Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v5.4
  1/*
  2 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 21 * SOFTWARE.
 22 */
 23
 
 
 24#include "i915_vgpu.h"
 25
 26/**
 27 * DOC: Intel GVT-g guest support
 28 *
 29 * Intel GVT-g is a graphics virtualization technology which shares the
 30 * GPU among multiple virtual machines on a time-sharing basis. Each
 31 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
 32 * features as the underlying physical GPU (pGPU), so i915 driver can run
 33 * seamlessly in a virtual machine. This file provides vGPU specific
 34 * optimizations when running in a virtual machine, to reduce the complexity
 35 * of vGPU emulation and to improve the overall performance.
 36 *
 37 * A primary function introduced here is so-called "address space ballooning"
 38 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
 39 * so each VM can directly access a portion of the memory without hypervisor's
 40 * intervention, e.g. filling textures or queuing commands. However with the
 41 * partitioning an unmodified i915 driver would assume a smaller graphics
 42 * memory starting from address ZERO, then requires vGPU emulation module to
 43 * translate the graphics address between 'guest view' and 'host view', for
 44 * all registers and command opcodes which contain a graphics memory address.
 45 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
 46 * by telling the exact partitioning knowledge to each guest i915 driver, which
 47 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
 48 * emulation module only needs to scan and validate graphics addresses without
 49 * complexity of address translation.
 50 *
 51 */
 52
 53/**
 54 * i915_detect_vgpu - detect virtual GPU
 55 * @dev_priv: i915 device private
 56 *
 57 * This function is called at the initialization stage, to detect whether
 58 * running on a vGPU.
 59 */
 60void i915_detect_vgpu(struct drm_i915_private *dev_priv)
 61{
 62	struct pci_dev *pdev = dev_priv->drm.pdev;
 63	u64 magic;
 64	u16 version_major;
 65	void __iomem *shared_area;
 66
 67	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
 68
 69	/*
 70	 * This is called before we setup the main MMIO BAR mappings used via
 71	 * the uncore structure, so we need to access the BAR directly. Since
 72	 * we do not support VGT on older gens, return early so we don't have
 73	 * to consider differently numbered or sized MMIO bars
 74	 */
 75	if (INTEL_GEN(dev_priv) < 6)
 76		return;
 77
 78	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
 79	if (!shared_area) {
 80		DRM_ERROR("failed to map MMIO bar to check for VGT\n");
 
 81		return;
 82	}
 83
 84	magic = readq(shared_area + vgtif_offset(magic));
 85	if (magic != VGT_MAGIC)
 86		goto out;
 87
 88	version_major = readw(shared_area + vgtif_offset(version_major));
 89	if (version_major < VGT_VERSION_MAJOR) {
 90		DRM_INFO("VGT interface version mismatch!\n");
 91		goto out;
 92	}
 93
 94	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
 95
 96	dev_priv->vgpu.active = true;
 97	mutex_init(&dev_priv->vgpu.lock);
 98	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
 99
100out:
101	pci_iounmap(pdev, shared_area);
102}
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
105{
106	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
107}
108
 
 
 
 
 
 
 
 
 
 
109struct _balloon_info_ {
110	/*
111	 * There are up to 2 regions per mappable/unmappable graphic
112	 * memory that might be ballooned. Here, index 0/1 is for mappable
113	 * graphic memory, 2/3 for unmappable graphic memory.
114	 */
115	struct drm_mm_node space[4];
116};
117
118static struct _balloon_info_ bl_info;
119
120static void vgt_deballoon_space(struct i915_ggtt *ggtt,
121				struct drm_mm_node *node)
122{
 
123	if (!drm_mm_node_allocated(node))
124		return;
125
126	DRM_DEBUG_DRIVER("deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
127			 node->start,
128			 node->start + node->size,
129			 node->size / 1024);
 
130
131	ggtt->vm.reserved -= node->size;
132	drm_mm_remove_node(node);
133}
134
135/**
136 * intel_vgt_deballoon - deballoon reserved graphics address trunks
137 * @ggtt: the global GGTT from which we reserved earlier
138 *
139 * This function is called to deallocate the ballooned-out graphic memory, when
140 * driver is unloaded or when ballooning fails.
141 */
142void intel_vgt_deballoon(struct i915_ggtt *ggtt)
143{
 
