Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_RESCTRL_INTERNAL_H
3#define _ASM_X86_RESCTRL_INTERNAL_H
4
5#include <linux/sched.h>
6#include <linux/kernfs.h>
7#include <linux/fs_context.h>
8#include <linux/jump_label.h>
9
10#define MSR_IA32_L3_QOS_CFG 0xc81
11#define MSR_IA32_L2_QOS_CFG 0xc82
12#define MSR_IA32_L3_CBM_BASE 0xc90
13#define MSR_IA32_L2_CBM_BASE 0xd10
14#define MSR_IA32_MBA_THRTL_BASE 0xd50
15#define MSR_IA32_MBA_BW_BASE 0xc0000200
16
17#define MSR_IA32_QM_CTR 0x0c8e
18#define MSR_IA32_QM_EVTSEL 0x0c8d
19
20#define L3_QOS_CDP_ENABLE 0x01ULL
21
22#define L2_QOS_CDP_ENABLE 0x01ULL
23
24/*
25 * Event IDs are used to program IA32_QM_EVTSEL before reading event
26 * counter from IA32_QM_CTR
27 */
28#define QOS_L3_OCCUP_EVENT_ID 0x01
29#define QOS_L3_MBM_TOTAL_EVENT_ID 0x02
30#define QOS_L3_MBM_LOCAL_EVENT_ID 0x03
31
32#define CQM_LIMBOCHECK_INTERVAL 1000
33
34#define MBM_CNTR_WIDTH 24
35#define MBM_OVERFLOW_INTERVAL 1000
36#define MAX_MBA_BW 100u
37#define MBA_IS_LINEAR 0x4
38#define MBA_MAX_MBPS U32_MAX
39#define MAX_MBA_BW_AMD 0x800
40
41#define RMID_VAL_ERROR BIT_ULL(63)
42#define RMID_VAL_UNAVAIL BIT_ULL(62)
43
44
45struct rdt_fs_context {
46 struct kernfs_fs_context kfc;
47 bool enable_cdpl2;
48 bool enable_cdpl3;
49 bool enable_mba_mbps;
50};
51
52static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc)
53{
54 struct kernfs_fs_context *kfc = fc->fs_private;
55
56 return container_of(kfc, struct rdt_fs_context, kfc);
57}
58
59DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
60
61/**
62 * struct mon_evt - Entry in the event list of a resource
63 * @evtid: event id
64 * @name: name of the event
65 */
66struct mon_evt {
67 u32 evtid;
68 char *name;
69 struct list_head list;
70};
71
72/**
73 * struct mon_data_bits - Monitoring details for each event file
74 * @rid: Resource id associated with the event file.
75 * @evtid: Event id associated with the event file
76 * @domid: The domain to which the event file belongs
77 */
78union mon_data_bits {
79 void *priv;
80 struct {
81 unsigned int rid : 10;
82 unsigned int evtid : 8;
83 unsigned int domid : 14;
84 } u;
85};
86
87struct rmid_read {
88 struct rdtgroup *rgrp;
89 struct rdt_domain *d;
90 int evtid;
91 bool first;
92 u64 val;
93};
94
95extern unsigned int resctrl_cqm_threshold;
96extern bool rdt_alloc_capable;
97extern bool rdt_mon_capable;
98extern unsigned int rdt_mon_features;
99
100enum rdt_group_type {
101 RDTCTRL_GROUP = 0,
102 RDTMON_GROUP,
103 RDT_NUM_GROUP,
104};
105
106/**
107 * enum rdtgrp_mode - Mode of a RDT resource group
108 * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations
109 * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed
110 * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking
111 * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations
112 * allowed AND the allocations are Cache Pseudo-Locked
113 *
114 * The mode of a resource group enables control over the allowed overlap
115 * between allocations associated with different resource groups (classes
116 * of service). User is able to modify the mode of a resource group by
117 * writing to the "mode" resctrl file associated with the resource group.
118 *
119 * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by
120 * writing the appropriate text to the "mode" file. A resource group enters
121 * "pseudo-locked" mode after the schemata is written while the resource
122 * group is in "pseudo-locksetup" mode.
123 */
124enum rdtgrp_mode {
125 RDT_MODE_SHAREABLE = 0,
126 RDT_MODE_EXCLUSIVE,
127 RDT_MODE_PSEUDO_LOCKSETUP,
128 RDT_MODE_PSEUDO_LOCKED,
129
130 /* Must be last */
131 RDT_NUM_MODES,
132};
133
134/**
135 * struct mongroup - store mon group's data in resctrl fs.
