Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2007-2014 Nicira, Inc.
  4 */
  5
  6#include <linux/uaccess.h>
  7#include <linux/netdevice.h>
  8#include <linux/etherdevice.h>
  9#include <linux/if_ether.h>
 10#include <linux/if_vlan.h>
 11#include <net/llc_pdu.h>
 12#include <linux/kernel.h>
 13#include <linux/jhash.h>
 14#include <linux/jiffies.h>
 15#include <linux/llc.h>
 16#include <linux/module.h>
 17#include <linux/in.h>
 18#include <linux/rcupdate.h>
 19#include <linux/cpumask.h>
 20#include <linux/if_arp.h>
 21#include <linux/ip.h>
 22#include <linux/ipv6.h>
 23#include <linux/mpls.h>
 24#include <linux/sctp.h>
 25#include <linux/smp.h>
 26#include <linux/tcp.h>
 27#include <linux/udp.h>
 28#include <linux/icmp.h>
 29#include <linux/icmpv6.h>
 30#include <linux/rculist.h>
 31#include <net/ip.h>
 32#include <net/ip_tunnels.h>
 33#include <net/ipv6.h>
 34#include <net/mpls.h>
 35#include <net/ndisc.h>
 36#include <net/nsh.h>
 
 
 37
 38#include "conntrack.h"
 39#include "datapath.h"
 40#include "flow.h"
 41#include "flow_netlink.h"
 42#include "vport.h"
 43
 44u64 ovs_flow_used_time(unsigned long flow_jiffies)
 45{
 46	struct timespec64 cur_ts;
 47	u64 cur_ms, idle_ms;
 48
 49	ktime_get_ts64(&cur_ts);
 50	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 51	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
 52		 cur_ts.tv_nsec / NSEC_PER_MSEC;
 53
 54	return cur_ms - idle_ms;
 55}
 56
 57#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
 58
 59void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
 60			   const struct sk_buff *skb)
 61{
 62	struct sw_flow_stats *stats;
 63	unsigned int cpu = smp_processor_id();
 64	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
 65
 66	stats = rcu_dereference(flow->stats[cpu]);
 67
 68	/* Check if already have CPU-specific stats. */
 69	if (likely(stats)) {
 70		spin_lock(&stats->lock);
 71		/* Mark if we write on the pre-allocated stats. */
 72		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
 73			flow->stats_last_writer = cpu;
 74	} else {
 75		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
 76		spin_lock(&stats->lock);
 77
 78		/* If the current CPU is the only writer on the
 79		 * pre-allocated stats keep using them.
 80		 */
 81		if (unlikely(flow->stats_last_writer != cpu)) {
 82			/* A previous locker may have already allocated the
 83			 * stats, so we need to check again.  If CPU-specific
 84			 * stats were already allocated, we update the pre-
 85			 * allocated stats as we have already locked them.
 86			 */
 87			if (likely(flow->stats_last_writer != -1) &&
 88			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
 89				/* Try to allocate CPU-specific stats. */
 90				struct sw_flow_stats *new_stats;
 91
 92				new_stats =
 93					kmem_cache_alloc_node(flow_stats_cache,
 94							      GFP_NOWAIT |
 95							      __GFP_THISNODE |
 96							      __GFP_NOWARN |
 97							      __GFP_NOMEMALLOC,
 98							      numa_node_id());
 99				if (likely(new_stats)) {
100					new_stats->used = jiffies;
101					new_stats->packet_count = 1;
102					new_stats->byte_count = len;
103					new_stats->tcp_flags = tcp_flags;
104					spin_lock_init(&new_stats->lock);
105
106					rcu_assign_pointer(flow->stats[cpu],
107							   new_stats);
108					cpumask_set_cpu(cpu, &flow->cpu_used_mask);
109					goto unlock;
110				}
111			}
112			flow->stats_last_writer = cpu;
113		}
114	}
115
116	stats->used = jiffies;
117	stats->packet_count++;
118	stats->byte_count += len;
119	stats->tcp_flags |= tcp_flags;
