {
  71	struct stm32_dfsdm *dfsdm;
  72	const struct stm32_dfsdm_dev_data *dev_data;
  73	unsigned int fl_id;
  74	unsigned int nconv;
  75	unsigned long smask;
  76
  77	/* ADC specific */
  78	unsigned int oversamp;
  79	struct iio_hw_consumer *hwc;
  80	struct completion completion;
  81	u32 *buffer;
  82
  83	/* Audio specific */
  84	unsigned int spi_freq;  /* SPI bus clock frequency */
  85	unsigned int sample_freq; /* Sample frequency after filter decimation */
  86	int (*cb)(const void *data, size_t size, void *cb_priv);
  87	void *cb_priv;
  88
  89	/* DMA */
  90	u8 *rx_buf;
  91	unsigned int bufi; /* Buffer current position */
  92	unsigned int buf_sz; /* Buffer size */
  93	struct dma_chan	*dma_chan;
  94	dma_addr_t dma_buf;
  95};
  96
  97struct stm32_dfsdm_str2field {
  98	const char	*name;
  99	unsigned int	val;
 100};
 101
 102/* DFSDM channel serial interface type */
 103static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
 104	{ "SPI_R", 0 }, /* SPI with data on rising edge */
 105	{ "SPI_F", 1 }, /* SPI with data on falling edge */
 106	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
 107	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
 108	{},
 109};
 110
 111/* DFSDM channel clock source */
 112static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
 113	/* External SPI clock (CLKIN x) */
 114	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
 115	/* Internal SPI clock (CLKOUT) */
 116	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
 117	/* Internal SPI clock divided by 2 (falling edge) */
 118	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
 119	/* Internal SPI clock divided by 2 (falling edge) */
 120	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
 121	{},
 122};
 123
 124static int stm32_dfsdm_str2val(const char *str,
 125			       const struct stm32_dfsdm_str2field *list)
 126{
 127	const struct stm32_dfsdm_str2field *p = list;
 128
 129	for (p = list; p && p->name; p++)
 130		if (!strcmp(p->name, str))
 131			return p->val;
 132
 133	return -EINVAL;
 134}
 135
 136/**
 137 * struct stm32_dfsdm_trig_info - DFSDM trigger info
 138 * @name:		name of the trigger, corresponding to its source
 139 * @jextsel:		trigger signal selection
 140 */
 141struct stm32_dfsdm_trig_info {
 142	const char *name;
 143	unsigned int jextsel;
 144};
 145
 146/* hardware injected trigger enable, edge selection */
 147enum stm32_dfsdm_jexten {
 148	STM32_DFSDM_JEXTEN_DISABLED,
 149	STM32_DFSDM_JEXTEN_RISING_EDGE,
 150	STM32_DFSDM_JEXTEN_FALLING_EDGE,
 151	STM32_DFSDM_EXTEN_BOTH_EDGES,
 152};
 153
 154static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
 155	{ TIM1_TRGO, 0 },
 156	{ TIM1_TRGO2, 1 },
 157	{ TIM8_TRGO, 2 },
 158	{ TIM8_TRGO2, 3 },
 159	{ TIM3_TRGO, 4 },
 160	{ TIM4_TRGO, 5 },
 161	{ TIM16_OC1, 6 },
 162	{ TIM6_TRGO, 7 },
 163	{ TIM7_TRGO, 8 },
 164	{ LPTIM1_OUT, 26 },
 165	{ LPTIM2_OUT, 27 },
 166	{ LPTIM3_OUT, 28 },
 167	{},
 168};
 169
 170static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
 171				   struct iio_trigger *trig)
 172{
 173	int i;
 174
 175	/* lookup triggers registered by stm32 timer trigger driver */
 176	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
 177		/**
 178		 * Checking both stm32 timer trigger type and trig name
 179		 * should be safe against arbitrary trigger names.
 180		 */
 181		if ((is_stm32_timer_trigger(trig) ||
 182		     is_stm32_lptim_trigger(trig)) &&
 183		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
 184			return stm32_dfsdm_trigs[i].jextsel;
 185		}
 186	}
 187
 188	return -EINVAL;
 189}
 190
 191static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
 192				    unsigned int fast, unsigned int oversamp)
 193{
 194	unsigned int i, d, fosr, iosr;
 195	u64 res, max;
 196	int bits, shift;
 197	unsigned int m = 1;	/* multiplication factor */
 198	unsigned int p = fl->ford;	/* filter order (ford) */
 199	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
 200
 201	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
 202	/*
 203	 * This function tries to compute filter oversampling and integrator
 204	 * oversampling, base on oversampling ratio requested by user.
 205	 *
 206	 * Decimation d depends on the filter order and the oversampling ratios.
 207	 * ford: filter order
 208	 * fosr: filter over sampling ratio
 209	 * iosr: integrator over sampling ratio
 210	 */
 211	if (fl->ford == DFSDM_FASTSINC_ORDER) {
 212		m = 2;
 213		p = 2;
 214	}
 215
 216	/*
 217	 * Look for filter and integrator oversampling ratios which allows
 218	 * to maximize data output resolution.
 219	 */
 220	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
 221		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
 222			if (fast)
 223				d = fosr * iosr;
 224			else if (fl->ford == DFSDM_FASTSINC_ORDER)
 225				d = fosr * (iosr + 3) + 2;
 226			else
 227				d = fosr * (iosr - 1 + p) + p;
 228
 229			if (d > oversamp)
 230				break;
 231			else if (d != oversamp)
 232				continue;
 233			/*
 234			 * Check resolution (limited to signed 32 bits)
 235			 *   res <= 2^31
 236			 * Sincx filters:
 237			 *   res = m * fosr^p x iosr (with m=1, p=ford)
 238			 * FastSinc filter
 239			 *   res = m * fosr^p x iosr (with m=2, p=2)
 240			 */
 241			res = fosr;
 242			for (i = p - 1; i > 0; i--) {
 243				res = res * (u64)fosr;
 244				if (res > DFSDM_DATA_MAX)
 245					break;
 246			}
 247			if (res > DFSDM_DATA_MAX)
 248				continue;
 249
 250			res = res * (u64)m * (u64)iosr;
 251			if (res > DFSDM_DATA_MAX)
 252				continue;
 253
 254			if (res >= flo->res) {
 255				flo->res = res;
 256				flo->fosr = fosr;
 257				flo->iosr = iosr;
 258
 259				bits = fls(flo->res);
 260				/* 8 LBSs in data register contain chan info */
 261				max = flo->res << 8;
 262
 263				/* if resolution is not a power of two */
 264				if (flo->res > BIT(bits - 1))
 265					bits++;
 266				else
 267					max--;
 268
 269				shift = DFSDM_DATA_RES - bits;
 270				/*
 271				 * Compute right/left shift
 272				 * Right shift is performed by hardware
 273				 * when transferring samples to data register.
 274				 * Left shift is done by software on buffer
 275				 */
 276				if (shift > 0) {
 277					/* Resolution is lower than 24 bits */
 278					flo->rshift = 0;
 279					flo->lshift = shift;
 280				} else {
 281					/*
 282					 * If resolution is 24 bits or more,
 283					 * max positive value may be ambiguous
 284					 * (equal to max negative value as sign
 285					 * bit is dropped).
 286					 * Reduce resolution to 23 bits (rshift)
 287					 * to keep the sign on bit 23 and treat
 288					 * saturation before rescaling on 24
 289					 * bits (lshift).
 290					 */
 291					flo->rshift = 1 - shift;
 292					flo->lshift = 1;
 293					max >>= flo->rshift;
 294				}
 295				flo->max = (s32)max;
 
 296
 297				pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
 298					 __func__, fast, flo->fosr, flo->iosr,
 299					 flo->res, bits, flo->rshift,
 300					 flo->lshift);
 301			}
 302		}
 303	}
 304
 305	if (!flo->res)
 306		return -EINVAL;
 307
 308	return 0;
 309}
 310
 311static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
 312					unsigned int oversamp)
 313{
 314	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 315	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 316	int ret0, ret1;
 317
 318	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
 319	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
 320
 321	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
 322	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
 323	if (ret0 < 0 && ret1 < 0) {
 324		dev_err(&indio_dev->dev,
 325			"Filter parameters not found: errors %d/%d\n",
 326			ret0, ret1);
 327		return -EINVAL;
 328	}
 329
 330	return 0;
 331}
 332
 333static int stm32_dfsdm_start_channel(struct stm32_dfsdm_adc *adc)
 334{
 335	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 336	struct regmap *regmap = adc->dfsdm->regmap;
 337	const struct iio_chan_spec *chan;
 338	unsigned int bit;
 339	int ret;
 340
 341	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 342		chan = indio_dev->channels + bit;
 343		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 344					 DFSDM_CHCFGR1_CHEN_MASK,
 345					 DFSDM_CHCFGR1_CHEN(1));
 346		if (ret < 0)
 347			return ret;
 348	}
 349
 350	return 0;
 351}
 352
 353static void stm32_dfsdm_stop_channel(struct stm32_dfsdm_adc *adc)
 354{
 355	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 356	struct regmap *regmap = adc->dfsdm->regmap;
 357	const struct iio_chan_spec *chan;
 358	unsigned int bit;
 359
 360	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 361		chan = indio_dev->channels + bit;
 362		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 363				   DFSDM_CHCFGR1_CHEN_MASK,
 364				   DFSDM_CHCFGR1_CHEN(0));
 365	}
 366}
 367
 368static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
 369				      struct stm32_dfsdm_channel *ch)
 370{
 371	unsigned int id = ch->id;
 372	struct regmap *regmap = dfsdm->regmap;
 373	int ret;
 374
 375	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 376				 DFSDM_CHCFGR1_SITP_MASK,
 377				 DFSDM_CHCFGR1_SITP(ch->type));
 378	if (ret < 0)
 379		return ret;
 380	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 381				 DFSDM_CHCFGR1_SPICKSEL_MASK,
 382				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
 383	if (ret < 0)
 384		return ret;
 385	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 386				  DFSDM_CHCFGR1_CHINSEL_MASK,
 387				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
 388}
 389
 390static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
 391				    unsigned int fl_id,
 392				    struct iio_trigger *trig)
 393{
 394	struct stm32_dfsdm *dfsdm = adc->dfsdm;
 395	int ret;
 396
 397	/* Enable filter */
 398	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 399				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
 400	if (ret < 0)
 401		return ret;
 402
 403	/* Nothing more to do for injected (scan mode/triggered) conversions */
 404	if (adc->nconv > 1 || trig)
 405		return 0;
 406
 407	/* Software start (single or continuous) regular conversion */
 408	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 409				  DFSDM_CR1_RSWSTART_MASK,
 410				  DFSDM_CR1_RSWSTART(1));
 411}
 412
 413static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
 414				    unsigned int fl_id)
 415{
 416	/* Disable conversion */
 417	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 418			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
 419}
 420
 421static int stm32_dfsdm_filter_set_trig(struct stm32_dfsdm_adc *adc,
 422				       unsigned int fl_id,
 423				       struct iio_trigger *trig)
 424{
 425	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 426	struct regmap *regmap = adc->dfsdm->regmap;
 427	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
 428	int ret;
 429
 430	if (trig) {
 431		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
 432		if (ret < 0)
 433			return ret;
 434
 435		/* set trigger source and polarity (default to rising edge) */
 436		jextsel = ret;
 437		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
 438	}
 439
 440	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 441				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
 442				 DFSDM_CR1_JEXTSEL(jextsel) |
 443				 DFSDM_CR1_JEXTEN(jexten));
 444	if (ret < 0)
 445		return ret;
 446
 447	return 0;
 448}
 449
 450static int stm32_dfsdm_channels_configure(struct stm32_dfsdm_adc *adc,
 451					  unsigned int fl_id,
 452					  struct iio_trigger *trig)
 453{
 454	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 455	struct regmap *regmap = adc->dfsdm->regmap;
 456	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 457	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
 458	const struct iio_chan_spec *chan;
 459	unsigned int bit;
 460	int ret;
 461
 462	fl->fast = 0;
 463
 464	/*
 465	 * In continuous mode, use fast mode configuration,
 466	 * if it provides a better resolution.
 467	 */
 468	if (adc->nconv == 1 && !trig &&
 469	    (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
 470		if (fl->flo[1].res >= fl->flo[0].res) {
 471			fl->fast = 1;
 472			flo = &fl->flo[1];
 473		}
 474	}
 475
 476	if (!flo->res)
 477		return -EINVAL;
 478
 
