Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Resource Director Technology (RDT)
   4 *
   5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
   6 *
   7 * Copyright (C) 2018 Intel Corporation
   8 *
   9 * Author: Reinette Chatre <reinette.chatre@intel.com>
  10 */
  11
  12#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  13
  14#include <linux/cacheinfo.h>
  15#include <linux/cpu.h>
  16#include <linux/cpumask.h>
  17#include <linux/debugfs.h>
  18#include <linux/kthread.h>
  19#include <linux/mman.h>
  20#include <linux/perf_event.h>
  21#include <linux/pm_qos.h>
  22#include <linux/slab.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/cacheflush.h>
  26#include <asm/intel-family.h>
  27#include <asm/resctrl_sched.h>
  28#include <asm/perf_event.h>
  29
  30#include "../../events/perf_event.h" /* For X86_CONFIG() */
  31#include "internal.h"
  32
  33#define CREATE_TRACE_POINTS
  34#include "pseudo_lock_event.h"
  35
  36/*
  37 * The bits needed to disable hardware prefetching varies based on the
  38 * platform. During initialization we will discover which bits to use.
  39 */
  40static u64 prefetch_disable_bits;
  41
  42/*
  43 * Major number assigned to and shared by all devices exposing
  44 * pseudo-locked regions.
  45 */
  46static unsigned int pseudo_lock_major;
  47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
  48static struct class *pseudo_lock_class;
  49
  50/**
  51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
 
  52 *
  53 * Capture the list of platforms that have been validated to support
  54 * pseudo-locking. This includes testing to ensure pseudo-locked regions
  55 * with low cache miss rates can be created under variety of load conditions
  56 * as well as that these pseudo-locked regions can maintain their low cache
  57 * miss rates under variety of load conditions for significant lengths of time.
  58 *
  59 * After a platform has been validated to support pseudo-locking its
  60 * hardware prefetch disable bits are included here as they are documented
  61 * in the SDM.
  62 *
  63 * When adding a platform here also add support for its cache events to
  64 * measure_cycles_perf_fn()
  65 *
  66 * Return:
  67 * If platform is supported, the bits to disable hardware prefetchers, 0
  68 * if platform is not supported.
  69 */
  70static u64 get_prefetch_disable_bits(void)
  71{
  72	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
  73	    boot_cpu_data.x86 != 6)
  74		return 0;
  75
  76	switch (boot_cpu_data.x86_model) {
  77	case INTEL_FAM6_BROADWELL_X:
  78		/*
  79		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  80		 * as:
  81		 * 0    L2 Hardware Prefetcher Disable (R/W)
  82		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
  83		 * 2    DCU Hardware Prefetcher Disable (R/W)
  84		 * 3    DCU IP Prefetcher Disable (R/W)
  85		 * 63:4 Reserved
  86		 */
  87		return 0xF;
  88	case INTEL_FAM6_ATOM_GOLDMONT:
  89	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
  90		/*
  91		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  92		 * as:
  93		 * 0     L2 Hardware Prefetcher Disable (R/W)
  94		 * 1     Reserved
  95		 * 2     DCU Hardware Prefetcher Disable (R/W)
  96		 * 63:3  Reserved
  97		 */
  98		return 0x5;
  99	}
 100
 101	return 0;
 102}
 103
 104/**
 105 * pseudo_lock_minor_get - Obtain available minor number
 106 * @minor: Pointer to where new minor number will be stored
 107 *
 108 * A bitmask is used to track available minor numbers. Here the next free
 109 * minor number is marked as unavailable and returned.
 110 *
 111 * Return: 0 on success, <0 on failure.
 112 */
 113static int pseudo_lock_minor_get(unsigned int *minor)
 114{
 115	unsigned long first_bit;
 116
 117	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
 118
 119	if (first_bit == MINORBITS)
 120		return -ENOSPC;
 121
 122	__clear_bit(first_bit, &pseudo_lock_minor_avail);
 123	*minor = first_bit;
 124
 125	return 0;
 126}
 127
 128/**
 129 * pseudo_lock_minor_release - Return minor number to available
 130 * @minor: The minor number made available
 131 */
 132static void pseudo_lock_minor_release(unsigned int minor)
 133{
 134	__set_bit(minor, &pseudo_lock_minor_avail);
 135}
 136
 137/**
 138 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
 139 * @minor: The minor number of the device representing pseudo-locked region
 140 *
 141 * When the character device is accessed we need to determine which
 142 * pseudo-locked region it belongs to. This is done by matching the minor
 143 * number of the device to the pseudo-locked region it belongs.
 144 *
 145 * Minor numbers are assigned at the time a pseudo-locked region is associated
 146 * with a cache instance.
 147 *
 148 * Return: On success return pointer to resource group owning the pseudo-locked
 149 *         region, NULL on failure.
 150 */
 151static struct rdtgroup *region_find_by_minor(unsigned int minor)
 152{
 153	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
 154
 155	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 156		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
 157			rdtgrp_match = rdtgrp;
 158			break;
 159		}
 160	}
 161	return rdtgrp_match;
 162}
 163
 164/**
 165 * pseudo_lock_pm_req - A power management QoS request list entry
 166 * @list:	Entry within the @pm_reqs list for a pseudo-locked region
 167 * @req:	PM QoS request
 168 */
 169struct pseudo_lock_pm_req {
 170	struct list_head list;
 171	struct dev_pm_qos_request req;
 172};
 173
 174static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
 175{
 176	struct pseudo_lock_pm_req *pm_req, *next;
 177
 178	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
 179		dev_pm_qos_remove_request(&pm_req->req);
 180		list_del(&pm_req->list);
 181		kfree(pm_req);
 182	}
 183}
 184
 185/**
 186 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
 
 187 *
 188 * To prevent the cache from being affected by power management entering
 189 * C6 has to be avoided. This is accomplished by requesting a latency
 190 * requirement lower than lowest C6 exit latency of all supported
 191 * platforms as found in the cpuidle state tables in the intel_idle driver.
 192 * At this time it is possible to do so with a single latency requirement
 193 * for all supported platforms.
 194 *
 195 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
 196 * the ACPI latencies need to be considered while keeping in mind that C2
 197 * may be set to map to deeper sleep states. In this case the latency
 198 * requirement needs to prevent entering C2 also.
 
 
 199 */
 200static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
 201{
 202	struct pseudo_lock_pm_req *pm_req;
 203	int cpu;
 204	int ret;
 205
 206	for_each_cpu(cpu, &plr->d->cpu_mask) {
 207		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
 208		if (!pm_req) {
 209			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
 210			ret = -ENOMEM;
 211			goto out_err;
 212		}
 213		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
 214					     &pm_req->req,
 215					     DEV_PM_QOS_RESUME_LATENCY,
 216					     30);
 217		if (ret < 0) {
 218			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
 219					    cpu);
 220			kfree(pm_req);
 221			ret = -1;
 222			goto out_err;
 223		}
 224		list_add(&pm_req->list, &plr->pm_reqs);
 225	}
 226
 227	return 0;
 228
 229out_err:
 230	pseudo_lock_cstates_relax(plr);
 231	return ret;
 232}
 233
 234/**
 235 * pseudo_lock_region_clear - Reset pseudo-lock region data
 236 * @plr: pseudo-lock region
 237 *
 238 * All content of the pseudo-locked region is reset - any memory allocated
 239 * freed.
 240 *
 241 * Return: void
 242 */
 243static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
 244{
 245	plr->size = 0;
 246	plr->line_size = 0;
 247	kfree(plr->kmem);
 248	plr->kmem = NULL;
 249	plr->r = NULL;
 250	if (plr->d)
 251		plr->d->plr = NULL;
 252	plr->d = NULL;
 253	plr->cbm = 0;
 254	plr->debugfs_dir = NULL;
 255}
 256
 257/**
 258 * pseudo_lock_region_init - Initialize pseudo-lock region information
 259 * @plr: pseudo-lock region
 260 *
 261 * Called after user provided a schemata to be pseudo-locked. From the
 262 * schemata the &struct pseudo_lock_region is on entry already initialized
 263 * with the resource, domain, and capacity bitmask. Here the information
 264 * required for pseudo-locking is deduced from this data and &struct
 265 * pseudo_lock_region initialized further. This information includes:
 266 * - size in bytes of the region to be pseudo-locked
 267 * - cache line size to know the stride with which data needs to be accessed
 268 *   to be pseudo-locked
 269 * - a cpu associated with the cache instance on which the pseudo-locking
 270 *   flow can be executed
 271 *
 272 * Return: 0 on success, <0 on failure. Descriptive error will be written
 273 * to last_cmd_status buffer.
 274 */
 275static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
 276{
 277	struct cpu_cacheinfo *ci;
 278	int ret;
 279	int i;
 280
 281	/* Pick the first cpu we find that is associated with the cache. */
 282	plr->cpu = cpumask_first(&plr->d->cpu_mask);
 283
 284	if (!cpu_online(plr->cpu)) {
 285		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
 286				    plr->cpu);
 287		ret = -ENODEV;
 288		goto out_region;
 289	}
 290
 291	ci = get_cpu_cacheinfo(plr->cpu);
 292
 293	plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
 294
 295	for (i = 0; i < ci->num_leaves; i++) {
 296		if (ci->info_list[i].level == plr->r->cache_level) {
 297			plr->line_size = ci->info_list[i].coherency_line_size;
 298			return 0;
 299		}
 300	}
 301
 302	ret = -1;
 303	rdt_last_cmd_puts("Unable to determine cache line size\n");
 304out_region:
 305	pseudo_lock_region_clear(plr);
 306	return ret;
 307}
 308
 309/**
 310 * pseudo_lock_init - Initialize a pseudo-lock region
 311 * @rdtgrp: resource group to which new pseudo-locked region will belong
 312 *
 313 * A pseudo-locked region is associated with a resource group. When this
 314 * association is created the pseudo-locked region is initialized. The
 315 * details of the pseudo-locked region are not known at this time so only
 316 * allocation is done and association established.
 317 *
 318 * Return: 0 on success, <0 on failure
 319 */
 320static int pseudo_lock_init(struct rdtgroup *rdtgrp)
 321{
 322	struct pseudo_lock_region *plr;
 323
 324	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
 325	if (!plr)
 326		return -ENOMEM;
 327
 328	init_waitqueue_head(&plr->lock_thread_wq);
 329	INIT_LIST_HEAD(&plr->pm_reqs);
 330	rdtgrp->plr = plr;
 331	return 0;
 332}
 333
 334/**
 335 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
 336 * @plr: pseudo-lock region
 337 *
 338 * Initialize the details required to set up the pseudo-locked region and
 339 * allocate the contiguous memory that will be pseudo-locked to the cache.
 340 *
 341 * Return: 0 on success, <0 on failure.  Descriptive error will be written
 342 * to last_cmd_status buffer.
 343 */
 344static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
 345{
 346	int ret;
 347
 348	ret = pseudo_lock_region_init(plr);
 349	if (ret < 0)
 350		return ret;
 351
 352	/*
 353	 * We do not yet support contiguous regions larger than
 354	 * KMALLOC_MAX_SIZE.
 355	 */
 356	if (plr->size > KMALLOC_MAX_SIZE) {
 357		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
 358		ret = -E2BIG;
 359		goto out_region;
 360	}
 361
 362	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
 363	if (!plr->kmem) {
 364		rdt_last_cmd_puts("Unable to allocate memory\n");
 365		ret = -ENOMEM;
 366		goto out_region;
 367	}
 368
 369	ret = 0;
 370	goto out;
 371out_region:
 372	pseudo_lock_region_clear(plr);
 373out:
 374	return ret;
 375}
 376
 377/**
 378 * pseudo_lock_free - Free a pseudo-locked region
 379 * @rdtgrp: resource group to which pseudo-locked region belonged
 380 *
 381 * The pseudo-locked region's resources have already been released, or not
 382 * yet created at this point. Now it can be freed and disassociated from the
 383 * resource group.
 384 *
 385 * Return: void
 386 */
 387static void pseudo_lock_free(struct rdtgroup *rdtgrp)
 388{
 389	pseudo_lock_region_clear(rdtgrp->plr);
 390	kfree(rdtgrp->plr);
 391	rdtgrp->plr = NULL;
 392}
 393
 394/**
 395 * pseudo_lock_fn - Load kernel memory into cache
 396 * @_rdtgrp: resource group to which pseudo-lock region belongs
 397 *
 398 * This is the core pseudo-locking flow.
 399 *
 400 * First we ensure that the kernel memory cannot be found in the cache.