136 * @mon_data_kn kernlfs node for the mon_data directory
137 * @parent: parent rdtgrp
138 * @crdtgrp_list: child rdtgroup node list
139 * @rmid: rmid for this rdtgroup
140 */
141struct mongroup {
142 struct kernfs_node *mon_data_kn;
143 struct rdtgroup *parent;
144 struct list_head crdtgrp_list;
145 u32 rmid;
146};
147
148/**
149 * struct pseudo_lock_region - pseudo-lock region information
150 * @r: RDT resource to which this pseudo-locked region
151 * belongs
152 * @d: RDT domain to which this pseudo-locked region
153 * belongs
154 * @cbm: bitmask of the pseudo-locked region
155 * @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread
156 * completion
157 * @thread_done: variable used by waitqueue to test if pseudo-locking
158 * thread completed
159 * @cpu: core associated with the cache on which the setup code
160 * will be run
161 * @line_size: size of the cache lines
162 * @size: size of pseudo-locked region in bytes
163 * @kmem: the kernel memory associated with pseudo-locked region
164 * @minor: minor number of character device associated with this
165 * region
166 * @debugfs_dir: pointer to this region's directory in the debugfs
167 * filesystem
168 * @pm_reqs: Power management QoS requests related to this region
169 */
170struct pseudo_lock_region {
171 struct rdt_resource *r;
172 struct rdt_domain *d;
173 u32 cbm;
174 wait_queue_head_t lock_thread_wq;
175 int thread_done;
176 int cpu;
177 unsigned int line_size;
178 unsigned int size;
179 void *kmem;
180 unsigned int minor;
181 struct dentry *debugfs_dir;
182 struct list_head pm_reqs;
183};
184
185/**
186 * struct rdtgroup - store rdtgroup's data in resctrl file system.
187 * @kn: kernfs node
188 * @rdtgroup_list: linked list for all rdtgroups
189 * @closid: closid for this rdtgroup
190 * @cpu_mask: CPUs assigned to this rdtgroup
191 * @flags: status bits
192 * @waitcount: how many cpus expect to find this
193 * group when they acquire rdtgroup_mutex
194 * @type: indicates type of this rdtgroup - either
195 * monitor only or ctrl_mon group
196 * @mon: mongroup related data
197 * @mode: mode of resource group
198 * @plr: pseudo-locked region
199 */
200struct rdtgroup {
201 struct kernfs_node *kn;
202 struct list_head rdtgroup_list;
203 u32 closid;
204 struct cpumask cpu_mask;
205 int flags;
206 atomic_t waitcount;
207 enum rdt_group_type type;
208 struct mongroup mon;
209 enum rdtgrp_mode mode;
210 struct pseudo_lock_region *plr;
211};
212
213/* rdtgroup.flags */
214#define RDT_DELETED 1
215
216/* rftype.flags */
217#define RFTYPE_FLAGS_CPUS_LIST 1
218
219/*
220 * Define the file type flags for base and info directories.
221 */
222#define RFTYPE_INFO BIT(0)
223#define RFTYPE_BASE BIT(1)
224#define RF_CTRLSHIFT 4
225#define RF_MONSHIFT 5
226#define RF_TOPSHIFT 6
227#define RFTYPE_CTRL BIT(RF_CTRLSHIFT)
228#define RFTYPE_MON BIT(RF_MONSHIFT)
229#define RFTYPE_TOP BIT(RF_TOPSHIFT)
230#define RFTYPE_RES_CACHE BIT(8)
231#define RFTYPE_RES_MB BIT(9)
232#define RF_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL)
233#define RF_MON_INFO (RFTYPE_INFO | RFTYPE_MON)
234#define RF_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP)
235#define RF_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL)
236
237/* List of all resource groups */
238extern struct list_head rdt_all_groups;
239
240extern int max_name_width, max_data_width;
241
242int __init rdtgroup_init(void);
243void __exit rdtgroup_exit(void);
244
245/**
246 * struct rftype - describe each file in the resctrl file system
247 * @name: File name
248 * @mode: Access mode
249 * @kf_ops: File operations
250 * @flags: File specific RFTYPE_FLAGS_* flags
251 * @fflags: File specific RF_* or RFTYPE_* flags
252 * @seq_show: Show content of the file
253 * @write: Write to the file
254 */
255struct rftype {
256 char *name;
257 umode_t mode;
258 struct kernfs_ops *kf_ops;
259 unsigned long flags;
260 unsigned long fflags;
261
262 int (*seq_show)(struct kernfs_open_file *of,
263 struct seq_file *sf, void *v);
264 /*
265 * write() is the generic write callback which maps directly to
266 * kernfs write operation and overrides all other operations.
267 * Maximum write size is determined by ->max_write_len.
