Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See http://www.parisc-linux.org/documentation/index.html
8 * for documentation describing the entry points and calling
9 * conventions defined below.
10 *
11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
16 */
17
18/* I think it would be in everyone's best interest to follow this
19 * guidelines when writing PDC wrappers:
20 *
21 * - the name of the pdc wrapper should match one of the macros
22 * used for the first two arguments
23 * - don't use caps for random parts of the name
24 * - use the static PDC result buffers and "copyout" to structs
25 * supplied by the caller to encapsulate alignment restrictions
26 * - hold pdc_lock while in PDC or using static result buffers
27 * - use __pa() to convert virtual (kernel) pointers to physical
28 * ones.
29 * - the name of the struct used for pdc return values should equal
30 * one of the macros used for the first two arguments to the
31 * corresponding PDC call
32 * - keep the order of arguments
33 * - don't be smart (setting trailing NUL bytes for strings, return
34 * something useful even if the call failed) unless you are sure
35 * it's not going to affect functionality or performance
36 *
37 * Example:
38 * int pdc_cache_info(struct pdc_cache_info *cache_info )
39 * {
40 * int retval;
41 *
42 * spin_lock_irq(&pdc_lock);
43 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
44 * convert_to_wide(pdc_result);
45 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
46 * spin_unlock_irq(&pdc_lock);
47 *
48 * return retval;
49 * }
50 * prumpf 991016
51 */
52
53#include <stdarg.h>
54
55#include <linux/delay.h>
56#include <linux/init.h>
57#include <linux/kernel.h>
58#include <linux/module.h>
59#include <linux/string.h>
60#include <linux/spinlock.h>
61
62#include <asm/page.h>
63#include <asm/pdc.h>
64#include <asm/pdcpat.h>
65#include <asm/processor.h> /* for boot_cpu_data */
66
67#if defined(BOOTLOADER)
68# undef spin_lock_irqsave
69# define spin_lock_irqsave(a, b) { b = 1; }
70# undef spin_unlock_irqrestore
71# define spin_unlock_irqrestore(a, b)
72#else
73static DEFINE_SPINLOCK(pdc_lock);
74#endif
75
76extern unsigned long pdc_result[NUM_PDC_RESULT];
77extern unsigned long pdc_result2[NUM_PDC_RESULT];
78
79#ifdef CONFIG_64BIT
80#define WIDE_FIRMWARE 0x1
81#define NARROW_FIRMWARE 0x2
82
83/* Firmware needs to be initially set to narrow to determine the
84 * actual firmware width. */
85int parisc_narrow_firmware __ro_after_init = 1;
86#endif
87
88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
89 * and MEM_PDC calls are always the same width as the OS.
90 * Some PAT boxes may have 64-bit IODC I/O.
91 *
92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
94 * This allowed wide kernels to run on Cxxx boxes.
95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
97 */
98
99#ifdef CONFIG_64BIT
100long real64_call(unsigned long function, ...);
101#endif
102long real32_call(unsigned long function, ...);
103
104#ifdef CONFIG_64BIT
105# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
106# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
107#else
108# define MEM_PDC (unsigned long)PAGE0->mem_pdc
109# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
110#endif
111
112
113/**
114 * f_extend - Convert PDC addresses to kernel addresses.
115 * @address: Address returned from PDC.
116 *
117 * This function is used to convert PDC addresses into kernel addresses
118 * when the PDC address size and kernel address size are different.
119 */
120static unsigned long f_extend(unsigned long address)
121{
122#ifdef CONFIG_64BIT
123 if(unlikely(parisc_narrow_firmware)) {
124 if((address & 0xff000000) == 0xf0000000)
125 return 0xf0f0f0f000000000UL | (u32)address;
126
127 if((address & 0xf0000000) == 0xf0000000)
128 return 0xffffffff00000000UL | (u32)address;
129 }
130#endif
131 return address;
132}
133
134/**
135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
136 * @address: The return buffer from PDC.
137 *
138 * This function is used to convert the return buffer addresses retrieved from PDC
139 * into kernel addresses when the PDC address size and kernel address size are
140 * different.
141 */
142static void convert_to_wide(unsigned long *addr)
143{
144#ifdef CONFIG_64BIT
145 int i;
146 unsigned int *p = (unsigned int *)addr;
147
148 if (unlikely(parisc_narrow_firmware)) {
149 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
150 addr[i] = p[i];
151 }
152#endif
153}
154
155#ifdef CONFIG_64BIT
156void set_firmware_width_unlocked(void)
157{
158 int ret;
159
160 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
161 __pa(pdc_result), 0);
162 convert_to_wide(pdc_result);
163 if (pdc_result[0] != NARROW_FIRMWARE)
164 parisc_narrow_firmware = 0;
165}
166
167/**
168 * set_firmware_width - Determine if the firmware is wide or narrow.
169 *
170 * This function must be called before any pdc_* function that uses the
171 * convert_to_wide function.
172 */
173void set_firmware_width(void)
174{
175 unsigned long flags;
176 spin_lock_irqsave(&pdc_lock, flags);
177 set_firmware_width_unlocked();
178 spin_unlock_irqrestore(&pdc_lock, flags);
179}
180#else
181void set_firmware_width_unlocked(void)
182{
183 return;
184}
185
186void set_firmware_width(void)
187{
188 return;
189}
190#endif /*CONFIG_64BIT*/
191
192
193#if !defined(BOOTLOADER)
194/**
195 * pdc_emergency_unlock - Unlock the linux pdc lock
196 *
197 * This call unlocks the linux pdc lock in case we need some PDC functions
198 * (like pdc_add_valid) during kernel stack dump.
199 */
200void pdc_emergency_unlock(void)
201{
202 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
203 if (spin_is_locked(&pdc_lock))
204 spin_unlock(&pdc_lock);
205}
206
207
208/**
209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
210 * @address: Address to be verified.
211 *
212 * This PDC call attempts to read from the specified address and verifies
213 * if the address is valid.
214 *
215 * The return value is PDC_OK (0) in case accessing this address is valid.
216 */
217int pdc_add_valid(unsigned long address)
218{
219 int retval;
220 unsigned long flags;
221
222 spin_lock_irqsave(&pdc_lock, flags);
223 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
224 spin_unlock_irqrestore(&pdc_lock, flags);
225
226 return retval;
227}
228EXPORT_SYMBOL(pdc_add_valid);
229
230/**
231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
232 * @instr: Pointer to variable which will get instruction opcode.
233 *
234 * The return value is PDC_OK (0) in case call succeeded.
235 */
236int __init pdc_instr(unsigned int *instr)
237{
238 int retval;
239 unsigned long flags;
240
241 spin_lock_irqsave(&pdc_lock, flags);
242 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
243 convert_to_wide(pdc_result);
244 *instr = pdc_result[0];
245 spin_unlock_irqrestore(&pdc_lock, flags);
246
247 return retval;
248}
249
250/**
251 * pdc_chassis_info - Return chassis information.
252 * @result: The return buffer.
253 * @chassis_info: The memory buffer address.
254 * @len: The size of the memory buffer address.
255 *
256 * An HVERSION dependent call for returning the chassis information.
257 */
258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
259{
260 int retval;
261 unsigned long flags;
262
263 spin_lock_irqsave(&pdc_lock, flags);
264 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
265 memcpy(&pdc_result2, led_info, len);
266 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
267 __pa(pdc_result), __pa(pdc_result2), len);
268 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
269 memcpy(led_info, pdc_result2, len);
270 spin_unlock_irqrestore(&pdc_lock, flags);
271
272 return retval;
273}
274
275/**
276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
277 * @retval: -1 on error, 0 on success. Other value are PDC errors
278 *
279 * Must be correctly formatted or expect system crash
280 */
281#ifdef CONFIG_64BIT
282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
283{
284 int retval = 0;
285 unsigned long flags;
286
287 if (!is_pdc_pat())
288 return -1;
289
290 spin_lock_irqsave(&pdc_lock, flags);
291 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
292 spin_unlock_irqrestore(&pdc_lock, flags);
293
294 return retval;
295}
296#endif
297
298/**
299 * pdc_chassis_disp - Updates chassis code
300 * @retval: -1 on error, 0 on success
301 */
302int pdc_chassis_disp(unsigned long disp)
303{
304 int retval = 0;
305 unsigned long flags;
306
307 spin_lock_irqsave(&pdc_lock, flags);
308 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
309 spin_unlock_irqrestore(&pdc_lock, flags);
310
311 return retval;
312}
313
314/**
315 * pdc_cpu_rendenzvous - Stop currently executing CPU
316 * @retval: -1 on error, 0 on success
317 */
318int __pdc_cpu_rendezvous(void)
319{
320 if (is_pdc_pat())
321 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
322 else
323 return mem_pdc_call(PDC_PROC, 1, 0);
324}
325
326
327/**
328 * pdc_chassis_warn - Fetches chassis warnings
329 * @retval: -1 on error, 0 on success
330 */
331int pdc_chassis_warn(unsigned long *warn)
332{
333 int retval = 0;
334 unsigned long flags;
335
336 spin_lock_irqsave(&pdc_lock, flags);
337 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
338 *warn = pdc_result[0];
339 spin_unlock_irqrestore(&pdc_lock, flags);
340
341 return retval;
342}
343
344int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
345{
346 int ret;
347
348 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
349 convert_to_wide(pdc_result);
350 pdc_coproc_info->ccr_functional = pdc_result[0];
351 pdc_coproc_info->ccr_present = pdc_result[1];
352 pdc_coproc_info->revision = pdc_result[17];
353 pdc_coproc_info->model = pdc_result[18];
354
355 return ret;
356}
357
358/**
359 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
360 * @pdc_coproc_info: Return buffer address.
361 *
362 * This PDC call returns the presence and status of all the coprocessors
363 * attached to the processor.
364 */
365int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
366{
367 int ret;
368 unsigned long flags;
369
370 spin_lock_irqsave(&pdc_lock, flags);
371 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
372 spin_unlock_irqrestore(&pdc_lock, flags);
373
374 return ret;
375}
376
377/**
378 * pdc_iodc_read - Read data from the modules IODC.
379 * @actcnt: The actual number of bytes.
380 * @hpa: The HPA of the module for the iodc read.
381 * @index: The iodc entry point.
382 * @iodc_data: A buffer memory for the iodc options.
383 * @iodc_data_size: Size of the memory buffer.
384 *
385 * This PDC call reads from the IODC of the module specified by the hpa
386 * argument.
387 */
388int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
389 void *iodc_data, unsigned int iodc_data_size)
390{
391 int retval;
392 unsigned long flags;
393
394 spin_lock_irqsave(&pdc_lock, flags);
395 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
396 index, __pa(pdc_result2), iodc_data_size);
397 convert_to_wide(pdc_result);
398 *actcnt = pdc_result[0];
399 memcpy(iodc_data, pdc_result2, iodc_data_size);
400 spin_unlock_irqrestore(&pdc_lock, flags);
401
402 return retval;
403}
404EXPORT_SYMBOL(pdc_iodc_read);
405
406/**
407 * pdc_system_map_find_mods - Locate unarchitected modules.
408 * @pdc_mod_info: Return buffer address.
409 * @mod_path: pointer to dev path structure.
410 * @mod_index: fixed address module index.
411 *
412 * To locate and identify modules which reside at fixed I/O addresses, which
413 * do not self-identify via architected bus walks.
414 */
415int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
416 struct pdc_module_path *mod_path, long mod_index)
417{
418 int retval;
419 unsigned long flags;
420
421 spin_lock_irqsave(&pdc_lock, flags);
422 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
423 __pa(pdc_result2), mod_index);
424 convert_to_wide(pdc_result);
425 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
426 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
427 spin_unlock_irqrestore(&pdc_lock, flags);
428
429 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
430 return retval;
431}
432
433/**
434 * pdc_system_map_find_addrs - Retrieve additional address ranges.
435 * @pdc_addr_info: Return buffer address.
436 * @mod_index: Fixed address module index.
437 * @addr_index: Address range index.
438 *
439 * Retrieve additional information about subsequent address ranges for modules
440 * with multiple address ranges.
441 */
442int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
443 long mod_index, long addr_index)
444{
445 int retval;
446 unsigned long flags;
447
448 spin_lock_irqsave(&pdc_lock, flags);
449 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
450 mod_index, addr_index);
451 convert_to_wide(pdc_result);
452 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
453 spin_unlock_irqrestore(&pdc_lock, flags);
454
455 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
456 return retval;
457}
458
459/**
460 * pdc_model_info - Return model information about the processor.
461 * @model: The return buffer.
462 *
463 * Returns the version numbers, identifiers, and capabilities from the processor module.
