Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/bitops.h>
11#include <linux/bottom_half.h>
12#include <linux/bug.h>
13#include <linux/cache.h>
14#include <linux/compat.h>
15#include <linux/cpu.h>
16#include <linux/cpu_pm.h>
17#include <linux/kernel.h>
18#include <linux/linkage.h>
19#include <linux/irqflags.h>
20#include <linux/init.h>
21#include <linux/percpu.h>
22#include <linux/prctl.h>
23#include <linux/preempt.h>
24#include <linux/ptrace.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/task_stack.h>
27#include <linux/signal.h>
28#include <linux/slab.h>
29#include <linux/stddef.h>
30#include <linux/sysctl.h>
31#include <linux/swab.h>
32
33#include <asm/esr.h>
34#include <asm/fpsimd.h>
35#include <asm/cpufeature.h>
36#include <asm/cputype.h>
37#include <asm/processor.h>
38#include <asm/simd.h>
39#include <asm/sigcontext.h>
40#include <asm/sysreg.h>
41#include <asm/traps.h>
42#include <asm/virt.h>
43
44#define FPEXC_IOF (1 << 0)
45#define FPEXC_DZF (1 << 1)
46#define FPEXC_OFF (1 << 2)
47#define FPEXC_UFF (1 << 3)
48#define FPEXC_IXF (1 << 4)
49#define FPEXC_IDF (1 << 7)
50
51/*
52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
53 *
54 * In order to reduce the number of times the FPSIMD state is needlessly saved
55 * and restored, we need to keep track of two things:
56 * (a) for each task, we need to remember which CPU was the last one to have
57 * the task's FPSIMD state loaded into its FPSIMD registers;
58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
59 * been loaded into its FPSIMD registers most recently, or whether it has
60 * been used to perform kernel mode NEON in the meantime.
61 *
62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
63 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
65 * address of the userland FPSIMD state of the task that was loaded onto the CPU
66 * the most recently, or NULL if kernel mode NEON has been performed after that.
67 *
68 * With this in place, we no longer have to restore the next FPSIMD state right
69 * when switching between tasks. Instead, we can defer this check to userland
70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
72 * can omit the FPSIMD restore.
73 *
74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
75 * indicate whether or not the userland FPSIMD state of the current task is
76 * present in the registers. The flag is set unless the FPSIMD registers of this
77 * CPU currently contain the most recent userland FPSIMD state of the current
78 * task.
79 *
80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
81 * save the task's FPSIMD context back to task_struct from softirq context.
82 * To prevent this from racing with the manipulation of the task's FPSIMD state
83 * from task context and thereby corrupting the state, it is necessary to
84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
85 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
86 * run but prevent them to use FPSIMD.
87 *
88 * For a certain task, the sequence may look something like this:
89 * - the task gets scheduled in; if both the task's fpsimd_cpu field
90 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
91 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
92 * cleared, otherwise it is set;
93 *
94 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
95 * userland FPSIMD state is copied from memory to the registers, the task's
96 * fpsimd_cpu field is set to the id of the current CPU, the current
97 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
98 * TIF_FOREIGN_FPSTATE flag is cleared;
99 *
100 * - the task executes an ordinary syscall; upon return to userland, the
101 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
102 * restored;
103 *
104 * - the task executes a syscall which executes some NEON instructions; this is
105 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
106 * register contents to memory, clears the fpsimd_last_state per-cpu variable
107 * and sets the TIF_FOREIGN_FPSTATE flag;
108 *
109 * - the task gets preempted after kernel_neon_end() is called; as we have not
110 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
111 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
112 */
113struct fpsimd_last_state_struct {
114 struct user_fpsimd_state *st;
115 void *sve_state;
116 unsigned int sve_vl;
117};
118
119static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
120
121/* Default VL for tasks that don't set it explicitly: */
122static int sve_default_vl = -1;
123
124#ifdef CONFIG_ARM64_SVE
125
126/* Maximum supported vector length across all CPUs (initially poisoned) */
127int __ro_after_init sve_max_vl = SVE_VL_MIN;
128int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
129
130/*
131 * Set of available vector lengths,
132 * where length vq encoded as bit __vq_to_bit(vq):
133 */
134__ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135/* Set of vector lengths present on at least one cpu: */
136static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
137
138static void __percpu *efi_sve_state;
139
140#else /* ! CONFIG_ARM64_SVE */
141
142/* Dummy declaration for code that will be optimised out: */
143extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
144extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
145extern void __percpu *efi_sve_state;
146
147#endif /* ! CONFIG_ARM64_SVE */
148
149DEFINE_PER_CPU(bool, fpsimd_context_busy);
150EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
151
152static void __get_cpu_fpsimd_context(void)
153{
154 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
155
156 WARN_ON(busy);
157}
158
159/*
160 * Claim ownership of the CPU FPSIMD context for use by the calling context.
161 *
162 * The caller may freely manipulate the FPSIMD context metadata until
163 * put_cpu_fpsimd_context() is called.
164 *
165 * The double-underscore version must only be called if you know the task
166 * can't be preempted.
167 */
168static void get_cpu_fpsimd_context(void)
169{
170 preempt_disable();
171 __get_cpu_fpsimd_context();
172}
173
174static void __put_cpu_fpsimd_context(void)
175{
176 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
177
178 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
179}
180
181/*
182 * Release the CPU FPSIMD context.
183 *
184 * Must be called from a context in which get_cpu_fpsimd_context() was
185 * previously called, with no call to put_cpu_fpsimd_context() in the
186 * meantime.
187 */
188static void put_cpu_fpsimd_context(void)
189{
190 __put_cpu_fpsimd_context();
191 preempt_enable();
192}
193
194static bool have_cpu_fpsimd_context(void)
195{
196 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
197}
198
199/*
200 * Call __sve_free() directly only if you know task can't be scheduled
201 * or preempted.
202 */
203static void __sve_free(struct task_struct *task)
204{
205 kfree(task->thread.sve_state);
206 task->thread.sve_state = NULL;
207}
208
209static void sve_free(struct task_struct *task)
210{
211 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
212
213 __sve_free(task);
214}
215
216/*
217 * TIF_SVE controls whether a task can use SVE without trapping while
218 * in userspace, and also the way a task's FPSIMD/SVE state is stored
219 * in thread_struct.
220 *
221 * The kernel uses this flag to track whether a user task is actively
222 * using SVE, and therefore whether full SVE register state needs to
223 * be tracked. If not, the cheaper FPSIMD context handling code can
224 * be used instead of the more costly SVE equivalents.
225 *
226 * * TIF_SVE set:
227 *
228 * The task can execute SVE instructions while in userspace without
229 * trapping to the kernel.
230 *
231 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
232 * corresponding Zn), P0-P15 and FFR are encoded in in
233 * task->thread.sve_state, formatted appropriately for vector
234 * length task->thread.sve_vl.
235 *
236 * task->thread.sve_state must point to a valid buffer at least
237 * sve_state_size(task) bytes in size.
238 *
239 * During any syscall, the kernel may optionally clear TIF_SVE and
240 * discard the vector state except for the FPSIMD subset.
241 *
242 * * TIF_SVE clear:
243 *
244 * An attempt by the user task to execute an SVE instruction causes
245 * do_sve_acc() to be called, which does some preparation and then
246 * sets TIF_SVE.
247 *
248 * When stored, FPSIMD registers V0-V31 are encoded in
249 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
250 * logically zero but not stored anywhere; P0-P15 and FFR are not
251 * stored and have unspecified values from userspace's point of
252 * view. For hygiene purposes, the kernel zeroes them on next use,
253 * but userspace is discouraged from relying on this.
254 *
255 * task->thread.sve_state does not need to be non-NULL, valid or any
256 * particular size: it must not be dereferenced.
257 *
258 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
259 * irrespective of whether TIF_SVE is clear or set, since these are
260 * not vector length dependent.
261 */
262
263/*
264 * Update current's FPSIMD/SVE registers from thread_struct.
265 *
266 * This function should be called only when the FPSIMD/SVE state in
267 * thread_struct is known to be up to date, when preparing to enter
268 * userspace.
269 */
270static void task_fpsimd_load(void)
271{
272 WARN_ON(!have_cpu_fpsimd_context());
273
274 if (system_supports_sve() && test_thread_flag(TIF_SVE))
275 sve_load_state(sve_pffr(¤t->thread),
276 ¤t->thread.uw.fpsimd_state.fpsr,
277 sve_vq_from_vl(current->thread.sve_vl) - 1);
278 else
279 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
280}
281
282/*
283 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
284 * date with respect to the CPU registers.
285 */
286static void fpsimd_save(void)
287{
288 struct fpsimd_last_state_struct const *last =
289 this_cpu_ptr(&fpsimd_last_state);
290 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
291
292 WARN_ON(!have_cpu_fpsimd_context());
293
294 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
295 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
296 if (WARN_ON(sve_get_vl() != last->sve_vl)) {
297 /*
298 * Can't save the user regs, so current would
299 * re-enter user with corrupt state.
300 * There's no way to recover, so kill it:
301 */
302 force_signal_inject(SIGKILL, SI_KERNEL, 0);
303 return;
304 }
305
306 sve_save_state((char *)last->sve_state +
307 sve_ffr_offset(last->sve_vl),
308 &last->st->fpsr);
309 } else
310 fpsimd_save_state(last->st);
311 }
312}
313
314/*
315 * All vector length selection from userspace comes through here.
316 * We're on a slow path, so some sanity-checks are included.
317 * If things go wrong there's a bug somewhere, but try to fall back to a
318 * safe choice.
319 */
320static unsigned int find_supported_vector_length(unsigned int vl)
321{
322 int bit;
323 int max_vl = sve_max_vl;
324
325 if (WARN_ON(!sve_vl_valid(vl)))
326 vl = SVE_VL_MIN;
327
328 if (WARN_ON(!sve_vl_valid(max_vl)))
329 max_vl = SVE_VL_MIN;
330
331 if (vl > max_vl)
332 vl = max_vl;
333
334 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
335 __vq_to_bit(sve_vq_from_vl(vl)));
336 return sve_vl_from_vq(__bit_to_vq(bit));
337}
338
339#ifdef CONFIG_SYSCTL
340
341static int sve_proc_do_default_vl(struct ctl_table *table, int write,
342 void __user *buffer, size_t *lenp,
343 loff_t *ppos)
344{
345 int ret;
346 int vl = sve_default_vl;
347 struct ctl_table tmp_table = {
348 .data = &vl,
349 .maxlen = sizeof(vl),
350 };
351
352 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
353 if (ret || !write)
354 return ret;
355
356 /* Writing -1 has the special meaning "set to max": */
357 if (vl == -1)
358 vl = sve_max_vl;
359
360 if (!sve_vl_valid(vl))
361 return -EINVAL;
362
363 sve_default_vl = find_supported_vector_length(vl);
364 return 0;
365}
366
367static struct ctl_table sve_default_vl_table[] = {
368 {
369 .procname = "sve_default_vector_length",
370 .mode = 0644,
371 .proc_handler = sve_proc_do_default_vl,
372 },
373 { }
374};
375
376static int __init sve_sysctl_init(void)
377{
378 if (system_supports_sve())
379 if (!register_sysctl("abi", sve_default_vl_table))
380 return -EINVAL;
381
382 return 0;
383}
384
385#else /* ! CONFIG_SYSCTL */
386static int __init sve_sysctl_init(void) { return 0; }
387#endif /* ! CONFIG_SYSCTL */
388
389#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
390 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
391
392#ifdef CONFIG_CPU_BIG_ENDIAN
393static __uint128_t arm64_cpu_to_le128(__uint128_t x)
394{
395 u64 a = swab64(x);
396 u64 b = swab64(x >> 64);
397
398 return ((__uint128_t)a << 64) | b;
399}
400#else
401static __uint128_t arm64_cpu_to_le128(__uint128_t x)
402{
403 return x;
404}
405#endif
406
407#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
408
409static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
410 unsigned int vq)
411{
412 unsigned int i;
413 __uint128_t *p;
414
415 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
416 p = (__uint128_t *)ZREG(sst, vq, i);
417 *p = arm64_cpu_to_le128(fst->vregs[i]);
418 }
419}
420
421/*
422 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
423 * task->thread.sve_state.
