Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 ARM Ltd.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/cpu.h>
   8#include <linux/kvm.h>
   9#include <linux/kvm_host.h>
  10#include <linux/interrupt.h>
  11#include <linux/irq.h>
  12#include <linux/irqdomain.h>
  13#include <linux/uaccess.h>
  14
  15#include <clocksource/arm_arch_timer.h>
  16#include <asm/arch_timer.h>
  17#include <asm/kvm_emulate.h>
  18#include <asm/kvm_hyp.h>
  19
  20#include <kvm/arm_vgic.h>
  21#include <kvm/arm_arch_timer.h>
  22
  23#include "trace.h"
  24
  25static struct timecounter *timecounter;
  26static unsigned int host_vtimer_irq;
  27static unsigned int host_ptimer_irq;
  28static u32 host_vtimer_irq_flags;
  29static u32 host_ptimer_irq_flags;
  30
  31static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
  32
  33static const struct kvm_irq_level default_ptimer_irq = {
  34	.irq	= 30,
  35	.level	= 1,
  36};
  37
  38static const struct kvm_irq_level default_vtimer_irq = {
  39	.irq	= 27,
  40	.level	= 1,
  41};
  42
  43static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
  44static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
  45				 struct arch_timer_context *timer_ctx);
  46static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
  47static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
  48				struct arch_timer_context *timer,
  49				enum kvm_arch_timer_regs treg,
  50				u64 val);
  51static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
  52			      struct arch_timer_context *timer,
  53			      enum kvm_arch_timer_regs treg);
  54
  55u32 timer_get_ctl(struct arch_timer_context *ctxt)
  56{
  57	struct kvm_vcpu *vcpu = ctxt->vcpu;
  58
  59	switch(arch_timer_ctx_index(ctxt)) {
  60	case TIMER_VTIMER:
  61		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
  62	case TIMER_PTIMER:
  63		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
  64	default:
  65		WARN_ON(1);
  66		return 0;
  67	}
  68}
  69
  70u64 timer_get_cval(struct arch_timer_context *ctxt)
  71{
  72	struct kvm_vcpu *vcpu = ctxt->vcpu;
  73
  74	switch(arch_timer_ctx_index(ctxt)) {
  75	case TIMER_VTIMER:
  76		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
  77	case TIMER_PTIMER:
  78		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
  79	default:
  80		WARN_ON(1);
  81		return 0;
  82	}
  83}
  84
  85static u64 timer_get_offset(struct arch_timer_context *ctxt)
  86{
  87	struct kvm_vcpu *vcpu = ctxt->vcpu;
  88
  89	switch(arch_timer_ctx_index(ctxt)) {
  90	case TIMER_VTIMER:
  91		return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
  92	default:
  93		return 0;
  94	}
  95}
  96
  97static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
  98{
  99	struct kvm_vcpu *vcpu = ctxt->vcpu;
 100
 101	switch(arch_timer_ctx_index(ctxt)) {
 102	case TIMER_VTIMER:
 103		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
 104		break;
 105	case TIMER_PTIMER:
 106		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
 107		break;
 108	default:
 109		WARN_ON(1);
 110	}
 111}
 112
 113static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
 114{
 115	struct kvm_vcpu *vcpu = ctxt->vcpu;
 116
 117	switch(arch_timer_ctx_index(ctxt)) {
 118	case TIMER_VTIMER:
 119		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
 120		break;
 121	case TIMER_PTIMER:
 122		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
 123		break;
 124	default:
 125		WARN_ON(1);
 126	}
 127}
 128
 129static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
 130{
 131	struct kvm_vcpu *vcpu = ctxt->vcpu;
 132
 133	switch(arch_timer_ctx_index(ctxt)) {
 134	case TIMER_VTIMER:
 135		__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
 136		break;
 137	default:
 138		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
 139	}
 140}
 141
 142u64 kvm_phys_timer_read(void)
 143{
 144	return timecounter->cc->read(timecounter->cc);
 145}
 146
 147static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
 148{
 149	if (has_vhe()) {
 150		map->direct_vtimer = vcpu_vtimer(vcpu);
 151		map->direct_ptimer = vcpu_ptimer(vcpu);
 152		map->emul_ptimer = NULL;
 153	} else {
 154		map->direct_vtimer = vcpu_vtimer(vcpu);
 155		map->direct_ptimer = NULL;
 156		map->emul_ptimer = vcpu_ptimer(vcpu);
 157	}
 158
 159	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
 160}
 161
 162static inline bool userspace_irqchip(struct kvm *kvm)
 163{
 164	return static_branch_unlikely(&userspace_irqchip_in_use) &&
 165		unlikely(!irqchip_in_kernel(kvm));
 166}
 167
 168static void soft_timer_start(struct hrtimer *hrt, u64 ns)
 169{
 170	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
 171		      HRTIMER_MODE_ABS_HARD);
 172}
 173
 174static void soft_timer_cancel(struct hrtimer *hrt)
 175{
 176	hrtimer_cancel(hrt);
 177}
 178
 179static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
 180{
 181	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
 182	struct arch_timer_context *ctx;
 183	struct timer_map map;
 184
 185	/*
 186	 * We may see a timer interrupt after vcpu_put() has been called which
 187	 * sets the CPU's vcpu pointer to NULL, because even though the timer
 188	 * has been disabled in timer_save_state(), the hardware interrupt
 189	 * signal may not have been retired from the interrupt controller yet.
