Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2005-2009, 2010 Cavium Networks
  7 */
  8#include <linux/kernel.h>
  9#include <linux/init.h>
 10#include <linux/msi.h>
 11#include <linux/spinlock.h>
 12#include <linux/interrupt.h>
 13
 14#include <asm/octeon/octeon.h>
 15#include <asm/octeon/cvmx-npi-defs.h>
 16#include <asm/octeon/cvmx-pci-defs.h>
 17#include <asm/octeon/cvmx-npei-defs.h>
 18#include <asm/octeon/cvmx-sli-defs.h>
 19#include <asm/octeon/cvmx-pexp-defs.h>
 20#include <asm/octeon/pci-octeon.h>
 21
 22/*
 23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
 24 * in use.
 25 */
 26static u64 msi_free_irq_bitmask[4];
 27
 28/*
 29 * Each bit in msi_multiple_irq_bitmask tells that the device using
 30 * this bit in msi_free_irq_bitmask is also using the next bit. This
 31 * is used so we can disable all of the MSI interrupts when a device
 32 * uses multiple.
 33 */
 34static u64 msi_multiple_irq_bitmask[4];
 35
 36/*
 37 * This lock controls updates to msi_free_irq_bitmask and
 38 * msi_multiple_irq_bitmask.
 39 */
 40static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
 41
 42/*
 43 * Number of MSI IRQs used. This variable is set up in
 44 * the module init time.
 45 */
 46static int msi_irq_size;
 47
 48/**
 49 * Called when a driver request MSI interrupts instead of the
 
 
 
 
 50 * legacy INT A-D. This routine will allocate multiple interrupts
 51 * for MSI devices that support them. A device can override this by
 52 * programming the MSI control bits [6:4] before calling
 53 * pci_enable_msi().
 54 *
 55 * @dev:    Device requesting MSI interrupts
 56 * @desc:   MSI descriptor
 57 *
 58 * Returns 0 on success.
 59 */
 60int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
 61{
 62	struct msi_msg msg;
 63	u16 control;
 64	int configured_private_bits;
 65	int request_private_bits;
 66	int irq = 0;
 67	int irq_step;
 68	u64 search_mask;
 69	int index;
 70
 
 
 
 71	/*
 72	 * Read the MSI config to figure out how many IRQs this device
 73	 * wants.  Most devices only want 1, which will give
 74	 * configured_private_bits and request_private_bits equal 0.
 75	 */
 76	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
 77
 78	/*
 79	 * If the number of private bits has been configured then use
 80	 * that value instead of the requested number. This gives the
 81	 * driver the chance to override the number of interrupts
 82	 * before calling pci_enable_msi().
 83	 */
 84	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
 85	if (configured_private_bits == 0) {
 86		/* Nothing is configured, so use the hardware requested size */
 87		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
 88	} else {
 89		/*
 90		 * Use the number of configured bits, assuming the
 91		 * driver wanted to override the hardware request
 92		 * value.
 93		 */
 94		request_private_bits = configured_private_bits;
 95	}
 96
 97	/*
 98	 * The PCI 2.3 spec mandates that there are at most 32
 99	 * interrupts. If this device asks for more, only give it one.
100	 */
101	if (request_private_bits > 5)
102		request_private_bits = 0;
103
104try_only_one:
105	/*
106	 * The IRQs have to be aligned on a power of two based on the
107	 * number being requested.
108	 */
109	irq_step = 1 << request_private_bits;
110
111	/* Mask with one bit for each IRQ */
112	search_mask = (1 << irq_step) - 1;
113
114	/*
115	 * We're going to search msi_free_irq_bitmask_lock for zero
116	 * bits. This represents an MSI interrupt number that isn't in
117	 * use.