 401 * Then, while taking care that there will be as little interference as
 402 * possible, the memory to be loaded is accessed while core is running
 403 * with class of service set to the bitmask of the pseudo-locked region.
 404 * After this is complete no future CAT allocations will be allowed to
 405 * overlap with this bitmask.
 406 *
 407 * Local register variables are utilized to ensure that the memory region
 408 * to be locked is the only memory access made during the critical locking
 409 * loop.
 410 *
 411 * Return: 0. Waiter on waitqueue will be woken on completion.
 412 */
 413static int pseudo_lock_fn(void *_rdtgrp)
 414{
 415	struct rdtgroup *rdtgrp = _rdtgrp;
 416	struct pseudo_lock_region *plr = rdtgrp->plr;
 417	u32 rmid_p, closid_p;
 418	unsigned long i;
 
 419#ifdef CONFIG_KASAN
 420	/*
 421	 * The registers used for local register variables are also used
 422	 * when KASAN is active. When KASAN is active we use a regular
 423	 * variable to ensure we always use a valid pointer, but the cost
 424	 * is that this variable will enter the cache through evicting the
 425	 * memory we are trying to lock into the cache. Thus expect lower
 426	 * pseudo-locking success rate when KASAN is active.
 427	 */
 428	unsigned int line_size;
 429	unsigned int size;
 430	void *mem_r;
 431#else
 432	register unsigned int line_size asm("esi");
 433	register unsigned int size asm("edi");
 434	register void *mem_r asm(_ASM_BX);
 435#endif /* CONFIG_KASAN */
 436
 437	/*
 438	 * Make sure none of the allocated memory is cached. If it is we
 439	 * will get a cache hit in below loop from outside of pseudo-locked
 440	 * region.
 441	 * wbinvd (as opposed to clflush/clflushopt) is required to
 442	 * increase likelihood that allocated cache portion will be filled
 443	 * with associated memory.
 444	 */
 445	native_wbinvd();
 446
 447	/*
 448	 * Always called with interrupts enabled. By disabling interrupts
 449	 * ensure that we will not be preempted during this critical section.
 450	 */
 451	local_irq_disable();
 452
 453	/*
 454	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
 455	 * clobbering local register variables or affecting cache accesses.
 456	 *
 457	 * Disable the hardware prefetcher so that when the end of the memory
 458	 * being pseudo-locked is reached the hardware will not read beyond
 459	 * the buffer and evict pseudo-locked memory read earlier from the
 460	 * cache.
 461	 */
 
 462	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 463	closid_p = this_cpu_read(pqr_state.cur_closid);
 464	rmid_p = this_cpu_read(pqr_state.cur_rmid);
 465	mem_r = plr->kmem;
 466	size = plr->size;
 467	line_size = plr->line_size;
 468	/*
 469	 * Critical section begin: start by writing the closid associated
 470	 * with the capacity bitmask of the cache region being
 471	 * pseudo-locked followed by reading of kernel memory to load it
 472	 * into the cache.
 473	 */
 474	__wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
 475	/*
 476	 * Cache was flushed earlier. Now access kernel memory to read it
 477	 * into cache region associated with just activated plr->closid.
 478	 * Loop over data twice:
 479	 * - In first loop the cache region is shared with the page walker
 480	 *   as it populates the paging structure caches (including TLB).
 481	 * - In the second loop the paging structure caches are used and
 482	 *   cache region is populated with the memory being referenced.
 483	 */
 484	for (i = 0; i < size; i += PAGE_SIZE) {
 485		/*
 486		 * Add a barrier to prevent speculative execution of this
 487		 * loop reading beyond the end of the buffer.
 488		 */
 489		rmb();
 490		asm volatile("mov (%0,%1,1), %%eax\n\t"
 491			:
 492			: "r" (mem_r), "r" (i)
 493			: "%eax", "memory");
 494	}
 495	for (i = 0; i < size; i += line_size) {
 496		/*
 497		 * Add a barrier to prevent speculative execution of this
 498		 * loop reading beyond the end of the buffer.
 499		 */
 500		rmb();
 501		asm volatile("mov (%0,%1,1), %%eax\n\t"
 502			:
 503			: "r" (mem_r), "r" (i)
 504			: "%eax", "memory");
 505	}
 506	/*
 507	 * Critical section end: restore closid with capacity bitmask that
 508	 * does not overlap with pseudo-locked region.
 509	 */
 510	__wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
 511
 512	/* Re-enable the hardware prefetcher(s) */
 513	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
 514	local_irq_enable();
 515
 516	plr->thread_done = 1;
 517	wake_up_interruptible(&plr->lock_thread_wq);
 518	return 0;
 519}
 520
 521/**
 522 * rdtgroup_monitor_in_progress - Test if monitoring in progress
 523 * @r: resource group being queried
 524 *
 525 * Return: 1 if monitor groups have been created for this resource
 526 * group, 0 otherwise.
 527 */
 528static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
 529{
 530	return !list_empty(&rdtgrp->mon.crdtgrp_list);
 531}
 532
 533/**
 534 * rdtgroup_locksetup_user_restrict - Restrict user access to group
 535 * @rdtgrp: resource group needing access restricted
 536 *
 537 * A resource group used for cache pseudo-locking cannot have cpus or tasks
 538 * assigned to it. This is communicated to the user by restricting access
 539 * to all the files that can be used to make such changes.
 540 *
 541 * Permissions restored with rdtgroup_locksetup_user_restore()
 542 *
 543 * Return: 0 on success, <0 on failure. If a failure occurs during the
 544 * restriction of access an attempt will be made to restore permissions but
 545 * the state of the mode of these files will be uncertain when a failure
 546 * occurs.
 547 */
 548static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
 549{
 550	int ret;
 551
 552	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 553	if (ret)
 554		return ret;
 555
 556	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 557	if (ret)
 558		goto err_tasks;
 559
 560	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 561	if (ret)
 562		goto err_cpus;
 563
 564	if (rdt_mon_capable) {
 565		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
 566		if (ret)
 567			goto err_cpus_list;
 568	}
 569
 570	ret = 0;
 571	goto out;
 572
 573err_cpus_list:
 574	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 575err_cpus:
 576	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 577err_tasks:
 578	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 579out:
 580	return ret;
 581}
 582
 583/**
 584 * rdtgroup_locksetup_user_restore - Restore user access to group
 585 * @rdtgrp: resource group needing access restored
 586 *
 587 * Restore all file access previously removed using
 588 * rdtgroup_locksetup_user_restrict()
 589 *
 590 * Return: 0 on success, <0 on failure.  If a failure occurs during the
 591 * restoration of access an attempt will be made to restrict permissions
 592 * again but the state of the mode of these files will be uncertain when
 593 * a failure occurs.
 594 */
 595static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
 596{
 597	int ret;
 598
 599	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 600	if (ret)
 601		return ret;
 602
 603	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 604	if (ret)
 605		goto err_tasks;
 606
 607	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 608	if (ret)
 609		goto err_cpus;
 610
 611	if (rdt_mon_capable) {
 612		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
 613		if (ret)
 614			goto err_cpus_list;
 615	}
 616
 617	ret = 0;
 618	goto out;
 619
 620err_cpus_list:
 621	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 622err_cpus:
 623	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 624err_tasks:
 625	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 626out:
 627	return ret;
 628}
 629
 630/**
 631 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
 632 * @rdtgrp: resource group requested to enter locksetup mode
 633 *
 634 * A resource group enters locksetup mode to reflect that it would be used
 635 * to represent a pseudo-locked region and is in the process of being set
 636 * up to do so. A resource group used for a pseudo-locked region would
 637 * lose the closid associated with it so we cannot allow it to have any
 638 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
 639 * future. Monitoring of a pseudo-locked region is not allowed either.
 640 *
 641 * The above and more restrictions on a pseudo-locked region are checked
 642 * for and enforced before the resource group enters the locksetup mode.
 643 *
 644 * Returns: 0 if the resource group successfully entered locksetup mode, <0
 645 * on failure. On failure the last_cmd_status buffer is updated with text to
 646 * communicate details of failure to the user.
 647 */
 648int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 649{
 650	int ret;
 651
 652	/*
 653	 * The default resource group can neither be removed nor lose the
 654	 * default closid associated with it.
 655	 */
 656	if (rdtgrp == &rdtgroup_default) {
 657		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
 658		return -EINVAL;
 659	}
 660
 661	/*
 662	 * Cache Pseudo-locking not supported when CDP is enabled.
 663	 *
 664	 * Some things to consider if you would like to enable this
 665	 * support (using L3 CDP as example):
 666	 * - When CDP is enabled two separate resources are exposed,
 667	 *   L3DATA and L3CODE, but they are actually on the same cache.
 668	 *   The implication for pseudo-locking is that if a
 669	 *   pseudo-locked region is created on a domain of one
 670	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
 671	 *   be created on that same domain of the other resource
 672	 *   (eg. L3DATA). This is because the creation of a
 673	 *   pseudo-locked region involves a call to wbinvd that will
 674	 *   affect all cache allocations on particular domain.
 675	 * - Considering the previous, it may be possible to only
 676	 *   expose one of the CDP resources to pseudo-locking and
 677	 *   hide the other. For example, we could consider to only
 678	 *   expose L3DATA and since the L3 cache is unified it is
 679	 *   still possible to place instructions there are execute it.
 680	 * - If only one region is exposed to pseudo-locking we should
 681	 *   still keep in mind that availability of a portion of cache
 682	 *   for pseudo-locking should take into account both resources.
 683	 *   Similarly, if a pseudo-locked region is created in one
 684	 *   resource, the portion of cache used by it should be made
 685	 *   unavailable to all future allocations from both resources.
 686	 */
 687	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
 688	    rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
 689		rdt_last_cmd_puts("CDP enabled\n");
 690		return -EINVAL;
 691	}
 692
 693	/*
 694	 * Not knowing the bits to disable prefetching implies that this
 695	 * platform does not support Cache Pseudo-Locking.
 696	 */
 697	prefetch_disable_bits = get_prefetch_disable_bits();
 698	if (prefetch_disable_bits == 0) {
 699		rdt_last_cmd_puts("Pseudo-locking not supported\n");
 700		return -EINVAL;
 701	}
 702
 703	if (rdtgroup_monitor_in_progress(rdtgrp)) {
 704		rdt_last_cmd_puts("Monitoring in progress\n");
 705		return -EINVAL;
 706	}
 707
 708	if (rdtgroup_tasks_assigned(rdtgrp)) {
 709		rdt_last_cmd_puts("Tasks assigned to resource group\n");
 710		return -EINVAL;
 711	}
 712
 713	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
 714		rdt_last_cmd_puts("CPUs assigned to resource group\n");
 715		return -EINVAL;
 716	}
 717
 718	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
 719		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
 720		return -EIO;
 721	}
 722
 723	ret = pseudo_lock_init(rdtgrp);
 724	if (ret) {
 725		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
 726		goto out_release;
 727	}
 728
 729	/*
 730	 * If this system is capable of monitoring a rmid would have been
 731	 * allocated when the control group was created. This is not needed
 732	 * anymore when this group would be used for pseudo-locking. This
 733	 * is safe to call on platforms not capable of monitoring.
 734	 */
 735	free_rmid(rdtgrp->mon.rmid);
 736
 737	ret = 0;
 738	goto out;
 739
 740out_release:
 741	rdtgroup_locksetup_user_restore(rdtgrp);
 742out:
 743	return ret;
 744}
 745
 746/**
 747 * rdtgroup_locksetup_exit - resource group exist locksetup mode
 748 * @rdtgrp: resource group
 749 *
 750 * When a resource group exits locksetup mode the earlier restrictions are
 751 * lifted.
 752 *
 753 * Return: 0 on success, <0 on failure
 754 */
 755int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
 756{
 757	int ret;
 758
 759	if (rdt_mon_capable) {
 760		ret = alloc_rmid();
 761		if (ret < 0) {
 762			rdt_last_cmd_puts("Out of RMIDs\n");
 763			return ret;
 764		}
 765		rdtgrp->mon.rmid = ret;
 766	}
 767
 768	ret = rdtgroup_locksetup_user_restore(rdtgrp);
 769	if (ret) {
 770		free_rmid(rdtgrp->mon.rmid);
 771		return ret;
 772	}
 773
 774	pseudo_lock_free(rdtgrp);
 775	return 0;
 776}
 777
 778/**
 779 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
 780 * @d: RDT domain
 781 * @cbm: CBM to test
 782 *
 783 * @d represents a cache instance and @cbm a capacity bitmask that is
 784 * considered for it. Determine if @cbm overlaps with any existing
 785 * pseudo-locked region on @d.
