Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6#include <linux/uaccess.h>
7#include <linux/netdevice.h>
8#include <linux/etherdevice.h>
9#include <linux/if_ether.h>
10#include <linux/if_vlan.h>
11#include <net/llc_pdu.h>
12#include <linux/kernel.h>
13#include <linux/jhash.h>
14#include <linux/jiffies.h>
15#include <linux/llc.h>
16#include <linux/module.h>
17#include <linux/in.h>
18#include <linux/rcupdate.h>
19#include <linux/cpumask.h>
20#include <linux/if_arp.h>
21#include <linux/ip.h>
22#include <linux/ipv6.h>
23#include <linux/mpls.h>
24#include <linux/sctp.h>
25#include <linux/smp.h>
26#include <linux/tcp.h>
27#include <linux/udp.h>
28#include <linux/icmp.h>
29#include <linux/icmpv6.h>
30#include <linux/rculist.h>
31#include <net/ip.h>
32#include <net/ip_tunnels.h>
33#include <net/ipv6.h>
34#include <net/mpls.h>
35#include <net/ndisc.h>
36#include <net/nsh.h>
37
38#include "conntrack.h"
39#include "datapath.h"
40#include "flow.h"
41#include "flow_netlink.h"
42#include "vport.h"
43
44u64 ovs_flow_used_time(unsigned long flow_jiffies)
45{
46 struct timespec64 cur_ts;
47 u64 cur_ms, idle_ms;
48
49 ktime_get_ts64(&cur_ts);
50 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
51 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
52 cur_ts.tv_nsec / NSEC_PER_MSEC;
53
54 return cur_ms - idle_ms;
55}
56
57#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
58
59void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
60 const struct sk_buff *skb)
61{
62 struct sw_flow_stats *stats;
63 unsigned int cpu = smp_processor_id();
64 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
65
66 stats = rcu_dereference(flow->stats[cpu]);
67
68 /* Check if already have CPU-specific stats. */
69 if (likely(stats)) {
70 spin_lock(&stats->lock);
71 /* Mark if we write on the pre-allocated stats. */
72 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
73 flow->stats_last_writer = cpu;
74 } else {
75 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
76 spin_lock(&stats->lock);
77
78 /* If the current CPU is the only writer on the
79 * pre-allocated stats keep using them.
80 */
81 if (unlikely(flow->stats_last_writer != cpu)) {
82 /* A previous locker may have already allocated the
83 * stats, so we need to check again. If CPU-specific
84 * stats were already allocated, we update the pre-
85 * allocated stats as we have already locked them.
86 */
87 if (likely(flow->stats_last_writer != -1) &&
88 likely(!rcu_access_pointer(flow->stats[cpu]))) {
89 /* Try to allocate CPU-specific stats. */
90 struct sw_flow_stats *new_stats;
91
92 new_stats =
93 kmem_cache_alloc_node(flow_stats_cache,
94 GFP_NOWAIT |
95 __GFP_THISNODE |
96 __GFP_NOWARN |
97 __GFP_NOMEMALLOC,
98 numa_node_id());
99 if (likely(new_stats)) {
100 new_stats->used = jiffies;
101 new_stats->packet_count = 1;
102 new_stats->byte_count = len;
103 new_stats->tcp_flags = tcp_flags;
104 spin_lock_init(&new_stats->lock);
105
106 rcu_assign_pointer(flow->stats[cpu],
107 new_stats);
108 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
109 goto unlock;
110 }
111 }
112 flow->stats_last_writer = cpu;
113 }
114 }
115
116 stats->used = jiffies;
117 stats->packet_count++;
118 stats->byte_count += len;
119 stats->tcp_flags |= tcp_flags;
120unlock:
121 spin_unlock(&stats->lock);
122}
123
124/* Must be called with rcu_read_lock or ovs_mutex. */
125void ovs_flow_stats_get(const struct sw_flow *flow,
126 struct ovs_flow_stats *ovs_stats,
127 unsigned long *used, __be16 *tcp_flags)
128{
129 int cpu;
130
131 *used = 0;
132 *tcp_flags = 0;
133 memset(ovs_stats, 0, sizeof(*ovs_stats));
134
135 /* We open code this to make sure cpu 0 is always considered */
136 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
137 struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
138
139 if (stats) {
140 /* Local CPU may write on non-local stats, so we must
141 * block bottom-halves here.
142 */
143 spin_lock_bh(&stats->lock);
144 if (!*used || time_after(stats->used, *used))
145 *used = stats->used;
146 *tcp_flags |= stats->tcp_flags;
147 ovs_stats->n_packets += stats->packet_count;
148 ovs_stats->n_bytes += stats->byte_count;
149 spin_unlock_bh(&stats->lock);
150 }
151 }
152}
153
154/* Called with ovs_mutex. */
155void ovs_flow_stats_clear(struct sw_flow *flow)
156{
157 int cpu;
158
159 /* We open code this to make sure cpu 0 is always considered */
160 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
161 struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
162
163 if (stats) {
164 spin_lock_bh(&stats->lock);
165 stats->used = 0;
166 stats->packet_count = 0;
167 stats->byte_count = 0;
168 stats->tcp_flags = 0;
169 spin_unlock_bh(&stats->lock);
170 }
171 }
172}
173
174static int check_header(struct sk_buff *skb, int len)
175{
176 if (unlikely(skb->len < len))
177 return -EINVAL;
178 if (unlikely(!pskb_may_pull(skb, len)))
179 return -ENOMEM;
180 return 0;
181}
182
183static bool arphdr_ok(struct sk_buff *skb)
184{
185 return pskb_may_pull(skb, skb_network_offset(skb) +
186 sizeof(struct arp_eth_header));
187}
188
189static int check_iphdr(struct sk_buff *skb)
190{
191 unsigned int nh_ofs = skb_network_offset(skb);
192 unsigned int ip_len;
193 int err;
194
195 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
196 if (unlikely(err))
197 return err;
198
199 ip_len = ip_hdrlen(skb);
200 if (unlikely(ip_len < sizeof(struct iphdr) ||
201 skb->len < nh_ofs + ip_len))
202 return -EINVAL;
203
204 skb_set_transport_header(skb, nh_ofs + ip_len);
205 return 0;
206}
207
208static bool tcphdr_ok(struct sk_buff *skb)
209{
210 int th_ofs = skb_transport_offset(skb);
211 int tcp_len;
212
213 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
214 return false;
215
216 tcp_len = tcp_hdrlen(skb);
217 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
218 skb->len < th_ofs + tcp_len))
219 return false;
220
221 return true;
222}
223
224static bool udphdr_ok(struct sk_buff *skb)
225{
226 return pskb_may_pull(skb, skb_transport_offset(skb) +
227 sizeof(struct udphdr));
228}
229
230static bool sctphdr_ok(struct sk_buff *skb)
231{
232 return pskb_may_pull(skb, skb_transport_offset(skb) +
233 sizeof(struct sctphdr));
234}
235
236static bool icmphdr_ok(struct sk_buff *skb)
237{
238 return pskb_may_pull(skb, skb_transport_offset(skb) +
239 sizeof(struct icmphdr));
240}
241
242static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
243{
244 unsigned short frag_off;
245 unsigned int payload_ofs = 0;
246 unsigned int nh_ofs = skb_network_offset(skb);
247 unsigned int nh_len;
248 struct ipv6hdr *nh;
249 int err, nexthdr, flags = 0;
250
251 err = check_header(skb, nh_ofs + sizeof(*nh));
252 if (unlikely(err))
253 return err;
254
255 nh = ipv6_hdr(skb);
256
257 key->ip.proto = NEXTHDR_NONE;
258 key->ip.tos = ipv6_get_dsfield(nh);
259 key->ip.ttl = nh->hop_limit;
260 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
261 key->ipv6.addr.src = nh->saddr;
262 key->ipv6.addr.dst = nh->daddr;
263
264 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
265 if (flags & IP6_FH_F_FRAG) {
266 if (frag_off) {
267 key->ip.frag = OVS_FRAG_TYPE_LATER;
268 key->ip.proto = nexthdr;
269 return 0;
270 }
271 key->ip.frag = OVS_FRAG_TYPE_FIRST;
272 } else {
273 key->ip.frag = OVS_FRAG_TYPE_NONE;
274 }
275
276 /* Delayed handling of error in ipv6_find_hdr() as it
277 * always sets flags and frag_off to a valid value which may be
278 * used to set key->ip.frag above.