 
 
 479	for_each_set_bit(bit, &adc->smask,
 480			 sizeof(adc->smask) * BITS_PER_BYTE) {
 481		chan = indio_dev->channels + bit;
 482
 483		ret = regmap_update_bits(regmap,
 484					 DFSDM_CHCFGR2(chan->channel),
 485					 DFSDM_CHCFGR2_DTRBS_MASK,
 486					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
 487		if (ret)
 488			return ret;
 489	}
 490
 491	return 0;
 492}
 493
 494static int stm32_dfsdm_filter_configure(struct stm32_dfsdm_adc *adc,
 495					unsigned int fl_id,
 496					struct iio_trigger *trig)
 497{
 498	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 499	struct regmap *regmap = adc->dfsdm->regmap;
 500	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 501	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 502	u32 cr1;
 503	const struct iio_chan_spec *chan;
 504	unsigned int bit, jchg = 0;
 505	int ret;
 506
 507	/* Average integrator oversampling */
 508	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
 509				 DFSDM_FCR_IOSR(flo->iosr - 1));
 510	if (ret)
 511		return ret;
 512
 513	/* Filter order and Oversampling */
 514	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
 515				 DFSDM_FCR_FOSR(flo->fosr - 1));
 516	if (ret)
 517		return ret;
 518
 519	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
 520				 DFSDM_FCR_FORD(fl->ford));
 521	if (ret)
 522		return ret;
 523
 524	ret = stm32_dfsdm_filter_set_trig(adc, fl_id, trig);
 525	if (ret)
 526		return ret;
 527
 528	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 529				 DFSDM_CR1_FAST_MASK,
 530				 DFSDM_CR1_FAST(fl->fast));
 531	if (ret)
 532		return ret;
 533
 534	/*
 535	 * DFSDM modes configuration W.R.T audio/iio type modes
 536	 * ----------------------------------------------------------------
 537	 * Modes         | regular |  regular     | injected | injected   |
 538	 *               |         |  continuous  |          | + scan     |
 539	 * --------------|---------|--------------|----------|------------|
 540	 * single conv   |    x    |              |          |            |
 541	 * (1 chan)      |         |              |          |            |
 542	 * --------------|---------|--------------|----------|------------|
 543	 * 1 Audio chan	 |         | sample freq  |          |            |
 544	 *               |         | or sync_mode |          |            |
 545	 * --------------|---------|--------------|----------|------------|
 546	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
 547	 *               |         | or sync_mode |          |            |
 548	 * --------------|---------|--------------|----------|------------|
 549	 * 2+ IIO chans  |         |              |          | trigger or |
 550	 *               |         |              |          | sync_mode  |
 551	 * ----------------------------------------------------------------
 552	 */
 553	if (adc->nconv == 1 && !trig) {
 554		bit = __ffs(adc->smask);
 555		chan = indio_dev->channels + bit;
 556
 557		/* Use regular conversion for single channel without trigger */
 558		cr1 = DFSDM_CR1_RCH(chan->channel);
 559
 560		/* Continuous conversions triggered by SPI clk in buffer mode */
 561		if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
 562			cr1 |= DFSDM_CR1_RCONT(1);
 563
 564		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
 565	} else {
 566		/* Use injected conversion for multiple channels */
 567		for_each_set_bit(bit, &adc->smask,
 568				 sizeof(adc->smask) * BITS_PER_BYTE) {
 569			chan = indio_dev->channels + bit;
 570			jchg |= BIT(chan->channel);
 571		}
 572		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
 573		if (ret < 0)
 574			return ret;
 575
 576		/* Use scan mode for multiple channels */
 577		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
 578
 579		/*
 580		 * Continuous conversions not supported in injected mode,
 581		 * either use:
 582		 * - conversions in sync with filter 0
 583		 * - triggered conversions
 584		 */
 585		if (!fl->sync_mode && !trig)
 586			return -EINVAL;
 587		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
 588	}
 589
 590	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
 591				  cr1);
 592}
 593
 594static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
 595					struct iio_dev *indio_dev,
 596					struct iio_chan_spec *ch)
 597{
 598	struct stm32_dfsdm_channel *df_ch;
 599	const char *of_str;
 600	int chan_idx = ch->scan_index;
 601	int ret, val;
 602
 603	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 604					 "st,adc-channels", chan_idx,
 605					 &ch->channel);
 606	if (ret < 0) {
 607		dev_err(&indio_dev->dev,
 608			" Error parsing 'st,adc-channels' for idx %d\n",
 609			chan_idx);
 610		return ret;
 611	}
 612	if (ch->channel >= dfsdm->num_chs) {
 613		dev_err(&indio_dev->dev,
 614			" Error bad channel number %d (max = %d)\n",
 615			ch->channel, dfsdm->num_chs);
 616		return -EINVAL;
 617	}
 618
 619	ret = of_property_read_string_index(indio_dev->dev.of_node,
 620					    "st,adc-channel-names", chan_idx,
 621					    &ch->datasheet_name);
 622	if (ret < 0) {
 623		dev_err(&indio_dev->dev,
 624			" Error parsing 'st,adc-channel-names' for idx %d\n",
 625			chan_idx);
 626		return ret;
 627	}
 628
 629	df_ch =  &dfsdm->ch_list[ch->channel];
 630	df_ch->id = ch->channel;
 631
 632	ret = of_property_read_string_index(indio_dev->dev.of_node,
 633					    "st,adc-channel-types", chan_idx,
 634					    &of_str);
 635	if (!ret) {
 636		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 637		if (val < 0)
 638			return val;
 639	} else {
 640		val = 0;
 641	}
 642	df_ch->type = val;
 643
 644	ret = of_property_read_string_index(indio_dev->dev.of_node,
 645					    "st,adc-channel-clk-src", chan_idx,
 646					    &of_str);
 647	if (!ret) {
 648		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 649		if (val < 0)
 650			return val;
 651	} else {
 652		val = 0;
 653	}
 654	df_ch->src = val;
 655
 656	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 657					 "st,adc-alt-channel", chan_idx,
 658					 &df_ch->alt_si);
 659	if (ret < 0)
 660		df_ch->alt_si = 0;
 661
 662	return 0;
 663}
 664
 665static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
 666					  uintptr_t priv,
 667					  const struct iio_chan_spec *chan,
 668					  char *buf)
 669{
 670	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 671
 672	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
 673}
 674
 675static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
 676				   unsigned int sample_freq,
 677				   unsigned int spi_freq)
 678{
 679	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 680	unsigned int oversamp;
 681	int ret;
 682
 683	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
 684	if (spi_freq % sample_freq)
 685		dev_dbg(&indio_dev->dev,
 686			"Rate not accurate. requested (%u), actual (%u)\n",
 687			sample_freq, spi_freq / oversamp);
 688
 689	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
 690	if (ret < 0)
 691		return ret;
 692
 693	adc->sample_freq = spi_freq / oversamp;
 694	adc->oversamp = oversamp;
 695
 696	return 0;
 697}
 698
 699static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
 700					  uintptr_t priv,
 701					  const struct iio_chan_spec *chan,
 702					  const char *buf, size_t len)
 703{
 704	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 705	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 706	unsigned int sample_freq = adc->sample_freq;
 707	unsigned int spi_freq;
 708	int ret;
 709
 710	dev_err(&indio_dev->dev, "enter %s\n", __func__);
 711	/* If DFSDM is master on SPI, SPI freq can not be updated */
 712	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
 713		return -EPERM;
 714
 715	ret = kstrtoint(buf, 0, &spi_freq);
 716	if (ret)
 717		return ret;
 718
 719	if (!spi_freq)
 720		return -EINVAL;
 721
 722	if (sample_freq) {
 723		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
 724		if (ret < 0)
 725			return ret;
 726	}
 727	adc->spi_freq = spi_freq;
 728
 729	return len;
 730}
 731
 732static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
 733				  struct iio_trigger *trig)
 734{
 
 735	struct regmap *regmap = adc->dfsdm->regmap;
 736	int ret;
 737
 738	ret = stm32_dfsdm_channels_configure(adc, adc->fl_id, trig);
 739	if (ret < 0)
 740		return ret;
 741
 742	ret = stm32_dfsdm_start_channel(adc);
 743	if (ret < 0)
 744		return ret;
 745
 746	ret = stm32_dfsdm_filter_configure(adc, adc->fl_id, trig);
 747	if (ret < 0)
 748		goto stop_channels;
 749
 750	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
 751	if (ret < 0)
 752		goto filter_unconfigure;
 753
 754	return 0;
 755
 756filter_unconfigure:
 757	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 758			   DFSDM_CR1_CFG_MASK, 0);
 759stop_channels:
 760	stm32_dfsdm_stop_channel(adc);
 761
 762	return ret;
 763}
 764
 765static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
 766{
 
 767	struct regmap *regmap = adc->dfsdm->regmap;
 768
 769	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
 770
 771	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 772			   DFSDM_CR1_CFG_MASK, 0);
 773
 774	stm32_dfsdm_stop_channel(adc);
 775}
 776
 777static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
 778				     unsigned int val)
 779{
 780	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 781	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
 782	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
 783
 784	/*
 785	 * DMA cyclic transfers are used, buffer is split into two periods.
 786	 * There should be :
 787	 * - always one buffer (period) DMA is working on
 788	 * - one buffer (period) driver pushed to ASoC side.
 789	 */
 790	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
 791	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
 792
 793	return 0;
 794}
 795
 796static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
 797{
 798	struct dma_tx_state state;
 799	enum dma_status status;
 800
 801	status = dmaengine_tx_status(adc->dma_chan,
 802				     adc->dma_chan->cookie,
 803				     &state);
 804	if (status == DMA_IN_PROGRESS) {
 805		/* Residue is size in bytes from end of buffer */
 806		unsigned int i = adc->buf_sz - state.residue;
 807		unsigned int size;
 808
 809		/* Return available bytes */
 810		if (i >= adc->bufi)
 811			size = i - adc->bufi;
 812		else
 813			size = adc->buf_sz + i - adc->bufi;
 814
 815		return size;
 816	}
 817
 818	return 0;
 819}
 820
 821static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
 822					    s32 *buffer)
 823{
 824	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 825	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 826	unsigned int i = adc->nconv;
 827	s32 *ptr = buffer;
 828
 829	while (i--) {
 830		/* Mask 8 LSB that contains the channel ID */
 831		*ptr &= 0xFFFFFF00;
 832		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
 833		if (*ptr > flo->max)
 834			*ptr -= 1;
 835		/*
 836		 * Samples from filter are retrieved with 23 bits resolution
 837		 * or less. Shift left to align MSB on 24 bits.
 838		 */
 839		*ptr <<= flo->lshift;
 840
 841		ptr++;
 842	}
 843}
 844
 845static irqreturn_t stm32_dfsdm_adc_trigger_handler(int irq, void *p)
 846{
 847	struct iio_poll_func *pf = p;
 848	struct iio_dev *indio_dev = pf->indio_dev;
 849	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 850	int available = stm32_dfsdm_adc_dma_residue(adc);
 851
 852	while (available >= indio_dev->scan_bytes) {
 853		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
 854
 855		stm32_dfsdm_process_data(adc, buffer);
 856
 857		iio_push_to_buffers_with_timestamp(indio_dev, buffer,
 858						   pf->timestamp);
 859		available -= indio_dev->scan_bytes;
 860		adc->bufi += indio_dev->scan_bytes;
 861		if (adc->bufi >= adc->buf_sz)
 862			adc->bufi = 0;
 863	}
 864
 865	iio_trigger_notify_done(indio_dev->trig);
 866
 867	return IRQ_HANDLED;
 868}
 869
 870static void stm32_dfsdm_dma_buffer_done(void *data)
 871{
 872	struct iio_dev *indio_dev = data;
 873	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 874	int available = stm32_dfsdm_adc_dma_residue(adc);
 875	size_t old_pos;
 876
 877	if (indio_dev->currentmode & INDIO_BUFFER_TRIGGERED) {
 878		iio_trigger_poll_chained(indio_dev->trig);
 879		return;
 880	}
 881
 882	/*
 883	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
 884	 * offers only an interface to push data samples per samples.
 885	 * For this reason IIO buffer interface is not used and interface is
 886	 * bypassed using a private callback registered by ASoC.
 887	 * This should be a temporary solution waiting a cyclic DMA engine
 888	 * support in IIO.
 889	 */
 890
 891	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
 892		adc->bufi, available);
 893	old_pos = adc->bufi;
 894
 895	while (available >= indio_dev->scan_bytes) {
 896		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
 897
 898		stm32_dfsdm_process_data(adc, buffer);
 899
 900		available -= indio_dev->scan_bytes;
 901		adc->bufi += indio_dev->scan_bytes;
 902		if (adc->bufi >= adc->buf_sz) {
 903			if (adc->cb)
 904				adc->cb(&adc->rx_buf[old_pos],
 905					 adc->buf_sz - old_pos, adc->cb_priv);
 906			adc->bufi = 0;
 907			old_pos = 0;
 908		}
 909		/* regular iio buffer without trigger */
 
