Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 *
  7 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
  8 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  9 * Copyright 1999 Hewlett Packard Co.
 10 *
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/ptrace.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/interrupt.h>
 18#include <linux/extable.h>
 19#include <linux/uaccess.h>
 20#include <linux/hugetlb.h>
 
 21
 22#include <asm/traps.h>
 23
 
 
 24/* Various important other fields */
 25#define bit22set(x)		(x & 0x00000200)
 26#define bits23_25set(x)		(x & 0x000001c0)
 27#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
 28				/* extended opcode is 0x6a */
 29
 30#define BITSSET		0x1c0	/* for identifying LDCW */
 31
 32
 33int show_unhandled_signals = 1;
 34
 35/*
 36 * parisc_acctyp(unsigned int inst) --
 37 *    Given a PA-RISC memory access instruction, determine if the
 38 *    the instruction would perform a memory read or memory write
 39 *    operation.
 40 *
 41 *    This function assumes that the given instruction is a memory access
 42 *    instruction (i.e. you should really only call it if you know that
 43 *    the instruction has generated some sort of a memory access fault).
 44 *
 45 * Returns:
 46 *   VM_READ  if read operation
 47 *   VM_WRITE if write operation
 48 *   VM_EXEC  if execute operation
 49 */
 50static unsigned long
 51parisc_acctyp(unsigned long code, unsigned int inst)
 52{
 53	if (code == 6 || code == 16)
 54	    return VM_EXEC;
 55
 56	switch (inst & 0xf0000000) {
 57	case 0x40000000: /* load */
 58	case 0x50000000: /* new load */
 59		return VM_READ;
 60
 61	case 0x60000000: /* store */
 62	case 0x70000000: /* new store */
 63		return VM_WRITE;
 64
 65	case 0x20000000: /* coproc */
 66	case 0x30000000: /* coproc2 */
 67		if (bit22set(inst))
 68			return VM_WRITE;
 69		/* fall through */
 70
 71	case 0x0: /* indexed/memory management */
 72		if (bit22set(inst)) {
 73			/*
 74			 * Check for the 'Graphics Flush Read' instruction.
 75			 * It resembles an FDC instruction, except for bits
 76			 * 20 and 21. Any combination other than zero will
 77			 * utilize the block mover functionality on some
 78			 * older PA-RISC platforms.  The case where a block
 79			 * move is performed from VM to graphics IO space
 80			 * should be treated as a READ.
 81			 *
 82			 * The significance of bits 20,21 in the FDC
 83			 * instruction is:
 84			 *
 85			 *   00  Flush data cache (normal instruction behavior)
 86			 *   01  Graphics flush write  (IO space -> VM)
 87			 *   10  Graphics flush read   (VM -> IO space)
 88			 *   11  Graphics flush read/write (VM <-> IO space)
 89			 */
 90			if (isGraphicsFlushRead(inst))
 91				return VM_READ;
 92			return VM_WRITE;
 93		} else {
 94			/*
 95			 * Check for LDCWX and LDCWS (semaphore instructions).
 96			 * If bits 23 through 25 are all 1's it is one of
 97			 * the above two instructions and is a write.
 98			 *
 99			 * Note: With the limited bits we are looking at,
100			 * this will also catch PROBEW and PROBEWI. However,
101			 * these should never get in here because they don't
102			 * generate exceptions of the type:
103			 *   Data TLB miss fault/data page fault
104			 *   Data memory protection trap
105			 */
106			if (bits23_25set(inst) == BITSSET)
107				return VM_WRITE;
108		}
109		return VM_READ; /* Default */
110	}
111	return VM_READ; /* Default */
112}
113
114#undef bit22set
115#undef bits23_25set
116#undef isGraphicsFlushRead
117#undef BITSSET
118
119
120#if 0
121/* This is the treewalk to find a vma which is the highest that has
122 * a start < addr.  We're using find_vma_prev instead right now, but
123 * we might want to use this at some point in the future.  Probably
124 * not, but I want it committed to CVS so I don't lose it :-)
125 */
126			while (tree != vm_avl_empty) {
127				if (tree->vm_start > addr) {
128					tree = tree->vm_avl_left;
129				} else {
130					prev = tree;
131					if (prev->vm_next == NULL)
132						break;