120unlock:
121	spin_unlock(&stats->lock);
122}
123
124/* Must be called with rcu_read_lock or ovs_mutex. */
125void ovs_flow_stats_get(const struct sw_flow *flow,
126			struct ovs_flow_stats *ovs_stats,
127			unsigned long *used, __be16 *tcp_flags)
128{
129	int cpu;
130
131	*used = 0;
132	*tcp_flags = 0;
133	memset(ovs_stats, 0, sizeof(*ovs_stats));
134
135	/* We open code this to make sure cpu 0 is always considered */
136	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
137		struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
138
139		if (stats) {
140			/* Local CPU may write on non-local stats, so we must
141			 * block bottom-halves here.
142			 */
143			spin_lock_bh(&stats->lock);
144			if (!*used || time_after(stats->used, *used))
145				*used = stats->used;
146			*tcp_flags |= stats->tcp_flags;
147			ovs_stats->n_packets += stats->packet_count;
148			ovs_stats->n_bytes += stats->byte_count;
149			spin_unlock_bh(&stats->lock);
150		}
151	}
152}
153
154/* Called with ovs_mutex. */
155void ovs_flow_stats_clear(struct sw_flow *flow)
156{
157	int cpu;
158
159	/* We open code this to make sure cpu 0 is always considered */
160	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
161		struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
162
163		if (stats) {
164			spin_lock_bh(&stats->lock);
165			stats->used = 0;
166			stats->packet_count = 0;
167			stats->byte_count = 0;
168			stats->tcp_flags = 0;
169			spin_unlock_bh(&stats->lock);
170		}
171	}
172}
173
174static int check_header(struct sk_buff *skb, int len)
175{
176	if (unlikely(skb->len < len))
177		return -EINVAL;
178	if (unlikely(!pskb_may_pull(skb, len)))
179		return -ENOMEM;
180	return 0;
181}
182
183static bool arphdr_ok(struct sk_buff *skb)
184{
185	return pskb_may_pull(skb, skb_network_offset(skb) +
186				  sizeof(struct arp_eth_header));
187}
188
189static int check_iphdr(struct sk_buff *skb)
190{
191	unsigned int nh_ofs = skb_network_offset(skb);
192	unsigned int ip_len;
193	int err;
194
195	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
196	if (unlikely(err))
197		return err;
198
199	ip_len = ip_hdrlen(skb);
200	if (unlikely(ip_len < sizeof(struct iphdr) ||
201		     skb->len < nh_ofs + ip_len))
202		return -EINVAL;
203
204	skb_set_transport_header(skb, nh_ofs + ip_len);
205	return 0;
206}
207
208static bool tcphdr_ok(struct sk_buff *skb)
209{
210	int th_ofs = skb_transport_offset(skb);
211	int tcp_len;
212
213	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
214		return false;
215
216	tcp_len = tcp_hdrlen(skb);
217	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
218		     skb->len < th_ofs + tcp_len))
219		return false;
220
221	return true;
222}
223
224static bool udphdr_ok(struct sk_buff *skb)
225{
226	return pskb_may_pull(skb, skb_transport_offset(skb) +
227				  sizeof(struct udphdr));
228}
229
230static bool sctphdr_ok(struct sk_buff *skb)
231{
232	return pskb_may_pull(skb, skb_transport_offset(skb) +
233				  sizeof(struct sctphdr));
234}
235
236static bool icmphdr_ok(struct sk_buff *skb)
237{
238	return pskb_may_pull(skb, skb_transport_offset(skb) +
239				  sizeof(struct icmphdr));
240}
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
243{
244	unsigned short frag_off;
245	unsigned int payload_ofs = 0;
246	unsigned int nh_ofs = skb_network_offset(skb);
247	unsigned int nh_len;
248	struct ipv6hdr *nh;
249	int err, nexthdr, flags = 0;
250
251	err = check_header(skb, nh_ofs + sizeof(*nh));
252	if (unlikely(err))
253		return err;
254
255	nh = ipv6_hdr(skb);
256
 