 
 
 
 
 
 
 
 910		if (adc->dev_data->type == DFSDM_IIO)
 911			iio_push_to_buffers(indio_dev, buffer);
 912	}
 913	if (adc->cb)
 914		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
 915			adc->cb_priv);
 916}
 917
 918static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
 919{
 920	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 921	/*
 922	 * The DFSDM supports half-word transfers. However, for 16 bits record,
 923	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
 924	 * shift is required.
 925	 */
 926	struct dma_slave_config config = {
 927		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
 928		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 929	};
 930	struct dma_async_tx_descriptor *desc;
 931	dma_cookie_t cookie;
 932	int ret;
 933
 934	if (!adc->dma_chan)
 935		return -EINVAL;
 936
 937	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
 938		adc->buf_sz, adc->buf_sz / 2);
 939
 940	if (adc->nconv == 1 && !indio_dev->trig)
 941		config.src_addr += DFSDM_RDATAR(adc->fl_id);
 942	else
 943		config.src_addr += DFSDM_JDATAR(adc->fl_id);
 944	ret = dmaengine_slave_config(adc->dma_chan, &config);
 945	if (ret)
 946		return ret;
 947
 948	/* Prepare a DMA cyclic transaction */
 949	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
 950					 adc->dma_buf,
 951					 adc->buf_sz, adc->buf_sz / 2,
 952					 DMA_DEV_TO_MEM,
 953					 DMA_PREP_INTERRUPT);
 954	if (!desc)
 955		return -EBUSY;
 956
 957	desc->callback = stm32_dfsdm_dma_buffer_done;
 958	desc->callback_param = indio_dev;
 959
 960	cookie = dmaengine_submit(desc);
 961	ret = dma_submit_error(cookie);
 962	if (ret)
 963		goto err_stop_dma;
 964
 965	/* Issue pending DMA requests */
 966	dma_async_issue_pending(adc->dma_chan);
 967
 968	if (adc->nconv == 1 && !indio_dev->trig) {
 969		/* Enable regular DMA transfer*/
 970		ret = regmap_update_bits(adc->dfsdm->regmap,
 971					 DFSDM_CR1(adc->fl_id),
 972					 DFSDM_CR1_RDMAEN_MASK,
 973					 DFSDM_CR1_RDMAEN_MASK);
 974	} else {
 975		/* Enable injected DMA transfer*/
 976		ret = regmap_update_bits(adc->dfsdm->regmap,
 977					 DFSDM_CR1(adc->fl_id),
 978					 DFSDM_CR1_JDMAEN_MASK,
 979					 DFSDM_CR1_JDMAEN_MASK);
 980	}
 981
 982	if (ret < 0)
 983		goto err_stop_dma;
 984
 985	return 0;
 986
 987err_stop_dma:
 988	dmaengine_terminate_all(adc->dma_chan);
 989
 990	return ret;
 991}
 992
 993static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
 994{
 995	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 996
 997	if (!adc->dma_chan)
 998		return;
 999
1000	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1001			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
1002	dmaengine_terminate_all(adc->dma_chan);
1003}
1004
1005static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1006					const unsigned long *scan_mask)
1007{
1008	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1009
1010	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
1011	adc->smask = *scan_mask;
1012
1013	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1014
1015	return 0;
1016}
1017
1018static int __stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1019{
1020	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1021	int ret;
1022
1023	/* Reset adc buffer index */
1024	adc->bufi = 0;
1025
1026	if (adc->hwc) {
1027		ret = iio_hw_consumer_enable(adc->hwc);
1028		if (ret < 0)
1029			return ret;
1030	}
1031
1032	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1033	if (ret < 0)
1034		goto err_stop_hwc;
1035
1036	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1037	if (ret) {
1038		dev_err(&indio_dev->dev, "Can't start DMA\n");
1039		goto stop_dfsdm;
1040	}
1041
1042	ret = stm32_dfsdm_start_conv(adc, indio_dev->trig);
1043	if (ret) {
1044		dev_err(&indio_dev->dev, "Can't start conversion\n");
1045		goto err_stop_dma;
1046	}
1047
1048	return 0;
1049
1050err_stop_dma:
1051	stm32_dfsdm_adc_dma_stop(indio_dev);
1052stop_dfsdm:
1053	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1054err_stop_hwc:
1055	if (adc->hwc)
1056		iio_hw_consumer_disable(adc->hwc);
1057
1058	return ret;
1059}
1060
1061static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1062{
1063	int ret;
1064
1065	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
1066		ret = iio_triggered_buffer_postenable(indio_dev);
1067		if (ret < 0)
1068			return ret;
1069	}
1070
1071	ret = __stm32_dfsdm_postenable(indio_dev);
1072	if (ret < 0)
1073		goto err_predisable;
1074
1075	return 0;
1076
1077err_predisable:
1078	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1079		iio_triggered_buffer_predisable(indio_dev);
1080
1081	return ret;
1082}
1083
1084static void __stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1085{
1086	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1087
1088	stm32_dfsdm_stop_conv(adc);
1089
1090	stm32_dfsdm_adc_dma_stop(indio_dev);
1091
1092	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1093
1094	if (adc->hwc)
1095		iio_hw_consumer_disable(adc->hwc);
1096}
1097
1098static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1099{
1100	__stm32_dfsdm_predisable(indio_dev);
1101
1102	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1103		iio_triggered_buffer_predisable(indio_dev);
1104
1105	return 0;
1106}
1107
1108static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1109	.postenable = &stm32_dfsdm_postenable,
1110	.predisable = &stm32_dfsdm_predisable,
1111};
1112
1113/**
1114 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1115 *                             DMA transfer period is achieved.
1116 *
1117 * @iio_dev: Handle to IIO device.
1118 * @cb: Pointer to callback function:
1119 *      - data: pointer to data buffer
1120 *      - size: size in byte of the data buffer
1121 *      - private: pointer to consumer private structure.
1122 * @private: Pointer to consumer private structure.
1123 */
1124int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1125			    int (*cb)(const void *data, size_t size,
1126				      void *private),
1127			    void *private)
1128{
1129	struct stm32_dfsdm_adc *adc;
1130
1131	if (!iio_dev)
1132		return -EINVAL;
1133	adc = iio_priv(iio_dev);
1134
1135	adc->cb = cb;
1136	adc->cb_priv = private;
1137
1138	return 0;
1139}
1140EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1141
1142/**
1143 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1144 *
1145 * @iio_dev: Handle to IIO device.
1146 */
1147int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1148{
1149	struct stm32_dfsdm_adc *adc;
1150
1151	if (!iio_dev)
1152		return -EINVAL;
1153	adc = iio_priv(iio_dev);
1154
1155	adc->cb = NULL;
1156	adc->cb_priv = NULL;
1157
1158	return 0;
1159}
1160EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1161
1162static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1163				   const struct iio_chan_spec *chan, int *res)
1164{
1165	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1166	long timeout;
1167	int ret;
1168
1169	reinit_completion(&adc->completion);
1170
1171	adc->buffer = res;
1172
1173	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1174	if (ret < 0)
1175		return ret;
1176
1177	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1178				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1179	if (ret < 0)
1180		goto stop_dfsdm;
1181
1182	adc->nconv = 1;
1183	adc->smask = BIT(chan->scan_index);
1184	ret = stm32_dfsdm_start_conv(adc, NULL);
1185	if (ret < 0) {
1186		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1187				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1188		goto stop_dfsdm;
1189	}
1190
1191	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1192							    DFSDM_TIMEOUT);
1193
1194	/* Mask IRQ for regular conversion achievement*/
1195	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1196			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1197
1198	if (timeout == 0)
1199		ret = -ETIMEDOUT;
1200	else if (timeout < 0)
1201		ret = timeout;
1202	else
1203		ret = IIO_VAL_INT;
1204
1205	stm32_dfsdm_stop_conv(adc);
 
 
1206
1207stop_dfsdm:
1208	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1209
1210	return ret;
1211}
1212
1213static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1214				 struct iio_chan_spec const *chan,
1215				 int val, int val2, long mask)
1216{
1217	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1218	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1219	unsigned int spi_freq;
1220	int ret = -EINVAL;
1221
 
 
 
 
 
 
 
 
 
 
 
 
1222	switch (mask) {
1223	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1224		ret = iio_device_claim_direct_mode(indio_dev);
1225		if (ret)
1226			return ret;
 
1227		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1228		if (!ret)
 
 
 
1229			adc->oversamp = val;
 