133					if (prev->vm_next->vm_start > addr)
134						break;
135					tree = tree->vm_avl_right;
136				}
137			}
138#endif
139
140int fixup_exception(struct pt_regs *regs)
141{
142	const struct exception_table_entry *fix;
143
144	fix = search_exception_tables(regs->iaoq[0]);
145	if (fix) {
146		/*
147		 * Fix up get_user() and put_user().
148		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
149		 * bit in the relative address of the fixup routine to indicate
150		 * that %r8 should be loaded with -EFAULT to report a userspace
151		 * access error.
152		 */
153		if (fix->fixup & 1) {
154			regs->gr[8] = -EFAULT;
155
156			/* zero target register for get_user() */
157			if (parisc_acctyp(0, regs->iir) == VM_READ) {
158				int treg = regs->iir & 0x1f;
159				BUG_ON(treg == 0);
160				regs->gr[treg] = 0;
161			}
162		}
163
164		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
165		regs->iaoq[0] &= ~3;
166		/*
167		 * NOTE: In some cases the faulting instruction
168		 * may be in the delay slot of a branch. We
169		 * don't want to take the branch, so we don't
170		 * increment iaoq[1], instead we set it to be
171		 * iaoq[0]+4, and clear the B bit in the PSW
172		 */
173		regs->iaoq[1] = regs->iaoq[0] + 4;
174		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
175
176		return 1;
177	}
178
179	return 0;
180}
181
182/*
183 * parisc hardware trap list
184 *
185 * Documented in section 3 "Addressing and Access Control" of the
186 * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
187 * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
188 *
189 * For implementation see handle_interruption() in traps.c
190 */
191static const char * const trap_description[] = {
192	[1] "High-priority machine check (HPMC)",
193	[2] "Power failure interrupt",
194	[3] "Recovery counter trap",
195	[5] "Low-priority machine check",
196	[6] "Instruction TLB miss fault",
197	[7] "Instruction access rights / protection trap",
198	[8] "Illegal instruction trap",
199	[9] "Break instruction trap",
200	[10] "Privileged operation trap",
201	[11] "Privileged register trap",
202	[12] "Overflow trap",
203	[13] "Conditional trap",
204	[14] "FP Assist Exception trap",
205	[15] "Data TLB miss fault",
206	[16] "Non-access ITLB miss fault",
207	[17] "Non-access DTLB miss fault",
208	[18] "Data memory protection/unaligned access trap",
209	[19] "Data memory break trap",
210	[20] "TLB dirty bit trap",
211	[21] "Page reference trap",
212	[22] "Assist emulation trap",
213	[25] "Taken branch trap",
214	[26] "Data memory access rights trap",
215	[27] "Data memory protection ID trap",
216	[28] "Unaligned data reference trap",
217};
218
219const char *trap_name(unsigned long code)
220{
221	const char *t = NULL;
222
223	if (code < ARRAY_SIZE(trap_description))
224		t = trap_description[code];
225
226	return t ? t : "Unknown trap";
227}
228
229/*
230 * Print out info about fatal segfaults, if the show_unhandled_signals
231 * sysctl is set:
232 */
233static inline void
234show_signal_msg(struct pt_regs *regs, unsigned long code,
235		unsigned long address, struct task_struct *tsk,
236		struct vm_area_struct *vma)
237{
238	if (!unhandled_signal(tsk, SIGSEGV))
239		return;
240
241	if (!printk_ratelimit())
242		return;
243
244	pr_warn("\n");
245	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
246	    tsk->comm, code, address);
247	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
248
249	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
250		vma ? ',':'\n');
251
252	if (vma)
253		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
254			vma->vm_start, vma->vm_end);
255
256	show_regs(regs);
257}
258
259void do_page_fault(struct pt_regs *regs, unsigned long code,
260			      unsigned long address)
261{
262	struct vm_area_struct *vma, *prev_vma;
263	struct task_struct *tsk;
264	struct mm_struct *mm;
265	unsigned long acc_type;
266	vm_fault_t fault = 0;
267	unsigned int flags;
268
269	if (faulthandler_disabled())
270		goto no_context;
271
272	tsk = current;
273	mm = tsk->mm;
274	if (!mm)
 
