Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/uio.h>
10#include <linux/iocontext.h>
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
17#include <linux/cgroup.h>
18#include <linux/blk-cgroup.h>
19#include <linux/highmem.h>
20
21#include <trace/events/block.h>
22#include "blk.h"
23#include "blk-rq-qos.h"
24
25/*
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
28 */
29#define BIO_INLINE_VECS 4
30
31/*
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
34 * unsigned short
35 */
36#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39};
40#undef BV
41
42/*
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
45 */
46struct bio_set fs_bio_set;
47EXPORT_SYMBOL(fs_bio_set);
48
49/*
50 * Our slab pool management
51 */
52struct bio_slab {
53 struct kmem_cache *slab;
54 unsigned int slab_ref;
55 unsigned int slab_size;
56 char name[8];
57};
58static DEFINE_MUTEX(bio_slab_lock);
59static struct bio_slab *bio_slabs;
60static unsigned int bio_slab_nr, bio_slab_max;
61
62static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63{
64 unsigned int sz = sizeof(struct bio) + extra_size;
65 struct kmem_cache *slab = NULL;
66 struct bio_slab *bslab, *new_bio_slabs;
67 unsigned int new_bio_slab_max;
68 unsigned int i, entry = -1;
69
70 mutex_lock(&bio_slab_lock);
71
72 i = 0;
73 while (i < bio_slab_nr) {
74 bslab = &bio_slabs[i];
75
76 if (!bslab->slab && entry == -1)
77 entry = i;
78 else if (bslab->slab_size == sz) {
79 slab = bslab->slab;
80 bslab->slab_ref++;
81 break;
82 }
83 i++;
84 }
85
86 if (slab)
87 goto out_unlock;
88
89 if (bio_slab_nr == bio_slab_max && entry == -1) {
90 new_bio_slab_max = bio_slab_max << 1;
91 new_bio_slabs = krealloc(bio_slabs,
92 new_bio_slab_max * sizeof(struct bio_slab),
93 GFP_KERNEL);
94 if (!new_bio_slabs)
95 goto out_unlock;
96 bio_slab_max = new_bio_slab_max;
97 bio_slabs = new_bio_slabs;
98 }
99 if (entry == -1)
100 entry = bio_slab_nr++;
101
102 bslab = &bio_slabs[entry];
103
104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 SLAB_HWCACHE_ALIGN, NULL);
107 if (!slab)
108 goto out_unlock;
109
110 bslab->slab = slab;
111 bslab->slab_ref = 1;
112 bslab->slab_size = sz;
113out_unlock:
114 mutex_unlock(&bio_slab_lock);
115 return slab;
116}
117
118static void bio_put_slab(struct bio_set *bs)
119{
120 struct bio_slab *bslab = NULL;
121 unsigned int i;
122
123 mutex_lock(&bio_slab_lock);
124
125 for (i = 0; i < bio_slab_nr; i++) {
126 if (bs->bio_slab == bio_slabs[i].slab) {
127 bslab = &bio_slabs[i];
128 break;
129 }
130 }
131
132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 goto out;
134
135 WARN_ON(!bslab->slab_ref);
136
137 if (--bslab->slab_ref)
138 goto out;
139
140 kmem_cache_destroy(bslab->slab);
141 bslab->slab = NULL;
142
143out:
144 mutex_unlock(&bio_slab_lock);
145}
146
147unsigned int bvec_nr_vecs(unsigned short idx)
148{
149 return bvec_slabs[--idx].nr_vecs;
150}
151
152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153{
154 if (!idx)
155 return;
156 idx--;
157
158 BIO_BUG_ON(idx >= BVEC_POOL_NR);
159
160 if (idx == BVEC_POOL_MAX) {
161 mempool_free(bv, pool);
162 } else {
163 struct biovec_slab *bvs = bvec_slabs + idx;
164
165 kmem_cache_free(bvs->slab, bv);
166 }
167}
168
169struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 mempool_t *pool)
171{
172 struct bio_vec *bvl;
173
174 /*
175 * see comment near bvec_array define!
176 */
177 switch (nr) {
178 case 1:
179 *idx = 0;
180 break;
181 case 2 ... 4:
182 *idx = 1;
183 break;
184 case 5 ... 16:
185 *idx = 2;
186 break;
187 case 17 ... 64:
188 *idx = 3;
189 break;
190 case 65 ... 128:
191 *idx = 4;
192 break;
193 case 129 ... BIO_MAX_PAGES:
194 *idx = 5;
195 break;
196 default:
197 return NULL;
198 }
199
200 /*
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
203 */
204 if (*idx == BVEC_POOL_MAX) {
205fallback:
206 bvl = mempool_alloc(pool, gfp_mask);
207 } else {
208 struct biovec_slab *bvs = bvec_slabs + *idx;
209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210
211 /*
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
215 */
216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217
218 /*
219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 * is set, retry with the 1-entry mempool
221 */
222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 *idx = BVEC_POOL_MAX;
225 goto fallback;
226 }
227 }
228
229 (*idx)++;
230 return bvl;
231}
232
233void bio_uninit(struct bio *bio)
234{
235 bio_disassociate_blkg(bio);
236}
237EXPORT_SYMBOL(bio_uninit);
238
239static void bio_free(struct bio *bio)
240{
241 struct bio_set *bs = bio->bi_pool;
242 void *p;
243
244 bio_uninit(bio);
245
246 if (bs) {
247 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
248
249 /*
250 * If we have front padding, adjust the bio pointer before freeing
251 */
252 p = bio;
253 p -= bs->front_pad;
254
255 mempool_free(p, &bs->bio_pool);
256 } else {
257 /* Bio was allocated by bio_kmalloc() */
258 kfree(bio);
259 }
260}
261
262/*
263 * Users of this function have their own bio allocation. Subsequently,
264 * they must remember to pair any call to bio_init() with bio_uninit()
265 * when IO has completed, or when the bio is released.
266 */
267void bio_init(struct bio *bio, struct bio_vec *table,
268 unsigned short max_vecs)
269{
270 memset(bio, 0, sizeof(*bio));
271 atomic_set(&bio->__bi_remaining, 1);
272 atomic_set(&bio->__bi_cnt, 1);
273
274 bio->bi_io_vec = table;
275 bio->bi_max_vecs = max_vecs;
276}
277EXPORT_SYMBOL(bio_init);
278
279/**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289void bio_reset(struct bio *bio)
290{
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
293 bio_uninit(bio);
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags;
297 atomic_set(&bio->__bi_remaining, 1);
298}
299EXPORT_SYMBOL(bio_reset);
300
301static struct bio *__bio_chain_endio(struct bio *bio)
302{
303 struct bio *parent = bio->bi_private;
304
305 if (!parent->bi_status)
306 parent->bi_status = bio->bi_status;
307 bio_put(bio);
308 return parent;
309}
310
311static void bio_chain_endio(struct bio *bio)
312{
313 bio_endio(__bio_chain_endio(bio));
314}
315
316/**
317 * bio_chain - chain bio completions
318 * @bio: the target bio
319 * @parent: the @bio's parent bio
320 *
321 * The caller won't have a bi_end_io called when @bio completes - instead,
322 * @parent's bi_end_io won't be called until both @parent and @bio have
323 * completed; the chained bio will also be freed when it completes.
324 *
325 * The caller must not set bi_private or bi_end_io in @bio.
326 */
327void bio_chain(struct bio *bio, struct bio *parent)
328{
329 BUG_ON(bio->bi_private || bio->bi_end_io);
330
331 bio->bi_private = parent;
332 bio->bi_end_io = bio_chain_endio;
333 bio_inc_remaining(parent);
334}
335EXPORT_SYMBOL(bio_chain);
336
337static void bio_alloc_rescue(struct work_struct *work)
338{
339 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
340 struct bio *bio;
341
342 while (1) {
343 spin_lock(&bs->rescue_lock);
344 bio = bio_list_pop(&bs->rescue_list);
345 spin_unlock(&bs->rescue_lock);
346
347 if (!bio)
348 break;
349
350 generic_make_request(bio);
351 }
352}
353
354static void punt_bios_to_rescuer(struct bio_set *bs)
355{
356 struct bio_list punt, nopunt;
357 struct bio *bio;
358
359 if (WARN_ON_ONCE(!bs->rescue_workqueue))
360 return;
361 /*
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
367 *
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
370 */
371
372 bio_list_init(&punt);
373 bio_list_init(&nopunt);
374
375 while ((bio = bio_list_pop(¤t->bio_list[0])))
376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 current->bio_list[0] = nopunt;
378
379 bio_list_init(&nopunt);
380 while ((bio = bio_list_pop(¤t->bio_list[1])))
381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 current->bio_list[1] = nopunt;
383
384 spin_lock(&bs->rescue_lock);
385 bio_list_merge(&bs->rescue_list, &punt);
386 spin_unlock(&bs->rescue_lock);
387
388 queue_work(bs->rescue_workqueue, &bs->rescue_work);
389}
390
391/**
392 * bio_alloc_bioset - allocate a bio for I/O
393 * @gfp_mask: the GFP_* mask given to the slab allocator
394 * @nr_iovecs: number of iovecs to pre-allocate
395 * @bs: the bio_set to allocate from.
396 *
397 * Description:
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
400 *
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
407 *
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
411 * stack overflows.
412 *
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
416 * thread.
417 *
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
422 *
423 * RETURNS:
424 * Pointer to new bio on success, NULL on failure.
425 */
426struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
427 struct bio_set *bs)
428{
429 gfp_t saved_gfp = gfp_mask;
430 unsigned front_pad;
431 unsigned inline_vecs;
432 struct bio_vec *bvl = NULL;
433 struct bio *bio;
434 void *p;
435
436 if (!bs) {
437 if (nr_iovecs > UIO_MAXIOV)
438 return NULL;
439
440 p = kmalloc(sizeof(struct bio) +
441 nr_iovecs * sizeof(struct bio_vec),
442 gfp_mask);
443 front_pad = 0;
444 inline_vecs = nr_iovecs;
445 } else {
446 /* should not use nobvec bioset for nr_iovecs > 0 */
447 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 nr_iovecs > 0))
449 return NULL;
450 /*
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
469 */
470
471 if (current->bio_list &&
472 (!bio_list_empty(¤t->bio_list[0]) ||
473 !bio_list_empty(¤t->bio_list[1])) &&
474 bs->rescue_workqueue)
475 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
476
477 p = mempool_alloc(&bs->bio_pool, gfp_mask);
478 if (!p && gfp_mask != saved_gfp) {
479 punt_bios_to_rescuer(bs);
480 gfp_mask = saved_gfp;
481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 }
483
484 front_pad = bs->front_pad;
485 inline_vecs = BIO_INLINE_VECS;
486 }
487
488 if (unlikely(!p))
489 return NULL;
490
491 bio = p + front_pad;
492 bio_init(bio, NULL, 0);
493
494 if (nr_iovecs > inline_vecs) {
495 unsigned long idx = 0;
496
497 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
498 if (!bvl && gfp_mask != saved_gfp) {
499 punt_bios_to_rescuer(bs);
500 gfp_mask = saved_gfp;
501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 }
503
504 if (unlikely(!bvl))
505 goto err_free;
506
507 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
508 } else if (nr_iovecs) {
509 bvl = bio->bi_inline_vecs;
510 }
511
512 bio->bi_pool = bs;
513 bio->bi_max_vecs = nr_iovecs;
514 bio->bi_io_vec = bvl;
515 return bio;
516
517err_free:
518 mempool_free(p, &bs->bio_pool);
519 return NULL;
520}
521EXPORT_SYMBOL(bio_alloc_bioset);
522
523void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
524{
525 unsigned long flags;
526 struct bio_vec bv;
527 struct bvec_iter iter;
528
529 __bio_for_each_segment(bv, bio, iter, start) {
530 char *data = bvec_kmap_irq(&bv, &flags);
531 memset(data, 0, bv.bv_len);
532 flush_dcache_page(bv.bv_page);
533 bvec_kunmap_irq(data, &flags);
534 }
535}
536EXPORT_SYMBOL(zero_fill_bio_iter);
537
538/**
539 * bio_put - release a reference to a bio
540 * @bio: bio to release reference to
541 *
542 * Description:
543 * Put a reference to a &struct bio, either one you have gotten with
544 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
545 **/
546void bio_put(struct bio *bio)
547{
548 if (!bio_flagged(bio, BIO_REFFED))
549 bio_free(bio);
550 else {
551 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
552
553 /*
554 * last put frees it
555 */
556 if (atomic_dec_and_test(&bio->__bi_cnt))
557 bio_free(bio);
558 }
559}
560EXPORT_SYMBOL(bio_put);
561
562/**
563 * __bio_clone_fast - clone a bio that shares the original bio's biovec
564 * @bio: destination bio
565 * @bio_src: bio to clone
566 *
567 * Clone a &bio. Caller will own the returned bio, but not
568 * the actual data it points to. Reference count of returned
569 * bio will be one.
570 *
571 * Caller must ensure that @bio_src is not freed before @bio.