424 *
425 * Task can be a non-runnable task, or current. In the latter case,
426 * the caller must have ownership of the cpu FPSIMD context before calling
427 * this function.
428 * task->thread.sve_state must point to at least sve_state_size(task)
429 * bytes of allocated kernel memory.
430 * task->thread.uw.fpsimd_state must be up to date before calling this
431 * function.
432 */
433static void fpsimd_to_sve(struct task_struct *task)
434{
435 unsigned int vq;
436 void *sst = task->thread.sve_state;
437 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
438
439 if (!system_supports_sve())
440 return;
441
442 vq = sve_vq_from_vl(task->thread.sve_vl);
443 __fpsimd_to_sve(sst, fst, vq);
444}
445
446/*
447 * Transfer the SVE state in task->thread.sve_state to
448 * task->thread.uw.fpsimd_state.
449 *
450 * Task can be a non-runnable task, or current. In the latter case,
451 * the caller must have ownership of the cpu FPSIMD context before calling
452 * this function.
453 * task->thread.sve_state must point to at least sve_state_size(task)
454 * bytes of allocated kernel memory.
455 * task->thread.sve_state must be up to date before calling this function.
456 */
457static void sve_to_fpsimd(struct task_struct *task)
458{
459 unsigned int vq;
460 void const *sst = task->thread.sve_state;
461 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
462 unsigned int i;
463 __uint128_t const *p;
464
465 if (!system_supports_sve())
466 return;
467
468 vq = sve_vq_from_vl(task->thread.sve_vl);
469 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
470 p = (__uint128_t const *)ZREG(sst, vq, i);
471 fst->vregs[i] = arm64_le128_to_cpu(*p);
472 }
473}
474
475#ifdef CONFIG_ARM64_SVE
476
477/*
478 * Return how many bytes of memory are required to store the full SVE
479 * state for task, given task's currently configured vector length.
480 */
481size_t sve_state_size(struct task_struct const *task)
482{
483 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
484}
485
486/*
487 * Ensure that task->thread.sve_state is allocated and sufficiently large.
488 *
489 * This function should be used only in preparation for replacing
490 * task->thread.sve_state with new data. The memory is always zeroed
491 * here to prevent stale data from showing through: this is done in
492 * the interest of testability and predictability: except in the
493 * do_sve_acc() case, there is no ABI requirement to hide stale data
494 * written previously be task.
495 */
496void sve_alloc(struct task_struct *task)
497{
498 if (task->thread.sve_state) {
499 memset(task->thread.sve_state, 0, sve_state_size(current));
500 return;
501 }
502
503 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
504 task->thread.sve_state =
505 kzalloc(sve_state_size(task), GFP_KERNEL);
506
507 /*
508 * If future SVE revisions can have larger vectors though,
509 * this may cease to be true:
510 */
511 BUG_ON(!task->thread.sve_state);
512}
513
514
515/*
516 * Ensure that task->thread.sve_state is up to date with respect to
517 * the user task, irrespective of when SVE is in use or not.
518 *
519 * This should only be called by ptrace. task must be non-runnable.
520 * task->thread.sve_state must point to at least sve_state_size(task)
521 * bytes of allocated kernel memory.
522 */
523void fpsimd_sync_to_sve(struct task_struct *task)
524{
525 if (!test_tsk_thread_flag(task, TIF_SVE))
526 fpsimd_to_sve(task);
527}
528
529/*
530 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
531 * the user task, irrespective of whether SVE is in use or not.
532 *
533 * This should only be called by ptrace. task must be non-runnable.
534 * task->thread.sve_state must point to at least sve_state_size(task)
535 * bytes of allocated kernel memory.
536 */
537void sve_sync_to_fpsimd(struct task_struct *task)
538{
539 if (test_tsk_thread_flag(task, TIF_SVE))
540 sve_to_fpsimd(task);
541}
542
543/*
544 * Ensure that task->thread.sve_state is up to date with respect to
545 * the task->thread.uw.fpsimd_state.
546 *
547 * This should only be called by ptrace to merge new FPSIMD register
548 * values into a task for which SVE is currently active.
549 * task must be non-runnable.
550 * task->thread.sve_state must point to at least sve_state_size(task)
551 * bytes of allocated kernel memory.
552 * task->thread.uw.fpsimd_state must already have been initialised with
553 * the new FPSIMD register values to be merged in.
554 */
555void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
556{
557 unsigned int vq;
558 void *sst = task->thread.sve_state;
559 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
560
561 if (!test_tsk_thread_flag(task, TIF_SVE))
562 return;
563
564 vq = sve_vq_from_vl(task->thread.sve_vl);
565
566 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
567 __fpsimd_to_sve(sst, fst, vq);
568}
569
570int sve_set_vector_length(struct task_struct *task,
571 unsigned long vl, unsigned long flags)
572{
573 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
574 PR_SVE_SET_VL_ONEXEC))
575 return -EINVAL;
576
577 if (!sve_vl_valid(vl))
578 return -EINVAL;
579
580 /*
581 * Clamp to the maximum vector length that VL-agnostic SVE code can
582 * work with. A flag may be assigned in the future to allow setting
583 * of larger vector lengths without confusing older software.
584 */
585 if (vl > SVE_VL_ARCH_MAX)
586 vl = SVE_VL_ARCH_MAX;
587
588 vl = find_supported_vector_length(vl);
589
590 if (flags & (PR_SVE_VL_INHERIT |
591 PR_SVE_SET_VL_ONEXEC))
592 task->thread.sve_vl_onexec = vl;
593 else
594 /* Reset VL to system default on next exec: */
595 task->thread.sve_vl_onexec = 0;
596
597 /* Only actually set the VL if not deferred: */
598 if (flags & PR_SVE_SET_VL_ONEXEC)
599 goto out;
600
601 if (vl == task->thread.sve_vl)
602 goto out;
603
604 /*
605 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
606 * write any live register state back to task_struct, and convert to a
607 * non-SVE thread.
608 */
609 if (task == current) {
610 get_cpu_fpsimd_context();
611
612 fpsimd_save();
613 }
614
615 fpsimd_flush_task_state(task);
616 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
617 sve_to_fpsimd(task);
618
619 if (task == current)
620 put_cpu_fpsimd_context();
621
622 /*
623 * Force reallocation of task SVE state to the correct size
624 * on next use:
625 */
626 sve_free(task);
627
628 task->thread.sve_vl = vl;
629
630out:
631 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
632 flags & PR_SVE_VL_INHERIT);
633
634 return 0;
635}
636
637/*
638 * Encode the current vector length and flags for return.
639 * This is only required for prctl(): ptrace has separate fields
640 *
641 * flags are as for sve_set_vector_length().
642 */
643static int sve_prctl_status(unsigned long flags)
644{
645 int ret;
646
647 if (flags & PR_SVE_SET_VL_ONEXEC)
648 ret = current->thread.sve_vl_onexec;
649 else
650 ret = current->thread.sve_vl;
651
652 if (test_thread_flag(TIF_SVE_VL_INHERIT))
653 ret |= PR_SVE_VL_INHERIT;
654
655 return ret;
656}
657
658/* PR_SVE_SET_VL */
659int sve_set_current_vl(unsigned long arg)
660{
661 unsigned long vl, flags;
662 int ret;
663
664 vl = arg & PR_SVE_VL_LEN_MASK;
665 flags = arg & ~vl;
666
667 if (!system_supports_sve())
668 return -EINVAL;
669
670 ret = sve_set_vector_length(current, vl, flags);
671 if (ret)
672 return ret;
673
674 return sve_prctl_status(flags);
675}
676
677/* PR_SVE_GET_VL */
678int sve_get_current_vl(void)
679{
680 if (!system_supports_sve())
681 return -EINVAL;
682
683 return sve_prctl_status(0);
684}
685
686static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
687{
688 unsigned int vq, vl;
689 unsigned long zcr;
690
691 bitmap_zero(map, SVE_VQ_MAX);
692
693 zcr = ZCR_ELx_LEN_MASK;
694 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
695
696 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
697 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
698 vl = sve_get_vl();
699 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
700 set_bit(__vq_to_bit(vq), map);
701 }
702}
703
704/*
705 * Initialise the set of known supported VQs for the boot CPU.
706 * This is called during kernel boot, before secondary CPUs are brought up.
707 */
708void __init sve_init_vq_map(void)
709{
710 sve_probe_vqs(sve_vq_map);
711 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
712}
713
714/*
715 * If we haven't committed to the set of supported VQs yet, filter out
716 * those not supported by the current CPU.
717 * This function is called during the bring-up of early secondary CPUs only.
718 */
719void sve_update_vq_map(void)
720{
721 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
722
723 sve_probe_vqs(tmp_map);
724 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
725 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
726}
727
728/*
729 * Check whether the current CPU supports all VQs in the committed set.
730 * This function is called during the bring-up of late secondary CPUs only.
731 */
732int sve_verify_vq_map(void)
733{
734 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
735 unsigned long b;
736
737 sve_probe_vqs(tmp_map);
738
739 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
740 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
741 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
742 smp_processor_id());
743 return -EINVAL;
744 }
745
746 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
747 return 0;
748
749 /*
750 * For KVM, it is necessary to ensure that this CPU doesn't
751 * support any vector length that guests may have probed as
752 * unsupported.
753 */
754
755 /* Recover the set of supported VQs: */
756 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
757 /* Find VQs supported that are not globally supported: */
758 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
759
760 /* Find the lowest such VQ, if any: */
761 b = find_last_bit(tmp_map, SVE_VQ_MAX);
762 if (b >= SVE_VQ_MAX)
763 return 0; /* no mismatches */
764
765 /*
766 * Mismatches above sve_max_virtualisable_vl are fine, since
767 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
768 */
769 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
770 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
771 smp_processor_id());
772 return -EINVAL;
773 }
774
775 return 0;
776}
777
778static void __init sve_efi_setup(void)
779{
780 if (!IS_ENABLED(CONFIG_EFI))
781 return;
782
783 /*
784 * alloc_percpu() warns and prints a backtrace if this goes wrong.
785 * This is evidence of a crippled system and we are returning void,
786 * so no attempt is made to handle this situation here.
787 */
788 if (!sve_vl_valid(sve_max_vl))
789 goto fail;
790
791 efi_sve_state = __alloc_percpu(
792 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
793 if (!efi_sve_state)
794 goto fail;
795
796 return;
797
798fail:
799 panic("Cannot allocate percpu memory for EFI SVE save/restore");
800}
801
802/*
803 * Enable SVE for EL1.
804 * Intended for use by the cpufeatures code during CPU boot.
805 */
806void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
807{
808 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
809 isb();
810}
811
812/*
813 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
814 * vector length.
815 *
816 * Use only if SVE is present.
817 * This function clobbers the SVE vector length.
818 */
819u64 read_zcr_features(void)
820{
821 u64 zcr;
822 unsigned int vq_max;
823
824 /*
825 * Set the maximum possible VL, and write zeroes to all other
826 * bits to see if they stick.
827 */
828 sve_kernel_enable(NULL);
829 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
830
831 zcr = read_sysreg_s(SYS_ZCR_EL1);
832 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
833 vq_max = sve_vq_from_vl(sve_get_vl());
834 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
835
836 return zcr;
837}
838
839void __init sve_setup(void)
840{
841 u64 zcr;
842 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
843 unsigned long b;
844
845 if (!system_supports_sve())
846 return;
847
848 /*
849 * The SVE architecture mandates support for 128-bit vectors,
850 * so sve_vq_map must have at least SVE_VQ_MIN set.
851 * If something went wrong, at least try to patch it up:
852 */
853 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
854 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
855
856 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
857 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
858
859 /*
860 * Sanity-check that the max VL we determined through CPU features
861 * corresponds properly to sve_vq_map. If not, do our best:
862 */
863 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
864 sve_max_vl = find_supported_vector_length(sve_max_vl);
865
866 /*
867 * For the default VL, pick the maximum supported value <= 64.
868 * VL == 64 is guaranteed not to grow the signal frame.
