Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9#include <linux/acpi.h>
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/stddef.h>
13#include <linux/ioport.h>
14#include <linux/delay.h>
15#include <linux/initrd.h>
16#include <linux/console.h>
17#include <linux/cache.h>
18#include <linux/screen_info.h>
19#include <linux/init.h>
20#include <linux/kexec.h>
21#include <linux/root_dev.h>
22#include <linux/cpu.h>
23#include <linux/interrupt.h>
24#include <linux/smp.h>
25#include <linux/fs.h>
26#include <linux/proc_fs.h>
27#include <linux/memblock.h>
28#include <linux/of_fdt.h>
29#include <linux/efi.h>
30#include <linux/psci.h>
31#include <linux/sched/task.h>
32#include <linux/mm.h>
33
34#include <asm/acpi.h>
35#include <asm/fixmap.h>
36#include <asm/cpu.h>
37#include <asm/cputype.h>
38#include <asm/daifflags.h>
39#include <asm/elf.h>
40#include <asm/cpufeature.h>
41#include <asm/cpu_ops.h>
42#include <asm/kasan.h>
43#include <asm/numa.h>
44#include <asm/sections.h>
45#include <asm/setup.h>
46#include <asm/smp_plat.h>
47#include <asm/cacheflush.h>
48#include <asm/tlbflush.h>
49#include <asm/traps.h>
50#include <asm/efi.h>
51#include <asm/xen/hypervisor.h>
52#include <asm/mmu_context.h>
53
54static int num_standard_resources;
55static struct resource *standard_resources;
56
57phys_addr_t __fdt_pointer __initdata;
58
59/*
60 * Standard memory resources
61 */
62static struct resource mem_res[] = {
63 {
64 .name = "Kernel code",
65 .start = 0,
66 .end = 0,
67 .flags = IORESOURCE_SYSTEM_RAM
68 },
69 {
70 .name = "Kernel data",
71 .start = 0,
72 .end = 0,
73 .flags = IORESOURCE_SYSTEM_RAM
74 }
75};
76
77#define kernel_code mem_res[0]
78#define kernel_data mem_res[1]
79
80/*
81 * The recorded values of x0 .. x3 upon kernel entry.
82 */
83u64 __cacheline_aligned boot_args[4];
84
85void __init smp_setup_processor_id(void)
86{
87 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
88 cpu_logical_map(0) = mpidr;
89
90 /*
91 * clear __my_cpu_offset on boot CPU to avoid hang caused by
92 * using percpu variable early, for example, lockdep will
93 * access percpu variable inside lock_release
94 */
95 set_my_cpu_offset(0);
96 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
97 (unsigned long)mpidr, read_cpuid_id());
98}
99
100bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
101{
102 return phys_id == cpu_logical_map(cpu);
103}
104
105struct mpidr_hash mpidr_hash;
106/**
107 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
108 * level in order to build a linear index from an
109 * MPIDR value. Resulting algorithm is a collision
110 * free hash carried out through shifting and ORing
111 */
112static void __init smp_build_mpidr_hash(void)
113{
114 u32 i, affinity, fs[4], bits[4], ls;
115 u64 mask = 0;
116 /*
117 * Pre-scan the list of MPIDRS and filter out bits that do
118 * not contribute to affinity levels, ie they never toggle.
119 */
120 for_each_possible_cpu(i)
121 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
122 pr_debug("mask of set bits %#llx\n", mask);
123 /*
124 * Find and stash the last and first bit set at all affinity levels to
125 * check how many bits are required to represent them.
126 */
127 for (i = 0; i < 4; i++) {
128 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
129 /*
130 * Find the MSB bit and LSB bits position
131 * to determine how many bits are required
132 * to express the affinity level.