268 */
269 ssize_t (*write)(struct kernfs_open_file *of,
270 char *buf, size_t nbytes, loff_t off);
271};
272
273/**
274 * struct mbm_state - status for each MBM counter in each domain
275 * @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes)
276 * @prev_msr Value of IA32_QM_CTR for this RMID last time we read it
277 * @chunks_bw Total local data moved. Used for bandwidth calculation
278 * @prev_bw_msr:Value of previous IA32_QM_CTR for bandwidth counting
279 * @prev_bw The most recent bandwidth in MBps
280 * @delta_bw Difference between the current and previous bandwidth
281 * @delta_comp Indicates whether to compute the delta_bw
282 */
283struct mbm_state {
284 u64 chunks;
285 u64 prev_msr;
286 u64 chunks_bw;
287 u64 prev_bw_msr;
288 u32 prev_bw;
289 u32 delta_bw;
290 bool delta_comp;
291};
292
293/**
294 * struct rdt_domain - group of cpus sharing an RDT resource
295 * @list: all instances of this resource
296 * @id: unique id for this instance
297 * @cpu_mask: which cpus share this resource
298 * @rmid_busy_llc:
299 * bitmap of which limbo RMIDs are above threshold
300 * @mbm_total: saved state for MBM total bandwidth
301 * @mbm_local: saved state for MBM local bandwidth
302 * @mbm_over: worker to periodically read MBM h/w counters
303 * @cqm_limbo: worker to periodically read CQM h/w counters
304 * @mbm_work_cpu:
305 * worker cpu for MBM h/w counters
306 * @cqm_work_cpu:
307 * worker cpu for CQM h/w counters
308 * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID)
309 * @mbps_val: When mba_sc is enabled, this holds the bandwidth in MBps
310 * @new_ctrl: new ctrl value to be loaded
311 * @have_new_ctrl: did user provide new_ctrl for this domain
312 * @plr: pseudo-locked region (if any) associated with domain
313 */
314struct rdt_domain {
315 struct list_head list;
316 int id;
317 struct cpumask cpu_mask;
318 unsigned long *rmid_busy_llc;
319 struct mbm_state *mbm_total;
320 struct mbm_state *mbm_local;
321 struct delayed_work mbm_over;
322 struct delayed_work cqm_limbo;
323 int mbm_work_cpu;
324 int cqm_work_cpu;
325 u32 *ctrl_val;
326 u32 *mbps_val;
327 u32 new_ctrl;
328 bool have_new_ctrl;
329 struct pseudo_lock_region *plr;
330};
331
332/**
333 * struct msr_param - set a range of MSRs from a domain
334 * @res: The resource to use
335 * @low: Beginning index from base MSR
336 * @high: End index
337 */
338struct msr_param {
339 struct rdt_resource *res;
340 int low;
341 int high;
342};
343
344/**
345 * struct rdt_cache - Cache allocation related data
346 * @cbm_len: Length of the cache bit mask
347 * @min_cbm_bits: Minimum number of consecutive bits to be set
348 * @cbm_idx_mult: Multiplier of CBM index
349 * @cbm_idx_offset: Offset of CBM index. CBM index is computed by:
350 * closid * cbm_idx_multi + cbm_idx_offset
351 * in a cache bit mask
352 * @shareable_bits: Bitmask of shareable resource with other
353 * executing entities
354 */
355struct rdt_cache {
356 unsigned int cbm_len;
357 unsigned int min_cbm_bits;
358 unsigned int cbm_idx_mult;
359 unsigned int cbm_idx_offset;
360 unsigned int shareable_bits;
361};
362
363/**
364 * struct rdt_membw - Memory bandwidth allocation related data
365 * @max_delay: Max throttle delay. Delay is the hardware
366 * representation for memory bandwidth.
367 * @min_bw: Minimum memory bandwidth percentage user can request
368 * @bw_gran: Granularity at which the memory bandwidth is allocated
369 * @delay_linear: True if memory B/W delay is in linear scale
370 * @mba_sc: True if MBA software controller(mba_sc) is enabled
371 * @mb_map: Mapping of memory B/W percentage to memory B/W delay
372 */
373struct rdt_membw {
374 u32 max_delay;
375 u32 min_bw;
376 u32 bw_gran;
377 u32 delay_linear;
378 bool mba_sc;
379 u32 *mb_map;
380};
381
382static inline bool is_llc_occupancy_enabled(void)
383{
384 return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID));
385}
386
387static inline bool is_mbm_total_enabled(void)
388{
389 return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID));
390}
391
392static inline bool is_mbm_local_enabled(void)
393{
394 return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID));
395}
396
397static inline bool is_mbm_enabled(void)
398{
399 return (is_mbm_total_enabled() || is_mbm_local_enabled());
400}
401
402static inline bool is_mbm_event(int e)
403{
404 return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
405 e <= QOS_L3_MBM_LOCAL_EVENT_ID);
406}
407
408struct rdt_parse_data {
409 struct rdtgroup *rdtgrp;
410 char *buf;
411};
412
413/**
414 * struct rdt_resource - attributes of an RDT resource
415 * @rid: The index of the resource
416 * @alloc_enabled: Is allocation enabled on this machine
417 * @mon_enabled: Is monitoring enabled for this feature
418 * @alloc_capable: Is allocation available on this machine
419 * @mon_capable: Is monitor feature available on this machine
420 * @name: Name to use in "schemata" file
421 * @num_closid: Number of CLOSIDs available
422 * @cache_level: Which cache level defines scope of this resource
423 * @default_ctrl: Specifies default cache cbm or memory B/W percent.