 190	 */
 191	if (!vcpu)
 192		return IRQ_HANDLED;
 193
 194	get_timer_map(vcpu, &map);
 195
 196	if (irq == host_vtimer_irq)
 197		ctx = map.direct_vtimer;
 198	else
 199		ctx = map.direct_ptimer;
 200
 201	if (kvm_timer_should_fire(ctx))
 202		kvm_timer_update_irq(vcpu, true, ctx);
 203
 204	if (userspace_irqchip(vcpu->kvm) &&
 205	    !static_branch_unlikely(&has_gic_active_state))
 206		disable_percpu_irq(host_vtimer_irq);
 207
 208	return IRQ_HANDLED;
 209}
 210
 211static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
 212				     u64 val)
 213{
 214	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
 215
 216	if (now < val) {
 217		u64 ns;
 218
 219		ns = cyclecounter_cyc2ns(timecounter->cc,
 220					 val - now,
 221					 timecounter->mask,
 222					 &timecounter->frac);
 223		return ns;
 224	}
 225
 226	return 0;
 227}
 228
 229static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
 230{
 231	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
 232}
 233
 234static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
 235{
 236	WARN_ON(timer_ctx && timer_ctx->loaded);
 237	return timer_ctx &&
 238		((timer_get_ctl(timer_ctx) &
 239		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
 240}
 241
 242static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
 243{
 244	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
 245		vcpu_get_flag(vcpu, IN_WFIT));
 246}
 247
 248static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
 249{
 250	struct arch_timer_context *ctx = vcpu_vtimer(vcpu);
 251	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
 252
 253	return kvm_counter_compute_delta(ctx, val);
 254}
 255
 256/*
 257 * Returns the earliest expiration time in ns among guest timers.
 258 * Note that it will return 0 if none of timers can fire.
 259 */
 260static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
 261{
 262	u64 min_delta = ULLONG_MAX;
 263	int i;
 264
 265	for (i = 0; i < NR_KVM_TIMERS; i++) {
 266		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
 267
 268		WARN(ctx->loaded, "timer %d loaded\n", i);
 269		if (kvm_timer_irq_can_fire(ctx))
 270			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
 271	}
 272
 273	if (vcpu_has_wfit_active(vcpu))
 274		min_delta = min(min_delta, wfit_delay_ns(vcpu));
 275
 276	/* If none of timers can fire, then return 0 */
 277	if (min_delta == ULLONG_MAX)
 278		return 0;
 279
 280	return min_delta;
 281}
 282
 283static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
 284{
 285	struct arch_timer_cpu *timer;
 286	struct kvm_vcpu *vcpu;
 287	u64 ns;
 288
 289	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
 290	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
 291
 292	/*
 293	 * Check that the timer has really expired from the guest's
 294	 * PoV (NTP on the host may have forced it to expire
 295	 * early). If we should have slept longer, restart it.
 296	 */
 297	ns = kvm_timer_earliest_exp(vcpu);
 298	if (unlikely(ns)) {
 299		hrtimer_forward_now(hrt, ns_to_ktime(ns));
 300		return HRTIMER_RESTART;
 301	}
 302
 303	kvm_vcpu_wake_up(vcpu);
 304	return HRTIMER_NORESTART;
 305}
 306
 307static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
 308{
 309	struct arch_timer_context *ctx;
 310	struct kvm_vcpu *vcpu;
 311	u64 ns;
 312
 313	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
 314	vcpu = ctx->vcpu;
 315
 316	trace_kvm_timer_hrtimer_expire(ctx);
 317
 318	/*
 319	 * Check that the timer has really expired from the guest's
 320	 * PoV (NTP on the host may have forced it to expire
 321	 * early). If not ready, schedule for a later time.