133 */
134 ls = fls(affinity);
135 fs[i] = affinity ? ffs(affinity) - 1 : 0;
136 bits[i] = ls - fs[i];
137 }
138 /*
139 * An index can be created from the MPIDR_EL1 by isolating the
140 * significant bits at each affinity level and by shifting
141 * them in order to compress the 32 bits values space to a
142 * compressed set of values. This is equivalent to hashing
143 * the MPIDR_EL1 through shifting and ORing. It is a collision free
144 * hash though not minimal since some levels might contain a number
145 * of CPUs that is not an exact power of 2 and their bit
146 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
147 */
148 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
149 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
150 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
151 (bits[1] + bits[0]);
152 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
153 fs[3] - (bits[2] + bits[1] + bits[0]);
154 mpidr_hash.mask = mask;
155 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
156 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
157 mpidr_hash.shift_aff[0],
158 mpidr_hash.shift_aff[1],
159 mpidr_hash.shift_aff[2],
160 mpidr_hash.shift_aff[3],
161 mpidr_hash.mask,
162 mpidr_hash.bits);
163 /*
164 * 4x is an arbitrary value used to warn on a hash table much bigger
165 * than expected on most systems.
166 */
167 if (mpidr_hash_size() > 4 * num_possible_cpus())
168 pr_warn("Large number of MPIDR hash buckets detected\n");
169}
170
171static void __init setup_machine_fdt(phys_addr_t dt_phys)
172{
173 int size;
174 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
175 const char *name;
176
177 if (dt_virt)
178 memblock_reserve(dt_phys, size);
179
180 if (!dt_virt || !early_init_dt_scan(dt_virt)) {
181 pr_crit("\n"
182 "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
183 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
184 "\nPlease check your bootloader.",
185 &dt_phys, dt_virt);
186
187 while (true)
188 cpu_relax();
189 }
190
191 /* Early fixups are done, map the FDT as read-only now */
192 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
193
194 name = of_flat_dt_get_machine_name();
195 if (!name)
196 return;
197
198 pr_info("Machine model: %s\n", name);
199 dump_stack_set_arch_desc("%s (DT)", name);
200}
201
202static void __init request_standard_resources(void)
203{
204 struct memblock_region *region;
205 struct resource *res;
206 unsigned long i = 0;
207 size_t res_size;
208
209 kernel_code.start = __pa_symbol(_text);
210 kernel_code.end = __pa_symbol(__init_begin - 1);
211 kernel_data.start = __pa_symbol(_sdata);
212 kernel_data.end = __pa_symbol(_end - 1);
213
214 num_standard_resources = memblock.memory.cnt;
215 res_size = num_standard_resources * sizeof(*standard_resources);
216 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
217 if (!standard_resources)
218 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
219
220 for_each_memblock(memory, region) {
221 res = &standard_resources[i++];
222 if (memblock_is_nomap(region)) {
223 res->name = "reserved";
224 res->flags = IORESOURCE_MEM;
225 } else {
226 res->name = "System RAM";
227 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
228 }
229 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
230 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
231
232 request_resource(&iomem_resource, res);
233
234 if (kernel_code.start >= res->start &&
235 kernel_code.end <= res->end)
236 request_resource(res, &kernel_code);
237 if (kernel_data.start >= res->start &&
238 kernel_data.end <= res->end)
239 request_resource(res, &kernel_data);
240#ifdef CONFIG_KEXEC_CORE
241 /* Userspace will find "Crash kernel" region in /proc/iomem. */
242 if (crashk_res.end && crashk_res.start >= res->start &&
243 crashk_res.end <= res->end)
244 request_resource(res, &crashk_res);
245#endif
246 }
247}
248
249static int __init reserve_memblock_reserved_regions(void)
250{
251 u64 i, j;
252
253 for (i = 0; i < num_standard_resources; ++i) {
254 struct resource *mem = &standard_resources[i];
255 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
256
257 if (!memblock_is_region_reserved(mem->start, mem_size))
258 continue;
259
260 for_each_reserved_mem_region(j, &r_start, &r_end) {
261 resource_size_t start, end;
262
263 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
264 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
265
266 if (start > mem->end || end < mem->start)
267 continue;
268
269 reserve_region_with_split(mem, start, end, "reserved");
270 }
271 }
272
273 return 0;
274}
275arch_initcall(reserve_memblock_reserved_regions);
276
277u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
278
279void __init setup_arch(char **cmdline_p)
280{
281 init_mm.start_code = (unsigned long) _text;
282 init_mm.end_code = (unsigned long) _etext;
283 init_mm.end_data = (unsigned long) _edata;
284 init_mm.brk = (unsigned long) _end;
285
286 *cmdline_p = boot_command_line;
287
288 early_fixmap_init();
289 early_ioremap_init();
290
291 setup_machine_fdt(__fdt_pointer);
292
293 /*
294 * Initialise the static keys early as they may be enabled by the
295 * cpufeature code and early parameters.