869 */
870 sve_default_vl = find_supported_vector_length(64);
871
872 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
873 SVE_VQ_MAX);
874
875 b = find_last_bit(tmp_map, SVE_VQ_MAX);
876 if (b >= SVE_VQ_MAX)
877 /* No non-virtualisable VLs found */
878 sve_max_virtualisable_vl = SVE_VQ_MAX;
879 else if (WARN_ON(b == SVE_VQ_MAX - 1))
880 /* No virtualisable VLs? This is architecturally forbidden. */
881 sve_max_virtualisable_vl = SVE_VQ_MIN;
882 else /* b + 1 < SVE_VQ_MAX */
883 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
884
885 if (sve_max_virtualisable_vl > sve_max_vl)
886 sve_max_virtualisable_vl = sve_max_vl;
887
888 pr_info("SVE: maximum available vector length %u bytes per vector\n",
889 sve_max_vl);
890 pr_info("SVE: default vector length %u bytes per vector\n",
891 sve_default_vl);
892
893 /* KVM decides whether to support mismatched systems. Just warn here: */
894 if (sve_max_virtualisable_vl < sve_max_vl)
895 pr_warn("SVE: unvirtualisable vector lengths present\n");
896
897 sve_efi_setup();
898}
899
900/*
901 * Called from the put_task_struct() path, which cannot get here
902 * unless dead_task is really dead and not schedulable.
903 */
904void fpsimd_release_task(struct task_struct *dead_task)
905{
906 __sve_free(dead_task);
907}
908
909#endif /* CONFIG_ARM64_SVE */
910
911/*
912 * Trapped SVE access
913 *
914 * Storage is allocated for the full SVE state, the current FPSIMD
915 * register contents are migrated across, and TIF_SVE is set so that
916 * the SVE access trap will be disabled the next time this task
917 * reaches ret_to_user.
918 *
919 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
920 * would have disabled the SVE access trap for userspace during
921 * ret_to_user, making an SVE access trap impossible in that case.
922 */
923asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
924{
925 /* Even if we chose not to use SVE, the hardware could still trap: */
926 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
927 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
928 return;
929 }
930
931 sve_alloc(current);
932
933 get_cpu_fpsimd_context();
934
935 fpsimd_save();
936
937 /* Force ret_to_user to reload the registers: */
938 fpsimd_flush_task_state(current);
939
940 fpsimd_to_sve(current);
941 if (test_and_set_thread_flag(TIF_SVE))
942 WARN_ON(1); /* SVE access shouldn't have trapped */
943
944 put_cpu_fpsimd_context();
945}
946
947/*
948 * Trapped FP/ASIMD access.
949 */
950asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
951{
952 /* TODO: implement lazy context saving/restoring */
953 WARN_ON(1);
954}
955
956/*
957 * Raise a SIGFPE for the current process.
958 */
959asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
960{
961 unsigned int si_code = FPE_FLTUNK;
962
963 if (esr & ESR_ELx_FP_EXC_TFV) {
964 if (esr & FPEXC_IOF)
965 si_code = FPE_FLTINV;
966 else if (esr & FPEXC_DZF)
967 si_code = FPE_FLTDIV;
968 else if (esr & FPEXC_OFF)
969 si_code = FPE_FLTOVF;
970 else if (esr & FPEXC_UFF)
971 si_code = FPE_FLTUND;
972 else if (esr & FPEXC_IXF)
973 si_code = FPE_FLTRES;
974 }
975
976 send_sig_fault(SIGFPE, si_code,
977 (void __user *)instruction_pointer(regs),
978 current);
979}
980
981void fpsimd_thread_switch(struct task_struct *next)
982{
983 bool wrong_task, wrong_cpu;
984
985 if (!system_supports_fpsimd())
986 return;
987
988 __get_cpu_fpsimd_context();
989
990 /* Save unsaved fpsimd state, if any: */
991 fpsimd_save();
992
993 /*
994 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
995 * state. For kernel threads, FPSIMD registers are never loaded
996 * and wrong_task and wrong_cpu will always be true.
997 */
998 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
999 &next->thread.uw.fpsimd_state;
1000 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1001
1002 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1003 wrong_task || wrong_cpu);
1004
1005 __put_cpu_fpsimd_context();
1006}
1007
1008void fpsimd_flush_thread(void)
1009{
1010 int vl, supported_vl;
1011
1012 if (!system_supports_fpsimd())
1013 return;
1014
1015 get_cpu_fpsimd_context();
1016
1017 fpsimd_flush_task_state(current);
1018 memset(¤t->thread.uw.fpsimd_state, 0,
1019 sizeof(current->thread.uw.fpsimd_state));
1020
1021 if (system_supports_sve()) {
1022 clear_thread_flag(TIF_SVE);
1023 sve_free(current);
1024
1025 /*
1026 * Reset the task vector length as required.
1027 * This is where we ensure that all user tasks have a valid
1028 * vector length configured: no kernel task can become a user
1029 * task without an exec and hence a call to this function.
1030 * By the time the first call to this function is made, all
1031 * early hardware probing is complete, so sve_default_vl
1032 * should be valid.
1033 * If a bug causes this to go wrong, we make some noise and
1034 * try to fudge thread.sve_vl to a safe value here.
1035 */
1036 vl = current->thread.sve_vl_onexec ?
1037 current->thread.sve_vl_onexec : sve_default_vl;
1038
1039 if (WARN_ON(!sve_vl_valid(vl)))
1040 vl = SVE_VL_MIN;
1041
1042 supported_vl = find_supported_vector_length(vl);
1043 if (WARN_ON(supported_vl != vl))
1044 vl = supported_vl;
1045
1046 current->thread.sve_vl = vl;
1047
1048 /*
1049 * If the task is not set to inherit, ensure that the vector
1050 * length will be reset by a subsequent exec:
1051 */
1052 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1053 current->thread.sve_vl_onexec = 0;
1054 }
1055
1056 put_cpu_fpsimd_context();
1057}
1058
1059/*
1060 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1061 * currently held in the registers does in fact belong to 'current'
1062 */
1063void fpsimd_preserve_current_state(void)
1064{
1065 if (!system_supports_fpsimd())
1066 return;
1067
1068 get_cpu_fpsimd_context();
1069 fpsimd_save();
1070 put_cpu_fpsimd_context();
1071}
1072
1073/*
1074 * Like fpsimd_preserve_current_state(), but ensure that
1075 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1076 * the signal frame.
1077 */
1078void fpsimd_signal_preserve_current_state(void)
1079{
1080 fpsimd_preserve_current_state();
1081 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1082 sve_to_fpsimd(current);
1083}
1084
1085/*
1086 * Associate current's FPSIMD context with this cpu
1087 * The caller must have ownership of the cpu FPSIMD context before calling
1088 * this function.
1089 */
1090void fpsimd_bind_task_to_cpu(void)
1091{
1092 struct fpsimd_last_state_struct *last =
1093 this_cpu_ptr(&fpsimd_last_state);
1094
1095 last->st = ¤t->thread.uw.fpsimd_state;
1096 last->sve_state = current->thread.sve_state;
1097 last->sve_vl = current->thread.sve_vl;
1098 current->thread.fpsimd_cpu = smp_processor_id();
1099
1100 if (system_supports_sve()) {
1101 /* Toggle SVE trapping for userspace if needed */
1102 if (test_thread_flag(TIF_SVE))
1103 sve_user_enable();
1104 else
1105 sve_user_disable();
1106
1107 /* Serialised by exception return to user */
1108 }
1109}
1110
1111void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1112 unsigned int sve_vl)
1113{
1114 struct fpsimd_last_state_struct *last =
1115 this_cpu_ptr(&fpsimd_last_state);
1116
1117 WARN_ON(!in_softirq() && !irqs_disabled());
1118
1119 last->st = st;
1120 last->sve_state = sve_state;
1121 last->sve_vl = sve_vl;
1122}
1123
1124/*
1125 * Load the userland FPSIMD state of 'current' from memory, but only if the
1126 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1127 * state of 'current'
1128 */
1129void fpsimd_restore_current_state(void)
1130{
1131 if (!system_supports_fpsimd())
1132 return;
1133
1134 get_cpu_fpsimd_context();
1135
1136 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1137 task_fpsimd_load();
1138 fpsimd_bind_task_to_cpu();
1139 }
1140
1141 put_cpu_fpsimd_context();
1142}
1143
1144/*
1145 * Load an updated userland FPSIMD state for 'current' from memory and set the
1146 * flag that indicates that the FPSIMD register contents are the most recent
1147 * FPSIMD state of 'current'
1148 */
1149void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1150{
1151 if (!system_supports_fpsimd())
1152 return;
1153
1154 get_cpu_fpsimd_context();
1155
1156 current->thread.uw.fpsimd_state = *state;
1157 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1158 fpsimd_to_sve(current);
1159
1160 task_fpsimd_load();
1161 fpsimd_bind_task_to_cpu();
1162
1163 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1164
1165 put_cpu_fpsimd_context();
1166}
1167
1168/*
1169 * Invalidate live CPU copies of task t's FPSIMD state
1170 *
1171 * This function may be called with preemption enabled. The barrier()
1172 * ensures that the assignment to fpsimd_cpu is visible to any
1173 * preemption/softirq that could race with set_tsk_thread_flag(), so
1174 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1175 *
1176 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1177 * subsequent code.
1178 */
1179void fpsimd_flush_task_state(struct task_struct *t)
1180{
1181 t->thread.fpsimd_cpu = NR_CPUS;
1182
1183 barrier();
1184 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1185
1186 barrier();
1187}
1188
1189/*
1190 * Invalidate any task's FPSIMD state that is present on this cpu.
1191 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1192 * before calling this function.
1193 */
1194static void fpsimd_flush_cpu_state(void)
1195{
1196 __this_cpu_write(fpsimd_last_state.st, NULL);
1197 set_thread_flag(TIF_FOREIGN_FPSTATE);
1198}
1199
1200/*
1201 * Save the FPSIMD state to memory and invalidate cpu view.
1202 * This function must be called with preemption disabled.
1203 */
1204void fpsimd_save_and_flush_cpu_state(void)
1205{
1206 WARN_ON(preemptible());
1207 __get_cpu_fpsimd_context();
1208 fpsimd_save();
1209 fpsimd_flush_cpu_state();
1210 __put_cpu_fpsimd_context();
1211}
1212
1213#ifdef CONFIG_KERNEL_MODE_NEON
1214
1215/*
1216 * Kernel-side NEON support functions
1217 */
1218
1219/*
1220 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1221 * context
1222 *
1223 * Must not be called unless may_use_simd() returns true.
1224 * Task context in the FPSIMD registers is saved back to memory as necessary.
1225 *
1226 * A matching call to kernel_neon_end() must be made before returning from the
1227 * calling context.
1228 *
1229 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1230 * called.
1231 */
1232void kernel_neon_begin(void)
1233{
1234 if (WARN_ON(!system_supports_fpsimd()))
1235 return;
1236
1237 BUG_ON(!may_use_simd());
1238
1239 get_cpu_fpsimd_context();
1240
1241 /* Save unsaved fpsimd state, if any: */
1242 fpsimd_save();
1243
1244 /* Invalidate any task state remaining in the fpsimd regs: */
1245 fpsimd_flush_cpu_state();
1246}
1247EXPORT_SYMBOL(kernel_neon_begin);
1248
1249/*
1250 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1251 *
1252 * Must be called from a context in which kernel_neon_begin() was previously
1253 * called, with no call to kernel_neon_end() in the meantime.
1254 *
1255 * The caller must not use the FPSIMD registers after this function is called,
1256 * unless kernel_neon_begin() is called again in the meantime.
1257 */
1258void kernel_neon_end(void)
1259{
1260 if (!system_supports_fpsimd())
1261 return;
1262
1263 put_cpu_fpsimd_context();
1264}
1265EXPORT_SYMBOL(kernel_neon_end);
1266
1267#ifdef CONFIG_EFI
1268
1269static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1270static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1271static DEFINE_PER_CPU(bool, efi_sve_state_used);
1272
1273/*
1274 * EFI runtime services support functions
1275 *
1276 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1277 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1278 * is always used rather than being an optional accelerator.
1279 *
1280 * These functions provide the necessary support for ensuring FPSIMD
1281 * save/restore in the contexts from which EFI is used.
1282 *
1283 * Do not use them for any other purpose -- if tempted to do so, you are
1284 * either doing something wrong or you need to propose some refactoring.