275		goto no_context;
 
276
277	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
278	if (user_mode(regs))
279		flags |= FAULT_FLAG_USER;
280
281	acc_type = parisc_acctyp(code, regs->iir);
282	if (acc_type & VM_WRITE)
283		flags |= FAULT_FLAG_WRITE;
 
284retry:
285	down_read(&mm->mmap_sem);
286	vma = find_vma_prev(mm, address, &prev_vma);
287	if (!vma || address < vma->vm_start)
288		goto check_expansion;
289/*
290 * Ok, we have a good vm_area for this memory access. We still need to
291 * check the access permissions.
292 */
293
294good_area:
295
296	if ((vma->vm_flags & acc_type) != acc_type)
297		goto bad_area;
298
299	/*
300	 * If for any reason at all we couldn't handle the fault, make
301	 * sure we exit gracefully rather than endlessly redo the
302	 * fault.
303	 */
304
305	fault = handle_mm_fault(vma, address, flags);
 
 
 
306
307	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 
308		return;
309
310	if (unlikely(fault & VM_FAULT_ERROR)) {
311		/*
312		 * We hit a shared mapping outside of the file, or some
313		 * other thing happened to us that made us unable to
314		 * handle the page fault gracefully.
315		 */
316		if (fault & VM_FAULT_OOM)
317			goto out_of_memory;
318		else if (fault & VM_FAULT_SIGSEGV)
319			goto bad_area;
320		else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
321				  VM_FAULT_HWPOISON_LARGE))
322			goto bad_area;
323		BUG();
324	}
325	if (flags & FAULT_FLAG_ALLOW_RETRY) {
326		if (fault & VM_FAULT_MAJOR)
327			current->maj_flt++;
328		else
329			current->min_flt++;
330		if (fault & VM_FAULT_RETRY) {
331			flags &= ~FAULT_FLAG_ALLOW_RETRY;
332
333			/*
334			 * No need to up_read(&mm->mmap_sem) as we would
335			 * have already released it in __lock_page_or_retry
336			 * in mm/filemap.c.
337			 */
338
339			goto retry;
340		}
341	}
342	up_read(&mm->mmap_sem);
343	return;
344
345check_expansion:
346	vma = prev_vma;
347	if (vma && (expand_stack(vma, address) == 0))
348		goto good_area;
349
350/*
351 * Something tried to access memory that isn't in our memory map..
352 */
353bad_area:
354	up_read(&mm->mmap_sem);
355
356	if (user_mode(regs)) {
357		int signo, si_code;
358
359		switch (code) {
360		case 15:	/* Data TLB miss fault/Data page fault */
361			/* send SIGSEGV when outside of vma */
362			if (!vma ||
363			    address < vma->vm_start || address >= vma->vm_end) {
364				signo = SIGSEGV;
365				si_code = SEGV_MAPERR;
366				break;
367			}
368
369			/* send SIGSEGV for wrong permissions */
370			if ((vma->vm_flags & acc_type) != acc_type) {
371				signo = SIGSEGV;
372				si_code = SEGV_ACCERR;
373				break;
374			}
375
376			/* probably address is outside of mapped file */
377			/* fall through */
378		case 17:	/* NA data TLB miss / page fault */
379		case 18:	/* Unaligned access - PCXS only */
380			signo = SIGBUS;
381			si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
382			break;
383		case 16:	/* Non-access instruction TLB miss fault */
384		case 26:	/* PCXL: Data memory access rights trap */
385		default:
386			signo = SIGSEGV;
387			si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
388			break;
389		}
390#ifdef CONFIG_MEMORY_FAILURE
391		if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
392			unsigned int lsb = 0;
393			printk(KERN_ERR
394	"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
395			tsk->comm, tsk->pid, address);
396			/*
397			 * Either small page or large page may be poisoned.
398			 * In other words, VM_FAULT_HWPOISON_LARGE and
399			 * VM_FAULT_HWPOISON are mutually exclusive.
400			 */
401			if (fault & VM_FAULT_HWPOISON_LARGE)
402				lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
403			else if (fault & VM_FAULT_HWPOISON)
404				lsb = PAGE_SHIFT;
405
406			force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
407					 lsb);
408			return;
409		}
410#endif
411		show_signal_msg(regs, code, address, tsk, vma);
412
413		force_sig_fault(signo, si_code, (void __user *) address);
414		return;
415	}
 