118	 */
119	spin_lock(&msi_free_irq_bitmask_lock);
120	for (index = 0; index < msi_irq_size/64; index++) {
121		for (irq = 0; irq < 64; irq += irq_step) {
122			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123				msi_free_irq_bitmask[index] |= search_mask << irq;
124				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125				goto msi_irq_allocated;
126			}
127		}
128	}
129msi_irq_allocated:
130	spin_unlock(&msi_free_irq_bitmask_lock);
131
132	/* Make sure the search for available interrupts didn't fail */
133	if (irq >= 64) {
134		if (request_private_bits) {
135			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136			       1 << request_private_bits);
137			request_private_bits = 0;
138			goto try_only_one;
139		} else
140			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141	}
142
143	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144	irq += index*64;
145	irq += OCTEON_IRQ_MSI_BIT0;
146
147	switch (octeon_dma_bar_type) {
148	case OCTEON_DMA_BAR_TYPE_SMALL:
149		/* When not using big bar, Bar 0 is based at 128MB */
150		msg.address_lo =
151			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153		break;
154	case OCTEON_DMA_BAR_TYPE_BIG:
155		/* When using big bar, Bar 0 is based at 0 */
156		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
157		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
158		break;
159	case OCTEON_DMA_BAR_TYPE_PCIE:
160		/* When using PCIe, Bar 0 is based at 0 */
161		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
162		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
163		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
164		break;
165	case OCTEON_DMA_BAR_TYPE_PCIE2:
166		/* When using PCIe2, Bar 0 is based at 0 */
167		msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
168		msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
169		break;
170	default:
171		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
172	}
173	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
174
175	/* Update the number of IRQs the device has available to it */
176	control &= ~PCI_MSI_FLAGS_QSIZE;
177	control |= request_private_bits << 4;
178	pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
179
180	irq_set_msi_desc(irq, desc);
181	pci_write_msi_msg(irq, &msg);
182	return 0;
183}
184
185int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
186{
187	struct msi_desc *entry;
188	int ret;
189
190	/*
191	 * MSI-X is not supported.
192	 */
193	if (type == PCI_CAP_ID_MSIX)
194		return -EINVAL;
195
196	/*
197	 * If an architecture wants to support multiple MSI, it needs to
198	 * override arch_setup_msi_irqs()
199	 */
200	if (type == PCI_CAP_ID_MSI && nvec > 1)
201		return 1;
202
203	for_each_pci_msi_entry(entry, dev) {
204		ret = arch_setup_msi_irq(dev, entry);
205		if (ret < 0)
206			return ret;
207		if (ret > 0)
208			return -ENOSPC;
209	}
210
211	return 0;
212}
213
214/**
 
 
 
215 * Called when a device no longer needs its MSI interrupts. All
216 * MSI interrupts for the device are freed.
217 *
218 * @irq:    The devices first irq number. There may be multple in sequence.
219 */
220void arch_teardown_msi_irq(unsigned int irq)
221{
222	int number_irqs;
223	u64 bitmask;
224	int index = 0;
225	int irq0;
226
227	if ((irq < OCTEON_IRQ_MSI_BIT0)
228		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
229		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
230		      "MSI interrupt (%d)", irq);
231
232	irq -= OCTEON_IRQ_MSI_BIT0;
233	index = irq / 64;
234	irq0 = irq % 64;
235
236	/*
237	 * Count the number of IRQs we need to free by looking at the
238	 * msi_multiple_irq_bitmask. Each bit set means that the next
239	 * IRQ is also owned by this device.
240	 */
241	number_irqs = 0;
242	while ((irq0 + number_irqs < 64) &&
243	       (msi_multiple_irq_bitmask[index]
244		& (1ull << (irq0 + number_irqs))))
245		number_irqs++;
246	number_irqs++;
247	/* Mask with one bit for each IRQ */
248	bitmask = (1 << number_irqs) - 1;
249	/* Shift the mask to the correct bit location */
250	bitmask <<= irq0;
251	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
252		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
253		      "interrupt (%d) not in use", irq);
254
255	/* Checks are done, update the in use bitmask */
256	spin_lock(&msi_free_irq_bitmask_lock);
257	msi_free_irq_bitmask[index] &= ~bitmask;
258	msi_multiple_irq_bitmask[index] &= ~bitmask;
259	spin_unlock(&msi_free_irq_bitmask_lock);
260}
261
262static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
263
264static u64 msi_rcv_reg[4];
265static u64 mis_ena_reg[4];
266
267static void octeon_irq_msi_enable_pcie(struct irq_data *data)
268{
269	u64 en;
270	unsigned long flags;
271	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
272	int irq_index = msi_number >> 6;
273	int irq_bit = msi_number & 0x3f;
274
275	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
276	en = cvmx_read_csr(mis_ena_reg[irq_index]);
277	en |= 1ull << irq_bit;
278	cvmx_write_csr(mis_ena_reg[irq_index], en);
279	cvmx_read_csr(mis_ena_reg[irq_index]);
280	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
281}
282
283static void octeon_irq_msi_disable_pcie(struct irq_data *data)
284{
285	u64 en;
286	unsigned long flags;
287	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
288	int irq_index = msi_number >> 6;
289	int irq_bit = msi_number & 0x3f;
290
291	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
292	en = cvmx_read_csr(mis_ena_reg[irq_index]);
293	en &= ~(1ull << irq_bit);
294	cvmx_write_csr(mis_ena_reg[irq_index], en);