 786 *
 787 * @cbm is unsigned long, even if only 32 bits are used, to make the
 788 * bitmap functions work correctly.
 789 *
 790 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
 791 * otherwise.
 792 */
 793bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
 794{
 795	unsigned int cbm_len;
 796	unsigned long cbm_b;
 797
 798	if (d->plr) {
 799		cbm_len = d->plr->r->cache.cbm_len;
 800		cbm_b = d->plr->cbm;
 801		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
 802			return true;
 803	}
 804	return false;
 805}
 806
 807/**
 808 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
 809 * @d: RDT domain under test
 810 *
 811 * The setup of a pseudo-locked region affects all cache instances within
 812 * the hierarchy of the region. It is thus essential to know if any
 813 * pseudo-locked regions exist within a cache hierarchy to prevent any
 814 * attempts to create new pseudo-locked regions in the same hierarchy.
 815 *
 816 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
 817 *         if it is not possible to test due to memory allocation issue,
 818 *         false otherwise.
 819 */
 820bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
 821{
 822	cpumask_var_t cpu_with_psl;
 823	struct rdt_resource *r;
 824	struct rdt_domain *d_i;
 825	bool ret = false;
 826
 827	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
 828		return true;
 829
 830	/*
 831	 * First determine which cpus have pseudo-locked regions
 832	 * associated with them.
 833	 */
 834	for_each_alloc_enabled_rdt_resource(r) {
 835		list_for_each_entry(d_i, &r->domains, list) {
 836			if (d_i->plr)
 837				cpumask_or(cpu_with_psl, cpu_with_psl,
 838					   &d_i->cpu_mask);
 839		}
 840	}
 841
 842	/*
 843	 * Next test if new pseudo-locked region would intersect with
 844	 * existing region.
 845	 */
 846	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
 847		ret = true;
 848
 849	free_cpumask_var(cpu_with_psl);
 850	return ret;
 851}
 852
 853/**
 854 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
 855 * @_plr: pseudo-lock region to measure
 856 *
 857 * There is no deterministic way to test if a memory region is cached. One
 858 * way is to measure how long it takes to read the memory, the speed of
 859 * access is a good way to learn how close to the cpu the data was. Even
 860 * more, if the prefetcher is disabled and the memory is read at a stride
 861 * of half the cache line, then a cache miss will be easy to spot since the
 862 * read of the first half would be significantly slower than the read of
 863 * the second half.
 864 *
 865 * Return: 0. Waiter on waitqueue will be woken on completion.
 866 */
 867static int measure_cycles_lat_fn(void *_plr)
 868{
 869	struct pseudo_lock_region *plr = _plr;
 
 870	unsigned long i;
 871	u64 start, end;
 872	void *mem_r;
 873
 874	local_irq_disable();
 875	/*
 876	 * Disable hardware prefetchers.
 877	 */
 
 878	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 879	mem_r = READ_ONCE(plr->kmem);
 880	/*
 881	 * Dummy execute of the time measurement to load the needed
 882	 * instructions into the L1 instruction cache.
 883	 */
 884	start = rdtsc_ordered();
 885	for (i = 0; i < plr->size; i += 32) {
 886		start = rdtsc_ordered();
 887		asm volatile("mov (%0,%1,1), %%eax\n\t"
 888			     :
 889			     : "r" (mem_r), "r" (i)
 890			     : "%eax", "memory");
 891		end = rdtsc_ordered();
 892		trace_pseudo_lock_mem_latency((u32)(end - start));
 893	}
 894	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
 895	local_irq_enable();
 896	plr->thread_done = 1;
 897	wake_up_interruptible(&plr->lock_thread_wq);
 898	return 0;
 899}
 900
 901/*
 902 * Create a perf_event_attr for the hit and miss perf events that will
 903 * be used during the performance measurement. A perf_event maintains
 904 * a pointer to its perf_event_attr so a unique attribute structure is
 905 * created for each perf_event.
 906 *
 907 * The actual configuration of the event is set right before use in order
 908 * to use the X86_CONFIG macro.
 909 */
 910static struct perf_event_attr perf_miss_attr = {
 911	.type		= PERF_TYPE_RAW,
 912	.size		= sizeof(struct perf_event_attr),
 913	.pinned		= 1,
 914	.disabled	= 0,
 915	.exclude_user	= 1,
 916};
 917
 918static struct perf_event_attr perf_hit_attr = {
 919	.type		= PERF_TYPE_RAW,
 920	.size		= sizeof(struct perf_event_attr),
 921	.pinned		= 1,
 922	.disabled	= 0,
 923	.exclude_user	= 1,
 924};
 925
 926struct residency_counts {
 927	u64 miss_before, hits_before;
 928	u64 miss_after,  hits_after;
 929};
 930
 931static int measure_residency_fn(struct perf_event_attr *miss_attr,
 932				struct perf_event_attr *hit_attr,
 933				struct pseudo_lock_region *plr,
 934				struct residency_counts *counts)
 935{
 936	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
 937	struct perf_event *miss_event, *hit_event;
 938	int hit_pmcnum, miss_pmcnum;
 
 939	unsigned int line_size;
 940	unsigned int size;
 941	unsigned long i;
 942	void *mem_r;
 943	u64 tmp;
 944
 945	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
 946						      NULL, NULL, NULL);
 947	if (IS_ERR(miss_event))
 948		goto out;
 949
 950	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
 951						     NULL, NULL, NULL);
 952	if (IS_ERR(hit_event))
 953		goto out_miss;
 954
 955	local_irq_disable();
 956	/*
 957	 * Check any possible error state of events used by performing
 958	 * one local read.
 959	 */
 960	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
 961		local_irq_enable();
 962		goto out_hit;
 963	}
 964	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
 965		local_irq_enable();
 966		goto out_hit;
 967	}
 968
 969	/*
 970	 * Disable hardware prefetchers.
 971	 */
 
 972	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 973
 974	/* Initialize rest of local variables */
 975	/*
 976	 * Performance event has been validated right before this with
 977	 * interrupts disabled - it is thus safe to read the counter index.
 978	 */
 979	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
 980	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
 981	line_size = READ_ONCE(plr->line_size);
 982	mem_r = READ_ONCE(plr->kmem);
 983	size = READ_ONCE(plr->size);
 984
 985	/*
 986	 * Read counter variables twice - first to load the instructions
 987	 * used in L1 cache, second to capture accurate value that does not
 988	 * include cache misses incurred because of instruction loads.
 989	 */
 990	rdpmcl(hit_pmcnum, hits_before);
 991	rdpmcl(miss_pmcnum, miss_before);
 992	/*
 993	 * From SDM: Performing back-to-back fast reads are not guaranteed
 994	 * to be monotonic.
 995	 * Use LFENCE to ensure all previous instructions are retired
 996	 * before proceeding.
 997	 */
 998	rmb();
 999	rdpmcl(hit_pmcnum, hits_before);
1000	rdpmcl(miss_pmcnum, miss_before);
1001	/*
1002	 * Use LFENCE to ensure all previous instructions are retired
1003	 * before proceeding.
1004	 */
1005	rmb();
1006	for (i = 0; i < size; i += line_size) {
1007		/*
1008		 * Add a barrier to prevent speculative execution of this
1009		 * loop reading beyond the end of the buffer.
1010		 */
1011		rmb();
1012		asm volatile("mov (%0,%1,1), %%eax\n\t"
1013			     :
1014			     : "r" (mem_r), "r" (i)
1015			     : "%eax", "memory");
1016	}
1017	/*
1018	 * Use LFENCE to ensure all previous instructions are retired
1019	 * before proceeding.
1020	 */
1021	rmb();
1022	rdpmcl(hit_pmcnum, hits_after);
1023	rdpmcl(miss_pmcnum, miss_after);
1024	/*
1025	 * Use LFENCE to ensure all previous instructions are retired
1026	 * before proceeding.
1027	 */
1028	rmb();
1029	/* Re-enable hardware prefetchers */
1030	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1031	local_irq_enable();
1032out_hit:
1033	perf_event_release_kernel(hit_event);
1034out_miss:
1035	perf_event_release_kernel(miss_event);
1036out:
1037	/*
1038	 * All counts will be zero on failure.
1039	 */
1040	counts->miss_before = miss_before;
1041	counts->hits_before = hits_before;
1042	counts->miss_after  = miss_after;
1043	counts->hits_after  = hits_after;
1044	return 0;
1045}
1046
1047static int measure_l2_residency(void *_plr)
1048{
1049	struct pseudo_lock_region *plr = _plr;
1050	struct residency_counts counts = {0};
1051
1052	/*
1053	 * Non-architectural event for the Goldmont Microarchitecture
1054	 * from Intel x86 Architecture Software Developer Manual (SDM):
1055	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1056	 * Umask values:
1057	 *     L2_HIT   02H
1058	 *     L2_MISS  10H
1059	 */
1060	switch (boot_cpu_data.x86_model) {
1061	case INTEL_FAM6_ATOM_GOLDMONT:
1062	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1063		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1064						   .umask = 0x10);
1065		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1066						  .umask = 0x2);
1067		break;
1068	default:
1069		goto out;
1070	}
1071
1072	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1073	/*
1074	 * If a failure prevented the measurements from succeeding
1075	 * tracepoints will still be written and all counts will be zero.
1076	 */
1077	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1078			     counts.miss_after - counts.miss_before);
1079out:
1080	plr->thread_done = 1;
1081	wake_up_interruptible(&plr->lock_thread_wq);
1082	return 0;
1083}
1084
1085static int measure_l3_residency(void *_plr)
1086{
1087	struct pseudo_lock_region *plr = _plr;
1088	struct residency_counts counts = {0};
1089
1090	/*
1091	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1092	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1093	 * this platform the following events are used instead:
1094	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1095	 *       REFERENCE 4FH
1096	 *       MISS      41H
1097	 */
1098
1099	switch (boot_cpu_data.x86_model) {
1100	case INTEL_FAM6_BROADWELL_X:
1101		/* On BDW the hit event counts references, not hits */
1102		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1103						  .umask = 0x4f);
1104		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1105						   .umask = 0x41);
1106		break;
1107	default:
1108		goto out;
1109	}
1110
1111	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1112	/*
1113	 * If a failure prevented the measurements from succeeding
1114	 * tracepoints will still be written and all counts will be zero.
1115	 */
1116
1117	counts.miss_after -= counts.miss_before;
1118	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1119		/*
1120		 * On BDW references and misses are counted, need to adjust.
1121		 * Sometimes the "hits" counter is a bit more than the
1122		 * references, for example, x references but x + 1 hits.
1123		 * To not report invalid hit values in this case we treat
1124		 * that as misses equal to references.
1125		 */
1126		/* First compute the number of cache references measured */
1127		counts.hits_after -= counts.hits_before;
1128		/* Next convert references to cache hits */
1129		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1130	} else {
1131		counts.hits_after -= counts.hits_before;
1132	}
1133
1134	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1135out:
1136	plr->thread_done = 1;
1137	wake_up_interruptible(&plr->lock_thread_wq);
1138	return 0;
1139}
1140
1141/**
1142 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
 
 
1143 *
1144 * The measurement of latency to access a pseudo-locked region should be
1145 * done from a cpu that is associated with that pseudo-locked region.
1146 * Determine which cpu is associated with this region and start a thread on
1147 * that cpu to perform the measurement, wait for that thread to complete.