416
417no_context:
418
419	if (!user_mode(regs) && fixup_exception(regs)) {
420		return;
421	}
422
423	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
424
425  out_of_memory:
426	up_read(&mm->mmap_sem);
427	if (!user_mode(regs))
 
428		goto no_context;
 
429	pagefault_out_of_memory();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430}
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 *
  7 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
  8 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  9 * Copyright 1999 Hewlett Packard Co.
 10 *
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/ptrace.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/interrupt.h>
 18#include <linux/extable.h>
 19#include <linux/uaccess.h>
 20#include <linux/hugetlb.h>
 21#include <linux/perf_event.h>
 22
 23#include <asm/traps.h>
 24
 25#define DEBUG_NATLB 0
 26
 27/* Various important other fields */
 28#define bit22set(x)		(x & 0x00000200)
 29#define bits23_25set(x)		(x & 0x000001c0)
 30#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
 31				/* extended opcode is 0x6a */
 32
 33#define BITSSET		0x1c0	/* for identifying LDCW */
 34
 35
 36int show_unhandled_signals = 1;
 37
 38/*
 39 * parisc_acctyp(unsigned int inst) --
 40 *    Given a PA-RISC memory access instruction, determine if the
 41 *    instruction would perform a memory read or memory write
 42 *    operation.
 43 *
 44 *    This function assumes that the given instruction is a memory access
 45 *    instruction (i.e. you should really only call it if you know that
 46 *    the instruction has generated some sort of a memory access fault).
 47 *
 48 * Returns:
 49 *   VM_READ  if read operation
 50 *   VM_WRITE if write operation
 51 *   VM_EXEC  if execute operation
 52 */
 53unsigned long
 54parisc_acctyp(unsigned long code, unsigned int inst)
 55{
 56	if (code == 6 || code == 16)
 57	    return VM_EXEC;
 58
 59	switch (inst & 0xf0000000) {
 60	case 0x40000000: /* load */
 61	case 0x50000000: /* new load */
 62		return VM_READ;
 63
 64	case 0x60000000: /* store */
 65	case 0x70000000: /* new store */
 66		return VM_WRITE;
 67
 68	case 0x20000000: /* coproc */
 69	case 0x30000000: /* coproc2 */
 70		if (bit22set(inst))
 71			return VM_WRITE;
 72		fallthrough;
 73
 74	case 0x0: /* indexed/memory management */
 75		if (bit22set(inst)) {
 76			/*
 77			 * Check for the 'Graphics Flush Read' instruction.
 78			 * It resembles an FDC instruction, except for bits
 79			 * 20 and 21. Any combination other than zero will
 80			 * utilize the block mover functionality on some
 81			 * older PA-RISC platforms.  The case where a block
 82			 * move is performed from VM to graphics IO space
 83			 * should be treated as a READ.
 84			 *
 85			 * The significance of bits 20,21 in the FDC
 86			 * instruction is:
 87			 *
 88			 *   00  Flush data cache (normal instruction behavior)
 89			 *   01  Graphics flush write  (IO space -> VM)
 90			 *   10  Graphics flush read   (VM -> IO space)
 91			 *   11  Graphics flush read/write (VM <-> IO space)
 92			 */
 93			if (isGraphicsFlushRead(inst))
 94				return VM_READ;
 95			return VM_WRITE;
 96		} else {
 97			/*
 98			 * Check for LDCWX and LDCWS (semaphore instructions).
 99			 * If bits 23 through 25 are all 1's it is one of
100			 * the above two instructions and is a write.
101			 *
102			 * Note: With the limited bits we are looking at,
103			 * this will also catch PROBEW and PROBEWI. However,
104			 * these should never get in here because they don't
105			 * generate exceptions of the type:
106			 *   Data TLB miss fault/data page fault
107			 *   Data memory protection trap
108			 */
109			if (bits23_25set(inst) == BITSSET)
110				return VM_WRITE;
111		}
112		return VM_READ; /* Default */
113	}
114	return VM_READ; /* Default */
115}
116
117#undef bit22set
118#undef bits23_25set
119#undef isGraphicsFlushRead
120#undef BITSSET
121
122
123#if 0
124/* This is the treewalk to find a vma which is the highest that has
125 * a start < addr.  We're using find_vma_prev instead right now, but
126 * we might want to use this at some point in the future.  Probably
127 * not, but I want it committed to CVS so I don't lose it :-)