 322	 */
 323	ns = kvm_timer_compute_delta(ctx);
 324	if (unlikely(ns)) {
 325		hrtimer_forward_now(hrt, ns_to_ktime(ns));
 326		return HRTIMER_RESTART;
 327	}
 328
 329	kvm_timer_update_irq(vcpu, true, ctx);
 330	return HRTIMER_NORESTART;
 331}
 332
 333static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
 334{
 335	enum kvm_arch_timers index;
 336	u64 cval, now;
 337
 338	if (!timer_ctx)
 339		return false;
 340
 341	index = arch_timer_ctx_index(timer_ctx);
 342
 343	if (timer_ctx->loaded) {
 344		u32 cnt_ctl = 0;
 345
 346		switch (index) {
 347		case TIMER_VTIMER:
 348			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
 349			break;
 350		case TIMER_PTIMER:
 351			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
 352			break;
 353		case NR_KVM_TIMERS:
 354			/* GCC is braindead */
 355			cnt_ctl = 0;
 356			break;
 357		}
 358
 359		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
 360		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
 361		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
 362	}
 363
 364	if (!kvm_timer_irq_can_fire(timer_ctx))
 365		return false;
 366
 367	cval = timer_get_cval(timer_ctx);
 368	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
 369
 370	return cval <= now;
 371}
 372
 373int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 374{
 375	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
 376}
 377
 378/*
 379 * Reflect the timer output level into the kvm_run structure
 380 */
 381void kvm_timer_update_run(struct kvm_vcpu *vcpu)
 382{
 383	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 384	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 385	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
 386
 387	/* Populate the device bitmap with the timer states */
 388	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
 389				    KVM_ARM_DEV_EL1_PTIMER);
 390	if (kvm_timer_should_fire(vtimer))
 391		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
 392	if (kvm_timer_should_fire(ptimer))
 393		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
 394}
 395
 396static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
 397				 struct arch_timer_context *timer_ctx)
 398{
 399	int ret;
 400
 401	timer_ctx->irq.level = new_level;
 402	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
 403				   timer_ctx->irq.level);
 404
 405	if (!userspace_irqchip(vcpu->kvm)) {
 406		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
 407					  timer_ctx->irq.irq,
 408					  timer_ctx->irq.level,
 409					  timer_ctx);
 410		WARN_ON(ret);
 411	}
 412}
 413
 414/* Only called for a fully emulated timer */
 415static void timer_emulate(struct arch_timer_context *ctx)
 416{
 417	bool should_fire = kvm_timer_should_fire(ctx);
 418
 419	trace_kvm_timer_emulate(ctx, should_fire);
 420
 421	if (should_fire != ctx->irq.level) {
 422		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
 423		return;
 424	}
 425
 426	/*
 427	 * If the timer can fire now, we don't need to have a soft timer
 428	 * scheduled for the future.  If the timer cannot fire at all,
 429	 * then we also don't need a soft timer.
 430	 */
 431	if (!kvm_timer_irq_can_fire(ctx)) {
 432		soft_timer_cancel(&ctx->hrtimer);
 433		return;
 434	}
 435
 436	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
 437}
 438
 439static void timer_save_state(struct arch_timer_context *ctx)
 440{
 441	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 442	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 443	unsigned long flags;
 444
 445	if (!timer->enabled)
 446		return;
 447
 448	local_irq_save(flags);
 449
 450	if (!ctx->loaded)
 451		goto out;
 452
 453	switch (index) {
 454	case TIMER_VTIMER:
 455		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
 456		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
 457
 458		/* Disable the timer */
 459		write_sysreg_el0(0, SYS_CNTV_CTL);
 460		isb();
 461
 462		break;
 463	case TIMER_PTIMER:
 464		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
 465		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
 466
 467		/* Disable the timer */
 468		write_sysreg_el0(0, SYS_CNTP_CTL);
 469		isb();
 470
 471		break;
 472	case NR_KVM_TIMERS:
 473		BUG();
 474	}
 475
 476	trace_kvm_timer_save_state(ctx);
 477
 478	ctx->loaded = false;
 479out:
 480	local_irq_restore(flags);
 481}
 482
 483/*
 484 * Schedule the background timer before calling kvm_vcpu_halt, so that this
 485 * thread is removed from its waitqueue and made runnable when there's a timer
 486 * interrupt to handle.
 487 */
 488static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
 489{
 490	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 491	struct timer_map map;
 492
 493	get_timer_map(vcpu, &map);
 494
 495	/*
 496	 * If no timers are capable of raising interrupts (disabled or
 497	 * masked), then there's no more work for us to do.
 498	 */
 499	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
 500	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
 501	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
 502	    !vcpu_has_wfit_active(vcpu))
 503		return;
 504
 505	/*
 506	 * At least one guest time will expire. Schedule a background timer.
 507	 * Set the earliest expiration time among the guest timers.