1148 *
1149 * Return: 0 on success, <0 on failure
1150 */
1151static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1152{
1153	struct pseudo_lock_region *plr = rdtgrp->plr;
1154	struct task_struct *thread;
1155	unsigned int cpu;
1156	int ret = -1;
1157
1158	cpus_read_lock();
1159	mutex_lock(&rdtgroup_mutex);
1160
1161	if (rdtgrp->flags & RDT_DELETED) {
1162		ret = -ENODEV;
1163		goto out;
1164	}
1165
1166	if (!plr->d) {
1167		ret = -ENODEV;
1168		goto out;
1169	}
1170
1171	plr->thread_done = 0;
1172	cpu = cpumask_first(&plr->d->cpu_mask);
1173	if (!cpu_online(cpu)) {
1174		ret = -ENODEV;
1175		goto out;
1176	}
1177
1178	plr->cpu = cpu;
1179
1180	if (sel == 1)
1181		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1182						cpu_to_node(cpu),
1183						"pseudo_lock_measure/%u",
1184						cpu);
1185	else if (sel == 2)
1186		thread = kthread_create_on_node(measure_l2_residency, plr,
1187						cpu_to_node(cpu),
1188						"pseudo_lock_measure/%u",
1189						cpu);
1190	else if (sel == 3)
1191		thread = kthread_create_on_node(measure_l3_residency, plr,
1192						cpu_to_node(cpu),
1193						"pseudo_lock_measure/%u",
1194						cpu);
1195	else
1196		goto out;
1197
1198	if (IS_ERR(thread)) {
1199		ret = PTR_ERR(thread);
1200		goto out;
1201	}
1202	kthread_bind(thread, cpu);
1203	wake_up_process(thread);
1204
1205	ret = wait_event_interruptible(plr->lock_thread_wq,
1206				       plr->thread_done == 1);
1207	if (ret < 0)
1208		goto out;
1209
1210	ret = 0;
1211
1212out:
1213	mutex_unlock(&rdtgroup_mutex);
1214	cpus_read_unlock();
1215	return ret;
1216}
1217
1218static ssize_t pseudo_lock_measure_trigger(struct file *file,
1219					   const char __user *user_buf,
1220					   size_t count, loff_t *ppos)
1221{
1222	struct rdtgroup *rdtgrp = file->private_data;
1223	size_t buf_size;
1224	char buf[32];
1225	int ret;
1226	int sel;
1227
1228	buf_size = min(count, (sizeof(buf) - 1));
1229	if (copy_from_user(buf, user_buf, buf_size))
1230		return -EFAULT;
1231
1232	buf[buf_size] = '\0';
1233	ret = kstrtoint(buf, 10, &sel);
1234	if (ret == 0) {
1235		if (sel != 1 && sel != 2 && sel != 3)
1236			return -EINVAL;
1237		ret = debugfs_file_get(file->f_path.dentry);
1238		if (ret)
1239			return ret;
1240		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1241		if (ret == 0)
1242			ret = count;
1243		debugfs_file_put(file->f_path.dentry);
1244	}
1245
1246	return ret;
1247}
1248
1249static const struct file_operations pseudo_measure_fops = {
1250	.write = pseudo_lock_measure_trigger,
1251	.open = simple_open,
1252	.llseek = default_llseek,
1253};
1254
1255/**
1256 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1257 * @rdtgrp: resource group to which pseudo-lock region belongs
1258 *
1259 * Called when a resource group in the pseudo-locksetup mode receives a
1260 * valid schemata that should be pseudo-locked. Since the resource group is
1261 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1262 * allocated and initialized with the essential information. If a failure
1263 * occurs the resource group remains in the pseudo-locksetup mode with the
1264 * &struct pseudo_lock_region associated with it, but cleared from all
1265 * information and ready for the user to re-attempt pseudo-locking by
1266 * writing the schemata again.
1267 *
1268 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1269 * on failure. Descriptive error will be written to last_cmd_status buffer.
1270 */
1271int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1272{
1273	struct pseudo_lock_region *plr = rdtgrp->plr;
1274	struct task_struct *thread;
1275	unsigned int new_minor;
1276	struct device *dev;
1277	int ret;
1278
1279	ret = pseudo_lock_region_alloc(plr);
1280	if (ret < 0)
1281		return ret;
1282
1283	ret = pseudo_lock_cstates_constrain(plr);
1284	if (ret < 0) {
1285		ret = -EINVAL;
1286		goto out_region;
1287	}
1288
1289	plr->thread_done = 0;
1290
1291	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1292					cpu_to_node(plr->cpu),
1293					"pseudo_lock/%u", plr->cpu);
1294	if (IS_ERR(thread)) {
1295		ret = PTR_ERR(thread);
1296		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1297		goto out_cstates;
1298	}
1299
1300	kthread_bind(thread, plr->cpu);
1301	wake_up_process(thread);
1302
1303	ret = wait_event_interruptible(plr->lock_thread_wq,
1304				       plr->thread_done == 1);
1305	if (ret < 0) {
1306		/*
1307		 * If the thread does not get on the CPU for whatever
1308		 * reason and the process which sets up the region is
1309		 * interrupted then this will leave the thread in runnable
1310		 * state and once it gets on the CPU it will derefence
1311		 * the cleared, but not freed, plr struct resulting in an
1312		 * empty pseudo-locking loop.
1313		 */
1314		rdt_last_cmd_puts("Locking thread interrupted\n");
1315		goto out_cstates;
1316	}
1317
1318	ret = pseudo_lock_minor_get(&new_minor);
1319	if (ret < 0) {
1320		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1321		goto out_cstates;
1322	}
1323
1324	/*
1325	 * Unlock access but do not release the reference. The
1326	 * pseudo-locked region will still be here on return.
1327	 *
1328	 * The mutex has to be released temporarily to avoid a potential
1329	 * deadlock with the mm->mmap_sem semaphore which is obtained in
1330	 * the device_create() and debugfs_create_dir() callpath below
1331	 * as well as before the mmap() callback is called.
1332	 */
1333	mutex_unlock(&rdtgroup_mutex);
1334
1335	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1336		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1337						      debugfs_resctrl);
1338		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1339			debugfs_create_file("pseudo_lock_measure", 0200,
1340					    plr->debugfs_dir, rdtgrp,
1341					    &pseudo_measure_fops);
1342	}
1343
1344	dev = device_create(pseudo_lock_class, NULL,
1345			    MKDEV(pseudo_lock_major, new_minor),
1346			    rdtgrp, "%s", rdtgrp->kn->name);
1347
1348	mutex_lock(&rdtgroup_mutex);
1349
1350	if (IS_ERR(dev)) {
1351		ret = PTR_ERR(dev);
1352		rdt_last_cmd_printf("Failed to create character device: %d\n",
1353				    ret);
1354		goto out_debugfs;
1355	}
1356
1357	/* We released the mutex - check if group was removed while we did so */
1358	if (rdtgrp->flags & RDT_DELETED) {
1359		ret = -ENODEV;
1360		goto out_device;
1361	}
1362
1363	plr->minor = new_minor;
1364
1365	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1366	closid_free(rdtgrp->closid);
1367	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1368	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1369
1370	ret = 0;
1371	goto out;
1372
1373out_device:
1374	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1375out_debugfs:
1376	debugfs_remove_recursive(plr->debugfs_dir);
1377	pseudo_lock_minor_release(new_minor);
1378out_cstates:
1379	pseudo_lock_cstates_relax(plr);
1380out_region:
1381	pseudo_lock_region_clear(plr);
1382out:
1383	return ret;
1384}
1385
1386/**
1387 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1388 * @rdtgrp: resource group to which the pseudo-locked region belongs
1389 *
1390 * The removal of a pseudo-locked region can be initiated when the resource
1391 * group is removed from user space via a "rmdir" from userspace or the
1392 * unmount of the resctrl filesystem. On removal the resource group does
1393 * not go back to pseudo-locksetup mode before it is removed, instead it is
1394 * removed directly. There is thus assymmetry with the creation where the
1395 * &struct pseudo_lock_region is removed here while it was not created in
1396 * rdtgroup_pseudo_lock_create().
1397 *
1398 * Return: void
1399 */
1400void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1401{
1402	struct pseudo_lock_region *plr = rdtgrp->plr;
1403
1404	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1405		/*
1406		 * Default group cannot be a pseudo-locked region so we can
1407		 * free closid here.
1408		 */
1409		closid_free(rdtgrp->closid);
1410		goto free;
1411	}
1412
1413	pseudo_lock_cstates_relax(plr);
1414	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1415	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1416	pseudo_lock_minor_release(plr->minor);
1417
1418free:
1419	pseudo_lock_free(rdtgrp);
1420}
1421
1422static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1423{
1424	struct rdtgroup *rdtgrp;
1425
1426	mutex_lock(&rdtgroup_mutex);
1427
1428	rdtgrp = region_find_by_minor(iminor(inode));
1429	if (!rdtgrp) {
1430		mutex_unlock(&rdtgroup_mutex);
1431		return -ENODEV;
1432	}
1433
1434	filp->private_data = rdtgrp;
1435	atomic_inc(&rdtgrp->waitcount);
1436	/* Perform a non-seekable open - llseek is not supported */
1437	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1438
1439	mutex_unlock(&rdtgroup_mutex);
1440
1441	return 0;
1442}
1443
1444static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1445{
1446	struct rdtgroup *rdtgrp;
1447
1448	mutex_lock(&rdtgroup_mutex);
1449	rdtgrp = filp->private_data;
1450	WARN_ON(!rdtgrp);
1451	if (!rdtgrp) {
1452		mutex_unlock(&rdtgroup_mutex);
1453		return -ENODEV;
1454	}
1455	filp->private_data = NULL;
1456	atomic_dec(&rdtgrp->waitcount);
1457	mutex_unlock(&rdtgroup_mutex);
1458	return 0;
1459}
1460
1461static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1462{
1463	/* Not supported */
1464	return -EINVAL;
1465}
1466
1467static const struct vm_operations_struct pseudo_mmap_ops = {
1468	.mremap = pseudo_lock_dev_mremap,
1469};
1470
1471static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1472{
1473	unsigned long vsize = vma->vm_end - vma->vm_start;
1474	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1475	struct pseudo_lock_region *plr;
1476	struct rdtgroup *rdtgrp;
1477	unsigned long physical;
1478	unsigned long psize;
1479
1480	mutex_lock(&rdtgroup_mutex);
1481
1482	rdtgrp = filp->private_data;
1483	WARN_ON(!rdtgrp);
1484	if (!rdtgrp) {
1485		mutex_unlock(&rdtgroup_mutex);
1486		return -ENODEV;
1487	}
1488
1489	plr = rdtgrp->plr;
1490
1491	if (!plr->d) {
1492		mutex_unlock(&rdtgroup_mutex);
1493		return -ENODEV;
1494	}
1495
1496	/*
1497	 * Task is required to run with affinity to the cpus associated
1498	 * with the pseudo-locked region. If this is not the case the task
1499	 * may be scheduled elsewhere and invalidate entries in the
1500	 * pseudo-locked region.
1501	 */
1502	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1503		mutex_unlock(&rdtgroup_mutex);
1504		return -EINVAL;
1505	}
1506
1507	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1508	psize = plr->size - off;
1509
1510	if (off > plr->size) {
1511		mutex_unlock(&rdtgroup_mutex);
1512		return -ENOSPC;
1513	}
1514
1515	/*
1516	 * Ensure changes are carried directly to the memory being mapped,
1517	 * do not allow copy-on-write mapping.
1518	 */
1519	if (!(vma->vm_flags & VM_SHARED)) {
1520		mutex_unlock(&rdtgroup_mutex);
1521		return -EINVAL;
1522	}
1523
1524	if (vsize > psize) {
1525		mutex_unlock(&rdtgroup_mutex);
1526		return -ENOSPC;
1527	}
1528
1529	memset(plr->kmem + off, 0, vsize);
1530
1531	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1532			    vsize, vma->vm_page_prot)) {
1533		mutex_unlock(&rdtgroup_mutex);
1534		return -EAGAIN;
1535	}
1536	vma->vm_ops = &pseudo_mmap_ops;
1537	mutex_unlock(&rdtgroup_mutex);
1538	return 0;
1539}
1540
1541static const struct file_operations pseudo_lock_dev_fops = {
1542	.owner =	THIS_MODULE,
1543	.llseek =	no_llseek,
1544	.read =		NULL,
1545	.write =	NULL,
1546	.open =		pseudo_lock_dev_open,
1547	.release =	pseudo_lock_dev_release,
1548	.mmap =		pseudo_lock_dev_mmap,
1549};
1550
1551static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1552{
1553	struct rdtgroup *rdtgrp;
1554
1555	rdtgrp = dev_get_drvdata(dev);
1556	if (mode)
1557		*mode = 0600;
1558	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1559}
1560
1561int rdt_pseudo_lock_init(void)
1562{
1563	int ret;
1564
1565	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1566	if (ret < 0)
1567		return ret;
1568
1569	pseudo_lock_major = ret;
1570
1571	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1572	if (IS_ERR(pseudo_lock_class)) {
1573		ret = PTR_ERR(pseudo_lock_class);
1574		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1575		return ret;
1576	}
1577
1578	pseudo_lock_class->devnode = pseudo_lock_devnode;
1579	return 0;
1580}
1581
1582void rdt_pseudo_lock_release(void)
1583{
1584	class_destroy(pseudo_lock_class);
1585	pseudo_lock_class = NULL;
1586	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1587	pseudo_lock_major = 0;
1588}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Resource Director Technology (RDT)
   4 *
   5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
   6 *
   7 * Copyright (C) 2018 Intel Corporation
   8 *
   9 * Author: Reinette Chatre <reinette.chatre@intel.com>
  10 */
  11
  12#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  13
  14#include <linux/cacheinfo.h>
  15#include <linux/cpu.h>
  16#include <linux/cpumask.h>
  17#include <linux/debugfs.h>
  18#include <linux/kthread.h>
  19#include <linux/mman.h>
  20#include <linux/perf_event.h>
  21#include <linux/pm_qos.h>
  22#include <linux/slab.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/cacheflush.h>
  26#include <asm/intel-family.h>
  27#include <asm/resctrl.h>
  28#include <asm/perf_event.h>
  29
  30#include "../../events/perf_event.h" /* For X86_CONFIG() */
  31#include "internal.h"
  32
  33#define CREATE_TRACE_POINTS
  34#include "pseudo_lock_event.h"
  35
  36/*
  37 * The bits needed to disable hardware prefetching varies based on the
  38 * platform. During initialization we will discover which bits to use.