1285 */
1286
1287/*
1288 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1289 */
1290void __efi_fpsimd_begin(void)
1291{
1292 if (!system_supports_fpsimd())
1293 return;
1294
1295 WARN_ON(preemptible());
1296
1297 if (may_use_simd()) {
1298 kernel_neon_begin();
1299 } else {
1300 /*
1301 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1302 * preserving:
1303 */
1304 if (system_supports_sve() && likely(efi_sve_state)) {
1305 char *sve_state = this_cpu_ptr(efi_sve_state);
1306
1307 __this_cpu_write(efi_sve_state_used, true);
1308
1309 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1310 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1311 } else {
1312 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1313 }
1314
1315 __this_cpu_write(efi_fpsimd_state_used, true);
1316 }
1317}
1318
1319/*
1320 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1321 */
1322void __efi_fpsimd_end(void)
1323{
1324 if (!system_supports_fpsimd())
1325 return;
1326
1327 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1328 kernel_neon_end();
1329 } else {
1330 if (system_supports_sve() &&
1331 likely(__this_cpu_read(efi_sve_state_used))) {
1332 char const *sve_state = this_cpu_ptr(efi_sve_state);
1333
1334 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1335 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1336 sve_vq_from_vl(sve_get_vl()) - 1);
1337
1338 __this_cpu_write(efi_sve_state_used, false);
1339 } else {
1340 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1341 }
1342 }
1343}
1344
1345#endif /* CONFIG_EFI */
1346
1347#endif /* CONFIG_KERNEL_MODE_NEON */
1348
1349#ifdef CONFIG_CPU_PM
1350static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1351 unsigned long cmd, void *v)
1352{
1353 switch (cmd) {
1354 case CPU_PM_ENTER:
1355 fpsimd_save_and_flush_cpu_state();
1356 break;
1357 case CPU_PM_EXIT:
1358 break;
1359 case CPU_PM_ENTER_FAILED:
1360 default:
1361 return NOTIFY_DONE;
1362 }
1363 return NOTIFY_OK;
1364}
1365
1366static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1367 .notifier_call = fpsimd_cpu_pm_notifier,
1368};
1369
1370static void __init fpsimd_pm_init(void)
1371{
1372 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1373}
1374
1375#else
1376static inline void fpsimd_pm_init(void) { }
1377#endif /* CONFIG_CPU_PM */
1378
1379#ifdef CONFIG_HOTPLUG_CPU
1380static int fpsimd_cpu_dead(unsigned int cpu)
1381{
1382 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1383 return 0;
1384}
1385
1386static inline void fpsimd_hotplug_init(void)
1387{
1388 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1389 NULL, fpsimd_cpu_dead);
1390}
1391
1392#else
1393static inline void fpsimd_hotplug_init(void) { }
1394#endif
1395
1396/*
1397 * FP/SIMD support code initialisation.
1398 */
1399static int __init fpsimd_init(void)
1400{
1401 if (cpu_have_named_feature(FP)) {
1402 fpsimd_pm_init();
1403 fpsimd_hotplug_init();
1404 } else {
1405 pr_notice("Floating-point is not implemented\n");
1406 }
1407
1408 if (!cpu_have_named_feature(ASIMD))
1409 pr_notice("Advanced SIMD is not implemented\n");
1410
1411 return sve_sysctl_init();
1412}
1413core_initcall(fpsimd_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/bitops.h>
11#include <linux/bottom_half.h>
12#include <linux/bug.h>
13#include <linux/cache.h>
14#include <linux/compat.h>
15#include <linux/compiler.h>
16#include <linux/cpu.h>
17#include <linux/cpu_pm.h>
18#include <linux/ctype.h>
19#include <linux/kernel.h>
20#include <linux/linkage.h>
21#include <linux/irqflags.h>
22#include <linux/init.h>
23#include <linux/percpu.h>
24#include <linux/prctl.h>
25#include <linux/preempt.h>
26#include <linux/ptrace.h>
27#include <linux/sched/signal.h>
28#include <linux/sched/task_stack.h>
29#include <linux/signal.h>
30#include <linux/slab.h>
31#include <linux/stddef.h>
32#include <linux/sysctl.h>
33#include <linux/swab.h>
34
35#include <asm/esr.h>
36#include <asm/exception.h>
37#include <asm/fpsimd.h>
38#include <asm/cpufeature.h>
39#include <asm/cputype.h>
40#include <asm/neon.h>
41#include <asm/processor.h>
42#include <asm/simd.h>
43#include <asm/sigcontext.h>
44#include <asm/sysreg.h>
45#include <asm/traps.h>
46#include <asm/virt.h>
47
48#define FPEXC_IOF (1 << 0)
49#define FPEXC_DZF (1 << 1)
50#define FPEXC_OFF (1 << 2)
51#define FPEXC_UFF (1 << 3)
52#define FPEXC_IXF (1 << 4)
53#define FPEXC_IDF (1 << 7)
54
55/*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94 * run but prevent them to use FPSIMD.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124__ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125#ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133#endif
134#ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139#endif
140};
141
142static unsigned int vec_vl_inherit_flag(enum vec_type type)
143{
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153}
154
155struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157};
158
159static struct vl_config vl_config[ARM64_VEC_MAX];
160
161static inline int get_default_vl(enum vec_type type)
162{
163 return READ_ONCE(vl_config[type].__default_vl);
164}
165
166#ifdef CONFIG_ARM64_SVE
167
168static inline int get_sve_default_vl(void)
169{
170 return get_default_vl(ARM64_VEC_SVE);
171}
172
173static inline void set_default_vl(enum vec_type type, int val)
174{
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176}
177
178static inline void set_sve_default_vl(int val)
179{
180 set_default_vl(ARM64_VEC_SVE, val);
181}
182
183static void __percpu *efi_sve_state;
184
185#else /* ! CONFIG_ARM64_SVE */
186
187/* Dummy declaration for code that will be optimised out: */
188extern void __percpu *efi_sve_state;
189
190#endif /* ! CONFIG_ARM64_SVE */
191
192#ifdef CONFIG_ARM64_SME
193
194static int get_sme_default_vl(void)
195{
196 return get_default_vl(ARM64_VEC_SME);
197}
198
199static void set_sme_default_vl(int val)
200{
201 set_default_vl(ARM64_VEC_SME, val);
202}
203
204static void sme_free(struct task_struct *);
205
206#else
207
208static inline void sme_free(struct task_struct *t) { }
209
210#endif
211
212DEFINE_PER_CPU(bool, fpsimd_context_busy);
213EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214
215static void fpsimd_bind_task_to_cpu(void);
216
217static void __get_cpu_fpsimd_context(void)
218{
219 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220
221 WARN_ON(busy);
222}
223
224/*
225 * Claim ownership of the CPU FPSIMD context for use by the calling context.
226 *
227 * The caller may freely manipulate the FPSIMD context metadata until
228 * put_cpu_fpsimd_context() is called.
229 *
230 * The double-underscore version must only be called if you know the task
231 * can't be preempted.
232 *
233 * On RT kernels local_bh_disable() is not sufficient because it only
234 * serializes soft interrupt related sections via a local lock, but stays
235 * preemptible. Disabling preemption is the right choice here as bottom
236 * half processing is always in thread context on RT kernels so it
237 * implicitly prevents bottom half processing as well.
238 */
239static void get_cpu_fpsimd_context(void)
240{
241 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 local_bh_disable();
243 else
244 preempt_disable();
245 __get_cpu_fpsimd_context();
246}
247
248static void __put_cpu_fpsimd_context(void)
249{
250 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251
252 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253}
254
255/*
256 * Release the CPU FPSIMD context.
257 *
258 * Must be called from a context in which get_cpu_fpsimd_context() was
259 * previously called, with no call to put_cpu_fpsimd_context() in the
260 * meantime.
261 */
262static void put_cpu_fpsimd_context(void)
263{
264 __put_cpu_fpsimd_context();
265 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 local_bh_enable();
267 else
268 preempt_enable();
269}
270
271static bool have_cpu_fpsimd_context(void)
272{
273 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274}
275
276unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277{
278 return task->thread.vl[type];
279}
280
281void task_set_vl(struct task_struct *task, enum vec_type type,
282 unsigned long vl)
283{
284 task->thread.vl[type] = vl;
285}
286
287unsigned int task_get_vl_onexec(const struct task_struct *task,
288 enum vec_type type)
289{
290 return task->thread.vl_onexec[type];
291}
292
293void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 unsigned long vl)
295{
296 task->thread.vl_onexec[type] = vl;
297}
298
299/*
300 * TIF_SME controls whether a task can use SME without trapping while
301 * in userspace, when TIF_SME is set then we must have storage
302 * alocated in sve_state and za_state to store the contents of both ZA
303 * and the SVE registers for both streaming and non-streaming modes.
304 *
305 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306 * may disable TIF_SME and reenable traps.
307 */
308
309
310/*
311 * TIF_SVE controls whether a task can use SVE without trapping while
312 * in userspace, and also (together with TIF_SME) the way a task's
313 * FPSIMD/SVE state is stored in thread_struct.
314 *
315 * The kernel uses this flag to track whether a user task is actively
316 * using SVE, and therefore whether full SVE register state needs to
317 * be tracked. If not, the cheaper FPSIMD context handling code can
318 * be used instead of the more costly SVE equivalents.
319 *
320 * * TIF_SVE or SVCR.SM set:
321 *
322 * The task can execute SVE instructions while in userspace without
323 * trapping to the kernel.
324 *
325 * During any syscall, the kernel may optionally clear TIF_SVE and
326 * discard the vector state except for the FPSIMD subset.
327 *
328 * * TIF_SVE clear:
329 *
330 * An attempt by the user task to execute an SVE instruction causes
331 * do_sve_acc() to be called, which does some preparation and then
332 * sets TIF_SVE.
333 *
334 * During any syscall, the kernel may optionally clear TIF_SVE and
335 * discard the vector state except for the FPSIMD subset.
336 *
337 * The data will be stored in one of two formats:
338 *
339 * * FPSIMD only - FP_STATE_FPSIMD:
340 *
341 * When the FPSIMD only state stored task->thread.fp_type is set to
342 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344 * logically zero but not stored anywhere; P0-P15 and FFR are not
345 * stored and have unspecified values from userspace's point of
346 * view. For hygiene purposes, the kernel zeroes them on next use,
347 * but userspace is discouraged from relying on this.
348 *
349 * task->thread.sve_state does not need to be non-NULL, valid or any
350 * particular size: it must not be dereferenced and any data stored
351 * there should be considered stale and not referenced.
352 *
353 * * SVE state - FP_STATE_SVE:
354 *
355 * When the full SVE state is stored task->thread.fp_type is set to
356 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357 * corresponding Zn), P0-P15 and FFR are encoded in in
358 * task->thread.sve_state, formatted appropriately for vector
359 * length task->thread.sve_vl or, if SVCR.SM is set,
360 * task->thread.sme_vl. The storage for the vector registers in
361 * task->thread.uw.fpsimd_state should be ignored.
362 *
363 * task->thread.sve_state must point to a valid buffer at least
364 * sve_state_size(task) bytes in size. The data stored in
365 * task->thread.uw.fpsimd_state.vregs should be considered stale
366 * and not referenced.
367 *
368 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369 * irrespective of whether TIF_SVE is clear or set, since these are
370 * not vector length dependent.
371 */
372
373/*
374 * Update current's FPSIMD/SVE registers from thread_struct.
375 *
376 * This function should be called only when the FPSIMD/SVE state in
377 * thread_struct is known to be up to date, when preparing to enter
378 * userspace.
379 */
380static void task_fpsimd_load(void)
381{
382 bool restore_sve_regs = false;
383 bool restore_ffr;
384
385 WARN_ON(!system_supports_fpsimd());
386 WARN_ON(!have_cpu_fpsimd_context());
387
388 if (system_supports_sve() || system_supports_sme()) {
389 switch (current->thread.fp_type) {
390 case FP_STATE_FPSIMD:
391 /* Stop tracking SVE for this task until next use. */
392 if (test_and_clear_thread_flag(TIF_SVE))
393 sve_user_disable();
394 break;
395 case FP_STATE_SVE:
396 if (!thread_sm_enabled(¤t->thread) &&
397 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 sve_user_enable();
399
400 if (test_thread_flag(TIF_SVE))
401 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402
403 restore_sve_regs = true;
404 restore_ffr = true;
405 break;
406 default:
407 /*
408 * This indicates either a bug in
409 * fpsimd_save() or memory corruption, we
410 * should always record an explicit format
411 * when we save. We always at least have the
412 * memory allocated for FPSMID registers so
413 * try that and hope for the best.