144	int i;
145
146	if (!intel_vgpu_active(ggtt->vm.i915))
147		return;
148
149	DRM_DEBUG("VGT deballoon.\n");
150
151	for (i = 0; i < 4; i++)
152		vgt_deballoon_space(ggtt, &bl_info.space[i]);
153}
154
155static int vgt_balloon_space(struct i915_ggtt *ggtt,
156			     struct drm_mm_node *node,
157			     unsigned long start, unsigned long end)
158{
 
159	unsigned long size = end - start;
160	int ret;
161
162	if (start >= end)
163		return -EINVAL;
164
165	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
 
166		 start, end, size / 1024);
167	ret = i915_gem_gtt_reserve(&ggtt->vm, node,
168				   size, start, I915_COLOR_UNEVICTABLE,
169				   0);
170	if (!ret)
171		ggtt->vm.reserved += size;
172
173	return ret;
174}
175
176/**
177 * intel_vgt_balloon - balloon out reserved graphics address trunks
178 * @ggtt: the global GGTT from which to reserve
179 *
180 * This function is called at the initialization stage, to balloon out the
181 * graphic address space allocated to other vGPUs, by marking these spaces as
182 * reserved. The ballooning related knowledge(starting address and size of
183 * the mappable/unmappable graphic memory) is described in the vgt_if structure
184 * in a reserved mmio range.
185 *
186 * To give an example, the drawing below depicts one typical scenario after
187 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
188 * out each for the mappable and the non-mappable part. From the vGPU1 point of
189 * view, the total size is the same as the physical one, with the start address
190 * of its graphic space being zero. Yet there are some portions ballooned out(
191 * the shadow part, which are marked as reserved by drm allocator). From the
192 * host point of view, the graphic address space is partitioned by multiple
193 * vGPUs in different VMs. ::
194 *
195 *                         vGPU1 view         Host view
196 *              0 ------> +-----------+     +-----------+
197 *                ^       |###########|     |   vGPU3   |
198 *                |       |###########|     +-----------+
199 *                |       |###########|     |   vGPU2   |
200 *                |       +-----------+     +-----------+
201 *         mappable GM    | available | ==> |   vGPU1   |
202 *                |       +-----------+     +-----------+
203 *                |       |###########|     |           |
204 *                v       |###########|     |   Host    |
205 *                +=======+===========+     +===========+
206 *                ^       |###########|     |   vGPU3   |
207 *                |       |###########|     +-----------+
208 *                |       |###########|     |   vGPU2   |
209 *                |       +-----------+     +-----------+
210 *       unmappable GM    | available | ==> |   vGPU1   |
211 *                |       +-----------+     +-----------+
212 *                |       |###########|     |           |
213 *                |       |###########|     |   Host    |
214 *                v       |###########|     |           |
215 *  total GM size ------> +-----------+     +-----------+
216 *
217 * Returns:
218 * zero on success, non-zero if configuration invalid or ballooning failed
219 */
220int intel_vgt_balloon(struct i915_ggtt *ggtt)
221{
222	struct intel_uncore *uncore = &ggtt->vm.i915->uncore;
 
223	unsigned long ggtt_end = ggtt->vm.total;
224
225	unsigned long mappable_base, mappable_size, mappable_end;
226	unsigned long unmappable_base, unmappable_size, unmappable_end;
227	int ret;
228
229	if (!intel_vgpu_active(ggtt->vm.i915))
230		return 0;
231
232	mappable_base =
233	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
234	mappable_size =
235	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
236	unmappable_base =
237	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
238	unmappable_size =
239	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
240
241	mappable_end = mappable_base + mappable_size;
242	unmappable_end = unmappable_base + unmappable_size;
243
244	DRM_INFO("VGT ballooning configuration:\n");
245	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
 
246		 mappable_base, mappable_size / 1024);
247	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
 