  39 */
  40static u64 prefetch_disable_bits;
  41
  42/*
  43 * Major number assigned to and shared by all devices exposing
  44 * pseudo-locked regions.
  45 */
  46static unsigned int pseudo_lock_major;
  47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
  48static struct class *pseudo_lock_class;
  49
  50/**
  51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
  52 * @void: It takes no parameters.
  53 *
  54 * Capture the list of platforms that have been validated to support
  55 * pseudo-locking. This includes testing to ensure pseudo-locked regions
  56 * with low cache miss rates can be created under variety of load conditions
  57 * as well as that these pseudo-locked regions can maintain their low cache
  58 * miss rates under variety of load conditions for significant lengths of time.
  59 *
  60 * After a platform has been validated to support pseudo-locking its
  61 * hardware prefetch disable bits are included here as they are documented
  62 * in the SDM.
  63 *
  64 * When adding a platform here also add support for its cache events to
  65 * measure_cycles_perf_fn()
  66 *
  67 * Return:
  68 * If platform is supported, the bits to disable hardware prefetchers, 0
  69 * if platform is not supported.
  70 */
  71static u64 get_prefetch_disable_bits(void)
  72{
  73	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
  74	    boot_cpu_data.x86 != 6)
  75		return 0;
  76
  77	switch (boot_cpu_data.x86_model) {
  78	case INTEL_FAM6_BROADWELL_X:
  79		/*
  80		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  81		 * as:
  82		 * 0    L2 Hardware Prefetcher Disable (R/W)
  83		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
  84		 * 2    DCU Hardware Prefetcher Disable (R/W)
  85		 * 3    DCU IP Prefetcher Disable (R/W)
  86		 * 63:4 Reserved
  87		 */
  88		return 0xF;
  89	case INTEL_FAM6_ATOM_GOLDMONT:
  90	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
  91		/*
  92		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  93		 * as:
  94		 * 0     L2 Hardware Prefetcher Disable (R/W)
  95		 * 1     Reserved
  96		 * 2     DCU Hardware Prefetcher Disable (R/W)
  97		 * 63:3  Reserved
  98		 */
  99		return 0x5;
 100	}
 101
 102	return 0;
 103}
 104
 105/**
 106 * pseudo_lock_minor_get - Obtain available minor number
 107 * @minor: Pointer to where new minor number will be stored
 108 *
 109 * A bitmask is used to track available minor numbers. Here the next free
 110 * minor number is marked as unavailable and returned.
 111 *
 112 * Return: 0 on success, <0 on failure.
 113 */
 114static int pseudo_lock_minor_get(unsigned int *minor)
 115{
 116	unsigned long first_bit;
 117
 118	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
 119
 120	if (first_bit == MINORBITS)
 121		return -ENOSPC;
 122
 123	__clear_bit(first_bit, &pseudo_lock_minor_avail);
 124	*minor = first_bit;
 125
 126	return 0;
 127}
 128
 129/**
 130 * pseudo_lock_minor_release - Return minor number to available
 131 * @minor: The minor number made available
 132 */
 133static void pseudo_lock_minor_release(unsigned int minor)
 134{
 135	__set_bit(minor, &pseudo_lock_minor_avail);
 136}
 137
 138/**
 139 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
 140 * @minor: The minor number of the device representing pseudo-locked region
 141 *
 142 * When the character device is accessed we need to determine which
 143 * pseudo-locked region it belongs to. This is done by matching the minor
 144 * number of the device to the pseudo-locked region it belongs.
 145 *
 146 * Minor numbers are assigned at the time a pseudo-locked region is associated
 147 * with a cache instance.
 148 *
 149 * Return: On success return pointer to resource group owning the pseudo-locked
 150 *         region, NULL on failure.
 151 */
 152static struct rdtgroup *region_find_by_minor(unsigned int minor)
 153{
 154	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
 155
 156	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 157		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
 158			rdtgrp_match = rdtgrp;
 159			break;
 160		}
 161	}
 162	return rdtgrp_match;
 163}
 164
 165/**
 166 * struct pseudo_lock_pm_req - A power management QoS request list entry
 167 * @list:	Entry within the @pm_reqs list for a pseudo-locked region
 168 * @req:	PM QoS request
 169 */
 170struct pseudo_lock_pm_req {
 171	struct list_head list;
 172	struct dev_pm_qos_request req;
 173};
 174
 175static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
 176{
 177	struct pseudo_lock_pm_req *pm_req, *next;
 178
 179	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
 180		dev_pm_qos_remove_request(&pm_req->req);
 181		list_del(&pm_req->list);
 182		kfree(pm_req);
 183	}
 184}
 185
 186/**
 187 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
 188 * @plr: Pseudo-locked region
 189 *
 190 * To prevent the cache from being affected by power management entering
 191 * C6 has to be avoided. This is accomplished by requesting a latency
 192 * requirement lower than lowest C6 exit latency of all supported
 193 * platforms as found in the cpuidle state tables in the intel_idle driver.
 194 * At this time it is possible to do so with a single latency requirement
 195 * for all supported platforms.
 196 *
 197 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
 198 * the ACPI latencies need to be considered while keeping in mind that C2
 199 * may be set to map to deeper sleep states. In this case the latency
 200 * requirement needs to prevent entering C2 also.
 201 *
 202 * Return: 0 on success, <0 on failure
 203 */
 204static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
 205{
 206	struct pseudo_lock_pm_req *pm_req;
 207	int cpu;
 208	int ret;
 209
 210	for_each_cpu(cpu, &plr->d->cpu_mask) {
 211		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
 212		if (!pm_req) {
 213			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
 214			ret = -ENOMEM;
 215			goto out_err;
 216		}
 217		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
 218					     &pm_req->req,
 219					     DEV_PM_QOS_RESUME_LATENCY,
 220					     30);
 221		if (ret < 0) {
 222			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
 223					    cpu);
 224			kfree(pm_req);
 225			ret = -1;
 226			goto out_err;
 227		}
 228		list_add(&pm_req->list, &plr->pm_reqs);
 229	}
 230
 231	return 0;
 232
 233out_err:
 234	pseudo_lock_cstates_relax(plr);
 235	return ret;
 236}
 237
 238/**
 239 * pseudo_lock_region_clear - Reset pseudo-lock region data
 240 * @plr: pseudo-lock region
 241 *
 242 * All content of the pseudo-locked region is reset - any memory allocated
 243 * freed.
 244 *
 245 * Return: void
 246 */
 247static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
 248{
 249	plr->size = 0;
 250	plr->line_size = 0;
 251	kfree(plr->kmem);
 252	plr->kmem = NULL;
 253	plr->s = NULL;
 254	if (plr->d)
 255		plr->d->plr = NULL;
 256	plr->d = NULL;
 257	plr->cbm = 0;
 258	plr->debugfs_dir = NULL;
 259}
 260
 261/**
 262 * pseudo_lock_region_init - Initialize pseudo-lock region information
 263 * @plr: pseudo-lock region
 264 *
 265 * Called after user provided a schemata to be pseudo-locked. From the
 266 * schemata the &struct pseudo_lock_region is on entry already initialized
 267 * with the resource, domain, and capacity bitmask. Here the information
 268 * required for pseudo-locking is deduced from this data and &struct
 269 * pseudo_lock_region initialized further. This information includes:
 270 * - size in bytes of the region to be pseudo-locked
 271 * - cache line size to know the stride with which data needs to be accessed
 272 *   to be pseudo-locked
 273 * - a cpu associated with the cache instance on which the pseudo-locking
 274 *   flow can be executed
 275 *
 276 * Return: 0 on success, <0 on failure. Descriptive error will be written
 277 * to last_cmd_status buffer.
 278 */
 279static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
 280{
 281	struct cpu_cacheinfo *ci;
 282	int ret;
 283	int i;
 284
 285	/* Pick the first cpu we find that is associated with the cache. */
 286	plr->cpu = cpumask_first(&plr->d->cpu_mask);
 287
 288	if (!cpu_online(plr->cpu)) {
 289		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
 290				    plr->cpu);
 291		ret = -ENODEV;
 292		goto out_region;
 293	}
 294
 295	ci = get_cpu_cacheinfo(plr->cpu);
 296
 297	plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
 298
 299	for (i = 0; i < ci->num_leaves; i++) {
 300		if (ci->info_list[i].level == plr->s->res->cache_level) {
 301			plr->line_size = ci->info_list[i].coherency_line_size;
 302			return 0;
 303		}
 304	}
 305
 306	ret = -1;
 307	rdt_last_cmd_puts("Unable to determine cache line size\n");
 308out_region:
 309	pseudo_lock_region_clear(plr);
 310	return ret;
 311}
 312
 313/**
 314 * pseudo_lock_init - Initialize a pseudo-lock region
 315 * @rdtgrp: resource group to which new pseudo-locked region will belong
 316 *
 317 * A pseudo-locked region is associated with a resource group. When this
 318 * association is created the pseudo-locked region is initialized. The
 319 * details of the pseudo-locked region are not known at this time so only
 320 * allocation is done and association established.
 321 *
 322 * Return: 0 on success, <0 on failure
 323 */
 324static int pseudo_lock_init(struct rdtgroup *rdtgrp)
 325{
 326	struct pseudo_lock_region *plr;
 327
 328	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
 329	if (!plr)
 330		return -ENOMEM;
 331
 332	init_waitqueue_head(&plr->lock_thread_wq);
 333	INIT_LIST_HEAD(&plr->pm_reqs);
 334	rdtgrp->plr = plr;
 335	return 0;
 336}
 337
 338/**
 339 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
 340 * @plr: pseudo-lock region
 341 *
 342 * Initialize the details required to set up the pseudo-locked region and
 343 * allocate the contiguous memory that will be pseudo-locked to the cache.
 344 *
 345 * Return: 0 on success, <0 on failure.  Descriptive error will be written
 346 * to last_cmd_status buffer.
 347 */
 348static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
 349{
 350	int ret;
 351
 352	ret = pseudo_lock_region_init(plr);
 353	if (ret < 0)
 354		return ret;
 355
 356	/*
 357	 * We do not yet support contiguous regions larger than
 358	 * KMALLOC_MAX_SIZE.
 359	 */
 360	if (plr->size > KMALLOC_MAX_SIZE) {
 361		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
 362		ret = -E2BIG;
 363		goto out_region;
 364	}
 365
 366	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
 367	if (!plr->kmem) {
 368		rdt_last_cmd_puts("Unable to allocate memory\n");
 369		ret = -ENOMEM;
 370		goto out_region;
 371	}
 372
 373	ret = 0;
 374	goto out;
 375out_region:
 376	pseudo_lock_region_clear(plr);
 377out:
 378	return ret;
 379}
 380
 381/**
 382 * pseudo_lock_free - Free a pseudo-locked region
 383 * @rdtgrp: resource group to which pseudo-locked region belonged
 384 *
 385 * The pseudo-locked region's resources have already been released, or not
 386 * yet created at this point. Now it can be freed and disassociated from the
 387 * resource group.
 388 *
 389 * Return: void
 390 */
 391static void pseudo_lock_free(struct rdtgroup *rdtgrp)
 392{
 393	pseudo_lock_region_clear(rdtgrp->plr);
 394	kfree(rdtgrp->plr);
 395	rdtgrp->plr = NULL;
 396}
 397
 398/**
 399 * pseudo_lock_fn - Load kernel memory into cache
 400 * @_rdtgrp: resource group to which pseudo-lock region belongs
 401 *
 402 * This is the core pseudo-locking flow.
 403 *
 404 * First we ensure that the kernel memory cannot be found in the cache.