424 * @msr_base: Base MSR address for CBMs
425 * @msr_update: Function pointer to update QOS MSRs
426 * @data_width: Character width of data when displaying
427 * @domains: All domains for this resource
428 * @cache: Cache allocation related data
429 * @format_str: Per resource format string to show domain value
430 * @parse_ctrlval: Per resource function pointer to parse control values
431 * @cbm_validate Cache bitmask validate function
432 * @evt_list: List of monitoring events
433 * @num_rmid: Number of RMIDs available
434 * @mon_scale: cqm counter * mon_scale = occupancy in bytes
435 * @fflags: flags to choose base and info files
436 */
437struct rdt_resource {
438 int rid;
439 bool alloc_enabled;
440 bool mon_enabled;
441 bool alloc_capable;
442 bool mon_capable;
443 char *name;
444 int num_closid;
445 int cache_level;
446 u32 default_ctrl;
447 unsigned int msr_base;
448 void (*msr_update) (struct rdt_domain *d, struct msr_param *m,
449 struct rdt_resource *r);
450 int data_width;
451 struct list_head domains;
452 struct rdt_cache cache;
453 struct rdt_membw membw;
454 const char *format_str;
455 int (*parse_ctrlval)(struct rdt_parse_data *data,
456 struct rdt_resource *r,
457 struct rdt_domain *d);
458 bool (*cbm_validate)(char *buf, u32 *data, struct rdt_resource *r);
459 struct list_head evt_list;
460 int num_rmid;
461 unsigned int mon_scale;
462 unsigned long fflags;
463};
464
465int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r,
466 struct rdt_domain *d);
467int parse_bw_intel(struct rdt_parse_data *data, struct rdt_resource *r,
468 struct rdt_domain *d);
469int parse_bw_amd(struct rdt_parse_data *data, struct rdt_resource *r,
470 struct rdt_domain *d);
471
472extern struct mutex rdtgroup_mutex;
473
474extern struct rdt_resource rdt_resources_all[];
475extern struct rdtgroup rdtgroup_default;
476DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
477
478extern struct dentry *debugfs_resctrl;
479
480enum {
481 RDT_RESOURCE_L3,
482 RDT_RESOURCE_L3DATA,
483 RDT_RESOURCE_L3CODE,
484 RDT_RESOURCE_L2,
485 RDT_RESOURCE_L2DATA,
486 RDT_RESOURCE_L2CODE,
487 RDT_RESOURCE_MBA,
488
489 /* Must be the last */
490 RDT_NUM_RESOURCES,
491};
492
493#define for_each_rdt_resource(r) \
494 for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
495 r++)
496
497#define for_each_capable_rdt_resource(r) \
498 for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
499 r++) \
500 if (r->alloc_capable || r->mon_capable)
501
502#define for_each_alloc_capable_rdt_resource(r) \
503 for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
504 r++) \
505 if (r->alloc_capable)
506
507#define for_each_mon_capable_rdt_resource(r) \
508 for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
509 r++) \
510 if (r->mon_capable)
511
512#define for_each_alloc_enabled_rdt_resource(r) \
513 for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
514 r++) \
515 if (r->alloc_enabled)
516
517#define for_each_mon_enabled_rdt_resource(r) \
518 for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
519 r++) \
520 if (r->mon_enabled)
521
522/* CPUID.(EAX=10H, ECX=ResID=1).EAX */
523union cpuid_0x10_1_eax {
524 struct {
525 unsigned int cbm_len:5;
526 } split;
527 unsigned int full;
528};
529
530/* CPUID.(EAX=10H, ECX=ResID=3).EAX */
531union cpuid_0x10_3_eax {
532 struct {
533 unsigned int max_delay:12;
534 } split;
535 unsigned int full;
536};
537
538/* CPUID.(EAX=10H, ECX=ResID).EDX */
539union cpuid_0x10_x_edx {
540 struct {
541 unsigned int cos_max:16;
542 } split;
543 unsigned int full;
544};
545
546void rdt_last_cmd_clear(void);
547void rdt_last_cmd_puts(const char *s);
548void rdt_last_cmd_printf(const char *fmt, ...);
549
550void rdt_ctrl_update(void *arg);
551struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
552void rdtgroup_kn_unlock(struct kernfs_node *kn);
553int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name);
554int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
555 umode_t mask);
556struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
557 struct list_head **pos);
558ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
559 char *buf, size_t nbytes, loff_t off);
560int rdtgroup_schemata_show(struct kernfs_open_file *of,
561 struct seq_file *s, void *v);
562bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
563 unsigned long cbm, int closid, bool exclusive);
564unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d,
565 unsigned long cbm);
566enum rdtgrp_mode rdtgroup_mode_by_closid(int closid);
567int rdtgroup_tasks_assigned(struct rdtgroup *r);
568int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp);
569int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp);
570bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm);
571bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d);
572int rdt_pseudo_lock_init(void);
573void rdt_pseudo_lock_release(void);