464 */
465int pdc_model_info(struct pdc_model *model)
466{
467 int retval;
468 unsigned long flags;
469
470 spin_lock_irqsave(&pdc_lock, flags);
471 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
472 convert_to_wide(pdc_result);
473 memcpy(model, pdc_result, sizeof(*model));
474 spin_unlock_irqrestore(&pdc_lock, flags);
475
476 return retval;
477}
478
479/**
480 * pdc_model_sysmodel - Get the system model name.
481 * @name: A char array of at least 81 characters.
482 *
483 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
484 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
485 * on HP/UX.
486 */
487int pdc_model_sysmodel(char *name)
488{
489 int retval;
490 unsigned long flags;
491
492 spin_lock_irqsave(&pdc_lock, flags);
493 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
494 OS_ID_HPUX, __pa(name));
495 convert_to_wide(pdc_result);
496
497 if (retval == PDC_OK) {
498 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
499 } else {
500 name[0] = 0;
501 }
502 spin_unlock_irqrestore(&pdc_lock, flags);
503
504 return retval;
505}
506
507/**
508 * pdc_model_versions - Identify the version number of each processor.
509 * @cpu_id: The return buffer.
510 * @id: The id of the processor to check.
511 *
512 * Returns the version number for each processor component.
513 *
514 * This comment was here before, but I do not know what it means :( -RB
515 * id: 0 = cpu revision, 1 = boot-rom-version
516 */
517int pdc_model_versions(unsigned long *versions, int id)
518{
519 int retval;
520 unsigned long flags;
521
522 spin_lock_irqsave(&pdc_lock, flags);
523 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
524 convert_to_wide(pdc_result);
525 *versions = pdc_result[0];
526 spin_unlock_irqrestore(&pdc_lock, flags);
527
528 return retval;
529}
530
531/**
532 * pdc_model_cpuid - Returns the CPU_ID.
533 * @cpu_id: The return buffer.
534 *
535 * Returns the CPU_ID value which uniquely identifies the cpu portion of
536 * the processor module.
537 */
538int pdc_model_cpuid(unsigned long *cpu_id)
539{
540 int retval;
541 unsigned long flags;
542
543 spin_lock_irqsave(&pdc_lock, flags);
544 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
545 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
546 convert_to_wide(pdc_result);
547 *cpu_id = pdc_result[0];
548 spin_unlock_irqrestore(&pdc_lock, flags);
549
550 return retval;
551}
552
553/**
554 * pdc_model_capabilities - Returns the platform capabilities.
555 * @capabilities: The return buffer.
556 *
557 * Returns information about platform support for 32- and/or 64-bit
558 * OSes, IO-PDIR coherency, and virtual aliasing.
559 */
560int pdc_model_capabilities(unsigned long *capabilities)
561{
562 int retval;
563 unsigned long flags;
564
565 spin_lock_irqsave(&pdc_lock, flags);
566 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
567 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
568 convert_to_wide(pdc_result);
569 if (retval == PDC_OK) {
570 *capabilities = pdc_result[0];
571 } else {
572 *capabilities = PDC_MODEL_OS32;
573 }
574 spin_unlock_irqrestore(&pdc_lock, flags);
575
576 return retval;
577}
578
579/**
580 * pdc_model_platform_info - Returns machine product and serial number.
581 * @orig_prod_num: Return buffer for original product number.
582 * @current_prod_num: Return buffer for current product number.
583 * @serial_no: Return buffer for serial number.
584 *
585 * Returns strings containing the original and current product numbers and the
586 * serial number of the system.
587 */
588int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
589 char *serial_no)
590{
591 int retval;
592 unsigned long flags;
593
594 spin_lock_irqsave(&pdc_lock, flags);
595 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
596 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
597 convert_to_wide(pdc_result);
598 spin_unlock_irqrestore(&pdc_lock, flags);
599
600 return retval;
601}
602
603/**
604 * pdc_cache_info - Return cache and TLB information.
605 * @cache_info: The return buffer.
606 *
607 * Returns information about the processor's cache and TLB.
608 */
609int pdc_cache_info(struct pdc_cache_info *cache_info)
610{
611 int retval;
612 unsigned long flags;
613
614 spin_lock_irqsave(&pdc_lock, flags);
615 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
616 convert_to_wide(pdc_result);
617 memcpy(cache_info, pdc_result, sizeof(*cache_info));
618 spin_unlock_irqrestore(&pdc_lock, flags);
619
620 return retval;
621}
622
623/**
624 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
625 * @space_bits: Should be 0, if not, bad mojo!
626 *
627 * Returns information about Space ID hashing.
628 */
629int pdc_spaceid_bits(unsigned long *space_bits)
630{
631 int retval;
632 unsigned long flags;
633
634 spin_lock_irqsave(&pdc_lock, flags);
635 pdc_result[0] = 0;
636 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
637 convert_to_wide(pdc_result);
638 *space_bits = pdc_result[0];
639 spin_unlock_irqrestore(&pdc_lock, flags);
640
641 return retval;
642}
643
644#ifndef CONFIG_PA20
645/**
646 * pdc_btlb_info - Return block TLB information.
647 * @btlb: The return buffer.
648 *
649 * Returns information about the hardware Block TLB.
650 */
651int pdc_btlb_info(struct pdc_btlb_info *btlb)
652{
653 int retval;
654 unsigned long flags;
655
656 spin_lock_irqsave(&pdc_lock, flags);
657 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
658 memcpy(btlb, pdc_result, sizeof(*btlb));
659 spin_unlock_irqrestore(&pdc_lock, flags);
660
661 if(retval < 0) {
662 btlb->max_size = 0;
663 }
664 return retval;
665}
666
667/**
668 * pdc_mem_map_hpa - Find fixed module information.
669 * @address: The return buffer
670 * @mod_path: pointer to dev path structure.
671 *
672 * This call was developed for S700 workstations to allow the kernel to find
673 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
674 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
675 * call.
676 *
677 * This call is supported by all existing S700 workstations (up to Gecko).
678 */
679int pdc_mem_map_hpa(struct pdc_memory_map *address,
680 struct pdc_module_path *mod_path)
681{
682 int retval;
683 unsigned long flags;
684
685 spin_lock_irqsave(&pdc_lock, flags);
686 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
687 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
688 __pa(pdc_result2));
689 memcpy(address, pdc_result, sizeof(*address));
690 spin_unlock_irqrestore(&pdc_lock, flags);
691
692 return retval;
693}
694#endif /* !CONFIG_PA20 */
695
696/**
697 * pdc_lan_station_id - Get the LAN address.
698 * @lan_addr: The return buffer.
699 * @hpa: The network device HPA.
700 *
701 * Get the LAN station address when it is not directly available from the LAN hardware.
702 */
703int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
704{
705 int retval;
706 unsigned long flags;
707
708 spin_lock_irqsave(&pdc_lock, flags);
709 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
710 __pa(pdc_result), hpa);
711 if (retval < 0) {
712 /* FIXME: else read MAC from NVRAM */
713 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
714 } else {
715 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
716 }
717 spin_unlock_irqrestore(&pdc_lock, flags);
718
719 return retval;
720}
721EXPORT_SYMBOL(pdc_lan_station_id);
722
723/**
724 * pdc_stable_read - Read data from Stable Storage.
725 * @staddr: Stable Storage address to access.
726 * @memaddr: The memory address where Stable Storage data shall be copied.
727 * @count: number of bytes to transfer. count is multiple of 4.
728 *
729 * This PDC call reads from the Stable Storage address supplied in staddr
730 * and copies count bytes to the memory address memaddr.
731 * The call will fail if staddr+count > PDC_STABLE size.
732 */
733int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
734{
735 int retval;
736 unsigned long flags;
737
738 spin_lock_irqsave(&pdc_lock, flags);
739 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
740 __pa(pdc_result), count);
741 convert_to_wide(pdc_result);
742 memcpy(memaddr, pdc_result, count);
743 spin_unlock_irqrestore(&pdc_lock, flags);
744
745 return retval;
746}
747EXPORT_SYMBOL(pdc_stable_read);
748
749/**
750 * pdc_stable_write - Write data to Stable Storage.
751 * @staddr: Stable Storage address to access.
752 * @memaddr: The memory address where Stable Storage data shall be read from.
753 * @count: number of bytes to transfer. count is multiple of 4.
754 *
755 * This PDC call reads count bytes from the supplied memaddr address,
756 * and copies count bytes to the Stable Storage address staddr.
757 * The call will fail if staddr+count > PDC_STABLE size.
758 */
759int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
760{
761 int retval;
762 unsigned long flags;
763
764 spin_lock_irqsave(&pdc_lock, flags);
765 memcpy(pdc_result, memaddr, count);
766 convert_to_wide(pdc_result);
767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
768 __pa(pdc_result), count);
769 spin_unlock_irqrestore(&pdc_lock, flags);
770
771 return retval;
772}
773EXPORT_SYMBOL(pdc_stable_write);
774
775/**
776 * pdc_stable_get_size - Get Stable Storage size in bytes.
777 * @size: pointer where the size will be stored.
778 *
779 * This PDC call returns the number of bytes in the processor's Stable
780 * Storage, which is the number of contiguous bytes implemented in Stable
781 * Storage starting from staddr=0. size in an unsigned 64-bit integer
782 * which is a multiple of four.
783 */
784int pdc_stable_get_size(unsigned long *size)
785{
786 int retval;
787 unsigned long flags;
788
789 spin_lock_irqsave(&pdc_lock, flags);
790 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
791 *size = pdc_result[0];
792 spin_unlock_irqrestore(&pdc_lock, flags);
793
794 return retval;
795}
796EXPORT_SYMBOL(pdc_stable_get_size);
797
798/**
799 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
800 *
801 * This PDC call is meant to be used to check the integrity of the current
802 * contents of Stable Storage.
803 */
804int pdc_stable_verify_contents(void)
805{
806 int retval;
807 unsigned long flags;
808
809 spin_lock_irqsave(&pdc_lock, flags);
810 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
811 spin_unlock_irqrestore(&pdc_lock, flags);
812
813 return retval;
814}
815EXPORT_SYMBOL(pdc_stable_verify_contents);
816
817/**
818 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
819 * the validity indicator.
820 *
821 * This PDC call will erase all contents of Stable Storage. Use with care!
822 */
823int pdc_stable_initialize(void)
824{
825 int retval;
826 unsigned long flags;
827
828 spin_lock_irqsave(&pdc_lock, flags);
829 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
830 spin_unlock_irqrestore(&pdc_lock, flags);
831
832 return retval;
833}
834EXPORT_SYMBOL(pdc_stable_initialize);
835
836/**
837 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
838 * @hwpath: fully bc.mod style path to the device.
839 * @initiator: the array to return the result into
840 *
841 * Get the SCSI operational parameters from PDC.
842 * Needed since HPUX never used BIOS or symbios card NVRAM.
843 * Most ncr/sym cards won't have an entry and just use whatever
844 * capabilities of the card are (eg Ultra, LVD). But there are
845 * several cases where it's useful:
846 * o set SCSI id for Multi-initiator clusters,
847 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
848 * o bus width exported is less than what the interface chip supports.
849 */
850int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
851{
852 int retval;
853 unsigned long flags;
854
855 spin_lock_irqsave(&pdc_lock, flags);
856
857/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
858#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
859 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
860
861 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
862 __pa(pdc_result), __pa(hwpath));
863 if (retval < PDC_OK)
864 goto out;
865
866 if (pdc_result[0] < 16) {
867 initiator->host_id = pdc_result[0];
868 } else {
869 initiator->host_id = -1;
870 }
871
872 /*
873 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
874 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
875 */
876 switch (pdc_result[1]) {
877 case 1: initiator->factor = 50; break;
878 case 2: initiator->factor = 25; break;
879 case 5: initiator->factor = 12; break;
880 case 25: initiator->factor = 10; break;
881 case 20: initiator->factor = 12; break;
882 case 40: initiator->factor = 10; break;
883 default: initiator->factor = -1; break;
884 }
885
886 if (IS_SPROCKETS()) {
887 initiator->width = pdc_result[4];
888 initiator->mode = pdc_result[5];
889 } else {
890 initiator->width = -1;
891 initiator->mode = -1;
892 }
893
894 out:
895 spin_unlock_irqrestore(&pdc_lock, flags);
896
897 return (retval >= PDC_OK);
898}
899EXPORT_SYMBOL(pdc_get_initiator);
900
901
902/**
903 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
904 * @num_entries: The return value.
905 * @hpa: The HPA for the device.
906 *
907 * This PDC function returns the number of entries in the specified cell's
908 * interrupt table.
909 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
910 */
911int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
912{
913 int retval;
914 unsigned long flags;
915
916 spin_lock_irqsave(&pdc_lock, flags);
917 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
918 __pa(pdc_result), hpa);
919 convert_to_wide(pdc_result);
920 *num_entries = pdc_result[0];
921 spin_unlock_irqrestore(&pdc_lock, flags);
922
923 return retval;
924}
925
926/**
927 * pdc_pci_irt - Get the PCI interrupt routing table.