248		 unmappable_base, unmappable_size / 1024);
249
250	if (mappable_end > ggtt->mappable_end ||
251	    unmappable_base < ggtt->mappable_end ||
252	    unmappable_end > ggtt_end) {
253		DRM_ERROR("Invalid ballooning configuration!\n");
254		return -EINVAL;
255	}
256
257	/* Unmappable graphic memory ballooning */
258	if (unmappable_base > ggtt->mappable_end) {
259		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
260					ggtt->mappable_end, unmappable_base);
261
262		if (ret)
263			goto err;
264	}
265
266	if (unmappable_end < ggtt_end) {
267		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
268					unmappable_end, ggtt_end);
269		if (ret)
270			goto err_upon_mappable;
271	}
272
273	/* Mappable graphic memory ballooning */
274	if (mappable_base) {
275		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
276					0, mappable_base);
277
278		if (ret)
279			goto err_upon_unmappable;
280	}
281
282	if (mappable_end < ggtt->mappable_end) {
283		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
284					mappable_end, ggtt->mappable_end);
285
286		if (ret)
287			goto err_below_mappable;
288	}
289
290	DRM_INFO("VGT balloon successfully\n");
291	return 0;
292
293err_below_mappable:
294	vgt_deballoon_space(ggtt, &bl_info.space[0]);
295err_upon_unmappable:
296	vgt_deballoon_space(ggtt, &bl_info.space[3]);
297err_upon_mappable:
298	vgt_deballoon_space(ggtt, &bl_info.space[2]);
299err:
300	DRM_ERROR("VGT balloon fail\n");
301	return ret;
302}
v6.2
  1/*
  2 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 21 * SOFTWARE.
 22 */
 23
 24#include "i915_drv.h"
 25#include "i915_pvinfo.h"
 26#include "i915_vgpu.h"
 27
 28/**
 29 * DOC: Intel GVT-g guest support
 30 *
 31 * Intel GVT-g is a graphics virtualization technology which shares the
 32 * GPU among multiple virtual machines on a time-sharing basis. Each
 33 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
 34 * features as the underlying physical GPU (pGPU), so i915 driver can run
 35 * seamlessly in a virtual machine. This file provides vGPU specific
 36 * optimizations when running in a virtual machine, to reduce the complexity
 37 * of vGPU emulation and to improve the overall performance.
 38 *
 39 * A primary function introduced here is so-called "address space ballooning"
 40 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
 41 * so each VM can directly access a portion of the memory without hypervisor's
 42 * intervention, e.g. filling textures or queuing commands. However with the
 43 * partitioning an unmodified i915 driver would assume a smaller graphics
 44 * memory starting from address ZERO, then requires vGPU emulation module to
 45 * translate the graphics address between 'guest view' and 'host view', for
 46 * all registers and command opcodes which contain a graphics memory address.
 47 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
 48 * by telling the exact partitioning knowledge to each guest i915 driver, which
 49 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
 50 * emulation module only needs to scan and validate graphics addresses without
 51 * complexity of address translation.
 52 *
 53 */
 54
 55/**
 56 * intel_vgpu_detect - detect virtual GPU
 57 * @dev_priv: i915 device private
 58 *
 59 * This function is called at the initialization stage, to detect whether
 60 * running on a vGPU.
 61 */
 62void intel_vgpu_detect(struct drm_i915_private *dev_priv)
 63{
 64	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
 65	u64 magic;
 66	u16 version_major;
 67	void __iomem *shared_area;
 68
 69	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
 70
 71	/*
 72	 * This is called before we setup the main MMIO BAR mappings used via
 73	 * the uncore structure, so we need to access the BAR directly. Since
 74	 * we do not support VGT on older gens, return early so we don't have
 75	 * to consider differently numbered or sized MMIO bars
 76	 */
 77	if (GRAPHICS_VER(dev_priv) < 6)
 78		return;
 79
 80	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
 81	if (!shared_area) {
 82		drm_err(&dev_priv->drm,
 83			"failed to map MMIO bar to check for VGT\n");
 84		return;
 85	}
 86
 87	magic = readq(shared_area + vgtif_offset(magic));
 88	if (magic != VGT_MAGIC)