 405 * Then, while taking care that there will be as little interference as
 406 * possible, the memory to be loaded is accessed while core is running
 407 * with class of service set to the bitmask of the pseudo-locked region.
 408 * After this is complete no future CAT allocations will be allowed to
 409 * overlap with this bitmask.
 410 *
 411 * Local register variables are utilized to ensure that the memory region
 412 * to be locked is the only memory access made during the critical locking
 413 * loop.
 414 *
 415 * Return: 0. Waiter on waitqueue will be woken on completion.
 416 */
 417static int pseudo_lock_fn(void *_rdtgrp)
 418{
 419	struct rdtgroup *rdtgrp = _rdtgrp;
 420	struct pseudo_lock_region *plr = rdtgrp->plr;
 421	u32 rmid_p, closid_p;
 422	unsigned long i;
 423	u64 saved_msr;
 424#ifdef CONFIG_KASAN
 425	/*
 426	 * The registers used for local register variables are also used
 427	 * when KASAN is active. When KASAN is active we use a regular
 428	 * variable to ensure we always use a valid pointer, but the cost
 429	 * is that this variable will enter the cache through evicting the
 430	 * memory we are trying to lock into the cache. Thus expect lower
 431	 * pseudo-locking success rate when KASAN is active.
 432	 */
 433	unsigned int line_size;
 434	unsigned int size;
 435	void *mem_r;
 436#else
 437	register unsigned int line_size asm("esi");
 438	register unsigned int size asm("edi");
 439	register void *mem_r asm(_ASM_BX);
 440#endif /* CONFIG_KASAN */
 441
 442	/*
 443	 * Make sure none of the allocated memory is cached. If it is we
 444	 * will get a cache hit in below loop from outside of pseudo-locked
 445	 * region.
 446	 * wbinvd (as opposed to clflush/clflushopt) is required to
 447	 * increase likelihood that allocated cache portion will be filled
 448	 * with associated memory.
 449	 */
 450	native_wbinvd();
 451
 452	/*
 453	 * Always called with interrupts enabled. By disabling interrupts
 454	 * ensure that we will not be preempted during this critical section.
 455	 */
 456	local_irq_disable();
 457
 458	/*
 459	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
 460	 * clobbering local register variables or affecting cache accesses.
 461	 *
 462	 * Disable the hardware prefetcher so that when the end of the memory
 463	 * being pseudo-locked is reached the hardware will not read beyond
 464	 * the buffer and evict pseudo-locked memory read earlier from the
 465	 * cache.
 466	 */
 467	saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
 468	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 469	closid_p = this_cpu_read(pqr_state.cur_closid);
 470	rmid_p = this_cpu_read(pqr_state.cur_rmid);
 471	mem_r = plr->kmem;
 472	size = plr->size;
 473	line_size = plr->line_size;
 474	/*
 475	 * Critical section begin: start by writing the closid associated
 476	 * with the capacity bitmask of the cache region being
 477	 * pseudo-locked followed by reading of kernel memory to load it
 478	 * into the cache.
 479	 */
 480	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
 481	/*
 482	 * Cache was flushed earlier. Now access kernel memory to read it
 483	 * into cache region associated with just activated plr->closid.
 484	 * Loop over data twice:
 485	 * - In first loop the cache region is shared with the page walker
 486	 *   as it populates the paging structure caches (including TLB).
 487	 * - In the second loop the paging structure caches are used and
 488	 *   cache region is populated with the memory being referenced.
 489	 */
 490	for (i = 0; i < size; i += PAGE_SIZE) {
 491		/*
 492		 * Add a barrier to prevent speculative execution of this
 493		 * loop reading beyond the end of the buffer.
 494		 */
 495		rmb();
 496		asm volatile("mov (%0,%1,1), %%eax\n\t"
 497			:
 498			: "r" (mem_r), "r" (i)
 499			: "%eax", "memory");
 500	}
 501	for (i = 0; i < size; i += line_size) {
 502		/*
 503		 * Add a barrier to prevent speculative execution of this
 504		 * loop reading beyond the end of the buffer.
 505		 */
 506		rmb();
 507		asm volatile("mov (%0,%1,1), %%eax\n\t"
 508			:
 509			: "r" (mem_r), "r" (i)
 510			: "%eax", "memory");
 511	}
 512	/*
 513	 * Critical section end: restore closid with capacity bitmask that
 514	 * does not overlap with pseudo-locked region.
 515	 */
 516	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
 517
 518	/* Re-enable the hardware prefetcher(s) */
 519	wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
 520	local_irq_enable();
 521
 522	plr->thread_done = 1;
 523	wake_up_interruptible(&plr->lock_thread_wq);
 524	return 0;
 525}
 526
 527/**
 528 * rdtgroup_monitor_in_progress - Test if monitoring in progress
 529 * @rdtgrp: resource group being queried
 530 *
 531 * Return: 1 if monitor groups have been created for this resource
 532 * group, 0 otherwise.
 533 */
 534static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
 535{
 536	return !list_empty(&rdtgrp->mon.crdtgrp_list);
 537}
 538
 539/**
 540 * rdtgroup_locksetup_user_restrict - Restrict user access to group
 541 * @rdtgrp: resource group needing access restricted
 542 *
 543 * A resource group used for cache pseudo-locking cannot have cpus or tasks
 544 * assigned to it. This is communicated to the user by restricting access
 545 * to all the files that can be used to make such changes.
 546 *
 547 * Permissions restored with rdtgroup_locksetup_user_restore()
 548 *
 549 * Return: 0 on success, <0 on failure. If a failure occurs during the
 550 * restriction of access an attempt will be made to restore permissions but
 551 * the state of the mode of these files will be uncertain when a failure
 552 * occurs.
 553 */
 554static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
 555{
 556	int ret;
 557
 558	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 559	if (ret)
 560		return ret;
 561
 562	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 563	if (ret)
 564		goto err_tasks;
 565
 566	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 567	if (ret)
 568		goto err_cpus;
 569
 570	if (rdt_mon_capable) {
 571		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
 572		if (ret)
 573			goto err_cpus_list;
 574	}
 575
 576	ret = 0;
 577	goto out;
 578
 579err_cpus_list:
 580	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 581err_cpus:
 582	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 583err_tasks:
 584	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 585out:
 586	return ret;
 587}
 588
 589/**
 590 * rdtgroup_locksetup_user_restore - Restore user access to group
 591 * @rdtgrp: resource group needing access restored
 592 *
 593 * Restore all file access previously removed using
 594 * rdtgroup_locksetup_user_restrict()
 595 *
 596 * Return: 0 on success, <0 on failure.  If a failure occurs during the
 597 * restoration of access an attempt will be made to restrict permissions
 598 * again but the state of the mode of these files will be uncertain when
 599 * a failure occurs.
 600 */
 601static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
 602{
 603	int ret;
 604
 605	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 606	if (ret)
 607		return ret;
 608
 609	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 610	if (ret)
 611		goto err_tasks;
 612
 613	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 614	if (ret)
 615		goto err_cpus;
 616
 617	if (rdt_mon_capable) {
 618		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
 619		if (ret)
 620			goto err_cpus_list;
 621	}
 622
 623	ret = 0;
 624	goto out;
 625
 626err_cpus_list:
 627	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 628err_cpus:
 629	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 630err_tasks:
 631	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 632out:
 633	return ret;
 634}
 635
 636/**
 637 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
 638 * @rdtgrp: resource group requested to enter locksetup mode
 639 *
 640 * A resource group enters locksetup mode to reflect that it would be used
 641 * to represent a pseudo-locked region and is in the process of being set
 642 * up to do so. A resource group used for a pseudo-locked region would
 643 * lose the closid associated with it so we cannot allow it to have any
 644 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
 645 * future. Monitoring of a pseudo-locked region is not allowed either.
 646 *
 647 * The above and more restrictions on a pseudo-locked region are checked
 648 * for and enforced before the resource group enters the locksetup mode.
 649 *
 650 * Returns: 0 if the resource group successfully entered locksetup mode, <0
 651 * on failure. On failure the last_cmd_status buffer is updated with text to
 652 * communicate details of failure to the user.
 653 */
 654int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 655{
 656	int ret;
 657
 658	/*
 659	 * The default resource group can neither be removed nor lose the
 660	 * default closid associated with it.
 661	 */
 662	if (rdtgrp == &rdtgroup_default) {
 663		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
 664		return -EINVAL;
 665	}
 666
 667	/*
 668	 * Cache Pseudo-locking not supported when CDP is enabled.
 669	 *
 670	 * Some things to consider if you would like to enable this
 671	 * support (using L3 CDP as example):
 672	 * - When CDP is enabled two separate resources are exposed,
 673	 *   L3DATA and L3CODE, but they are actually on the same cache.
 674	 *   The implication for pseudo-locking is that if a
 675	 *   pseudo-locked region is created on a domain of one
 676	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
 677	 *   be created on that same domain of the other resource
 678	 *   (eg. L3DATA). This is because the creation of a
 679	 *   pseudo-locked region involves a call to wbinvd that will
 680	 *   affect all cache allocations on particular domain.
 681	 * - Considering the previous, it may be possible to only
 682	 *   expose one of the CDP resources to pseudo-locking and
 683	 *   hide the other. For example, we could consider to only
 684	 *   expose L3DATA and since the L3 cache is unified it is
 685	 *   still possible to place instructions there are execute it.
 686	 * - If only one region is exposed to pseudo-locking we should
 687	 *   still keep in mind that availability of a portion of cache
 688	 *   for pseudo-locking should take into account both resources.
 689	 *   Similarly, if a pseudo-locked region is created in one
 690	 *   resource, the portion of cache used by it should be made
 691	 *   unavailable to all future allocations from both resources.
 692	 */
 693	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
 694	    resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
 695		rdt_last_cmd_puts("CDP enabled\n");
 696		return -EINVAL;
 697	}
 698
 699	/*
 700	 * Not knowing the bits to disable prefetching implies that this
 701	 * platform does not support Cache Pseudo-Locking.
 702	 */
 703	prefetch_disable_bits = get_prefetch_disable_bits();
 704	if (prefetch_disable_bits == 0) {
 705		rdt_last_cmd_puts("Pseudo-locking not supported\n");
 706		return -EINVAL;
 707	}
 708
 709	if (rdtgroup_monitor_in_progress(rdtgrp)) {
 710		rdt_last_cmd_puts("Monitoring in progress\n");
 711		return -EINVAL;
 712	}
 713
 714	if (rdtgroup_tasks_assigned(rdtgrp)) {
 715		rdt_last_cmd_puts("Tasks assigned to resource group\n");
 716		return -EINVAL;
 717	}
 718
 719	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
 720		rdt_last_cmd_puts("CPUs assigned to resource group\n");
 721		return -EINVAL;
 722	}
 723
 724	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
 725		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
 726		return -EIO;
 727	}
 728
 729	ret = pseudo_lock_init(rdtgrp);
 730	if (ret) {
 731		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
 732		goto out_release;
 733	}
 734
 735	/*
 736	 * If this system is capable of monitoring a rmid would have been
 737	 * allocated when the control group was created. This is not needed
 738	 * anymore when this group would be used for pseudo-locking. This
 739	 * is safe to call on platforms not capable of monitoring.
 740	 */
 741	free_rmid(rdtgrp->mon.rmid);
 742
 743	ret = 0;
 744	goto out;
 745
 746out_release:
 747	rdtgroup_locksetup_user_restore(rdtgrp);
 748out:
 749	return ret;
 750}
 751
 752/**
 753 * rdtgroup_locksetup_exit - resource group exist locksetup mode
 754 * @rdtgrp: resource group
 755 *
 756 * When a resource group exits locksetup mode the earlier restrictions are
 757 * lifted.
 758 *
 759 * Return: 0 on success, <0 on failure
 760 */
 761int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
 762{
 763	int ret;
 764
 765	if (rdt_mon_capable) {
 766		ret = alloc_rmid();
 767		if (ret < 0) {
 768			rdt_last_cmd_puts("Out of RMIDs\n");
 769			return ret;
 770		}
 771		rdtgrp->mon.rmid = ret;
 772	}
 773
 774	ret = rdtgroup_locksetup_user_restore(rdtgrp);
 775	if (ret) {
 776		free_rmid(rdtgrp->mon.rmid);
 777		return ret;
 778	}
 779
 780	pseudo_lock_free(rdtgrp);
 781	return 0;
 782}
 783
 784/**
 785 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
 786 * @d: RDT domain
 787 * @cbm: CBM to test
 788 *
 789 * @d represents a cache instance and @cbm a capacity bitmask that is
 790 * considered for it. Determine if @cbm overlaps with any existing
 791 * pseudo-locked region on @d.