414 */
415 WARN_ON_ONCE(1);
416 clear_thread_flag(TIF_SVE);
417 break;
418 }
419 }
420
421 /* Restore SME, override SVE register configuration if needed */
422 if (system_supports_sme()) {
423 unsigned long sme_vl = task_get_sme_vl(current);
424
425 /* Ensure VL is set up for restoring data */
426 if (test_thread_flag(TIF_SME))
427 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428
429 write_sysreg_s(current->thread.svcr, SYS_SVCR);
430
431 if (thread_za_enabled(¤t->thread))
432 za_load_state(current->thread.za_state);
433
434 if (thread_sm_enabled(¤t->thread))
435 restore_ffr = system_supports_fa64();
436 }
437
438 if (restore_sve_regs) {
439 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
440 sve_load_state(sve_pffr(¤t->thread),
441 ¤t->thread.uw.fpsimd_state.fpsr,
442 restore_ffr);
443 } else {
444 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
445 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
446 }
447}
448
449/*
450 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
451 * date with respect to the CPU registers. Note carefully that the
452 * current context is the context last bound to the CPU stored in
453 * last, if KVM is involved this may be the guest VM context rather
454 * than the host thread for the VM pointed to by current. This means
455 * that we must always reference the state storage via last rather
456 * than via current, if we are saving KVM state then it will have
457 * ensured that the type of registers to save is set in last->to_save.
458 */
459static void fpsimd_save(void)
460{
461 struct cpu_fp_state const *last =
462 this_cpu_ptr(&fpsimd_last_state);
463 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
464 bool save_sve_regs = false;
465 bool save_ffr;
466 unsigned int vl;
467
468 WARN_ON(!system_supports_fpsimd());
469 WARN_ON(!have_cpu_fpsimd_context());
470
471 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
472 return;
473
474 /*
475 * If a task is in a syscall the ABI allows us to only
476 * preserve the state shared with FPSIMD so don't bother
477 * saving the full SVE state in that case.
478 */
479 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
480 !in_syscall(current_pt_regs())) ||
481 last->to_save == FP_STATE_SVE) {
482 save_sve_regs = true;
483 save_ffr = true;
484 vl = last->sve_vl;
485 }
486
487 if (system_supports_sme()) {
488 u64 *svcr = last->svcr;
489
490 *svcr = read_sysreg_s(SYS_SVCR);
491
492 if (*svcr & SVCR_ZA_MASK)
493 za_save_state(last->za_state);
494
495 /* If we are in streaming mode override regular SVE. */
496 if (*svcr & SVCR_SM_MASK) {
497 save_sve_regs = true;
498 save_ffr = system_supports_fa64();
499 vl = last->sme_vl;
500 }
501 }
502
503 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
504 /* Get the configured VL from RDVL, will account for SM */
505 if (WARN_ON(sve_get_vl() != vl)) {
506 /*
507 * Can't save the user regs, so current would
508 * re-enter user with corrupt state.
509 * There's no way to recover, so kill it:
510 */
511 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
512 return;
513 }
514
515 sve_save_state((char *)last->sve_state +
516 sve_ffr_offset(vl),
517 &last->st->fpsr, save_ffr);
518 *last->fp_type = FP_STATE_SVE;
519 } else {
520 fpsimd_save_state(last->st);
521 *last->fp_type = FP_STATE_FPSIMD;
522 }
523}
524
525/*
526 * All vector length selection from userspace comes through here.
527 * We're on a slow path, so some sanity-checks are included.
528 * If things go wrong there's a bug somewhere, but try to fall back to a
529 * safe choice.
530 */
531static unsigned int find_supported_vector_length(enum vec_type type,
532 unsigned int vl)
533{
534 struct vl_info *info = &vl_info[type];
535 int bit;
536 int max_vl = info->max_vl;
537
538 if (WARN_ON(!sve_vl_valid(vl)))
539 vl = info->min_vl;
540
541 if (WARN_ON(!sve_vl_valid(max_vl)))
542 max_vl = info->min_vl;
543
544 if (vl > max_vl)
545 vl = max_vl;
546 if (vl < info->min_vl)
547 vl = info->min_vl;
548
549 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
550 __vq_to_bit(sve_vq_from_vl(vl)));
551 return sve_vl_from_vq(__bit_to_vq(bit));
552}
553
554#if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
555
556static int vec_proc_do_default_vl(struct ctl_table *table, int write,
557 void *buffer, size_t *lenp, loff_t *ppos)
558{
559 struct vl_info *info = table->extra1;
560 enum vec_type type = info->type;
561 int ret;
562 int vl = get_default_vl(type);
563 struct ctl_table tmp_table = {
564 .data = &vl,
565 .maxlen = sizeof(vl),
566 };
567
568 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
569 if (ret || !write)
570 return ret;
571
572 /* Writing -1 has the special meaning "set to max": */
573 if (vl == -1)
574 vl = info->max_vl;
575
576 if (!sve_vl_valid(vl))
577 return -EINVAL;
578
579 set_default_vl(type, find_supported_vector_length(type, vl));
580 return 0;
581}
582
583static struct ctl_table sve_default_vl_table[] = {
584 {
585 .procname = "sve_default_vector_length",
586 .mode = 0644,
587 .proc_handler = vec_proc_do_default_vl,
588 .extra1 = &vl_info[ARM64_VEC_SVE],
589 },
590 { }
591};
592
593static int __init sve_sysctl_init(void)
594{
595 if (system_supports_sve())
596 if (!register_sysctl("abi", sve_default_vl_table))
597 return -EINVAL;
598
599 return 0;
600}
601
602#else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
603static int __init sve_sysctl_init(void) { return 0; }
604#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
605
606#if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
607static struct ctl_table sme_default_vl_table[] = {
608 {
609 .procname = "sme_default_vector_length",
610 .mode = 0644,
611 .proc_handler = vec_proc_do_default_vl,
612 .extra1 = &vl_info[ARM64_VEC_SME],
613 },
614 { }
615};
616
617static int __init sme_sysctl_init(void)
618{
619 if (system_supports_sme())
620 if (!register_sysctl("abi", sme_default_vl_table))
621 return -EINVAL;
622
623 return 0;
624}
625
626#else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
627static int __init sme_sysctl_init(void) { return 0; }
628#endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
629
630#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
631 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
632
633#ifdef CONFIG_CPU_BIG_ENDIAN
634static __uint128_t arm64_cpu_to_le128(__uint128_t x)
635{
636 u64 a = swab64(x);
637 u64 b = swab64(x >> 64);
638
639 return ((__uint128_t)a << 64) | b;
640}
641#else
642static __uint128_t arm64_cpu_to_le128(__uint128_t x)
643{
644 return x;
645}
646#endif
647
648#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
649
650static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
651 unsigned int vq)
652{
653 unsigned int i;
654 __uint128_t *p;
655
656 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
657 p = (__uint128_t *)ZREG(sst, vq, i);
658 *p = arm64_cpu_to_le128(fst->vregs[i]);
659 }
660}
661
662/*
663 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
664 * task->thread.sve_state.
665 *
666 * Task can be a non-runnable task, or current. In the latter case,
667 * the caller must have ownership of the cpu FPSIMD context before calling
668 * this function.
669 * task->thread.sve_state must point to at least sve_state_size(task)
670 * bytes of allocated kernel memory.
671 * task->thread.uw.fpsimd_state must be up to date before calling this
672 * function.
673 */
674static void fpsimd_to_sve(struct task_struct *task)
675{
676 unsigned int vq;
677 void *sst = task->thread.sve_state;
678 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
679
680 if (!system_supports_sve())
681 return;
682
683 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
684 __fpsimd_to_sve(sst, fst, vq);
685}
686
687/*
688 * Transfer the SVE state in task->thread.sve_state to
689 * task->thread.uw.fpsimd_state.
690 *
691 * Task can be a non-runnable task, or current. In the latter case,
692 * the caller must have ownership of the cpu FPSIMD context before calling
693 * this function.
694 * task->thread.sve_state must point to at least sve_state_size(task)
695 * bytes of allocated kernel memory.
696 * task->thread.sve_state must be up to date before calling this function.
697 */
698static void sve_to_fpsimd(struct task_struct *task)
699{
700 unsigned int vq, vl;
701 void const *sst = task->thread.sve_state;
702 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
703 unsigned int i;
704 __uint128_t const *p;
705
706 if (!system_supports_sve())
707 return;
708
709 vl = thread_get_cur_vl(&task->thread);
710 vq = sve_vq_from_vl(vl);
711 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
712 p = (__uint128_t const *)ZREG(sst, vq, i);
713 fst->vregs[i] = arm64_le128_to_cpu(*p);
714 }
715}
716
717#ifdef CONFIG_ARM64_SVE
718/*
719 * Call __sve_free() directly only if you know task can't be scheduled
720 * or preempted.
721 */
722static void __sve_free(struct task_struct *task)
723{
724 kfree(task->thread.sve_state);
725 task->thread.sve_state = NULL;
726}
727
728static void sve_free(struct task_struct *task)
729{
730 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
731
732 __sve_free(task);
733}
734
735/*
736 * Return how many bytes of memory are required to store the full SVE
737 * state for task, given task's currently configured vector length.
738 */
739size_t sve_state_size(struct task_struct const *task)
740{
741 unsigned int vl = 0;
742
743 if (system_supports_sve())
744 vl = task_get_sve_vl(task);
745 if (system_supports_sme())
746 vl = max(vl, task_get_sme_vl(task));
747
748 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
749}
750
751/*
752 * Ensure that task->thread.sve_state is allocated and sufficiently large.
753 *
754 * This function should be used only in preparation for replacing
755 * task->thread.sve_state with new data. The memory is always zeroed
756 * here to prevent stale data from showing through: this is done in
757 * the interest of testability and predictability: except in the
758 * do_sve_acc() case, there is no ABI requirement to hide stale data
759 * written previously be task.
760 */
761void sve_alloc(struct task_struct *task, bool flush)
762{
763 if (task->thread.sve_state) {
764 if (flush)
765 memset(task->thread.sve_state, 0,
766 sve_state_size(task));
767 return;
768 }
769
770 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
771 task->thread.sve_state =
772 kzalloc(sve_state_size(task), GFP_KERNEL);
773}
774
775
776/*
777 * Force the FPSIMD state shared with SVE to be updated in the SVE state
778 * even if the SVE state is the current active state.
779 *
780 * This should only be called by ptrace. task must be non-runnable.
781 * task->thread.sve_state must point to at least sve_state_size(task)
782 * bytes of allocated kernel memory.
783 */
784void fpsimd_force_sync_to_sve(struct task_struct *task)
785{
786 fpsimd_to_sve(task);
787}
788
789/*
790 * Ensure that task->thread.sve_state is up to date with respect to
791 * the user task, irrespective of when SVE is in use or not.
792 *
793 * This should only be called by ptrace. task must be non-runnable.
794 * task->thread.sve_state must point to at least sve_state_size(task)
795 * bytes of allocated kernel memory.
796 */
797void fpsimd_sync_to_sve(struct task_struct *task)
798{
799 if (!test_tsk_thread_flag(task, TIF_SVE) &&
800 !thread_sm_enabled(&task->thread))
801 fpsimd_to_sve(task);
802}
803
804/*
805 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
806 * the user task, irrespective of whether SVE is in use or not.
807 *
808 * This should only be called by ptrace. task must be non-runnable.
809 * task->thread.sve_state must point to at least sve_state_size(task)
810 * bytes of allocated kernel memory.
811 */
812void sve_sync_to_fpsimd(struct task_struct *task)
813{
814 if (task->thread.fp_type == FP_STATE_SVE)
815 sve_to_fpsimd(task);
816}
817
818/*
819 * Ensure that task->thread.sve_state is up to date with respect to
820 * the task->thread.uw.fpsimd_state.
821 *
822 * This should only be called by ptrace to merge new FPSIMD register
823 * values into a task for which SVE is currently active.
824 * task must be non-runnable.
825 * task->thread.sve_state must point to at least sve_state_size(task)
826 * bytes of allocated kernel memory.