928 * @num_entries: The number of entries in the table.
929 * @hpa: The Hard Physical Address of the device.
930 * @tbl:
931 *
932 * Get the PCI interrupt routing table for the device at the given HPA.
933 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
934 */
935int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
936{
937 int retval;
938 unsigned long flags;
939
940 BUG_ON((unsigned long)tbl & 0x7);
941
942 spin_lock_irqsave(&pdc_lock, flags);
943 pdc_result[0] = num_entries;
944 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
945 __pa(pdc_result), hpa, __pa(tbl));
946 spin_unlock_irqrestore(&pdc_lock, flags);
947
948 return retval;
949}
950
951
952#if 0 /* UNTEST CODE - left here in case someone needs it */
953
954/**
955 * pdc_pci_config_read - read PCI config space.
956 * @hpa token from PDC to indicate which PCI device
957 * @pci_addr configuration space address to read from
958 *
959 * Read PCI Configuration space *before* linux PCI subsystem is running.
960 */
961unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
962{
963 int retval;
964 unsigned long flags;
965
966 spin_lock_irqsave(&pdc_lock, flags);
967 pdc_result[0] = 0;
968 pdc_result[1] = 0;
969 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
970 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
971 spin_unlock_irqrestore(&pdc_lock, flags);
972
973 return retval ? ~0 : (unsigned int) pdc_result[0];
974}
975
976
977/**
978 * pdc_pci_config_write - read PCI config space.
979 * @hpa token from PDC to indicate which PCI device
980 * @pci_addr configuration space address to write
981 * @val value we want in the 32-bit register
982 *
983 * Write PCI Configuration space *before* linux PCI subsystem is running.
984 */
985void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
986{
987 int retval;
988 unsigned long flags;
989
990 spin_lock_irqsave(&pdc_lock, flags);
991 pdc_result[0] = 0;
992 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
993 __pa(pdc_result), hpa,
994 cfg_addr&~3UL, 4UL, (unsigned long) val);
995 spin_unlock_irqrestore(&pdc_lock, flags);
996
997 return retval;
998}
999#endif /* UNTESTED CODE */
1000
1001/**
1002 * pdc_tod_read - Read the Time-Of-Day clock.
1003 * @tod: The return buffer:
1004 *
1005 * Read the Time-Of-Day clock
1006 */
1007int pdc_tod_read(struct pdc_tod *tod)
1008{
1009 int retval;
1010 unsigned long flags;
1011
1012 spin_lock_irqsave(&pdc_lock, flags);
1013 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014 convert_to_wide(pdc_result);
1015 memcpy(tod, pdc_result, sizeof(*tod));
1016 spin_unlock_irqrestore(&pdc_lock, flags);
1017
1018 return retval;
1019}
1020EXPORT_SYMBOL(pdc_tod_read);
1021
1022int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023{
1024 int retval;
1025 unsigned long flags;
1026
1027 spin_lock_irqsave(&pdc_lock, flags);
1028 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029 convert_to_wide(pdc_result);
1030 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031 spin_unlock_irqrestore(&pdc_lock, flags);
1032
1033 return retval;
1034}
1035
1036int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037 unsigned long *pdt_entries_ptr)
1038{
1039 int retval;
1040 unsigned long flags;
1041
1042 spin_lock_irqsave(&pdc_lock, flags);
1043 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044 __pa(pdt_entries_ptr));
1045 if (retval == PDC_OK) {
1046 convert_to_wide(pdc_result);
1047 memcpy(pret, pdc_result, sizeof(*pret));
1048 }
1049 spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051#ifdef CONFIG_64BIT
1052 /*
1053 * 64-bit kernels should not call this PDT function in narrow mode.
1054 * The pdt_entries_ptr array above will now contain 32-bit values
1055 */
1056 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057 return PDC_ERROR;
1058#endif
1059
1060 return retval;
1061}
1062
1063/**
1064 * pdc_tod_set - Set the Time-Of-Day clock.
1065 * @sec: The number of seconds since epoch.
1066 * @usec: The number of micro seconds.
1067 *
1068 * Set the Time-Of-Day clock.
1069 */
1070int pdc_tod_set(unsigned long sec, unsigned long usec)
1071{
1072 int retval;
1073 unsigned long flags;
1074
1075 spin_lock_irqsave(&pdc_lock, flags);
1076 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077 spin_unlock_irqrestore(&pdc_lock, flags);
1078
1079 return retval;
1080}
1081EXPORT_SYMBOL(pdc_tod_set);
1082
1083#ifdef CONFIG_64BIT
1084int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085 struct pdc_memory_table *tbl, unsigned long entries)
1086{
1087 int retval;
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&pdc_lock, flags);
1091 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092 convert_to_wide(pdc_result);
1093 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095 spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097 return retval;
1098}
1099#endif /* CONFIG_64BIT */
1100
1101/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1102 * so I guessed at unsigned long. Someone who knows what this does, can fix
1103 * it later. :)
1104 */
1105int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106{
1107 int retval;
1108 unsigned long flags;
1109
1110 spin_lock_irqsave(&pdc_lock, flags);
1111 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113 spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115 return retval;
1116}
1117
1118/*
1119 * pdc_do_reset - Reset the system.
1120 *
1121 * Reset the system.
1122 */
1123int pdc_do_reset(void)
1124{
1125 int retval;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&pdc_lock, flags);
1129 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130 spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132 return retval;
1133}
1134
1135/*
1136 * pdc_soft_power_info - Enable soft power switch.
1137 * @power_reg: address of soft power register
1138 *
1139 * Return the absolute address of the soft power switch register
1140 */
1141int __init pdc_soft_power_info(unsigned long *power_reg)
1142{
1143 int retval;
1144 unsigned long flags;
1145
1146 *power_reg = (unsigned long) (-1);
1147
1148 spin_lock_irqsave(&pdc_lock, flags);
1149 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150 if (retval == PDC_OK) {
1151 convert_to_wide(pdc_result);
1152 *power_reg = f_extend(pdc_result[0]);
1153 }
1154 spin_unlock_irqrestore(&pdc_lock, flags);
1155
1156 return retval;
1157}
1158
1159/*
1160 * pdc_soft_power_button - Control the soft power button behaviour
1161 * @sw_control: 0 for hardware control, 1 for software control
1162 *
1163 *
1164 * This PDC function places the soft power button under software or
1165 * hardware control.
1166 * Under software control the OS may control to when to allow to shut
1167 * down the system. Under hardware control pressing the power button
1168 * powers off the system immediately.
1169 */
1170int pdc_soft_power_button(int sw_control)
1171{
1172 int retval;
1173 unsigned long flags;
1174
1175 spin_lock_irqsave(&pdc_lock, flags);
1176 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177 spin_unlock_irqrestore(&pdc_lock, flags);
1178
1179 return retval;
1180}
1181
1182/*
1183 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185 * who knows what other platform firmware might do with this OS "hook".
1186 */
1187void pdc_io_reset(void)
1188{
1189 unsigned long flags;
1190
1191 spin_lock_irqsave(&pdc_lock, flags);
1192 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193 spin_unlock_irqrestore(&pdc_lock, flags);
1194}
1195
1196/*
1197 * pdc_io_reset_devices - Hack to Stop USB controller
1198 *
1199 * If PDC used the usb controller, the usb controller
1200 * is still running and will crash the machines during iommu
1201 * setup, because of still running DMA. This PDC call
1202 * stops the USB controller.
1203 * Normally called after calling pdc_io_reset().
1204 */
1205void pdc_io_reset_devices(void)
1206{
1207 unsigned long flags;
1208
1209 spin_lock_irqsave(&pdc_lock, flags);
1210 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211 spin_unlock_irqrestore(&pdc_lock, flags);
1212}
1213
1214#endif /* defined(BOOTLOADER) */
1215
1216/* locked by pdc_console_lock */
1217static int __attribute__((aligned(8))) iodc_retbuf[32];
1218static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219
1220/**
1221 * pdc_iodc_print - Console print using IODC.
1222 * @str: the string to output.
1223 * @count: length of str
1224 *
1225 * Note that only these special chars are architected for console IODC io:
1226 * BEL, BS, CR, and LF. Others are passed through.
1227 * Since the HP console requires CR+LF to perform a 'newline', we translate
1228 * "\n" to "\r\n".
1229 */
1230int pdc_iodc_print(const unsigned char *str, unsigned count)
1231{
1232 unsigned int i;
1233 unsigned long flags;
1234
1235 for (i = 0; i < count;) {
1236 switch(str[i]) {
1237 case '\n':
1238 iodc_dbuf[i+0] = '\r';
1239 iodc_dbuf[i+1] = '\n';
1240 i += 2;
1241 goto print;
1242 default:
1243 iodc_dbuf[i] = str[i];
1244 i++;
1245 break;
1246 }
1247 }
1248
1249print:
1250 spin_lock_irqsave(&pdc_lock, flags);
1251 real32_call(PAGE0->mem_cons.iodc_io,
1252 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255 spin_unlock_irqrestore(&pdc_lock, flags);
1256
1257 return i;
1258}
1259
1260#if !defined(BOOTLOADER)
1261/**
1262 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263 *
1264 * Read a character (non-blocking) from the PDC console, returns -1 if
1265 * key is not present.
1266 */
1267int pdc_iodc_getc(void)
1268{
1269 int ch;
1270 int status;
1271 unsigned long flags;
1272
1273 /* Bail if no console input device. */
1274 if (!PAGE0->mem_kbd.iodc_io)
1275 return 0;
1276
1277 /* wait for a keyboard (rs232)-input */
1278 spin_lock_irqsave(&pdc_lock, flags);
1279 real32_call(PAGE0->mem_kbd.iodc_io,
1280 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1282 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283
1284 ch = *iodc_dbuf;
1285 status = *iodc_retbuf;
1286 spin_unlock_irqrestore(&pdc_lock, flags);
1287
1288 if (status == 0)
1289 return -1;
1290
1291 return ch;
1292}
1293
1294int pdc_sti_call(unsigned long func, unsigned long flags,
1295 unsigned long inptr, unsigned long outputr,
1296 unsigned long glob_cfg)
1297{
1298 int retval;
1299 unsigned long irqflags;
1300
1301 spin_lock_irqsave(&pdc_lock, irqflags);
1302 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303 spin_unlock_irqrestore(&pdc_lock, irqflags);
1304
1305 return retval;
1306}
1307EXPORT_SYMBOL(pdc_sti_call);
1308
1309#ifdef CONFIG_64BIT
1310/**
1311 * pdc_pat_cell_get_number - Returns the cell number.
1312 * @cell_info: The return buffer.
1313 *
1314 * This PDC call returns the cell number of the cell from which the call
1315 * is made.
1316 */
1317int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318{
1319 int retval;
1320 unsigned long flags;
1321
1322 spin_lock_irqsave(&pdc_lock, flags);
1323 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325 spin_unlock_irqrestore(&pdc_lock, flags);
1326
1327 return retval;
1328}
1329
1330/**
1331 * pdc_pat_cell_module - Retrieve the cell's module information.
1332 * @actcnt: The number of bytes written to mem_addr.
1333 * @ploc: The physical location.
1334 * @mod: The module index.
1335 * @view_type: The view of the address type.
1336 * @mem_addr: The return buffer.
1337 *
1338 * This PDC call returns information about each module attached to the cell
1339 * at the specified location.
1340 */
1341int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342 unsigned long view_type, void *mem_addr)
1343{
1344 int retval;
1345 unsigned long flags;
1346 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347
1348 spin_lock_irqsave(&pdc_lock, flags);
1349 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1350 ploc, mod, view_type, __pa(&result));
1351 if(!retval) {
1352 *actcnt = pdc_result[0];
1353 memcpy(mem_addr, &result, *actcnt);
1354 }
1355 spin_unlock_irqrestore(&pdc_lock, flags);
1356
1357 return retval;
1358}
1359
1360/**
1361 * pdc_pat_cell_info - Retrieve the cell's information.
1362 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363 * @actcnt: The number of bytes which should be written to info.
1364 * @offset: offset of the structure.
1365 * @cell_number: The cell number which should be asked, or -1 for current cell.
1366 *
1367 * This PDC call returns information about the given cell (or all cells).
1368 */
1369int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370 unsigned long *actcnt, unsigned long offset,
1371 unsigned long cell_number)
1372{
1373 int retval;
1374 unsigned long flags;
1375 struct pdc_pat_cell_info_rtn_block result;
1376
1377 spin_lock_irqsave(&pdc_lock, flags);
1378 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379 __pa(pdc_result), __pa(&result), *actcnt,
1380 offset, cell_number);
1381 if (!retval) {
1382 *actcnt = pdc_result[0];
1383 memcpy(info, &result, *actcnt);
1384 }
1385 spin_unlock_irqrestore(&pdc_lock, flags);
1386
1387 return retval;
1388}
1389
1390/**
1391 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392 * @cpu_info: The return buffer.