572 */
573void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574{
575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
576
577 /*
578 * most users will be overriding ->bi_disk with a new target,
579 * so we don't set nor calculate new physical/hw segment counts here
580 */
581 bio->bi_disk = bio_src->bi_disk;
582 bio->bi_partno = bio_src->bi_partno;
583 bio_set_flag(bio, BIO_CLONED);
584 if (bio_flagged(bio_src, BIO_THROTTLED))
585 bio_set_flag(bio, BIO_THROTTLED);
586 bio->bi_opf = bio_src->bi_opf;
587 bio->bi_ioprio = bio_src->bi_ioprio;
588 bio->bi_write_hint = bio_src->bi_write_hint;
589 bio->bi_iter = bio_src->bi_iter;
590 bio->bi_io_vec = bio_src->bi_io_vec;
591
592 bio_clone_blkg_association(bio, bio_src);
593 blkcg_bio_issue_init(bio);
594}
595EXPORT_SYMBOL(__bio_clone_fast);
596
597/**
598 * bio_clone_fast - clone a bio that shares the original bio's biovec
599 * @bio: bio to clone
600 * @gfp_mask: allocation priority
601 * @bs: bio_set to allocate from
602 *
603 * Like __bio_clone_fast, only also allocates the returned bio
604 */
605struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
606{
607 struct bio *b;
608
609 b = bio_alloc_bioset(gfp_mask, 0, bs);
610 if (!b)
611 return NULL;
612
613 __bio_clone_fast(b, bio);
614
615 if (bio_integrity(bio)) {
616 int ret;
617
618 ret = bio_integrity_clone(b, bio, gfp_mask);
619
620 if (ret < 0) {
621 bio_put(b);
622 return NULL;
623 }
624 }
625
626 return b;
627}
628EXPORT_SYMBOL(bio_clone_fast);
629
630static inline bool page_is_mergeable(const struct bio_vec *bv,
631 struct page *page, unsigned int len, unsigned int off,
632 bool *same_page)
633{
634 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
635 bv->bv_offset + bv->bv_len - 1;
636 phys_addr_t page_addr = page_to_phys(page);
637
638 if (vec_end_addr + 1 != page_addr + off)
639 return false;
640 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
641 return false;
642
643 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
644 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
645 return false;
646 return true;
647}
648
649static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
650 struct page *page, unsigned len, unsigned offset,
651 bool *same_page)
652{
653 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
654 unsigned long mask = queue_segment_boundary(q);
655 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
656 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
657
658 if ((addr1 | mask) != (addr2 | mask))
659 return false;
660 if (bv->bv_len + len > queue_max_segment_size(q))
661 return false;
662 return __bio_try_merge_page(bio, page, len, offset, same_page);
663}
664
665/**
666 * __bio_add_pc_page - attempt to add page to passthrough bio
667 * @q: the target queue
668 * @bio: destination bio
669 * @page: page to add
670 * @len: vec entry length
671 * @offset: vec entry offset
672 * @same_page: return if the merge happen inside the same page
673 *
674 * Attempt to add a page to the bio_vec maplist. This can fail for a
675 * number of reasons, such as the bio being full or target block device
676 * limitations. The target block device must allow bio's up to PAGE_SIZE,
677 * so it is always possible to add a single page to an empty bio.
678 *
679 * This should only be used by passthrough bios.
680 */
681static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
682 struct page *page, unsigned int len, unsigned int offset,
683 bool *same_page)
684{
685 struct bio_vec *bvec;
686
687 /*
688 * cloned bio must not modify vec list
689 */
690 if (unlikely(bio_flagged(bio, BIO_CLONED)))
691 return 0;
692
693 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
694 return 0;
695
696 if (bio->bi_vcnt > 0) {
697 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
698 return len;
699
700 /*
701 * If the queue doesn't support SG gaps and adding this segment
702 * would create a gap, disallow it.
703 */
704 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
705 if (bvec_gap_to_prev(q, bvec, offset))
706 return 0;
707 }
708
709 if (bio_full(bio, len))
710 return 0;
711
712 if (bio->bi_vcnt >= queue_max_segments(q))
713 return 0;
714
715 bvec = &bio->bi_io_vec[bio->bi_vcnt];
716 bvec->bv_page = page;
717 bvec->bv_len = len;
718 bvec->bv_offset = offset;
719 bio->bi_vcnt++;
720 bio->bi_iter.bi_size += len;
721 return len;
722}
723
724int bio_add_pc_page(struct request_queue *q, struct bio *bio,
725 struct page *page, unsigned int len, unsigned int offset)
726{
727 bool same_page = false;
728 return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
729}
730EXPORT_SYMBOL(bio_add_pc_page);
731
732/**
733 * __bio_try_merge_page - try appending data to an existing bvec.
734 * @bio: destination bio
735 * @page: start page to add
736 * @len: length of the data to add
737 * @off: offset of the data relative to @page
738 * @same_page: return if the segment has been merged inside the same page
739 *
740 * Try to add the data at @page + @off to the last bvec of @bio. This is a
741 * a useful optimisation for file systems with a block size smaller than the
742 * page size.
743 *
744 * Warn if (@len, @off) crosses pages in case that @same_page is true.
745 *
746 * Return %true on success or %false on failure.
747 */
748bool __bio_try_merge_page(struct bio *bio, struct page *page,
749 unsigned int len, unsigned int off, bool *same_page)
750{
751 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
752 return false;
753
754 if (bio->bi_vcnt > 0 && !bio_full(bio, len)) {
755 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
756
757 if (page_is_mergeable(bv, page, len, off, same_page)) {
758 bv->bv_len += len;
759 bio->bi_iter.bi_size += len;
760 return true;
761 }
762 }
763 return false;
764}
765EXPORT_SYMBOL_GPL(__bio_try_merge_page);
766
767/**
768 * __bio_add_page - add page(s) to a bio in a new segment
769 * @bio: destination bio
770 * @page: start page to add
771 * @len: length of the data to add, may cross pages
772 * @off: offset of the data relative to @page, may cross pages
773 *
774 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
775 * that @bio has space for another bvec.
776 */
777void __bio_add_page(struct bio *bio, struct page *page,
778 unsigned int len, unsigned int off)
779{
780 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
781
782 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
783 WARN_ON_ONCE(bio_full(bio, len));
784
785 bv->bv_page = page;
786 bv->bv_offset = off;
787 bv->bv_len = len;
788
789 bio->bi_iter.bi_size += len;
790 bio->bi_vcnt++;
791
792 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
793 bio_set_flag(bio, BIO_WORKINGSET);
794}
795EXPORT_SYMBOL_GPL(__bio_add_page);
796
797/**
798 * bio_add_page - attempt to add page(s) to bio
799 * @bio: destination bio
800 * @page: start page to add
801 * @len: vec entry length, may cross pages
802 * @offset: vec entry offset relative to @page, may cross pages
803 *
804 * Attempt to add page(s) to the bio_vec maplist. This will only fail
805 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
806 */
807int bio_add_page(struct bio *bio, struct page *page,
808 unsigned int len, unsigned int offset)
809{
810 bool same_page = false;
811
812 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
813 if (bio_full(bio, len))
814 return 0;
815 __bio_add_page(bio, page, len, offset);
816 }
817 return len;
818}
819EXPORT_SYMBOL(bio_add_page);
820
821void bio_release_pages(struct bio *bio, bool mark_dirty)
822{
823 struct bvec_iter_all iter_all;
824 struct bio_vec *bvec;
825
826 if (bio_flagged(bio, BIO_NO_PAGE_REF))
827 return;
828
829 bio_for_each_segment_all(bvec, bio, iter_all) {
830 if (mark_dirty && !PageCompound(bvec->bv_page))
831 set_page_dirty_lock(bvec->bv_page);
832 put_page(bvec->bv_page);
833 }
834}
835
836static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
837{
838 const struct bio_vec *bv = iter->bvec;
839 unsigned int len;
840 size_t size;
841
842 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
843 return -EINVAL;
844
845 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
846 size = bio_add_page(bio, bv->bv_page, len,
847 bv->bv_offset + iter->iov_offset);
848 if (unlikely(size != len))
849 return -EINVAL;
850 iov_iter_advance(iter, size);
851 return 0;
852}
853
854#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
855
856/**
857 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
858 * @bio: bio to add pages to
859 * @iter: iov iterator describing the region to be mapped
860 *
861 * Pins pages from *iter and appends them to @bio's bvec array. The
862 * pages will have to be released using put_page() when done.
863 * For multi-segment *iter, this function only adds pages from the
864 * the next non-empty segment of the iov iterator.
865 */
866static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
867{
868 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
869 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
870 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
871 struct page **pages = (struct page **)bv;
872 bool same_page = false;
873 ssize_t size, left;
874 unsigned len, i;
875 size_t offset;
876
877 /*
878 * Move page array up in the allocated memory for the bio vecs as far as
879 * possible so that we can start filling biovecs from the beginning
880 * without overwriting the temporary page array.
881 */
882 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
883 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
884
885 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
886 if (unlikely(size <= 0))
887 return size ? size : -EFAULT;
888
889 for (left = size, i = 0; left > 0; left -= len, i++) {
890 struct page *page = pages[i];
891
892 len = min_t(size_t, PAGE_SIZE - offset, left);
893
894 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
895 if (same_page)
896 put_page(page);
897 } else {
898 if (WARN_ON_ONCE(bio_full(bio, len)))
899 return -EINVAL;
900 __bio_add_page(bio, page, len, offset);
901 }
902 offset = 0;
903 }
904
905 iov_iter_advance(iter, size);
906 return 0;
907}
908
909/**
910 * bio_iov_iter_get_pages - add user or kernel pages to a bio
911 * @bio: bio to add pages to
912 * @iter: iov iterator describing the region to be added
913 *
914 * This takes either an iterator pointing to user memory, or one pointing to
915 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
916 * map them into the kernel. On IO completion, the caller should put those
917 * pages. If we're adding kernel pages, and the caller told us it's safe to
918 * do so, we just have to add the pages to the bio directly. We don't grab an
919 * extra reference to those pages (the user should already have that), and we
920 * don't put the page on IO completion. The caller needs to check if the bio is
921 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
922 * released.
923 *
924 * The function tries, but does not guarantee, to pin as many pages as
925 * fit into the bio, or are requested in *iter, whatever is smaller. If
926 * MM encounters an error pinning the requested pages, it stops. Error
927 * is returned only if 0 pages could be pinned.
928 */
929int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
930{
931 const bool is_bvec = iov_iter_is_bvec(iter);
932 int ret;
933
934 if (WARN_ON_ONCE(bio->bi_vcnt))
935 return -EINVAL;
936
937 do {
938 if (is_bvec)
939 ret = __bio_iov_bvec_add_pages(bio, iter);
940 else
941 ret = __bio_iov_iter_get_pages(bio, iter);
942 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
943
944 if (is_bvec)
945 bio_set_flag(bio, BIO_NO_PAGE_REF);
946 return bio->bi_vcnt ? 0 : ret;
947}
948
949static void submit_bio_wait_endio(struct bio *bio)
950{
951 complete(bio->bi_private);
952}
953
954/**
955 * submit_bio_wait - submit a bio, and wait until it completes
956 * @bio: The &struct bio which describes the I/O
957 *
958 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
959 * bio_endio() on failure.
960 *
961 * WARNING: Unlike to how submit_bio() is usually used, this function does not
962 * result in bio reference to be consumed. The caller must drop the reference
963 * on his own.
964 */
965int submit_bio_wait(struct bio *bio)
966{
967 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
968
969 bio->bi_private = &done;
970 bio->bi_end_io = submit_bio_wait_endio;
971 bio->bi_opf |= REQ_SYNC;
972 submit_bio(bio);
973 wait_for_completion_io(&done);
974
975 return blk_status_to_errno(bio->bi_status);
976}
977EXPORT_SYMBOL(submit_bio_wait);
978
979/**
980 * bio_advance - increment/complete a bio by some number of bytes
981 * @bio: bio to advance
982 * @bytes: number of bytes to complete
983 *
984 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
985 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
986 * be updated on the last bvec as well.
987 *
988 * @bio will then represent the remaining, uncompleted portion of the io.
989 */
990void bio_advance(struct bio *bio, unsigned bytes)
991{
992 if (bio_integrity(bio))
993 bio_integrity_advance(bio, bytes);
994
995 bio_advance_iter(bio, &bio->bi_iter, bytes);
996}
997EXPORT_SYMBOL(bio_advance);
998
999void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1000 struct bio *src, struct bvec_iter *src_iter)
1001{
1002 struct bio_vec src_bv, dst_bv;
1003 void *src_p, *dst_p;
1004 unsigned bytes;
1005
1006 while (src_iter->bi_size && dst_iter->bi_size) {
1007 src_bv = bio_iter_iovec(src, *src_iter);
1008 dst_bv = bio_iter_iovec(dst, *dst_iter);
1009
1010 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1011
1012 src_p = kmap_atomic(src_bv.bv_page);
1013 dst_p = kmap_atomic(dst_bv.bv_page);
1014
1015 memcpy(dst_p + dst_bv.bv_offset,
1016 src_p + src_bv.bv_offset,
1017 bytes);
1018
1019 kunmap_atomic(dst_p);
1020 kunmap_atomic(src_p);
1021
1022 flush_dcache_page(dst_bv.bv_page);
1023
1024 bio_advance_iter(src, src_iter, bytes);
1025 bio_advance_iter(dst, dst_iter, bytes);
1026 }
1027}
1028EXPORT_SYMBOL(bio_copy_data_iter);
1029
1030/**
1031 * bio_copy_data - copy contents of data buffers from one bio to another
1032 * @src: source bio
1033 * @dst: destination bio
1034 *
1035 * Stops when it reaches the end of either @src or @dst - that is, copies
1036 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1037 */
1038void bio_copy_data(struct bio *dst, struct bio *src)
1039{
1040 struct bvec_iter src_iter = src->bi_iter;
1041 struct bvec_iter dst_iter = dst->bi_iter;
1042
1043 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1044}
1045EXPORT_SYMBOL(bio_copy_data);
1046
1047/**
1048 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1049 * another
1050 * @src: source bio list
1051 * @dst: destination bio list
1052 *
1053 * Stops when it reaches the end of either the @src list or @dst list - that is,
1054 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1055 * bios).
