Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/kernel/time.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  6 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  7 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  8 *
  9 * 1994-07-02  Alan Modra
 10 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 11 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 12 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 13 */
 14#include <linux/errno.h>
 15#include <linux/module.h>
 16#include <linux/rtc.h>
 17#include <linux/sched.h>
 18#include <linux/sched/clock.h>
 19#include <linux/sched_clock.h>
 20#include <linux/kernel.h>
 21#include <linux/param.h>
 22#include <linux/string.h>
 23#include <linux/mm.h>
 24#include <linux/interrupt.h>
 25#include <linux/time.h>
 26#include <linux/init.h>
 27#include <linux/smp.h>
 28#include <linux/profile.h>
 29#include <linux/clocksource.h>
 30#include <linux/platform_device.h>
 31#include <linux/ftrace.h>
 32
 33#include <linux/uaccess.h>
 34#include <asm/io.h>
 35#include <asm/irq.h>
 36#include <asm/page.h>
 37#include <asm/param.h>
 38#include <asm/pdc.h>
 39#include <asm/led.h>
 40
 41#include <linux/timex.h>
 42
 
 
 43static unsigned long clocktick __ro_after_init;	/* timer cycles per tick */
 44
 45/*
 46 * We keep time on PA-RISC Linux by using the Interval Timer which is
 47 * a pair of registers; one is read-only and one is write-only; both
 48 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 49 * and increments by 1 every CPU clock tick.  The architecture only
 50 * guarantees us a rate between 0.5 and 2, but all implementations use a
 51 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 52 * 32 bits of the read-only register compare equal to the write-only
 53 * register, it raises a maskable external interrupt.  Each processor has
 54 * an Interval Timer of its own and they are not synchronised.  
 55 *
 56 * We want to generate an interrupt every 1/HZ seconds.  So we program
 57 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 58 * is programmed with the intended time of the next tick.  We can be
 59 * held off for an arbitrarily long period of time by interrupts being
 60 * disabled, so we may miss one or more ticks.
 61 */
 62irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 63{
 64	unsigned long now;
 65	unsigned long next_tick;
 66	unsigned long ticks_elapsed = 0;
 67	unsigned int cpu = smp_processor_id();
 68	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 69
 70	/* gcc can optimize for "read-only" case with a local clocktick */
 71	unsigned long cpt = clocktick;
 72
 73	profile_tick(CPU_PROFILING);
 74
 75	/* Initialize next_tick to the old expected tick time. */
 76	next_tick = cpuinfo->it_value;
 77
 78	/* Calculate how many ticks have elapsed. */
 79	now = mfctl(16);
 80	do {
 81		++ticks_elapsed;
 82		next_tick += cpt;
 83	} while (next_tick - now > cpt);
 84
 85	/* Store (in CR16 cycles) up to when we are accounting right now. */
 86	cpuinfo->it_value = next_tick;
 87
 88	/* Go do system house keeping. */
 89	if (cpu == 0)
 90		xtime_update(ticks_elapsed);
 91
 92	update_process_times(user_mode(get_irq_regs()));
 93
 94	/* Skip clockticks on purpose if we know we would miss those.
 95	 * The new CR16 must be "later" than current CR16 otherwise
 96	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
 97	 * later on a 1Ghz processor. We'll account for the missed
 98	 * ticks on the next timer interrupt.
 99	 * We want IT to fire modulo clocktick even if we miss/skip some.
100	 * But those interrupts don't in fact get delivered that regularly.
101	 *
102	 * "next_tick - now" will always give the difference regardless
103	 * if one or the other wrapped. If "now" is "bigger" we'll end up
104	 * with a very large unsigned number.
105	 */
106	now = mfctl(16);
107	while (next_tick - now > cpt)
108		next_tick += cpt;
109
110	/* Program the IT when to deliver the next interrupt.
111	 * Only bottom 32-bits of next_tick are writable in CR16!
112	 * Timer interrupt will be delivered at least a few hundred cycles
113	 * after the IT fires, so if we are too close (<= 8000 cycles) to the
114	 * next cycle, simply skip it.
115	 */
116	if (next_tick - now <= 8000)
117		next_tick += cpt;
118	mtctl(next_tick, 16);
119
120	return IRQ_HANDLED;
121}
122
123
124unsigned long profile_pc(struct pt_regs *regs)
125{
126	unsigned long pc = instruction_pointer(regs);
127
128	if (regs->gr[0] & PSW_N)
129		pc -= 4;
130
131#ifdef CONFIG_SMP
132	if (in_lock_functions(pc))
133		pc = regs->gr[2];
134#endif
135
136	return pc;
137}
138EXPORT_SYMBOL(profile_pc);
139
140
141/* clock source code */
142
143static u64 notrace read_cr16(struct clocksource *cs)
144{
145	return get_cycles();
146}
147
148static struct clocksource clocksource_cr16 = {
149	.name			= "cr16",
150	.rating			= 300,
151	.read			= read_cr16,
152	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
153	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
154};
155
156void __init start_cpu_itimer(void)
157{
158	unsigned int cpu = smp_processor_id();
159	unsigned long next_tick = mfctl(16) + clocktick;
160
161	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
162
163	per_cpu(cpu_data, cpu).it_value = next_tick;
164}
165
166#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
167static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
168{
169	struct pdc_tod tod_data;
170
171	memset(tm, 0, sizeof(*tm));
172	if (pdc_tod_read(&tod_data) < 0)
173		return -EOPNOTSUPP;
174
175	/* we treat tod_sec as unsigned, so this can work until year 2106 */
176	rtc_time64_to_tm(tod_data.tod_sec, tm);
177	return 0;
178}
179
180static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
181{
182	time64_t secs = rtc_tm_to_time64(tm);
 