 792 *
 793 * @cbm is unsigned long, even if only 32 bits are used, to make the
 794 * bitmap functions work correctly.
 795 *
 796 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
 797 * otherwise.
 798 */
 799bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
 800{
 801	unsigned int cbm_len;
 802	unsigned long cbm_b;
 803
 804	if (d->plr) {
 805		cbm_len = d->plr->s->res->cache.cbm_len;
 806		cbm_b = d->plr->cbm;
 807		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
 808			return true;
 809	}
 810	return false;
 811}
 812
 813/**
 814 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
 815 * @d: RDT domain under test
 816 *
 817 * The setup of a pseudo-locked region affects all cache instances within
 818 * the hierarchy of the region. It is thus essential to know if any
 819 * pseudo-locked regions exist within a cache hierarchy to prevent any
 820 * attempts to create new pseudo-locked regions in the same hierarchy.
 821 *
 822 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
 823 *         if it is not possible to test due to memory allocation issue,
 824 *         false otherwise.
 825 */
 826bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
 827{
 828	cpumask_var_t cpu_with_psl;
 829	struct rdt_resource *r;
 830	struct rdt_domain *d_i;
 831	bool ret = false;
 832
 833	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
 834		return true;
 835
 836	/*
 837	 * First determine which cpus have pseudo-locked regions
 838	 * associated with them.
 839	 */
 840	for_each_alloc_capable_rdt_resource(r) {
 841		list_for_each_entry(d_i, &r->domains, list) {
 842			if (d_i->plr)
 843				cpumask_or(cpu_with_psl, cpu_with_psl,
 844					   &d_i->cpu_mask);
 845		}
 846	}
 847
 848	/*
 849	 * Next test if new pseudo-locked region would intersect with
 850	 * existing region.
 851	 */
 852	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
 853		ret = true;
 854
 855	free_cpumask_var(cpu_with_psl);
 856	return ret;
 857}
 858
 859/**
 860 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
 861 * @_plr: pseudo-lock region to measure
 862 *
 863 * There is no deterministic way to test if a memory region is cached. One
 864 * way is to measure how long it takes to read the memory, the speed of
 865 * access is a good way to learn how close to the cpu the data was. Even
 866 * more, if the prefetcher is disabled and the memory is read at a stride
 867 * of half the cache line, then a cache miss will be easy to spot since the
 868 * read of the first half would be significantly slower than the read of
 869 * the second half.
 870 *
 871 * Return: 0. Waiter on waitqueue will be woken on completion.
 872 */
 873static int measure_cycles_lat_fn(void *_plr)
 874{
 875	struct pseudo_lock_region *plr = _plr;
 876	u32 saved_low, saved_high;
 877	unsigned long i;
 878	u64 start, end;
 879	void *mem_r;
 880
 881	local_irq_disable();
 882	/*
 883	 * Disable hardware prefetchers.
 884	 */
 885	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
 886	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 887	mem_r = READ_ONCE(plr->kmem);
 888	/*
 889	 * Dummy execute of the time measurement to load the needed
 890	 * instructions into the L1 instruction cache.
 891	 */
 892	start = rdtsc_ordered();
 893	for (i = 0; i < plr->size; i += 32) {
 894		start = rdtsc_ordered();
 895		asm volatile("mov (%0,%1,1), %%eax\n\t"
 896			     :
 897			     : "r" (mem_r), "r" (i)
 898			     : "%eax", "memory");
 899		end = rdtsc_ordered();
 900		trace_pseudo_lock_mem_latency((u32)(end - start));
 901	}
 902	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
 903	local_irq_enable();
 904	plr->thread_done = 1;
 905	wake_up_interruptible(&plr->lock_thread_wq);
 906	return 0;
 907}
 908
 909/*
 910 * Create a perf_event_attr for the hit and miss perf events that will
 911 * be used during the performance measurement. A perf_event maintains
 912 * a pointer to its perf_event_attr so a unique attribute structure is
 913 * created for each perf_event.
 914 *
 915 * The actual configuration of the event is set right before use in order
 916 * to use the X86_CONFIG macro.
 917 */
 918static struct perf_event_attr perf_miss_attr = {
 919	.type		= PERF_TYPE_RAW,
 920	.size		= sizeof(struct perf_event_attr),
 921	.pinned		= 1,
 922	.disabled	= 0,
 923	.exclude_user	= 1,
 924};
 925
 926static struct perf_event_attr perf_hit_attr = {
 927	.type		= PERF_TYPE_RAW,
 928	.size		= sizeof(struct perf_event_attr),
 929	.pinned		= 1,
 930	.disabled	= 0,
 931	.exclude_user	= 1,
 932};
 933
 934struct residency_counts {
 935	u64 miss_before, hits_before;
 936	u64 miss_after,  hits_after;
 937};
 938
 939static int measure_residency_fn(struct perf_event_attr *miss_attr,
 940				struct perf_event_attr *hit_attr,
 941				struct pseudo_lock_region *plr,
 942				struct residency_counts *counts)
 943{
 944	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
 945	struct perf_event *miss_event, *hit_event;
 946	int hit_pmcnum, miss_pmcnum;
 947	u32 saved_low, saved_high;
 948	unsigned int line_size;
 949	unsigned int size;
 950	unsigned long i;
 951	void *mem_r;
 952	u64 tmp;
 953
 954	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
 955						      NULL, NULL, NULL);
 956	if (IS_ERR(miss_event))
 957		goto out;
 958
 959	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
 960						     NULL, NULL, NULL);
 961	if (IS_ERR(hit_event))
 962		goto out_miss;
 963
 964	local_irq_disable();
 965	/*
 966	 * Check any possible error state of events used by performing
 967	 * one local read.
 968	 */
 969	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
 970		local_irq_enable();
 971		goto out_hit;
 972	}
 973	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
 974		local_irq_enable();
 975		goto out_hit;
 976	}
 977
 978	/*
 979	 * Disable hardware prefetchers.
 980	 */
 981	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
 982	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 983
 984	/* Initialize rest of local variables */
 985	/*
 986	 * Performance event has been validated right before this with
 987	 * interrupts disabled - it is thus safe to read the counter index.
 988	 */
 989	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
 990	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
 991	line_size = READ_ONCE(plr->line_size);
 992	mem_r = READ_ONCE(plr->kmem);
 993	size = READ_ONCE(plr->size);
 994
 995	/*
 996	 * Read counter variables twice - first to load the instructions
 997	 * used in L1 cache, second to capture accurate value that does not
 998	 * include cache misses incurred because of instruction loads.
 999	 */
1000	rdpmcl(hit_pmcnum, hits_before);
1001	rdpmcl(miss_pmcnum, miss_before);
1002	/*
1003	 * From SDM: Performing back-to-back fast reads are not guaranteed
1004	 * to be monotonic.
1005	 * Use LFENCE to ensure all previous instructions are retired
1006	 * before proceeding.
1007	 */
1008	rmb();
1009	rdpmcl(hit_pmcnum, hits_before);
1010	rdpmcl(miss_pmcnum, miss_before);
1011	/*
1012	 * Use LFENCE to ensure all previous instructions are retired
1013	 * before proceeding.
1014	 */
1015	rmb();
1016	for (i = 0; i < size; i += line_size) {
1017		/*
1018		 * Add a barrier to prevent speculative execution of this
1019		 * loop reading beyond the end of the buffer.
1020		 */
1021		rmb();
1022		asm volatile("mov (%0,%1,1), %%eax\n\t"
1023			     :
1024			     : "r" (mem_r), "r" (i)
1025			     : "%eax", "memory");
1026	}
1027	/*
1028	 * Use LFENCE to ensure all previous instructions are retired
1029	 * before proceeding.
1030	 */
1031	rmb();
1032	rdpmcl(hit_pmcnum, hits_after);
1033	rdpmcl(miss_pmcnum, miss_after);
1034	/*
1035	 * Use LFENCE to ensure all previous instructions are retired
1036	 * before proceeding.
1037	 */
1038	rmb();
1039	/* Re-enable hardware prefetchers */
1040	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1041	local_irq_enable();
1042out_hit:
1043	perf_event_release_kernel(hit_event);
1044out_miss:
1045	perf_event_release_kernel(miss_event);
1046out:
1047	/*
1048	 * All counts will be zero on failure.
1049	 */
1050	counts->miss_before = miss_before;
1051	counts->hits_before = hits_before;
1052	counts->miss_after  = miss_after;
1053	counts->hits_after  = hits_after;
1054	return 0;
1055}
1056
1057static int measure_l2_residency(void *_plr)
1058{
1059	struct pseudo_lock_region *plr = _plr;
1060	struct residency_counts counts = {0};
1061
1062	/*
1063	 * Non-architectural event for the Goldmont Microarchitecture
1064	 * from Intel x86 Architecture Software Developer Manual (SDM):
1065	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1066	 * Umask values:
1067	 *     L2_HIT   02H
1068	 *     L2_MISS  10H
1069	 */
1070	switch (boot_cpu_data.x86_model) {
1071	case INTEL_FAM6_ATOM_GOLDMONT:
1072	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1073		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1074						   .umask = 0x10);
1075		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1076						  .umask = 0x2);
1077		break;
1078	default:
1079		goto out;
1080	}
1081
1082	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1083	/*
1084	 * If a failure prevented the measurements from succeeding
1085	 * tracepoints will still be written and all counts will be zero.
1086	 */
1087	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1088			     counts.miss_after - counts.miss_before);
1089out:
1090	plr->thread_done = 1;
1091	wake_up_interruptible(&plr->lock_thread_wq);
1092	return 0;
1093}
1094
1095static int measure_l3_residency(void *_plr)
1096{
1097	struct pseudo_lock_region *plr = _plr;
1098	struct residency_counts counts = {0};
1099
1100	/*
1101	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1102	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1103	 * this platform the following events are used instead:
1104	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1105	 *       REFERENCE 4FH
1106	 *       MISS      41H
1107	 */
1108
1109	switch (boot_cpu_data.x86_model) {
1110	case INTEL_FAM6_BROADWELL_X:
1111		/* On BDW the hit event counts references, not hits */
1112		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1113						  .umask = 0x4f);
1114		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1115						   .umask = 0x41);
1116		break;
1117	default:
1118		goto out;
1119	}
1120
1121	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1122	/*
1123	 * If a failure prevented the measurements from succeeding
1124	 * tracepoints will still be written and all counts will be zero.
1125	 */
1126
1127	counts.miss_after -= counts.miss_before;
1128	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1129		/*
1130		 * On BDW references and misses are counted, need to adjust.
1131		 * Sometimes the "hits" counter is a bit more than the
1132		 * references, for example, x references but x + 1 hits.
1133		 * To not report invalid hit values in this case we treat
1134		 * that as misses equal to references.
1135		 */
1136		/* First compute the number of cache references measured */
1137		counts.hits_after -= counts.hits_before;
1138		/* Next convert references to cache hits */
1139		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1140	} else {
1141		counts.hits_after -= counts.hits_before;
1142	}
1143
1144	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1145out:
1146	plr->thread_done = 1;
1147	wake_up_interruptible(&plr->lock_thread_wq);
1148	return 0;
1149}
1150
1151/**
1152 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1153 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1154 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1155 *
1156 * The measurement of latency to access a pseudo-locked region should be
1157 * done from a cpu that is associated with that pseudo-locked region.
1158 * Determine which cpu is associated with this region and start a thread on
1159 * that cpu to perform the measurement, wait for that thread to complete.