1056 */
1057void bio_list_copy_data(struct bio *dst, struct bio *src)
1058{
1059 struct bvec_iter src_iter = src->bi_iter;
1060 struct bvec_iter dst_iter = dst->bi_iter;
1061
1062 while (1) {
1063 if (!src_iter.bi_size) {
1064 src = src->bi_next;
1065 if (!src)
1066 break;
1067
1068 src_iter = src->bi_iter;
1069 }
1070
1071 if (!dst_iter.bi_size) {
1072 dst = dst->bi_next;
1073 if (!dst)
1074 break;
1075
1076 dst_iter = dst->bi_iter;
1077 }
1078
1079 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1080 }
1081}
1082EXPORT_SYMBOL(bio_list_copy_data);
1083
1084struct bio_map_data {
1085 int is_our_pages;
1086 struct iov_iter iter;
1087 struct iovec iov[];
1088};
1089
1090static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1091 gfp_t gfp_mask)
1092{
1093 struct bio_map_data *bmd;
1094 if (data->nr_segs > UIO_MAXIOV)
1095 return NULL;
1096
1097 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1098 if (!bmd)
1099 return NULL;
1100 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1101 bmd->iter = *data;
1102 bmd->iter.iov = bmd->iov;
1103 return bmd;
1104}
1105
1106/**
1107 * bio_copy_from_iter - copy all pages from iov_iter to bio
1108 * @bio: The &struct bio which describes the I/O as destination
1109 * @iter: iov_iter as source
1110 *
1111 * Copy all pages from iov_iter to bio.
1112 * Returns 0 on success, or error on failure.
1113 */
1114static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1115{
1116 struct bio_vec *bvec;
1117 struct bvec_iter_all iter_all;
1118
1119 bio_for_each_segment_all(bvec, bio, iter_all) {
1120 ssize_t ret;
1121
1122 ret = copy_page_from_iter(bvec->bv_page,
1123 bvec->bv_offset,
1124 bvec->bv_len,
1125 iter);
1126
1127 if (!iov_iter_count(iter))
1128 break;
1129
1130 if (ret < bvec->bv_len)
1131 return -EFAULT;
1132 }
1133
1134 return 0;
1135}
1136
1137/**
1138 * bio_copy_to_iter - copy all pages from bio to iov_iter
1139 * @bio: The &struct bio which describes the I/O as source
1140 * @iter: iov_iter as destination
1141 *
1142 * Copy all pages from bio to iov_iter.
1143 * Returns 0 on success, or error on failure.
1144 */
1145static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1146{
1147 struct bio_vec *bvec;
1148 struct bvec_iter_all iter_all;
1149
1150 bio_for_each_segment_all(bvec, bio, iter_all) {
1151 ssize_t ret;
1152
1153 ret = copy_page_to_iter(bvec->bv_page,
1154 bvec->bv_offset,
1155 bvec->bv_len,
1156 &iter);
1157
1158 if (!iov_iter_count(&iter))
1159 break;
1160
1161 if (ret < bvec->bv_len)
1162 return -EFAULT;
1163 }
1164
1165 return 0;
1166}
1167
1168void bio_free_pages(struct bio *bio)
1169{
1170 struct bio_vec *bvec;
1171 struct bvec_iter_all iter_all;
1172
1173 bio_for_each_segment_all(bvec, bio, iter_all)
1174 __free_page(bvec->bv_page);
1175}
1176EXPORT_SYMBOL(bio_free_pages);
1177
1178/**
1179 * bio_uncopy_user - finish previously mapped bio
1180 * @bio: bio being terminated
1181 *
1182 * Free pages allocated from bio_copy_user_iov() and write back data
1183 * to user space in case of a read.
1184 */
1185int bio_uncopy_user(struct bio *bio)
1186{
1187 struct bio_map_data *bmd = bio->bi_private;
1188 int ret = 0;
1189
1190 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1191 /*
1192 * if we're in a workqueue, the request is orphaned, so
1193 * don't copy into a random user address space, just free
1194 * and return -EINTR so user space doesn't expect any data.
1195 */
1196 if (!current->mm)
1197 ret = -EINTR;
1198 else if (bio_data_dir(bio) == READ)
1199 ret = bio_copy_to_iter(bio, bmd->iter);
1200 if (bmd->is_our_pages)
1201 bio_free_pages(bio);
1202 }
1203 kfree(bmd);
1204 bio_put(bio);
1205 return ret;
1206}
1207
1208/**
1209 * bio_copy_user_iov - copy user data to bio
1210 * @q: destination block queue
1211 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1212 * @iter: iovec iterator
1213 * @gfp_mask: memory allocation flags
1214 *
1215 * Prepares and returns a bio for indirect user io, bouncing data
1216 * to/from kernel pages as necessary. Must be paired with
1217 * call bio_uncopy_user() on io completion.
1218 */
1219struct bio *bio_copy_user_iov(struct request_queue *q,
1220 struct rq_map_data *map_data,
1221 struct iov_iter *iter,
1222 gfp_t gfp_mask)
1223{
1224 struct bio_map_data *bmd;
1225 struct page *page;
1226 struct bio *bio;
1227 int i = 0, ret;
1228 int nr_pages;
1229 unsigned int len = iter->count;
1230 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1231
1232 bmd = bio_alloc_map_data(iter, gfp_mask);
1233 if (!bmd)
1234 return ERR_PTR(-ENOMEM);
1235
1236 /*
1237 * We need to do a deep copy of the iov_iter including the iovecs.
1238 * The caller provided iov might point to an on-stack or otherwise
1239 * shortlived one.
1240 */
1241 bmd->is_our_pages = map_data ? 0 : 1;
1242
1243 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1244 if (nr_pages > BIO_MAX_PAGES)
1245 nr_pages = BIO_MAX_PAGES;
1246
1247 ret = -ENOMEM;
1248 bio = bio_kmalloc(gfp_mask, nr_pages);
1249 if (!bio)
1250 goto out_bmd;
1251
1252 ret = 0;
1253
1254 if (map_data) {
1255 nr_pages = 1 << map_data->page_order;
1256 i = map_data->offset / PAGE_SIZE;
1257 }
1258 while (len) {
1259 unsigned int bytes = PAGE_SIZE;
1260
1261 bytes -= offset;
1262
1263 if (bytes > len)
1264 bytes = len;
1265
1266 if (map_data) {
1267 if (i == map_data->nr_entries * nr_pages) {
1268 ret = -ENOMEM;
1269 break;
1270 }
1271
1272 page = map_data->pages[i / nr_pages];
1273 page += (i % nr_pages);
1274
1275 i++;
1276 } else {
1277 page = alloc_page(q->bounce_gfp | gfp_mask);
1278 if (!page) {
1279 ret = -ENOMEM;
1280 break;
1281 }
1282 }
1283
1284 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1285 if (!map_data)
1286 __free_page(page);
1287 break;
1288 }
1289
1290 len -= bytes;
1291 offset = 0;
1292 }
1293
1294 if (ret)
1295 goto cleanup;
1296
1297 if (map_data)
1298 map_data->offset += bio->bi_iter.bi_size;
1299
1300 /*
1301 * success
1302 */
1303 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1304 (map_data && map_data->from_user)) {
1305 ret = bio_copy_from_iter(bio, iter);
1306 if (ret)
1307 goto cleanup;
1308 } else {
1309 if (bmd->is_our_pages)
1310 zero_fill_bio(bio);
1311 iov_iter_advance(iter, bio->bi_iter.bi_size);
1312 }
1313
1314 bio->bi_private = bmd;
1315 if (map_data && map_data->null_mapped)
1316 bio_set_flag(bio, BIO_NULL_MAPPED);
1317 return bio;
1318cleanup:
1319 if (!map_data)
1320 bio_free_pages(bio);
1321 bio_put(bio);
1322out_bmd:
1323 kfree(bmd);
1324 return ERR_PTR(ret);
1325}
1326
1327/**
1328 * bio_map_user_iov - map user iovec into bio
1329 * @q: the struct request_queue for the bio
1330 * @iter: iovec iterator
1331 * @gfp_mask: memory allocation flags
1332 *
1333 * Map the user space address into a bio suitable for io to a block
1334 * device. Returns an error pointer in case of error.
1335 */
1336struct bio *bio_map_user_iov(struct request_queue *q,
1337 struct iov_iter *iter,
1338 gfp_t gfp_mask)
1339{
1340 int j;
1341 struct bio *bio;
1342 int ret;
1343
1344 if (!iov_iter_count(iter))
1345 return ERR_PTR(-EINVAL);
1346
1347 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1348 if (!bio)
1349 return ERR_PTR(-ENOMEM);
1350
1351 while (iov_iter_count(iter)) {
1352 struct page **pages;
1353 ssize_t bytes;
1354 size_t offs, added = 0;
1355 int npages;
1356
1357 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1358 if (unlikely(bytes <= 0)) {
1359 ret = bytes ? bytes : -EFAULT;
1360 goto out_unmap;
1361 }
1362
1363 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1364
1365 if (unlikely(offs & queue_dma_alignment(q))) {
1366 ret = -EINVAL;
1367 j = 0;
1368 } else {
1369 for (j = 0; j < npages; j++) {
1370 struct page *page = pages[j];
1371 unsigned int n = PAGE_SIZE - offs;
1372 bool same_page = false;
1373
1374 if (n > bytes)
1375 n = bytes;
1376
1377 if (!__bio_add_pc_page(q, bio, page, n, offs,
1378 &same_page)) {
1379 if (same_page)
1380 put_page(page);
1381 break;
1382 }
1383
1384 added += n;
1385 bytes -= n;
1386 offs = 0;
1387 }
1388 iov_iter_advance(iter, added);
1389 }
1390 /*
1391 * release the pages we didn't map into the bio, if any
1392 */
1393 while (j < npages)
1394 put_page(pages[j++]);
1395 kvfree(pages);
1396 /* couldn't stuff something into bio? */
1397 if (bytes)
1398 break;
1399 }
1400
1401 bio_set_flag(bio, BIO_USER_MAPPED);
1402
1403 /*
1404 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1405 * it would normally disappear when its bi_end_io is run.
1406 * however, we need it for the unmap, so grab an extra
1407 * reference to it
1408 */
1409 bio_get(bio);
1410 return bio;
1411
1412 out_unmap:
1413 bio_release_pages(bio, false);
1414 bio_put(bio);
1415 return ERR_PTR(ret);
1416}
1417
1418/**
1419 * bio_unmap_user - unmap a bio
1420 * @bio: the bio being unmapped
1421 *
1422 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1423 * process context.
1424 *
1425 * bio_unmap_user() may sleep.
1426 */
1427void bio_unmap_user(struct bio *bio)
1428{
1429 bio_release_pages(bio, bio_data_dir(bio) == READ);
1430 bio_put(bio);
1431 bio_put(bio);
1432}
1433
1434static void bio_invalidate_vmalloc_pages(struct bio *bio)
1435{
1436#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1437 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1438 unsigned long i, len = 0;
1439
1440 for (i = 0; i < bio->bi_vcnt; i++)
1441 len += bio->bi_io_vec[i].bv_len;
1442 invalidate_kernel_vmap_range(bio->bi_private, len);
1443 }
1444#endif
1445}
1446
1447static void bio_map_kern_endio(struct bio *bio)
1448{
1449 bio_invalidate_vmalloc_pages(bio);
1450 bio_put(bio);
1451}
1452
1453/**
1454 * bio_map_kern - map kernel address into bio
1455 * @q: the struct request_queue for the bio
1456 * @data: pointer to buffer to map
1457 * @len: length in bytes
1458 * @gfp_mask: allocation flags for bio allocation
1459 *
1460 * Map the kernel address into a bio suitable for io to a block
1461 * device. Returns an error pointer in case of error.
1462 */
1463struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1464 gfp_t gfp_mask)
1465{
1466 unsigned long kaddr = (unsigned long)data;
1467 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 unsigned long start = kaddr >> PAGE_SHIFT;
1469 const int nr_pages = end - start;
1470 bool is_vmalloc = is_vmalloc_addr(data);
1471 struct page *page;
1472 int offset, i;
1473 struct bio *bio;
1474
1475 bio = bio_kmalloc(gfp_mask, nr_pages);
1476 if (!bio)
1477 return ERR_PTR(-ENOMEM);
1478
1479 if (is_vmalloc) {
1480 flush_kernel_vmap_range(data, len);
1481 bio->bi_private = data;
1482 }
1483
1484 offset = offset_in_page(kaddr);
1485 for (i = 0; i < nr_pages; i++) {
1486 unsigned int bytes = PAGE_SIZE - offset;
1487
1488 if (len <= 0)
1489 break;
1490
1491 if (bytes > len)
1492 bytes = len;
1493
1494 if (!is_vmalloc)
1495 page = virt_to_page(data);
1496 else
1497 page = vmalloc_to_page(data);
1498 if (bio_add_pc_page(q, bio, page, bytes,
1499 offset) < bytes) {
1500 /* we don't support partial mappings */
1501 bio_put(bio);
1502 return ERR_PTR(-EINVAL);
1503 }
1504
1505 data += bytes;
1506 len -= bytes;
1507 offset = 0;
1508 }
1509
1510 bio->bi_end_io = bio_map_kern_endio;
1511 return bio;
1512}
1513
1514static void bio_copy_kern_endio(struct bio *bio)
1515{
1516 bio_free_pages(bio);
1517 bio_put(bio);
1518}
1519
1520static void bio_copy_kern_endio_read(struct bio *bio)
1521{
1522 char *p = bio->bi_private;
1523 struct bio_vec *bvec;
1524 struct bvec_iter_all iter_all;
1525
1526 bio_for_each_segment_all(bvec, bio, iter_all) {
1527 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1528 p += bvec->bv_len;
1529 }
1530
1531 bio_copy_kern_endio(bio);
1532}
1533
1534/**
1535 * bio_copy_kern - copy kernel address into bio
1536 * @q: the struct request_queue for the bio
1537 * @data: pointer to buffer to copy
1538 * @len: length in bytes
1539 * @gfp_mask: allocation flags for bio and page allocation
1540 * @reading: data direction is READ
1541 *
1542 * copy the kernel address into a bio suitable for io to a block
1543 * device. Returns an error pointer in case of error.