1393 * @hpa: The Hard Physical Address of the CPU.
1394 *
1395 * Retrieve the cpu number for the cpu at the specified HPA.
1396 */
1397int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398{
1399 int retval;
1400 unsigned long flags;
1401
1402 spin_lock_irqsave(&pdc_lock, flags);
1403 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404 __pa(&pdc_result), hpa);
1405 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406 spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408 return retval;
1409}
1410
1411/**
1412 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413 * @num_entries: The return value.
1414 * @cell_num: The target cell.
1415 *
1416 * This PDC function returns the number of entries in the specified cell's
1417 * interrupt table.
1418 */
1419int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420{
1421 int retval;
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&pdc_lock, flags);
1425 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426 __pa(pdc_result), cell_num);
1427 *num_entries = pdc_result[0];
1428 spin_unlock_irqrestore(&pdc_lock, flags);
1429
1430 return retval;
1431}
1432
1433/**
1434 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435 * @r_addr: The return buffer.
1436 * @cell_num: The target cell.
1437 *
1438 * This PDC function returns the actual interrupt table for the specified cell.
1439 */
1440int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441{
1442 int retval;
1443 unsigned long flags;
1444
1445 spin_lock_irqsave(&pdc_lock, flags);
1446 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447 __pa(r_addr), cell_num);
1448 spin_unlock_irqrestore(&pdc_lock, flags);
1449
1450 return retval;
1451}
1452
1453/**
1454 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455 * @actlen: The return buffer.
1456 * @mem_addr: Pointer to the memory buffer.
1457 * @count: The number of bytes to read from the buffer.
1458 * @offset: The offset with respect to the beginning of the buffer.
1459 *
1460 */
1461int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1462 unsigned long count, unsigned long offset)
1463{
1464 int retval;
1465 unsigned long flags;
1466
1467 spin_lock_irqsave(&pdc_lock, flags);
1468 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1469 __pa(pdc_result2), count, offset);
1470 *actual_len = pdc_result[0];
1471 memcpy(mem_addr, pdc_result2, *actual_len);
1472 spin_unlock_irqrestore(&pdc_lock, flags);
1473
1474 return retval;
1475}
1476
1477/**
1478 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479 * @legacy_rev: The legacy revision.
1480 * @pat_rev: The PAT revision.
1481 * @pdc_cap: The PDC capabilities.
1482 *
1483 */
1484int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485 unsigned long *pat_rev, unsigned long *pdc_cap)
1486{
1487 int retval;
1488 unsigned long flags;
1489
1490 spin_lock_irqsave(&pdc_lock, flags);
1491 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492 __pa(pdc_result));
1493 if (retval == PDC_OK) {
1494 *legacy_rev = pdc_result[0];
1495 *pat_rev = pdc_result[1];
1496 *pdc_cap = pdc_result[2];
1497 }
1498 spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500 return retval;
1501}
1502
1503
1504/**
1505 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506 * @pci_addr: PCI configuration space address for which the read request is being made.
1507 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1508 * @mem_addr: Pointer to return memory buffer.
1509 *
1510 */
1511int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512{
1513 int retval;
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&pdc_lock, flags);
1517 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518 __pa(pdc_result), pci_addr, pci_size);
1519 switch(pci_size) {
1520 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1521 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1522 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1523 }
1524 spin_unlock_irqrestore(&pdc_lock, flags);
1525
1526 return retval;
1527}
1528
1529/**
1530 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531 * @pci_addr: PCI configuration space address for which the write request is being made.
1532 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1533 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1534 * written to PCI Config space.
1535 *
1536 */
1537int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538{
1539 int retval;
1540 unsigned long flags;
1541
1542 spin_lock_irqsave(&pdc_lock, flags);
1543 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544 pci_addr, pci_size, val);
1545 spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547 return retval;
1548}
1549
1550/**
1551 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552 * @rinfo: memory pdt information
1553 *
1554 */
1555int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556{
1557 int retval;
1558 unsigned long flags;
1559
1560 spin_lock_irqsave(&pdc_lock, flags);
1561 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562 __pa(&pdc_result));
1563 if (retval == PDC_OK)
1564 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565 spin_unlock_irqrestore(&pdc_lock, flags);
1566
1567 return retval;
1568}
1569
1570/**
1571 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572 * table of a cell
1573 * @rinfo: memory pdt information
1574 * @cell: cell number
1575 *
1576 */
1577int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578 unsigned long cell)
1579{
1580 int retval;
1581 unsigned long flags;
1582
1583 spin_lock_irqsave(&pdc_lock, flags);
1584 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585 __pa(&pdc_result), cell);
1586 if (retval == PDC_OK)
1587 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588 spin_unlock_irqrestore(&pdc_lock, flags);
1589
1590 return retval;
1591}
1592
1593/**
1594 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595 * @pret: array of PDT entries
1596 * @pdt_entries_ptr: ptr to hold number of PDT entries
1597 * @max_entries: maximum number of entries to be read
1598 *
1599 */
1600int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602{
1603 int retval;
1604 unsigned long flags, entries;
1605
1606 spin_lock_irqsave(&pdc_lock, flags);
1607 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609 __pa(&pdc_result), parisc_cell_num,
1610 __pa(pdt_entries_ptr));
1611
1612 if (retval == PDC_OK) {
1613 /* build up return value as for PDC_PAT_MEM_PD_READ */
1614 entries = min(pdc_result[0], max_entries);
1615 pret->pdt_entries = entries;
1616 pret->actual_count_bytes = entries * sizeof(unsigned long);
1617 }
1618
1619 spin_unlock_irqrestore(&pdc_lock, flags);
1620 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621
1622 return retval;
1623}
1624/**
1625 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626 * @pret: array of PDT entries
1627 * @pdt_entries_ptr: ptr to hold number of PDT entries
1628 * @count: number of bytes to read
1629 * @offset: offset to start (in bytes)
1630 *
1631 */
1632int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633 unsigned long *pdt_entries_ptr, unsigned long count,
1634 unsigned long offset)
1635{
1636 int retval;
1637 unsigned long flags, entries;
1638
1639 spin_lock_irqsave(&pdc_lock, flags);
1640 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641 __pa(&pdc_result), __pa(pdt_entries_ptr),
1642 count, offset);
1643
1644 if (retval == PDC_OK) {
1645 entries = min(pdc_result[0], count);
1646 pret->actual_count_bytes = entries;
1647 pret->pdt_entries = entries / sizeof(unsigned long);
1648 }
1649
1650 spin_unlock_irqrestore(&pdc_lock, flags);
1651
1652 return retval;
1653}
1654
1655/**
1656 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657 * @pret: ptr to hold returned information
1658 * @phys_addr: physical address to examine
1659 *
1660 */
1661int pdc_pat_mem_get_dimm_phys_location(
1662 struct pdc_pat_mem_phys_mem_location *pret,
1663 unsigned long phys_addr)
1664{
1665 int retval;
1666 unsigned long flags;
1667
1668 spin_lock_irqsave(&pdc_lock, flags);
1669 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670 __pa(&pdc_result), phys_addr);
1671
1672 if (retval == PDC_OK)
1673 memcpy(pret, &pdc_result, sizeof(*pret));
1674
1675 spin_unlock_irqrestore(&pdc_lock, flags);
1676
1677 return retval;
1678}
1679#endif /* CONFIG_64BIT */
1680#endif /* defined(BOOTLOADER) */
1681
1682
1683/***************** 32-bit real-mode calls ***********/
1684/* The struct below is used
1685 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686 * real32_call_asm() then uses this stack in narrow real mode
1687 */
1688
1689struct narrow_stack {
1690 /* use int, not long which is 64 bits */
1691 unsigned int arg13;
1692 unsigned int arg12;
1693 unsigned int arg11;
1694 unsigned int arg10;
1695 unsigned int arg9;
1696 unsigned int arg8;
1697 unsigned int arg7;
1698 unsigned int arg6;
1699 unsigned int arg5;
1700 unsigned int arg4;
1701 unsigned int arg3;
1702 unsigned int arg2;
1703 unsigned int arg1;
1704 unsigned int arg0;
1705 unsigned int frame_marker[8];
1706 unsigned int sp;
1707 /* in reality, there's nearly 8k of stack after this */
1708};
1709
1710long real32_call(unsigned long fn, ...)
1711{
1712 va_list args;
1713 extern struct narrow_stack real_stack;
1714 extern unsigned long real32_call_asm(unsigned int *,
1715 unsigned int *,
1716 unsigned int);
1717
1718 va_start(args, fn);
1719 real_stack.arg0 = va_arg(args, unsigned int);
1720 real_stack.arg1 = va_arg(args, unsigned int);
1721 real_stack.arg2 = va_arg(args, unsigned int);
1722 real_stack.arg3 = va_arg(args, unsigned int);
1723 real_stack.arg4 = va_arg(args, unsigned int);
1724 real_stack.arg5 = va_arg(args, unsigned int);
1725 real_stack.arg6 = va_arg(args, unsigned int);
1726 real_stack.arg7 = va_arg(args, unsigned int);
1727 real_stack.arg8 = va_arg(args, unsigned int);
1728 real_stack.arg9 = va_arg(args, unsigned int);
1729 real_stack.arg10 = va_arg(args, unsigned int);
1730 real_stack.arg11 = va_arg(args, unsigned int);
1731 real_stack.arg12 = va_arg(args, unsigned int);
1732 real_stack.arg13 = va_arg(args, unsigned int);
1733 va_end(args);
1734
1735 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736}
1737
1738#ifdef CONFIG_64BIT
1739/***************** 64-bit real-mode calls ***********/
1740
1741struct wide_stack {
1742 unsigned long arg0;
1743 unsigned long arg1;
1744 unsigned long arg2;
1745 unsigned long arg3;
1746 unsigned long arg4;
1747 unsigned long arg5;
1748 unsigned long arg6;
1749 unsigned long arg7;
1750 unsigned long arg8;
1751 unsigned long arg9;
1752 unsigned long arg10;
1753 unsigned long arg11;
1754 unsigned long arg12;
1755 unsigned long arg13;
1756 unsigned long frame_marker[2]; /* rp, previous sp */
1757 unsigned long sp;
1758 /* in reality, there's nearly 8k of stack after this */
1759};
1760
1761long real64_call(unsigned long fn, ...)
1762{
1763 va_list args;
1764 extern struct wide_stack real64_stack;
1765 extern unsigned long real64_call_asm(unsigned long *,
1766 unsigned long *,
1767 unsigned long);
1768
1769 va_start(args, fn);
1770 real64_stack.arg0 = va_arg(args, unsigned long);
1771 real64_stack.arg1 = va_arg(args, unsigned long);
1772 real64_stack.arg2 = va_arg(args, unsigned long);
1773 real64_stack.arg3 = va_arg(args, unsigned long);
1774 real64_stack.arg4 = va_arg(args, unsigned long);
1775 real64_stack.arg5 = va_arg(args, unsigned long);
1776 real64_stack.arg6 = va_arg(args, unsigned long);
1777 real64_stack.arg7 = va_arg(args, unsigned long);
1778 real64_stack.arg8 = va_arg(args, unsigned long);
1779 real64_stack.arg9 = va_arg(args, unsigned long);
1780 real64_stack.arg10 = va_arg(args, unsigned long);
1781 real64_stack.arg11 = va_arg(args, unsigned long);
1782 real64_stack.arg12 = va_arg(args, unsigned long);
1783 real64_stack.arg13 = va_arg(args, unsigned long);
1784 va_end(args);
1785
1786 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787}
1788
1789#endif /* CONFIG_64BIT */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See PDC documentation at
8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9 * for documentation describing the entry points and calling
10 * conventions defined below.
11 *
12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17 */
18
19/* I think it would be in everyone's best interest to follow this
20 * guidelines when writing PDC wrappers:
21 *
22 * - the name of the pdc wrapper should match one of the macros
23 * used for the first two arguments
24 * - don't use caps for random parts of the name
25 * - use the static PDC result buffers and "copyout" to structs
26 * supplied by the caller to encapsulate alignment restrictions
27 * - hold pdc_lock while in PDC or using static result buffers
28 * - use __pa() to convert virtual (kernel) pointers to physical
29 * ones.