296 */
297 jump_label_init();
298 parse_early_param();
299
300 /*
301 * Unmask asynchronous aborts and fiq after bringing up possible
302 * earlycon. (Report possible System Errors once we can report this
303 * occurred).
304 */
305 local_daif_restore(DAIF_PROCCTX_NOIRQ);
306
307 /*
308 * TTBR0 is only used for the identity mapping at this stage. Make it
309 * point to zero page to avoid speculatively fetching new entries.
310 */
311 cpu_uninstall_idmap();
312
313 xen_early_init();
314 efi_init();
315 arm64_memblock_init();
316
317 paging_init();
318
319 acpi_table_upgrade();
320
321 /* Parse the ACPI tables for possible boot-time configuration */
322 acpi_boot_table_init();
323
324 if (acpi_disabled)
325 unflatten_device_tree();
326
327 bootmem_init();
328
329 kasan_init();
330
331 request_standard_resources();
332
333 early_ioremap_reset();
334
335 if (acpi_disabled)
336 psci_dt_init();
337 else
338 psci_acpi_init();
339
340 cpu_read_bootcpu_ops();
341 smp_init_cpus();
342 smp_build_mpidr_hash();
343
344 /* Init percpu seeds for random tags after cpus are set up. */
345 kasan_init_tags();
346
347#ifdef CONFIG_ARM64_SW_TTBR0_PAN
348 /*
349 * Make sure init_thread_info.ttbr0 always generates translation
350 * faults in case uaccess_enable() is inadvertently called by the init
351 * thread.
352 */
353 init_task.thread_info.ttbr0 = __pa_symbol(empty_zero_page);
354#endif
355
356#ifdef CONFIG_VT
357 conswitchp = &dummy_con;
358#endif
359 if (boot_args[1] || boot_args[2] || boot_args[3]) {
360 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
361 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
362 "This indicates a broken bootloader or old kernel\n",
363 boot_args[1], boot_args[2], boot_args[3]);
364 }
365}
366
367static inline bool cpu_can_disable(unsigned int cpu)
368{
369#ifdef CONFIG_HOTPLUG_CPU
370 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_can_disable)
371 return cpu_ops[cpu]->cpu_can_disable(cpu);
372#endif
373 return false;
374}
375
376static int __init topology_init(void)
377{
378 int i;
379
380 for_each_online_node(i)
381 register_one_node(i);
382
383 for_each_possible_cpu(i) {
384 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
385 cpu->hotpluggable = cpu_can_disable(i);
386 register_cpu(cpu, i);
387 }
388
389 return 0;
390}
391subsys_initcall(topology_init);
392
393/*
394 * Dump out kernel offset information on panic.