1544 */
1545struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1546 gfp_t gfp_mask, int reading)
1547{
1548 unsigned long kaddr = (unsigned long)data;
1549 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1550 unsigned long start = kaddr >> PAGE_SHIFT;
1551 struct bio *bio;
1552 void *p = data;
1553 int nr_pages = 0;
1554
1555 /*
1556 * Overflow, abort
1557 */
1558 if (end < start)
1559 return ERR_PTR(-EINVAL);
1560
1561 nr_pages = end - start;
1562 bio = bio_kmalloc(gfp_mask, nr_pages);
1563 if (!bio)
1564 return ERR_PTR(-ENOMEM);
1565
1566 while (len) {
1567 struct page *page;
1568 unsigned int bytes = PAGE_SIZE;
1569
1570 if (bytes > len)
1571 bytes = len;
1572
1573 page = alloc_page(q->bounce_gfp | gfp_mask);
1574 if (!page)
1575 goto cleanup;
1576
1577 if (!reading)
1578 memcpy(page_address(page), p, bytes);
1579
1580 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1581 break;
1582
1583 len -= bytes;
1584 p += bytes;
1585 }
1586
1587 if (reading) {
1588 bio->bi_end_io = bio_copy_kern_endio_read;
1589 bio->bi_private = data;
1590 } else {
1591 bio->bi_end_io = bio_copy_kern_endio;
1592 }
1593
1594 return bio;
1595
1596cleanup:
1597 bio_free_pages(bio);
1598 bio_put(bio);
1599 return ERR_PTR(-ENOMEM);
1600}
1601
1602/*
1603 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1604 * for performing direct-IO in BIOs.
1605 *
1606 * The problem is that we cannot run set_page_dirty() from interrupt context
1607 * because the required locks are not interrupt-safe. So what we can do is to
1608 * mark the pages dirty _before_ performing IO. And in interrupt context,
1609 * check that the pages are still dirty. If so, fine. If not, redirty them
1610 * in process context.
1611 *
1612 * We special-case compound pages here: normally this means reads into hugetlb
1613 * pages. The logic in here doesn't really work right for compound pages
1614 * because the VM does not uniformly chase down the head page in all cases.
1615 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1616 * handle them at all. So we skip compound pages here at an early stage.
1617 *
1618 * Note that this code is very hard to test under normal circumstances because
1619 * direct-io pins the pages with get_user_pages(). This makes
1620 * is_page_cache_freeable return false, and the VM will not clean the pages.
1621 * But other code (eg, flusher threads) could clean the pages if they are mapped
1622 * pagecache.
1623 *
1624 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1625 * deferred bio dirtying paths.
1626 */
1627
1628/*
1629 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1630 */
1631void bio_set_pages_dirty(struct bio *bio)
1632{
1633 struct bio_vec *bvec;
1634 struct bvec_iter_all iter_all;
1635
1636 bio_for_each_segment_all(bvec, bio, iter_all) {
1637 if (!PageCompound(bvec->bv_page))
1638 set_page_dirty_lock(bvec->bv_page);
1639 }
1640}
1641
1642/*
1643 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1644 * If they are, then fine. If, however, some pages are clean then they must
1645 * have been written out during the direct-IO read. So we take another ref on
1646 * the BIO and re-dirty the pages in process context.
1647 *
1648 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1649 * here on. It will run one put_page() against each page and will run one
1650 * bio_put() against the BIO.
1651 */
1652
1653static void bio_dirty_fn(struct work_struct *work);
1654
1655static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1656static DEFINE_SPINLOCK(bio_dirty_lock);
1657static struct bio *bio_dirty_list;
1658
1659/*
1660 * This runs in process context
1661 */
1662static void bio_dirty_fn(struct work_struct *work)
1663{
1664 struct bio *bio, *next;
1665
1666 spin_lock_irq(&bio_dirty_lock);
1667 next = bio_dirty_list;
1668 bio_dirty_list = NULL;
1669 spin_unlock_irq(&bio_dirty_lock);
1670
1671 while ((bio = next) != NULL) {
1672 next = bio->bi_private;
1673
1674 bio_release_pages(bio, true);
1675 bio_put(bio);
1676 }
1677}
1678
1679void bio_check_pages_dirty(struct bio *bio)
1680{
1681 struct bio_vec *bvec;
1682 unsigned long flags;
1683 struct bvec_iter_all iter_all;
1684
1685 bio_for_each_segment_all(bvec, bio, iter_all) {
1686 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1687 goto defer;
1688 }
1689
1690 bio_release_pages(bio, false);
1691 bio_put(bio);
1692 return;
1693defer:
1694 spin_lock_irqsave(&bio_dirty_lock, flags);
1695 bio->bi_private = bio_dirty_list;
1696 bio_dirty_list = bio;
1697 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1698 schedule_work(&bio_dirty_work);
1699}
1700
1701void update_io_ticks(struct hd_struct *part, unsigned long now)
1702{
1703 unsigned long stamp;
1704again:
1705 stamp = READ_ONCE(part->stamp);
1706 if (unlikely(stamp != now)) {
1707 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1708 __part_stat_add(part, io_ticks, 1);
1709 }
1710 }
1711 if (part->partno) {
1712 part = &part_to_disk(part)->part0;
1713 goto again;
1714 }
1715}
1716
1717void generic_start_io_acct(struct request_queue *q, int op,
1718 unsigned long sectors, struct hd_struct *part)
1719{
1720 const int sgrp = op_stat_group(op);
1721
1722 part_stat_lock();
1723
1724 update_io_ticks(part, jiffies);
1725 part_stat_inc(part, ios[sgrp]);
1726 part_stat_add(part, sectors[sgrp], sectors);
1727 part_inc_in_flight(q, part, op_is_write(op));
1728
1729 part_stat_unlock();
1730}
1731EXPORT_SYMBOL(generic_start_io_acct);
1732
1733void generic_end_io_acct(struct request_queue *q, int req_op,
1734 struct hd_struct *part, unsigned long start_time)
1735{
1736 unsigned long now = jiffies;
1737 unsigned long duration = now - start_time;
1738 const int sgrp = op_stat_group(req_op);
1739
1740 part_stat_lock();
1741
1742 update_io_ticks(part, now);
1743 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1744 part_stat_add(part, time_in_queue, duration);
1745 part_dec_in_flight(q, part, op_is_write(req_op));
1746
1747 part_stat_unlock();
1748}
1749EXPORT_SYMBOL(generic_end_io_acct);
1750
1751static inline bool bio_remaining_done(struct bio *bio)
1752{
1753 /*
1754 * If we're not chaining, then ->__bi_remaining is always 1 and
1755 * we always end io on the first invocation.
1756 */
1757 if (!bio_flagged(bio, BIO_CHAIN))
1758 return true;
1759
1760 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1761
1762 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1763 bio_clear_flag(bio, BIO_CHAIN);
1764 return true;
1765 }
1766
1767 return false;
1768}
1769
1770/**
1771 * bio_endio - end I/O on a bio
1772 * @bio: bio
1773 *
1774 * Description:
1775 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1776 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1777 * bio unless they own it and thus know that it has an end_io function.
1778 *
1779 * bio_endio() can be called several times on a bio that has been chained
1780 * using bio_chain(). The ->bi_end_io() function will only be called the
1781 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1782 * generated if BIO_TRACE_COMPLETION is set.
1783 **/
1784void bio_endio(struct bio *bio)
1785{
1786again:
1787 if (!bio_remaining_done(bio))
1788 return;
1789 if (!bio_integrity_endio(bio))
1790 return;
1791
1792 if (bio->bi_disk)
1793 rq_qos_done_bio(bio->bi_disk->queue, bio);
1794
1795 /*
1796 * Need to have a real endio function for chained bios, otherwise
1797 * various corner cases will break (like stacking block devices that
1798 * save/restore bi_end_io) - however, we want to avoid unbounded
1799 * recursion and blowing the stack. Tail call optimization would
1800 * handle this, but compiling with frame pointers also disables
1801 * gcc's sibling call optimization.
1802 */
1803 if (bio->bi_end_io == bio_chain_endio) {
1804 bio = __bio_chain_endio(bio);
1805 goto again;
1806 }
1807
1808 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1809 trace_block_bio_complete(bio->bi_disk->queue, bio,
1810 blk_status_to_errno(bio->bi_status));
1811 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1812 }
1813
1814 blk_throtl_bio_endio(bio);
1815 /* release cgroup info */
1816 bio_uninit(bio);
1817 if (bio->bi_end_io)
1818 bio->bi_end_io(bio);
1819}
1820EXPORT_SYMBOL(bio_endio);
1821
1822/**
1823 * bio_split - split a bio
1824 * @bio: bio to split
1825 * @sectors: number of sectors to split from the front of @bio
1826 * @gfp: gfp mask
1827 * @bs: bio set to allocate from
1828 *
1829 * Allocates and returns a new bio which represents @sectors from the start of
1830 * @bio, and updates @bio to represent the remaining sectors.
1831 *
1832 * Unless this is a discard request the newly allocated bio will point
1833 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1834 * neither @bio nor @bs are freed before the split bio.
1835 */
1836struct bio *bio_split(struct bio *bio, int sectors,
1837 gfp_t gfp, struct bio_set *bs)
1838{
1839 struct bio *split;
1840
1841 BUG_ON(sectors <= 0);
1842 BUG_ON(sectors >= bio_sectors(bio));
1843
1844 split = bio_clone_fast(bio, gfp, bs);
1845 if (!split)
1846 return NULL;
1847
1848 split->bi_iter.bi_size = sectors << 9;
1849
1850 if (bio_integrity(split))
1851 bio_integrity_trim(split);
1852
1853 bio_advance(bio, split->bi_iter.bi_size);
1854
1855 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1856 bio_set_flag(split, BIO_TRACE_COMPLETION);
1857
1858 return split;
1859}
1860EXPORT_SYMBOL(bio_split);
1861
1862/**
1863 * bio_trim - trim a bio
1864 * @bio: bio to trim
1865 * @offset: number of sectors to trim from the front of @bio
1866 * @size: size we want to trim @bio to, in sectors
1867 */
1868void bio_trim(struct bio *bio, int offset, int size)
1869{
1870 /* 'bio' is a cloned bio which we need to trim to match
1871 * the given offset and size.
1872 */
1873
1874 size <<= 9;
1875 if (offset == 0 && size == bio->bi_iter.bi_size)
1876 return;
1877
1878 bio_advance(bio, offset << 9);
1879 bio->bi_iter.bi_size = size;
1880
1881 if (bio_integrity(bio))
1882 bio_integrity_trim(bio);
1883
1884}
1885EXPORT_SYMBOL_GPL(bio_trim);
1886
1887/*
1888 * create memory pools for biovec's in a bio_set.
1889 * use the global biovec slabs created for general use.
1890 */
1891int biovec_init_pool(mempool_t *pool, int pool_entries)
1892{
1893 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1894
1895 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1896}
1897
1898/*
1899 * bioset_exit - exit a bioset initialized with bioset_init()
1900 *
1901 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1902 * kzalloc()).
1903 */
1904void bioset_exit(struct bio_set *bs)
1905{
1906 if (bs->rescue_workqueue)
1907 destroy_workqueue(bs->rescue_workqueue);
1908 bs->rescue_workqueue = NULL;
1909
1910 mempool_exit(&bs->bio_pool);
1911 mempool_exit(&bs->bvec_pool);
1912
1913 bioset_integrity_free(bs);
1914 if (bs->bio_slab)
1915 bio_put_slab(bs);
1916 bs->bio_slab = NULL;
1917}
1918EXPORT_SYMBOL(bioset_exit);
1919
1920/**
1921 * bioset_init - Initialize a bio_set
1922 * @bs: pool to initialize
1923 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1924 * @front_pad: Number of bytes to allocate in front of the returned bio
1925 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1926 * and %BIOSET_NEED_RESCUER
1927 *
1928 * Description:
1929 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1930 * to ask for a number of bytes to be allocated in front of the bio.
1931 * Front pad allocation is useful for embedding the bio inside
1932 * another structure, to avoid allocating extra data to go with the bio.
1933 * Note that the bio must be embedded at the END of that structure always,
1934 * or things will break badly.
1935 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1936 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1937 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1938 * dispatch queued requests when the mempool runs out of space.
1939 *
1940 */
1941int bioset_init(struct bio_set *bs,
1942 unsigned int pool_size,
1943 unsigned int front_pad,
1944 int flags)
1945{
1946 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1947
1948 bs->front_pad = front_pad;
1949
1950 spin_lock_init(&bs->rescue_lock);
1951 bio_list_init(&bs->rescue_list);
1952 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1953
1954 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1955 if (!bs->bio_slab)
1956 return -ENOMEM;
1957
1958 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1959 goto bad;
1960
1961 if ((flags & BIOSET_NEED_BVECS) &&
1962 biovec_init_pool(&bs->bvec_pool, pool_size))
1963 goto bad;
1964
1965 if (!(flags & BIOSET_NEED_RESCUER))
1966 return 0;
1967
1968 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1969 if (!bs->rescue_workqueue)
1970 goto bad;
1971
1972 return 0;
1973bad:
1974 bioset_exit(bs);
1975 return -ENOMEM;
1976}
1977EXPORT_SYMBOL(bioset_init);
1978
1979/*
1980 * Initialize and setup a new bio_set, based on the settings from
1981 * another bio_set.
1982 */
1983int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1984{
1985 int flags;
1986
1987 flags = 0;
1988 if (src->bvec_pool.min_nr)
1989 flags |= BIOSET_NEED_BVECS;
1990 if (src->rescue_workqueue)
1991 flags |= BIOSET_NEED_RESCUER;
1992
1993 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1994}
1995EXPORT_SYMBOL(bioset_init_from_src);
1996
1997#ifdef CONFIG_BLK_CGROUP
1998
1999/**
2000 * bio_disassociate_blkg - puts back the blkg reference if associated
2001 * @bio: target bio
2002 *
2003 * Helper to disassociate the blkg from @bio if a blkg is associated.
2004 */
2005void bio_disassociate_blkg(struct bio *bio)
2006{
2007 if (bio->bi_blkg) {
2008 blkg_put(bio->bi_blkg);
2009 bio->bi_blkg = NULL;
2010 }
2011}
2012EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2013
2014/**
2015 * __bio_associate_blkg - associate a bio with the a blkg
2016 * @bio: target bio
2017 * @blkg: the blkg to associate
2018 *
2019 * This tries to associate @bio with the specified @blkg. Association failure
2020 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2021 * be anything between @blkg and the root_blkg. This situation only happens
2022 * when a cgroup is dying and then the remaining bios will spill to the closest
2023 * alive blkg.