128 */
129			while (tree != vm_avl_empty) {
130				if (tree->vm_start > addr) {
131					tree = tree->vm_avl_left;
132				} else {
133					prev = tree;
134					if (prev->vm_next == NULL)
135						break;
136					if (prev->vm_next->vm_start > addr)
137						break;
138					tree = tree->vm_avl_right;
139				}
140			}
141#endif
142
143int fixup_exception(struct pt_regs *regs)
144{
145	const struct exception_table_entry *fix;
146
147	fix = search_exception_tables(regs->iaoq[0]);
148	if (fix) {
149		/*
150		 * Fix up get_user() and put_user().
151		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
152		 * bit in the relative address of the fixup routine to indicate
153		 * that gr[ASM_EXCEPTIONTABLE_REG] should be loaded with
154		 * -EFAULT to report a userspace access error.
155		 */
156		if (fix->fixup & 1) {
157			regs->gr[ASM_EXCEPTIONTABLE_REG] = -EFAULT;
158
159			/* zero target register for get_user() */
160			if (parisc_acctyp(0, regs->iir) == VM_READ) {
161				int treg = regs->iir & 0x1f;
162				BUG_ON(treg == 0);
163				regs->gr[treg] = 0;
164			}
165		}
166
167		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
168		regs->iaoq[0] &= ~3;
169		/*
170		 * NOTE: In some cases the faulting instruction
171		 * may be in the delay slot of a branch. We
172		 * don't want to take the branch, so we don't
173		 * increment iaoq[1], instead we set it to be
174		 * iaoq[0]+4, and clear the B bit in the PSW
175		 */
176		regs->iaoq[1] = regs->iaoq[0] + 4;
177		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
178
179		return 1;
180	}
181
182	return 0;
183}
184
185/*
186 * parisc hardware trap list
187 *
188 * Documented in section 3 "Addressing and Access Control" of the
189 * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
190 * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
191 *
192 * For implementation see handle_interruption() in traps.c
193 */
194static const char * const trap_description[] = {
195	[1] "High-priority machine check (HPMC)",
196	[2] "Power failure interrupt",
197	[3] "Recovery counter trap",
198	[5] "Low-priority machine check",
199	[6] "Instruction TLB miss fault",
200	[7] "Instruction access rights / protection trap",
201	[8] "Illegal instruction trap",
202	[9] "Break instruction trap",
203	[10] "Privileged operation trap",
204	[11] "Privileged register trap",
205	[12] "Overflow trap",
206	[13] "Conditional trap",
207	[14] "FP Assist Exception trap",
208	[15] "Data TLB miss fault",
209	[16] "Non-access ITLB miss fault",
210	[17] "Non-access DTLB miss fault",
211	[18] "Data memory protection/unaligned access trap",
212	[19] "Data memory break trap",
213	[20] "TLB dirty bit trap",
214	[21] "Page reference trap",
215	[22] "Assist emulation trap",
216	[25] "Taken branch trap",
217	[26] "Data memory access rights trap",
218	[27] "Data memory protection ID trap",
219	[28] "Unaligned data reference trap",
220};
221
222const char *trap_name(unsigned long code)
223{
224	const char *t = NULL;
225
226	if (code < ARRAY_SIZE(trap_description))
227		t = trap_description[code];
228
229	return t ? t : "Unknown trap";
230}
231
232/*
233 * Print out info about fatal segfaults, if the show_unhandled_signals
234 * sysctl is set:
235 */
236static inline void
237show_signal_msg(struct pt_regs *regs, unsigned long code,
238		unsigned long address, struct task_struct *tsk,
239		struct vm_area_struct *vma)
240{
241	if (!unhandled_signal(tsk, SIGSEGV))
242		return;
243
244	if (!printk_ratelimit())
245		return;
246
247	pr_warn("\n");
248	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
249	    tsk->comm, code, address);
250	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
251
252	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
253		vma ? ',':'\n');
254
255	if (vma)
256		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
257			vma->vm_start, vma->vm_end);
258
259	show_regs(regs);
260}
261
262void do_page_fault(struct pt_regs *regs, unsigned long code,
263			      unsigned long address)
264{
265	struct vm_area_struct *vma, *prev_vma;
266	struct task_struct *tsk;
267	struct mm_struct *mm;
268	unsigned long acc_type;
269	vm_fault_t fault = 0;
270	unsigned int flags;
271	char *msg;
 