1160 *
1161 * Return: 0 on success, <0 on failure
1162 */
1163static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1164{
1165	struct pseudo_lock_region *plr = rdtgrp->plr;
1166	struct task_struct *thread;
1167	unsigned int cpu;
1168	int ret = -1;
1169
1170	cpus_read_lock();
1171	mutex_lock(&rdtgroup_mutex);
1172
1173	if (rdtgrp->flags & RDT_DELETED) {
1174		ret = -ENODEV;
1175		goto out;
1176	}
1177
1178	if (!plr->d) {
1179		ret = -ENODEV;
1180		goto out;
1181	}
1182
1183	plr->thread_done = 0;
1184	cpu = cpumask_first(&plr->d->cpu_mask);
1185	if (!cpu_online(cpu)) {
1186		ret = -ENODEV;
1187		goto out;
1188	}
1189
1190	plr->cpu = cpu;
1191
1192	if (sel == 1)
1193		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1194						cpu_to_node(cpu),
1195						"pseudo_lock_measure/%u",
1196						cpu);
1197	else if (sel == 2)
1198		thread = kthread_create_on_node(measure_l2_residency, plr,
1199						cpu_to_node(cpu),
1200						"pseudo_lock_measure/%u",
1201						cpu);
1202	else if (sel == 3)
1203		thread = kthread_create_on_node(measure_l3_residency, plr,
1204						cpu_to_node(cpu),
1205						"pseudo_lock_measure/%u",
1206						cpu);
1207	else
1208		goto out;
1209
1210	if (IS_ERR(thread)) {
1211		ret = PTR_ERR(thread);
1212		goto out;
1213	}
1214	kthread_bind(thread, cpu);
1215	wake_up_process(thread);
1216
1217	ret = wait_event_interruptible(plr->lock_thread_wq,
1218				       plr->thread_done == 1);
1219	if (ret < 0)
1220		goto out;
1221
1222	ret = 0;
1223
1224out:
1225	mutex_unlock(&rdtgroup_mutex);
1226	cpus_read_unlock();
1227	return ret;
1228}
1229
1230static ssize_t pseudo_lock_measure_trigger(struct file *file,
1231					   const char __user *user_buf,
1232					   size_t count, loff_t *ppos)
1233{
1234	struct rdtgroup *rdtgrp = file->private_data;
1235	size_t buf_size;
1236	char buf[32];
1237	int ret;
1238	int sel;
1239
1240	buf_size = min(count, (sizeof(buf) - 1));
1241	if (copy_from_user(buf, user_buf, buf_size))
1242		return -EFAULT;
1243
1244	buf[buf_size] = '\0';
1245	ret = kstrtoint(buf, 10, &sel);
1246	if (ret == 0) {
1247		if (sel != 1 && sel != 2 && sel != 3)
1248			return -EINVAL;
1249		ret = debugfs_file_get(file->f_path.dentry);
1250		if (ret)
1251			return ret;
1252		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1253		if (ret == 0)
1254			ret = count;
1255		debugfs_file_put(file->f_path.dentry);
1256	}
1257
1258	return ret;
1259}
1260
1261static const struct file_operations pseudo_measure_fops = {
1262	.write = pseudo_lock_measure_trigger,
1263	.open = simple_open,
1264	.llseek = default_llseek,
1265};
1266
1267/**
1268 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1269 * @rdtgrp: resource group to which pseudo-lock region belongs
1270 *
1271 * Called when a resource group in the pseudo-locksetup mode receives a
1272 * valid schemata that should be pseudo-locked. Since the resource group is
1273 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1274 * allocated and initialized with the essential information. If a failure
1275 * occurs the resource group remains in the pseudo-locksetup mode with the
1276 * &struct pseudo_lock_region associated with it, but cleared from all
1277 * information and ready for the user to re-attempt pseudo-locking by
1278 * writing the schemata again.
1279 *
1280 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1281 * on failure. Descriptive error will be written to last_cmd_status buffer.
1282 */
1283int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1284{
1285	struct pseudo_lock_region *plr = rdtgrp->plr;
1286	struct task_struct *thread;
1287	unsigned int new_minor;
1288	struct device *dev;
1289	int ret;
1290
1291	ret = pseudo_lock_region_alloc(plr);
1292	if (ret < 0)
1293		return ret;
1294
1295	ret = pseudo_lock_cstates_constrain(plr);
1296	if (ret < 0) {
1297		ret = -EINVAL;
1298		goto out_region;
1299	}
1300
1301	plr->thread_done = 0;
1302
1303	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1304					cpu_to_node(plr->cpu),
1305					"pseudo_lock/%u", plr->cpu);
1306	if (IS_ERR(thread)) {
1307		ret = PTR_ERR(thread);
1308		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1309		goto out_cstates;
1310	}
1311
1312	kthread_bind(thread, plr->cpu);
1313	wake_up_process(thread);
1314
1315	ret = wait_event_interruptible(plr->lock_thread_wq,
1316				       plr->thread_done == 1);
1317	if (ret < 0) {
1318		/*
1319		 * If the thread does not get on the CPU for whatever
1320		 * reason and the process which sets up the region is
1321		 * interrupted then this will leave the thread in runnable
1322		 * state and once it gets on the CPU it will dereference
1323		 * the cleared, but not freed, plr struct resulting in an
1324		 * empty pseudo-locking loop.
1325		 */
1326		rdt_last_cmd_puts("Locking thread interrupted\n");
1327		goto out_cstates;
1328	}
1329
1330	ret = pseudo_lock_minor_get(&new_minor);
1331	if (ret < 0) {
1332		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1333		goto out_cstates;
1334	}
1335
1336	/*
1337	 * Unlock access but do not release the reference. The
1338	 * pseudo-locked region will still be here on return.
1339	 *
1340	 * The mutex has to be released temporarily to avoid a potential
1341	 * deadlock with the mm->mmap_lock which is obtained in the
1342	 * device_create() and debugfs_create_dir() callpath below as well as
1343	 * before the mmap() callback is called.
1344	 */
1345	mutex_unlock(&rdtgroup_mutex);
1346
1347	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1348		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1349						      debugfs_resctrl);
1350		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1351			debugfs_create_file("pseudo_lock_measure", 0200,
1352					    plr->debugfs_dir, rdtgrp,
1353					    &pseudo_measure_fops);
1354	}
1355
1356	dev = device_create(pseudo_lock_class, NULL,
1357			    MKDEV(pseudo_lock_major, new_minor),
1358			    rdtgrp, "%s", rdtgrp->kn->name);
1359
1360	mutex_lock(&rdtgroup_mutex);
1361
1362	if (IS_ERR(dev)) {
1363		ret = PTR_ERR(dev);
1364		rdt_last_cmd_printf("Failed to create character device: %d\n",
1365				    ret);
1366		goto out_debugfs;
1367	}
1368
1369	/* We released the mutex - check if group was removed while we did so */
1370	if (rdtgrp->flags & RDT_DELETED) {
1371		ret = -ENODEV;
1372		goto out_device;
1373	}
1374
1375	plr->minor = new_minor;
1376
1377	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1378	closid_free(rdtgrp->closid);
1379	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1380	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1381
1382	ret = 0;
1383	goto out;
1384
1385out_device:
1386	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1387out_debugfs:
1388	debugfs_remove_recursive(plr->debugfs_dir);
1389	pseudo_lock_minor_release(new_minor);
1390out_cstates:
1391	pseudo_lock_cstates_relax(plr);
1392out_region:
1393	pseudo_lock_region_clear(plr);
1394out:
1395	return ret;
1396}
1397
1398/**
1399 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1400 * @rdtgrp: resource group to which the pseudo-locked region belongs
1401 *
1402 * The removal of a pseudo-locked region can be initiated when the resource
1403 * group is removed from user space via a "rmdir" from userspace or the
1404 * unmount of the resctrl filesystem. On removal the resource group does
1405 * not go back to pseudo-locksetup mode before it is removed, instead it is
1406 * removed directly. There is thus asymmetry with the creation where the
1407 * &struct pseudo_lock_region is removed here while it was not created in
1408 * rdtgroup_pseudo_lock_create().
1409 *
1410 * Return: void
1411 */
1412void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1413{
1414	struct pseudo_lock_region *plr = rdtgrp->plr;
1415
1416	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1417		/*
1418		 * Default group cannot be a pseudo-locked region so we can
1419		 * free closid here.
1420		 */
1421		closid_free(rdtgrp->closid);
1422		goto free;
1423	}
1424
1425	pseudo_lock_cstates_relax(plr);
1426	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1427	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1428	pseudo_lock_minor_release(plr->minor);
1429
1430free:
1431	pseudo_lock_free(rdtgrp);
1432}
1433
1434static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1435{
1436	struct rdtgroup *rdtgrp;
1437
1438	mutex_lock(&rdtgroup_mutex);
1439
1440	rdtgrp = region_find_by_minor(iminor(inode));
1441	if (!rdtgrp) {
1442		mutex_unlock(&rdtgroup_mutex);
1443		return -ENODEV;
1444	}
1445
1446	filp->private_data = rdtgrp;
1447	atomic_inc(&rdtgrp->waitcount);
1448	/* Perform a non-seekable open - llseek is not supported */
1449	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1450
1451	mutex_unlock(&rdtgroup_mutex);
1452
1453	return 0;
1454}
1455
1456static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1457{
1458	struct rdtgroup *rdtgrp;
1459
1460	mutex_lock(&rdtgroup_mutex);
1461	rdtgrp = filp->private_data;
1462	WARN_ON(!rdtgrp);
1463	if (!rdtgrp) {
1464		mutex_unlock(&rdtgroup_mutex);
1465		return -ENODEV;
1466	}
1467	filp->private_data = NULL;
1468	atomic_dec(&rdtgrp->waitcount);
1469	mutex_unlock(&rdtgroup_mutex);
1470	return 0;
1471}
1472
1473static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1474{
1475	/* Not supported */
1476	return -EINVAL;
1477}
1478
1479static const struct vm_operations_struct pseudo_mmap_ops = {
1480	.mremap = pseudo_lock_dev_mremap,
1481};
1482
1483static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1484{
1485	unsigned long vsize = vma->vm_end - vma->vm_start;
1486	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1487	struct pseudo_lock_region *plr;
1488	struct rdtgroup *rdtgrp;
1489	unsigned long physical;
1490	unsigned long psize;
1491
1492	mutex_lock(&rdtgroup_mutex);
1493
1494	rdtgrp = filp->private_data;
1495	WARN_ON(!rdtgrp);
1496	if (!rdtgrp) {
1497		mutex_unlock(&rdtgroup_mutex);
1498		return -ENODEV;
1499	}
1500
1501	plr = rdtgrp->plr;
1502
1503	if (!plr->d) {
1504		mutex_unlock(&rdtgroup_mutex);
1505		return -ENODEV;
1506	}
1507
1508	/*
1509	 * Task is required to run with affinity to the cpus associated
1510	 * with the pseudo-locked region. If this is not the case the task
1511	 * may be scheduled elsewhere and invalidate entries in the
1512	 * pseudo-locked region.
1513	 */
1514	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1515		mutex_unlock(&rdtgroup_mutex);
1516		return -EINVAL;
1517	}
1518
1519	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1520	psize = plr->size - off;
1521
1522	if (off > plr->size) {
1523		mutex_unlock(&rdtgroup_mutex);
1524		return -ENOSPC;
1525	}
1526
1527	/*
1528	 * Ensure changes are carried directly to the memory being mapped,
1529	 * do not allow copy-on-write mapping.
1530	 */
1531	if (!(vma->vm_flags & VM_SHARED)) {
1532		mutex_unlock(&rdtgroup_mutex);
1533		return -EINVAL;
1534	}
1535
1536	if (vsize > psize) {
1537		mutex_unlock(&rdtgroup_mutex);
1538		return -ENOSPC;
1539	}
1540
1541	memset(plr->kmem + off, 0, vsize);
1542
1543	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1544			    vsize, vma->vm_page_prot)) {
1545		mutex_unlock(&rdtgroup_mutex);
1546		return -EAGAIN;
1547	}
1548	vma->vm_ops = &pseudo_mmap_ops;
1549	mutex_unlock(&rdtgroup_mutex);
1550	return 0;
1551}
1552
1553static const struct file_operations pseudo_lock_dev_fops = {
1554	.owner =	THIS_MODULE,
1555	.llseek =	no_llseek,
1556	.read =		NULL,
1557	.write =	NULL,
1558	.open =		pseudo_lock_dev_open,
1559	.release =	pseudo_lock_dev_release,
1560	.mmap =		pseudo_lock_dev_mmap,
1561};
1562
1563static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
1564{
1565	const struct rdtgroup *rdtgrp;
1566
1567	rdtgrp = dev_get_drvdata(dev);
1568	if (mode)
1569		*mode = 0600;
1570	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1571}
1572
1573int rdt_pseudo_lock_init(void)
1574{
1575	int ret;
1576
1577	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1578	if (ret < 0)
1579		return ret;
1580
1581	pseudo_lock_major = ret;
1582
1583	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1584	if (IS_ERR(pseudo_lock_class)) {
1585		ret = PTR_ERR(pseudo_lock_class);
1586		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1587		return ret;
1588	}
1589
1590	pseudo_lock_class->devnode = pseudo_lock_devnode;
1591	return 0;
1592}
1593
1594void rdt_pseudo_lock_release(void)
1595{
1596	class_destroy(pseudo_lock_class);
1597	pseudo_lock_class = NULL;
1598	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1599	pseudo_lock_major = 0;
1600}