2024 *
2025 * A reference will be taken on the @blkg and will be released when @bio is
2026 * freed.
2027 */
2028static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2029{
2030 bio_disassociate_blkg(bio);
2031
2032 bio->bi_blkg = blkg_tryget_closest(blkg);
2033}
2034
2035/**
2036 * bio_associate_blkg_from_css - associate a bio with a specified css
2037 * @bio: target bio
2038 * @css: target css
2039 *
2040 * Associate @bio with the blkg found by combining the css's blkg and the
2041 * request_queue of the @bio. This falls back to the queue's root_blkg if
2042 * the association fails with the css.
2043 */
2044void bio_associate_blkg_from_css(struct bio *bio,
2045 struct cgroup_subsys_state *css)
2046{
2047 struct request_queue *q = bio->bi_disk->queue;
2048 struct blkcg_gq *blkg;
2049
2050 rcu_read_lock();
2051
2052 if (!css || !css->parent)
2053 blkg = q->root_blkg;
2054 else
2055 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2056
2057 __bio_associate_blkg(bio, blkg);
2058
2059 rcu_read_unlock();
2060}
2061EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2062
2063#ifdef CONFIG_MEMCG
2064/**
2065 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2066 * @bio: target bio
2067 * @page: the page to lookup the blkcg from
2068 *
2069 * Associate @bio with the blkg from @page's owning memcg and the respective
2070 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2071 * root_blkg.
2072 */
2073void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2074{
2075 struct cgroup_subsys_state *css;
2076
2077 if (!page->mem_cgroup)
2078 return;
2079
2080 rcu_read_lock();
2081
2082 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2083 bio_associate_blkg_from_css(bio, css);
2084
2085 rcu_read_unlock();
2086}
2087#endif /* CONFIG_MEMCG */
2088
2089/**
2090 * bio_associate_blkg - associate a bio with a blkg
2091 * @bio: target bio
2092 *
2093 * Associate @bio with the blkg found from the bio's css and request_queue.
2094 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2095 * already associated, the css is reused and association redone as the
2096 * request_queue may have changed.
2097 */
2098void bio_associate_blkg(struct bio *bio)
2099{
2100 struct cgroup_subsys_state *css;
2101
2102 rcu_read_lock();
2103
2104 if (bio->bi_blkg)
2105 css = &bio_blkcg(bio)->css;
2106 else
2107 css = blkcg_css();
2108
2109 bio_associate_blkg_from_css(bio, css);
2110
2111 rcu_read_unlock();
2112}
2113EXPORT_SYMBOL_GPL(bio_associate_blkg);
2114
2115/**
2116 * bio_clone_blkg_association - clone blkg association from src to dst bio
2117 * @dst: destination bio
2118 * @src: source bio
2119 */
2120void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2121{
2122 rcu_read_lock();
2123
2124 if (src->bi_blkg)
2125 __bio_associate_blkg(dst, src->bi_blkg);
2126
2127 rcu_read_unlock();
2128}
2129EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2130#endif /* CONFIG_BLK_CGROUP */
2131
2132static void __init biovec_init_slabs(void)
2133{
2134 int i;
2135
2136 for (i = 0; i < BVEC_POOL_NR; i++) {
2137 int size;
2138 struct biovec_slab *bvs = bvec_slabs + i;
2139
2140 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2141 bvs->slab = NULL;
2142 continue;
2143 }
2144
2145 size = bvs->nr_vecs * sizeof(struct bio_vec);
2146 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2147 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2148 }
2149}
2150
2151static int __init init_bio(void)
2152{
2153 bio_slab_max = 2;
2154 bio_slab_nr = 0;
2155 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2156 GFP_KERNEL);
2157
2158 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2159
2160 if (!bio_slabs)
2161 panic("bio: can't allocate bios\n");
2162
2163 bio_integrity_init();
2164 biovec_init_slabs();
2165
2166 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2167 panic("bio: can't allocate bios\n");
2168
2169 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2170 panic("bio: can't create integrity pool\n");
2171
2172 return 0;
2173}
2174subsys_initcall(init_bio);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/uio.h>
10#include <linux/iocontext.h>
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
17#include <linux/cgroup.h>
18#include <linux/highmem.h>
19#include <linux/sched/sysctl.h>
20#include <linux/blk-crypto.h>
21#include <linux/xarray.h>
22
23#include <trace/events/block.h>
24#include "blk.h"
25#include "blk-rq-qos.h"
26#include "blk-cgroup.h"
27
28#define ALLOC_CACHE_THRESHOLD 16
29#define ALLOC_CACHE_SLACK 64
30#define ALLOC_CACHE_MAX 256
31
32struct bio_alloc_cache {
33 struct bio *free_list;
34 struct bio *free_list_irq;
35 unsigned int nr;
36 unsigned int nr_irq;
37};
38
39static struct biovec_slab {
40 int nr_vecs;
41 char *name;
42 struct kmem_cache *slab;
43} bvec_slabs[] __read_mostly = {
44 { .nr_vecs = 16, .name = "biovec-16" },
45 { .nr_vecs = 64, .name = "biovec-64" },
46 { .nr_vecs = 128, .name = "biovec-128" },
47 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
48};
49
50static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
51{
52 switch (nr_vecs) {
53 /* smaller bios use inline vecs */
54 case 5 ... 16:
55 return &bvec_slabs[0];
56 case 17 ... 64:
57 return &bvec_slabs[1];
58 case 65 ... 128:
59 return &bvec_slabs[2];
60 case 129 ... BIO_MAX_VECS:
61 return &bvec_slabs[3];
62 default:
63 BUG();
64 return NULL;
65 }
66}
67
68/*
69 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
70 * IO code that does not need private memory pools.
71 */
72struct bio_set fs_bio_set;
73EXPORT_SYMBOL(fs_bio_set);
74
75/*
76 * Our slab pool management
77 */
78struct bio_slab {
79 struct kmem_cache *slab;
80 unsigned int slab_ref;
81 unsigned int slab_size;
82 char name[8];
83};
84static DEFINE_MUTEX(bio_slab_lock);
85static DEFINE_XARRAY(bio_slabs);
86
87static struct bio_slab *create_bio_slab(unsigned int size)
88{
89 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
90
91 if (!bslab)
92 return NULL;
93
94 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
95 bslab->slab = kmem_cache_create(bslab->name, size,
96 ARCH_KMALLOC_MINALIGN,
97 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
98 if (!bslab->slab)
99 goto fail_alloc_slab;
100
101 bslab->slab_ref = 1;
102 bslab->slab_size = size;
103
104 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
105 return bslab;
106
107 kmem_cache_destroy(bslab->slab);
108
109fail_alloc_slab:
110 kfree(bslab);
111 return NULL;
112}
113
114static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
115{
116 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
117}
118
119static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
120{
121 unsigned int size = bs_bio_slab_size(bs);
122 struct bio_slab *bslab;
123
124 mutex_lock(&bio_slab_lock);
125 bslab = xa_load(&bio_slabs, size);
126 if (bslab)
127 bslab->slab_ref++;
128 else
129 bslab = create_bio_slab(size);
130 mutex_unlock(&bio_slab_lock);
131
132 if (bslab)
133 return bslab->slab;
134 return NULL;
135}
136
137static void bio_put_slab(struct bio_set *bs)
138{
139 struct bio_slab *bslab = NULL;
140 unsigned int slab_size = bs_bio_slab_size(bs);
141
142 mutex_lock(&bio_slab_lock);
143
144 bslab = xa_load(&bio_slabs, slab_size);
145 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
146 goto out;
147
148 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
149
150 WARN_ON(!bslab->slab_ref);
151
152 if (--bslab->slab_ref)
153 goto out;
154
155 xa_erase(&bio_slabs, slab_size);
156
157 kmem_cache_destroy(bslab->slab);
158 kfree(bslab);
159
160out:
161 mutex_unlock(&bio_slab_lock);
162}
163
164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
165{
166 BUG_ON(nr_vecs > BIO_MAX_VECS);
167
168 if (nr_vecs == BIO_MAX_VECS)
169 mempool_free(bv, pool);
170 else if (nr_vecs > BIO_INLINE_VECS)
171 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
172}
173
174/*
175 * Make the first allocation restricted and don't dump info on allocation
176 * failures, since we'll fall back to the mempool in case of failure.
177 */
178static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
179{
180 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
181 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
182}
183
184struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
185 gfp_t gfp_mask)
186{
187 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
188
189 if (WARN_ON_ONCE(!bvs))
190 return NULL;
191
192 /*
193 * Upgrade the nr_vecs request to take full advantage of the allocation.
194 * We also rely on this in the bvec_free path.
195 */
196 *nr_vecs = bvs->nr_vecs;
197
198 /*
199 * Try a slab allocation first for all smaller allocations. If that
200 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
201 * The mempool is sized to handle up to BIO_MAX_VECS entries.
202 */
203 if (*nr_vecs < BIO_MAX_VECS) {
204 struct bio_vec *bvl;
205
206 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
207 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
208 return bvl;
209 *nr_vecs = BIO_MAX_VECS;
210 }
211
212 return mempool_alloc(pool, gfp_mask);
213}
214
215void bio_uninit(struct bio *bio)
216{
217#ifdef CONFIG_BLK_CGROUP
218 if (bio->bi_blkg) {
219 blkg_put(bio->bi_blkg);
220 bio->bi_blkg = NULL;
221 }
222#endif
223 if (bio_integrity(bio))
224 bio_integrity_free(bio);
225
226 bio_crypt_free_ctx(bio);
227}
228EXPORT_SYMBOL(bio_uninit);
229
230static void bio_free(struct bio *bio)
231{
232 struct bio_set *bs = bio->bi_pool;
233 void *p = bio;
234
235 WARN_ON_ONCE(!bs);
236
237 bio_uninit(bio);
238 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
239 mempool_free(p - bs->front_pad, &bs->bio_pool);
240}
241
242/*
243 * Users of this function have their own bio allocation. Subsequently,
244 * they must remember to pair any call to bio_init() with bio_uninit()
245 * when IO has completed, or when the bio is released.
246 */
247void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
248 unsigned short max_vecs, blk_opf_t opf)
249{
250 bio->bi_next = NULL;
251 bio->bi_bdev = bdev;
252 bio->bi_opf = opf;
253 bio->bi_flags = 0;
254 bio->bi_ioprio = 0;
255 bio->bi_status = 0;
256 bio->bi_iter.bi_sector = 0;
257 bio->bi_iter.bi_size = 0;
258 bio->bi_iter.bi_idx = 0;
259 bio->bi_iter.bi_bvec_done = 0;
260 bio->bi_end_io = NULL;
261 bio->bi_private = NULL;
262#ifdef CONFIG_BLK_CGROUP
263 bio->bi_blkg = NULL;
264 bio->bi_issue.value = 0;
265 if (bdev)
266 bio_associate_blkg(bio);
267#ifdef CONFIG_BLK_CGROUP_IOCOST
268 bio->bi_iocost_cost = 0;
269#endif
270#endif
271#ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 bio->bi_crypt_context = NULL;
273#endif
274#ifdef CONFIG_BLK_DEV_INTEGRITY
275 bio->bi_integrity = NULL;
276#endif
277 bio->bi_vcnt = 0;
278
279 atomic_set(&bio->__bi_remaining, 1);
280 atomic_set(&bio->__bi_cnt, 1);
281 bio->bi_cookie = BLK_QC_T_NONE;
282
283 bio->bi_max_vecs = max_vecs;
284 bio->bi_io_vec = table;
285 bio->bi_pool = NULL;
286}
287EXPORT_SYMBOL(bio_init);
288
289/**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 * @bdev: block device to use the bio for
293 * @opf: operation and flags for bio
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302{
303 bio_uninit(bio);
304 memset(bio, 0, BIO_RESET_BYTES);
305 atomic_set(&bio->__bi_remaining, 1);
306 bio->bi_bdev = bdev;
307 if (bio->bi_bdev)
308 bio_associate_blkg(bio);
309 bio->bi_opf = opf;
310}
311EXPORT_SYMBOL(bio_reset);
312
313static struct bio *__bio_chain_endio(struct bio *bio)
314{
315 struct bio *parent = bio->bi_private;
316
317 if (bio->bi_status && !parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
326}
327
328/**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the parent bio of @bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346}
347EXPORT_SYMBOL(bio_chain);
348
349struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
350 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
351{
352 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
353
354 if (bio) {
355 bio_chain(bio, new);
356 submit_bio(bio);
357 }
358
359 return new;
360}
361EXPORT_SYMBOL_GPL(blk_next_bio);
362
363static void bio_alloc_rescue(struct work_struct *work)
364{
365 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
366 struct bio *bio;
367
368 while (1) {
369 spin_lock(&bs->rescue_lock);
370 bio = bio_list_pop(&bs->rescue_list);
371 spin_unlock(&bs->rescue_lock);
372
373 if (!bio)
374 break;
375
376 submit_bio_noacct(bio);
377 }
378}
379
380static void punt_bios_to_rescuer(struct bio_set *bs)
381{
382 struct bio_list punt, nopunt;
383 struct bio *bio;
384
385 if (WARN_ON_ONCE(!bs->rescue_workqueue))
386 return;
387 /*
388 * In order to guarantee forward progress we must punt only bios that
389 * were allocated from this bio_set; otherwise, if there was a bio on
390 * there for a stacking driver higher up in the stack, processing it
391 * could require allocating bios from this bio_set, and doing that from
392 * our own rescuer would be bad.