 89		goto out;
 90
 91	version_major = readw(shared_area + vgtif_offset(version_major));
 92	if (version_major < VGT_VERSION_MAJOR) {
 93		drm_info(&dev_priv->drm, "VGT interface version mismatch!\n");
 94		goto out;
 95	}
 96
 97	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
 98
 99	dev_priv->vgpu.active = true;
100	mutex_init(&dev_priv->vgpu.lock);
101	drm_info(&dev_priv->drm, "Virtual GPU for Intel GVT-g detected.\n");
102
103out:
104	pci_iounmap(pdev, shared_area);
105}
106
107void intel_vgpu_register(struct drm_i915_private *i915)
108{
109	/*
110	 * Notify a valid surface after modesetting, when running inside a VM.
111	 */
112	if (intel_vgpu_active(i915))
113		intel_uncore_write(&i915->uncore, vgtif_reg(display_ready),
114				   VGT_DRV_DISPLAY_READY);
115}
116
117bool intel_vgpu_active(struct drm_i915_private *dev_priv)
118{
119	return dev_priv->vgpu.active;
120}
121
122bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
123{
124	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
125}
126
127bool intel_vgpu_has_hwsp_emulation(struct drm_i915_private *dev_priv)
128{
129	return dev_priv->vgpu.caps & VGT_CAPS_HWSP_EMULATION;
130}
131
132bool intel_vgpu_has_huge_gtt(struct drm_i915_private *dev_priv)
133{
134	return dev_priv->vgpu.caps & VGT_CAPS_HUGE_GTT;
135}
136
137struct _balloon_info_ {
138	/*
139	 * There are up to 2 regions per mappable/unmappable graphic
140	 * memory that might be ballooned. Here, index 0/1 is for mappable
141	 * graphic memory, 2/3 for unmappable graphic memory.
142	 */
143	struct drm_mm_node space[4];
144};
145
146static struct _balloon_info_ bl_info;
147
148static void vgt_deballoon_space(struct i915_ggtt *ggtt,
149				struct drm_mm_node *node)
150{
151	struct drm_i915_private *dev_priv = ggtt->vm.i915;
152	if (!drm_mm_node_allocated(node))
153		return;
154
155	drm_dbg(&dev_priv->drm,
156		"deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
157		node->start,
158		node->start + node->size,
159		node->size / 1024);
160
161	ggtt->vm.reserved -= node->size;
162	drm_mm_remove_node(node);
163}
164
165/**
166 * intel_vgt_deballoon - deballoon reserved graphics address trunks
167 * @ggtt: the global GGTT from which we reserved earlier
168 *
169 * This function is called to deallocate the ballooned-out graphic memory, when
170 * driver is unloaded or when ballooning fails.
171 */
172void intel_vgt_deballoon(struct i915_ggtt *ggtt)
173{
174	struct drm_i915_private *dev_priv = ggtt->vm.i915;
175	int i;
176
177	if (!intel_vgpu_active(ggtt->vm.i915))
178		return;
179
180	drm_dbg(&dev_priv->drm, "VGT deballoon.\n");
181
182	for (i = 0; i < 4; i++)
183		vgt_deballoon_space(ggtt, &bl_info.space[i]);
184}
185
186static int vgt_balloon_space(struct i915_ggtt *ggtt,
187			     struct drm_mm_node *node,
188			     unsigned long start, unsigned long end)
189{
190	struct drm_i915_private *dev_priv = ggtt->vm.i915;
191	unsigned long size = end - start;
192	int ret;
193
194	if (start >= end)
195		return -EINVAL;
196
197	drm_info(&dev_priv->drm,
198		 "balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
199		 start, end, size / 1024);
200	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, node,
201				   size, start, I915_COLOR_UNEVICTABLE,
202				   0);
203	if (!ret)
204		ggtt->vm.reserved += size;
205
206	return ret;
207}
208
209/**
210 * intel_vgt_balloon - balloon out reserved graphics address trunks
211 * @ggtt: the global GGTT from which to reserve
212 *
213 * This function is called at the initialization stage, to balloon out the
214 * graphic address space allocated to other vGPUs, by marking these spaces as
215 * reserved. The ballooning related knowledge(starting address and size of
216 * the mappable/unmappable graphic memory) is described in the vgt_if structure
217 * in a reserved mmio range.
218 *
219 * To give an example, the drawing below depicts one typical scenario after
220 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
221 * out each for the mappable and the non-mappable part. From the vGPU1 point of
222 * view, the total size is the same as the physical one, with the start address
223 * of its graphic space being zero. Yet there are some portions ballooned out(