279 */
280 if (unlikely(nexthdr < 0))
281 return -EPROTO;
282
283 nh_len = payload_ofs - nh_ofs;
284 skb_set_transport_header(skb, nh_ofs + nh_len);
285 key->ip.proto = nexthdr;
286 return nh_len;
287}
288
289static bool icmp6hdr_ok(struct sk_buff *skb)
290{
291 return pskb_may_pull(skb, skb_transport_offset(skb) +
292 sizeof(struct icmp6hdr));
293}
294
295/**
296 * Parse vlan tag from vlan header.
297 * Returns ERROR on memory error.
298 * Returns 0 if it encounters a non-vlan or incomplete packet.
299 * Returns 1 after successfully parsing vlan tag.
300 */
301static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
302 bool untag_vlan)
303{
304 struct vlan_head *vh = (struct vlan_head *)skb->data;
305
306 if (likely(!eth_type_vlan(vh->tpid)))
307 return 0;
308
309 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
310 return 0;
311
312 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
313 sizeof(__be16))))
314 return -ENOMEM;
315
316 vh = (struct vlan_head *)skb->data;
317 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
318 key_vh->tpid = vh->tpid;
319
320 if (unlikely(untag_vlan)) {
321 int offset = skb->data - skb_mac_header(skb);
322 u16 tci;
323 int err;
324
325 __skb_push(skb, offset);
326 err = __skb_vlan_pop(skb, &tci);
327 __skb_pull(skb, offset);
328 if (err)
329 return err;
330 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
331 } else {
332 __skb_pull(skb, sizeof(struct vlan_head));
333 }
334 return 1;
335}
336
337static void clear_vlan(struct sw_flow_key *key)
338{
339 key->eth.vlan.tci = 0;
340 key->eth.vlan.tpid = 0;
341 key->eth.cvlan.tci = 0;
342 key->eth.cvlan.tpid = 0;
343}
344
345static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
346{
347 int res;
348
349 if (skb_vlan_tag_present(skb)) {
350 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
351 key->eth.vlan.tpid = skb->vlan_proto;
352 } else {
353 /* Parse outer vlan tag in the non-accelerated case. */
354 res = parse_vlan_tag(skb, &key->eth.vlan, true);
355 if (res <= 0)
356 return res;
357 }
358
359 /* Parse inner vlan tag. */
360 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
361 if (res <= 0)
362 return res;
363
364 return 0;
365}
366
367static __be16 parse_ethertype(struct sk_buff *skb)
368{
369 struct llc_snap_hdr {
370 u8 dsap; /* Always 0xAA */
371 u8 ssap; /* Always 0xAA */
372 u8 ctrl;
373 u8 oui[3];
374 __be16 ethertype;
375 };
376 struct llc_snap_hdr *llc;
377 __be16 proto;
378
379 proto = *(__be16 *) skb->data;
380 __skb_pull(skb, sizeof(__be16));
381
382 if (eth_proto_is_802_3(proto))
383 return proto;
384
385 if (skb->len < sizeof(struct llc_snap_hdr))
386 return htons(ETH_P_802_2);
387
388 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
389 return htons(0);
390
391 llc = (struct llc_snap_hdr *) skb->data;
392 if (llc->dsap != LLC_SAP_SNAP ||
393 llc->ssap != LLC_SAP_SNAP ||
394 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
395 return htons(ETH_P_802_2);
396
397 __skb_pull(skb, sizeof(struct llc_snap_hdr));
398
399 if (eth_proto_is_802_3(llc->ethertype))
400 return llc->ethertype;
401
402 return htons(ETH_P_802_2);
403}
404
405static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
406 int nh_len)
407{
408 struct icmp6hdr *icmp = icmp6_hdr(skb);
409
410 /* The ICMPv6 type and code fields use the 16-bit transport port
411 * fields, so we need to store them in 16-bit network byte order.
412 */
413 key->tp.src = htons(icmp->icmp6_type);
414 key->tp.dst = htons(icmp->icmp6_code);
415 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
416
417 if (icmp->icmp6_code == 0 &&
418 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
419 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
420 int icmp_len = skb->len - skb_transport_offset(skb);
421 struct nd_msg *nd;
422 int offset;
423
424 /* In order to process neighbor discovery options, we need the
425 * entire packet.
426 */
427 if (unlikely(icmp_len < sizeof(*nd)))
428 return 0;
429
430 if (unlikely(skb_linearize(skb)))
431 return -ENOMEM;
432
433 nd = (struct nd_msg *)skb_transport_header(skb);
434 key->ipv6.nd.target = nd->target;
435
436 icmp_len -= sizeof(*nd);
437 offset = 0;
438 while (icmp_len >= 8) {
439 struct nd_opt_hdr *nd_opt =
440 (struct nd_opt_hdr *)(nd->opt + offset);
441 int opt_len = nd_opt->nd_opt_len * 8;
442
443 if (unlikely(!opt_len || opt_len > icmp_len))
444 return 0;
445
446 /* Store the link layer address if the appropriate
447 * option is provided. It is considered an error if
448 * the same link layer option is specified twice.
449 */
450 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
451 && opt_len == 8) {
452 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
453 goto invalid;
454 ether_addr_copy(key->ipv6.nd.sll,
455 &nd->opt[offset+sizeof(*nd_opt)]);
456 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
457 && opt_len == 8) {
458 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
459 goto invalid;
460 ether_addr_copy(key->ipv6.nd.tll,
461 &nd->opt[offset+sizeof(*nd_opt)]);
462 }
463
464 icmp_len -= opt_len;
465 offset += opt_len;
466 }
467 }
468
469 return 0;
470
471invalid:
472 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
473 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
474 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
475
476 return 0;
477}
478
479static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
480{
481 struct nshhdr *nh;
482 unsigned int nh_ofs = skb_network_offset(skb);
483 u8 version, length;
484 int err;
485
486 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
487 if (unlikely(err))
488 return err;
489
490 nh = nsh_hdr(skb);
491 version = nsh_get_ver(nh);
492 length = nsh_hdr_len(nh);
493
494 if (version != 0)
495 return -EINVAL;
496
497 err = check_header(skb, nh_ofs + length);
498 if (unlikely(err))
499 return err;
500
501 nh = nsh_hdr(skb);
502 key->nsh.base.flags = nsh_get_flags(nh);
503 key->nsh.base.ttl = nsh_get_ttl(nh);
504 key->nsh.base.mdtype = nh->mdtype;
505 key->nsh.base.np = nh->np;
506 key->nsh.base.path_hdr = nh->path_hdr;
507 switch (key->nsh.base.mdtype) {
508 case NSH_M_TYPE1:
509 if (length != NSH_M_TYPE1_LEN)
510 return -EINVAL;
511 memcpy(key->nsh.context, nh->md1.context,
512 sizeof(nh->md1));
513 break;
514 case NSH_M_TYPE2:
515 memset(key->nsh.context, 0,
516 sizeof(nh->md1));
517 break;
518 default:
519 return -EINVAL;
520 }
521
522 return 0;
523}
524
525/**
526 * key_extract_l3l4 - extracts L3/L4 header information.