 
1230		iio_device_release_direct_mode(indio_dev);
1231		return ret;
1232
1233	case IIO_CHAN_INFO_SAMP_FREQ:
1234		if (!val)
1235			return -EINVAL;
1236
1237		ret = iio_device_claim_direct_mode(indio_dev);
1238		if (ret)
1239			return ret;
1240
1241		switch (ch->src) {
1242		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1243			spi_freq = adc->dfsdm->spi_master_freq;
1244			break;
1245		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1246		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1247			spi_freq = adc->dfsdm->spi_master_freq / 2;
1248			break;
1249		default:
1250			spi_freq = adc->spi_freq;
1251		}
1252
1253		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1254		iio_device_release_direct_mode(indio_dev);
1255		return ret;
1256	}
1257
1258	return -EINVAL;
1259}
1260
1261static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1262				struct iio_chan_spec const *chan, int *val,
1263				int *val2, long mask)
1264{
1265	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1266	int ret;
1267
1268	switch (mask) {
1269	case IIO_CHAN_INFO_RAW:
1270		ret = iio_device_claim_direct_mode(indio_dev);
1271		if (ret)
1272			return ret;
1273		ret = iio_hw_consumer_enable(adc->hwc);
1274		if (ret < 0) {
1275			dev_err(&indio_dev->dev,
1276				"%s: IIO enable failed (channel %d)\n",
1277				__func__, chan->channel);
1278			iio_device_release_direct_mode(indio_dev);
1279			return ret;
1280		}
1281		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1282		iio_hw_consumer_disable(adc->hwc);
1283		if (ret < 0) {
1284			dev_err(&indio_dev->dev,
1285				"%s: Conversion failed (channel %d)\n",
1286				__func__, chan->channel);
1287			iio_device_release_direct_mode(indio_dev);
1288			return ret;
1289		}
1290		iio_device_release_direct_mode(indio_dev);
1291		return IIO_VAL_INT;
1292
1293	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1294		*val = adc->oversamp;
1295
1296		return IIO_VAL_INT;
1297
1298	case IIO_CHAN_INFO_SAMP_FREQ:
1299		*val = adc->sample_freq;
1300
1301		return IIO_VAL_INT;
1302	}
1303
1304	return -EINVAL;
1305}
1306
1307static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1308					struct iio_trigger *trig)
1309{
1310	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1311}
1312
1313static const struct iio_info stm32_dfsdm_info_audio = {
1314	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1315	.read_raw = stm32_dfsdm_read_raw,
1316	.write_raw = stm32_dfsdm_write_raw,
1317	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1318};
1319
1320static const struct iio_info stm32_dfsdm_info_adc = {
1321	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1322	.read_raw = stm32_dfsdm_read_raw,
1323	.write_raw = stm32_dfsdm_write_raw,
1324	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1325	.validate_trigger = stm32_dfsdm_validate_trigger,
1326};
1327
1328static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1329{
1330	struct stm32_dfsdm_adc *adc = arg;
1331	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1332	struct regmap *regmap = adc->dfsdm->regmap;
1333	unsigned int status, int_en;
1334
1335	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1336	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1337
1338	if (status & DFSDM_ISR_REOCF_MASK) {
1339		/* Read the data register clean the IRQ status */
1340		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1341		complete(&adc->completion);
1342	}
1343
1344	if (status & DFSDM_ISR_ROVRF_MASK) {
1345		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1346			dev_warn(&indio_dev->dev, "Overrun detected\n");
1347		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1348				   DFSDM_ICR_CLRROVRF_MASK,
1349				   DFSDM_ICR_CLRROVRF_MASK);
1350	}
1351
1352	return IRQ_HANDLED;
1353}
1354
1355/*
1356 * Define external info for SPI Frequency and audio sampling rate that can be
1357 * configured by ASoC driver through consumer.h API
1358 */
1359static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1360	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1361	{
1362		.name = "spi_clk_freq",
1363		.shared = IIO_SHARED_BY_TYPE,
1364		.read = dfsdm_adc_audio_get_spiclk,
1365		.write = dfsdm_adc_audio_set_spiclk,
1366	},
1367	{},
1368};
1369
1370static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1371{
1372	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1373
1374	if (adc->dma_chan) {
1375		dma_free_coherent(adc->dma_chan->device->dev,
1376				  DFSDM_DMA_BUFFER_SIZE,
1377				  adc->rx_buf, adc->dma_buf);
1378		dma_release_channel(adc->dma_chan);
1379	}
1380}
1381
1382static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
 
1383{
1384	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1385
1386	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1387	if (!adc->dma_chan)
1388		return -EINVAL;
 
 
 
 
1389
1390	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1391					 DFSDM_DMA_BUFFER_SIZE,
1392					 &adc->dma_buf, GFP_KERNEL);
1393	if (!adc->rx_buf) {
1394		dma_release_channel(adc->dma_chan);
1395		return -ENOMEM;
1396	}
1397
1398	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1399	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1400
1401	return 0;
1402}
1403
1404static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1405					 struct iio_chan_spec *ch)
1406{
1407	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1408	int ret;
1409
1410	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1411	if (ret < 0)
1412		return ret;
1413
1414	ch->type = IIO_VOLTAGE;
1415	ch->indexed = 1;
1416
1417	/*
1418	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1419	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1420	 */
1421	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1422	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1423					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1424
1425	if (adc->dev_data->type == DFSDM_AUDIO) {
1426		ch->ext_info = dfsdm_adc_audio_ext_info;
1427	} else {
1428		ch->scan_type.shift = 8;
1429	}
1430	ch->scan_type.sign = 's';
1431	ch->scan_type.realbits = 24;
1432	ch->scan_type.storagebits = 32;
1433
1434	return stm32_dfsdm_chan_configure(adc->dfsdm,
1435					  &adc->dfsdm->ch_list[ch->channel]);
1436}
1437
1438static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
1439{
1440	struct iio_chan_spec *ch;
1441	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1442	struct stm32_dfsdm_channel *d_ch;
1443	int ret;
1444
1445	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1446	if (!ch)
1447		return -ENOMEM;
1448
1449	ch->scan_index = 0;
1450
1451	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1452	if (ret < 0) {
1453		dev_err(&indio_dev->dev, "Channels init failed\n");
1454		return ret;
1455	}
1456	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1457
1458	d_ch = &adc->dfsdm->ch_list[ch->channel];
1459	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1460		adc->spi_freq = adc->dfsdm->spi_master_freq;
1461
1462	indio_dev->num_channels = 1;
1463	indio_dev->channels = ch;
1464
1465	return stm32_dfsdm_dma_request(indio_dev);
1466}
1467
1468static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1469{
1470	struct iio_chan_spec *ch;
1471	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1472	int num_ch;
1473	int ret, chan_idx;
1474
1475	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1476	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1477	if (ret < 0)
1478		return ret;
1479
1480	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1481					     "st,adc-channels");
1482	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1483		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1484		return num_ch < 0 ? num_ch : -EINVAL;
1485	}
1486
1487	/* Bind to SD modulator IIO device */
1488	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1489	if (IS_ERR(adc->hwc))
1490		return -EPROBE_DEFER;
1491
1492	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1493			  GFP_KERNEL);
1494	if (!ch)
1495		return -ENOMEM;
1496
1497	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1498		ch[chan_idx].scan_index = chan_idx;
1499		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1500		if (ret < 0) {
1501			dev_err(&indio_dev->dev, "Channels init failed\n");
1502			return ret;
1503		}
1504	}
1505
1506	indio_dev->num_channels = num_ch;
1507	indio_dev->channels = ch;
1508
1509	init_completion(&adc->completion);
1510
1511	/* Optionally request DMA */
1512	if (stm32_dfsdm_dma_request(indio_dev)) {
1513		dev_dbg(&indio_dev->dev, "No DMA support\n");
 
 
 
 
 
1514		return 0;
1515	}
1516
1517	ret = iio_triggered_buffer_setup(indio_dev,
1518					 &iio_pollfunc_store_time,
1519					 &stm32_dfsdm_adc_trigger_handler,
1520					 &stm32_dfsdm_buffer_setup_ops);
1521	if (ret) {
1522		stm32_dfsdm_dma_release(indio_dev);
1523		dev_err(&indio_dev->dev, "buffer setup failed\n");
1524		return ret;
1525	}
1526
1527	/* lptimer/timer hardware triggers */
1528	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1529
1530	return 0;
1531}
1532
1533static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1534	.type = DFSDM_IIO,
1535	.init = stm32_dfsdm_adc_init,
1536};
1537
1538static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1539	.type = DFSDM_AUDIO,
1540	.init = stm32_dfsdm_audio_init,
1541};
1542
1543static const struct of_device_id stm32_dfsdm_adc_match[] = {
1544	{
1545		.compatible = "st,stm32-dfsdm-adc",
1546		.data = &stm32h7_dfsdm_adc_data,
1547	},
1548	{
1549		.compatible = "st,stm32-dfsdm-dmic",
1550		.data = &stm32h7_dfsdm_audio_data,
1551	},
1552	{}
1553};
 
1554
1555static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1556{
1557	struct device *dev = &pdev->dev;
1558	struct stm32_dfsdm_adc *adc;
1559	struct device_node *np = dev->of_node;
1560	const struct stm32_dfsdm_dev_data *dev_data;
1561	struct iio_dev *iio;
1562	char *name;
1563	int ret, irq, val;
1564
1565	dev_data = of_device_get_match_data(dev);
1566	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1567	if (!iio) {
1568		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1569		return -ENOMEM;
1570	}
1571
1572	adc = iio_priv(iio);
1573	adc->dfsdm = dev_get_drvdata(dev->parent);
1574
1575	iio->dev.parent = dev;
1576	iio->dev.of_node = np;
1577	iio->modes = INDIO_DIRECT_MODE;
1578
1579	platform_set_drvdata(pdev, adc);
1580
1581	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1582	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1583		dev_err(dev, "Missing or bad reg property\n");
1584		return -EINVAL;
1585	}
1586
1587	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1588	if (!name)
1589		return -ENOMEM;
1590	if (dev_data->type == DFSDM_AUDIO) {
1591		iio->info = &stm32_dfsdm_info_audio;
1592		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1593	} else {
1594		iio->info = &stm32_dfsdm_info_adc;
1595		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1596	}
1597	iio->name = name;
1598
1599	/*
1600	 * In a first step IRQs generated for channels are not treated.
1601	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1602	 */
1603	irq = platform_get_irq(pdev, 0);
1604	if (irq < 0)
1605		return irq;
1606
1607	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1608			       0, pdev->name, adc);
1609	if (ret < 0) {
1610		dev_err(dev, "Failed to request IRQ\n");
1611		return ret;
1612	}
1613
1614	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1615	if (ret < 0) {
1616		dev_err(dev, "Failed to set filter order\n");
1617		return ret;
1618	}
1619
1620	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1621
1622	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1623	if (!ret)
1624		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1625
1626	adc->dev_data = dev_data;
1627	ret = dev_data->init(iio);
1628	if (ret < 0)
1629		return ret;
1630
1631	ret = iio_device_register(iio);
1632	if (ret < 0)
1633		goto err_cleanup;
1634
1635	if (dev_data->type == DFSDM_AUDIO) {
1636		ret = of_platform_populate(np, NULL, NULL, dev);
1637		if (ret < 0) {
1638			dev_err(dev, "Failed to find an audio DAI\n");
1639			goto err_unregister;
1640		}
1641	}
1642
1643	return 0;
1644
1645err_unregister:
1646	iio_device_unregister(iio);
1647err_cleanup:
1648	stm32_dfsdm_dma_release(iio);
1649
1650	return ret;
1651}
1652
1653static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1654{
1655	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1656	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1657
1658	if (adc->dev_data->type == DFSDM_AUDIO)
1659		of_platform_depopulate(&pdev->dev);
1660	iio_device_unregister(indio_dev);
1661	stm32_dfsdm_dma_release(indio_dev);
1662
1663	return 0;
1664}
1665
1666static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1667{
1668	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1669	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1670
1671	if (iio_buffer_enabled(indio_dev))
1672		__stm32_dfsdm_predisable(indio_dev);
1673
1674	return 0;
1675}
1676
1677static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1678{
1679	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1680	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1681	const struct iio_chan_spec *chan;
1682	struct stm32_dfsdm_channel *ch;
1683	int i, ret;
1684
1685	/* restore channels configuration */
1686	for (i = 0; i < indio_dev->num_channels; i++) {
1687		chan = indio_dev->channels + i;
1688		ch = &adc->dfsdm->ch_list[chan->channel];
1689		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1690		if (ret)
1691			return ret;
1692	}
1693
1694	if (iio_buffer_enabled(indio_dev))
1695		__stm32_dfsdm_postenable(indio_dev);
1696
1697	return 0;
1698}
1699
1700static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1701			 stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
 