 508	 */
 509	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
 510}
 511
 512static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
 513{
 514	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 515
 516	soft_timer_cancel(&timer->bg_timer);
 517}
 518
 519static void timer_restore_state(struct arch_timer_context *ctx)
 520{
 521	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
 522	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
 523	unsigned long flags;
 524
 525	if (!timer->enabled)
 526		return;
 527
 528	local_irq_save(flags);
 529
 530	if (ctx->loaded)
 531		goto out;
 532
 533	switch (index) {
 534	case TIMER_VTIMER:
 535		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
 536		isb();
 537		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
 538		break;
 539	case TIMER_PTIMER:
 540		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
 541		isb();
 542		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
 543		break;
 544	case NR_KVM_TIMERS:
 545		BUG();
 546	}
 547
 548	trace_kvm_timer_restore_state(ctx);
 549
 550	ctx->loaded = true;
 551out:
 552	local_irq_restore(flags);
 553}
 554
 555static void set_cntvoff(u64 cntvoff)
 556{
 557	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
 558}
 559
 560static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
 561{
 562	int r;
 563	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
 564	WARN_ON(r);
 565}
 566
 567static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
 568{
 569	struct kvm_vcpu *vcpu = ctx->vcpu;
 570	bool phys_active = false;
 571
 572	/*
 573	 * Update the timer output so that it is likely to match the
 574	 * state we're about to restore. If the timer expires between
 575	 * this point and the register restoration, we'll take the
 576	 * interrupt anyway.
 577	 */
 578	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
 579
 580	if (irqchip_in_kernel(vcpu->kvm))
 581		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
 582
 583	phys_active |= ctx->irq.level;
 584
 585	set_timer_irq_phys_active(ctx, phys_active);
 586}
 587
 588static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
 589{
 590	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 591
 592	/*
 593	 * Update the timer output so that it is likely to match the
 594	 * state we're about to restore. If the timer expires between
 595	 * this point and the register restoration, we'll take the
 596	 * interrupt anyway.
 597	 */
 598	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
 599
 600	/*
 601	 * When using a userspace irqchip with the architected timers and a
 602	 * host interrupt controller that doesn't support an active state, we
 603	 * must still prevent continuously exiting from the guest, and
 604	 * therefore mask the physical interrupt by disabling it on the host
 605	 * interrupt controller when the virtual level is high, such that the
 606	 * guest can make forward progress.  Once we detect the output level
 607	 * being de-asserted, we unmask the interrupt again so that we exit
 608	 * from the guest when the timer fires.
 609	 */
 610	if (vtimer->irq.level)
 611		disable_percpu_irq(host_vtimer_irq);
 612	else
 613		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 614}
 615
 616void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
 617{
 618	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 619	struct timer_map map;
 620
 621	if (unlikely(!timer->enabled))
 622		return;
 623
 624	get_timer_map(vcpu, &map);
 625
 626	if (static_branch_likely(&has_gic_active_state)) {
 627		kvm_timer_vcpu_load_gic(map.direct_vtimer);
 628		if (map.direct_ptimer)
 629			kvm_timer_vcpu_load_gic(map.direct_ptimer);
 630	} else {
 631		kvm_timer_vcpu_load_nogic(vcpu);
 632	}
 633
 634	set_cntvoff(timer_get_offset(map.direct_vtimer));
 635
 636	kvm_timer_unblocking(vcpu);
 637
 638	timer_restore_state(map.direct_vtimer);
 639	if (map.direct_ptimer)
 640		timer_restore_state(map.direct_ptimer);
 641
 642	if (map.emul_ptimer)
 643		timer_emulate(map.emul_ptimer);
 644}
 645
 646bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
 647{
 648	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 649	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 650	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
 651	bool vlevel, plevel;
 652
 653	if (likely(irqchip_in_kernel(vcpu->kvm)))
 654		return false;
 655
 656	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
 657	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
 658
 659	return kvm_timer_should_fire(vtimer) != vlevel ||
 660	       kvm_timer_should_fire(ptimer) != plevel;
 661}
 662
 663void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
 664{
 665	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 666	struct timer_map map;
 667
 668	if (unlikely(!timer->enabled))
 669		return;
 670
 671	get_timer_map(vcpu, &map);
 672
 673	timer_save_state(map.direct_vtimer);
 674	if (map.direct_ptimer)
 675		timer_save_state(map.direct_ptimer);
 676
 677	/*
 678	 * Cancel soft timer emulation, because the only case where we
 679	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
 680	 * in that case we already factor in the deadline for the physical
 681	 * timer when scheduling the bg_timer.