527 * @skb: sk_buff that contains the frame, with skb->data pointing to the
528 * L3 header
529 * @key: output flow key
530 *
531 */
532static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
533{
534 int error;
535
536 /* Network layer. */
537 if (key->eth.type == htons(ETH_P_IP)) {
538 struct iphdr *nh;
539 __be16 offset;
540
541 error = check_iphdr(skb);
542 if (unlikely(error)) {
543 memset(&key->ip, 0, sizeof(key->ip));
544 memset(&key->ipv4, 0, sizeof(key->ipv4));
545 if (error == -EINVAL) {
546 skb->transport_header = skb->network_header;
547 error = 0;
548 }
549 return error;
550 }
551
552 nh = ip_hdr(skb);
553 key->ipv4.addr.src = nh->saddr;
554 key->ipv4.addr.dst = nh->daddr;
555
556 key->ip.proto = nh->protocol;
557 key->ip.tos = nh->tos;
558 key->ip.ttl = nh->ttl;
559
560 offset = nh->frag_off & htons(IP_OFFSET);
561 if (offset) {
562 key->ip.frag = OVS_FRAG_TYPE_LATER;
563 memset(&key->tp, 0, sizeof(key->tp));
564 return 0;
565 }
566 if (nh->frag_off & htons(IP_MF) ||
567 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
568 key->ip.frag = OVS_FRAG_TYPE_FIRST;
569 else
570 key->ip.frag = OVS_FRAG_TYPE_NONE;
571
572 /* Transport layer. */
573 if (key->ip.proto == IPPROTO_TCP) {
574 if (tcphdr_ok(skb)) {
575 struct tcphdr *tcp = tcp_hdr(skb);
576 key->tp.src = tcp->source;
577 key->tp.dst = tcp->dest;
578 key->tp.flags = TCP_FLAGS_BE16(tcp);
579 } else {
580 memset(&key->tp, 0, sizeof(key->tp));
581 }
582
583 } else if (key->ip.proto == IPPROTO_UDP) {
584 if (udphdr_ok(skb)) {
585 struct udphdr *udp = udp_hdr(skb);
586 key->tp.src = udp->source;
587 key->tp.dst = udp->dest;
588 } else {
589 memset(&key->tp, 0, sizeof(key->tp));
590 }
591 } else if (key->ip.proto == IPPROTO_SCTP) {
592 if (sctphdr_ok(skb)) {
593 struct sctphdr *sctp = sctp_hdr(skb);
594 key->tp.src = sctp->source;
595 key->tp.dst = sctp->dest;
596 } else {
597 memset(&key->tp, 0, sizeof(key->tp));
598 }
599 } else if (key->ip.proto == IPPROTO_ICMP) {
600 if (icmphdr_ok(skb)) {
601 struct icmphdr *icmp = icmp_hdr(skb);
602 /* The ICMP type and code fields use the 16-bit
603 * transport port fields, so we need to store
604 * them in 16-bit network byte order. */
605 key->tp.src = htons(icmp->type);
606 key->tp.dst = htons(icmp->code);
607 } else {
608 memset(&key->tp, 0, sizeof(key->tp));
609 }
610 }
611
612 } else if (key->eth.type == htons(ETH_P_ARP) ||
613 key->eth.type == htons(ETH_P_RARP)) {
614 struct arp_eth_header *arp;
615 bool arp_available = arphdr_ok(skb);
616
617 arp = (struct arp_eth_header *)skb_network_header(skb);
618
619 if (arp_available &&
620 arp->ar_hrd == htons(ARPHRD_ETHER) &&
621 arp->ar_pro == htons(ETH_P_IP) &&
622 arp->ar_hln == ETH_ALEN &&
623 arp->ar_pln == 4) {
624
625 /* We only match on the lower 8 bits of the opcode. */
626 if (ntohs(arp->ar_op) <= 0xff)
627 key->ip.proto = ntohs(arp->ar_op);
628 else
629 key->ip.proto = 0;
630
631 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
632 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
633 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
634 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
635 } else {
636 memset(&key->ip, 0, sizeof(key->ip));
637 memset(&key->ipv4, 0, sizeof(key->ipv4));
638 }
639 } else if (eth_p_mpls(key->eth.type)) {
640 size_t stack_len = MPLS_HLEN;
641
642 skb_set_inner_network_header(skb, skb->mac_len);
643 while (1) {
644 __be32 lse;
645
646 error = check_header(skb, skb->mac_len + stack_len);
647 if (unlikely(error))
648 return 0;
649
650 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
651
652 if (stack_len == MPLS_HLEN)
653 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
654
655 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
656 if (lse & htonl(MPLS_LS_S_MASK))
657 break;
658
659 stack_len += MPLS_HLEN;
660 }
661 } else if (key->eth.type == htons(ETH_P_IPV6)) {
662 int nh_len; /* IPv6 Header + Extensions */
663
664 nh_len = parse_ipv6hdr(skb, key);
665 if (unlikely(nh_len < 0)) {
666 switch (nh_len) {
667 case -EINVAL:
668 memset(&key->ip, 0, sizeof(key->ip));
669 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
670 /* fall-through */
671 case -EPROTO:
672 skb->transport_header = skb->network_header;
673 error = 0;
674 break;
675 default:
676 error = nh_len;
677 }
678 return error;
679 }
680
681 if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
682 memset(&key->tp, 0, sizeof(key->tp));
683 return 0;
684 }
685 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
686 key->ip.frag = OVS_FRAG_TYPE_FIRST;
687
688 /* Transport layer. */
689 if (key->ip.proto == NEXTHDR_TCP) {
690 if (tcphdr_ok(skb)) {
691 struct tcphdr *tcp = tcp_hdr(skb);
692 key->tp.src = tcp->source;
693 key->tp.dst = tcp->dest;
694 key->tp.flags = TCP_FLAGS_BE16(tcp);
695 } else {
696 memset(&key->tp, 0, sizeof(key->tp));
697 }
698 } else if (key->ip.proto == NEXTHDR_UDP) {
699 if (udphdr_ok(skb)) {
700 struct udphdr *udp = udp_hdr(skb);
701 key->tp.src = udp->source;
702 key->tp.dst = udp->dest;
703 } else {
704 memset(&key->tp, 0, sizeof(key->tp));
705 }
706 } else if (key->ip.proto == NEXTHDR_SCTP) {
707 if (sctphdr_ok(skb)) {
708 struct sctphdr *sctp = sctp_hdr(skb);
709 key->tp.src = sctp->source;
710 key->tp.dst = sctp->dest;
711 } else {
712 memset(&key->tp, 0, sizeof(key->tp));
713 }
714 } else if (key->ip.proto == NEXTHDR_ICMP) {
715 if (icmp6hdr_ok(skb)) {
716 error = parse_icmpv6(skb, key, nh_len);
717 if (error)
718 return error;
719 } else {
720 memset(&key->tp, 0, sizeof(key->tp));
721 }
722 }
723 } else if (key->eth.type == htons(ETH_P_NSH)) {
724 error = parse_nsh(skb, key);
725 if (error)
726 return error;
727 }
728 return 0;
729}
730
731/**
732 * key_extract - extracts a flow key from an Ethernet frame.
733 * @skb: sk_buff that contains the frame, with skb->data pointing to the
734 * Ethernet header
735 * @key: output flow key
736 *
737 * The caller must ensure that skb->len >= ETH_HLEN.
738 *
739 * Returns 0 if successful, otherwise a negative errno value.
740 *
741 * Initializes @skb header fields as follows:
742 *
743 * - skb->mac_header: the L2 header.
744 *
745 * - skb->network_header: just past the L2 header, or just past the
746 * VLAN header, to the first byte of the L2 payload.
747 *
748 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
749 * on output, then just past the IP header, if one is present and
750 * of a correct length, otherwise the same as skb->network_header.
751 * For other key->eth.type values it is left untouched.
752 *
753 * - skb->protocol: the type of the data starting at skb->network_header.
754 * Equals to key->eth.type.
755 */
756static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
757{
758 struct ethhdr *eth;
759
760 /* Flags are always used as part of stats */
761 key->tp.flags = 0;
762
763 skb_reset_mac_header(skb);
764
765 /* Link layer. */
766 clear_vlan(key);
767 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
768 if (unlikely(eth_type_vlan(skb->protocol)))
769 return -EINVAL;
770
771 skb_reset_network_header(skb);
772 key->eth.type = skb->protocol;
773 } else {
774 eth = eth_hdr(skb);
775 ether_addr_copy(key->eth.src, eth->h_source);
776 ether_addr_copy(key->eth.dst, eth->h_dest);
777
778 __skb_pull(skb, 2 * ETH_ALEN);
779 /* We are going to push all headers that we pull, so no need to
780 * update skb->csum here.