295	cvmx_read_csr(mis_ena_reg[irq_index]);
296	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
297}
298
299static struct irq_chip octeon_irq_chip_msi_pcie = {
300	.name = "MSI",
301	.irq_enable = octeon_irq_msi_enable_pcie,
302	.irq_disable = octeon_irq_msi_disable_pcie,
303};
304
305static void octeon_irq_msi_enable_pci(struct irq_data *data)
306{
307	/*
308	 * Octeon PCI doesn't have the ability to mask/unmask MSI
309	 * interrupts individually. Instead of masking/unmasking them
310	 * in groups of 16, we simple assume MSI devices are well
311	 * behaved. MSI interrupts are always enable and the ACK is
312	 * assumed to be enough
313	 */
314}
315
316static void octeon_irq_msi_disable_pci(struct irq_data *data)
317{
318	/* See comment in enable */
319}
320
321static struct irq_chip octeon_irq_chip_msi_pci = {
322	.name = "MSI",
323	.irq_enable = octeon_irq_msi_enable_pci,
324	.irq_disable = octeon_irq_msi_disable_pci,
325};
326
327/*
328 * Called by the interrupt handling code when an MSI interrupt
329 * occurs.
330 */
331static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
332{
333	int irq;
334	int bit;
335
336	bit = fls64(msi_bits);
337	if (bit) {
338		bit--;
339		/* Acknowledge it first. */
340		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
341
342		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
343		do_IRQ(irq);
344		return IRQ_HANDLED;
345	}
346	return IRQ_NONE;
347}
348
349#define OCTEON_MSI_INT_HANDLER_X(x)					\
350static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
351{									\
352	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
353	return __octeon_msi_do_interrupt((x), msi_bits);		\
354}
355
356/*
357 * Create octeon_msi_interrupt{0-3} function body
358 */
359OCTEON_MSI_INT_HANDLER_X(0);
360OCTEON_MSI_INT_HANDLER_X(1);
361OCTEON_MSI_INT_HANDLER_X(2);
362OCTEON_MSI_INT_HANDLER_X(3);
363
364/*
365 * Initializes the MSI interrupt handling code
366 */
367int __init octeon_msi_initialize(void)
368{
369	int irq;
370	struct irq_chip *msi;
371
372	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
373		return 0;
374	} else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
375		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
376		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
377		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
378		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
379		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
380		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
381		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
382		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
383		msi = &octeon_irq_chip_msi_pcie;
384	} else {
385		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
386#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
387		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
388		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
389		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
390		mis_ena_reg[0] = INVALID_GENERATE_ADE;
391		mis_ena_reg[1] = INVALID_GENERATE_ADE;
392		mis_ena_reg[2] = INVALID_GENERATE_ADE;
393		mis_ena_reg[3] = INVALID_GENERATE_ADE;
394		msi = &octeon_irq_chip_msi_pci;
395	}
396
397	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
398		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
399
400	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
401		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
402				0, "MSI[0:63]", octeon_msi_interrupt0))
403			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
404
405		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
406				0, "MSI[64:127]", octeon_msi_interrupt1))
407			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
408
409		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
410				0, "MSI[127:191]", octeon_msi_interrupt2))
411			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
412
413		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
414				0, "MSI[192:255]", octeon_msi_interrupt3))
415			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
416
417		msi_irq_size = 256;
418	} else if (octeon_is_pci_host()) {
419		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
420				0, "MSI[0:15]", octeon_msi_interrupt0))
421			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
422
423		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
424				0, "MSI[16:31]", octeon_msi_interrupt0))
425			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
426
427		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
428				0, "MSI[32:47]", octeon_msi_interrupt0))
429			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
430
431		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
432				0, "MSI[48:63]", octeon_msi_interrupt0))
433			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
434		msi_irq_size = 64;
435	}
436	return 0;
437}
438subsys_initcall(octeon_msi_initialize);
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2005-2009, 2010 Cavium Networks
  7 */
  8#include <linux/kernel.h>
  9#include <linux/init.h>
 10#include <linux/msi.h>
 11#include <linux/spinlock.h>
 12#include <linux/interrupt.h>
 13
 14#include <asm/octeon/octeon.h>
 15#include <asm/octeon/cvmx-npi-defs.h>
 16#include <asm/octeon/cvmx-pci-defs.h>
 17#include <asm/octeon/cvmx-npei-defs.h>
 18#include <asm/octeon/cvmx-sli-defs.h>
 19#include <asm/octeon/cvmx-pexp-defs.h>
 20#include <asm/octeon/pci-octeon.h>
 21
 22/*
 23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
 24 * in use.