30 * - the name of the struct used for pdc return values should equal
31 * one of the macros used for the first two arguments to the
32 * corresponding PDC call
33 * - keep the order of arguments
34 * - don't be smart (setting trailing NUL bytes for strings, return
35 * something useful even if the call failed) unless you are sure
36 * it's not going to affect functionality or performance
37 *
38 * Example:
39 * int pdc_cache_info(struct pdc_cache_info *cache_info )
40 * {
41 * int retval;
42 *
43 * spin_lock_irq(&pdc_lock);
44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45 * convert_to_wide(pdc_result);
46 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
47 * spin_unlock_irq(&pdc_lock);
48 *
49 * return retval;
50 * }
51 * prumpf 991016
52 */
53
54#include <linux/stdarg.h>
55
56#include <linux/delay.h>
57#include <linux/init.h>
58#include <linux/kernel.h>
59#include <linux/module.h>
60#include <linux/string.h>
61#include <linux/spinlock.h>
62
63#include <asm/page.h>
64#include <asm/pdc.h>
65#include <asm/pdcpat.h>
66#include <asm/processor.h> /* for boot_cpu_data */
67
68#if defined(BOOTLOADER)
69# undef spin_lock_irqsave
70# define spin_lock_irqsave(a, b) { b = 1; }
71# undef spin_unlock_irqrestore
72# define spin_unlock_irqrestore(a, b)
73#else
74static DEFINE_SPINLOCK(pdc_lock);
75#endif
76
77unsigned long pdc_result[NUM_PDC_RESULT] __aligned(8);
78unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79
80#ifdef CONFIG_64BIT
81#define WIDE_FIRMWARE 0x1
82#define NARROW_FIRMWARE 0x2
83
84/* Firmware needs to be initially set to narrow to determine the
85 * actual firmware width. */
86int parisc_narrow_firmware __ro_after_init = 2;
87#endif
88
89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90 * and MEM_PDC calls are always the same width as the OS.
91 * Some PAT boxes may have 64-bit IODC I/O.
92 *
93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95 * This allowed wide kernels to run on Cxxx boxes.
96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98 */
99
100#ifdef CONFIG_64BIT
101long real64_call(unsigned long function, ...);
102#endif
103long real32_call(unsigned long function, ...);
104
105#ifdef CONFIG_64BIT
106# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108#else
109# define MEM_PDC (unsigned long)PAGE0->mem_pdc
110# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111#endif
112
113
114/**
115 * f_extend - Convert PDC addresses to kernel addresses.
116 * @address: Address returned from PDC.
117 *
118 * This function is used to convert PDC addresses into kernel addresses
119 * when the PDC address size and kernel address size are different.
120 */
121static unsigned long f_extend(unsigned long address)
122{
123#ifdef CONFIG_64BIT
124 if(unlikely(parisc_narrow_firmware)) {
125 if((address & 0xff000000) == 0xf0000000)
126 return 0xf0f0f0f000000000UL | (u32)address;
127
128 if((address & 0xf0000000) == 0xf0000000)
129 return 0xffffffff00000000UL | (u32)address;
130 }
131#endif
132 return address;
133}
134
135/**
136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137 * @address: The return buffer from PDC.
138 *
139 * This function is used to convert the return buffer addresses retrieved from PDC
140 * into kernel addresses when the PDC address size and kernel address size are
141 * different.
142 */
143static void convert_to_wide(unsigned long *addr)
144{
145#ifdef CONFIG_64BIT
146 int i;
147 unsigned int *p = (unsigned int *)addr;
148
149 if (unlikely(parisc_narrow_firmware)) {
150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 addr[i] = p[i];
152 }
153#endif
154}
155
156#ifdef CONFIG_64BIT
157void set_firmware_width_unlocked(void)
158{
159 int ret;
160
161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 __pa(pdc_result), 0);
163 convert_to_wide(pdc_result);
164 if (pdc_result[0] != NARROW_FIRMWARE)
165 parisc_narrow_firmware = 0;
166}
167
168/**
169 * set_firmware_width - Determine if the firmware is wide or narrow.
170 *
171 * This function must be called before any pdc_* function that uses the
172 * convert_to_wide function.
173 */
174void set_firmware_width(void)
175{
176 unsigned long flags;
177
178 /* already initialized? */
179 if (parisc_narrow_firmware != 2)
180 return;
181
182 spin_lock_irqsave(&pdc_lock, flags);
183 set_firmware_width_unlocked();
184 spin_unlock_irqrestore(&pdc_lock, flags);
185}
186#else
187void set_firmware_width_unlocked(void)
188{
189 return;
190}
191
192void set_firmware_width(void)
193{
194 return;
195}
196#endif /*CONFIG_64BIT*/
197
198
199#if !defined(BOOTLOADER)
200/**
201 * pdc_emergency_unlock - Unlock the linux pdc lock
202 *
203 * This call unlocks the linux pdc lock in case we need some PDC functions
204 * (like pdc_add_valid) during kernel stack dump.
205 */
206void pdc_emergency_unlock(void)
207{
208 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
209 if (spin_is_locked(&pdc_lock))
210 spin_unlock(&pdc_lock);
211}
212
213
214/**
215 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
216 * @address: Address to be verified.
217 *
218 * This PDC call attempts to read from the specified address and verifies
219 * if the address is valid.
220 *
221 * The return value is PDC_OK (0) in case accessing this address is valid.
222 */
223int pdc_add_valid(unsigned long address)
224{
225 int retval;
226 unsigned long flags;
227
228 spin_lock_irqsave(&pdc_lock, flags);
229 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
230 spin_unlock_irqrestore(&pdc_lock, flags);
231
232 return retval;
233}
234EXPORT_SYMBOL(pdc_add_valid);
235
236/**
237 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
238 * @instr: Pointer to variable which will get instruction opcode.
239 *
240 * The return value is PDC_OK (0) in case call succeeded.
241 */
242int __init pdc_instr(unsigned int *instr)
243{
244 int retval;
245 unsigned long flags;
246
247 spin_lock_irqsave(&pdc_lock, flags);
248 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
249 convert_to_wide(pdc_result);
250 *instr = pdc_result[0];
251 spin_unlock_irqrestore(&pdc_lock, flags);
252
253 return retval;
254}
255
256/**
257 * pdc_chassis_info - Return chassis information.
258 * @result: The return buffer.
259 * @chassis_info: The memory buffer address.
260 * @len: The size of the memory buffer address.
261 *
262 * An HVERSION dependent call for returning the chassis information.
263 */
264int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
265{
266 int retval;
267 unsigned long flags;
268
269 spin_lock_irqsave(&pdc_lock, flags);
270 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
271 memcpy(&pdc_result2, led_info, len);
272 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
273 __pa(pdc_result), __pa(pdc_result2), len);
274 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
275 memcpy(led_info, pdc_result2, len);
276 spin_unlock_irqrestore(&pdc_lock, flags);
277
278 return retval;
279}
280
281/**
282 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
283 * @retval: -1 on error, 0 on success. Other value are PDC errors
284 *
285 * Must be correctly formatted or expect system crash
286 */
287#ifdef CONFIG_64BIT
288int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
289{
290 int retval = 0;
291 unsigned long flags;
292
293 if (!is_pdc_pat())
294 return -1;
295
296 spin_lock_irqsave(&pdc_lock, flags);
297 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
298 spin_unlock_irqrestore(&pdc_lock, flags);
299
300 return retval;
301}
302#endif
303
304/**
305 * pdc_chassis_disp - Updates chassis code
306 * @retval: -1 on error, 0 on success
307 */
308int pdc_chassis_disp(unsigned long disp)
309{
310 int retval = 0;
311 unsigned long flags;
312
313 spin_lock_irqsave(&pdc_lock, flags);
314 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
315 spin_unlock_irqrestore(&pdc_lock, flags);
316
317 return retval;
318}
319
320/**
321 * pdc_cpu_rendenzvous - Stop currently executing CPU
322 * @retval: -1 on error, 0 on success
323 */
324int __pdc_cpu_rendezvous(void)
325{
326 if (is_pdc_pat())
327 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
328 else
329 return mem_pdc_call(PDC_PROC, 1, 0);
330}
331
332/**
333 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
334 */
335void pdc_cpu_rendezvous_lock(void)
336{
337 spin_lock(&pdc_lock);
338}
339
340/**
341 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
342 */
343void pdc_cpu_rendezvous_unlock(void)
344{
345 spin_unlock(&pdc_lock);
346}
347
348/**
349 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
350 * @retval: -1 on error, 0 on success
351 */
352int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
353{
354 int retval = 0;
355 unsigned long flags;
356
357 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
358 *pdc_entry = MEM_PDC;
359 return 0;
360 }
361
362 spin_lock_irqsave(&pdc_lock, flags);
363 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
364 __pa(pdc_result));
365 *pdc_entry = pdc_result[0];
366 spin_unlock_irqrestore(&pdc_lock, flags);
367
368 return retval;
369}
370/**
371 * pdc_chassis_warn - Fetches chassis warnings
372 * @retval: -1 on error, 0 on success
373 */
374int pdc_chassis_warn(unsigned long *warn)
375{
376 int retval = 0;
377 unsigned long flags;
378
379 spin_lock_irqsave(&pdc_lock, flags);
380 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
381 *warn = pdc_result[0];
382 spin_unlock_irqrestore(&pdc_lock, flags);
383
384 return retval;
385}
386
387int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
388{
389 int ret;
390
391 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
392 convert_to_wide(pdc_result);
393 pdc_coproc_info->ccr_functional = pdc_result[0];
394 pdc_coproc_info->ccr_present = pdc_result[1];
395 pdc_coproc_info->revision = pdc_result[17];
396 pdc_coproc_info->model = pdc_result[18];
397
398 return ret;
399}
400
401/**
402 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
403 * @pdc_coproc_info: Return buffer address.
404 *
405 * This PDC call returns the presence and status of all the coprocessors
406 * attached to the processor.
407 */
408int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
409{
410 int ret;
411 unsigned long flags;
412
413 spin_lock_irqsave(&pdc_lock, flags);
414 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
415 spin_unlock_irqrestore(&pdc_lock, flags);
416
417 return ret;
418}
419
420/**
421 * pdc_iodc_read - Read data from the modules IODC.
422 * @actcnt: The actual number of bytes.
423 * @hpa: The HPA of the module for the iodc read.
424 * @index: The iodc entry point.
425 * @iodc_data: A buffer memory for the iodc options.
426 * @iodc_data_size: Size of the memory buffer.
427 *
428 * This PDC call reads from the IODC of the module specified by the hpa
429 * argument.
430 */
431int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
432 void *iodc_data, unsigned int iodc_data_size)
433{
434 int retval;
435 unsigned long flags;
436
437 spin_lock_irqsave(&pdc_lock, flags);
438 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
439 index, __pa(pdc_result2), iodc_data_size);
440 convert_to_wide(pdc_result);
441 *actcnt = pdc_result[0];
442 memcpy(iodc_data, pdc_result2, iodc_data_size);
443 spin_unlock_irqrestore(&pdc_lock, flags);
444
445 return retval;
446}
447EXPORT_SYMBOL(pdc_iodc_read);
448
449/**
450 * pdc_system_map_find_mods - Locate unarchitected modules.
451 * @pdc_mod_info: Return buffer address.
452 * @mod_path: pointer to dev path structure.
453 * @mod_index: fixed address module index.
454 *
455 * To locate and identify modules which reside at fixed I/O addresses, which
456 * do not self-identify via architected bus walks.
457 */
458int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
459 struct pdc_module_path *mod_path, long mod_index)
460{
461 int retval;
462 unsigned long flags;
463
464 spin_lock_irqsave(&pdc_lock, flags);
465 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
466 __pa(pdc_result2), mod_index);
467 convert_to_wide(pdc_result);
468 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
469 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
470 spin_unlock_irqrestore(&pdc_lock, flags);
471
472 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
473 return retval;
474}
475
476/**
477 * pdc_system_map_find_addrs - Retrieve additional address ranges.
478 * @pdc_addr_info: Return buffer address.
479 * @mod_index: Fixed address module index.
480 * @addr_index: Address range index.
481 *
482 * Retrieve additional information about subsequent address ranges for modules
483 * with multiple address ranges.
484 */
485int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
486 long mod_index, long addr_index)
487{
488 int retval;
489 unsigned long flags;
490
491 spin_lock_irqsave(&pdc_lock, flags);
492 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
493 mod_index, addr_index);
494 convert_to_wide(pdc_result);
495 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
496 spin_unlock_irqrestore(&pdc_lock, flags);
497
498 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
499 return retval;
500}
501
502/**
503 * pdc_model_info - Return model information about the processor.
504 * @model: The return buffer.
505 *
506 * Returns the version numbers, identifiers, and capabilities from the processor module.
507 */
508int pdc_model_info(struct pdc_model *model)
509{
510 int retval;
511 unsigned long flags;
512
513 spin_lock_irqsave(&pdc_lock, flags);
514 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
515 convert_to_wide(pdc_result);
516 memcpy(model, pdc_result, sizeof(*model));
517 spin_unlock_irqrestore(&pdc_lock, flags);
518
519 return retval;
520}
521
522/**
523 * pdc_model_sysmodel - Get the system model name.
524 * @name: A char array of at least 81 characters.
525 *
526 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
527 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
528 * on HP/UX.