 
272
273	tsk = current;
274	mm = tsk->mm;
275	if (!mm) {
276		msg = "Page fault: no context";
277		goto no_context;
278	}
279
280	flags = FAULT_FLAG_DEFAULT;
281	if (user_mode(regs))
282		flags |= FAULT_FLAG_USER;
283
284	acc_type = parisc_acctyp(code, regs->iir);
285	if (acc_type & VM_WRITE)
286		flags |= FAULT_FLAG_WRITE;
287	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
288retry:
289	mmap_read_lock(mm);
290	vma = find_vma_prev(mm, address, &prev_vma);
291	if (!vma || address < vma->vm_start)
292		goto check_expansion;
293/*
294 * Ok, we have a good vm_area for this memory access. We still need to
295 * check the access permissions.
296 */
297
298good_area:
299
300	if ((vma->vm_flags & acc_type) != acc_type)
301		goto bad_area;
302
303	/*
304	 * If for any reason at all we couldn't handle the fault, make
305	 * sure we exit gracefully rather than endlessly redo the
306	 * fault.
307	 */
308
309	fault = handle_mm_fault(vma, address, flags, regs);
310
311	if (fault_signal_pending(fault, regs))
312		return;
313
314	/* The fault is fully completed (including releasing mmap lock) */
315	if (fault & VM_FAULT_COMPLETED)
316		return;
317
318	if (unlikely(fault & VM_FAULT_ERROR)) {
319		/*
320		 * We hit a shared mapping outside of the file, or some
321		 * other thing happened to us that made us unable to
322		 * handle the page fault gracefully.
323		 */
324		if (fault & VM_FAULT_OOM)
325			goto out_of_memory;
326		else if (fault & VM_FAULT_SIGSEGV)
327			goto bad_area;
328		else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
329				  VM_FAULT_HWPOISON_LARGE))
330			goto bad_area;
331		BUG();
332	}
333	if (fault & VM_FAULT_RETRY) {
334		/*
335		 * No need to mmap_read_unlock(mm) as we would
336		 * have already released it in __lock_page_or_retry
337		 * in mm/filemap.c.
338		 */
339		flags |= FAULT_FLAG_TRIED;
340		goto retry;
 
 
 
 
 
 
 