574int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp);
575void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp);
576struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r);
577int update_domains(struct rdt_resource *r, int closid);
578int closids_supported(void);
579void closid_free(int closid);
580int alloc_rmid(void);
581void free_rmid(u32 rmid);
582int rdt_get_mon_l3_config(struct rdt_resource *r);
583void mon_event_count(void *info);
584int rdtgroup_mondata_show(struct seq_file *m, void *arg);
585void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
586 unsigned int dom_id);
587void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
588 struct rdt_domain *d);
589void mon_event_read(struct rmid_read *rr, struct rdt_domain *d,
590 struct rdtgroup *rdtgrp, int evtid, int first);
591void mbm_setup_overflow_handler(struct rdt_domain *dom,
592 unsigned long delay_ms);
593void mbm_handle_overflow(struct work_struct *work);
594bool is_mba_sc(struct rdt_resource *r);
595void setup_default_ctrlval(struct rdt_resource *r, u32 *dc, u32 *dm);
596u32 delay_bw_map(unsigned long bw, struct rdt_resource *r);
597void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms);
598void cqm_handle_limbo(struct work_struct *work);
599bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d);
600void __check_limbo(struct rdt_domain *d, bool force_free);
601bool cbm_validate_intel(char *buf, u32 *data, struct rdt_resource *r);
602bool cbm_validate_amd(char *buf, u32 *data, struct rdt_resource *r);
603
604#endif /* _ASM_X86_RESCTRL_INTERNAL_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_RESCTRL_INTERNAL_H
3#define _ASM_X86_RESCTRL_INTERNAL_H
4
5#include <linux/resctrl.h>
6#include <linux/sched.h>
7#include <linux/kernfs.h>
8#include <linux/fs_context.h>
9#include <linux/jump_label.h>
10
11#define L3_QOS_CDP_ENABLE 0x01ULL
12
13#define L2_QOS_CDP_ENABLE 0x01ULL
14
15#define CQM_LIMBOCHECK_INTERVAL 1000
16
17#define MBM_CNTR_WIDTH_BASE 24
18#define MBM_OVERFLOW_INTERVAL 1000
19#define MAX_MBA_BW 100u
20#define MBA_IS_LINEAR 0x4
21#define MAX_MBA_BW_AMD 0x800
22#define MBM_CNTR_WIDTH_OFFSET_AMD 20
23
24#define RMID_VAL_ERROR BIT_ULL(63)
25#define RMID_VAL_UNAVAIL BIT_ULL(62)
26/*
27 * With the above fields in use 62 bits remain in MSR_IA32_QM_CTR for
28 * data to be returned. The counter width is discovered from the hardware
29 * as an offset from MBM_CNTR_WIDTH_BASE.
30 */
31#define MBM_CNTR_WIDTH_OFFSET_MAX (62 - MBM_CNTR_WIDTH_BASE)
32
33
34struct rdt_fs_context {
35 struct kernfs_fs_context kfc;
36 bool enable_cdpl2;
37 bool enable_cdpl3;
38 bool enable_mba_mbps;
39};
40
41static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc)
42{
43 struct kernfs_fs_context *kfc = fc->fs_private;
44
45 return container_of(kfc, struct rdt_fs_context, kfc);
46}
47
48DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
49DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key);
50
51/**
52 * struct mon_evt - Entry in the event list of a resource
53 * @evtid: event id
54 * @name: name of the event
55 * @list: entry in &rdt_resource->evt_list
56 */
57struct mon_evt {
58 enum resctrl_event_id evtid;
59 char *name;
60 struct list_head list;
61};
62
63/**
64 * union mon_data_bits - Monitoring details for each event file
65 * @priv: Used to store monitoring event data in @u
66 * as kernfs private data
67 * @rid: Resource id associated with the event file
68 * @evtid: Event id associated with the event file
69 * @domid: The domain to which the event file belongs
70 * @u: Name of the bit fields struct
71 */
72union mon_data_bits {
73 void *priv;
74 struct {
75 unsigned int rid : 10;
76 enum resctrl_event_id evtid : 8;
77 unsigned int domid : 14;
78 } u;
79};
80
81struct rmid_read {
82 struct rdtgroup *rgrp;
83 struct rdt_resource *r;
84 struct rdt_domain *d;
85 enum resctrl_event_id evtid;
86 bool first;
87 int err;
88 u64 val;
89};
90
91extern bool rdt_alloc_capable;
92extern bool rdt_mon_capable;
93extern unsigned int rdt_mon_features;
94extern struct list_head resctrl_schema_all;
95
96enum rdt_group_type {
97 RDTCTRL_GROUP = 0,
98 RDTMON_GROUP,
99 RDT_NUM_GROUP,
100};
101
102/**
103 * enum rdtgrp_mode - Mode of a RDT resource group
104 * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations
105 * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed
106 * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking
107 * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations
108 * allowed AND the allocations are Cache Pseudo-Locked
109 * @RDT_NUM_MODES: Total number of modes
110 *
111 * The mode of a resource group enables control over the allowed overlap
112 * between allocations associated with different resource groups (classes
113 * of service). User is able to modify the mode of a resource group by
114 * writing to the "mode" resctrl file associated with the resource group.