529 */
530int pdc_model_sysmodel(unsigned int os_id, char *name)
531{
532 int retval;
533 unsigned long flags;
534
535 spin_lock_irqsave(&pdc_lock, flags);
536 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
537 os_id, __pa(name));
538 convert_to_wide(pdc_result);
539
540 if (retval == PDC_OK) {
541 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
542 } else {
543 name[0] = 0;
544 }
545 spin_unlock_irqrestore(&pdc_lock, flags);
546
547 return retval;
548}
549
550/**
551 * pdc_model_versions - Identify the version number of each processor.
552 * @cpu_id: The return buffer.
553 * @id: The id of the processor to check.
554 *
555 * Returns the version number for each processor component.
556 *
557 * This comment was here before, but I do not know what it means :( -RB
558 * id: 0 = cpu revision, 1 = boot-rom-version
559 */
560int pdc_model_versions(unsigned long *versions, int id)
561{
562 int retval;
563 unsigned long flags;
564
565 spin_lock_irqsave(&pdc_lock, flags);
566 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
567 convert_to_wide(pdc_result);
568 *versions = pdc_result[0];
569 spin_unlock_irqrestore(&pdc_lock, flags);
570
571 return retval;
572}
573
574/**
575 * pdc_model_cpuid - Returns the CPU_ID.
576 * @cpu_id: The return buffer.
577 *
578 * Returns the CPU_ID value which uniquely identifies the cpu portion of
579 * the processor module.
580 */
581int pdc_model_cpuid(unsigned long *cpu_id)
582{
583 int retval;
584 unsigned long flags;
585
586 spin_lock_irqsave(&pdc_lock, flags);
587 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
588 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
589 convert_to_wide(pdc_result);
590 *cpu_id = pdc_result[0];
591 spin_unlock_irqrestore(&pdc_lock, flags);
592
593 return retval;
594}
595
596/**
597 * pdc_model_capabilities - Returns the platform capabilities.
598 * @capabilities: The return buffer.
599 *
600 * Returns information about platform support for 32- and/or 64-bit
601 * OSes, IO-PDIR coherency, and virtual aliasing.
602 */
603int pdc_model_capabilities(unsigned long *capabilities)
604{
605 int retval;
606 unsigned long flags;
607
608 spin_lock_irqsave(&pdc_lock, flags);
609 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
610 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
611 convert_to_wide(pdc_result);
612 if (retval == PDC_OK) {
613 *capabilities = pdc_result[0];
614 } else {
615 *capabilities = PDC_MODEL_OS32;
616 }
617 spin_unlock_irqrestore(&pdc_lock, flags);
618
619 return retval;
620}
621
622/**
623 * pdc_model_platform_info - Returns machine product and serial number.
624 * @orig_prod_num: Return buffer for original product number.
625 * @current_prod_num: Return buffer for current product number.
626 * @serial_no: Return buffer for serial number.
627 *
628 * Returns strings containing the original and current product numbers and the
629 * serial number of the system.
630 */
631int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
632 char *serial_no)
633{
634 int retval;
635 unsigned long flags;
636
637 spin_lock_irqsave(&pdc_lock, flags);
638 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
639 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
640 convert_to_wide(pdc_result);
641 spin_unlock_irqrestore(&pdc_lock, flags);
642
643 return retval;
644}
645
646/**
647 * pdc_cache_info - Return cache and TLB information.
648 * @cache_info: The return buffer.
649 *
650 * Returns information about the processor's cache and TLB.
651 */
652int pdc_cache_info(struct pdc_cache_info *cache_info)
653{
654 int retval;
655 unsigned long flags;
656
657 spin_lock_irqsave(&pdc_lock, flags);
658 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
659 convert_to_wide(pdc_result);
660 memcpy(cache_info, pdc_result, sizeof(*cache_info));
661 spin_unlock_irqrestore(&pdc_lock, flags);
662
663 return retval;
664}
665
666/**
667 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
668 * @space_bits: Should be 0, if not, bad mojo!
669 *
670 * Returns information about Space ID hashing.
671 */
672int pdc_spaceid_bits(unsigned long *space_bits)
673{
674 int retval;
675 unsigned long flags;
676
677 spin_lock_irqsave(&pdc_lock, flags);
678 pdc_result[0] = 0;
679 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
680 convert_to_wide(pdc_result);
681 *space_bits = pdc_result[0];
682 spin_unlock_irqrestore(&pdc_lock, flags);
683
684 return retval;
685}
686
687#ifndef CONFIG_PA20
688/**
689 * pdc_btlb_info - Return block TLB information.
690 * @btlb: The return buffer.
691 *
692 * Returns information about the hardware Block TLB.
693 */
694int pdc_btlb_info(struct pdc_btlb_info *btlb)
695{
696 int retval;
697 unsigned long flags;
698
699 spin_lock_irqsave(&pdc_lock, flags);
700 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
701 memcpy(btlb, pdc_result, sizeof(*btlb));
702 spin_unlock_irqrestore(&pdc_lock, flags);
703
704 if(retval < 0) {
705 btlb->max_size = 0;
706 }
707 return retval;
708}
709
710/**
711 * pdc_mem_map_hpa - Find fixed module information.
712 * @address: The return buffer
713 * @mod_path: pointer to dev path structure.
714 *
715 * This call was developed for S700 workstations to allow the kernel to find
716 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
717 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
718 * call.
719 *
720 * This call is supported by all existing S700 workstations (up to Gecko).
721 */
722int pdc_mem_map_hpa(struct pdc_memory_map *address,
723 struct pdc_module_path *mod_path)
724{
725 int retval;
726 unsigned long flags;
727
728 spin_lock_irqsave(&pdc_lock, flags);
729 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
730 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
731 __pa(pdc_result2));
732 memcpy(address, pdc_result, sizeof(*address));
733 spin_unlock_irqrestore(&pdc_lock, flags);
734
735 return retval;
736}
737#endif /* !CONFIG_PA20 */
738
739/**
740 * pdc_lan_station_id - Get the LAN address.
741 * @lan_addr: The return buffer.
742 * @hpa: The network device HPA.
743 *
744 * Get the LAN station address when it is not directly available from the LAN hardware.
745 */
746int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
747{
748 int retval;
749 unsigned long flags;
750
751 spin_lock_irqsave(&pdc_lock, flags);
752 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
753 __pa(pdc_result), hpa);
754 if (retval < 0) {
755 /* FIXME: else read MAC from NVRAM */
756 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
757 } else {
758 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
759 }
760 spin_unlock_irqrestore(&pdc_lock, flags);
761
762 return retval;
763}
764EXPORT_SYMBOL(pdc_lan_station_id);
765
766/**
767 * pdc_stable_read - Read data from Stable Storage.
768 * @staddr: Stable Storage address to access.
769 * @memaddr: The memory address where Stable Storage data shall be copied.
770 * @count: number of bytes to transfer. count is multiple of 4.
771 *
772 * This PDC call reads from the Stable Storage address supplied in staddr
773 * and copies count bytes to the memory address memaddr.
774 * The call will fail if staddr+count > PDC_STABLE size.
775 */
776int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
777{
778 int retval;
779 unsigned long flags;
780
781 spin_lock_irqsave(&pdc_lock, flags);
782 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
783 __pa(pdc_result), count);
784 convert_to_wide(pdc_result);
785 memcpy(memaddr, pdc_result, count);
786 spin_unlock_irqrestore(&pdc_lock, flags);
787
788 return retval;
789}
790EXPORT_SYMBOL(pdc_stable_read);
791
792/**
793 * pdc_stable_write - Write data to Stable Storage.
794 * @staddr: Stable Storage address to access.
795 * @memaddr: The memory address where Stable Storage data shall be read from.
796 * @count: number of bytes to transfer. count is multiple of 4.
797 *
798 * This PDC call reads count bytes from the supplied memaddr address,
799 * and copies count bytes to the Stable Storage address staddr.
800 * The call will fail if staddr+count > PDC_STABLE size.
801 */
802int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
803{
804 int retval;
805 unsigned long flags;
806
807 spin_lock_irqsave(&pdc_lock, flags);
808 memcpy(pdc_result, memaddr, count);
809 convert_to_wide(pdc_result);
810 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
811 __pa(pdc_result), count);
812 spin_unlock_irqrestore(&pdc_lock, flags);
813
814 return retval;
815}
816EXPORT_SYMBOL(pdc_stable_write);
817
818/**
819 * pdc_stable_get_size - Get Stable Storage size in bytes.
820 * @size: pointer where the size will be stored.
821 *
822 * This PDC call returns the number of bytes in the processor's Stable
823 * Storage, which is the number of contiguous bytes implemented in Stable
824 * Storage starting from staddr=0. size in an unsigned 64-bit integer
825 * which is a multiple of four.
826 */
827int pdc_stable_get_size(unsigned long *size)
828{
829 int retval;
830 unsigned long flags;
831
832 spin_lock_irqsave(&pdc_lock, flags);
833 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
834 *size = pdc_result[0];
835 spin_unlock_irqrestore(&pdc_lock, flags);
836
837 return retval;
838}
839EXPORT_SYMBOL(pdc_stable_get_size);
840
841/**
842 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
843 *
844 * This PDC call is meant to be used to check the integrity of the current
845 * contents of Stable Storage.
846 */
847int pdc_stable_verify_contents(void)
848{
849 int retval;
850 unsigned long flags;
851
852 spin_lock_irqsave(&pdc_lock, flags);
853 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
854 spin_unlock_irqrestore(&pdc_lock, flags);
855
856 return retval;
857}
858EXPORT_SYMBOL(pdc_stable_verify_contents);
859
860/**
861 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
862 * the validity indicator.
863 *
864 * This PDC call will erase all contents of Stable Storage. Use with care!
865 */
866int pdc_stable_initialize(void)
867{
868 int retval;
869 unsigned long flags;
870
871 spin_lock_irqsave(&pdc_lock, flags);
872 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
873 spin_unlock_irqrestore(&pdc_lock, flags);
874
875 return retval;
876}
877EXPORT_SYMBOL(pdc_stable_initialize);
878
879/**
880 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
881 * @hwpath: fully bc.mod style path to the device.
882 * @initiator: the array to return the result into
883 *
884 * Get the SCSI operational parameters from PDC.
885 * Needed since HPUX never used BIOS or symbios card NVRAM.
886 * Most ncr/sym cards won't have an entry and just use whatever
887 * capabilities of the card are (eg Ultra, LVD). But there are
888 * several cases where it's useful:
889 * o set SCSI id for Multi-initiator clusters,
890 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
891 * o bus width exported is less than what the interface chip supports.
892 */
893int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
894{
895 int retval;
896 unsigned long flags;
897
898 spin_lock_irqsave(&pdc_lock, flags);
899
900/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
901#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
902 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
903
904 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
905 __pa(pdc_result), __pa(hwpath));
906 if (retval < PDC_OK)
907 goto out;
908
909 if (pdc_result[0] < 16) {
910 initiator->host_id = pdc_result[0];
911 } else {
912 initiator->host_id = -1;
913 }
914
915 /*
916 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
917 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
918 */
919 switch (pdc_result[1]) {
920 case 1: initiator->factor = 50; break;
921 case 2: initiator->factor = 25; break;
922 case 5: initiator->factor = 12; break;
923 case 25: initiator->factor = 10; break;
924 case 20: initiator->factor = 12; break;
925 case 40: initiator->factor = 10; break;
926 default: initiator->factor = -1; break;
927 }
928
929 if (IS_SPROCKETS()) {
930 initiator->width = pdc_result[4];
931 initiator->mode = pdc_result[5];
932 } else {
933 initiator->width = -1;
934 initiator->mode = -1;
935 }
936
937 out:
938 spin_unlock_irqrestore(&pdc_lock, flags);
939
940 return (retval >= PDC_OK);
941}
942EXPORT_SYMBOL(pdc_get_initiator);
943
944
945/**
946 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
947 * @num_entries: The return value.
948 * @hpa: The HPA for the device.
949 *
950 * This PDC function returns the number of entries in the specified cell's
951 * interrupt table.
952 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
953 */
954int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
955{
956 int retval;
957 unsigned long flags;
958
959 spin_lock_irqsave(&pdc_lock, flags);
960 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
961 __pa(pdc_result), hpa);
962 convert_to_wide(pdc_result);
963 *num_entries = pdc_result[0];
964 spin_unlock_irqrestore(&pdc_lock, flags);
965
966 return retval;
967}
968
969/**
970 * pdc_pci_irt - Get the PCI interrupt routing table.
971 * @num_entries: The number of entries in the table.
972 * @hpa: The Hard Physical Address of the device.
973 * @tbl:
974 *
975 * Get the PCI interrupt routing table for the device at the given HPA.