393 *
394 * Since bio lists are singly linked, pop them all instead of trying to
395 * remove from the middle of the list:
396 */
397
398 bio_list_init(&punt);
399 bio_list_init(&nopunt);
400
401 while ((bio = bio_list_pop(¤t->bio_list[0])))
402 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
403 current->bio_list[0] = nopunt;
404
405 bio_list_init(&nopunt);
406 while ((bio = bio_list_pop(¤t->bio_list[1])))
407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
408 current->bio_list[1] = nopunt;
409
410 spin_lock(&bs->rescue_lock);
411 bio_list_merge(&bs->rescue_list, &punt);
412 spin_unlock(&bs->rescue_lock);
413
414 queue_work(bs->rescue_workqueue, &bs->rescue_work);
415}
416
417static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
418{
419 unsigned long flags;
420
421 /* cache->free_list must be empty */
422 if (WARN_ON_ONCE(cache->free_list))
423 return;
424
425 local_irq_save(flags);
426 cache->free_list = cache->free_list_irq;
427 cache->free_list_irq = NULL;
428 cache->nr += cache->nr_irq;
429 cache->nr_irq = 0;
430 local_irq_restore(flags);
431}
432
433static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
434 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
435 struct bio_set *bs)
436{
437 struct bio_alloc_cache *cache;
438 struct bio *bio;
439
440 cache = per_cpu_ptr(bs->cache, get_cpu());
441 if (!cache->free_list) {
442 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
443 bio_alloc_irq_cache_splice(cache);
444 if (!cache->free_list) {
445 put_cpu();
446 return NULL;
447 }
448 }
449 bio = cache->free_list;
450 cache->free_list = bio->bi_next;
451 cache->nr--;
452 put_cpu();
453
454 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
455 bio->bi_pool = bs;
456 return bio;
457}
458
459/**
460 * bio_alloc_bioset - allocate a bio for I/O
461 * @bdev: block device to allocate the bio for (can be %NULL)
462 * @nr_vecs: number of bvecs to pre-allocate
463 * @opf: operation and flags for bio
464 * @gfp_mask: the GFP_* mask given to the slab allocator
465 * @bs: the bio_set to allocate from.
466 *
467 * Allocate a bio from the mempools in @bs.
468 *
469 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
470 * allocate a bio. This is due to the mempool guarantees. To make this work,
471 * callers must never allocate more than 1 bio at a time from the general pool.
472 * Callers that need to allocate more than 1 bio must always submit the
473 * previously allocated bio for IO before attempting to allocate a new one.
474 * Failure to do so can cause deadlocks under memory pressure.
475 *
476 * Note that when running under submit_bio_noacct() (i.e. any block driver),
477 * bios are not submitted until after you return - see the code in
478 * submit_bio_noacct() that converts recursion into iteration, to prevent
479 * stack overflows.
480 *
481 * This would normally mean allocating multiple bios under submit_bio_noacct()
482 * would be susceptible to deadlocks, but we have
483 * deadlock avoidance code that resubmits any blocked bios from a rescuer
484 * thread.
485 *
486 * However, we do not guarantee forward progress for allocations from other
487 * mempools. Doing multiple allocations from the same mempool under
488 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
489 * for per bio allocations.
490 *
491 * Returns: Pointer to new bio on success, NULL on failure.
492 */
493struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
494 blk_opf_t opf, gfp_t gfp_mask,
495 struct bio_set *bs)
496{
497 gfp_t saved_gfp = gfp_mask;
498 struct bio *bio;
499 void *p;
500
501 /* should not use nobvec bioset for nr_vecs > 0 */
502 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
503 return NULL;
504
505 if (opf & REQ_ALLOC_CACHE) {
506 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
507 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
508 gfp_mask, bs);
509 if (bio)
510 return bio;
511 /*
512 * No cached bio available, bio returned below marked with
513 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
514 */
515 } else {
516 opf &= ~REQ_ALLOC_CACHE;
517 }
518 }
519
520 /*
521 * submit_bio_noacct() converts recursion to iteration; this means if
522 * we're running beneath it, any bios we allocate and submit will not be
523 * submitted (and thus freed) until after we return.
524 *
525 * This exposes us to a potential deadlock if we allocate multiple bios
526 * from the same bio_set() while running underneath submit_bio_noacct().
527 * If we were to allocate multiple bios (say a stacking block driver
528 * that was splitting bios), we would deadlock if we exhausted the
529 * mempool's reserve.
530 *
531 * We solve this, and guarantee forward progress, with a rescuer
532 * workqueue per bio_set. If we go to allocate and there are bios on
533 * current->bio_list, we first try the allocation without
534 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
535 * blocking to the rescuer workqueue before we retry with the original
536 * gfp_flags.
537 */
538 if (current->bio_list &&
539 (!bio_list_empty(¤t->bio_list[0]) ||
540 !bio_list_empty(¤t->bio_list[1])) &&
541 bs->rescue_workqueue)
542 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
543
544 p = mempool_alloc(&bs->bio_pool, gfp_mask);
545 if (!p && gfp_mask != saved_gfp) {
546 punt_bios_to_rescuer(bs);
547 gfp_mask = saved_gfp;
548 p = mempool_alloc(&bs->bio_pool, gfp_mask);
549 }
550 if (unlikely(!p))
551 return NULL;
552 if (!mempool_is_saturated(&bs->bio_pool))
553 opf &= ~REQ_ALLOC_CACHE;
554
555 bio = p + bs->front_pad;
556 if (nr_vecs > BIO_INLINE_VECS) {
557 struct bio_vec *bvl = NULL;
558
559 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
560 if (!bvl && gfp_mask != saved_gfp) {
561 punt_bios_to_rescuer(bs);
562 gfp_mask = saved_gfp;
563 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
564 }
565 if (unlikely(!bvl))
566 goto err_free;
567
568 bio_init(bio, bdev, bvl, nr_vecs, opf);
569 } else if (nr_vecs) {
570 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
571 } else {
572 bio_init(bio, bdev, NULL, 0, opf);
573 }
574
575 bio->bi_pool = bs;
576 return bio;
577
578err_free:
579 mempool_free(p, &bs->bio_pool);
580 return NULL;
581}
582EXPORT_SYMBOL(bio_alloc_bioset);
583
584/**
585 * bio_kmalloc - kmalloc a bio
586 * @nr_vecs: number of bio_vecs to allocate
587 * @gfp_mask: the GFP_* mask given to the slab allocator
588 *
589 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
590 * using bio_init() before use. To free a bio returned from this function use
591 * kfree() after calling bio_uninit(). A bio returned from this function can
592 * be reused by calling bio_uninit() before calling bio_init() again.
593 *
594 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
595 * function are not backed by a mempool can fail. Do not use this function
596 * for allocations in the file system I/O path.
597 *
598 * Returns: Pointer to new bio on success, NULL on failure.
599 */
600struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
601{
602 struct bio *bio;
603
604 if (nr_vecs > UIO_MAXIOV)
605 return NULL;
606 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
607}
608EXPORT_SYMBOL(bio_kmalloc);
609
610void zero_fill_bio(struct bio *bio)
611{
612 struct bio_vec bv;
613 struct bvec_iter iter;
614
615 bio_for_each_segment(bv, bio, iter)
616 memzero_bvec(&bv);
617}
618EXPORT_SYMBOL(zero_fill_bio);
619
620/**
621 * bio_truncate - truncate the bio to small size of @new_size
622 * @bio: the bio to be truncated
623 * @new_size: new size for truncating the bio
624 *
625 * Description:
626 * Truncate the bio to new size of @new_size. If bio_op(bio) is
627 * REQ_OP_READ, zero the truncated part. This function should only
628 * be used for handling corner cases, such as bio eod.
629 */
630static void bio_truncate(struct bio *bio, unsigned new_size)
631{
632 struct bio_vec bv;
633 struct bvec_iter iter;
634 unsigned int done = 0;
635 bool truncated = false;
636
637 if (new_size >= bio->bi_iter.bi_size)
638 return;
639
640 if (bio_op(bio) != REQ_OP_READ)
641 goto exit;
642
643 bio_for_each_segment(bv, bio, iter) {
644 if (done + bv.bv_len > new_size) {
645 unsigned offset;
646
647 if (!truncated)
648 offset = new_size - done;
649 else
650 offset = 0;
651 zero_user(bv.bv_page, bv.bv_offset + offset,
652 bv.bv_len - offset);
653 truncated = true;
654 }
655 done += bv.bv_len;
656 }
657
658 exit:
659 /*
660 * Don't touch bvec table here and make it really immutable, since
661 * fs bio user has to retrieve all pages via bio_for_each_segment_all
662 * in its .end_bio() callback.
663 *
664 * It is enough to truncate bio by updating .bi_size since we can make
665 * correct bvec with the updated .bi_size for drivers.
666 */
667 bio->bi_iter.bi_size = new_size;
668}
669
670/**
671 * guard_bio_eod - truncate a BIO to fit the block device
672 * @bio: bio to truncate
673 *
674 * This allows us to do IO even on the odd last sectors of a device, even if the
675 * block size is some multiple of the physical sector size.
676 *
677 * We'll just truncate the bio to the size of the device, and clear the end of
678 * the buffer head manually. Truly out-of-range accesses will turn into actual
679 * I/O errors, this only handles the "we need to be able to do I/O at the final
680 * sector" case.
681 */
682void guard_bio_eod(struct bio *bio)
683{
684 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
685
686 if (!maxsector)
687 return;
688
689 /*
690 * If the *whole* IO is past the end of the device,
691 * let it through, and the IO layer will turn it into
692 * an EIO.
693 */
694 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
695 return;
696
697 maxsector -= bio->bi_iter.bi_sector;
698 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
699 return;
700
701 bio_truncate(bio, maxsector << 9);
702}
703
704static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
705 unsigned int nr)
706{
707 unsigned int i = 0;
708 struct bio *bio;
709
710 while ((bio = cache->free_list) != NULL) {
711 cache->free_list = bio->bi_next;
712 cache->nr--;
713 bio_free(bio);
714 if (++i == nr)
715 break;
716 }
717 return i;
718}
719
720static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
721 unsigned int nr)
722{
723 nr -= __bio_alloc_cache_prune(cache, nr);
724 if (!READ_ONCE(cache->free_list)) {
725 bio_alloc_irq_cache_splice(cache);
726 __bio_alloc_cache_prune(cache, nr);
727 }
728}
729
730static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
731{
732 struct bio_set *bs;
733
734 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
735 if (bs->cache) {
736 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
737
738 bio_alloc_cache_prune(cache, -1U);
739 }
740 return 0;
741}
742
743static void bio_alloc_cache_destroy(struct bio_set *bs)
744{
745 int cpu;
746
747 if (!bs->cache)
748 return;
749
750 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
751 for_each_possible_cpu(cpu) {
752 struct bio_alloc_cache *cache;
753
754 cache = per_cpu_ptr(bs->cache, cpu);
755 bio_alloc_cache_prune(cache, -1U);
756 }
757 free_percpu(bs->cache);
758 bs->cache = NULL;
759}
760
761static inline void bio_put_percpu_cache(struct bio *bio)
762{
763 struct bio_alloc_cache *cache;
764
765 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
766 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
767 put_cpu();
768 bio_free(bio);
769 return;
770 }
771
772 bio_uninit(bio);
773
774 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
775 bio->bi_next = cache->free_list;
776 cache->free_list = bio;
777 cache->nr++;
778 } else {
779 unsigned long flags;
780
781 local_irq_save(flags);
782 bio->bi_next = cache->free_list_irq;
783 cache->free_list_irq = bio;
784 cache->nr_irq++;
785 local_irq_restore(flags);
786 }
787 put_cpu();
788}
789
790/**
791 * bio_put - release a reference to a bio
792 * @bio: bio to release reference to
793 *
794 * Description:
795 * Put a reference to a &struct bio, either one you have gotten with
796 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
797 **/
798void bio_put(struct bio *bio)
799{
800 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
801 BUG_ON(!atomic_read(&bio->__bi_cnt));
802 if (!atomic_dec_and_test(&bio->__bi_cnt))
803 return;
804 }
805 if (bio->bi_opf & REQ_ALLOC_CACHE)
806 bio_put_percpu_cache(bio);
807 else
808 bio_free(bio);
809}
810EXPORT_SYMBOL(bio_put);
811
812static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
813{
814 bio_set_flag(bio, BIO_CLONED);
815 bio->bi_ioprio = bio_src->bi_ioprio;
816 bio->bi_iter = bio_src->bi_iter;
817
818 if (bio->bi_bdev) {
819 if (bio->bi_bdev == bio_src->bi_bdev &&
820 bio_flagged(bio_src, BIO_REMAPPED))
821 bio_set_flag(bio, BIO_REMAPPED);
822 bio_clone_blkg_association(bio, bio_src);
823 }
824
825 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
826 return -ENOMEM;
827 if (bio_integrity(bio_src) &&
828 bio_integrity_clone(bio, bio_src, gfp) < 0)
829 return -ENOMEM;
830 return 0;
831}
832
833/**
834 * bio_alloc_clone - clone a bio that shares the original bio's biovec
835 * @bdev: block_device to clone onto
836 * @bio_src: bio to clone from
837 * @gfp: allocation priority
838 * @bs: bio_set to allocate from
839 *
840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
841 * bio, but not the actual data it points to.
842 *
843 * The caller must ensure that the return bio is not freed before @bio_src.
844 */
845struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
846 gfp_t gfp, struct bio_set *bs)
847{
848 struct bio *bio;
849
850 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
851 if (!bio)
852 return NULL;
853
854 if (__bio_clone(bio, bio_src, gfp) < 0) {
855 bio_put(bio);
856 return NULL;
857 }
858 bio->bi_io_vec = bio_src->bi_io_vec;
859
860 return bio;
861}
862EXPORT_SYMBOL(bio_alloc_clone);
863
864/**
865 * bio_init_clone - clone a bio that shares the original bio's biovec
866 * @bdev: block_device to clone onto
867 * @bio: bio to clone into
868 * @bio_src: bio to clone from
869 * @gfp: allocation priority
870 *
871 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
872 * The caller owns the returned bio, but not the actual data it points to.
873 *
874 * The caller must ensure that @bio_src is not freed before @bio.