781 */
782
783 if (unlikely(parse_vlan(skb, key)))
784 return -ENOMEM;
785
786 key->eth.type = parse_ethertype(skb);
787 if (unlikely(key->eth.type == htons(0)))
788 return -ENOMEM;
789
790 /* Multiple tagged packets need to retain TPID to satisfy
791 * skb_vlan_pop(), which will later shift the ethertype into
792 * skb->protocol.
793 */
794 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
795 skb->protocol = key->eth.cvlan.tpid;
796 else
797 skb->protocol = key->eth.type;
798
799 skb_reset_network_header(skb);
800 __skb_push(skb, skb->data - skb_mac_header(skb));
801 }
802
803 skb_reset_mac_len(skb);
804
805 /* Fill out L3/L4 key info, if any */
806 return key_extract_l3l4(skb, key);
807}
808
809/* In the case of conntrack fragment handling it expects L3 headers,
810 * add a helper.
811 */
812int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
813{
814 return key_extract_l3l4(skb, key);
815}
816
817int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
818{
819 int res;
820
821 res = key_extract(skb, key);
822 if (!res)
823 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
824
825 return res;
826}
827
828static int key_extract_mac_proto(struct sk_buff *skb)
829{
830 switch (skb->dev->type) {
831 case ARPHRD_ETHER:
832 return MAC_PROTO_ETHERNET;
833 case ARPHRD_NONE:
834 if (skb->protocol == htons(ETH_P_TEB))
835 return MAC_PROTO_ETHERNET;
836 return MAC_PROTO_NONE;
837 }
838 WARN_ON_ONCE(1);
839 return -EINVAL;
840}
841
842int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
843 struct sk_buff *skb, struct sw_flow_key *key)
844{
845#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
846 struct tc_skb_ext *tc_ext;
847#endif
848 int res, err;
849
850 /* Extract metadata from packet. */
851 if (tun_info) {
852 key->tun_proto = ip_tunnel_info_af(tun_info);
853 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
854
855 if (tun_info->options_len) {
856 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
857 8)) - 1
858 > sizeof(key->tun_opts));
859
860 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
861 tun_info);
862 key->tun_opts_len = tun_info->options_len;
863 } else {
864 key->tun_opts_len = 0;
865 }
866 } else {
867 key->tun_proto = 0;
868 key->tun_opts_len = 0;
869 memset(&key->tun_key, 0, sizeof(key->tun_key));
870 }
871
872 key->phy.priority = skb->priority;
873 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
874 key->phy.skb_mark = skb->mark;
875 key->ovs_flow_hash = 0;
876 res = key_extract_mac_proto(skb);
877 if (res < 0)
878 return res;
879 key->mac_proto = res;
880
881#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
882 if (static_branch_unlikely(&tc_recirc_sharing_support)) {
883 tc_ext = skb_ext_find(skb, TC_SKB_EXT);
884 key->recirc_id = tc_ext ? tc_ext->chain : 0;
885 } else {
886 key->recirc_id = 0;
887 }
888#else
889 key->recirc_id = 0;
890#endif
891
892 err = key_extract(skb, key);
893 if (!err)
894 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
895 return err;
896}
897
898int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
899 struct sk_buff *skb,
900 struct sw_flow_key *key, bool log)
901{
902 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
903 u64 attrs = 0;
904 int err;
905
906 err = parse_flow_nlattrs(attr, a, &attrs, log);
907 if (err)
908 return -EINVAL;
909
910 /* Extract metadata from netlink attributes. */
911 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
912 if (err)
913 return err;
914
915 /* key_extract assumes that skb->protocol is set-up for
916 * layer 3 packets which is the case for other callers,
917 * in particular packets received from the network stack.
918 * Here the correct value can be set from the metadata
919 * extracted above.
920 * For L2 packet key eth type would be zero. skb protocol
921 * would be set to correct value later during key-extact.
922 */
923
924 skb->protocol = key->eth.type;
925 err = key_extract(skb, key);
926 if (err)
927 return err;
928
929 /* Check that we have conntrack original direction tuple metadata only
930 * for packets for which it makes sense. Otherwise the key may be
931 * corrupted due to overlapping key fields.
932 */
933 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
934 key->eth.type != htons(ETH_P_IP))
935 return -EINVAL;
936 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
937 (key->eth.type != htons(ETH_P_IPV6) ||
938 sw_flow_key_is_nd(key)))
939 return -EINVAL;
940
941 return 0;
942}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6#include <linux/uaccess.h>
7#include <linux/netdevice.h>
8#include <linux/etherdevice.h>
9#include <linux/if_ether.h>
10#include <linux/if_vlan.h>
11#include <net/llc_pdu.h>
12#include <linux/kernel.h>
13#include <linux/jhash.h>
14#include <linux/jiffies.h>
15#include <linux/llc.h>
16#include <linux/module.h>
17#include <linux/in.h>
18#include <linux/rcupdate.h>
19#include <linux/cpumask.h>
20#include <linux/if_arp.h>
21#include <linux/ip.h>
22#include <linux/ipv6.h>
23#include <linux/mpls.h>
24#include <linux/sctp.h>
25#include <linux/smp.h>
26#include <linux/tcp.h>
27#include <linux/udp.h>
28#include <linux/icmp.h>
29#include <linux/icmpv6.h>
30#include <linux/rculist.h>
31#include <net/ip.h>
32#include <net/ip_tunnels.h>
33#include <net/ipv6.h>
34#include <net/mpls.h>
35#include <net/ndisc.h>
36#include <net/nsh.h>
37#include <net/pkt_cls.h>
38#include <net/netfilter/nf_conntrack_zones.h>
39
40#include "conntrack.h"
41#include "datapath.h"
42#include "flow.h"
43#include "flow_netlink.h"
44#include "vport.h"
45
46u64 ovs_flow_used_time(unsigned long flow_jiffies)
47{
48 struct timespec64 cur_ts;
49 u64 cur_ms, idle_ms;
50
51 ktime_get_ts64(&cur_ts);
52 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
53 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
54 cur_ts.tv_nsec / NSEC_PER_MSEC;
55
56 return cur_ms - idle_ms;
57}
58
59#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
60
61void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
62 const struct sk_buff *skb)
63{
64 struct sw_flow_stats *stats;
65 unsigned int cpu = smp_processor_id();
66 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
67
68 stats = rcu_dereference(flow->stats[cpu]);
69
70 /* Check if already have CPU-specific stats. */
71 if (likely(stats)) {
72 spin_lock(&stats->lock);
73 /* Mark if we write on the pre-allocated stats. */
74 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
75 flow->stats_last_writer = cpu;
76 } else {
77 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
78 spin_lock(&stats->lock);
79
80 /* If the current CPU is the only writer on the
81 * pre-allocated stats keep using them.
82 */
83 if (unlikely(flow->stats_last_writer != cpu)) {
84 /* A previous locker may have already allocated the
85 * stats, so we need to check again. If CPU-specific
86 * stats were already allocated, we update the pre-
87 * allocated stats as we have already locked them.