976 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
977 */
978int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
979{
980 int retval;
981 unsigned long flags;
982
983 BUG_ON((unsigned long)tbl & 0x7);
984
985 spin_lock_irqsave(&pdc_lock, flags);
986 pdc_result[0] = num_entries;
987 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
988 __pa(pdc_result), hpa, __pa(tbl));
989 spin_unlock_irqrestore(&pdc_lock, flags);
990
991 return retval;
992}
993
994
995#if 0 /* UNTEST CODE - left here in case someone needs it */
996
997/**
998 * pdc_pci_config_read - read PCI config space.
999 * @hpa token from PDC to indicate which PCI device
1000 * @pci_addr configuration space address to read from
1001 *
1002 * Read PCI Configuration space *before* linux PCI subsystem is running.
1003 */
1004unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1005{
1006 int retval;
1007 unsigned long flags;
1008
1009 spin_lock_irqsave(&pdc_lock, flags);
1010 pdc_result[0] = 0;
1011 pdc_result[1] = 0;
1012 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1013 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1014 spin_unlock_irqrestore(&pdc_lock, flags);
1015
1016 return retval ? ~0 : (unsigned int) pdc_result[0];
1017}
1018
1019
1020/**
1021 * pdc_pci_config_write - read PCI config space.
1022 * @hpa token from PDC to indicate which PCI device
1023 * @pci_addr configuration space address to write
1024 * @val value we want in the 32-bit register
1025 *
1026 * Write PCI Configuration space *before* linux PCI subsystem is running.
1027 */
1028void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1029{
1030 int retval;
1031 unsigned long flags;
1032
1033 spin_lock_irqsave(&pdc_lock, flags);
1034 pdc_result[0] = 0;
1035 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1036 __pa(pdc_result), hpa,
1037 cfg_addr&~3UL, 4UL, (unsigned long) val);
1038 spin_unlock_irqrestore(&pdc_lock, flags);
1039
1040 return retval;
1041}
1042#endif /* UNTESTED CODE */
1043
1044/**
1045 * pdc_tod_read - Read the Time-Of-Day clock.
1046 * @tod: The return buffer:
1047 *
1048 * Read the Time-Of-Day clock
1049 */
1050int pdc_tod_read(struct pdc_tod *tod)
1051{
1052 int retval;
1053 unsigned long flags;
1054
1055 spin_lock_irqsave(&pdc_lock, flags);
1056 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1057 convert_to_wide(pdc_result);
1058 memcpy(tod, pdc_result, sizeof(*tod));
1059 spin_unlock_irqrestore(&pdc_lock, flags);
1060
1061 return retval;
1062}
1063EXPORT_SYMBOL(pdc_tod_read);
1064
1065int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1066{
1067 int retval;
1068 unsigned long flags;
1069
1070 spin_lock_irqsave(&pdc_lock, flags);
1071 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1072 convert_to_wide(pdc_result);
1073 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1074 spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076 return retval;
1077}
1078
1079int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1080 unsigned long *pdt_entries_ptr)
1081{
1082 int retval;
1083 unsigned long flags;
1084
1085 spin_lock_irqsave(&pdc_lock, flags);
1086 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1087 __pa(pdt_entries_ptr));
1088 if (retval == PDC_OK) {
1089 convert_to_wide(pdc_result);
1090 memcpy(pret, pdc_result, sizeof(*pret));
1091 }
1092 spin_unlock_irqrestore(&pdc_lock, flags);
1093
1094#ifdef CONFIG_64BIT
1095 /*
1096 * 64-bit kernels should not call this PDT function in narrow mode.
1097 * The pdt_entries_ptr array above will now contain 32-bit values
1098 */
1099 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1100 return PDC_ERROR;
1101#endif
1102
1103 return retval;
1104}
1105
1106/**
1107 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1108 * @ret: pointer to return buffer
1109 */
1110int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1111{
1112 int retval;
1113 unsigned long flags;
1114
1115 spin_lock_irqsave(&pdc_lock, flags);
1116 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1117 __pa(ret), sizeof(*ret));
1118 spin_unlock_irqrestore(&pdc_lock, flags);
1119 return retval;
1120}
1121
1122/**
1123 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1124 * @ret: pointer to return buffer
1125 */
1126int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1127{
1128 int retval;
1129 unsigned long flags;
1130
1131 spin_lock_irqsave(&pdc_lock, flags);
1132 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1133 __pa(ret), sizeof(*ret));
1134 spin_unlock_irqrestore(&pdc_lock, flags);
1135 return retval;
1136}
1137
1138/**
1139 * pdc_tod_set - Set the Time-Of-Day clock.
1140 * @sec: The number of seconds since epoch.
1141 * @usec: The number of micro seconds.
1142 *
1143 * Set the Time-Of-Day clock.
1144 */
1145int pdc_tod_set(unsigned long sec, unsigned long usec)
1146{
1147 int retval;
1148 unsigned long flags;
1149
1150 spin_lock_irqsave(&pdc_lock, flags);
1151 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1152 spin_unlock_irqrestore(&pdc_lock, flags);
1153
1154 return retval;
1155}
1156EXPORT_SYMBOL(pdc_tod_set);
1157
1158#ifdef CONFIG_64BIT
1159int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1160 struct pdc_memory_table *tbl, unsigned long entries)
1161{
1162 int retval;
1163 unsigned long flags;
1164
1165 spin_lock_irqsave(&pdc_lock, flags);
1166 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1167 convert_to_wide(pdc_result);
1168 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1169 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1170 spin_unlock_irqrestore(&pdc_lock, flags);
1171
1172 return retval;
1173}
1174#endif /* CONFIG_64BIT */
1175
1176/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1177 * so I guessed at unsigned long. Someone who knows what this does, can fix
1178 * it later. :)
1179 */
1180int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1181{
1182 int retval;
1183 unsigned long flags;
1184
1185 spin_lock_irqsave(&pdc_lock, flags);
1186 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1187 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1188 spin_unlock_irqrestore(&pdc_lock, flags);
1189
1190 return retval;
1191}
1192
1193/*
1194 * pdc_do_reset - Reset the system.
1195 *
1196 * Reset the system.
1197 */
1198int pdc_do_reset(void)
1199{
1200 int retval;
1201 unsigned long flags;
1202
1203 spin_lock_irqsave(&pdc_lock, flags);
1204 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1205 spin_unlock_irqrestore(&pdc_lock, flags);
1206
1207 return retval;
1208}
1209
1210/*
1211 * pdc_soft_power_info - Enable soft power switch.
1212 * @power_reg: address of soft power register
1213 *
1214 * Return the absolute address of the soft power switch register
1215 */
1216int __init pdc_soft_power_info(unsigned long *power_reg)
1217{
1218 int retval;
1219 unsigned long flags;
1220
1221 *power_reg = (unsigned long) (-1);
1222
1223 spin_lock_irqsave(&pdc_lock, flags);
1224 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1225 if (retval == PDC_OK) {
1226 convert_to_wide(pdc_result);
1227 *power_reg = f_extend(pdc_result[0]);
1228 }
1229 spin_unlock_irqrestore(&pdc_lock, flags);
1230
1231 return retval;
1232}
1233
1234/*
1235 * pdc_soft_power_button - Control the soft power button behaviour
1236 * @sw_control: 0 for hardware control, 1 for software control
1237 *
1238 *
1239 * This PDC function places the soft power button under software or
1240 * hardware control.
1241 * Under software control the OS may control to when to allow to shut
1242 * down the system. Under hardware control pressing the power button
1243 * powers off the system immediately.
1244 */
1245int pdc_soft_power_button(int sw_control)
1246{
1247 int retval;
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&pdc_lock, flags);
1251 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1252 spin_unlock_irqrestore(&pdc_lock, flags);
1253
1254 return retval;
1255}
1256
1257/*
1258 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1259 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1260 * who knows what other platform firmware might do with this OS "hook".
1261 */
1262void pdc_io_reset(void)
1263{
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&pdc_lock, flags);
1267 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1268 spin_unlock_irqrestore(&pdc_lock, flags);
1269}
1270
1271/*
1272 * pdc_io_reset_devices - Hack to Stop USB controller
1273 *
1274 * If PDC used the usb controller, the usb controller
1275 * is still running and will crash the machines during iommu
1276 * setup, because of still running DMA. This PDC call
1277 * stops the USB controller.
1278 * Normally called after calling pdc_io_reset().
1279 */
1280void pdc_io_reset_devices(void)
1281{
1282 unsigned long flags;
1283
1284 spin_lock_irqsave(&pdc_lock, flags);
1285 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1286 spin_unlock_irqrestore(&pdc_lock, flags);
1287}
1288
1289#endif /* defined(BOOTLOADER) */
1290
1291/* locked by pdc_lock */
1292static char iodc_dbuf[4096] __page_aligned_bss;
1293
1294/**
1295 * pdc_iodc_print - Console print using IODC.
1296 * @str: the string to output.
1297 * @count: length of str
1298 *
1299 * Note that only these special chars are architected for console IODC io:
1300 * BEL, BS, CR, and LF. Others are passed through.
1301 * Since the HP console requires CR+LF to perform a 'newline', we translate
1302 * "\n" to "\r\n".
1303 */
1304int pdc_iodc_print(const unsigned char *str, unsigned count)
1305{
1306 unsigned int i, found = 0;
1307 unsigned long flags;
1308
1309 count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1310
1311 spin_lock_irqsave(&pdc_lock, flags);
1312 for (i = 0; i < count;) {
1313 switch(str[i]) {
1314 case '\n':
1315 iodc_dbuf[i+0] = '\r';
1316 iodc_dbuf[i+1] = '\n';
1317 i += 2;
1318 found = 1;
1319 goto print;
1320 default:
1321 iodc_dbuf[i] = str[i];
1322 i++;
1323 break;
1324 }
1325 }
1326
1327print:
1328 real32_call(PAGE0->mem_cons.iodc_io,
1329 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1330 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1331 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1332 spin_unlock_irqrestore(&pdc_lock, flags);
1333
1334 return i - found;
1335}
1336
1337#if !defined(BOOTLOADER)
1338/**
1339 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1340 *
1341 * Read a character (non-blocking) from the PDC console, returns -1 if
1342 * key is not present.
1343 */
1344int pdc_iodc_getc(void)
1345{
1346 int ch;
1347 int status;
1348 unsigned long flags;
1349
1350 /* Bail if no console input device. */
1351 if (!PAGE0->mem_kbd.iodc_io)
1352 return 0;
1353
1354 /* wait for a keyboard (rs232)-input */
1355 spin_lock_irqsave(&pdc_lock, flags);
1356 real32_call(PAGE0->mem_kbd.iodc_io,
1357 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1358 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1359 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1360
1361 ch = *iodc_dbuf;
1362 /* like convert_to_wide() but for first return value only: */
1363 status = *(int *)&pdc_result;
1364 spin_unlock_irqrestore(&pdc_lock, flags);
1365
1366 if (status == 0)
1367 return -1;
1368
1369 return ch;
1370}
1371
1372int pdc_sti_call(unsigned long func, unsigned long flags,
1373 unsigned long inptr, unsigned long outputr,
1374 unsigned long glob_cfg)
1375{
1376 int retval;
1377 unsigned long irqflags;
1378
1379 spin_lock_irqsave(&pdc_lock, irqflags);
1380 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1381 spin_unlock_irqrestore(&pdc_lock, irqflags);
1382
1383 return retval;
1384}
1385EXPORT_SYMBOL(pdc_sti_call);
1386
1387#ifdef CONFIG_64BIT
1388/**
1389 * pdc_pat_cell_get_number - Returns the cell number.
1390 * @cell_info: The return buffer.
1391 *
1392 * This PDC call returns the cell number of the cell from which the call
1393 * is made.
1394 */
1395int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1396{
1397 int retval;
1398 unsigned long flags;
1399
1400 spin_lock_irqsave(&pdc_lock, flags);
1401 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1402 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1403 spin_unlock_irqrestore(&pdc_lock, flags);
1404
1405 return retval;
1406}
1407
1408/**
1409 * pdc_pat_cell_module - Retrieve the cell's module information.
1410 * @actcnt: The number of bytes written to mem_addr.
1411 * @ploc: The physical location.
1412 * @mod: The module index.
1413 * @view_type: The view of the address type.
1414 * @mem_addr: The return buffer.
1415 *
1416 * This PDC call returns information about each module attached to the cell
1417 * at the specified location.
1418 */
1419int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1420 unsigned long view_type, void *mem_addr)
1421{
1422 int retval;
1423 unsigned long flags;
1424 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1425
1426 spin_lock_irqsave(&pdc_lock, flags);
1427 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1428 ploc, mod, view_type, __pa(&result));
1429 if(!retval) {
1430 *actcnt = pdc_result[0];
1431 memcpy(mem_addr, &result, *actcnt);
1432 }
1433 spin_unlock_irqrestore(&pdc_lock, flags);
1434
1435 return retval;
1436}
1437
1438/**
1439 * pdc_pat_cell_info - Retrieve the cell's information.