 682	 *
 683	 * In any case, we re-schedule the hrtimer for the physical timer when
 684	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
 685	 */
 686	if (map.emul_ptimer)
 687		soft_timer_cancel(&map.emul_ptimer->hrtimer);
 688
 689	if (kvm_vcpu_is_blocking(vcpu))
 690		kvm_timer_blocking(vcpu);
 691
 692	/*
 693	 * The kernel may decide to run userspace after calling vcpu_put, so
 694	 * we reset cntvoff to 0 to ensure a consistent read between user
 695	 * accesses to the virtual counter and kernel access to the physical
 696	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
 697	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
 698	 */
 699	set_cntvoff(0);
 700}
 701
 702/*
 703 * With a userspace irqchip we have to check if the guest de-asserted the
 704 * timer and if so, unmask the timer irq signal on the host interrupt
 705 * controller to ensure that we see future timer signals.
 706 */
 707static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
 708{
 709	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 710
 711	if (!kvm_timer_should_fire(vtimer)) {
 712		kvm_timer_update_irq(vcpu, false, vtimer);
 713		if (static_branch_likely(&has_gic_active_state))
 714			set_timer_irq_phys_active(vtimer, false);
 715		else
 716			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 717	}
 718}
 719
 720void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
 721{
 722	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 723
 724	if (unlikely(!timer->enabled))
 725		return;
 726
 727	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
 728		unmask_vtimer_irq_user(vcpu);
 729}
 730
 731int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
 732{
 733	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 734	struct timer_map map;
 735
 736	get_timer_map(vcpu, &map);
 737
 738	/*
 739	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
 740	 * and to 0 for ARMv7.  We provide an implementation that always
 741	 * resets the timer to be disabled and unmasked and is compliant with
 742	 * the ARMv7 architecture.
 743	 */
 744	timer_set_ctl(vcpu_vtimer(vcpu), 0);
 745	timer_set_ctl(vcpu_ptimer(vcpu), 0);
 746
 747	if (timer->enabled) {
 748		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
 749		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
 750
 751		if (irqchip_in_kernel(vcpu->kvm)) {
 752			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
 753			if (map.direct_ptimer)
 754				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
 755		}
 756	}
 757
 758	if (map.emul_ptimer)
 759		soft_timer_cancel(&map.emul_ptimer->hrtimer);
 760
 761	return 0;
 762}
 763
 764/* Make the updates of cntvoff for all vtimer contexts atomic */
 765static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
 766{
 767	unsigned long i;
 768	struct kvm *kvm = vcpu->kvm;
 769	struct kvm_vcpu *tmp;
 770
 771	mutex_lock(&kvm->lock);
 772	kvm_for_each_vcpu(i, tmp, kvm)
 773		timer_set_offset(vcpu_vtimer(tmp), cntvoff);
 774
 775	/*
 776	 * When called from the vcpu create path, the CPU being created is not
 777	 * included in the loop above, so we just set it here as well.
 778	 */
 779	timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
 780	mutex_unlock(&kvm->lock);
 781}
 782
 783void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
 784{
 785	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
 786	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 787	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 788
 789	vtimer->vcpu = vcpu;
 790	ptimer->vcpu = vcpu;
 791
 792	/* Synchronize cntvoff across all vtimers of a VM. */
 793	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
 794	timer_set_offset(ptimer, 0);
 795
 796	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 797	timer->bg_timer.function = kvm_bg_timer_expire;
 798
 799	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 800	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 801	vtimer->hrtimer.function = kvm_hrtimer_expire;
 802	ptimer->hrtimer.function = kvm_hrtimer_expire;
 803
 804	vtimer->irq.irq = default_vtimer_irq.irq;
 805	ptimer->irq.irq = default_ptimer_irq.irq;
 806
 807	vtimer->host_timer_irq = host_vtimer_irq;
 808	ptimer->host_timer_irq = host_ptimer_irq;
 809
 810	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
 811	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
 812}
 813
 814static void kvm_timer_init_interrupt(void *info)
 815{
 816	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
 817	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
 818}
 819
 820int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
 821{
 822	struct arch_timer_context *timer;
 823
 824	switch (regid) {
 825	case KVM_REG_ARM_TIMER_CTL:
 826		timer = vcpu_vtimer(vcpu);
 827		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
 828		break;
 829	case KVM_REG_ARM_TIMER_CNT:
 830		timer = vcpu_vtimer(vcpu);
 831		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
 832		break;
 833	case KVM_REG_ARM_TIMER_CVAL:
 834		timer = vcpu_vtimer(vcpu);
 835		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
 836		break;
 837	case KVM_REG_ARM_PTIMER_CTL:
 838		timer = vcpu_ptimer(vcpu);
 839		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
 840		break;
 841	case KVM_REG_ARM_PTIMER_CVAL:
 842		timer = vcpu_ptimer(vcpu);
 843		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
 844		break;
 845
 846	default:
 847		return -1;
 848	}
 849
 850	return 0;
 851}
 852
 853static u64 read_timer_ctl(struct arch_timer_context *timer)
 854{
 855	/*
 856	 * Set ISTATUS bit if it's expired.