88 */
89 if (likely(flow->stats_last_writer != -1) &&
90 likely(!rcu_access_pointer(flow->stats[cpu]))) {
91 /* Try to allocate CPU-specific stats. */
92 struct sw_flow_stats *new_stats;
93
94 new_stats =
95 kmem_cache_alloc_node(flow_stats_cache,
96 GFP_NOWAIT |
97 __GFP_THISNODE |
98 __GFP_NOWARN |
99 __GFP_NOMEMALLOC,
100 numa_node_id());
101 if (likely(new_stats)) {
102 new_stats->used = jiffies;
103 new_stats->packet_count = 1;
104 new_stats->byte_count = len;
105 new_stats->tcp_flags = tcp_flags;
106 spin_lock_init(&new_stats->lock);
107
108 rcu_assign_pointer(flow->stats[cpu],
109 new_stats);
110 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
111 goto unlock;
112 }
113 }
114 flow->stats_last_writer = cpu;
115 }
116 }
117
118 stats->used = jiffies;
119 stats->packet_count++;
120 stats->byte_count += len;
121 stats->tcp_flags |= tcp_flags;
122unlock:
123 spin_unlock(&stats->lock);
124}
125
126/* Must be called with rcu_read_lock or ovs_mutex. */
127void ovs_flow_stats_get(const struct sw_flow *flow,
128 struct ovs_flow_stats *ovs_stats,
129 unsigned long *used, __be16 *tcp_flags)
130{
131 int cpu;
132
133 *used = 0;
134 *tcp_flags = 0;
135 memset(ovs_stats, 0, sizeof(*ovs_stats));
136
137 /* We open code this to make sure cpu 0 is always considered */
138 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
139 struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
140
141 if (stats) {
142 /* Local CPU may write on non-local stats, so we must
143 * block bottom-halves here.
144 */
145 spin_lock_bh(&stats->lock);
146 if (!*used || time_after(stats->used, *used))
147 *used = stats->used;
148 *tcp_flags |= stats->tcp_flags;
149 ovs_stats->n_packets += stats->packet_count;
150 ovs_stats->n_bytes += stats->byte_count;
151 spin_unlock_bh(&stats->lock);
152 }
153 }
154}
155
156/* Called with ovs_mutex. */
157void ovs_flow_stats_clear(struct sw_flow *flow)
158{
159 int cpu;
160
161 /* We open code this to make sure cpu 0 is always considered */
162 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
163 struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
164
165 if (stats) {
166 spin_lock_bh(&stats->lock);
167 stats->used = 0;
168 stats->packet_count = 0;
169 stats->byte_count = 0;
170 stats->tcp_flags = 0;
171 spin_unlock_bh(&stats->lock);
172 }
173 }
174}
175
176static int check_header(struct sk_buff *skb, int len)
177{
178 if (unlikely(skb->len < len))
179 return -EINVAL;
180 if (unlikely(!pskb_may_pull(skb, len)))
181 return -ENOMEM;
182 return 0;
183}
184
185static bool arphdr_ok(struct sk_buff *skb)
186{
187 return pskb_may_pull(skb, skb_network_offset(skb) +
188 sizeof(struct arp_eth_header));
189}
190
191static int check_iphdr(struct sk_buff *skb)
192{
193 unsigned int nh_ofs = skb_network_offset(skb);
194 unsigned int ip_len;
195 int err;
196
197 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
198 if (unlikely(err))
199 return err;
200
201 ip_len = ip_hdrlen(skb);
202 if (unlikely(ip_len < sizeof(struct iphdr) ||
203 skb->len < nh_ofs + ip_len))
204 return -EINVAL;
205
206 skb_set_transport_header(skb, nh_ofs + ip_len);
207 return 0;
208}
209
210static bool tcphdr_ok(struct sk_buff *skb)
211{
212 int th_ofs = skb_transport_offset(skb);
213 int tcp_len;
214
215 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
216 return false;
217
218 tcp_len = tcp_hdrlen(skb);
219 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
220 skb->len < th_ofs + tcp_len))
221 return false;
222
223 return true;
224}
225
226static bool udphdr_ok(struct sk_buff *skb)
227{
228 return pskb_may_pull(skb, skb_transport_offset(skb) +
229 sizeof(struct udphdr));
230}
231
232static bool sctphdr_ok(struct sk_buff *skb)
233{
234 return pskb_may_pull(skb, skb_transport_offset(skb) +
235 sizeof(struct sctphdr));
236}
237
238static bool icmphdr_ok(struct sk_buff *skb)
239{
240 return pskb_may_pull(skb, skb_transport_offset(skb) +
241 sizeof(struct icmphdr));
242}
243
244/**
245 * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
246 *
247 * @skb: buffer where extension header data starts in packet
248 * @nh: ipv6 header
249 * @ext_hdrs: flags are stored here
250 *
251 * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
252 * is unexpectedly encountered. (Two destination options headers may be
253 * expected and would not cause this bit to be set.)
254 *
255 * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
256 * preferred (but not required) by RFC 2460:
257 *
258 * When more than one extension header is used in the same packet, it is
259 * recommended that those headers appear in the following order:
260 * IPv6 header
261 * Hop-by-Hop Options header
262 * Destination Options header
263 * Routing header
264 * Fragment header
265 * Authentication header
266 * Encapsulating Security Payload header
267 * Destination Options header
268 * upper-layer header
269 */
270static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
271 u16 *ext_hdrs)
272{
273 u8 next_type = nh->nexthdr;
274 unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
275 int dest_options_header_count = 0;
276
277 *ext_hdrs = 0;
278
279 while (ipv6_ext_hdr(next_type)) {
280 struct ipv6_opt_hdr _hdr, *hp;
281
282 switch (next_type) {
283 case IPPROTO_NONE:
284 *ext_hdrs |= OFPIEH12_NONEXT;
285 /* stop parsing */
286 return;
287
288 case IPPROTO_ESP:
289 if (*ext_hdrs & OFPIEH12_ESP)
290 *ext_hdrs |= OFPIEH12_UNREP;
291 if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
292 OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
293 OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
294 dest_options_header_count >= 2) {
295 *ext_hdrs |= OFPIEH12_UNSEQ;
296 }
297 *ext_hdrs |= OFPIEH12_ESP;
298 break;
299
300 case IPPROTO_AH:
301 if (*ext_hdrs & OFPIEH12_AUTH)
302 *ext_hdrs |= OFPIEH12_UNREP;
303 if ((*ext_hdrs &
304 ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
305 IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
306 dest_options_header_count >= 2) {
307 *ext_hdrs |= OFPIEH12_UNSEQ;
308 }
309 *ext_hdrs |= OFPIEH12_AUTH;
310 break;
311
312 case IPPROTO_DSTOPTS:
313 if (dest_options_header_count == 0) {
314 if (*ext_hdrs &
315 ~(OFPIEH12_HOP | OFPIEH12_UNREP))
316 *ext_hdrs |= OFPIEH12_UNSEQ;
317 *ext_hdrs |= OFPIEH12_DEST;
318 } else if (dest_options_header_count == 1) {
319 if (*ext_hdrs &
320 ~(OFPIEH12_HOP | OFPIEH12_DEST |
321 OFPIEH12_ROUTER | OFPIEH12_FRAG |
322 OFPIEH12_AUTH | OFPIEH12_ESP |
323 OFPIEH12_UNREP)) {
324 *ext_hdrs |= OFPIEH12_UNSEQ;
325 }
326 } else {
327 *ext_hdrs |= OFPIEH12_UNREP;
328 }
329 dest_options_header_count++;
330 break;
331
332 case IPPROTO_FRAGMENT:
333 if (*ext_hdrs & OFPIEH12_FRAG)
334 *ext_hdrs |= OFPIEH12_UNREP;
335 if ((*ext_hdrs & ~(OFPIEH12_HOP |
336 OFPIEH12_DEST |
337 OFPIEH12_ROUTER |
338 OFPIEH12_UNREP)) ||
339 dest_options_header_count >= 2) {
340 *ext_hdrs |= OFPIEH12_UNSEQ;
341 }
342 *ext_hdrs |= OFPIEH12_FRAG;
343 break;
344
345 case IPPROTO_ROUTING:
346 if (*ext_hdrs & OFPIEH12_ROUTER)
347 *ext_hdrs |= OFPIEH12_UNREP;
348 if ((*ext_hdrs & ~(OFPIEH12_HOP |
349 OFPIEH12_DEST |
350 OFPIEH12_UNREP)) ||
351 dest_options_header_count >= 2) {
352 *ext_hdrs |= OFPIEH12_UNSEQ;
353 }
354 *ext_hdrs |= OFPIEH12_ROUTER;
355 break;
356
357 case IPPROTO_HOPOPTS:
358 if (*ext_hdrs & OFPIEH12_HOP)
359 *ext_hdrs |= OFPIEH12_UNREP;
360 /* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
361 * extension header is present as the first
362 * extension header in the packet.