 
341	}
342	mmap_read_unlock(mm);
343	return;
344
345check_expansion:
346	vma = prev_vma;
347	if (vma && (expand_stack(vma, address) == 0))
348		goto good_area;
349
350/*
351 * Something tried to access memory that isn't in our memory map..
352 */
353bad_area:
354	mmap_read_unlock(mm);
355
356	if (user_mode(regs)) {
357		int signo, si_code;
358
359		switch (code) {
360		case 15:	/* Data TLB miss fault/Data page fault */
361			/* send SIGSEGV when outside of vma */
362			if (!vma ||
363			    address < vma->vm_start || address >= vma->vm_end) {
364				signo = SIGSEGV;
365				si_code = SEGV_MAPERR;
366				break;
367			}
368
369			/* send SIGSEGV for wrong permissions */
370			if ((vma->vm_flags & acc_type) != acc_type) {
371				signo = SIGSEGV;
372				si_code = SEGV_ACCERR;
373				break;
374			}
375
376			/* probably address is outside of mapped file */
377			fallthrough;
378		case 17:	/* NA data TLB miss / page fault */
379		case 18:	/* Unaligned access - PCXS only */
380			signo = SIGBUS;
381			si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
382			break;
383		case 16:	/* Non-access instruction TLB miss fault */
384		case 26:	/* PCXL: Data memory access rights trap */
385		default:
386			signo = SIGSEGV;
387			si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
388			break;
389		}
390#ifdef CONFIG_MEMORY_FAILURE
391		if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
392			unsigned int lsb = 0;
393			printk(KERN_ERR
394	"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
395			tsk->comm, tsk->pid, address);
396			/*
397			 * Either small page or large page may be poisoned.
398			 * In other words, VM_FAULT_HWPOISON_LARGE and
399			 * VM_FAULT_HWPOISON are mutually exclusive.
400			 */
401			if (fault & VM_FAULT_HWPOISON_LARGE)
402				lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
403			else if (fault & VM_FAULT_HWPOISON)
404				lsb = PAGE_SHIFT;
405
406			force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
407					 lsb);
408			return;
409		}
410#endif
411		show_signal_msg(regs, code, address, tsk, vma);
412
413		force_sig_fault(signo, si_code, (void __user *) address);
414		return;
415	}
416	msg = "Page fault: bad address";
417
418no_context:
419
420	if (!user_mode(regs) && fixup_exception(regs)) {
421		return;
422	}
423
424	parisc_terminate(msg, regs, code, address);
425
426out_of_memory:
427	mmap_read_unlock(mm);
428	if (!user_mode(regs)) {
429		msg = "Page fault: out of memory";
430		goto no_context;
431	}
432	pagefault_out_of_memory();
433}
434
435/* Handle non-access data TLB miss faults.
436 *
437 * For probe instructions, accesses to userspace are considered allowed
438 * if they lie in a valid VMA and the access type matches. We are not
439 * allowed to handle MM faults here so there may be situations where an
440 * actual access would fail even though a probe was successful.
441 */
442int
443handle_nadtlb_fault(struct pt_regs *regs)
444{
445	unsigned long insn = regs->iir;
446	int breg, treg, xreg, val = 0;
447	struct vm_area_struct *vma, *prev_vma;
448	struct task_struct *tsk;
449	struct mm_struct *mm;
450	unsigned long address;
451	unsigned long acc_type;
452
453	switch (insn & 0x380) {
454	case 0x280:
455		/* FDC instruction */
456		fallthrough;
457	case 0x380:
458		/* PDC and FIC instructions */
459		if (DEBUG_NATLB && printk_ratelimit()) {
460			pr_warn("WARNING: nullifying cache flush/purge instruction\n");
461			show_regs(regs);
462		}
463		if (insn & 0x20) {
464			/* Base modification */
465			breg = (insn >> 21) & 0x1f;
466			xreg = (insn >> 16) & 0x1f;
467			if (breg && xreg)
468				regs->gr[breg] += regs->gr[xreg];
469		}
470		regs->gr[0] |= PSW_N;
471		return 1;
472
473	case 0x180:
474		/* PROBE instruction */
475		treg = insn & 0x1f;
476		if (regs->isr) {
477			tsk = current;
478			mm = tsk->mm;
479			if (mm) {
480				/* Search for VMA */
481				address = regs->ior;
482				mmap_read_lock(mm);
483				vma = find_vma_prev(mm, address, &prev_vma);
484				mmap_read_unlock(mm);
485
486				/*
487				 * Check if access to the VMA is okay.
488				 * We don't allow for stack expansion.
489				 */
490				acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
491				if (vma
492				    && address >= vma->vm_start
493				    && (vma->vm_flags & acc_type) == acc_type)
494					val = 1;
495			}
496		}
497		if (treg)
498			regs->gr[treg] = val;
499		regs->gr[0] |= PSW_N;
500		return 1;
501
502	case 0x300:
503		/* LPA instruction */
504		if (insn & 0x20) {
505			/* Base modification */
506			breg = (insn >> 21) & 0x1f;
507			xreg = (insn >> 16) & 0x1f;
508			if (breg && xreg)
509				regs->gr[breg] += regs->gr[xreg];
510		}
511		treg = insn & 0x1f;
512		if (treg)
513			regs->gr[treg] = 0;
514		regs->gr[0] |= PSW_N;
515		return 1;
516
517	default:
518		break;
519	}
520
521	return 0;
522}