183
184	if (pdc_tod_set(secs, 0) < 0)
 
 
 
 
 
185		return -EOPNOTSUPP;
 
186
187	return 0;
188}
189
190static const struct rtc_class_ops rtc_generic_ops = {
191	.read_time = rtc_generic_get_time,
192	.set_time = rtc_generic_set_time,
193};
194
195static int __init rtc_init(void)
196{
197	struct platform_device *pdev;
198
199	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
200					     &rtc_generic_ops,
201					     sizeof(rtc_generic_ops));
202
203	return PTR_ERR_OR_ZERO(pdev);
204}
205device_initcall(rtc_init);
206#endif
207
208void read_persistent_clock64(struct timespec64 *ts)
209{
210	static struct pdc_tod tod_data;
211	if (pdc_tod_read(&tod_data) == 0) {
212		ts->tv_sec = tod_data.tod_sec;
213		ts->tv_nsec = tod_data.tod_usec * 1000;
214	} else {
215		printk(KERN_ERR "Error reading tod clock\n");
216	        ts->tv_sec = 0;
217		ts->tv_nsec = 0;
218	}
219}
220
221
222static u64 notrace read_cr16_sched_clock(void)
223{
224	return get_cycles();
225}
226
227
228/*
229 * timer interrupt and sched_clock() initialization
230 */
231
232void __init time_init(void)
233{
234	unsigned long cr16_hz;
235
236	clocktick = (100 * PAGE0->mem_10msec) / HZ;
237	start_cpu_itimer();	/* get CPU 0 started */
238
239	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
240
241	/* register as sched_clock source */
242	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
243}
244
245static int __init init_cr16_clocksource(void)
246{
247	/*
248	 * The cr16 interval timers are not syncronized across CPUs on
249	 * different sockets, so mark them unstable and lower rating on
250	 * multi-socket SMP systems.
251	 */
252	if (num_online_cpus() > 1 && !running_on_qemu) {
253		int cpu;
254		unsigned long cpu0_loc;
255		cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
256
257		for_each_online_cpu(cpu) {
258			if (cpu == 0)
259				continue;
260			if ((cpu0_loc != 0) &&
261			    (cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
262				continue;
263
264			clocksource_cr16.name = "cr16_unstable";
265			clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
266			clocksource_cr16.rating = 0;
267			break;
268		}
269	}
270
271	/* XXX: We may want to mark sched_clock stable here if cr16 clocks are
272	 *	in sync:
273	 *	(clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */
274
275	/* register at clocksource framework */
276	clocksource_register_hz(&clocksource_cr16,
277		100 * PAGE0->mem_10msec);
278
279	return 0;
280}
281
282device_initcall(init_cr16_clocksource);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/kernel/time.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  6 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  7 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  8 *
  9 * 1994-07-02  Alan Modra
 10 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 11 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 12 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 13 */