363 */
364 if (*ext_hdrs == 0)
365 *ext_hdrs |= OFPIEH12_HOP;
366 else
367 *ext_hdrs |= OFPIEH12_UNSEQ;
368 break;
369
370 default:
371 return;
372 }
373
374 hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
375 if (!hp)
376 break;
377 next_type = hp->nexthdr;
378 start += ipv6_optlen(hp);
379 }
380}
381
382static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
383{
384 unsigned short frag_off;
385 unsigned int payload_ofs = 0;
386 unsigned int nh_ofs = skb_network_offset(skb);
387 unsigned int nh_len;
388 struct ipv6hdr *nh;
389 int err, nexthdr, flags = 0;
390
391 err = check_header(skb, nh_ofs + sizeof(*nh));
392 if (unlikely(err))
393 return err;
394
395 nh = ipv6_hdr(skb);
396
397 get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
398
399 key->ip.proto = NEXTHDR_NONE;
400 key->ip.tos = ipv6_get_dsfield(nh);
401 key->ip.ttl = nh->hop_limit;
402 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
403 key->ipv6.addr.src = nh->saddr;
404 key->ipv6.addr.dst = nh->daddr;
405
406 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
407 if (flags & IP6_FH_F_FRAG) {
408 if (frag_off) {
409 key->ip.frag = OVS_FRAG_TYPE_LATER;
410 key->ip.proto = NEXTHDR_FRAGMENT;
411 return 0;
412 }
413 key->ip.frag = OVS_FRAG_TYPE_FIRST;
414 } else {
415 key->ip.frag = OVS_FRAG_TYPE_NONE;
416 }
417
418 /* Delayed handling of error in ipv6_find_hdr() as it
419 * always sets flags and frag_off to a valid value which may be
420 * used to set key->ip.frag above.
421 */
422 if (unlikely(nexthdr < 0))
423 return -EPROTO;
424
425 nh_len = payload_ofs - nh_ofs;
426 skb_set_transport_header(skb, nh_ofs + nh_len);
427 key->ip.proto = nexthdr;
428 return nh_len;
429}
430
431static bool icmp6hdr_ok(struct sk_buff *skb)
432{
433 return pskb_may_pull(skb, skb_transport_offset(skb) +
434 sizeof(struct icmp6hdr));
435}
436
437/**
438 * parse_vlan_tag - Parse vlan tag from vlan header.
439 * @skb: skb containing frame to parse
440 * @key_vh: pointer to parsed vlan tag
441 * @untag_vlan: should the vlan header be removed from the frame
442 *
443 * Return: ERROR on memory error.
444 * %0 if it encounters a non-vlan or incomplete packet.
445 * %1 after successfully parsing vlan tag.
446 */
447static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
448 bool untag_vlan)
449{
450 struct vlan_head *vh = (struct vlan_head *)skb->data;
451
452 if (likely(!eth_type_vlan(vh->tpid)))
453 return 0;
454
455 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
456 return 0;
457
458 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
459 sizeof(__be16))))
460 return -ENOMEM;
461
462 vh = (struct vlan_head *)skb->data;
463 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
464 key_vh->tpid = vh->tpid;
465
466 if (unlikely(untag_vlan)) {
467 int offset = skb->data - skb_mac_header(skb);
468 u16 tci;
469 int err;
470
471 __skb_push(skb, offset);
472 err = __skb_vlan_pop(skb, &tci);
473 __skb_pull(skb, offset);
474 if (err)
475 return err;
476 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
477 } else {
478 __skb_pull(skb, sizeof(struct vlan_head));
479 }
480 return 1;
481}
482
483static void clear_vlan(struct sw_flow_key *key)
484{
485 key->eth.vlan.tci = 0;
486 key->eth.vlan.tpid = 0;
487 key->eth.cvlan.tci = 0;
488 key->eth.cvlan.tpid = 0;
489}
490
491static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
492{
493 int res;
494
495 if (skb_vlan_tag_present(skb)) {
496 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
497 key->eth.vlan.tpid = skb->vlan_proto;
498 } else {
499 /* Parse outer vlan tag in the non-accelerated case. */
500 res = parse_vlan_tag(skb, &key->eth.vlan, true);
501 if (res <= 0)
502 return res;
503 }
504
505 /* Parse inner vlan tag. */
506 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
507 if (res <= 0)
508 return res;
509
510 return 0;
511}
512
513static __be16 parse_ethertype(struct sk_buff *skb)
514{
515 struct llc_snap_hdr {
516 u8 dsap; /* Always 0xAA */
517 u8 ssap; /* Always 0xAA */
518 u8 ctrl;
519 u8 oui[3];
520 __be16 ethertype;
521 };
522 struct llc_snap_hdr *llc;
523 __be16 proto;
524
525 proto = *(__be16 *) skb->data;
526 __skb_pull(skb, sizeof(__be16));
527
528 if (eth_proto_is_802_3(proto))
529 return proto;
530
531 if (skb->len < sizeof(struct llc_snap_hdr))
532 return htons(ETH_P_802_2);
533
534 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
535 return htons(0);
536
537 llc = (struct llc_snap_hdr *) skb->data;
538 if (llc->dsap != LLC_SAP_SNAP ||
539 llc->ssap != LLC_SAP_SNAP ||
540 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
541 return htons(ETH_P_802_2);
542
543 __skb_pull(skb, sizeof(struct llc_snap_hdr));
544
545 if (eth_proto_is_802_3(llc->ethertype))
546 return llc->ethertype;
547
548 return htons(ETH_P_802_2);
549}
550
551static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
552 int nh_len)
553{
554 struct icmp6hdr *icmp = icmp6_hdr(skb);
555
556 /* The ICMPv6 type and code fields use the 16-bit transport port
557 * fields, so we need to store them in 16-bit network byte order.
558 */
559 key->tp.src = htons(icmp->icmp6_type);
560 key->tp.dst = htons(icmp->icmp6_code);
561 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
562
563 if (icmp->icmp6_code == 0 &&
564 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
565 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
566 int icmp_len = skb->len - skb_transport_offset(skb);
567 struct nd_msg *nd;
568 int offset;
569
570 /* In order to process neighbor discovery options, we need the
571 * entire packet.
572 */
573 if (unlikely(icmp_len < sizeof(*nd)))
574 return 0;
575
576 if (unlikely(skb_linearize(skb)))
577 return -ENOMEM;
578
579 nd = (struct nd_msg *)skb_transport_header(skb);
580 key->ipv6.nd.target = nd->target;
581
582 icmp_len -= sizeof(*nd);
583 offset = 0;
584 while (icmp_len >= 8) {
585 struct nd_opt_hdr *nd_opt =
586 (struct nd_opt_hdr *)(nd->opt + offset);
587 int opt_len = nd_opt->nd_opt_len * 8;
588
589 if (unlikely(!opt_len || opt_len > icmp_len))
590 return 0;
591
592 /* Store the link layer address if the appropriate
593 * option is provided. It is considered an error if
594 * the same link layer option is specified twice.