 
257	key->ip.proto = NEXTHDR_NONE;
258	key->ip.tos = ipv6_get_dsfield(nh);
259	key->ip.ttl = nh->hop_limit;
260	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
261	key->ipv6.addr.src = nh->saddr;
262	key->ipv6.addr.dst = nh->daddr;
263
264	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
265	if (flags & IP6_FH_F_FRAG) {
266		if (frag_off) {
267			key->ip.frag = OVS_FRAG_TYPE_LATER;
268			key->ip.proto = nexthdr;
269			return 0;
270		}
271		key->ip.frag = OVS_FRAG_TYPE_FIRST;
272	} else {
273		key->ip.frag = OVS_FRAG_TYPE_NONE;
274	}
275
276	/* Delayed handling of error in ipv6_find_hdr() as it
277	 * always sets flags and frag_off to a valid value which may be
278	 * used to set key->ip.frag above.
279	 */
280	if (unlikely(nexthdr < 0))
281		return -EPROTO;
282
283	nh_len = payload_ofs - nh_ofs;
284	skb_set_transport_header(skb, nh_ofs + nh_len);
285	key->ip.proto = nexthdr;
286	return nh_len;
287}
288
289static bool icmp6hdr_ok(struct sk_buff *skb)
290{
291	return pskb_may_pull(skb, skb_transport_offset(skb) +
292				  sizeof(struct icmp6hdr));
293}
294
295/**
296 * Parse vlan tag from vlan header.
297 * Returns ERROR on memory error.
298 * Returns 0 if it encounters a non-vlan or incomplete packet.
299 * Returns 1 after successfully parsing vlan tag.
 
 
 