 14#include <linux/errno.h>
 15#include <linux/module.h>
 16#include <linux/rtc.h>
 17#include <linux/sched.h>
 18#include <linux/sched/clock.h>
 19#include <linux/sched_clock.h>
 20#include <linux/kernel.h>
 21#include <linux/param.h>
 22#include <linux/string.h>
 23#include <linux/mm.h>
 24#include <linux/interrupt.h>
 25#include <linux/time.h>
 26#include <linux/init.h>
 27#include <linux/smp.h>
 28#include <linux/profile.h>
 29#include <linux/clocksource.h>
 30#include <linux/platform_device.h>
 31#include <linux/ftrace.h>
 32
 33#include <linux/uaccess.h>
 34#include <asm/io.h>
 35#include <asm/irq.h>
 36#include <asm/page.h>
 37#include <asm/param.h>
 38#include <asm/pdc.h>
 39#include <asm/led.h>
 40
 41#include <linux/timex.h>
 42
 43int time_keeper_id __read_mostly;	/* CPU used for timekeeping. */
 44
 45static unsigned long clocktick __ro_after_init;	/* timer cycles per tick */
 46
 47/*
 48 * We keep time on PA-RISC Linux by using the Interval Timer which is
 49 * a pair of registers; one is read-only and one is write-only; both
 50 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 51 * and increments by 1 every CPU clock tick.  The architecture only
 52 * guarantees us a rate between 0.5 and 2, but all implementations use a
 53 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 54 * 32 bits of the read-only register compare equal to the write-only
 55 * register, it raises a maskable external interrupt.  Each processor has
 56 * an Interval Timer of its own and they are not synchronised.  
 57 *
 58 * We want to generate an interrupt every 1/HZ seconds.  So we program
 59 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 60 * is programmed with the intended time of the next tick.  We can be
 61 * held off for an arbitrarily long period of time by interrupts being
 62 * disabled, so we may miss one or more ticks.
 63 */
 64irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 65{
 66	unsigned long now;
 67	unsigned long next_tick;
 68	unsigned long ticks_elapsed = 0;
 69	unsigned int cpu = smp_processor_id();
 70	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 71
 72	/* gcc can optimize for "read-only" case with a local clocktick */
 73	unsigned long cpt = clocktick;
 74
 
 
 75	/* Initialize next_tick to the old expected tick time. */
 76	next_tick = cpuinfo->it_value;
 77
 78	/* Calculate how many ticks have elapsed. */
 79	now = mfctl(16);
 80	do {
 81		++ticks_elapsed;
 82		next_tick += cpt;
 83	} while (next_tick - now > cpt);
 84
 85	/* Store (in CR16 cycles) up to when we are accounting right now. */
 86	cpuinfo->it_value = next_tick;
 87
 88	/* Go do system house keeping. */
 89	if (IS_ENABLED(CONFIG_SMP) && (cpu != time_keeper_id))
 90		ticks_elapsed = 0;
 91	legacy_timer_tick(ticks_elapsed);
 