 857	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
 858	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
 859	 * regardless of ENABLE bit for our implementation convenience.
 860	 */
 861	u32 ctl = timer_get_ctl(timer);
 862
 863	if (!kvm_timer_compute_delta(timer))
 864		ctl |= ARCH_TIMER_CTRL_IT_STAT;
 865
 866	return ctl;
 867}
 868
 869u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
 870{
 871	switch (regid) {
 872	case KVM_REG_ARM_TIMER_CTL:
 873		return kvm_arm_timer_read(vcpu,
 874					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
 875	case KVM_REG_ARM_TIMER_CNT:
 876		return kvm_arm_timer_read(vcpu,
 877					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
 878	case KVM_REG_ARM_TIMER_CVAL:
 879		return kvm_arm_timer_read(vcpu,
 880					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
 881	case KVM_REG_ARM_PTIMER_CTL:
 882		return kvm_arm_timer_read(vcpu,
 883					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
 884	case KVM_REG_ARM_PTIMER_CNT:
 885		return kvm_arm_timer_read(vcpu,
 886					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
 887	case KVM_REG_ARM_PTIMER_CVAL:
 888		return kvm_arm_timer_read(vcpu,
 889					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
 890	}
 891	return (u64)-1;
 892}
 893
 894static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
 895			      struct arch_timer_context *timer,
 896			      enum kvm_arch_timer_regs treg)
 897{
 898	u64 val;
 899
 900	switch (treg) {
 901	case TIMER_REG_TVAL:
 902		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
 903		val = lower_32_bits(val);
 904		break;
 905
 906	case TIMER_REG_CTL:
 907		val = read_timer_ctl(timer);
 908		break;
 909
 910	case TIMER_REG_CVAL:
 911		val = timer_get_cval(timer);
 912		break;
 913
 914	case TIMER_REG_CNT:
 915		val = kvm_phys_timer_read() - timer_get_offset(timer);
 916		break;
 917
 918	default:
 919		BUG();
 920	}
 921
 922	return val;
 923}
 924
 925u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
 926			      enum kvm_arch_timers tmr,
 927			      enum kvm_arch_timer_regs treg)
 928{
 929	u64 val;
 930
 931	preempt_disable();
 932	kvm_timer_vcpu_put(vcpu);
 933
 934	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
 935
 936	kvm_timer_vcpu_load(vcpu);
 937	preempt_enable();
 938
 939	return val;
 940}
 941
 942static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
 943				struct arch_timer_context *timer,
 944				enum kvm_arch_timer_regs treg,
 945				u64 val)
 946{
 947	switch (treg) {
 948	case TIMER_REG_TVAL:
 949		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
 950		break;
 951
 952	case TIMER_REG_CTL:
 953		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
 954		break;
 955
 956	case TIMER_REG_CVAL:
 957		timer_set_cval(timer, val);
 958		break;
 959
 960	default:
 961		BUG();
 962	}
 963}
 964
 965void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
 966				enum kvm_arch_timers tmr,
 967				enum kvm_arch_timer_regs treg,
 968				u64 val)
 969{
 970	preempt_disable();
 971	kvm_timer_vcpu_put(vcpu);
 972
 973	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
 974
 975	kvm_timer_vcpu_load(vcpu);
 976	preempt_enable();
 977}
 978
 979static int kvm_timer_starting_cpu(unsigned int cpu)
 980{
 981	kvm_timer_init_interrupt(NULL);
 982	return 0;
 983}
 984
 985static int kvm_timer_dying_cpu(unsigned int cpu)
 986{
 987	disable_percpu_irq(host_vtimer_irq);
 988	return 0;
 989}
 990
 991static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
 992{
 993	if (vcpu)
 994		irqd_set_forwarded_to_vcpu(d);
 995	else
 996		irqd_clr_forwarded_to_vcpu(d);
 997
 998	return 0;
 999}
1000
1001static int timer_irq_set_irqchip_state(struct irq_data *d,
1002				       enum irqchip_irq_state which, bool val)
1003{
1004	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1005		return irq_chip_set_parent_state(d, which, val);
1006
1007	if (val)
1008		irq_chip_mask_parent(d);
1009	else
1010		irq_chip_unmask_parent(d);
1011
1012	return 0;
1013}
1014
1015static void timer_irq_eoi(struct irq_data *d)
1016{
1017	if (!irqd_is_forwarded_to_vcpu(d))
1018		irq_chip_eoi_parent(d);
1019}
1020
1021static void timer_irq_ack(struct irq_data *d)
1022{
1023	d = d->parent_data;
1024	if (d->chip->irq_ack)
1025		d->chip->irq_ack(d);
1026}
1027
1028static struct irq_chip timer_chip = {
1029	.name			= "KVM",
1030	.irq_ack		= timer_irq_ack,
1031	.irq_mask		= irq_chip_mask_parent,
1032	.irq_unmask		= irq_chip_unmask_parent,
1033	.irq_eoi		= timer_irq_eoi,
1034	.irq_set_type		= irq_chip_set_type_parent,
1035	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1036	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1037};
1038
1039static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1040				  unsigned int nr_irqs, void *arg)