1702
1703static struct platform_driver stm32_dfsdm_adc_driver = {
1704	.driver = {
1705		.name = "stm32-dfsdm-adc",
1706		.of_match_table = stm32_dfsdm_adc_match,
1707		.pm = &stm32_dfsdm_adc_pm_ops,
1708	},
1709	.probe = stm32_dfsdm_adc_probe,
1710	.remove = stm32_dfsdm_adc_remove,
1711};
1712module_platform_driver(stm32_dfsdm_adc_driver);
1713
1714MODULE_DESCRIPTION("STM32 sigma delta ADC");
1715MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1716MODULE_LICENSE("GPL v2");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is the ADC part of the STM32 DFSDM driver
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
   7 */
   8
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iio/adc/stm32-dfsdm-adc.h>
  12#include <linux/iio/buffer.h>
  13#include <linux/iio/hw-consumer.h>
  14#include <linux/iio/sysfs.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/module.h>
  22#include <linux/of_device.h>
  23#include <linux/platform_device.h>
  24#include <linux/regmap.h>
  25#include <linux/slab.h>
  26
  27#include "stm32-dfsdm.h"
  28
  29#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
  30
  31/* Conversion timeout */
  32#define DFSDM_TIMEOUT_US 100000
  33#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
  34
  35/* Oversampling attribute default */
  36#define DFSDM_DEFAULT_OVERSAMPLING  100
  37
  38/* Oversampling max values */
  39#define DFSDM_MAX_INT_OVERSAMPLING 256
  40#define DFSDM_MAX_FL_OVERSAMPLING 1024
  41
  42/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
  43#define DFSDM_DATA_MAX BIT(30)
  44/*
  45 * Data are output as two's complement data in a 24 bit field.
  46 * Data from filters are in the range +/-2^(n-1)
  47 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
  48 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
  49 * So, the resolution of samples from filter is actually limited to 23 bits
  50 */
  51#define DFSDM_DATA_RES 24
  52
  53/* Filter configuration */
  54#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
  55			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
  56			    DFSDM_CR1_JSCAN_MASK)
  57
  58enum sd_converter_type {
  59	DFSDM_AUDIO,
  60	DFSDM_IIO,
  61};
  62
  63struct stm32_dfsdm_dev_data {
  64	int type;
  65	int (*init)(struct device *dev, struct iio_dev *indio_dev);
  66	unsigned int num_channels;
  67	const struct regmap_config *regmap_cfg;
  68};
  69
  70struct stm32_dfsdm_adc {
  71	struct stm32_dfsdm *dfsdm;
  72	const struct stm32_dfsdm_dev_data *dev_data;
  73	unsigned int fl_id;
  74	unsigned int nconv;
  75	unsigned long smask;
  76
  77	/* ADC specific */
  78	unsigned int oversamp;
  79	struct iio_hw_consumer *hwc;
  80	struct completion completion;
  81	u32 *buffer;
  82
  83	/* Audio specific */
  84	unsigned int spi_freq;  /* SPI bus clock frequency */
  85	unsigned int sample_freq; /* Sample frequency after filter decimation */
  86	int (*cb)(const void *data, size_t size, void *cb_priv);
  87	void *cb_priv;
  88
  89	/* DMA */
  90	u8 *rx_buf;
  91	unsigned int bufi; /* Buffer current position */
  92	unsigned int buf_sz; /* Buffer size */
  93	struct dma_chan	*dma_chan;
  94	dma_addr_t dma_buf;
  95};
  96
  97struct stm32_dfsdm_str2field {
  98	const char	*name;
  99	unsigned int	val;
 100};
 101
 102/* DFSDM channel serial interface type */
 103static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
 104	{ "SPI_R", 0 }, /* SPI with data on rising edge */
 105	{ "SPI_F", 1 }, /* SPI with data on falling edge */
 106	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
 107	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
 108	{},
 109};
 110
 111/* DFSDM channel clock source */
 112static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
 113	/* External SPI clock (CLKIN x) */
 114	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
 115	/* Internal SPI clock (CLKOUT) */
 116	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
 117	/* Internal SPI clock divided by 2 (falling edge) */
 118	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
 119	/* Internal SPI clock divided by 2 (falling edge) */
 120	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
 121	{},
 122};
 123
 124static int stm32_dfsdm_str2val(const char *str,
 125			       const struct stm32_dfsdm_str2field *list)
 126{
 127	const struct stm32_dfsdm_str2field *p = list;
 128
 129	for (p = list; p && p->name; p++)
 130		if (!strcmp(p->name, str))
 131			return p->val;
 132
 133	return -EINVAL;
 134}
 135
 136/**
 137 * struct stm32_dfsdm_trig_info - DFSDM trigger info
 138 * @name:		name of the trigger, corresponding to its source
 139 * @jextsel:		trigger signal selection
 140 */
 141struct stm32_dfsdm_trig_info {
 142	const char *name;
 143	unsigned int jextsel;
 144};
 145
 146/* hardware injected trigger enable, edge selection */
 147enum stm32_dfsdm_jexten {
 148	STM32_DFSDM_JEXTEN_DISABLED,
 149	STM32_DFSDM_JEXTEN_RISING_EDGE,
 150	STM32_DFSDM_JEXTEN_FALLING_EDGE,
 151	STM32_DFSDM_EXTEN_BOTH_EDGES,
 152};
 153
 154static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
 155	{ TIM1_TRGO, 0 },
 156	{ TIM1_TRGO2, 1 },
 157	{ TIM8_TRGO, 2 },
 158	{ TIM8_TRGO2, 3 },
 159	{ TIM3_TRGO, 4 },
 160	{ TIM4_TRGO, 5 },
 161	{ TIM16_OC1, 6 },
 162	{ TIM6_TRGO, 7 },
 163	{ TIM7_TRGO, 8 },
 164	{ LPTIM1_OUT, 26 },
 165	{ LPTIM2_OUT, 27 },
 166	{ LPTIM3_OUT, 28 },
 167	{},
 168};
 169
 170static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
 171				   struct iio_trigger *trig)
 172{
 173	int i;
 174
 175	/* lookup triggers registered by stm32 timer trigger driver */
 176	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
 177		/**
 178		 * Checking both stm32 timer trigger type and trig name
 179		 * should be safe against arbitrary trigger names.
 180		 */
 181		if ((is_stm32_timer_trigger(trig) ||
 182		     is_stm32_lptim_trigger(trig)) &&
 183		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
 184			return stm32_dfsdm_trigs[i].jextsel;
 185		}
 186	}
 187
 188	return -EINVAL;
 189}
 190
 191static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
 192				    unsigned int fast, unsigned int oversamp)
 193{
 194	unsigned int i, d, fosr, iosr;
 195	u64 res, max;
 196	int bits, shift;
 197	unsigned int m = 1;	/* multiplication factor */
 198	unsigned int p = fl->ford;	/* filter order (ford) */
 199	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
 200
 201	pr_debug("Requested oversampling: %d\n", oversamp);
 202	/*
 203	 * This function tries to compute filter oversampling and integrator
 204	 * oversampling, base on oversampling ratio requested by user.
 205	 *
 206	 * Decimation d depends on the filter order and the oversampling ratios.
 207	 * ford: filter order
 208	 * fosr: filter over sampling ratio
 209	 * iosr: integrator over sampling ratio
 210	 */
 211	if (fl->ford == DFSDM_FASTSINC_ORDER) {
 212		m = 2;
 213		p = 2;
 214	}
 215
 216	/*
 217	 * Look for filter and integrator oversampling ratios which allows
 218	 * to maximize data output resolution.
 219	 */
 220	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
 221		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
 222			if (fast)
 223				d = fosr * iosr;
 224			else if (fl->ford == DFSDM_FASTSINC_ORDER)
 225				d = fosr * (iosr + 3) + 2;
 226			else
 227				d = fosr * (iosr - 1 + p) + p;
 228
 229			if (d > oversamp)
 230				break;
 231			else if (d != oversamp)
 232				continue;
 233			/*
 234			 * Check resolution (limited to signed 32 bits)
 235			 *   res <= 2^31
 236			 * Sincx filters:
 237			 *   res = m * fosr^p x iosr (with m=1, p=ford)
 238			 * FastSinc filter
 239			 *   res = m * fosr^p x iosr (with m=2, p=2)
 240			 */
 241			res = fosr;
 242			for (i = p - 1; i > 0; i--) {
 243				res = res * (u64)fosr;
 244				if (res > DFSDM_DATA_MAX)
 245					break;
 246			}
 247			if (res > DFSDM_DATA_MAX)
 248				continue;
 249
 250			res = res * (u64)m * (u64)iosr;
 251			if (res > DFSDM_DATA_MAX)
 252				continue;
 253
 254			if (res >= flo->res) {
 255				flo->res = res;
 256				flo->fosr = fosr;
 257				flo->iosr = iosr;
 258
 259				bits = fls(flo->res);
 260				/* 8 LBSs in data register contain chan info */
 261				max = flo->res << 8;
 262
 263				/* if resolution is not a power of two */
 264				if (flo->res > BIT(bits - 1))
 265					bits++;
 266				else
 267					max--;
 268
 269				shift = DFSDM_DATA_RES - bits;
 270				/*
 271				 * Compute right/left shift
 272				 * Right shift is performed by hardware
 273				 * when transferring samples to data register.
 274				 * Left shift is done by software on buffer
 275				 */
 276				if (shift > 0) {
 277					/* Resolution is lower than 24 bits */
 278					flo->rshift = 0;
 279					flo->lshift = shift;
 280				} else {
 281					/*
 282					 * If resolution is 24 bits or more,
 283					 * max positive value may be ambiguous
 284					 * (equal to max negative value as sign
 285					 * bit is dropped).
 286					 * Reduce resolution to 23 bits (rshift)
 287					 * to keep the sign on bit 23 and treat
 288					 * saturation before rescaling on 24
 289					 * bits (lshift).
 290					 */
 291					flo->rshift = 1 - shift;
 292					flo->lshift = 1;
 293					max >>= flo->rshift;
 294				}
 295				flo->max = (s32)max;
 296				flo->bits = bits;
 297
 298				pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
 299					 fast, flo->fosr, flo->iosr,
 300					 flo->res, bits, flo->rshift,
 301					 flo->lshift);
 302			}
 303		}
 304	}
 305
 306	if (!flo->res)
 307		return -EINVAL;
 308
 309	return 0;
 310}
 311
 312static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
 313					unsigned int oversamp)
 314{
 315	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 316	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 317	int ret0, ret1;
 318
 319	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
 320	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
 321
 322	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
 323	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
 324	if (ret0 < 0 && ret1 < 0) {
 325		dev_err(&indio_dev->dev,
 326			"Filter parameters not found: errors %d/%d\n",
 327			ret0, ret1);
 328		return -EINVAL;
 329	}
 330
 331	return 0;
 332}
 333
 334static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
 335{
 336	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 337	struct regmap *regmap = adc->dfsdm->regmap;
 338	const struct iio_chan_spec *chan;
 339	unsigned int bit;
 340	int ret;
 341
 342	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 343		chan = indio_dev->channels + bit;
 344		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 345					 DFSDM_CHCFGR1_CHEN_MASK,
 346					 DFSDM_CHCFGR1_CHEN(1));
 347		if (ret < 0)
 348			return ret;
 349	}
 350
 351	return 0;
 352}
 353
 354static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
 355{
 356	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 357	struct regmap *regmap = adc->dfsdm->regmap;
 358	const struct iio_chan_spec *chan;
 359	unsigned int bit;
 360
 361	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 362		chan = indio_dev->channels + bit;
 363		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 364				   DFSDM_CHCFGR1_CHEN_MASK,
 365				   DFSDM_CHCFGR1_CHEN(0));
 366	}
 367}
 368
 369static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
 370				      struct stm32_dfsdm_channel *ch)
 371{
 372	unsigned int id = ch->id;
 373	struct regmap *regmap = dfsdm->regmap;
 374	int ret;
 375
 376	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 377				 DFSDM_CHCFGR1_SITP_MASK,
 378				 DFSDM_CHCFGR1_SITP(ch->type));
 379	if (ret < 0)
 380		return ret;
 381	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 382				 DFSDM_CHCFGR1_SPICKSEL_MASK,
 383				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
 384	if (ret < 0)
 385		return ret;
 386	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 387				  DFSDM_CHCFGR1_CHINSEL_MASK,
 388				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
 389}
 390
 391static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
 392				    unsigned int fl_id,
 393				    struct iio_trigger *trig)
 394{
 395	struct stm32_dfsdm *dfsdm = adc->dfsdm;
 396	int ret;
 397
 398	/* Enable filter */
 399	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 400				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
 401	if (ret < 0)
 402		return ret;
 403
 404	/* Nothing more to do for injected (scan mode/triggered) conversions */
 405	if (adc->nconv > 1 || trig)
 406		return 0;
 407
 408	/* Software start (single or continuous) regular conversion */
 409	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 410				  DFSDM_CR1_RSWSTART_MASK,
 411				  DFSDM_CR1_RSWSTART(1));
 412}
 413
 414static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
 415				    unsigned int fl_id)
 416{
 417	/* Disable conversion */
 418	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 419			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
 420}
 421
 422static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
 423				       unsigned int fl_id,
 424				       struct iio_trigger *trig)
 425{
 426	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 427	struct regmap *regmap = adc->dfsdm->regmap;
 428	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
 429	int ret;
 430
 431	if (trig) {
 432		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
 433		if (ret < 0)
 434			return ret;
 435
 436		/* set trigger source and polarity (default to rising edge) */
 437		jextsel = ret;
 438		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
 439	}
 440
 441	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 442				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
 443				 DFSDM_CR1_JEXTSEL(jextsel) |
 444				 DFSDM_CR1_JEXTEN(jexten));
 445	if (ret < 0)
 446		return ret;
 447
 448	return 0;
 449}
 450
 451static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
 452					  unsigned int fl_id,
 453					  struct iio_trigger *trig)
 454{
 455	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 456	struct regmap *regmap = adc->dfsdm->regmap;
 457	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 458	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
 459	const struct iio_chan_spec *chan;
 460	unsigned int bit;
 461	int ret;
 462
 463	fl->fast = 0;
 464
 465	/*
 466	 * In continuous mode, use fast mode configuration,
 467	 * if it provides a better resolution.
 468	 */
 469	if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
 