 
300 */
301static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
302			  bool untag_vlan)
303{
304	struct vlan_head *vh = (struct vlan_head *)skb->data;
305
306	if (likely(!eth_type_vlan(vh->tpid)))
307		return 0;
308
309	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
310		return 0;
311
312	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
313				 sizeof(__be16))))
314		return -ENOMEM;
315
316	vh = (struct vlan_head *)skb->data;
317	key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
318	key_vh->tpid = vh->tpid;
319
320	if (unlikely(untag_vlan)) {
321		int offset = skb->data - skb_mac_header(skb);
322		u16 tci;
323		int err;
324
325		__skb_push(skb, offset);
326		err = __skb_vlan_pop(skb, &tci);
327		__skb_pull(skb, offset);
328		if (err)
329			return err;
330		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
331	} else {
332		__skb_pull(skb, sizeof(struct vlan_head));
333	}
334	return 1;
335}
336
337static void clear_vlan(struct sw_flow_key *key)
338{
339	key->eth.vlan.tci = 0;
340	key->eth.vlan.tpid = 0;
341	key->eth.cvlan.tci = 0;
342	key->eth.cvlan.tpid = 0;
343}
344
345static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
346{
347	int res;
348
349	if (skb_vlan_tag_present(skb)) {
350		key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
351		key->eth.vlan.tpid = skb->vlan_proto;
352	} else {
353		/* Parse outer vlan tag in the non-accelerated case. */
354		res = parse_vlan_tag(skb, &key->eth.vlan, true);
355		if (res <= 0)
356			return res;
357	}
358
359	/* Parse inner vlan tag. */
360	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
361	if (res <= 0)
362		return res;
363
364	return 0;
365}
366
367static __be16 parse_ethertype(struct sk_buff *skb)
368{
369	struct llc_snap_hdr {
370		u8  dsap;  /* Always 0xAA */
371		u8  ssap;  /* Always 0xAA */
372		u8  ctrl;
373		u8  oui[3];
374		__be16 ethertype;
375	};
376	struct llc_snap_hdr *llc;
377	__be16 proto;
378
379	proto = *(__be16 *) skb->data;
380	__skb_pull(skb, sizeof(__be16));
381
382	if (eth_proto_is_802_3(proto))
383		return proto;
384
385	if (skb->len < sizeof(struct llc_snap_hdr))
386		return htons(ETH_P_802_2);
387
388	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
389		return htons(0);
390
391	llc = (struct llc_snap_hdr *) skb->data;
392	if (llc->dsap != LLC_SAP_SNAP ||
393	    llc->ssap != LLC_SAP_SNAP ||
394	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
395		return htons(ETH_P_802_2);
396
397	__skb_pull(skb, sizeof(struct llc_snap_hdr));
398
399	if (eth_proto_is_802_3(llc->ethertype))
400		return llc->ethertype;
401
402	return htons(ETH_P_802_2);
403}
404
405static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
406			int nh_len)
407{
408	struct icmp6hdr *icmp = icmp6_hdr(skb);
409
410	/* The ICMPv6 type and code fields use the 16-bit transport port
411	 * fields, so we need to store them in 16-bit network byte order.
412	 */
413	key->tp.src = htons(icmp->icmp6_type);
414	key->tp.dst = htons(icmp->icmp6_code);
415	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
416
417	if (icmp->icmp6_code == 0 &&
418	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
419	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
420		int icmp_len = skb->len - skb_transport_offset(skb);
421		struct nd_msg *nd;
422		int offset;
423
424		/* In order to process neighbor discovery options, we need the
425		 * entire packet.
426		 */
427		if (unlikely(icmp_len < sizeof(*nd)))
428			return 0;
429
430		if (unlikely(skb_linearize(skb)))
431			return -ENOMEM;
432
433		nd = (struct nd_msg *)skb_transport_header(skb);
434		key->ipv6.nd.target = nd->target;
435
436		icmp_len -= sizeof(*nd);
437		offset = 0;
438		while (icmp_len >= 8) {
439			struct nd_opt_hdr *nd_opt =
440				 (struct nd_opt_hdr *)(nd->opt + offset);
441			int opt_len = nd_opt->nd_opt_len * 8;
442
443			if (unlikely(!opt_len || opt_len > icmp_len))
444				return 0;
445
446			/* Store the link layer address if the appropriate
447			 * option is provided.  It is considered an error if
448			 * the same link layer option is specified twice.
449			 */
450			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
451			    && opt_len == 8) {
452				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
453					goto invalid;
454				ether_addr_copy(key->ipv6.nd.sll,
455						&nd->opt[offset+sizeof(*nd_opt)]);
456			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
457				   && opt_len == 8) {
458				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
459					goto invalid;
460				ether_addr_copy(key->ipv6.nd.tll,
461						&nd->opt[offset+sizeof(*nd_opt)]);
462			}
463
464			icmp_len -= opt_len;
465			offset += opt_len;
466		}
467	}
468
469	return 0;
470
471invalid:
472	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
473	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
474	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
475
476	return 0;
477}
478
479static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
480{
481	struct nshhdr *nh;
482	unsigned int nh_ofs = skb_network_offset(skb);
483	u8 version, length;
484	int err;
485
486	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
487	if (unlikely(err))
488		return err;
489
490	nh = nsh_hdr(skb);
491	version = nsh_get_ver(nh);
492	length = nsh_hdr_len(nh);
493
494	if (version != 0)
495		return -EINVAL;
496
497	err = check_header(skb, nh_ofs + length);
498	if (unlikely(err))
499		return err;
500
501	nh = nsh_hdr(skb);
502	key->nsh.base.flags = nsh_get_flags(nh);
503	key->nsh.base.ttl = nsh_get_ttl(nh);
504	key->nsh.base.mdtype = nh->mdtype;
505	key->nsh.base.np = nh->np;
506	key->nsh.base.path_hdr = nh->path_hdr;
507	switch (key->nsh.base.mdtype) {
508	case NSH_M_TYPE1:
509		if (length != NSH_M_TYPE1_LEN)
510			return -EINVAL;
511		memcpy(key->nsh.context, nh->md1.context,
512		       sizeof(nh->md1));
513		break;
514	case NSH_M_TYPE2:
515		memset(key->nsh.context, 0,
516		       sizeof(nh->md1));
517		break;
518	default:
519		return -EINVAL;
520	}
521
522	return 0;
523}
524
525/**
526 * key_extract_l3l4 - extracts L3/L4 header information.
527 * @skb: sk_buff that contains the frame, with skb->data pointing to the
528 *       L3 header
529 * @key: output flow key
530 *
 