875 */
876int bio_init_clone(struct block_device *bdev, struct bio *bio,
877 struct bio *bio_src, gfp_t gfp)
878{
879 int ret;
880
881 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
882 ret = __bio_clone(bio, bio_src, gfp);
883 if (ret)
884 bio_uninit(bio);
885 return ret;
886}
887EXPORT_SYMBOL(bio_init_clone);
888
889/**
890 * bio_full - check if the bio is full
891 * @bio: bio to check
892 * @len: length of one segment to be added
893 *
894 * Return true if @bio is full and one segment with @len bytes can't be
895 * added to the bio, otherwise return false
896 */
897static inline bool bio_full(struct bio *bio, unsigned len)
898{
899 if (bio->bi_vcnt >= bio->bi_max_vecs)
900 return true;
901 if (bio->bi_iter.bi_size > UINT_MAX - len)
902 return true;
903 return false;
904}
905
906static inline bool page_is_mergeable(const struct bio_vec *bv,
907 struct page *page, unsigned int len, unsigned int off,
908 bool *same_page)
909{
910 size_t bv_end = bv->bv_offset + bv->bv_len;
911 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
912 phys_addr_t page_addr = page_to_phys(page);
913
914 if (vec_end_addr + 1 != page_addr + off)
915 return false;
916 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
917 return false;
918 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
919 return false;
920
921 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
922 if (*same_page)
923 return true;
924 else if (IS_ENABLED(CONFIG_KMSAN))
925 return false;
926 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
927}
928
929/**
930 * __bio_try_merge_page - try appending data to an existing bvec.
931 * @bio: destination bio
932 * @page: start page to add
933 * @len: length of the data to add
934 * @off: offset of the data relative to @page
935 * @same_page: return if the segment has been merged inside the same page
936 *
937 * Try to add the data at @page + @off to the last bvec of @bio. This is a
938 * useful optimisation for file systems with a block size smaller than the
939 * page size.
940 *
941 * Warn if (@len, @off) crosses pages in case that @same_page is true.
942 *
943 * Return %true on success or %false on failure.
944 */
945static bool __bio_try_merge_page(struct bio *bio, struct page *page,
946 unsigned int len, unsigned int off, bool *same_page)
947{
948 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
949 return false;
950
951 if (bio->bi_vcnt > 0) {
952 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
953
954 if (page_is_mergeable(bv, page, len, off, same_page)) {
955 if (bio->bi_iter.bi_size > UINT_MAX - len) {
956 *same_page = false;
957 return false;
958 }
959 bv->bv_len += len;
960 bio->bi_iter.bi_size += len;
961 return true;
962 }
963 }
964 return false;
965}
966
967/*
968 * Try to merge a page into a segment, while obeying the hardware segment
969 * size limit. This is not for normal read/write bios, but for passthrough
970 * or Zone Append operations that we can't split.
971 */
972static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
973 struct page *page, unsigned len,
974 unsigned offset, bool *same_page)
975{
976 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
977 unsigned long mask = queue_segment_boundary(q);
978 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
979 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
980
981 if ((addr1 | mask) != (addr2 | mask))
982 return false;
983 if (bv->bv_len + len > queue_max_segment_size(q))
984 return false;
985 return __bio_try_merge_page(bio, page, len, offset, same_page);
986}
987
988/**
989 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
990 * @q: the target queue
991 * @bio: destination bio
992 * @page: page to add
993 * @len: vec entry length
994 * @offset: vec entry offset
995 * @max_sectors: maximum number of sectors that can be added
996 * @same_page: return if the segment has been merged inside the same page
997 *
998 * Add a page to a bio while respecting the hardware max_sectors, max_segment
999 * and gap limitations.
1000 */
1001int bio_add_hw_page(struct request_queue *q, struct bio *bio,
1002 struct page *page, unsigned int len, unsigned int offset,
1003 unsigned int max_sectors, bool *same_page)
1004{
1005 struct bio_vec *bvec;
1006
1007 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1008 return 0;
1009
1010 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1011 return 0;
1012
1013 if (bio->bi_vcnt > 0) {
1014 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
1015 return len;
1016
1017 /*
1018 * If the queue doesn't support SG gaps and adding this segment
1019 * would create a gap, disallow it.
1020 */
1021 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
1022 if (bvec_gap_to_prev(&q->limits, bvec, offset))
1023 return 0;
1024 }
1025
1026 if (bio_full(bio, len))
1027 return 0;
1028
1029 if (bio->bi_vcnt >= queue_max_segments(q))
1030 return 0;
1031
1032 bvec = &bio->bi_io_vec[bio->bi_vcnt];
1033 bvec->bv_page = page;
1034 bvec->bv_len = len;
1035 bvec->bv_offset = offset;
1036 bio->bi_vcnt++;
1037 bio->bi_iter.bi_size += len;
1038 return len;
1039}
1040
1041/**
1042 * bio_add_pc_page - attempt to add page to passthrough bio
1043 * @q: the target queue
1044 * @bio: destination bio
1045 * @page: page to add
1046 * @len: vec entry length
1047 * @offset: vec entry offset
1048 *
1049 * Attempt to add a page to the bio_vec maplist. This can fail for a
1050 * number of reasons, such as the bio being full or target block device
1051 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1052 * so it is always possible to add a single page to an empty bio.
1053 *
1054 * This should only be used by passthrough bios.
1055 */
1056int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1057 struct page *page, unsigned int len, unsigned int offset)
1058{
1059 bool same_page = false;
1060 return bio_add_hw_page(q, bio, page, len, offset,
1061 queue_max_hw_sectors(q), &same_page);
1062}
1063EXPORT_SYMBOL(bio_add_pc_page);
1064
1065/**
1066 * bio_add_zone_append_page - attempt to add page to zone-append bio
1067 * @bio: destination bio
1068 * @page: page to add
1069 * @len: vec entry length
1070 * @offset: vec entry offset
1071 *
1072 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1073 * for a zone-append request. This can fail for a number of reasons, such as the
1074 * bio being full or the target block device is not a zoned block device or
1075 * other limitations of the target block device. The target block device must
1076 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1077 * to an empty bio.
1078 *
1079 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1080 */
1081int bio_add_zone_append_page(struct bio *bio, struct page *page,
1082 unsigned int len, unsigned int offset)
1083{
1084 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1085 bool same_page = false;
1086
1087 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1088 return 0;
1089
1090 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1091 return 0;
1092
1093 return bio_add_hw_page(q, bio, page, len, offset,
1094 queue_max_zone_append_sectors(q), &same_page);
1095}
1096EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1097
1098/**
1099 * __bio_add_page - add page(s) to a bio in a new segment
1100 * @bio: destination bio
1101 * @page: start page to add
1102 * @len: length of the data to add, may cross pages
1103 * @off: offset of the data relative to @page, may cross pages
1104 *
1105 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1106 * that @bio has space for another bvec.
1107 */
1108void __bio_add_page(struct bio *bio, struct page *page,
1109 unsigned int len, unsigned int off)
1110{
1111 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1112
1113 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1114 WARN_ON_ONCE(bio_full(bio, len));
1115
1116 bv->bv_page = page;
1117 bv->bv_offset = off;
1118 bv->bv_len = len;
1119
1120 bio->bi_iter.bi_size += len;
1121 bio->bi_vcnt++;
1122}
1123EXPORT_SYMBOL_GPL(__bio_add_page);
1124
1125/**
1126 * bio_add_page - attempt to add page(s) to bio
1127 * @bio: destination bio
1128 * @page: start page to add
1129 * @len: vec entry length, may cross pages
1130 * @offset: vec entry offset relative to @page, may cross pages
1131 *
1132 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1133 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1134 */
1135int bio_add_page(struct bio *bio, struct page *page,
1136 unsigned int len, unsigned int offset)
1137{
1138 bool same_page = false;
1139
1140 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1141 if (bio_full(bio, len))
1142 return 0;
1143 __bio_add_page(bio, page, len, offset);
1144 }
1145 return len;
1146}
1147EXPORT_SYMBOL(bio_add_page);
1148
1149/**
1150 * bio_add_folio - Attempt to add part of a folio to a bio.
1151 * @bio: BIO to add to.
1152 * @folio: Folio to add.
1153 * @len: How many bytes from the folio to add.
1154 * @off: First byte in this folio to add.
1155 *
1156 * Filesystems that use folios can call this function instead of calling
1157 * bio_add_page() for each page in the folio. If @off is bigger than
1158 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1159 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1160 *
1161 * Return: Whether the addition was successful.
1162 */
1163bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1164 size_t off)
1165{
1166 if (len > UINT_MAX || off > UINT_MAX)
1167 return false;
1168 return bio_add_page(bio, &folio->page, len, off) > 0;
1169}
1170
1171void __bio_release_pages(struct bio *bio, bool mark_dirty)
1172{
1173 struct bvec_iter_all iter_all;
1174 struct bio_vec *bvec;
1175
1176 bio_for_each_segment_all(bvec, bio, iter_all) {
1177 if (mark_dirty && !PageCompound(bvec->bv_page))
1178 set_page_dirty_lock(bvec->bv_page);
1179 put_page(bvec->bv_page);
1180 }
1181}
1182EXPORT_SYMBOL_GPL(__bio_release_pages);
1183
1184void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1185{
1186 size_t size = iov_iter_count(iter);
1187
1188 WARN_ON_ONCE(bio->bi_max_vecs);
1189
1190 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1191 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1192 size_t max_sectors = queue_max_zone_append_sectors(q);
1193
1194 size = min(size, max_sectors << SECTOR_SHIFT);
1195 }
1196
1197 bio->bi_vcnt = iter->nr_segs;
1198 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1199 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1200 bio->bi_iter.bi_size = size;
1201 bio_set_flag(bio, BIO_NO_PAGE_REF);
1202 bio_set_flag(bio, BIO_CLONED);
1203}
1204
1205static int bio_iov_add_page(struct bio *bio, struct page *page,
1206 unsigned int len, unsigned int offset)
1207{
1208 bool same_page = false;
1209
1210 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1211 __bio_add_page(bio, page, len, offset);
1212 return 0;
1213 }
1214
1215 if (same_page)
1216 put_page(page);
1217 return 0;
1218}
1219
1220static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1221 unsigned int len, unsigned int offset)
1222{
1223 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1224 bool same_page = false;
1225
1226 if (bio_add_hw_page(q, bio, page, len, offset,
1227 queue_max_zone_append_sectors(q), &same_page) != len)
1228 return -EINVAL;
1229 if (same_page)
1230 put_page(page);
1231 return 0;
1232}
1233
1234#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1235
1236/**
1237 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1238 * @bio: bio to add pages to
1239 * @iter: iov iterator describing the region to be mapped
1240 *
1241 * Pins pages from *iter and appends them to @bio's bvec array. The
1242 * pages will have to be released using put_page() when done.
1243 * For multi-segment *iter, this function only adds pages from the
1244 * next non-empty segment of the iov iterator.
1245 */
1246static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1247{
1248 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1249 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1250 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1251 struct page **pages = (struct page **)bv;
1252 unsigned int gup_flags = 0;
1253 ssize_t size, left;
1254 unsigned len, i = 0;
1255 size_t offset, trim;
1256 int ret = 0;
1257
1258 /*
1259 * Move page array up in the allocated memory for the bio vecs as far as
1260 * possible so that we can start filling biovecs from the beginning
1261 * without overwriting the temporary page array.
1262 */
1263 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1264 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1265
1266 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1267 gup_flags |= FOLL_PCI_P2PDMA;
1268
1269 /*
1270 * Each segment in the iov is required to be a block size multiple.
1271 * However, we may not be able to get the entire segment if it spans
1272 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1273 * result to ensure the bio's total size is correct. The remainder of
1274 * the iov data will be picked up in the next bio iteration.
1275 */
1276 size = iov_iter_get_pages(iter, pages,
1277 UINT_MAX - bio->bi_iter.bi_size,
1278 nr_pages, &offset, gup_flags);
1279 if (unlikely(size <= 0))
1280 return size ? size : -EFAULT;
1281
1282 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1283
1284 trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1285 iov_iter_revert(iter, trim);
1286
1287 size -= trim;
1288 if (unlikely(!size)) {
1289 ret = -EFAULT;
1290 goto out;
1291 }
1292
1293 for (left = size, i = 0; left > 0; left -= len, i++) {
1294 struct page *page = pages[i];
1295
1296 len = min_t(size_t, PAGE_SIZE - offset, left);
1297 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1298 ret = bio_iov_add_zone_append_page(bio, page, len,
1299 offset);
1300 if (ret)
1301 break;
1302 } else
1303 bio_iov_add_page(bio, page, len, offset);
1304
1305 offset = 0;
1306 }
1307
1308 iov_iter_revert(iter, left);
1309out:
1310 while (i < nr_pages)
1311 put_page(pages[i++]);
1312
1313 return ret;
1314}
1315
1316/**
1317 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1318 * @bio: bio to add pages to
1319 * @iter: iov iterator describing the region to be added
1320 *
1321 * This takes either an iterator pointing to user memory, or one pointing to
1322 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1323 * map them into the kernel. On IO completion, the caller should put those
1324 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1325 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1326 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1327 * completed by a call to ->ki_complete() or returns with an error other than
1328 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1329 * on IO completion. If it isn't, then pages should be released.
1330 *
1331 * The function tries, but does not guarantee, to pin as many pages as
1332 * fit into the bio, or are requested in @iter, whatever is smaller. If
1333 * MM encounters an error pinning the requested pages, it stops. Error
1334 * is returned only if 0 pages could be pinned.
1335 */
1336int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1337{
1338 int ret = 0;
1339
1340 if (iov_iter_is_bvec(iter)) {
1341 bio_iov_bvec_set(bio, iter);
1342 iov_iter_advance(iter, bio->bi_iter.bi_size);
1343 return 0;
1344 }
1345
1346 do {
1347 ret = __bio_iov_iter_get_pages(bio, iter);
1348 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1349
1350 return bio->bi_vcnt ? 0 : ret;
1351}
1352EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1353
1354static void submit_bio_wait_endio(struct bio *bio)
1355{
1356 complete(bio->bi_private);
1357}
1358
1359/**
1360 * submit_bio_wait - submit a bio, and wait until it completes
1361 * @bio: The &struct bio which describes the I/O
1362 *
1363 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1364 * bio_endio() on failure.