115 *
116 * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by
117 * writing the appropriate text to the "mode" file. A resource group enters
118 * "pseudo-locked" mode after the schemata is written while the resource
119 * group is in "pseudo-locksetup" mode.
120 */
121enum rdtgrp_mode {
122 RDT_MODE_SHAREABLE = 0,
123 RDT_MODE_EXCLUSIVE,
124 RDT_MODE_PSEUDO_LOCKSETUP,
125 RDT_MODE_PSEUDO_LOCKED,
126
127 /* Must be last */
128 RDT_NUM_MODES,
129};
130
131/**
132 * struct mongroup - store mon group's data in resctrl fs.
133 * @mon_data_kn: kernfs node for the mon_data directory
134 * @parent: parent rdtgrp
135 * @crdtgrp_list: child rdtgroup node list
136 * @rmid: rmid for this rdtgroup
137 */
138struct mongroup {
139 struct kernfs_node *mon_data_kn;
140 struct rdtgroup *parent;
141 struct list_head crdtgrp_list;
142 u32 rmid;
143};
144
145/**
146 * struct pseudo_lock_region - pseudo-lock region information
147 * @s: Resctrl schema for the resource to which this
148 * pseudo-locked region belongs
149 * @d: RDT domain to which this pseudo-locked region
150 * belongs
151 * @cbm: bitmask of the pseudo-locked region
152 * @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread
153 * completion
154 * @thread_done: variable used by waitqueue to test if pseudo-locking
155 * thread completed
156 * @cpu: core associated with the cache on which the setup code
157 * will be run
158 * @line_size: size of the cache lines
159 * @size: size of pseudo-locked region in bytes
160 * @kmem: the kernel memory associated with pseudo-locked region
161 * @minor: minor number of character device associated with this
162 * region
163 * @debugfs_dir: pointer to this region's directory in the debugfs
164 * filesystem
165 * @pm_reqs: Power management QoS requests related to this region
166 */
167struct pseudo_lock_region {
168 struct resctrl_schema *s;
169 struct rdt_domain *d;
170 u32 cbm;
171 wait_queue_head_t lock_thread_wq;
172 int thread_done;
173 int cpu;
174 unsigned int line_size;
175 unsigned int size;
176 void *kmem;
177 unsigned int minor;
178 struct dentry *debugfs_dir;
179 struct list_head pm_reqs;
180};
181
182/**
183 * struct rdtgroup - store rdtgroup's data in resctrl file system.
184 * @kn: kernfs node
185 * @rdtgroup_list: linked list for all rdtgroups
186 * @closid: closid for this rdtgroup
187 * @cpu_mask: CPUs assigned to this rdtgroup
188 * @flags: status bits
189 * @waitcount: how many cpus expect to find this
190 * group when they acquire rdtgroup_mutex
191 * @type: indicates type of this rdtgroup - either
192 * monitor only or ctrl_mon group
193 * @mon: mongroup related data
194 * @mode: mode of resource group
195 * @plr: pseudo-locked region
196 */
197struct rdtgroup {
198 struct kernfs_node *kn;
199 struct list_head rdtgroup_list;
200 u32 closid;
201 struct cpumask cpu_mask;
202 int flags;
203 atomic_t waitcount;
204 enum rdt_group_type type;
205 struct mongroup mon;
206 enum rdtgrp_mode mode;
207 struct pseudo_lock_region *plr;
208};
209
210/* rdtgroup.flags */
211#define RDT_DELETED 1
212
213/* rftype.flags */
214#define RFTYPE_FLAGS_CPUS_LIST 1
215
216/*
217 * Define the file type flags for base and info directories.
218 */
219#define RFTYPE_INFO BIT(0)
220#define RFTYPE_BASE BIT(1)
221#define RF_CTRLSHIFT 4
222#define RF_MONSHIFT 5
223#define RF_TOPSHIFT 6
224#define RFTYPE_CTRL BIT(RF_CTRLSHIFT)
225#define RFTYPE_MON BIT(RF_MONSHIFT)
226#define RFTYPE_TOP BIT(RF_TOPSHIFT)
227#define RFTYPE_RES_CACHE BIT(8)
228#define RFTYPE_RES_MB BIT(9)
229#define RF_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL)
230#define RF_MON_INFO (RFTYPE_INFO | RFTYPE_MON)
231#define RF_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP)
232#define RF_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL)
233
234/* List of all resource groups */
235extern struct list_head rdt_all_groups;
236
237extern int max_name_width, max_data_width;
238
239int __init rdtgroup_init(void);
240void __exit rdtgroup_exit(void);
241
242/**
243 * struct rftype - describe each file in the resctrl file system
244 * @name: File name
245 * @mode: Access mode
246 * @kf_ops: File operations
247 * @flags: File specific RFTYPE_FLAGS_* flags
248 * @fflags: File specific RF_* or RFTYPE_* flags
249 * @seq_show: Show content of the file
250 * @write: Write to the file
251 */
252struct rftype {
253 char *name;
254 umode_t mode;
255 const struct kernfs_ops *kf_ops;
256 unsigned long flags;
257 unsigned long fflags;
258
259 int (*seq_show)(struct kernfs_open_file *of,
260 struct seq_file *sf, void *v);
261 /*
262 * write() is the generic write callback which maps directly to
263 * kernfs write operation and overrides all other operations.