531 */
532static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
533{
534	int error;
535
536	/* Network layer. */
537	if (key->eth.type == htons(ETH_P_IP)) {
538		struct iphdr *nh;
539		__be16 offset;
540
541		error = check_iphdr(skb);
542		if (unlikely(error)) {
543			memset(&key->ip, 0, sizeof(key->ip));
544			memset(&key->ipv4, 0, sizeof(key->ipv4));
545			if (error == -EINVAL) {
546				skb->transport_header = skb->network_header;
547				error = 0;
548			}
549			return error;
550		}
551
552		nh = ip_hdr(skb);
553		key->ipv4.addr.src = nh->saddr;
554		key->ipv4.addr.dst = nh->daddr;
555
556		key->ip.proto = nh->protocol;
557		key->ip.tos = nh->tos;
558		key->ip.ttl = nh->ttl;
559
560		offset = nh->frag_off & htons(IP_OFFSET);
561		if (offset) {
562			key->ip.frag = OVS_FRAG_TYPE_LATER;
563			memset(&key->tp, 0, sizeof(key->tp));
564			return 0;
565		}
566		if (nh->frag_off & htons(IP_MF) ||
567			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
568			key->ip.frag = OVS_FRAG_TYPE_FIRST;
569		else
570			key->ip.frag = OVS_FRAG_TYPE_NONE;
571
572		/* Transport layer. */
573		if (key->ip.proto == IPPROTO_TCP) {
574			if (tcphdr_ok(skb)) {
575				struct tcphdr *tcp = tcp_hdr(skb);
576				key->tp.src = tcp->source;
577				key->tp.dst = tcp->dest;
578				key->tp.flags = TCP_FLAGS_BE16(tcp);
579			} else {
580				memset(&key->tp, 0, sizeof(key->tp));
581			}
582
583		} else if (key->ip.proto == IPPROTO_UDP) {
584			if (udphdr_ok(skb)) {
585				struct udphdr *udp = udp_hdr(skb);
586				key->tp.src = udp->source;
587				key->tp.dst = udp->dest;
588			} else {
589				memset(&key->tp, 0, sizeof(key->tp));
590			}
591		} else if (key->ip.proto == IPPROTO_SCTP) {
592			if (sctphdr_ok(skb)) {
593				struct sctphdr *sctp = sctp_hdr(skb);
594				key->tp.src = sctp->source;
595				key->tp.dst = sctp->dest;
596			} else {
597				memset(&key->tp, 0, sizeof(key->tp));
598			}
599		} else if (key->ip.proto == IPPROTO_ICMP) {
600			if (icmphdr_ok(skb)) {
601				struct icmphdr *icmp = icmp_hdr(skb);
602				/* The ICMP type and code fields use the 16-bit
603				 * transport port fields, so we need to store
604				 * them in 16-bit network byte order. */
605				key->tp.src = htons(icmp->type);
606				key->tp.dst = htons(icmp->code);
607			} else {
608				memset(&key->tp, 0, sizeof(key->tp));
609			}
610		}
611
612	} else if (key->eth.type == htons(ETH_P_ARP) ||
613		   key->eth.type == htons(ETH_P_RARP)) {
614		struct arp_eth_header *arp;
615		bool arp_available = arphdr_ok(skb);
616
617		arp = (struct arp_eth_header *)skb_network_header(skb);
618
619		if (arp_available &&
620		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
621		    arp->ar_pro == htons(ETH_P_IP) &&
622		    arp->ar_hln == ETH_ALEN &&
623		    arp->ar_pln == 4) {
624
625			/* We only match on the lower 8 bits of the opcode. */
626			if (ntohs(arp->ar_op) <= 0xff)
627				key->ip.proto = ntohs(arp->ar_op);
628			else
629				key->ip.proto = 0;
630
631			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
632			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
633			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
634			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
635		} else {
636			memset(&key->ip, 0, sizeof(key->ip));
637			memset(&key->ipv4, 0, sizeof(key->ipv4));
638		}
639	} else if (eth_p_mpls(key->eth.type)) {
640		size_t stack_len = MPLS_HLEN;
641
 