 470		if (fl->flo[1].res >= fl->flo[0].res) {
 471			fl->fast = 1;
 472			flo = &fl->flo[1];
 473		}
 474	}
 475
 476	if (!flo->res)
 477		return -EINVAL;
 478
 479	dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
 480		min(flo->bits, (u32)DFSDM_DATA_RES - 1));
 481
 482	for_each_set_bit(bit, &adc->smask,
 483			 sizeof(adc->smask) * BITS_PER_BYTE) {
 484		chan = indio_dev->channels + bit;
 485
 486		ret = regmap_update_bits(regmap,
 487					 DFSDM_CHCFGR2(chan->channel),
 488					 DFSDM_CHCFGR2_DTRBS_MASK,
 489					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
 490		if (ret)
 491			return ret;
 492	}
 493
 494	return 0;
 495}
 496
 497static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
 498					unsigned int fl_id,
 499					struct iio_trigger *trig)
 500{
 501	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 502	struct regmap *regmap = adc->dfsdm->regmap;
 503	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 504	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 505	u32 cr1;
 506	const struct iio_chan_spec *chan;
 507	unsigned int bit, jchg = 0;
 508	int ret;
 509
 510	/* Average integrator oversampling */
 511	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
 512				 DFSDM_FCR_IOSR(flo->iosr - 1));
 513	if (ret)
 514		return ret;
 515
 516	/* Filter order and Oversampling */
 517	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
 518				 DFSDM_FCR_FOSR(flo->fosr - 1));
 519	if (ret)
 520		return ret;
 521
 522	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
 523				 DFSDM_FCR_FORD(fl->ford));
 524	if (ret)
 525		return ret;
 526
 527	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
 528	if (ret)
 529		return ret;
 530
 531	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 532				 DFSDM_CR1_FAST_MASK,
 533				 DFSDM_CR1_FAST(fl->fast));
 534	if (ret)
 535		return ret;
 536
 537	/*
 538	 * DFSDM modes configuration W.R.T audio/iio type modes
 539	 * ----------------------------------------------------------------
 540	 * Modes         | regular |  regular     | injected | injected   |
 541	 *               |         |  continuous  |          | + scan     |
 542	 * --------------|---------|--------------|----------|------------|
 543	 * single conv   |    x    |              |          |            |
 544	 * (1 chan)      |         |              |          |            |
 545	 * --------------|---------|--------------|----------|------------|
 546	 * 1 Audio chan	 |         | sample freq  |          |            |
 547	 *               |         | or sync_mode |          |            |
 548	 * --------------|---------|--------------|----------|------------|
 549	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
 550	 *               |         | or sync_mode |          |            |
 551	 * --------------|---------|--------------|----------|------------|
 552	 * 2+ IIO chans  |         |              |          | trigger or |
 553	 *               |         |              |          | sync_mode  |
 554	 * ----------------------------------------------------------------
 555	 */
 556	if (adc->nconv == 1 && !trig) {
 557		bit = __ffs(adc->smask);
 558		chan = indio_dev->channels + bit;
 559
 560		/* Use regular conversion for single channel without trigger */
 561		cr1 = DFSDM_CR1_RCH(chan->channel);
 562
 563		/* Continuous conversions triggered by SPI clk in buffer mode */
 564		if (iio_buffer_enabled(indio_dev))
 565			cr1 |= DFSDM_CR1_RCONT(1);
 566
 567		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
 568	} else {
 569		/* Use injected conversion for multiple channels */
 570		for_each_set_bit(bit, &adc->smask,
 571				 sizeof(adc->smask) * BITS_PER_BYTE) {
 572			chan = indio_dev->channels + bit;
 573			jchg |= BIT(chan->channel);
 574		}
 575		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
 576		if (ret < 0)
 577			return ret;
 578
 579		/* Use scan mode for multiple channels */
 580		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
 581
 582		/*
 583		 * Continuous conversions not supported in injected mode,
 584		 * either use:
 585		 * - conversions in sync with filter 0
 586		 * - triggered conversions
 587		 */
 588		if (!fl->sync_mode && !trig)
 589			return -EINVAL;
 590		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
 591	}
 592
 593	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
 594				  cr1);
 595}
 596
 597static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
 598					struct iio_dev *indio_dev,
 599					struct iio_chan_spec *ch)
 600{
 601	struct stm32_dfsdm_channel *df_ch;
 602	const char *of_str;
 603	int chan_idx = ch->scan_index;
 604	int ret, val;
 605
 606	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 607					 "st,adc-channels", chan_idx,
 608					 &ch->channel);
 609	if (ret < 0) {
 610		dev_err(&indio_dev->dev,
 611			" Error parsing 'st,adc-channels' for idx %d\n",
 612			chan_idx);
 613		return ret;
 614	}
 615	if (ch->channel >= dfsdm->num_chs) {
 616		dev_err(&indio_dev->dev,
 617			" Error bad channel number %d (max = %d)\n",
 618			ch->channel, dfsdm->num_chs);
 619		return -EINVAL;
 620	}
 621
 622	ret = of_property_read_string_index(indio_dev->dev.of_node,
 623					    "st,adc-channel-names", chan_idx,
 624					    &ch->datasheet_name);
 625	if (ret < 0) {
 626		dev_err(&indio_dev->dev,
 627			" Error parsing 'st,adc-channel-names' for idx %d\n",
 628			chan_idx);
 629		return ret;
 630	}
 631
 632	df_ch =  &dfsdm->ch_list[ch->channel];
 633	df_ch->id = ch->channel;
 634
 635	ret = of_property_read_string_index(indio_dev->dev.of_node,
 636					    "st,adc-channel-types", chan_idx,
 637					    &of_str);
 638	if (!ret) {
 639		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 640		if (val < 0)
 641			return val;
 642	} else {
 643		val = 0;
 644	}
 645	df_ch->type = val;
 646
 647	ret = of_property_read_string_index(indio_dev->dev.of_node,
 648					    "st,adc-channel-clk-src", chan_idx,
 649					    &of_str);
 650	if (!ret) {
 651		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 652		if (val < 0)
 653			return val;
 654	} else {
 655		val = 0;
 656	}
 657	df_ch->src = val;
 658
 659	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 660					 "st,adc-alt-channel", chan_idx,
 661					 &df_ch->alt_si);
 662	if (ret < 0)
 663		df_ch->alt_si = 0;
 664
 665	return 0;
 666}
 667
 668static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
 669					  uintptr_t priv,
 670					  const struct iio_chan_spec *chan,
 671					  char *buf)
 672{
 673	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 674
 675	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
 676}
 677
 678static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
 679				   unsigned int sample_freq,
 680				   unsigned int spi_freq)
 681{
 682	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 683	unsigned int oversamp;
 684	int ret;
 685
 686	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
 687	if (spi_freq % sample_freq)
 688		dev_dbg(&indio_dev->dev,
 689			"Rate not accurate. requested (%u), actual (%u)\n",
 690			sample_freq, spi_freq / oversamp);
 691
 692	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
 693	if (ret < 0)
 694		return ret;
 695
 696	adc->sample_freq = spi_freq / oversamp;
 697	adc->oversamp = oversamp;
 698
 699	return 0;
 700}
 701
 702static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
 703					  uintptr_t priv,
 704					  const struct iio_chan_spec *chan,
 705					  const char *buf, size_t len)
 706{
 707	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 708	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 709	unsigned int sample_freq = adc->sample_freq;
 710	unsigned int spi_freq;
 711	int ret;
 712
 713	dev_err(&indio_dev->dev, "enter %s\n", __func__);
 714	/* If DFSDM is master on SPI, SPI freq can not be updated */
 715	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
 716		return -EPERM;
 717
 718	ret = kstrtoint(buf, 0, &spi_freq);
 719	if (ret)
 720		return ret;
 721
 722	if (!spi_freq)
 723		return -EINVAL;
 724
 725	if (sample_freq) {
 726		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
 727		if (ret < 0)
 728			return ret;
 729	}
 730	adc->spi_freq = spi_freq;
 731
 732	return len;
 733}
 734
 735static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
 736				  struct iio_trigger *trig)
 737{
 738	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 739	struct regmap *regmap = adc->dfsdm->regmap;
 740	int ret;
 741
 742	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
 743	if (ret < 0)
 744		return ret;
 745
 746	ret = stm32_dfsdm_start_channel(indio_dev);
 747	if (ret < 0)
 748		return ret;
 749
 750	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
 751	if (ret < 0)
 752		goto stop_channels;
 753
 754	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
 755	if (ret < 0)
 756		goto filter_unconfigure;
 757
 758	return 0;
 759
 760filter_unconfigure:
 761	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 762			   DFSDM_CR1_CFG_MASK, 0);
 763stop_channels:
 764	stm32_dfsdm_stop_channel(indio_dev);
 765
 766	return ret;
 767}
 768
 769static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
 770{
 771	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 772	struct regmap *regmap = adc->dfsdm->regmap;
 773
 774	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
 775
 776	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 777			   DFSDM_CR1_CFG_MASK, 0);
 778
 779	stm32_dfsdm_stop_channel(indio_dev);
 780}
 781
 782static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
 783				     unsigned int val)
 784{
 785	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 786	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
 787	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
 788
 789	/*
 790	 * DMA cyclic transfers are used, buffer is split into two periods.
 791	 * There should be :
 792	 * - always one buffer (period) DMA is working on
 793	 * - one buffer (period) driver pushed to ASoC side.
 794	 */
 795	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
 796	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
 797
 798	return 0;
 799}
 800
 801static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
 802{
 803	struct dma_tx_state state;
 804	enum dma_status status;
 805
 806	status = dmaengine_tx_status(adc->dma_chan,
 807				     adc->dma_chan->cookie,
 808				     &state);
 809	if (status == DMA_IN_PROGRESS) {
 810		/* Residue is size in bytes from end of buffer */
 811		unsigned int i = adc->buf_sz - state.residue;
 812		unsigned int size;
 813
 814		/* Return available bytes */
 815		if (i >= adc->bufi)
 816			size = i - adc->bufi;
 817		else
 818			size = adc->buf_sz + i - adc->bufi;
 819
 820		return size;
 821	}
 822
 823	return 0;
 824}
 825
 826static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
 827					    s32 *buffer)
 828{
 829	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 830	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 831	unsigned int i = adc->nconv;
 832	s32 *ptr = buffer;
 833
 834	while (i--) {
 835		/* Mask 8 LSB that contains the channel ID */
 836		*ptr &= 0xFFFFFF00;
 837		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
 838		if (*ptr > flo->max)
 839			*ptr -= 1;
 840		/*
 841		 * Samples from filter are retrieved with 23 bits resolution
 842		 * or less. Shift left to align MSB on 24 bits.
 843		 */
 844		*ptr <<= flo->lshift;
 845
 846		ptr++;
 847	}
 848}
 849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850static void stm32_dfsdm_dma_buffer_done(void *data)
 851{
 852	struct iio_dev *indio_dev = data;
 853	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 854	int available = stm32_dfsdm_adc_dma_residue(adc);
 855	size_t old_pos;
 856
 