264 * Maximum write size is determined by ->max_write_len.
265 */
266 ssize_t (*write)(struct kernfs_open_file *of,
267 char *buf, size_t nbytes, loff_t off);
268};
269
270/**
271 * struct mbm_state - status for each MBM counter in each domain
272 * @prev_bw_bytes: Previous bytes value read for bandwidth calculation
273 * @prev_bw: The most recent bandwidth in MBps
274 * @delta_bw: Difference between the current and previous bandwidth
275 * @delta_comp: Indicates whether to compute the delta_bw
276 */
277struct mbm_state {
278 u64 prev_bw_bytes;
279 u32 prev_bw;
280 u32 delta_bw;
281 bool delta_comp;
282};
283
284/**
285 * struct arch_mbm_state - values used to compute resctrl_arch_rmid_read()s
286 * return value.
287 * @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes)
288 * @prev_msr: Value of IA32_QM_CTR last time it was read for the RMID used to
289 * find this struct.
290 */
291struct arch_mbm_state {
292 u64 chunks;
293 u64 prev_msr;
294};
295
296/**
297 * struct rdt_hw_domain - Arch private attributes of a set of CPUs that share
298 * a resource
299 * @d_resctrl: Properties exposed to the resctrl file system
300 * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID)
301 * @arch_mbm_total: arch private state for MBM total bandwidth
302 * @arch_mbm_local: arch private state for MBM local bandwidth
303 *
304 * Members of this structure are accessed via helpers that provide abstraction.
305 */
306struct rdt_hw_domain {
307 struct rdt_domain d_resctrl;
308 u32 *ctrl_val;
309 struct arch_mbm_state *arch_mbm_total;
310 struct arch_mbm_state *arch_mbm_local;
311};
312
313static inline struct rdt_hw_domain *resctrl_to_arch_dom(struct rdt_domain *r)
314{
315 return container_of(r, struct rdt_hw_domain, d_resctrl);
316}
317
318/**
319 * struct msr_param - set a range of MSRs from a domain
320 * @res: The resource to use
321 * @low: Beginning index from base MSR
322 * @high: End index
323 */
324struct msr_param {
325 struct rdt_resource *res;
326 u32 low;
327 u32 high;
328};
329
330static inline bool is_llc_occupancy_enabled(void)
331{
332 return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID));
333}
334
335static inline bool is_mbm_total_enabled(void)
336{
337 return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID));
338}
339
340static inline bool is_mbm_local_enabled(void)
341{
342 return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID));
343}
344
345static inline bool is_mbm_enabled(void)
346{
347 return (is_mbm_total_enabled() || is_mbm_local_enabled());
348}
349
350static inline bool is_mbm_event(int e)
351{
352 return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
353 e <= QOS_L3_MBM_LOCAL_EVENT_ID);
354}
355
356struct rdt_parse_data {
357 struct rdtgroup *rdtgrp;
358 char *buf;
359};
360
361/**
362 * struct rdt_hw_resource - arch private attributes of a resctrl resource
363 * @r_resctrl: Attributes of the resource used directly by resctrl.
364 * @num_closid: Maximum number of closid this hardware can support,
365 * regardless of CDP. This is exposed via
366 * resctrl_arch_get_num_closid() to avoid confusion
367 * with struct resctrl_schema's property of the same name,
368 * which has been corrected for features like CDP.
369 * @msr_base: Base MSR address for CBMs
370 * @msr_update: Function pointer to update QOS MSRs
371 * @mon_scale: cqm counter * mon_scale = occupancy in bytes
372 * @mbm_width: Monitor width, to detect and correct for overflow.
373 * @cdp_enabled: CDP state of this resource
374 *
375 * Members of this structure are either private to the architecture
376 * e.g. mbm_width, or accessed via helpers that provide abstraction. e.g.
377 * msr_update and msr_base.