1365 *
1366 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1367 * result in bio reference to be consumed. The caller must drop the reference
1368 * on his own.
1369 */
1370int submit_bio_wait(struct bio *bio)
1371{
1372 DECLARE_COMPLETION_ONSTACK_MAP(done,
1373 bio->bi_bdev->bd_disk->lockdep_map);
1374 unsigned long hang_check;
1375
1376 bio->bi_private = &done;
1377 bio->bi_end_io = submit_bio_wait_endio;
1378 bio->bi_opf |= REQ_SYNC;
1379 submit_bio(bio);
1380
1381 /* Prevent hang_check timer from firing at us during very long I/O */
1382 hang_check = sysctl_hung_task_timeout_secs;
1383 if (hang_check)
1384 while (!wait_for_completion_io_timeout(&done,
1385 hang_check * (HZ/2)))
1386 ;
1387 else
1388 wait_for_completion_io(&done);
1389
1390 return blk_status_to_errno(bio->bi_status);
1391}
1392EXPORT_SYMBOL(submit_bio_wait);
1393
1394void __bio_advance(struct bio *bio, unsigned bytes)
1395{
1396 if (bio_integrity(bio))
1397 bio_integrity_advance(bio, bytes);
1398
1399 bio_crypt_advance(bio, bytes);
1400 bio_advance_iter(bio, &bio->bi_iter, bytes);
1401}
1402EXPORT_SYMBOL(__bio_advance);
1403
1404void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1405 struct bio *src, struct bvec_iter *src_iter)
1406{
1407 while (src_iter->bi_size && dst_iter->bi_size) {
1408 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1409 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1410 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1411 void *src_buf = bvec_kmap_local(&src_bv);
1412 void *dst_buf = bvec_kmap_local(&dst_bv);
1413
1414 memcpy(dst_buf, src_buf, bytes);
1415
1416 kunmap_local(dst_buf);
1417 kunmap_local(src_buf);
1418
1419 bio_advance_iter_single(src, src_iter, bytes);
1420 bio_advance_iter_single(dst, dst_iter, bytes);
1421 }
1422}
1423EXPORT_SYMBOL(bio_copy_data_iter);
1424
1425/**
1426 * bio_copy_data - copy contents of data buffers from one bio to another
1427 * @src: source bio
1428 * @dst: destination bio
1429 *
1430 * Stops when it reaches the end of either @src or @dst - that is, copies
1431 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1432 */
1433void bio_copy_data(struct bio *dst, struct bio *src)
1434{
1435 struct bvec_iter src_iter = src->bi_iter;
1436 struct bvec_iter dst_iter = dst->bi_iter;
1437
1438 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1439}
1440EXPORT_SYMBOL(bio_copy_data);
1441
1442void bio_free_pages(struct bio *bio)
1443{
1444 struct bio_vec *bvec;
1445 struct bvec_iter_all iter_all;
1446
1447 bio_for_each_segment_all(bvec, bio, iter_all)
1448 __free_page(bvec->bv_page);
1449}
1450EXPORT_SYMBOL(bio_free_pages);
1451
1452/*
1453 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1454 * for performing direct-IO in BIOs.
1455 *
1456 * The problem is that we cannot run set_page_dirty() from interrupt context
1457 * because the required locks are not interrupt-safe. So what we can do is to
1458 * mark the pages dirty _before_ performing IO. And in interrupt context,
1459 * check that the pages are still dirty. If so, fine. If not, redirty them
1460 * in process context.
1461 *
1462 * We special-case compound pages here: normally this means reads into hugetlb
1463 * pages. The logic in here doesn't really work right for compound pages
1464 * because the VM does not uniformly chase down the head page in all cases.
1465 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1466 * handle them at all. So we skip compound pages here at an early stage.
1467 *
1468 * Note that this code is very hard to test under normal circumstances because
1469 * direct-io pins the pages with get_user_pages(). This makes
1470 * is_page_cache_freeable return false, and the VM will not clean the pages.
1471 * But other code (eg, flusher threads) could clean the pages if they are mapped
1472 * pagecache.
1473 *
1474 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1475 * deferred bio dirtying paths.
1476 */
1477
1478/*
1479 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1480 */
1481void bio_set_pages_dirty(struct bio *bio)
1482{
1483 struct bio_vec *bvec;
1484 struct bvec_iter_all iter_all;
1485
1486 bio_for_each_segment_all(bvec, bio, iter_all) {
1487 if (!PageCompound(bvec->bv_page))
1488 set_page_dirty_lock(bvec->bv_page);
1489 }
1490}
1491
1492/*
1493 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1494 * If they are, then fine. If, however, some pages are clean then they must
1495 * have been written out during the direct-IO read. So we take another ref on
1496 * the BIO and re-dirty the pages in process context.
1497 *
1498 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1499 * here on. It will run one put_page() against each page and will run one
1500 * bio_put() against the BIO.
1501 */
1502
1503static void bio_dirty_fn(struct work_struct *work);
1504
1505static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1506static DEFINE_SPINLOCK(bio_dirty_lock);
1507static struct bio *bio_dirty_list;
1508
1509/*
1510 * This runs in process context
1511 */
1512static void bio_dirty_fn(struct work_struct *work)
1513{
1514 struct bio *bio, *next;
1515
1516 spin_lock_irq(&bio_dirty_lock);
1517 next = bio_dirty_list;
1518 bio_dirty_list = NULL;
1519 spin_unlock_irq(&bio_dirty_lock);
1520
1521 while ((bio = next) != NULL) {
1522 next = bio->bi_private;
1523
1524 bio_release_pages(bio, true);
1525 bio_put(bio);
1526 }
1527}
1528
1529void bio_check_pages_dirty(struct bio *bio)
1530{
1531 struct bio_vec *bvec;
1532 unsigned long flags;
1533 struct bvec_iter_all iter_all;
1534
1535 bio_for_each_segment_all(bvec, bio, iter_all) {
1536 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1537 goto defer;
1538 }
1539
1540 bio_release_pages(bio, false);
1541 bio_put(bio);
1542 return;
1543defer:
1544 spin_lock_irqsave(&bio_dirty_lock, flags);
1545 bio->bi_private = bio_dirty_list;
1546 bio_dirty_list = bio;
1547 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1548 schedule_work(&bio_dirty_work);
1549}
1550
1551static inline bool bio_remaining_done(struct bio *bio)
1552{
1553 /*
1554 * If we're not chaining, then ->__bi_remaining is always 1 and
1555 * we always end io on the first invocation.
1556 */
1557 if (!bio_flagged(bio, BIO_CHAIN))
1558 return true;
1559
1560 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1561
1562 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1563 bio_clear_flag(bio, BIO_CHAIN);
1564 return true;
1565 }
1566
1567 return false;
1568}
1569
1570/**
1571 * bio_endio - end I/O on a bio
1572 * @bio: bio
1573 *
1574 * Description:
1575 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1576 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1577 * bio unless they own it and thus know that it has an end_io function.
1578 *
1579 * bio_endio() can be called several times on a bio that has been chained
1580 * using bio_chain(). The ->bi_end_io() function will only be called the
1581 * last time.
1582 **/
1583void bio_endio(struct bio *bio)
1584{
1585again:
1586 if (!bio_remaining_done(bio))
1587 return;
1588 if (!bio_integrity_endio(bio))
1589 return;
1590
1591 rq_qos_done_bio(bio);
1592
1593 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1594 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1595 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1596 }
1597
1598 /*
1599 * Need to have a real endio function for chained bios, otherwise
1600 * various corner cases will break (like stacking block devices that
1601 * save/restore bi_end_io) - however, we want to avoid unbounded
1602 * recursion and blowing the stack. Tail call optimization would
1603 * handle this, but compiling with frame pointers also disables
1604 * gcc's sibling call optimization.
1605 */
1606 if (bio->bi_end_io == bio_chain_endio) {
1607 bio = __bio_chain_endio(bio);
1608 goto again;
1609 }
1610
1611 blk_throtl_bio_endio(bio);
1612 /* release cgroup info */
1613 bio_uninit(bio);
1614 if (bio->bi_end_io)
1615 bio->bi_end_io(bio);
1616}
1617EXPORT_SYMBOL(bio_endio);
1618
1619/**
1620 * bio_split - split a bio
1621 * @bio: bio to split
1622 * @sectors: number of sectors to split from the front of @bio
1623 * @gfp: gfp mask
1624 * @bs: bio set to allocate from
1625 *
1626 * Allocates and returns a new bio which represents @sectors from the start of
1627 * @bio, and updates @bio to represent the remaining sectors.
1628 *
1629 * Unless this is a discard request the newly allocated bio will point
1630 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1631 * neither @bio nor @bs are freed before the split bio.
1632 */
1633struct bio *bio_split(struct bio *bio, int sectors,
1634 gfp_t gfp, struct bio_set *bs)
1635{
1636 struct bio *split;
1637
1638 BUG_ON(sectors <= 0);
1639 BUG_ON(sectors >= bio_sectors(bio));
1640
1641 /* Zone append commands cannot be split */
1642 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1643 return NULL;
1644
1645 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1646 if (!split)
1647 return NULL;
1648
1649 split->bi_iter.bi_size = sectors << 9;
1650
1651 if (bio_integrity(split))
1652 bio_integrity_trim(split);
1653
1654 bio_advance(bio, split->bi_iter.bi_size);
1655
1656 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1657 bio_set_flag(split, BIO_TRACE_COMPLETION);
1658
1659 return split;
1660}
1661EXPORT_SYMBOL(bio_split);
1662
1663/**
1664 * bio_trim - trim a bio
1665 * @bio: bio to trim
1666 * @offset: number of sectors to trim from the front of @bio
1667 * @size: size we want to trim @bio to, in sectors
1668 *
1669 * This function is typically used for bios that are cloned and submitted
1670 * to the underlying device in parts.
1671 */
1672void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1673{
1674 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1675 offset + size > bio_sectors(bio)))
1676 return;
1677
1678 size <<= 9;
1679 if (offset == 0 && size == bio->bi_iter.bi_size)
1680 return;
1681
1682 bio_advance(bio, offset << 9);
1683 bio->bi_iter.bi_size = size;
1684
1685 if (bio_integrity(bio))
1686 bio_integrity_trim(bio);
1687}
1688EXPORT_SYMBOL_GPL(bio_trim);
1689
1690/*
1691 * create memory pools for biovec's in a bio_set.
1692 * use the global biovec slabs created for general use.
1693 */
1694int biovec_init_pool(mempool_t *pool, int pool_entries)
1695{
1696 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1697
1698 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1699}
1700
1701/*
1702 * bioset_exit - exit a bioset initialized with bioset_init()
1703 *
1704 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1705 * kzalloc()).
1706 */
1707void bioset_exit(struct bio_set *bs)
1708{
1709 bio_alloc_cache_destroy(bs);
1710 if (bs->rescue_workqueue)
1711 destroy_workqueue(bs->rescue_workqueue);
1712 bs->rescue_workqueue = NULL;
1713
1714 mempool_exit(&bs->bio_pool);
1715 mempool_exit(&bs->bvec_pool);
1716
1717 bioset_integrity_free(bs);
1718 if (bs->bio_slab)
1719 bio_put_slab(bs);
1720 bs->bio_slab = NULL;
1721}
1722EXPORT_SYMBOL(bioset_exit);
1723
1724/**
1725 * bioset_init - Initialize a bio_set
1726 * @bs: pool to initialize
1727 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1728 * @front_pad: Number of bytes to allocate in front of the returned bio
1729 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1730 * and %BIOSET_NEED_RESCUER
1731 *
1732 * Description:
1733 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1734 * to ask for a number of bytes to be allocated in front of the bio.
1735 * Front pad allocation is useful for embedding the bio inside
1736 * another structure, to avoid allocating extra data to go with the bio.
1737 * Note that the bio must be embedded at the END of that structure always,
1738 * or things will break badly.
1739 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1740 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1741 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1742 * to dispatch queued requests when the mempool runs out of space.
1743 *
1744 */
1745int bioset_init(struct bio_set *bs,
1746 unsigned int pool_size,
1747 unsigned int front_pad,
1748 int flags)
1749{
1750 bs->front_pad = front_pad;
1751 if (flags & BIOSET_NEED_BVECS)
1752 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1753 else
1754 bs->back_pad = 0;
1755
1756 spin_lock_init(&bs->rescue_lock);
1757 bio_list_init(&bs->rescue_list);
1758 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1759
1760 bs->bio_slab = bio_find_or_create_slab(bs);
1761 if (!bs->bio_slab)
1762 return -ENOMEM;
1763
1764 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1765 goto bad;
1766
1767 if ((flags & BIOSET_NEED_BVECS) &&
1768 biovec_init_pool(&bs->bvec_pool, pool_size))
1769 goto bad;
1770
1771 if (flags & BIOSET_NEED_RESCUER) {
1772 bs->rescue_workqueue = alloc_workqueue("bioset",
1773 WQ_MEM_RECLAIM, 0);
1774 if (!bs->rescue_workqueue)
1775 goto bad;
1776 }
1777 if (flags & BIOSET_PERCPU_CACHE) {
1778 bs->cache = alloc_percpu(struct bio_alloc_cache);
1779 if (!bs->cache)
1780 goto bad;
1781 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1782 }
1783
1784 return 0;
1785bad:
1786 bioset_exit(bs);
1787 return -ENOMEM;
1788}
1789EXPORT_SYMBOL(bioset_init);
1790
1791static int __init init_bio(void)
1792{
1793 int i;
1794
1795 bio_integrity_init();
1796
1797 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1798 struct biovec_slab *bvs = bvec_slabs + i;
1799
1800 bvs->slab = kmem_cache_create(bvs->name,
1801 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1802 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1803 }
1804
1805 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1806 bio_cpu_dead);
1807
1808 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1809 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1810 panic("bio: can't allocate bios\n");
1811
1812 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1813 panic("bio: can't create integrity pool\n");
1814
1815 return 0;
1816}
1817subsys_initcall(init_bio);