 
 
 
 
 857	/*
 858	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
 859	 * offers only an interface to push data samples per samples.
 860	 * For this reason IIO buffer interface is not used and interface is
 861	 * bypassed using a private callback registered by ASoC.
 862	 * This should be a temporary solution waiting a cyclic DMA engine
 863	 * support in IIO.
 864	 */
 865
 866	dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
 867		adc->bufi, available);
 868	old_pos = adc->bufi;
 869
 870	while (available >= indio_dev->scan_bytes) {
 871		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
 872
 873		stm32_dfsdm_process_data(adc, buffer);
 874
 875		available -= indio_dev->scan_bytes;
 876		adc->bufi += indio_dev->scan_bytes;
 877		if (adc->bufi >= adc->buf_sz) {
 878			if (adc->cb)
 879				adc->cb(&adc->rx_buf[old_pos],
 880					 adc->buf_sz - old_pos, adc->cb_priv);
 881			adc->bufi = 0;
 882			old_pos = 0;
 883		}
 884		/*
 885		 * In DMA mode the trigger services of IIO are not used
 886		 * (e.g. no call to iio_trigger_poll).
 887		 * Calling irq handler associated to the hardware trigger is not
 888		 * relevant as the conversions have already been done. Data
 889		 * transfers are performed directly in DMA callback instead.
 890		 * This implementation avoids to call trigger irq handler that
 891		 * may sleep, in an atomic context (DMA irq handler context).
 892		 */
 893		if (adc->dev_data->type == DFSDM_IIO)
 894			iio_push_to_buffers(indio_dev, buffer);
 895	}
 896	if (adc->cb)
 897		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
 898			adc->cb_priv);
 899}
 900
 901static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
 902{
 903	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 904	/*
 905	 * The DFSDM supports half-word transfers. However, for 16 bits record,
 906	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
 907	 * shift is required.
 908	 */
 909	struct dma_slave_config config = {
 910		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
 911		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 912	};
 913	struct dma_async_tx_descriptor *desc;
 914	dma_cookie_t cookie;
 915	int ret;
 916
 917	if (!adc->dma_chan)
 918		return -EINVAL;
 919
 920	dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
 921		adc->buf_sz, adc->buf_sz / 2);
 922
 923	if (adc->nconv == 1 && !indio_dev->trig)
 924		config.src_addr += DFSDM_RDATAR(adc->fl_id);
 925	else
 926		config.src_addr += DFSDM_JDATAR(adc->fl_id);
 927	ret = dmaengine_slave_config(adc->dma_chan, &config);
 928	if (ret)
 929		return ret;
 930
 931	/* Prepare a DMA cyclic transaction */
 932	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
 933					 adc->dma_buf,
 934					 adc->buf_sz, adc->buf_sz / 2,
 935					 DMA_DEV_TO_MEM,
 936					 DMA_PREP_INTERRUPT);
 937	if (!desc)
 938		return -EBUSY;
 939
 940	desc->callback = stm32_dfsdm_dma_buffer_done;
 941	desc->callback_param = indio_dev;
 942
 943	cookie = dmaengine_submit(desc);
 944	ret = dma_submit_error(cookie);
 945	if (ret)
 946		goto err_stop_dma;
 947
 948	/* Issue pending DMA requests */
 949	dma_async_issue_pending(adc->dma_chan);
 950
 951	if (adc->nconv == 1 && !indio_dev->trig) {
 952		/* Enable regular DMA transfer*/
 953		ret = regmap_update_bits(adc->dfsdm->regmap,
 954					 DFSDM_CR1(adc->fl_id),
 955					 DFSDM_CR1_RDMAEN_MASK,
 956					 DFSDM_CR1_RDMAEN_MASK);
 957	} else {
 958		/* Enable injected DMA transfer*/
 959		ret = regmap_update_bits(adc->dfsdm->regmap,
 960					 DFSDM_CR1(adc->fl_id),
 961					 DFSDM_CR1_JDMAEN_MASK,
 962					 DFSDM_CR1_JDMAEN_MASK);
 963	}
 964
 965	if (ret < 0)
 966		goto err_stop_dma;
 967
 968	return 0;
 969
 970err_stop_dma:
 971	dmaengine_terminate_all(adc->dma_chan);
 972
 973	return ret;
 974}
 975
 976static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
 977{
 978	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 979
 980	if (!adc->dma_chan)
 981		return;
 982
 983	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
 984			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
 985	dmaengine_terminate_all(adc->dma_chan);
 986}
 987
 988static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
 989					const unsigned long *scan_mask)
 990{
 991	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 992
 993	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
 994	adc->smask = *scan_mask;
 995
 996	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
 997
 998	return 0;
 999}
1000
1001static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1002{
1003	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1004	int ret;
1005
1006	/* Reset adc buffer index */
1007	adc->bufi = 0;
1008
1009	if (adc->hwc) {
1010		ret = iio_hw_consumer_enable(adc->hwc);
1011		if (ret < 0)
1012			return ret;
1013	}
1014
1015	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1016	if (ret < 0)
1017		goto err_stop_hwc;
1018
1019	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1020	if (ret) {
1021		dev_err(&indio_dev->dev, "Can't start DMA\n");
1022		goto stop_dfsdm;
1023	}
1024
1025	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1026	if (ret) {
1027		dev_err(&indio_dev->dev, "Can't start conversion\n");
1028		goto err_stop_dma;
1029	}
1030
1031	return 0;
1032
1033err_stop_dma:
1034	stm32_dfsdm_adc_dma_stop(indio_dev);
1035stop_dfsdm:
1036	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1037err_stop_hwc:
1038	if (adc->hwc)
1039		iio_hw_consumer_disable(adc->hwc);
1040
1041	return ret;
1042}
1043
1044static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045{
1046	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1047
1048	stm32_dfsdm_stop_conv(indio_dev);
1049
1050	stm32_dfsdm_adc_dma_stop(indio_dev);
1051
1052	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1053
1054	if (adc->hwc)
1055		iio_hw_consumer_disable(adc->hwc);
 
 
 
 
 
 
 
 
1056
1057	return 0;
1058}
1059
1060static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1061	.postenable = &stm32_dfsdm_postenable,
1062	.predisable = &stm32_dfsdm_predisable,
1063};
1064
1065/**
1066 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1067 *                             DMA transfer period is achieved.
1068 *
1069 * @iio_dev: Handle to IIO device.
1070 * @cb: Pointer to callback function:
1071 *      - data: pointer to data buffer
1072 *      - size: size in byte of the data buffer
1073 *      - private: pointer to consumer private structure.
1074 * @private: Pointer to consumer private structure.
1075 */
1076int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1077			    int (*cb)(const void *data, size_t size,
1078				      void *private),
1079			    void *private)
1080{
1081	struct stm32_dfsdm_adc *adc;
1082
1083	if (!iio_dev)
1084		return -EINVAL;
1085	adc = iio_priv(iio_dev);
1086
1087	adc->cb = cb;
1088	adc->cb_priv = private;
1089
1090	return 0;
1091}
1092EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1093
1094/**
1095 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1096 *
1097 * @iio_dev: Handle to IIO device.
1098 */
1099int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1100{
1101	struct stm32_dfsdm_adc *adc;
1102
1103	if (!iio_dev)
1104		return -EINVAL;
1105	adc = iio_priv(iio_dev);
1106
1107	adc->cb = NULL;
1108	adc->cb_priv = NULL;
1109
1110	return 0;
1111}
1112EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1113
1114static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1115				   const struct iio_chan_spec *chan, int *res)
1116{
1117	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1118	long timeout;
1119	int ret;
1120
1121	reinit_completion(&adc->completion);
1122
1123	adc->buffer = res;
1124
1125	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1126	if (ret < 0)
1127		return ret;
1128
1129	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1130				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1131	if (ret < 0)
1132		goto stop_dfsdm;
1133
1134	adc->nconv = 1;
1135	adc->smask = BIT(chan->scan_index);
1136	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1137	if (ret < 0) {
1138		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1139				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1140		goto stop_dfsdm;
1141	}
1142
1143	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1144							    DFSDM_TIMEOUT);
1145
1146	/* Mask IRQ for regular conversion achievement*/
1147	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1148			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1149
1150	if (timeout == 0)
1151		ret = -ETIMEDOUT;
1152	else if (timeout < 0)
1153		ret = timeout;
1154	else
1155		ret = IIO_VAL_INT;
1156
1157	stm32_dfsdm_stop_conv(indio_dev);
1158
1159	stm32_dfsdm_process_data(adc, res);
1160
1161stop_dfsdm:
1162	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1163
1164	return ret;
1165}
1166
1167static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1168				 struct iio_chan_spec const *chan,
1169				 int val, int val2, long mask)
1170{
1171	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1172	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1173	unsigned int spi_freq;
1174	int ret = -EINVAL;
1175
1176	switch (ch->src) {
1177	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1178		spi_freq = adc->dfsdm->spi_master_freq;
1179		break;
1180	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1181	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1182		spi_freq = adc->dfsdm->spi_master_freq / 2;
1183		break;
1184	default:
1185		spi_freq = adc->spi_freq;
1186	}
1187
1188	switch (mask) {
1189	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1190		ret = iio_device_claim_direct_mode(indio_dev);
1191		if (ret)
1192			return ret;
1193
1194		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1195		if (!ret) {
1196			dev_dbg(&indio_dev->dev,
1197				"Sampling rate changed from (%u) to (%u)\n",
1198				adc->sample_freq, spi_freq / val);
1199			adc->oversamp = val;
1200			adc->sample_freq = spi_freq / val;
1201		}
1202		iio_device_release_direct_mode(indio_dev);
1203		return ret;
1204
1205	case IIO_CHAN_INFO_SAMP_FREQ:
1206		if (!val)
1207			return -EINVAL;
1208
1209		ret = iio_device_claim_direct_mode(indio_dev);
1210		if (ret)
1211			return ret;
1212
 
 
 
 
 
 
 
 
 
 
 