595 */
596 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
597 && opt_len == 8) {
598 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
599 goto invalid;
600 ether_addr_copy(key->ipv6.nd.sll,
601 &nd->opt[offset+sizeof(*nd_opt)]);
602 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
603 && opt_len == 8) {
604 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
605 goto invalid;
606 ether_addr_copy(key->ipv6.nd.tll,
607 &nd->opt[offset+sizeof(*nd_opt)]);
608 }
609
610 icmp_len -= opt_len;
611 offset += opt_len;
612 }
613 }
614
615 return 0;
616
617invalid:
618 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
619 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
620 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
621
622 return 0;
623}
624
625static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
626{
627 struct nshhdr *nh;
628 unsigned int nh_ofs = skb_network_offset(skb);
629 u8 version, length;
630 int err;
631
632 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
633 if (unlikely(err))
634 return err;
635
636 nh = nsh_hdr(skb);
637 version = nsh_get_ver(nh);
638 length = nsh_hdr_len(nh);
639
640 if (version != 0)
641 return -EINVAL;
642
643 err = check_header(skb, nh_ofs + length);
644 if (unlikely(err))
645 return err;
646
647 nh = nsh_hdr(skb);
648 key->nsh.base.flags = nsh_get_flags(nh);
649 key->nsh.base.ttl = nsh_get_ttl(nh);
650 key->nsh.base.mdtype = nh->mdtype;
651 key->nsh.base.np = nh->np;
652 key->nsh.base.path_hdr = nh->path_hdr;
653 switch (key->nsh.base.mdtype) {
654 case NSH_M_TYPE1:
655 if (length != NSH_M_TYPE1_LEN)
656 return -EINVAL;
657 memcpy(key->nsh.context, nh->md1.context,
658 sizeof(nh->md1));
659 break;
660 case NSH_M_TYPE2:
661 memset(key->nsh.context, 0,
662 sizeof(nh->md1));
663 break;
664 default:
665 return -EINVAL;
666 }
667
668 return 0;
669}
670
671/**
672 * key_extract_l3l4 - extracts L3/L4 header information.
673 * @skb: sk_buff that contains the frame, with skb->data pointing to the
674 * L3 header
675 * @key: output flow key
676 *
677 * Return: %0 if successful, otherwise a negative errno value.
678 */
679static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
680{
681 int error;
682
683 /* Network layer. */
684 if (key->eth.type == htons(ETH_P_IP)) {
685 struct iphdr *nh;
686 __be16 offset;
687
688 error = check_iphdr(skb);
689 if (unlikely(error)) {
690 memset(&key->ip, 0, sizeof(key->ip));
691 memset(&key->ipv4, 0, sizeof(key->ipv4));
692 if (error == -EINVAL) {
693 skb->transport_header = skb->network_header;
694 error = 0;
695 }
696 return error;
697 }
698
699 nh = ip_hdr(skb);
700 key->ipv4.addr.src = nh->saddr;
701 key->ipv4.addr.dst = nh->daddr;
702
703 key->ip.proto = nh->protocol;
704 key->ip.tos = nh->tos;
705 key->ip.ttl = nh->ttl;
706
707 offset = nh->frag_off & htons(IP_OFFSET);
708 if (offset) {
709 key->ip.frag = OVS_FRAG_TYPE_LATER;
710 memset(&key->tp, 0, sizeof(key->tp));
711 return 0;
712 }
713 if (nh->frag_off & htons(IP_MF) ||
714 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
715 key->ip.frag = OVS_FRAG_TYPE_FIRST;
716 else
717 key->ip.frag = OVS_FRAG_TYPE_NONE;
718
719 /* Transport layer. */
720 if (key->ip.proto == IPPROTO_TCP) {
721 if (tcphdr_ok(skb)) {
722 struct tcphdr *tcp = tcp_hdr(skb);
723 key->tp.src = tcp->source;
724 key->tp.dst = tcp->dest;
725 key->tp.flags = TCP_FLAGS_BE16(tcp);
726 } else {
727 memset(&key->tp, 0, sizeof(key->tp));
728 }
729
730 } else if (key->ip.proto == IPPROTO_UDP) {
731 if (udphdr_ok(skb)) {
732 struct udphdr *udp = udp_hdr(skb);
733 key->tp.src = udp->source;
734 key->tp.dst = udp->dest;
735 } else {
736 memset(&key->tp, 0, sizeof(key->tp));
737 }
738 } else if (key->ip.proto == IPPROTO_SCTP) {
739 if (sctphdr_ok(skb)) {
740 struct sctphdr *sctp = sctp_hdr(skb);
741 key->tp.src = sctp->source;
742 key->tp.dst = sctp->dest;
743 } else {
744 memset(&key->tp, 0, sizeof(key->tp));
745 }
746 } else if (key->ip.proto == IPPROTO_ICMP) {
747 if (icmphdr_ok(skb)) {
748 struct icmphdr *icmp = icmp_hdr(skb);
749 /* The ICMP type and code fields use the 16-bit
750 * transport port fields, so we need to store
751 * them in 16-bit network byte order. */
752 key->tp.src = htons(icmp->type);
753 key->tp.dst = htons(icmp->code);
754 } else {
755 memset(&key->tp, 0, sizeof(key->tp));
756 }
757 }
758
759 } else if (key->eth.type == htons(ETH_P_ARP) ||
760 key->eth.type == htons(ETH_P_RARP)) {
761 struct arp_eth_header *arp;
762 bool arp_available = arphdr_ok(skb);
763
764 arp = (struct arp_eth_header *)skb_network_header(skb);
765
766 if (arp_available &&
767 arp->ar_hrd == htons(ARPHRD_ETHER) &&
768 arp->ar_pro == htons(ETH_P_IP) &&
769 arp->ar_hln == ETH_ALEN &&
770 arp->ar_pln == 4) {
771
772 /* We only match on the lower 8 bits of the opcode. */
773 if (ntohs(arp->ar_op) <= 0xff)
774 key->ip.proto = ntohs(arp->ar_op);
775 else
776 key->ip.proto = 0;
777
778 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
779 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
780 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
781 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
782 } else {
783 memset(&key->ip, 0, sizeof(key->ip));
784 memset(&key->ipv4, 0, sizeof(key->ipv4));
785 }
786 } else if (eth_p_mpls(key->eth.type)) {
787 u8 label_count = 1;
788
789 memset(&key->mpls, 0, sizeof(key->mpls));
790 skb_set_inner_network_header(skb, skb->mac_len);
791 while (1) {
792 __be32 lse;
793
794 error = check_header(skb, skb->mac_len +
795 label_count * MPLS_HLEN);
796 if (unlikely(error))
797 return 0;
798
799 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
800
801 if (label_count <= MPLS_LABEL_DEPTH)
802 memcpy(&key->mpls.lse[label_count - 1], &lse,
803 MPLS_HLEN);
804
805 skb_set_inner_network_header(skb, skb->mac_len +
806 label_count * MPLS_HLEN);
807 if (lse & htonl(MPLS_LS_S_MASK))
808 break;
809
810 label_count++;
811 }
812 if (label_count > MPLS_LABEL_DEPTH)
813 label_count = MPLS_LABEL_DEPTH;
814
815 key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
816 } else if (key->eth.type == htons(ETH_P_IPV6)) {
817 int nh_len; /* IPv6 Header + Extensions */
818
819 nh_len = parse_ipv6hdr(skb, key);
820 if (unlikely(nh_len < 0)) {
821 switch (nh_len) {
822 case -EINVAL:
823 memset(&key->ip, 0, sizeof(key->ip));
824 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
825 fallthrough;
826 case -EPROTO:
827 skb->transport_header = skb->network_header;
828 error = 0;
829 break;
830 default:
831 error = nh_len;
832 }
833 return error;
834 }
835
836 if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
837 memset(&key->tp, 0, sizeof(key->tp));
838 return 0;
839 }
840 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
841 key->ip.frag = OVS_FRAG_TYPE_FIRST;
842
843 /* Transport layer. */
844 if (key->ip.proto == NEXTHDR_TCP) {
845 if (tcphdr_ok(skb)) {
846 struct tcphdr *tcp = tcp_hdr(skb);
847 key->tp.src = tcp->source;
848 key->tp.dst = tcp->dest;
849 key->tp.flags = TCP_FLAGS_BE16(tcp);
850 } else {
851 memset(&key->tp, 0, sizeof(key->tp));
852 }
853 } else if (key->ip.proto == NEXTHDR_UDP) {
854 if (udphdr_ok(skb)) {
855 struct udphdr *udp = udp_hdr(skb);
856 key->tp.src = udp->source;
857 key->tp.dst = udp->dest;
858 } else {
859 memset(&key->tp, 0, sizeof(key->tp));
860 }
861 } else if (key->ip.proto == NEXTHDR_SCTP) {
862 if (sctphdr_ok(skb)) {
863 struct sctphdr *sctp = sctp_hdr(skb);
864 key->tp.src = sctp->source;
865 key->tp.dst = sctp->dest;
866 } else {
867 memset(&key->tp, 0, sizeof(key->tp));
868 }
869 } else if (key->ip.proto == NEXTHDR_ICMP) {
870 if (icmp6hdr_ok(skb)) {
871 error = parse_icmpv6(skb, key, nh_len);
872 if (error)
873 return error;
874 } else {
875 memset(&key->tp, 0, sizeof(key->tp));
876 }
877 }
878 } else if (key->eth.type == htons(ETH_P_NSH)) {
879 error = parse_nsh(skb, key);
880 if (error)
881 return error;
882 }
883 return 0;
884}
885
886/**
887 * key_extract - extracts a flow key from an Ethernet frame.