827 * task->thread.uw.fpsimd_state must already have been initialised with
828 * the new FPSIMD register values to be merged in.
829 */
830void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
831{
832 unsigned int vq;
833 void *sst = task->thread.sve_state;
834 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
835
836 if (!test_tsk_thread_flag(task, TIF_SVE))
837 return;
838
839 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
840
841 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
842 __fpsimd_to_sve(sst, fst, vq);
843}
844
845int vec_set_vector_length(struct task_struct *task, enum vec_type type,
846 unsigned long vl, unsigned long flags)
847{
848 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
849 PR_SVE_SET_VL_ONEXEC))
850 return -EINVAL;
851
852 if (!sve_vl_valid(vl))
853 return -EINVAL;
854
855 /*
856 * Clamp to the maximum vector length that VL-agnostic code
857 * can work with. A flag may be assigned in the future to
858 * allow setting of larger vector lengths without confusing
859 * older software.
860 */
861 if (vl > VL_ARCH_MAX)
862 vl = VL_ARCH_MAX;
863
864 vl = find_supported_vector_length(type, vl);
865
866 if (flags & (PR_SVE_VL_INHERIT |
867 PR_SVE_SET_VL_ONEXEC))
868 task_set_vl_onexec(task, type, vl);
869 else
870 /* Reset VL to system default on next exec: */
871 task_set_vl_onexec(task, type, 0);
872
873 /* Only actually set the VL if not deferred: */
874 if (flags & PR_SVE_SET_VL_ONEXEC)
875 goto out;
876
877 if (vl == task_get_vl(task, type))
878 goto out;
879
880 /*
881 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
882 * write any live register state back to task_struct, and convert to a
883 * regular FPSIMD thread.
884 */
885 if (task == current) {
886 get_cpu_fpsimd_context();
887
888 fpsimd_save();
889 }
890
891 fpsimd_flush_task_state(task);
892 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
893 thread_sm_enabled(&task->thread)) {
894 sve_to_fpsimd(task);
895 task->thread.fp_type = FP_STATE_FPSIMD;
896 }
897
898 if (system_supports_sme() && type == ARM64_VEC_SME) {
899 task->thread.svcr &= ~(SVCR_SM_MASK |
900 SVCR_ZA_MASK);
901 clear_thread_flag(TIF_SME);
902 }
903
904 if (task == current)
905 put_cpu_fpsimd_context();
906
907 /*
908 * Force reallocation of task SVE and SME state to the correct
909 * size on next use:
910 */
911 sve_free(task);
912 if (system_supports_sme() && type == ARM64_VEC_SME)
913 sme_free(task);
914
915 task_set_vl(task, type, vl);
916
917out:
918 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
919 flags & PR_SVE_VL_INHERIT);
920
921 return 0;
922}
923
924/*
925 * Encode the current vector length and flags for return.
926 * This is only required for prctl(): ptrace has separate fields.
927 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
928 *
929 * flags are as for vec_set_vector_length().
930 */
931static int vec_prctl_status(enum vec_type type, unsigned long flags)
932{
933 int ret;
934
935 if (flags & PR_SVE_SET_VL_ONEXEC)
936 ret = task_get_vl_onexec(current, type);
937 else
938 ret = task_get_vl(current, type);
939
940 if (test_thread_flag(vec_vl_inherit_flag(type)))
941 ret |= PR_SVE_VL_INHERIT;
942
943 return ret;
944}
945
946/* PR_SVE_SET_VL */
947int sve_set_current_vl(unsigned long arg)
948{
949 unsigned long vl, flags;
950 int ret;
951
952 vl = arg & PR_SVE_VL_LEN_MASK;
953 flags = arg & ~vl;
954
955 if (!system_supports_sve() || is_compat_task())
956 return -EINVAL;
957
958 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
959 if (ret)
960 return ret;
961
962 return vec_prctl_status(ARM64_VEC_SVE, flags);
963}
964
965/* PR_SVE_GET_VL */
966int sve_get_current_vl(void)
967{
968 if (!system_supports_sve() || is_compat_task())
969 return -EINVAL;
970
971 return vec_prctl_status(ARM64_VEC_SVE, 0);
972}
973
974#ifdef CONFIG_ARM64_SME
975/* PR_SME_SET_VL */
976int sme_set_current_vl(unsigned long arg)
977{
978 unsigned long vl, flags;
979 int ret;
980
981 vl = arg & PR_SME_VL_LEN_MASK;
982 flags = arg & ~vl;
983
984 if (!system_supports_sme() || is_compat_task())
985 return -EINVAL;
986
987 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
988 if (ret)
989 return ret;
990
991 return vec_prctl_status(ARM64_VEC_SME, flags);
992}
993
994/* PR_SME_GET_VL */
995int sme_get_current_vl(void)
996{
997 if (!system_supports_sme() || is_compat_task())
998 return -EINVAL;
999
1000 return vec_prctl_status(ARM64_VEC_SME, 0);
1001}
1002#endif /* CONFIG_ARM64_SME */
1003
1004static void vec_probe_vqs(struct vl_info *info,
1005 DECLARE_BITMAP(map, SVE_VQ_MAX))
1006{
1007 unsigned int vq, vl;
1008
1009 bitmap_zero(map, SVE_VQ_MAX);
1010
1011 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1012 write_vl(info->type, vq - 1); /* self-syncing */
1013
1014 switch (info->type) {
1015 case ARM64_VEC_SVE:
1016 vl = sve_get_vl();
1017 break;
1018 case ARM64_VEC_SME:
1019 vl = sme_get_vl();
1020 break;
1021 default:
1022 vl = 0;
1023 break;
1024 }
1025
1026 /* Minimum VL identified? */
1027 if (sve_vq_from_vl(vl) > vq)
1028 break;
1029
1030 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1031 set_bit(__vq_to_bit(vq), map);
1032 }
1033}
1034
1035/*
1036 * Initialise the set of known supported VQs for the boot CPU.
1037 * This is called during kernel boot, before secondary CPUs are brought up.
1038 */
1039void __init vec_init_vq_map(enum vec_type type)
1040{
1041 struct vl_info *info = &vl_info[type];
1042 vec_probe_vqs(info, info->vq_map);
1043 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1044}
1045
1046/*
1047 * If we haven't committed to the set of supported VQs yet, filter out
1048 * those not supported by the current CPU.
1049 * This function is called during the bring-up of early secondary CPUs only.
1050 */
1051void vec_update_vq_map(enum vec_type type)
1052{
1053 struct vl_info *info = &vl_info[type];
1054 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1055
1056 vec_probe_vqs(info, tmp_map);
1057 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1058 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1059 SVE_VQ_MAX);
1060}
1061
1062/*
1063 * Check whether the current CPU supports all VQs in the committed set.
1064 * This function is called during the bring-up of late secondary CPUs only.
1065 */
1066int vec_verify_vq_map(enum vec_type type)
1067{
1068 struct vl_info *info = &vl_info[type];
1069 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1070 unsigned long b;
1071
1072 vec_probe_vqs(info, tmp_map);
1073
1074 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1075 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1076 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1077 info->name, smp_processor_id());
1078 return -EINVAL;
1079 }
1080
1081 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1082 return 0;
1083
1084 /*
1085 * For KVM, it is necessary to ensure that this CPU doesn't
1086 * support any vector length that guests may have probed as
1087 * unsupported.
1088 */
1089
1090 /* Recover the set of supported VQs: */
1091 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1092 /* Find VQs supported that are not globally supported: */
1093 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1094
1095 /* Find the lowest such VQ, if any: */
1096 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1097 if (b >= SVE_VQ_MAX)
1098 return 0; /* no mismatches */
1099
1100 /*
1101 * Mismatches above sve_max_virtualisable_vl are fine, since
1102 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1103 */
1104 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1105 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1106 info->name, smp_processor_id());
1107 return -EINVAL;
1108 }
1109
1110 return 0;
1111}
1112
1113static void __init sve_efi_setup(void)
1114{
1115 int max_vl = 0;
1116 int i;
1117
1118 if (!IS_ENABLED(CONFIG_EFI))
1119 return;
1120
1121 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1122 max_vl = max(vl_info[i].max_vl, max_vl);
1123
1124 /*
1125 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1126 * This is evidence of a crippled system and we are returning void,
1127 * so no attempt is made to handle this situation here.
1128 */
1129 if (!sve_vl_valid(max_vl))
1130 goto fail;
1131
1132 efi_sve_state = __alloc_percpu(
1133 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1134 if (!efi_sve_state)
1135 goto fail;
1136
1137 return;
1138
1139fail:
1140 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1141}
1142
1143/*
1144 * Enable SVE for EL1.
1145 * Intended for use by the cpufeatures code during CPU boot.
1146 */
1147void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1148{
1149 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1150 isb();
1151}
1152
1153/*
1154 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1155 * vector length.
1156 *
1157 * Use only if SVE is present.
1158 * This function clobbers the SVE vector length.
1159 */
1160u64 read_zcr_features(void)
1161{
1162 u64 zcr;
1163 unsigned int vq_max;
1164
1165 /*
1166 * Set the maximum possible VL, and write zeroes to all other
1167 * bits to see if they stick.
1168 */
1169 sve_kernel_enable(NULL);
1170 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1171
1172 zcr = read_sysreg_s(SYS_ZCR_EL1);
1173 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1174 vq_max = sve_vq_from_vl(sve_get_vl());
1175 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1176
1177 return zcr;
1178}
1179
1180void __init sve_setup(void)
1181{
1182 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1183 u64 zcr;
1184 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1185 unsigned long b;
1186
1187 if (!system_supports_sve())
1188 return;
1189
1190 /*
1191 * The SVE architecture mandates support for 128-bit vectors,
1192 * so sve_vq_map must have at least SVE_VQ_MIN set.
1193 * If something went wrong, at least try to patch it up:
1194 */
1195 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1196 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1197
1198 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1199 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1200
1201 /*
1202 * Sanity-check that the max VL we determined through CPU features
1203 * corresponds properly to sve_vq_map. If not, do our best:
1204 */
1205 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1206 info->max_vl)))
1207 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1208 info->max_vl);
1209
1210 /*
1211 * For the default VL, pick the maximum supported value <= 64.
1212 * VL == 64 is guaranteed not to grow the signal frame.
1213 */
1214 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1215
1216 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1217 SVE_VQ_MAX);
1218
1219 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1220 if (b >= SVE_VQ_MAX)
1221 /* No non-virtualisable VLs found */
1222 info->max_virtualisable_vl = SVE_VQ_MAX;
1223 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1224 /* No virtualisable VLs? This is architecturally forbidden. */
1225 info->max_virtualisable_vl = SVE_VQ_MIN;
1226 else /* b + 1 < SVE_VQ_MAX */
1227 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1228
1229 if (info->max_virtualisable_vl > info->max_vl)
1230 info->max_virtualisable_vl = info->max_vl;
1231
1232 pr_info("%s: maximum available vector length %u bytes per vector\n",
1233 info->name, info->max_vl);
1234 pr_info("%s: default vector length %u bytes per vector\n",
1235 info->name, get_sve_default_vl());
1236
1237 /* KVM decides whether to support mismatched systems. Just warn here: */
1238 if (sve_max_virtualisable_vl() < sve_max_vl())
1239 pr_warn("%s: unvirtualisable vector lengths present\n",
1240 info->name);
1241
1242 sve_efi_setup();
1243}
1244
1245/*
1246 * Called from the put_task_struct() path, which cannot get here
1247 * unless dead_task is really dead and not schedulable.
1248 */
1249void fpsimd_release_task(struct task_struct *dead_task)
1250{
1251 __sve_free(dead_task);
1252 sme_free(dead_task);
1253}
1254
1255#endif /* CONFIG_ARM64_SVE */
1256
1257#ifdef CONFIG_ARM64_SME
1258
1259/*
1260 * Ensure that task->thread.za_state is allocated and sufficiently large.
1261 *
1262 * This function should be used only in preparation for replacing
1263 * task->thread.za_state with new data. The memory is always zeroed
1264 * here to prevent stale data from showing through: this is done in
1265 * the interest of testability and predictability, the architecture
1266 * guarantees that when ZA is enabled it will be zeroed.