 
1213		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1214		iio_device_release_direct_mode(indio_dev);
1215		return ret;
1216	}
1217
1218	return -EINVAL;
1219}
1220
1221static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1222				struct iio_chan_spec const *chan, int *val,
1223				int *val2, long mask)
1224{
1225	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1226	int ret;
1227
1228	switch (mask) {
1229	case IIO_CHAN_INFO_RAW:
1230		ret = iio_device_claim_direct_mode(indio_dev);
1231		if (ret)
1232			return ret;
1233		ret = iio_hw_consumer_enable(adc->hwc);
1234		if (ret < 0) {
1235			dev_err(&indio_dev->dev,
1236				"%s: IIO enable failed (channel %d)\n",
1237				__func__, chan->channel);
1238			iio_device_release_direct_mode(indio_dev);
1239			return ret;
1240		}
1241		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1242		iio_hw_consumer_disable(adc->hwc);
1243		if (ret < 0) {
1244			dev_err(&indio_dev->dev,
1245				"%s: Conversion failed (channel %d)\n",
1246				__func__, chan->channel);
1247			iio_device_release_direct_mode(indio_dev);
1248			return ret;
1249		}
1250		iio_device_release_direct_mode(indio_dev);
1251		return IIO_VAL_INT;
1252
1253	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1254		*val = adc->oversamp;
1255
1256		return IIO_VAL_INT;
1257
1258	case IIO_CHAN_INFO_SAMP_FREQ:
1259		*val = adc->sample_freq;
1260
1261		return IIO_VAL_INT;
1262	}
1263
1264	return -EINVAL;
1265}
1266
1267static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1268					struct iio_trigger *trig)
1269{
1270	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1271}
1272
1273static const struct iio_info stm32_dfsdm_info_audio = {
1274	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1275	.read_raw = stm32_dfsdm_read_raw,
1276	.write_raw = stm32_dfsdm_write_raw,
1277	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1278};
1279
1280static const struct iio_info stm32_dfsdm_info_adc = {
1281	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1282	.read_raw = stm32_dfsdm_read_raw,
1283	.write_raw = stm32_dfsdm_write_raw,
1284	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1285	.validate_trigger = stm32_dfsdm_validate_trigger,
1286};
1287
1288static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1289{
1290	struct iio_dev *indio_dev = arg;
1291	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1292	struct regmap *regmap = adc->dfsdm->regmap;
1293	unsigned int status, int_en;
1294
1295	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1296	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1297
1298	if (status & DFSDM_ISR_REOCF_MASK) {
1299		/* Read the data register clean the IRQ status */
1300		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1301		complete(&adc->completion);
1302	}
1303
1304	if (status & DFSDM_ISR_ROVRF_MASK) {
1305		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1306			dev_warn(&indio_dev->dev, "Overrun detected\n");
1307		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1308				   DFSDM_ICR_CLRROVRF_MASK,
1309				   DFSDM_ICR_CLRROVRF_MASK);
1310	}
1311
1312	return IRQ_HANDLED;
1313}
1314
1315/*
1316 * Define external info for SPI Frequency and audio sampling rate that can be
1317 * configured by ASoC driver through consumer.h API
1318 */
1319static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1320	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1321	{
1322		.name = "spi_clk_freq",
1323		.shared = IIO_SHARED_BY_TYPE,
1324		.read = dfsdm_adc_audio_get_spiclk,
1325		.write = dfsdm_adc_audio_set_spiclk,
1326	},
1327	{},
1328};
1329
1330static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1331{
1332	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1333
1334	if (adc->dma_chan) {
1335		dma_free_coherent(adc->dma_chan->device->dev,
1336				  DFSDM_DMA_BUFFER_SIZE,
1337				  adc->rx_buf, adc->dma_buf);
1338		dma_release_channel(adc->dma_chan);
1339	}
1340}
1341
1342static int stm32_dfsdm_dma_request(struct device *dev,
1343				   struct iio_dev *indio_dev)
1344{
1345	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1346
1347	adc->dma_chan = dma_request_chan(dev, "rx");
1348	if (IS_ERR(adc->dma_chan)) {
1349		int ret = PTR_ERR(adc->dma_chan);
1350
1351		adc->dma_chan = NULL;
1352		return ret;
1353	}
1354
1355	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1356					 DFSDM_DMA_BUFFER_SIZE,
1357					 &adc->dma_buf, GFP_KERNEL);
1358	if (!adc->rx_buf) {
1359		dma_release_channel(adc->dma_chan);
1360		return -ENOMEM;
1361	}
1362
1363	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1364	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1365
1366	return 0;
1367}
1368
1369static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1370					 struct iio_chan_spec *ch)
1371{
1372	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1373	int ret;
1374
1375	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1376	if (ret < 0)
1377		return ret;
1378
1379	ch->type = IIO_VOLTAGE;
1380	ch->indexed = 1;
1381
1382	/*
1383	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1384	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1385	 */
1386	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1387	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1388					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1389
1390	if (adc->dev_data->type == DFSDM_AUDIO) {
1391		ch->ext_info = dfsdm_adc_audio_ext_info;
1392	} else {
1393		ch->scan_type.shift = 8;
1394	}
1395	ch->scan_type.sign = 's';
1396	ch->scan_type.realbits = 24;
1397	ch->scan_type.storagebits = 32;
1398
1399	return stm32_dfsdm_chan_configure(adc->dfsdm,
1400					  &adc->dfsdm->ch_list[ch->channel]);
1401}
1402
1403static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1404{
1405	struct iio_chan_spec *ch;
1406	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1407	struct stm32_dfsdm_channel *d_ch;
1408	int ret;
1409
1410	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1411	if (!ch)
1412		return -ENOMEM;
1413
1414	ch->scan_index = 0;
1415
1416	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1417	if (ret < 0) {
1418		dev_err(&indio_dev->dev, "Channels init failed\n");
1419		return ret;
1420	}
1421	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1422
1423	d_ch = &adc->dfsdm->ch_list[ch->channel];
1424	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1425		adc->spi_freq = adc->dfsdm->spi_master_freq;
1426
1427	indio_dev->num_channels = 1;
1428	indio_dev->channels = ch;
1429
1430	return stm32_dfsdm_dma_request(dev, indio_dev);
1431}
1432
1433static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1434{
1435	struct iio_chan_spec *ch;
1436	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1437	int num_ch;
1438	int ret, chan_idx;
1439
1440	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1441	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1442	if (ret < 0)
1443		return ret;
1444
1445	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1446					     "st,adc-channels");
1447	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1448		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1449		return num_ch < 0 ? num_ch : -EINVAL;
1450	}
1451
1452	/* Bind to SD modulator IIO device */
1453	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1454	if (IS_ERR(adc->hwc))
1455		return -EPROBE_DEFER;
1456
1457	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1458			  GFP_KERNEL);
1459	if (!ch)
1460		return -ENOMEM;
1461
1462	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1463		ch[chan_idx].scan_index = chan_idx;
1464		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1465		if (ret < 0) {
1466			dev_err(&indio_dev->dev, "Channels init failed\n");
1467			return ret;
1468		}
1469	}
1470
1471	indio_dev->num_channels = num_ch;
1472	indio_dev->channels = ch;
1473
1474	init_completion(&adc->completion);
1475
1476	/* Optionally request DMA */
1477	ret = stm32_dfsdm_dma_request(dev, indio_dev);
1478	if (ret) {
1479		if (ret != -ENODEV)
1480			return dev_err_probe(dev, ret,
1481					     "DMA channel request failed with\n");
1482
1483		dev_dbg(dev, "No DMA support\n");
1484		return 0;
1485	}
1486
1487	ret = iio_triggered_buffer_setup(indio_dev,
1488					 &iio_pollfunc_store_time, NULL,
 
1489					 &stm32_dfsdm_buffer_setup_ops);
1490	if (ret) {
1491		stm32_dfsdm_dma_release(indio_dev);
1492		dev_err(&indio_dev->dev, "buffer setup failed\n");
1493		return ret;
1494	}
1495
1496	/* lptimer/timer hardware triggers */
1497	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1498
1499	return 0;
1500}
1501
1502static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1503	.type = DFSDM_IIO,
1504	.init = stm32_dfsdm_adc_init,
1505};
1506
1507static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1508	.type = DFSDM_AUDIO,
1509	.init = stm32_dfsdm_audio_init,
1510};
1511
1512static const struct of_device_id stm32_dfsdm_adc_match[] = {
1513	{
1514		.compatible = "st,stm32-dfsdm-adc",
1515		.data = &stm32h7_dfsdm_adc_data,
1516	},
1517	{
1518		.compatible = "st,stm32-dfsdm-dmic",
1519		.data = &stm32h7_dfsdm_audio_data,
1520	},
1521	{}
1522};
1523MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1524
1525static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1526{
1527	struct device *dev = &pdev->dev;
1528	struct stm32_dfsdm_adc *adc;
1529	struct device_node *np = dev->of_node;
1530	const struct stm32_dfsdm_dev_data *dev_data;
1531	struct iio_dev *iio;
1532	char *name;
1533	int ret, irq, val;
1534
1535	dev_data = of_device_get_match_data(dev);
1536	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1537	if (!iio) {
1538		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1539		return -ENOMEM;
1540	}
1541
1542	adc = iio_priv(iio);
1543	adc->dfsdm = dev_get_drvdata(dev->parent);
1544
 
1545	iio->dev.of_node = np;
1546	iio->modes = INDIO_DIRECT_MODE;
1547
1548	platform_set_drvdata(pdev, iio);
1549
1550	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1551	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1552		dev_err(dev, "Missing or bad reg property\n");
1553		return -EINVAL;
1554	}
1555
1556	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1557	if (!name)
1558		return -ENOMEM;
1559	if (dev_data->type == DFSDM_AUDIO) {
1560		iio->info = &stm32_dfsdm_info_audio;
1561		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1562	} else {
1563		iio->info = &stm32_dfsdm_info_adc;
1564		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1565	}
1566	iio->name = name;
1567
1568	/*
1569	 * In a first step IRQs generated for channels are not treated.
1570	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1571	 */
1572	irq = platform_get_irq(pdev, 0);
1573	if (irq < 0)
1574		return irq;
1575
1576	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1577			       0, pdev->name, iio);
1578	if (ret < 0) {
1579		dev_err(dev, "Failed to request IRQ\n");
1580		return ret;
1581	}
1582
1583	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1584	if (ret < 0) {
1585		dev_err(dev, "Failed to set filter order\n");
1586		return ret;
1587	}
1588
1589	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1590
1591	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1592	if (!ret)
1593		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1594
1595	adc->dev_data = dev_data;
1596	ret = dev_data->init(dev, iio);
1597	if (ret < 0)
1598		return ret;
1599
1600	ret = iio_device_register(iio);
1601	if (ret < 0)
1602		goto err_cleanup;
1603
1604	if (dev_data->type == DFSDM_AUDIO) {
1605		ret = of_platform_populate(np, NULL, NULL, dev);
1606		if (ret < 0) {
1607			dev_err(dev, "Failed to find an audio DAI\n");
1608			goto err_unregister;
1609		}
1610	}
1611
1612	return 0;
1613
1614err_unregister:
1615	iio_device_unregister(iio);
1616err_cleanup:
1617	stm32_dfsdm_dma_release(iio);
1618
1619	return ret;
1620}
1621
1622static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1623{
1624	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1625	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1626
1627	if (adc->dev_data->type == DFSDM_AUDIO)
1628		of_platform_depopulate(&pdev->dev);
1629	iio_device_unregister(indio_dev);
1630	stm32_dfsdm_dma_release(indio_dev);
1631
1632	return 0;
1633}
1634
1635static int stm32_dfsdm_adc_suspend(struct device *dev)
1636{
1637	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 
1638
1639	if (iio_buffer_enabled(indio_dev))
1640		stm32_dfsdm_predisable(indio_dev);
1641
1642	return 0;
1643}
1644
1645static int stm32_dfsdm_adc_resume(struct device *dev)
1646{
1647	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1648	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1649	const struct iio_chan_spec *chan;
1650	struct stm32_dfsdm_channel *ch;
1651	int i, ret;
1652
1653	/* restore channels configuration */
1654	for (i = 0; i < indio_dev->num_channels; i++) {
1655		chan = indio_dev->channels + i;
1656		ch = &adc->dfsdm->ch_list[chan->channel];
1657		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1658		if (ret)
1659			return ret;
1660	}
1661
1662	if (iio_buffer_enabled(indio_dev))
1663		stm32_dfsdm_postenable(indio_dev);
1664
1665	return 0;
1666}
1667
1668static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1669				stm32_dfsdm_adc_suspend,
1670				stm32_dfsdm_adc_resume);
1671
1672static struct platform_driver stm32_dfsdm_adc_driver = {
1673	.driver = {
1674		.name = "stm32-dfsdm-adc",
1675		.of_match_table = stm32_dfsdm_adc_match,
1676		.pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1677	},
1678	.probe = stm32_dfsdm_adc_probe,
1679	.remove = stm32_dfsdm_adc_remove,
1680};
1681module_platform_driver(stm32_dfsdm_adc_driver);
1682
1683MODULE_DESCRIPTION("STM32 sigma delta ADC");
1684MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1685MODULE_LICENSE("GPL v2");