1041{
1042	irq_hw_number_t hwirq = (uintptr_t)arg;
1043
1044	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1045					     &timer_chip, NULL);
1046}
1047
1048static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1049				  unsigned int nr_irqs)
1050{
1051}
1052
1053static const struct irq_domain_ops timer_domain_ops = {
1054	.alloc	= timer_irq_domain_alloc,
1055	.free	= timer_irq_domain_free,
1056};
1057
1058static struct irq_ops arch_timer_irq_ops = {
1059	.get_input_level = kvm_arch_timer_get_input_level,
1060};
1061
1062static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1063{
1064	*flags = irq_get_trigger_type(virq);
1065	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1066		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1067			virq);
1068		*flags = IRQF_TRIGGER_LOW;
1069	}
1070}
1071
1072static int kvm_irq_init(struct arch_timer_kvm_info *info)
1073{
1074	struct irq_domain *domain = NULL;
1075
1076	if (info->virtual_irq <= 0) {
1077		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1078			info->virtual_irq);
1079		return -ENODEV;
1080	}
1081
1082	host_vtimer_irq = info->virtual_irq;
1083	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1084
1085	if (kvm_vgic_global_state.no_hw_deactivation) {
1086		struct fwnode_handle *fwnode;
1087		struct irq_data *data;
1088
1089		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1090		if (!fwnode)
1091			return -ENOMEM;
1092
1093		/* Assume both vtimer and ptimer in the same parent */
1094		data = irq_get_irq_data(host_vtimer_irq);
1095		domain = irq_domain_create_hierarchy(data->domain, 0,
1096						     NR_KVM_TIMERS, fwnode,
1097						     &timer_domain_ops, NULL);
1098		if (!domain) {
1099			irq_domain_free_fwnode(fwnode);
1100			return -ENOMEM;
1101		}
1102
1103		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1104		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1105					    (void *)TIMER_VTIMER));
1106	}
1107
1108	if (info->physical_irq > 0) {
1109		host_ptimer_irq = info->physical_irq;
1110		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1111
1112		if (domain)
1113			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1114						    (void *)TIMER_PTIMER));
1115	}
1116
1117	return 0;
1118}
1119
1120int kvm_timer_hyp_init(bool has_gic)
1121{
1122	struct arch_timer_kvm_info *info;
1123	int err;
1124
1125	info = arch_timer_get_kvm_info();
1126	timecounter = &info->timecounter;
1127
1128	if (!timecounter->cc) {
1129		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1130		return -ENODEV;
1131	}
1132
1133	err = kvm_irq_init(info);
1134	if (err)
1135		return err;
1136
1137	/* First, do the virtual EL1 timer irq */
1138
1139	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1140				 "kvm guest vtimer", kvm_get_running_vcpus());
1141	if (err) {
1142		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1143			host_vtimer_irq, err);
1144		return err;
1145	}
1146
1147	if (has_gic) {
1148		err = irq_set_vcpu_affinity(host_vtimer_irq,
1149					    kvm_get_running_vcpus());
1150		if (err) {
1151			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1152			goto out_free_irq;
1153		}
1154
1155		static_branch_enable(&has_gic_active_state);
1156	}
1157
1158	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1159
1160	/* Now let's do the physical EL1 timer irq */
1161
1162	if (info->physical_irq > 0) {
1163		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1164					 "kvm guest ptimer", kvm_get_running_vcpus());
1165		if (err) {
1166			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1167				host_ptimer_irq, err);
1168			return err;
1169		}
1170
1171		if (has_gic) {
1172			err = irq_set_vcpu_affinity(host_ptimer_irq,
1173						    kvm_get_running_vcpus());
1174			if (err) {
1175				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1176				goto out_free_irq;
1177			}
1178		}
1179
1180		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1181	} else if (has_vhe()) {
1182		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1183			info->physical_irq);
1184		err = -ENODEV;
1185		goto out_free_irq;
1186	}
1187
1188	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
1189			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
1190			  kvm_timer_dying_cpu);
1191	return 0;
1192out_free_irq:
1193	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1194	return err;
1195}
1196
1197void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1198{
1199	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1200
1201	soft_timer_cancel(&timer->bg_timer);
1202}
1203
1204static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1205{
1206	int vtimer_irq, ptimer_irq, ret;
1207	unsigned long i;
1208
1209	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1210	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1211	if (ret)