642		skb_set_inner_network_header(skb, skb->mac_len);
643		while (1) {
644			__be32 lse;
645
646			error = check_header(skb, skb->mac_len + stack_len);
 
647			if (unlikely(error))
648				return 0;
649
650			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
651
652			if (stack_len == MPLS_HLEN)
653				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
 
654
655			skb_set_inner_network_header(skb, skb->mac_len + stack_len);
 
656			if (lse & htonl(MPLS_LS_S_MASK))
657				break;
658
659			stack_len += MPLS_HLEN;
660		}
 
 
 
 
661	} else if (key->eth.type == htons(ETH_P_IPV6)) {
662		int nh_len;             /* IPv6 Header + Extensions */
663
664		nh_len = parse_ipv6hdr(skb, key);
665		if (unlikely(nh_len < 0)) {
666			switch (nh_len) {
667			case -EINVAL:
668				memset(&key->ip, 0, sizeof(key->ip));
669				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
670				/* fall-through */
671			case -EPROTO:
672				skb->transport_header = skb->network_header;
673				error = 0;
674				break;
675			default:
676				error = nh_len;
677			}
678			return error;
679		}
680
681		if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
682			memset(&key->tp, 0, sizeof(key->tp));
683			return 0;
684		}
685		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
686			key->ip.frag = OVS_FRAG_TYPE_FIRST;
687
688		/* Transport layer. */
689		if (key->ip.proto == NEXTHDR_TCP) {
690			if (tcphdr_ok(skb)) {
691				struct tcphdr *tcp = tcp_hdr(skb);
692				key->tp.src = tcp->source;
693				key->tp.dst = tcp->dest;
694				key->tp.flags = TCP_FLAGS_BE16(tcp);
695			} else {
696				memset(&key->tp, 0, sizeof(key->tp));
697			}
698		} else if (key->ip.proto == NEXTHDR_UDP) {
699			if (udphdr_ok(skb)) {
700				struct udphdr *udp = udp_hdr(skb);
701				key->tp.src = udp->source;
702				key->tp.dst = udp->dest;
703			} else {
704				memset(&key->tp, 0, sizeof(key->tp));
705			}
706		} else if (key->ip.proto == NEXTHDR_SCTP) {
707			if (sctphdr_ok(skb)) {
708				struct sctphdr *sctp = sctp_hdr(skb);
709				key->tp.src = sctp->source;
710				key->tp.dst = sctp->dest;
711			} else {
712				memset(&key->tp, 0, sizeof(key->tp));
713			}
714		} else if (key->ip.proto == NEXTHDR_ICMP) {
715			if (icmp6hdr_ok(skb)) {
716				error = parse_icmpv6(skb, key, nh_len);
717				if (error)
718					return error;
719			} else {
720				memset(&key->tp, 0, sizeof(key->tp));
721			}
722		}
723	} else if (key->eth.type == htons(ETH_P_NSH)) {
724		error = parse_nsh(skb, key);
725		if (error)
726			return error;
727	}
728	return 0;
729}
730
731/**
732 * key_extract - extracts a flow key from an Ethernet frame.
733 * @skb: sk_buff that contains the frame, with skb->data pointing to the
734 * Ethernet header
735 * @key: output flow key
736 *
737 * The caller must ensure that skb->len >= ETH_HLEN.
738 *
739 * Returns 0 if successful, otherwise a negative errno value.
740 *
741 * Initializes @skb header fields as follows:
742 *
743 *    - skb->mac_header: the L2 header.
744 *
745 *    - skb->network_header: just past the L2 header, or just past the
746 *      VLAN header, to the first byte of the L2 payload.
747 *
748 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
749 *      on output, then just past the IP header, if one is present and
750 *      of a correct length, otherwise the same as skb->network_header.
751 *      For other key->eth.type values it is left untouched.
752 *
753 *    - skb->protocol: the type of the data starting at skb->network_header.
754 *      Equals to key->eth.type.
 