 92
 93	/* Skip clockticks on purpose if we know we would miss those.
 94	 * The new CR16 must be "later" than current CR16 otherwise
 95	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
 96	 * later on a 1Ghz processor. We'll account for the missed
 97	 * ticks on the next timer interrupt.
 98	 * We want IT to fire modulo clocktick even if we miss/skip some.
 99	 * But those interrupts don't in fact get delivered that regularly.
100	 *
101	 * "next_tick - now" will always give the difference regardless
102	 * if one or the other wrapped. If "now" is "bigger" we'll end up
103	 * with a very large unsigned number.
104	 */
105	now = mfctl(16);
106	while (next_tick - now > cpt)
107		next_tick += cpt;
108
109	/* Program the IT when to deliver the next interrupt.
110	 * Only bottom 32-bits of next_tick are writable in CR16!
111	 * Timer interrupt will be delivered at least a few hundred cycles
112	 * after the IT fires, so if we are too close (<= 8000 cycles) to the
113	 * next cycle, simply skip it.
114	 */
115	if (next_tick - now <= 8000)
116		next_tick += cpt;
117	mtctl(next_tick, 16);
118
119	return IRQ_HANDLED;
120}
121
122
123unsigned long profile_pc(struct pt_regs *regs)
124{
125	unsigned long pc = instruction_pointer(regs);
126
127	if (regs->gr[0] & PSW_N)
128		pc -= 4;
129
130#ifdef CONFIG_SMP
131	if (in_lock_functions(pc))
132		pc = regs->gr[2];
133#endif
134
135	return pc;
136}
137EXPORT_SYMBOL(profile_pc);
138
139
140/* clock source code */
141
142static u64 notrace read_cr16(struct clocksource *cs)
143{
144	return get_cycles();
145}
146
147static struct clocksource clocksource_cr16 = {
148	.name			= "cr16",
149	.rating			= 300,
150	.read			= read_cr16,
151	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
152	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
153};
154
155void start_cpu_itimer(void)
156{
157	unsigned int cpu = smp_processor_id();
158	unsigned long next_tick = mfctl(16) + clocktick;
159
160	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
161
162	per_cpu(cpu_data, cpu).it_value = next_tick;
163}
164
165#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
166static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
167{
168	struct pdc_tod tod_data;
169
170	memset(tm, 0, sizeof(*tm));
171	if (pdc_tod_read(&tod_data) < 0)
172		return -EOPNOTSUPP;
173
174	/* we treat tod_sec as unsigned, so this can work until year 2106 */
175	rtc_time64_to_tm(tod_data.tod_sec, tm);
176	return 0;
177}
178
179static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
180{
181	time64_t secs = rtc_tm_to_time64(tm);
182	int ret;
183
184	/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
185	ret = pdc_tod_set(secs, 0);
186	if (ret != 0) {
187		pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
188		if (ret == PDC_INVALID_ARG)
189			return -EINVAL;
190		return -EOPNOTSUPP;
191	}
192
193	return 0;
194}
195
196static const struct rtc_class_ops rtc_generic_ops = {
197	.read_time = rtc_generic_get_time,
198	.set_time = rtc_generic_set_time,
199};
200
201static int __init rtc_init(void)
202{
203	struct platform_device *pdev;
204
205	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
206					     &rtc_generic_ops,
207					     sizeof(rtc_generic_ops));
208
209	return PTR_ERR_OR_ZERO(pdev);
210}
211device_initcall(rtc_init);
212#endif
213
214void read_persistent_clock64(struct timespec64 *ts)
215{
216	static struct pdc_tod tod_data;
217	if (pdc_tod_read(&tod_data) == 0) {
218		ts->tv_sec = tod_data.tod_sec;
219		ts->tv_nsec = tod_data.tod_usec * 1000;
220	} else {
221		printk(KERN_ERR "Error reading tod clock\n");
222	        ts->tv_sec = 0;
223		ts->tv_nsec = 0;
224	}
225}
226
227
228static u64 notrace read_cr16_sched_clock(void)
229{
230	return get_cycles();
231}
232
233
234/*
235 * timer interrupt and sched_clock() initialization
236 */
237
238void __init time_init(void)
239{
240	unsigned long cr16_hz;
241
242	clocktick = (100 * PAGE0->mem_10msec) / HZ;
243	start_cpu_itimer();	/* get CPU 0 started */
244
245	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
246
247	/* register as sched_clock source */
248	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
249}
250
251static int __init init_cr16_clocksource(void)
252{
253	/*
254	 * The cr16 interval timers are not synchronized across CPUs.
 
 
255	 */
256	if (num_online_cpus() > 1 && !running_on_qemu) {
257		clocksource_cr16.name = "cr16_unstable";
258		clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
259		clocksource_cr16.rating = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
260	}
 
 
 
 
261
262	/* register at clocksource framework */
263	clocksource_register_hz(&clocksource_cr16,
264		100 * PAGE0->mem_10msec);
265
266	return 0;
267}
268
269device_initcall(init_cr16_clocksource);