1440 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1441 * @actcnt: The number of bytes which should be written to info.
1442 * @offset: offset of the structure.
1443 * @cell_number: The cell number which should be asked, or -1 for current cell.
1444 *
1445 * This PDC call returns information about the given cell (or all cells).
1446 */
1447int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1448 unsigned long *actcnt, unsigned long offset,
1449 unsigned long cell_number)
1450{
1451 int retval;
1452 unsigned long flags;
1453 struct pdc_pat_cell_info_rtn_block result;
1454
1455 spin_lock_irqsave(&pdc_lock, flags);
1456 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1457 __pa(pdc_result), __pa(&result), *actcnt,
1458 offset, cell_number);
1459 if (!retval) {
1460 *actcnt = pdc_result[0];
1461 memcpy(info, &result, *actcnt);
1462 }
1463 spin_unlock_irqrestore(&pdc_lock, flags);
1464
1465 return retval;
1466}
1467
1468/**
1469 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1470 * @cpu_info: The return buffer.
1471 * @hpa: The Hard Physical Address of the CPU.
1472 *
1473 * Retrieve the cpu number for the cpu at the specified HPA.
1474 */
1475int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1476{
1477 int retval;
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&pdc_lock, flags);
1481 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1482 __pa(&pdc_result), hpa);
1483 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1484 spin_unlock_irqrestore(&pdc_lock, flags);
1485
1486 return retval;
1487}
1488
1489/**
1490 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1491 * @num_entries: The return value.
1492 * @cell_num: The target cell.
1493 *
1494 * This PDC function returns the number of entries in the specified cell's
1495 * interrupt table.
1496 */
1497int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1498{
1499 int retval;
1500 unsigned long flags;
1501
1502 spin_lock_irqsave(&pdc_lock, flags);
1503 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1504 __pa(pdc_result), cell_num);
1505 *num_entries = pdc_result[0];
1506 spin_unlock_irqrestore(&pdc_lock, flags);
1507
1508 return retval;
1509}
1510
1511/**
1512 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1513 * @r_addr: The return buffer.
1514 * @cell_num: The target cell.
1515 *
1516 * This PDC function returns the actual interrupt table for the specified cell.
1517 */
1518int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1519{
1520 int retval;
1521 unsigned long flags;
1522
1523 spin_lock_irqsave(&pdc_lock, flags);
1524 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1525 __pa(r_addr), cell_num);
1526 spin_unlock_irqrestore(&pdc_lock, flags);
1527
1528 return retval;
1529}
1530
1531/**
1532 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1533 * @actlen: The return buffer.
1534 * @mem_addr: Pointer to the memory buffer.
1535 * @count: The number of bytes to read from the buffer.
1536 * @offset: The offset with respect to the beginning of the buffer.
1537 *
1538 */
1539int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1540 unsigned long count, unsigned long offset)
1541{
1542 int retval;
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&pdc_lock, flags);
1546 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1547 __pa(pdc_result2), count, offset);
1548 *actual_len = pdc_result[0];
1549 memcpy(mem_addr, pdc_result2, *actual_len);
1550 spin_unlock_irqrestore(&pdc_lock, flags);
1551
1552 return retval;
1553}
1554
1555/**
1556 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1557 * @legacy_rev: The legacy revision.
1558 * @pat_rev: The PAT revision.
1559 * @pdc_cap: The PDC capabilities.
1560 *
1561 */
1562int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1563 unsigned long *pat_rev, unsigned long *pdc_cap)
1564{
1565 int retval;
1566 unsigned long flags;
1567
1568 spin_lock_irqsave(&pdc_lock, flags);
1569 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1570 __pa(pdc_result));
1571 if (retval == PDC_OK) {
1572 *legacy_rev = pdc_result[0];
1573 *pat_rev = pdc_result[1];
1574 *pdc_cap = pdc_result[2];
1575 }
1576 spin_unlock_irqrestore(&pdc_lock, flags);
1577
1578 return retval;
1579}
1580
1581
1582/**
1583 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1584 * @pci_addr: PCI configuration space address for which the read request is being made.
1585 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1586 * @mem_addr: Pointer to return memory buffer.
1587 *
1588 */
1589int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1590{
1591 int retval;
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&pdc_lock, flags);
1595 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1596 __pa(pdc_result), pci_addr, pci_size);
1597 switch(pci_size) {
1598 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1599 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1600 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1601 }
1602 spin_unlock_irqrestore(&pdc_lock, flags);
1603
1604 return retval;
1605}
1606
1607/**
1608 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1609 * @pci_addr: PCI configuration space address for which the write request is being made.
1610 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1611 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1612 * written to PCI Config space.
1613 *
1614 */
1615int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1616{
1617 int retval;
1618 unsigned long flags;
1619
1620 spin_lock_irqsave(&pdc_lock, flags);
1621 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1622 pci_addr, pci_size, val);
1623 spin_unlock_irqrestore(&pdc_lock, flags);
1624
1625 return retval;
1626}
1627
1628/**
1629 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1630 * @rinfo: memory pdt information
1631 *
1632 */
1633int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1634{
1635 int retval;
1636 unsigned long flags;
1637
1638 spin_lock_irqsave(&pdc_lock, flags);
1639 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1640 __pa(&pdc_result));
1641 if (retval == PDC_OK)
1642 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1643 spin_unlock_irqrestore(&pdc_lock, flags);
1644
1645 return retval;
1646}
1647
1648/**
1649 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1650 * table of a cell
1651 * @rinfo: memory pdt information
1652 * @cell: cell number
1653 *
1654 */
1655int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1656 unsigned long cell)
1657{
1658 int retval;
1659 unsigned long flags;
1660
1661 spin_lock_irqsave(&pdc_lock, flags);
1662 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1663 __pa(&pdc_result), cell);
1664 if (retval == PDC_OK)
1665 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1666 spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668 return retval;
1669}
1670
1671/**
1672 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1673 * @pret: array of PDT entries
1674 * @pdt_entries_ptr: ptr to hold number of PDT entries
1675 * @max_entries: maximum number of entries to be read
1676 *
1677 */
1678int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1679 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1680{
1681 int retval;
1682 unsigned long flags, entries;
1683
1684 spin_lock_irqsave(&pdc_lock, flags);
1685 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1686 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1687 __pa(&pdc_result), parisc_cell_num,
1688 __pa(pdt_entries_ptr));
1689
1690 if (retval == PDC_OK) {
1691 /* build up return value as for PDC_PAT_MEM_PD_READ */
1692 entries = min(pdc_result[0], max_entries);
1693 pret->pdt_entries = entries;
1694 pret->actual_count_bytes = entries * sizeof(unsigned long);
1695 }
1696
1697 spin_unlock_irqrestore(&pdc_lock, flags);
1698 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1699
1700 return retval;
1701}
1702/**
1703 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1704 * @pret: array of PDT entries
1705 * @pdt_entries_ptr: ptr to hold number of PDT entries
1706 * @count: number of bytes to read
1707 * @offset: offset to start (in bytes)
1708 *
1709 */
1710int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1711 unsigned long *pdt_entries_ptr, unsigned long count,
1712 unsigned long offset)
1713{
1714 int retval;
1715 unsigned long flags, entries;
1716
1717 spin_lock_irqsave(&pdc_lock, flags);
1718 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1719 __pa(&pdc_result), __pa(pdt_entries_ptr),
1720 count, offset);
1721
1722 if (retval == PDC_OK) {
1723 entries = min(pdc_result[0], count);
1724 pret->actual_count_bytes = entries;
1725 pret->pdt_entries = entries / sizeof(unsigned long);
1726 }
1727
1728 spin_unlock_irqrestore(&pdc_lock, flags);
1729
1730 return retval;
1731}
1732
1733/**
1734 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1735 * @pret: ptr to hold returned information
1736 * @phys_addr: physical address to examine
1737 *
1738 */
1739int pdc_pat_mem_get_dimm_phys_location(
1740 struct pdc_pat_mem_phys_mem_location *pret,
1741 unsigned long phys_addr)
1742{
1743 int retval;
1744 unsigned long flags;
1745
1746 spin_lock_irqsave(&pdc_lock, flags);
1747 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1748 __pa(&pdc_result), phys_addr);
1749
1750 if (retval == PDC_OK)
1751 memcpy(pret, &pdc_result, sizeof(*pret));
1752
1753 spin_unlock_irqrestore(&pdc_lock, flags);
1754
1755 return retval;
1756}
1757#endif /* CONFIG_64BIT */
1758#endif /* defined(BOOTLOADER) */
1759
1760
1761/***************** 32-bit real-mode calls ***********/
1762/* The struct below is used
1763 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1764 * real32_call_asm() then uses this stack in narrow real mode
1765 */
1766
1767struct narrow_stack {
1768 /* use int, not long which is 64 bits */
1769 unsigned int arg13;
1770 unsigned int arg12;
1771 unsigned int arg11;
1772 unsigned int arg10;
1773 unsigned int arg9;
1774 unsigned int arg8;
1775 unsigned int arg7;
1776 unsigned int arg6;
1777 unsigned int arg5;
1778 unsigned int arg4;
1779 unsigned int arg3;
1780 unsigned int arg2;
1781 unsigned int arg1;
1782 unsigned int arg0;
1783 unsigned int frame_marker[8];
1784 unsigned int sp;
1785 /* in reality, there's nearly 8k of stack after this */
1786};
1787
1788long real32_call(unsigned long fn, ...)
1789{
1790 va_list args;
1791 extern struct narrow_stack real_stack;
1792 extern unsigned long real32_call_asm(unsigned int *,
1793 unsigned int *,
1794 unsigned int);
1795
1796 va_start(args, fn);
1797 real_stack.arg0 = va_arg(args, unsigned int);
1798 real_stack.arg1 = va_arg(args, unsigned int);
1799 real_stack.arg2 = va_arg(args, unsigned int);
1800 real_stack.arg3 = va_arg(args, unsigned int);
1801 real_stack.arg4 = va_arg(args, unsigned int);
1802 real_stack.arg5 = va_arg(args, unsigned int);
1803 real_stack.arg6 = va_arg(args, unsigned int);
1804 real_stack.arg7 = va_arg(args, unsigned int);
1805 real_stack.arg8 = va_arg(args, unsigned int);
1806 real_stack.arg9 = va_arg(args, unsigned int);
1807 real_stack.arg10 = va_arg(args, unsigned int);
1808 real_stack.arg11 = va_arg(args, unsigned int);
1809 real_stack.arg12 = va_arg(args, unsigned int);
1810 real_stack.arg13 = va_arg(args, unsigned int);
1811 va_end(args);
1812
1813 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1814}
1815
1816#ifdef CONFIG_64BIT
1817/***************** 64-bit real-mode calls ***********/
1818
1819struct wide_stack {
1820 unsigned long arg0;
1821 unsigned long arg1;
1822 unsigned long arg2;
1823 unsigned long arg3;
1824 unsigned long arg4;
1825 unsigned long arg5;
1826 unsigned long arg6;
1827 unsigned long arg7;
1828 unsigned long arg8;
1829 unsigned long arg9;
1830 unsigned long arg10;
1831 unsigned long arg11;
1832 unsigned long arg12;
1833 unsigned long arg13;
1834 unsigned long frame_marker[2]; /* rp, previous sp */
1835 unsigned long sp;
1836 /* in reality, there's nearly 8k of stack after this */
1837};
1838
1839long real64_call(unsigned long fn, ...)
1840{
1841 va_list args;
1842 extern struct wide_stack real64_stack;
1843 extern unsigned long real64_call_asm(unsigned long *,
1844 unsigned long *,
1845 unsigned long);
1846
1847 va_start(args, fn);
1848 real64_stack.arg0 = va_arg(args, unsigned long);
1849 real64_stack.arg1 = va_arg(args, unsigned long);
1850 real64_stack.arg2 = va_arg(args, unsigned long);
1851 real64_stack.arg3 = va_arg(args, unsigned long);
1852 real64_stack.arg4 = va_arg(args, unsigned long);
1853 real64_stack.arg5 = va_arg(args, unsigned long);
1854 real64_stack.arg6 = va_arg(args, unsigned long);
1855 real64_stack.arg7 = va_arg(args, unsigned long);
1856 real64_stack.arg8 = va_arg(args, unsigned long);
1857 real64_stack.arg9 = va_arg(args, unsigned long);
1858 real64_stack.arg10 = va_arg(args, unsigned long);
1859 real64_stack.arg11 = va_arg(args, unsigned long);
1860 real64_stack.arg12 = va_arg(args, unsigned long);
1861 real64_stack.arg13 = va_arg(args, unsigned long);
1862 va_end(args);
1863
1864 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1865}
1866
1867#endif /* CONFIG_64BIT */