1212		return false;
1213
1214	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1215	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1216	if (ret)
1217		return false;
1218
1219	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1220		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1221		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1222			return false;
1223	}
1224
1225	return true;
1226}
1227
1228bool kvm_arch_timer_get_input_level(int vintid)
1229{
1230	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1231	struct arch_timer_context *timer;
1232
1233	if (WARN(!vcpu, "No vcpu context!\n"))
1234		return false;
1235
1236	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1237		timer = vcpu_vtimer(vcpu);
1238	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1239		timer = vcpu_ptimer(vcpu);
1240	else
1241		BUG();
1242
1243	return kvm_timer_should_fire(timer);
1244}
1245
1246int kvm_timer_enable(struct kvm_vcpu *vcpu)
1247{
1248	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1249	struct timer_map map;
1250	int ret;
1251
1252	if (timer->enabled)
1253		return 0;
1254
1255	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1256	if (!irqchip_in_kernel(vcpu->kvm))
1257		goto no_vgic;
1258
1259	/*
1260	 * At this stage, we have the guarantee that the vgic is both
1261	 * available and initialized.
1262	 */
1263	if (!timer_irqs_are_valid(vcpu)) {
1264		kvm_debug("incorrectly configured timer irqs\n");
1265		return -EINVAL;
1266	}
1267
1268	get_timer_map(vcpu, &map);
1269
1270	ret = kvm_vgic_map_phys_irq(vcpu,
1271				    map.direct_vtimer->host_timer_irq,
1272				    map.direct_vtimer->irq.irq,
1273				    &arch_timer_irq_ops);
1274	if (ret)
1275		return ret;
1276
1277	if (map.direct_ptimer) {
1278		ret = kvm_vgic_map_phys_irq(vcpu,
1279					    map.direct_ptimer->host_timer_irq,
1280					    map.direct_ptimer->irq.irq,
1281					    &arch_timer_irq_ops);
1282	}
1283
1284	if (ret)
1285		return ret;
1286
1287no_vgic:
1288	timer->enabled = 1;
1289	return 0;
1290}
1291
1292/*
1293 * On VHE system, we only need to configure the EL2 timer trap register once,
1294 * not for every world switch.
1295 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1296 * and this makes those bits have no effect for the host kernel execution.
1297 */
1298void kvm_timer_init_vhe(void)
1299{
1300	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1301	u32 cnthctl_shift = 10;
1302	u64 val;
1303
1304	/*
1305	 * VHE systems allow the guest direct access to the EL1 physical
1306	 * timer/counter.
1307	 */
1308	val = read_sysreg(cnthctl_el2);
1309	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1310	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1311	write_sysreg(val, cnthctl_el2);
1312}
1313
1314static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1315{
1316	struct kvm_vcpu *vcpu;
1317	unsigned long i;
1318
1319	kvm_for_each_vcpu(i, vcpu, kvm) {
1320		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1321		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1322	}
1323}
1324
1325int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1326{
1327	int __user *uaddr = (int __user *)(long)attr->addr;
1328	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1329	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1330	int irq;
1331
1332	if (!irqchip_in_kernel(vcpu->kvm))
1333		return -EINVAL;
1334
1335	if (get_user(irq, uaddr))
1336		return -EFAULT;
1337
1338	if (!(irq_is_ppi(irq)))
1339		return -EINVAL;
1340
1341	if (vcpu->arch.timer_cpu.enabled)
1342		return -EBUSY;
1343
1344	switch (attr->attr) {
1345	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1346		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1347		break;
1348	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1349		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1350		break;
1351	default:
1352		return -ENXIO;
1353	}
1354
1355	return 0;
1356}
1357
1358int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1359{
1360	int __user *uaddr = (int __user *)(long)attr->addr;
1361	struct arch_timer_context *timer;
1362	int irq;
1363
1364	switch (attr->attr) {
1365	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1366		timer = vcpu_vtimer(vcpu);
1367		break;
1368	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1369		timer = vcpu_ptimer(vcpu);
1370		break;
1371	default:
1372		return -ENXIO;
1373	}
1374
1375	irq = timer->irq.irq;
1376	return put_user(irq, uaddr);
1377}
1378
1379int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1380{
1381	switch (attr->attr) {
1382	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1383	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1384		return 0;
1385	}
1386
1387	return -ENXIO;
1388}