1267 */
1268void sme_alloc(struct task_struct *task)
1269{
1270 if (task->thread.za_state) {
1271 memset(task->thread.za_state, 0, za_state_size(task));
1272 return;
1273 }
1274
1275 /* This could potentially be up to 64K. */
1276 task->thread.za_state =
1277 kzalloc(za_state_size(task), GFP_KERNEL);
1278}
1279
1280static void sme_free(struct task_struct *task)
1281{
1282 kfree(task->thread.za_state);
1283 task->thread.za_state = NULL;
1284}
1285
1286void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1287{
1288 /* Set priority for all PEs to architecturally defined minimum */
1289 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1290 SYS_SMPRI_EL1);
1291
1292 /* Allow SME in kernel */
1293 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1294 isb();
1295
1296 /* Allow EL0 to access TPIDR2 */
1297 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1298 isb();
1299}
1300
1301/*
1302 * This must be called after sme_kernel_enable(), we rely on the
1303 * feature table being sorted to ensure this.
1304 */
1305void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1306{
1307 /* Allow use of FA64 */
1308 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1309 SYS_SMCR_EL1);
1310}
1311
1312/*
1313 * Read the pseudo-SMCR used by cpufeatures to identify the supported
1314 * vector length.
1315 *
1316 * Use only if SME is present.
1317 * This function clobbers the SME vector length.
1318 */
1319u64 read_smcr_features(void)
1320{
1321 u64 smcr;
1322 unsigned int vq_max;
1323
1324 sme_kernel_enable(NULL);
1325 sme_smstart_sm();
1326
1327 /*
1328 * Set the maximum possible VL.
1329 */
1330 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1331 SYS_SMCR_EL1);
1332
1333 smcr = read_sysreg_s(SYS_SMCR_EL1);
1334 smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1335 vq_max = sve_vq_from_vl(sve_get_vl());
1336 smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1337
1338 sme_smstop_sm();
1339
1340 return smcr;
1341}
1342
1343void __init sme_setup(void)
1344{
1345 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1346 u64 smcr;
1347 int min_bit;
1348
1349 if (!system_supports_sme())
1350 return;
1351
1352 /*
1353 * SME doesn't require any particular vector length be
1354 * supported but it does require at least one. We should have
1355 * disabled the feature entirely while bringing up CPUs but
1356 * let's double check here.
1357 */
1358 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1359
1360 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1361 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1362
1363 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1364 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1365
1366 /*
1367 * Sanity-check that the max VL we determined through CPU features
1368 * corresponds properly to sme_vq_map. If not, do our best:
1369 */
1370 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1371 info->max_vl)))
1372 info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1373 info->max_vl);
1374
1375 WARN_ON(info->min_vl > info->max_vl);
1376
1377 /*
1378 * For the default VL, pick the maximum supported value <= 32
1379 * (256 bits) if there is one since this is guaranteed not to
1380 * grow the signal frame when in streaming mode, otherwise the
1381 * minimum available VL will be used.
1382 */
1383 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1384
1385 pr_info("SME: minimum available vector length %u bytes per vector\n",
1386 info->min_vl);
1387 pr_info("SME: maximum available vector length %u bytes per vector\n",
1388 info->max_vl);
1389 pr_info("SME: default vector length %u bytes per vector\n",
1390 get_sme_default_vl());
1391}
1392
1393#endif /* CONFIG_ARM64_SME */
1394
1395static void sve_init_regs(void)
1396{
1397 /*
1398 * Convert the FPSIMD state to SVE, zeroing all the state that
1399 * is not shared with FPSIMD. If (as is likely) the current
1400 * state is live in the registers then do this there and
1401 * update our metadata for the current task including
1402 * disabling the trap, otherwise update our in-memory copy.
1403 * We are guaranteed to not be in streaming mode, we can only
1404 * take a SVE trap when not in streaming mode and we can't be
1405 * in streaming mode when taking a SME trap.
1406 */
1407 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1408 unsigned long vq_minus_one =
1409 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1410 sve_set_vq(vq_minus_one);
1411 sve_flush_live(true, vq_minus_one);
1412 fpsimd_bind_task_to_cpu();
1413 } else {
1414 fpsimd_to_sve(current);
1415 current->thread.fp_type = FP_STATE_SVE;
1416 }
1417}
1418
1419/*
1420 * Trapped SVE access
1421 *
1422 * Storage is allocated for the full SVE state, the current FPSIMD
1423 * register contents are migrated across, and the access trap is
1424 * disabled.
1425 *
1426 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1427 * would have disabled the SVE access trap for userspace during
1428 * ret_to_user, making an SVE access trap impossible in that case.
1429 */
1430void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1431{
1432 /* Even if we chose not to use SVE, the hardware could still trap: */
1433 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1434 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1435 return;
1436 }
1437
1438 sve_alloc(current, true);
1439 if (!current->thread.sve_state) {
1440 force_sig(SIGKILL);
1441 return;
1442 }
1443
1444 get_cpu_fpsimd_context();
1445
1446 if (test_and_set_thread_flag(TIF_SVE))
1447 WARN_ON(1); /* SVE access shouldn't have trapped */
1448
1449 /*
1450 * Even if the task can have used streaming mode we can only
1451 * generate SVE access traps in normal SVE mode and
1452 * transitioning out of streaming mode may discard any
1453 * streaming mode state. Always clear the high bits to avoid
1454 * any potential errors tracking what is properly initialised.
1455 */
1456 sve_init_regs();
1457
1458 put_cpu_fpsimd_context();
1459}
1460
1461/*
1462 * Trapped SME access
1463 *
1464 * Storage is allocated for the full SVE and SME state, the current
1465 * FPSIMD register contents are migrated to SVE if SVE is not already
1466 * active, and the access trap is disabled.
1467 *
1468 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1469 * would have disabled the SME access trap for userspace during
1470 * ret_to_user, making an SVE access trap impossible in that case.
1471 */
1472void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1473{
1474 /* Even if we chose not to use SME, the hardware could still trap: */
1475 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1476 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1477 return;
1478 }
1479
1480 /*
1481 * If this not a trap due to SME being disabled then something
1482 * is being used in the wrong mode, report as SIGILL.
1483 */
1484 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1485 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1486 return;
1487 }
1488
1489 sve_alloc(current, false);
1490 sme_alloc(current);
1491 if (!current->thread.sve_state || !current->thread.za_state) {
1492 force_sig(SIGKILL);
1493 return;
1494 }
1495
1496 get_cpu_fpsimd_context();
1497
1498 /* With TIF_SME userspace shouldn't generate any traps */
1499 if (test_and_set_thread_flag(TIF_SME))
1500 WARN_ON(1);
1501
1502 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1503 unsigned long vq_minus_one =
1504 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1505 sme_set_vq(vq_minus_one);
1506
1507 fpsimd_bind_task_to_cpu();
1508 }
1509
1510 put_cpu_fpsimd_context();
1511}
1512
1513/*
1514 * Trapped FP/ASIMD access.
1515 */
1516void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1517{
1518 /* TODO: implement lazy context saving/restoring */
1519 WARN_ON(1);
1520}
1521
1522/*
1523 * Raise a SIGFPE for the current process.
1524 */
1525void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1526{
1527 unsigned int si_code = FPE_FLTUNK;
1528
1529 if (esr & ESR_ELx_FP_EXC_TFV) {
1530 if (esr & FPEXC_IOF)
1531 si_code = FPE_FLTINV;
1532 else if (esr & FPEXC_DZF)
1533 si_code = FPE_FLTDIV;
1534 else if (esr & FPEXC_OFF)
1535 si_code = FPE_FLTOVF;
1536 else if (esr & FPEXC_UFF)
1537 si_code = FPE_FLTUND;
1538 else if (esr & FPEXC_IXF)
1539 si_code = FPE_FLTRES;
1540 }
1541
1542 send_sig_fault(SIGFPE, si_code,
1543 (void __user *)instruction_pointer(regs),
1544 current);
1545}
1546
1547void fpsimd_thread_switch(struct task_struct *next)
1548{
1549 bool wrong_task, wrong_cpu;
1550
1551 if (!system_supports_fpsimd())
1552 return;
1553
1554 __get_cpu_fpsimd_context();
1555
1556 /* Save unsaved fpsimd state, if any: */
1557 fpsimd_save();
1558
1559 /*
1560 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1561 * state. For kernel threads, FPSIMD registers are never loaded
1562 * and wrong_task and wrong_cpu will always be true.
1563 */
1564 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1565 &next->thread.uw.fpsimd_state;
1566 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1567
1568 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1569 wrong_task || wrong_cpu);
1570
1571 __put_cpu_fpsimd_context();
1572}
1573
1574static void fpsimd_flush_thread_vl(enum vec_type type)
1575{
1576 int vl, supported_vl;
1577
1578 /*
1579 * Reset the task vector length as required. This is where we
1580 * ensure that all user tasks have a valid vector length
1581 * configured: no kernel task can become a user task without
1582 * an exec and hence a call to this function. By the time the
1583 * first call to this function is made, all early hardware
1584 * probing is complete, so __sve_default_vl should be valid.
1585 * If a bug causes this to go wrong, we make some noise and
1586 * try to fudge thread.sve_vl to a safe value here.
1587 */
1588 vl = task_get_vl_onexec(current, type);
1589 if (!vl)
1590 vl = get_default_vl(type);
1591
1592 if (WARN_ON(!sve_vl_valid(vl)))
1593 vl = vl_info[type].min_vl;
1594
1595 supported_vl = find_supported_vector_length(type, vl);
1596 if (WARN_ON(supported_vl != vl))
1597 vl = supported_vl;
1598
1599 task_set_vl(current, type, vl);
1600
1601 /*
1602 * If the task is not set to inherit, ensure that the vector
1603 * length will be reset by a subsequent exec:
1604 */
1605 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1606 task_set_vl_onexec(current, type, 0);
1607}
1608
1609void fpsimd_flush_thread(void)
1610{
1611 void *sve_state = NULL;
1612 void *za_state = NULL;
1613
1614 if (!system_supports_fpsimd())
1615 return;
1616
1617 get_cpu_fpsimd_context();
1618
1619 fpsimd_flush_task_state(current);
1620 memset(¤t->thread.uw.fpsimd_state, 0,
1621 sizeof(current->thread.uw.fpsimd_state));
1622
1623 if (system_supports_sve()) {
1624 clear_thread_flag(TIF_SVE);
1625
1626 /* Defer kfree() while in atomic context */
1627 sve_state = current->thread.sve_state;
1628 current->thread.sve_state = NULL;
1629
1630 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1631 }
1632
1633 if (system_supports_sme()) {
1634 clear_thread_flag(TIF_SME);
1635
1636 /* Defer kfree() while in atomic context */
1637 za_state = current->thread.za_state;
1638 current->thread.za_state = NULL;
1639
1640 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1641 current->thread.svcr = 0;
1642 }
1643
1644 current->thread.fp_type = FP_STATE_FPSIMD;
1645
1646 put_cpu_fpsimd_context();
1647 kfree(sve_state);
1648 kfree(za_state);
1649}
1650
1651/*
1652 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1653 * currently held in the registers does in fact belong to 'current'
1654 */
1655void fpsimd_preserve_current_state(void)
1656{
1657 if (!system_supports_fpsimd())
1658 return;
1659
1660 get_cpu_fpsimd_context();
1661 fpsimd_save();
1662 put_cpu_fpsimd_context();
1663}
1664
1665/*
1666 * Like fpsimd_preserve_current_state(), but ensure that
1667 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1668 * the signal frame.
1669 */
1670void fpsimd_signal_preserve_current_state(void)
1671{
1672 fpsimd_preserve_current_state();
1673 if (test_thread_flag(TIF_SVE))
1674 sve_to_fpsimd(current);
1675}
1676
1677/*
1678 * Called by KVM when entering the guest.
1679 */
1680void fpsimd_kvm_prepare(void)
1681{
1682 if (!system_supports_sve())
1683 return;
1684
1685 /*
1686 * KVM does not save host SVE state since we can only enter
1687 * the guest from a syscall so the ABI means that only the
1688 * non-saved SVE state needs to be saved. If we have left
1689 * SVE enabled for performance reasons then update the task
1690 * state to be FPSIMD only.