888 * @skb: sk_buff that contains the frame, with skb->data pointing to the
889 * Ethernet header
890 * @key: output flow key
891 *
892 * The caller must ensure that skb->len >= ETH_HLEN.
893 *
894 * Initializes @skb header fields as follows:
895 *
896 * - skb->mac_header: the L2 header.
897 *
898 * - skb->network_header: just past the L2 header, or just past the
899 * VLAN header, to the first byte of the L2 payload.
900 *
901 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
902 * on output, then just past the IP header, if one is present and
903 * of a correct length, otherwise the same as skb->network_header.
904 * For other key->eth.type values it is left untouched.
905 *
906 * - skb->protocol: the type of the data starting at skb->network_header.
907 * Equals to key->eth.type.
908 *
909 * Return: %0 if successful, otherwise a negative errno value.
910 */
911static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
912{
913 struct ethhdr *eth;
914
915 /* Flags are always used as part of stats */
916 key->tp.flags = 0;
917
918 skb_reset_mac_header(skb);
919
920 /* Link layer. */
921 clear_vlan(key);
922 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
923 if (unlikely(eth_type_vlan(skb->protocol)))
924 return -EINVAL;
925
926 skb_reset_network_header(skb);
927 key->eth.type = skb->protocol;
928 } else {
929 eth = eth_hdr(skb);
930 ether_addr_copy(key->eth.src, eth->h_source);
931 ether_addr_copy(key->eth.dst, eth->h_dest);
932
933 __skb_pull(skb, 2 * ETH_ALEN);
934 /* We are going to push all headers that we pull, so no need to
935 * update skb->csum here.
936 */
937
938 if (unlikely(parse_vlan(skb, key)))
939 return -ENOMEM;
940
941 key->eth.type = parse_ethertype(skb);
942 if (unlikely(key->eth.type == htons(0)))
943 return -ENOMEM;
944
945 /* Multiple tagged packets need to retain TPID to satisfy
946 * skb_vlan_pop(), which will later shift the ethertype into
947 * skb->protocol.
948 */
949 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
950 skb->protocol = key->eth.cvlan.tpid;
951 else
952 skb->protocol = key->eth.type;
953
954 skb_reset_network_header(skb);
955 __skb_push(skb, skb->data - skb_mac_header(skb));
956 }
957
958 skb_reset_mac_len(skb);
959
960 /* Fill out L3/L4 key info, if any */
961 return key_extract_l3l4(skb, key);
962}
963
964/* In the case of conntrack fragment handling it expects L3 headers,
965 * add a helper.
966 */
967int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
968{
969 return key_extract_l3l4(skb, key);
970}
971
972int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
973{
974 int res;
975
976 res = key_extract(skb, key);
977 if (!res)
978 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
979
980 return res;
981}
982
983static int key_extract_mac_proto(struct sk_buff *skb)
984{
985 switch (skb->dev->type) {
986 case ARPHRD_ETHER:
987 return MAC_PROTO_ETHERNET;
988 case ARPHRD_NONE:
989 if (skb->protocol == htons(ETH_P_TEB))
990 return MAC_PROTO_ETHERNET;
991 return MAC_PROTO_NONE;
992 }
993 WARN_ON_ONCE(1);
994 return -EINVAL;
995}
996
997int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
998 struct sk_buff *skb, struct sw_flow_key *key)
999{
1000#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1001 struct tc_skb_ext *tc_ext;
1002#endif
1003 bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
1004 int res, err;
1005 u16 zone = 0;
1006
1007 /* Extract metadata from packet. */
1008 if (tun_info) {
1009 key->tun_proto = ip_tunnel_info_af(tun_info);
1010 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
1011
1012 if (tun_info->options_len) {
1013 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
1014 8)) - 1
1015 > sizeof(key->tun_opts));
1016
1017 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
1018 tun_info);
1019 key->tun_opts_len = tun_info->options_len;
1020 } else {
1021 key->tun_opts_len = 0;
1022 }
1023 } else {
1024 key->tun_proto = 0;
1025 key->tun_opts_len = 0;
1026 memset(&key->tun_key, 0, sizeof(key->tun_key));
1027 }
1028
1029 key->phy.priority = skb->priority;
1030 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
1031 key->phy.skb_mark = skb->mark;
1032 key->ovs_flow_hash = 0;
1033 res = key_extract_mac_proto(skb);
1034 if (res < 0)
1035 return res;
1036 key->mac_proto = res;
1037
1038#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1039 if (tc_skb_ext_tc_enabled()) {
1040 tc_ext = skb_ext_find(skb, TC_SKB_EXT);
1041 key->recirc_id = tc_ext ? tc_ext->chain : 0;
1042 OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
1043 post_ct = tc_ext ? tc_ext->post_ct : false;
1044 post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
1045 post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
1046 zone = post_ct ? tc_ext->zone : 0;
1047 } else {
1048 key->recirc_id = 0;
1049 }
1050#else
1051 key->recirc_id = 0;
1052#endif
1053
1054 err = key_extract(skb, key);
1055 if (!err) {
1056 ovs_ct_fill_key(skb, key, post_ct); /* Must be after key_extract(). */
1057 if (post_ct) {
1058 if (!skb_get_nfct(skb)) {
1059 key->ct_zone = zone;
1060 } else {
1061 if (!post_ct_dnat)
1062 key->ct_state &= ~OVS_CS_F_DST_NAT;
1063 if (!post_ct_snat)
1064 key->ct_state &= ~OVS_CS_F_SRC_NAT;
1065 }
1066 }
1067 }
1068 return err;
1069}
1070
1071int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
1072 struct sk_buff *skb,
1073 struct sw_flow_key *key, bool log)
1074{
1075 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1076 u64 attrs = 0;
1077 int err;
1078
1079 err = parse_flow_nlattrs(attr, a, &attrs, log);
1080 if (err)
1081 return -EINVAL;
1082
1083 /* Extract metadata from netlink attributes. */
1084 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
1085 if (err)
1086 return err;
1087
1088 /* key_extract assumes that skb->protocol is set-up for
1089 * layer 3 packets which is the case for other callers,
1090 * in particular packets received from the network stack.
1091 * Here the correct value can be set from the metadata
1092 * extracted above.
1093 * For L2 packet key eth type would be zero. skb protocol
1094 * would be set to correct value later during key-extact.
1095 */
1096
1097 skb->protocol = key->eth.type;
1098 err = key_extract(skb, key);
1099 if (err)
1100 return err;
1101
1102 /* Check that we have conntrack original direction tuple metadata only
1103 * for packets for which it makes sense. Otherwise the key may be
1104 * corrupted due to overlapping key fields.
1105 */
1106 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
1107 key->eth.type != htons(ETH_P_IP))
1108 return -EINVAL;
1109 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
1110 (key->eth.type != htons(ETH_P_IPV6) ||
1111 sw_flow_key_is_nd(key)))
1112 return -EINVAL;
1113
1114 return 0;
1115}