224 * the shadow part, which are marked as reserved by drm allocator). From the
225 * host point of view, the graphic address space is partitioned by multiple
226 * vGPUs in different VMs. ::
227 *
228 *                         vGPU1 view         Host view
229 *              0 ------> +-----------+     +-----------+
230 *                ^       |###########|     |   vGPU3   |
231 *                |       |###########|     +-----------+
232 *                |       |###########|     |   vGPU2   |
233 *                |       +-----------+     +-----------+
234 *         mappable GM    | available | ==> |   vGPU1   |
235 *                |       +-----------+     +-----------+
236 *                |       |###########|     |           |
237 *                v       |###########|     |   Host    |
238 *                +=======+===========+     +===========+
239 *                ^       |###########|     |   vGPU3   |
240 *                |       |###########|     +-----------+
241 *                |       |###########|     |   vGPU2   |
242 *                |       +-----------+     +-----------+
243 *       unmappable GM    | available | ==> |   vGPU1   |
244 *                |       +-----------+     +-----------+
245 *                |       |###########|     |           |
246 *                |       |###########|     |   Host    |
247 *                v       |###########|     |           |
248 *  total GM size ------> +-----------+     +-----------+
249 *
250 * Returns:
251 * zero on success, non-zero if configuration invalid or ballooning failed
252 */
253int intel_vgt_balloon(struct i915_ggtt *ggtt)
254{
255	struct drm_i915_private *dev_priv = ggtt->vm.i915;
256	struct intel_uncore *uncore = &dev_priv->uncore;
257	unsigned long ggtt_end = ggtt->vm.total;
258
259	unsigned long mappable_base, mappable_size, mappable_end;
260	unsigned long unmappable_base, unmappable_size, unmappable_end;
261	int ret;
262
263	if (!intel_vgpu_active(ggtt->vm.i915))
264		return 0;
265
266	mappable_base =
267	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
268	mappable_size =
269	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
270	unmappable_base =
271	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
272	unmappable_size =
273	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
274
275	mappable_end = mappable_base + mappable_size;
276	unmappable_end = unmappable_base + unmappable_size;
277
278	drm_info(&dev_priv->drm, "VGT ballooning configuration:\n");
279	drm_info(&dev_priv->drm,
280		 "Mappable graphic memory: base 0x%lx size %ldKiB\n",
281		 mappable_base, mappable_size / 1024);
282	drm_info(&dev_priv->drm,
283		 "Unmappable graphic memory: base 0x%lx size %ldKiB\n",
284		 unmappable_base, unmappable_size / 1024);
285
286	if (mappable_end > ggtt->mappable_end ||
287	    unmappable_base < ggtt->mappable_end ||
288	    unmappable_end > ggtt_end) {
289		drm_err(&dev_priv->drm, "Invalid ballooning configuration!\n");
290		return -EINVAL;
291	}
292
293	/* Unmappable graphic memory ballooning */
294	if (unmappable_base > ggtt->mappable_end) {
295		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
296					ggtt->mappable_end, unmappable_base);
297
298		if (ret)
299			goto err;
300	}
301
302	if (unmappable_end < ggtt_end) {
303		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
304					unmappable_end, ggtt_end);
305		if (ret)
306			goto err_upon_mappable;
307	}
308
309	/* Mappable graphic memory ballooning */
310	if (mappable_base) {
311		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
312					0, mappable_base);
313
314		if (ret)
315			goto err_upon_unmappable;
316	}
317
318	if (mappable_end < ggtt->mappable_end) {
319		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
320					mappable_end, ggtt->mappable_end);
321
322		if (ret)
323			goto err_below_mappable;
324	}
325
326	drm_info(&dev_priv->drm, "VGT balloon successfully\n");
327	return 0;
328
329err_below_mappable:
330	vgt_deballoon_space(ggtt, &bl_info.space[0]);
331err_upon_unmappable:
332	vgt_deballoon_space(ggtt, &bl_info.space[3]);
333err_upon_mappable:
334	vgt_deballoon_space(ggtt, &bl_info.space[2]);
335err:
336	drm_err(&dev_priv->drm, "VGT balloon fail\n");
337	return ret;
338}