395 */
396static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
397 void *p)
398{
399 const unsigned long offset = kaslr_offset();
400
401 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
402 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
403 offset, KIMAGE_VADDR);
404 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
405 } else {
406 pr_emerg("Kernel Offset: disabled\n");
407 }
408 return 0;
409}
410
411static struct notifier_block kernel_offset_notifier = {
412 .notifier_call = dump_kernel_offset
413};
414
415static int __init register_kernel_offset_dumper(void)
416{
417 atomic_notifier_chain_register(&panic_notifier_list,
418 &kernel_offset_notifier);
419 return 0;
420}
421__initcall(register_kernel_offset_dumper);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9#include <linux/acpi.h>
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/stddef.h>
13#include <linux/ioport.h>
14#include <linux/delay.h>
15#include <linux/initrd.h>
16#include <linux/console.h>
17#include <linux/cache.h>
18#include <linux/screen_info.h>
19#include <linux/init.h>
20#include <linux/kexec.h>
21#include <linux/root_dev.h>
22#include <linux/cpu.h>
23#include <linux/interrupt.h>
24#include <linux/smp.h>
25#include <linux/fs.h>
26#include <linux/panic_notifier.h>
27#include <linux/proc_fs.h>
28#include <linux/memblock.h>
29#include <linux/of_fdt.h>
30#include <linux/efi.h>
31#include <linux/psci.h>
32#include <linux/sched/task.h>
33#include <linux/scs.h>
34#include <linux/mm.h>
35
36#include <asm/acpi.h>
37#include <asm/fixmap.h>
38#include <asm/cpu.h>
39#include <asm/cputype.h>
40#include <asm/daifflags.h>
41#include <asm/elf.h>
42#include <asm/cpufeature.h>
43#include <asm/cpu_ops.h>
44#include <asm/kasan.h>
45#include <asm/numa.h>
46#include <asm/scs.h>
47#include <asm/sections.h>
48#include <asm/setup.h>
49#include <asm/smp_plat.h>
50#include <asm/cacheflush.h>
51#include <asm/tlbflush.h>
52#include <asm/traps.h>
53#include <asm/efi.h>
54#include <asm/xen/hypervisor.h>
55#include <asm/mmu_context.h>
56
57static int num_standard_resources;
58static struct resource *standard_resources;
59
60phys_addr_t __fdt_pointer __initdata;
61
62/*
63 * Standard memory resources
64 */
65static struct resource mem_res[] = {
66 {
67 .name = "Kernel code",
68 .start = 0,
69 .end = 0,
70 .flags = IORESOURCE_SYSTEM_RAM
71 },
72 {
73 .name = "Kernel data",
74 .start = 0,
75 .end = 0,
76 .flags = IORESOURCE_SYSTEM_RAM
77 }
78};
79
80#define kernel_code mem_res[0]
81#define kernel_data mem_res[1]
82
83/*
84 * The recorded values of x0 .. x3 upon kernel entry.
85 */
86u64 __cacheline_aligned boot_args[4];
87
88void __init smp_setup_processor_id(void)
89{
90 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
91 set_cpu_logical_map(0, mpidr);
92
93 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
94 (unsigned long)mpidr, read_cpuid_id());
95}
96
97bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
98{
99 return phys_id == cpu_logical_map(cpu);
100}
101
102struct mpidr_hash mpidr_hash;
103/**
104 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
105 * level in order to build a linear index from an
106 * MPIDR value. Resulting algorithm is a collision
107 * free hash carried out through shifting and ORing
108 */
109static void __init smp_build_mpidr_hash(void)
110{
111 u32 i, affinity, fs[4], bits[4], ls;
112 u64 mask = 0;
113 /*
114 * Pre-scan the list of MPIDRS and filter out bits that do
115 * not contribute to affinity levels, ie they never toggle.
116 */
117 for_each_possible_cpu(i)
118 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
119 pr_debug("mask of set bits %#llx\n", mask);
120 /*
121 * Find and stash the last and first bit set at all affinity levels to
122 * check how many bits are required to represent them.
123 */
124 for (i = 0; i < 4; i++) {
125 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
126 /*
127 * Find the MSB bit and LSB bits position
128 * to determine how many bits are required
129 * to express the affinity level.