378 */
379struct rdt_hw_resource {
380 struct rdt_resource r_resctrl;
381 u32 num_closid;
382 unsigned int msr_base;
383 void (*msr_update) (struct rdt_domain *d, struct msr_param *m,
384 struct rdt_resource *r);
385 unsigned int mon_scale;
386 unsigned int mbm_width;
387 bool cdp_enabled;
388};
389
390static inline struct rdt_hw_resource *resctrl_to_arch_res(struct rdt_resource *r)
391{
392 return container_of(r, struct rdt_hw_resource, r_resctrl);
393}
394
395int parse_cbm(struct rdt_parse_data *data, struct resctrl_schema *s,
396 struct rdt_domain *d);
397int parse_bw(struct rdt_parse_data *data, struct resctrl_schema *s,
398 struct rdt_domain *d);
399
400extern struct mutex rdtgroup_mutex;
401
402extern struct rdt_hw_resource rdt_resources_all[];
403extern struct rdtgroup rdtgroup_default;
404DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
405
406extern struct dentry *debugfs_resctrl;
407
408enum resctrl_res_level {
409 RDT_RESOURCE_L3,
410 RDT_RESOURCE_L2,
411 RDT_RESOURCE_MBA,
412
413 /* Must be the last */
414 RDT_NUM_RESOURCES,
415};
416
417static inline struct rdt_resource *resctrl_inc(struct rdt_resource *res)
418{
419 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(res);
420
421 hw_res++;
422 return &hw_res->r_resctrl;
423}
424
425static inline bool resctrl_arch_get_cdp_enabled(enum resctrl_res_level l)
426{
427 return rdt_resources_all[l].cdp_enabled;
428}
429
430int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable);
431
432/*
433 * To return the common struct rdt_resource, which is contained in struct
434 * rdt_hw_resource, walk the resctrl member of struct rdt_hw_resource.
435 */
436#define for_each_rdt_resource(r) \
437 for (r = &rdt_resources_all[0].r_resctrl; \
438 r <= &rdt_resources_all[RDT_NUM_RESOURCES - 1].r_resctrl; \
439 r = resctrl_inc(r))
440
441#define for_each_capable_rdt_resource(r) \
442 for_each_rdt_resource(r) \
443 if (r->alloc_capable || r->mon_capable)
444
445#define for_each_alloc_capable_rdt_resource(r) \
446 for_each_rdt_resource(r) \
447 if (r->alloc_capable)
448
449#define for_each_mon_capable_rdt_resource(r) \
450 for_each_rdt_resource(r) \
451 if (r->mon_capable)
452
453/* CPUID.(EAX=10H, ECX=ResID=1).EAX */
454union cpuid_0x10_1_eax {
455 struct {
456 unsigned int cbm_len:5;
457 } split;
458 unsigned int full;
459};
460
461/* CPUID.(EAX=10H, ECX=ResID=3).EAX */
462union cpuid_0x10_3_eax {
463 struct {
464 unsigned int max_delay:12;
465 } split;
466 unsigned int full;
467};
468
469/* CPUID.(EAX=10H, ECX=ResID).EDX */
470union cpuid_0x10_x_edx {
471 struct {
472 unsigned int cos_max:16;
473 } split;
474 unsigned int full;
475};
476
477void rdt_last_cmd_clear(void);
478void rdt_last_cmd_puts(const char *s);
479__printf(1, 2)
480void rdt_last_cmd_printf(const char *fmt, ...);
481
482void rdt_ctrl_update(void *arg);
483struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
484void rdtgroup_kn_unlock(struct kernfs_node *kn);
485int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name);
486int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
487 umode_t mask);
488struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
489 struct list_head **pos);
490ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
491 char *buf, size_t nbytes, loff_t off);
492int rdtgroup_schemata_show(struct kernfs_open_file *of,
493 struct seq_file *s, void *v);
494bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
495 unsigned long cbm, int closid, bool exclusive);
496unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d,
497 unsigned long cbm);
498enum rdtgrp_mode rdtgroup_mode_by_closid(int closid);
499int rdtgroup_tasks_assigned(struct rdtgroup *r);
500int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp);
501int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp);
502bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm);
503bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d);
504int rdt_pseudo_lock_init(void);
505void rdt_pseudo_lock_release(void);
506int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp);
507void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp);
508struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r);
509int closids_supported(void);
510void closid_free(int closid);
511int alloc_rmid(void);
512void free_rmid(u32 rmid);
513int rdt_get_mon_l3_config(struct rdt_resource *r);
514void mon_event_count(void *info);
515int rdtgroup_mondata_show(struct seq_file *m, void *arg);
516void mon_event_read(struct rmid_read *rr, struct rdt_resource *r,
517 struct rdt_domain *d, struct rdtgroup *rdtgrp,
518 int evtid, int first);
519void mbm_setup_overflow_handler(struct rdt_domain *dom,
520 unsigned long delay_ms);
521void mbm_handle_overflow(struct work_struct *work);
522void __init intel_rdt_mbm_apply_quirk(void);
523bool is_mba_sc(struct rdt_resource *r);
524void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms);
525void cqm_handle_limbo(struct work_struct *work);
526bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d);
527void __check_limbo(struct rdt_domain *d, bool force_free);
528void rdt_domain_reconfigure_cdp(struct rdt_resource *r);
529void __init thread_throttle_mode_init(void);
530
531#endif /* _ASM_X86_RESCTRL_INTERNAL_H */