 25 */
 26static u64 msi_free_irq_bitmask[4];
 27
 28/*
 29 * Each bit in msi_multiple_irq_bitmask tells that the device using
 30 * this bit in msi_free_irq_bitmask is also using the next bit. This
 31 * is used so we can disable all of the MSI interrupts when a device
 32 * uses multiple.
 33 */
 34static u64 msi_multiple_irq_bitmask[4];
 35
 36/*
 37 * This lock controls updates to msi_free_irq_bitmask and
 38 * msi_multiple_irq_bitmask.
 39 */
 40static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
 41
 42/*
 43 * Number of MSI IRQs used. This variable is set up in
 44 * the module init time.
 45 */
 46static int msi_irq_size;
 47
 48/**
 49 * arch_setup_msi_irq() - setup MSI IRQs for a device
 50 * @dev:    Device requesting MSI interrupts
 51 * @desc:   MSI descriptor
 52 *
 53 * Called when a driver requests MSI interrupts instead of the
 54 * legacy INT A-D. This routine will allocate multiple interrupts
 55 * for MSI devices that support them. A device can override this by
 56 * programming the MSI control bits [6:4] before calling
 57 * pci_enable_msi().
 58 *
 59 * Return: %0 on success, non-%0 on error.
 
 
 
 60 */
 61int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
 62{
 63	struct msi_msg msg;
 64	u16 control;
 65	int configured_private_bits;
 66	int request_private_bits;
 67	int irq = 0;
 68	int irq_step;
 69	u64 search_mask;
 70	int index;
 71
 72	if (desc->pci.msi_attrib.is_msix)
 73		return -EINVAL;
 74
 75	/*
 76	 * Read the MSI config to figure out how many IRQs this device
 77	 * wants.  Most devices only want 1, which will give
 78	 * configured_private_bits and request_private_bits equal 0.
 79	 */
 80	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
 81
 82	/*
 83	 * If the number of private bits has been configured then use
 84	 * that value instead of the requested number. This gives the
 85	 * driver the chance to override the number of interrupts
 86	 * before calling pci_enable_msi().
 87	 */
 88	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
 89	if (configured_private_bits == 0) {
 90		/* Nothing is configured, so use the hardware requested size */
 91		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
 92	} else {
 93		/*
 94		 * Use the number of configured bits, assuming the
 95		 * driver wanted to override the hardware request
 96		 * value.
 97		 */
 98		request_private_bits = configured_private_bits;
 99	}
100
101	/*
102	 * The PCI 2.3 spec mandates that there are at most 32
103	 * interrupts. If this device asks for more, only give it one.
104	 */
105	if (request_private_bits > 5)
106		request_private_bits = 0;
107
108try_only_one:
109	/*
110	 * The IRQs have to be aligned on a power of two based on the
111	 * number being requested.
112	 */
113	irq_step = 1 << request_private_bits;
114
115	/* Mask with one bit for each IRQ */
116	search_mask = (1 << irq_step) - 1;
117
118	/*
119	 * We're going to search msi_free_irq_bitmask_lock for zero
120	 * bits. This represents an MSI interrupt number that isn't in
121	 * use.