1691 */
1692 get_cpu_fpsimd_context();
1693
1694 if (test_and_clear_thread_flag(TIF_SVE)) {
1695 sve_to_fpsimd(current);
1696 current->thread.fp_type = FP_STATE_FPSIMD;
1697 }
1698
1699 put_cpu_fpsimd_context();
1700}
1701
1702/*
1703 * Associate current's FPSIMD context with this cpu
1704 * The caller must have ownership of the cpu FPSIMD context before calling
1705 * this function.
1706 */
1707static void fpsimd_bind_task_to_cpu(void)
1708{
1709 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1710
1711 WARN_ON(!system_supports_fpsimd());
1712 last->st = ¤t->thread.uw.fpsimd_state;
1713 last->sve_state = current->thread.sve_state;
1714 last->za_state = current->thread.za_state;
1715 last->sve_vl = task_get_sve_vl(current);
1716 last->sme_vl = task_get_sme_vl(current);
1717 last->svcr = ¤t->thread.svcr;
1718 last->fp_type = ¤t->thread.fp_type;
1719 last->to_save = FP_STATE_CURRENT;
1720 current->thread.fpsimd_cpu = smp_processor_id();
1721
1722 /*
1723 * Toggle SVE and SME trapping for userspace if needed, these
1724 * are serialsied by ret_to_user().
1725 */
1726 if (system_supports_sme()) {
1727 if (test_thread_flag(TIF_SME))
1728 sme_user_enable();
1729 else
1730 sme_user_disable();
1731 }
1732
1733 if (system_supports_sve()) {
1734 if (test_thread_flag(TIF_SVE))
1735 sve_user_enable();
1736 else
1737 sve_user_disable();
1738 }
1739}
1740
1741void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1742{
1743 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1744
1745 WARN_ON(!system_supports_fpsimd());
1746 WARN_ON(!in_softirq() && !irqs_disabled());
1747
1748 *last = *state;
1749}
1750
1751/*
1752 * Load the userland FPSIMD state of 'current' from memory, but only if the
1753 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1754 * state of 'current'. This is called when we are preparing to return to
1755 * userspace to ensure that userspace sees a good register state.
1756 */
1757void fpsimd_restore_current_state(void)
1758{
1759 /*
1760 * For the tasks that were created before we detected the absence of
1761 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1762 * e.g, init. This could be then inherited by the children processes.
1763 * If we later detect that the system doesn't support FP/SIMD,
1764 * we must clear the flag for all the tasks to indicate that the
1765 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1766 * do_notify_resume().
1767 */
1768 if (!system_supports_fpsimd()) {
1769 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1770 return;
1771 }
1772
1773 get_cpu_fpsimd_context();
1774
1775 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1776 task_fpsimd_load();
1777 fpsimd_bind_task_to_cpu();
1778 }
1779
1780 put_cpu_fpsimd_context();
1781}
1782
1783/*
1784 * Load an updated userland FPSIMD state for 'current' from memory and set the
1785 * flag that indicates that the FPSIMD register contents are the most recent
1786 * FPSIMD state of 'current'. This is used by the signal code to restore the
1787 * register state when returning from a signal handler in FPSIMD only cases,
1788 * any SVE context will be discarded.
1789 */
1790void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1791{
1792 if (WARN_ON(!system_supports_fpsimd()))
1793 return;
1794
1795 get_cpu_fpsimd_context();
1796
1797 current->thread.uw.fpsimd_state = *state;
1798 if (test_thread_flag(TIF_SVE))
1799 fpsimd_to_sve(current);
1800
1801 task_fpsimd_load();
1802 fpsimd_bind_task_to_cpu();
1803
1804 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1805
1806 put_cpu_fpsimd_context();
1807}
1808
1809/*
1810 * Invalidate live CPU copies of task t's FPSIMD state
1811 *
1812 * This function may be called with preemption enabled. The barrier()
1813 * ensures that the assignment to fpsimd_cpu is visible to any
1814 * preemption/softirq that could race with set_tsk_thread_flag(), so
1815 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1816 *
1817 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1818 * subsequent code.
1819 */
1820void fpsimd_flush_task_state(struct task_struct *t)
1821{
1822 t->thread.fpsimd_cpu = NR_CPUS;
1823 /*
1824 * If we don't support fpsimd, bail out after we have
1825 * reset the fpsimd_cpu for this task and clear the
1826 * FPSTATE.
1827 */
1828 if (!system_supports_fpsimd())
1829 return;
1830 barrier();
1831 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1832
1833 barrier();
1834}
1835
1836/*
1837 * Invalidate any task's FPSIMD state that is present on this cpu.
1838 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1839 * before calling this function.
1840 */
1841static void fpsimd_flush_cpu_state(void)
1842{
1843 WARN_ON(!system_supports_fpsimd());
1844 __this_cpu_write(fpsimd_last_state.st, NULL);
1845
1846 /*
1847 * Leaving streaming mode enabled will cause issues for any kernel
1848 * NEON and leaving streaming mode or ZA enabled may increase power
1849 * consumption.
1850 */
1851 if (system_supports_sme())
1852 sme_smstop();
1853
1854 set_thread_flag(TIF_FOREIGN_FPSTATE);
1855}
1856
1857/*
1858 * Save the FPSIMD state to memory and invalidate cpu view.
1859 * This function must be called with preemption disabled.
1860 */
1861void fpsimd_save_and_flush_cpu_state(void)
1862{
1863 if (!system_supports_fpsimd())
1864 return;
1865 WARN_ON(preemptible());
1866 __get_cpu_fpsimd_context();
1867 fpsimd_save();
1868 fpsimd_flush_cpu_state();
1869 __put_cpu_fpsimd_context();
1870}
1871
1872#ifdef CONFIG_KERNEL_MODE_NEON
1873
1874/*
1875 * Kernel-side NEON support functions
1876 */
1877
1878/*
1879 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1880 * context
1881 *
1882 * Must not be called unless may_use_simd() returns true.
1883 * Task context in the FPSIMD registers is saved back to memory as necessary.
1884 *
1885 * A matching call to kernel_neon_end() must be made before returning from the
1886 * calling context.
1887 *
1888 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1889 * called.
1890 */
1891void kernel_neon_begin(void)
1892{
1893 if (WARN_ON(!system_supports_fpsimd()))
1894 return;
1895
1896 BUG_ON(!may_use_simd());
1897
1898 get_cpu_fpsimd_context();
1899
1900 /* Save unsaved fpsimd state, if any: */
1901 fpsimd_save();
1902
1903 /* Invalidate any task state remaining in the fpsimd regs: */
1904 fpsimd_flush_cpu_state();
1905}
1906EXPORT_SYMBOL_GPL(kernel_neon_begin);
1907
1908/*
1909 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1910 *
1911 * Must be called from a context in which kernel_neon_begin() was previously
1912 * called, with no call to kernel_neon_end() in the meantime.
1913 *
1914 * The caller must not use the FPSIMD registers after this function is called,
1915 * unless kernel_neon_begin() is called again in the meantime.
1916 */
1917void kernel_neon_end(void)
1918{
1919 if (!system_supports_fpsimd())
1920 return;
1921
1922 put_cpu_fpsimd_context();
1923}
1924EXPORT_SYMBOL_GPL(kernel_neon_end);
1925
1926#ifdef CONFIG_EFI
1927
1928static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1929static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1930static DEFINE_PER_CPU(bool, efi_sve_state_used);
1931static DEFINE_PER_CPU(bool, efi_sm_state);
1932
1933/*
1934 * EFI runtime services support functions
1935 *
1936 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1937 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1938 * is always used rather than being an optional accelerator.
1939 *
1940 * These functions provide the necessary support for ensuring FPSIMD
1941 * save/restore in the contexts from which EFI is used.
1942 *
1943 * Do not use them for any other purpose -- if tempted to do so, you are
1944 * either doing something wrong or you need to propose some refactoring.
1945 */
1946
1947/*
1948 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1949 */
1950void __efi_fpsimd_begin(void)
1951{
1952 if (!system_supports_fpsimd())
1953 return;
1954
1955 WARN_ON(preemptible());
1956
1957 if (may_use_simd()) {
1958 kernel_neon_begin();
1959 } else {
1960 /*
1961 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1962 * preserving:
1963 */
1964 if (system_supports_sve() && likely(efi_sve_state)) {
1965 char *sve_state = this_cpu_ptr(efi_sve_state);
1966 bool ffr = true;
1967 u64 svcr;
1968
1969 __this_cpu_write(efi_sve_state_used, true);
1970
1971 if (system_supports_sme()) {
1972 svcr = read_sysreg_s(SYS_SVCR);
1973
1974 __this_cpu_write(efi_sm_state,
1975 svcr & SVCR_SM_MASK);
1976
1977 /*
1978 * Unless we have FA64 FFR does not
1979 * exist in streaming mode.
1980 */
1981 if (!system_supports_fa64())
1982 ffr = !(svcr & SVCR_SM_MASK);
1983 }
1984
1985 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1986 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1987 ffr);
1988
1989 if (system_supports_sme())
1990 sysreg_clear_set_s(SYS_SVCR,
1991 SVCR_SM_MASK, 0);
1992
1993 } else {
1994 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1995 }
1996
1997 __this_cpu_write(efi_fpsimd_state_used, true);
1998 }
1999}
2000
2001/*
2002 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2003 */
2004void __efi_fpsimd_end(void)
2005{
2006 if (!system_supports_fpsimd())
2007 return;
2008
2009 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2010 kernel_neon_end();
2011 } else {
2012 if (system_supports_sve() &&
2013 likely(__this_cpu_read(efi_sve_state_used))) {
2014 char const *sve_state = this_cpu_ptr(efi_sve_state);
2015 bool ffr = true;
2016
2017 /*
2018 * Restore streaming mode; EFI calls are
2019 * normal function calls so should not return in
2020 * streaming mode.
2021 */
2022 if (system_supports_sme()) {
2023 if (__this_cpu_read(efi_sm_state)) {
2024 sysreg_clear_set_s(SYS_SVCR,
2025 0,
2026 SVCR_SM_MASK);
2027
2028 /*
2029 * Unless we have FA64 FFR does not
2030 * exist in streaming mode.
2031 */
2032 if (!system_supports_fa64())
2033 ffr = false;
2034 }
2035 }
2036
2037 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2038 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2039 ffr);
2040
2041 __this_cpu_write(efi_sve_state_used, false);
2042 } else {
2043 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2044 }
2045 }
2046}
2047
2048#endif /* CONFIG_EFI */
2049
2050#endif /* CONFIG_KERNEL_MODE_NEON */
2051
2052#ifdef CONFIG_CPU_PM
2053static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2054 unsigned long cmd, void *v)
2055{
2056 switch (cmd) {
2057 case CPU_PM_ENTER:
2058 fpsimd_save_and_flush_cpu_state();
2059 break;
2060 case CPU_PM_EXIT:
2061 break;
2062 case CPU_PM_ENTER_FAILED:
2063 default:
2064 return NOTIFY_DONE;
2065 }
2066 return NOTIFY_OK;
2067}
2068
2069static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2070 .notifier_call = fpsimd_cpu_pm_notifier,
2071};
2072
2073static void __init fpsimd_pm_init(void)
2074{
2075 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2076}
2077
2078#else
2079static inline void fpsimd_pm_init(void) { }
2080#endif /* CONFIG_CPU_PM */
2081
2082#ifdef CONFIG_HOTPLUG_CPU
2083static int fpsimd_cpu_dead(unsigned int cpu)
2084{
2085 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2086 return 0;
2087}
2088
2089static inline void fpsimd_hotplug_init(void)
2090{
2091 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2092 NULL, fpsimd_cpu_dead);
2093}
2094
2095#else
2096static inline void fpsimd_hotplug_init(void) { }
2097#endif
2098
2099/*
2100 * FP/SIMD support code initialisation.
2101 */
2102static int __init fpsimd_init(void)
2103{
2104 if (cpu_have_named_feature(FP)) {
2105 fpsimd_pm_init();
2106 fpsimd_hotplug_init();
2107 } else {
2108 pr_notice("Floating-point is not implemented\n");
2109 }
2110
2111 if (!cpu_have_named_feature(ASIMD))
2112 pr_notice("Advanced SIMD is not implemented\n");
2113
2114
2115 if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2116 pr_notice("SME is implemented but not SVE\n");
2117
2118 sve_sysctl_init();
2119 sme_sysctl_init();
2120
2121 return 0;
2122}
2123core_initcall(fpsimd_init);