130 */
131 ls = fls(affinity);
132 fs[i] = affinity ? ffs(affinity) - 1 : 0;
133 bits[i] = ls - fs[i];
134 }
135 /*
136 * An index can be created from the MPIDR_EL1 by isolating the
137 * significant bits at each affinity level and by shifting
138 * them in order to compress the 32 bits values space to a
139 * compressed set of values. This is equivalent to hashing
140 * the MPIDR_EL1 through shifting and ORing. It is a collision free
141 * hash though not minimal since some levels might contain a number
142 * of CPUs that is not an exact power of 2 and their bit
143 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
144 */
145 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
146 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
147 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
148 (bits[1] + bits[0]);
149 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
150 fs[3] - (bits[2] + bits[1] + bits[0]);
151 mpidr_hash.mask = mask;
152 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
153 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
154 mpidr_hash.shift_aff[0],
155 mpidr_hash.shift_aff[1],
156 mpidr_hash.shift_aff[2],
157 mpidr_hash.shift_aff[3],
158 mpidr_hash.mask,
159 mpidr_hash.bits);
160 /*
161 * 4x is an arbitrary value used to warn on a hash table much bigger
162 * than expected on most systems.
163 */
164 if (mpidr_hash_size() > 4 * num_possible_cpus())
165 pr_warn("Large number of MPIDR hash buckets detected\n");
166}
167
168static void *early_fdt_ptr __initdata;
169
170void __init *get_early_fdt_ptr(void)
171{
172 return early_fdt_ptr;
173}
174
175asmlinkage void __init early_fdt_map(u64 dt_phys)
176{
177 int fdt_size;
178
179 early_fixmap_init();
180 early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
181}
182
183static void __init setup_machine_fdt(phys_addr_t dt_phys)
184{
185 int size;
186 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
187 const char *name;
188
189 if (dt_virt)
190 memblock_reserve(dt_phys, size);
191
192 if (!dt_virt || !early_init_dt_scan(dt_virt)) {
193 pr_crit("\n"
194 "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
195 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
196 "\nPlease check your bootloader.",
197 &dt_phys, dt_virt);
198
199 /*
200 * Note that in this _really_ early stage we cannot even BUG()
201 * or oops, so the least terrible thing to do is cpu_relax(),
202 * or else we could end-up printing non-initialized data, etc.
203 */
204 while (true)
205 cpu_relax();
206 }
207
208 /* Early fixups are done, map the FDT as read-only now */
209 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
210
211 name = of_flat_dt_get_machine_name();
212 if (!name)
213 return;
214
215 pr_info("Machine model: %s\n", name);
216 dump_stack_set_arch_desc("%s (DT)", name);
217}
218
219static void __init request_standard_resources(void)
220{
221 struct memblock_region *region;
222 struct resource *res;
223 unsigned long i = 0;
224 size_t res_size;
225
226 kernel_code.start = __pa_symbol(_stext);
227 kernel_code.end = __pa_symbol(__init_begin - 1);
228 kernel_data.start = __pa_symbol(_sdata);
229 kernel_data.end = __pa_symbol(_end - 1);
230 insert_resource(&iomem_resource, &kernel_code);
231 insert_resource(&iomem_resource, &kernel_data);
232
233 num_standard_resources = memblock.memory.cnt;
234 res_size = num_standard_resources * sizeof(*standard_resources);
235 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
236 if (!standard_resources)
237 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
238
239 for_each_mem_region(region) {
240 res = &standard_resources[i++];
241 if (memblock_is_nomap(region)) {
242 res->name = "reserved";
243 res->flags = IORESOURCE_MEM;
244 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
245 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
246 } else {
247 res->name = "System RAM";
248 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
249 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
250 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
251 }
252
253 insert_resource(&iomem_resource, res);
254 }
255}
256
257static int __init reserve_memblock_reserved_regions(void)
258{
259 u64 i, j;
260
261 for (i = 0; i < num_standard_resources; ++i) {
262 struct resource *mem = &standard_resources[i];
263 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
264
265 if (!memblock_is_region_reserved(mem->start, mem_size))
266 continue;
267
268 for_each_reserved_mem_range(j, &r_start, &r_end) {
269 resource_size_t start, end;
270
271 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
272 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
273
274 if (start > mem->end || end < mem->start)
275 continue;
276
277 reserve_region_with_split(mem, start, end, "reserved");
278 }
279 }
280
281 return 0;
282}
283arch_initcall(reserve_memblock_reserved_regions);
284
285u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
286
287u64 cpu_logical_map(unsigned int cpu)
288{
289 return __cpu_logical_map[cpu];
290}
291
292void __init __no_sanitize_address setup_arch(char **cmdline_p)
293{
294 setup_initial_init_mm(_stext, _etext, _edata, _end);
295
296 *cmdline_p = boot_command_line;
297
298 /*
299 * If know now we are going to need KPTI then use non-global
300 * mappings from the start, avoiding the cost of rewriting
301 * everything later.