122	 */
123	spin_lock(&msi_free_irq_bitmask_lock);
124	for (index = 0; index < msi_irq_size/64; index++) {
125		for (irq = 0; irq < 64; irq += irq_step) {
126			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
127				msi_free_irq_bitmask[index] |= search_mask << irq;
128				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
129				goto msi_irq_allocated;
130			}
131		}
132	}
133msi_irq_allocated:
134	spin_unlock(&msi_free_irq_bitmask_lock);
135
136	/* Make sure the search for available interrupts didn't fail */
137	if (irq >= 64) {
138		if (request_private_bits) {
139			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
140			       1 << request_private_bits);
141			request_private_bits = 0;
142			goto try_only_one;
143		} else
144			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
145	}
146
147	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
148	irq += index*64;
149	irq += OCTEON_IRQ_MSI_BIT0;
150
151	switch (octeon_dma_bar_type) {
152	case OCTEON_DMA_BAR_TYPE_SMALL:
153		/* When not using big bar, Bar 0 is based at 128MB */
154		msg.address_lo =
155			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
156		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
157		break;
158	case OCTEON_DMA_BAR_TYPE_BIG:
159		/* When using big bar, Bar 0 is based at 0 */
160		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
161		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
162		break;
163	case OCTEON_DMA_BAR_TYPE_PCIE:
164		/* When using PCIe, Bar 0 is based at 0 */
165		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
166		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
167		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
168		break;
169	case OCTEON_DMA_BAR_TYPE_PCIE2:
170		/* When using PCIe2, Bar 0 is based at 0 */
171		msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
172		msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
173		break;
174	default:
175		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
176	}
177	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
178
179	/* Update the number of IRQs the device has available to it */
180	control &= ~PCI_MSI_FLAGS_QSIZE;
181	control |= request_private_bits << 4;
182	pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
183
184	irq_set_msi_desc(irq, desc);
185	pci_write_msi_msg(irq, &msg);
186	return 0;
187}
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189/**
190 * arch_teardown_msi_irq() - release MSI IRQs for a device
191 * @irq:    The devices first irq number. There may be multiple in sequence.
192 *
193 * Called when a device no longer needs its MSI interrupts. All
194 * MSI interrupts for the device are freed.
 
 
195 */
196void arch_teardown_msi_irq(unsigned int irq)
197{
198	int number_irqs;
199	u64 bitmask;
200	int index = 0;
201	int irq0;
202
203	if ((irq < OCTEON_IRQ_MSI_BIT0)
204		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
205		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
206		      "MSI interrupt (%d)", irq);
207
208	irq -= OCTEON_IRQ_MSI_BIT0;
209	index = irq / 64;
210	irq0 = irq % 64;
211
212	/*
213	 * Count the number of IRQs we need to free by looking at the
214	 * msi_multiple_irq_bitmask. Each bit set means that the next
215	 * IRQ is also owned by this device.
216	 */
217	number_irqs = 0;
218	while ((irq0 + number_irqs < 64) &&
219	       (msi_multiple_irq_bitmask[index]
220		& (1ull << (irq0 + number_irqs))))
221		number_irqs++;
222	number_irqs++;
223	/* Mask with one bit for each IRQ */
224	bitmask = (1 << number_irqs) - 1;
225	/* Shift the mask to the correct bit location */
226	bitmask <<= irq0;
227	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
228		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
229		      "interrupt (%d) not in use", irq);
230
231	/* Checks are done, update the in use bitmask */
232	spin_lock(&msi_free_irq_bitmask_lock);
233	msi_free_irq_bitmask[index] &= ~bitmask;
234	msi_multiple_irq_bitmask[index] &= ~bitmask;
235	spin_unlock(&msi_free_irq_bitmask_lock);
236}
237
238static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
239
240static u64 msi_rcv_reg[4];
241static u64 mis_ena_reg[4];
242
243static void octeon_irq_msi_enable_pcie(struct irq_data *data)
244{
245	u64 en;
246	unsigned long flags;
247	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
248	int irq_index = msi_number >> 6;
249	int irq_bit = msi_number & 0x3f;
250
251	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
252	en = cvmx_read_csr(mis_ena_reg[irq_index]);
253	en |= 1ull << irq_bit;
254	cvmx_write_csr(mis_ena_reg[irq_index], en);
255	cvmx_read_csr(mis_ena_reg[irq_index]);
256	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
257}
258
259static void octeon_irq_msi_disable_pcie(struct irq_data *data)
260{
261	u64 en;
262	unsigned long flags;
263	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
264	int irq_index = msi_number >> 6;
265	int irq_bit = msi_number & 0x3f;
266
267	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
268	en = cvmx_read_csr(mis_ena_reg[irq_index]);
269	en &= ~(1ull << irq_bit);
270	cvmx_write_csr(mis_ena_reg[irq_index], en);
271	cvmx_read_csr(mis_ena_reg[irq_index]);
272	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
273}
274
275static struct irq_chip octeon_irq_chip_msi_pcie = {
276	.name = "MSI",
277	.irq_enable = octeon_irq_msi_enable_pcie,
278	.irq_disable = octeon_irq_msi_disable_pcie,
279};
280
281static void octeon_irq_msi_enable_pci(struct irq_data *data)
282{
283	/*
284	 * Octeon PCI doesn't have the ability to mask/unmask MSI
285	 * interrupts individually. Instead of masking/unmasking them
286	 * in groups of 16, we simple assume MSI devices are well
287	 * behaved. MSI interrupts are always enable and the ACK is
288	 * assumed to be enough
289	 */
290}
291
292static void octeon_irq_msi_disable_pci(struct irq_data *data)
293{
294	/* See comment in enable */
295}
296
297static struct irq_chip octeon_irq_chip_msi_pci = {
298	.name = "MSI",
299	.irq_enable = octeon_irq_msi_enable_pci,
300	.irq_disable = octeon_irq_msi_disable_pci,
301};
302
303/*
304 * Called by the interrupt handling code when an MSI interrupt
305 * occurs.
306 */
307static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
308{
309	int irq;
310	int bit;
311
312	bit = fls64(msi_bits);
313	if (bit) {
314		bit--;
315		/* Acknowledge it first. */
316		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
317
318		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
319		do_IRQ(irq);
320		return IRQ_HANDLED;
321	}
322	return IRQ_NONE;
323}
324
325#define OCTEON_MSI_INT_HANDLER_X(x)					\
326static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
327{									\
328	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
329	return __octeon_msi_do_interrupt((x), msi_bits);		\
330}
331
332/*
333 * Create octeon_msi_interrupt{0-3} function body
334 */
335OCTEON_MSI_INT_HANDLER_X(0);
336OCTEON_MSI_INT_HANDLER_X(1);
337OCTEON_MSI_INT_HANDLER_X(2);
338OCTEON_MSI_INT_HANDLER_X(3);
339
340/*
341 * Initializes the MSI interrupt handling code
342 */
343int __init octeon_msi_initialize(void)
344{
345	int irq;
346	struct irq_chip *msi;
347
348	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
349		return 0;
350	} else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
351		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
352		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
353		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
354		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
355		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
356		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
357		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
358		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
359		msi = &octeon_irq_chip_msi_pcie;
360	} else {
361		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
362#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
363		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
364		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
365		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
366		mis_ena_reg[0] = INVALID_GENERATE_ADE;
367		mis_ena_reg[1] = INVALID_GENERATE_ADE;
368		mis_ena_reg[2] = INVALID_GENERATE_ADE;
369		mis_ena_reg[3] = INVALID_GENERATE_ADE;
370		msi = &octeon_irq_chip_msi_pci;
371	}
372
373	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
374		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
375
376	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
377		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
378				0, "MSI[0:63]", octeon_msi_interrupt0))
379			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
380
381		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
382				0, "MSI[64:127]", octeon_msi_interrupt1))
383			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
384
385		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
386				0, "MSI[127:191]", octeon_msi_interrupt2))
387			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
388
389		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
390				0, "MSI[192:255]", octeon_msi_interrupt3))
391			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
392
393		msi_irq_size = 256;
394	} else if (octeon_is_pci_host()) {
395		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
396				0, "MSI[0:15]", octeon_msi_interrupt0))
397			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
398
399		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
400				0, "MSI[16:31]", octeon_msi_interrupt0))
401			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
402
403		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
404				0, "MSI[32:47]", octeon_msi_interrupt0))
405			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
406
407		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
408				0, "MSI[48:63]", octeon_msi_interrupt0))
409			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
410		msi_irq_size = 64;
411	}
412	return 0;
413}
414subsys_initcall(octeon_msi_initialize);