302 */
303 arm64_use_ng_mappings = kaslr_requires_kpti();
304
305 early_fixmap_init();
306 early_ioremap_init();
307
308 setup_machine_fdt(__fdt_pointer);
309
310 /*
311 * Initialise the static keys early as they may be enabled by the
312 * cpufeature code and early parameters.
313 */
314 jump_label_init();
315 parse_early_param();
316
317 dynamic_scs_init();
318
319 /*
320 * Unmask asynchronous aborts and fiq after bringing up possible
321 * earlycon. (Report possible System Errors once we can report this
322 * occurred).
323 */
324 local_daif_restore(DAIF_PROCCTX_NOIRQ);
325
326 /*
327 * TTBR0 is only used for the identity mapping at this stage. Make it
328 * point to zero page to avoid speculatively fetching new entries.
329 */
330 cpu_uninstall_idmap();
331
332 xen_early_init();
333 efi_init();
334
335 if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
336 pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
337
338 arm64_memblock_init();
339
340 paging_init();
341
342 acpi_table_upgrade();
343
344 /* Parse the ACPI tables for possible boot-time configuration */
345 acpi_boot_table_init();
346
347 if (acpi_disabled)
348 unflatten_device_tree();
349
350 bootmem_init();
351
352 kasan_init();
353
354 request_standard_resources();
355
356 early_ioremap_reset();
357
358 if (acpi_disabled)
359 psci_dt_init();
360 else
361 psci_acpi_init();
362
363 init_bootcpu_ops();
364 smp_init_cpus();
365 smp_build_mpidr_hash();
366
367 /* Init percpu seeds for random tags after cpus are set up. */
368 kasan_init_sw_tags();
369
370#ifdef CONFIG_ARM64_SW_TTBR0_PAN
371 /*
372 * Make sure init_thread_info.ttbr0 always generates translation
373 * faults in case uaccess_enable() is inadvertently called by the init
374 * thread.
375 */
376 init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
377#endif
378
379 if (boot_args[1] || boot_args[2] || boot_args[3]) {
380 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
381 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
382 "This indicates a broken bootloader or old kernel\n",
383 boot_args[1], boot_args[2], boot_args[3]);
384 }
385}
386
387static inline bool cpu_can_disable(unsigned int cpu)
388{
389#ifdef CONFIG_HOTPLUG_CPU
390 const struct cpu_operations *ops = get_cpu_ops(cpu);
391
392 if (ops && ops->cpu_can_disable)
393 return ops->cpu_can_disable(cpu);
394#endif
395 return false;
396}
397
398static int __init topology_init(void)
399{
400 int i;
401
402 for_each_possible_cpu(i) {
403 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
404 cpu->hotpluggable = cpu_can_disable(i);
405 register_cpu(cpu, i);
406 }
407
408 return 0;
409}
410subsys_initcall(topology_init);
411
412static void dump_kernel_offset(void)
413{
414 const unsigned long offset = kaslr_offset();
415
416 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
417 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
418 offset, KIMAGE_VADDR);
419 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
420 } else {
421 pr_emerg("Kernel Offset: disabled\n");
422 }
423}
424
425static int arm64_panic_block_dump(struct notifier_block *self,
426 unsigned long v, void *p)
427{
428 dump_kernel_offset();
429 dump_cpu_features();
430 dump_mem_limit();
431 return 0;
432}
433
434static struct notifier_block arm64_panic_block = {
435 .notifier_call = arm64_panic_block_dump
436};
437
438static int __init register_arm64_panic_block(void)
439{
440 atomic_notifier_chain_register(&panic_notifier_list,
441 &arm64_panic_block);
442 return 0;
443}
444device_initcall(register_arm64_panic_block);