 
755 */
756static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
757{
758	struct ethhdr *eth;
759
760	/* Flags are always used as part of stats */
761	key->tp.flags = 0;
762
763	skb_reset_mac_header(skb);
764
765	/* Link layer. */
766	clear_vlan(key);
767	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
768		if (unlikely(eth_type_vlan(skb->protocol)))
769			return -EINVAL;
770
771		skb_reset_network_header(skb);
772		key->eth.type = skb->protocol;
773	} else {
774		eth = eth_hdr(skb);
775		ether_addr_copy(key->eth.src, eth->h_source);
776		ether_addr_copy(key->eth.dst, eth->h_dest);
777
778		__skb_pull(skb, 2 * ETH_ALEN);
779		/* We are going to push all headers that we pull, so no need to
780		 * update skb->csum here.
781		 */
782
783		if (unlikely(parse_vlan(skb, key)))
784			return -ENOMEM;
785
786		key->eth.type = parse_ethertype(skb);
787		if (unlikely(key->eth.type == htons(0)))
788			return -ENOMEM;
789
790		/* Multiple tagged packets need to retain TPID to satisfy
791		 * skb_vlan_pop(), which will later shift the ethertype into
792		 * skb->protocol.
793		 */
794		if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
795			skb->protocol = key->eth.cvlan.tpid;
796		else
797			skb->protocol = key->eth.type;
798
799		skb_reset_network_header(skb);
800		__skb_push(skb, skb->data - skb_mac_header(skb));
801	}
802
803	skb_reset_mac_len(skb);
804
805	/* Fill out L3/L4 key info, if any */
806	return key_extract_l3l4(skb, key);
807}
808
809/* In the case of conntrack fragment handling it expects L3 headers,
810 * add a helper.
811 */
812int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
813{
814	return key_extract_l3l4(skb, key);
815}
816
817int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
818{
819	int res;
820
821	res = key_extract(skb, key);
822	if (!res)
823		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
824
825	return res;
826}
827
828static int key_extract_mac_proto(struct sk_buff *skb)
829{
830	switch (skb->dev->type) {
831	case ARPHRD_ETHER:
832		return MAC_PROTO_ETHERNET;
833	case ARPHRD_NONE:
834		if (skb->protocol == htons(ETH_P_TEB))
835			return MAC_PROTO_ETHERNET;
836		return MAC_PROTO_NONE;
837	}
838	WARN_ON_ONCE(1);
839	return -EINVAL;
840}
841
842int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
843			 struct sk_buff *skb, struct sw_flow_key *key)
844{
845#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
846	struct tc_skb_ext *tc_ext;
847#endif
 
848	int res, err;
 
849
850	/* Extract metadata from packet. */
851	if (tun_info) {
852		key->tun_proto = ip_tunnel_info_af(tun_info);
853		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
854
855		if (tun_info->options_len) {
856			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
857						   8)) - 1
858					> sizeof(key->tun_opts));
859
860			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
861						tun_info);
862			key->tun_opts_len = tun_info->options_len;
863		} else {
864			key->tun_opts_len = 0;
865		}
866	} else  {
867		key->tun_proto = 0;
868		key->tun_opts_len = 0;
869		memset(&key->tun_key, 0, sizeof(key->tun_key));
870	}
871
872	key->phy.priority = skb->priority;
873	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
874	key->phy.skb_mark = skb->mark;
875	key->ovs_flow_hash = 0;
876	res = key_extract_mac_proto(skb);
877	if (res < 0)
878		return res;
879	key->mac_proto = res;
880
881#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
882	if (static_branch_unlikely(&tc_recirc_sharing_support)) {
883		tc_ext = skb_ext_find(skb, TC_SKB_EXT);
884		key->recirc_id = tc_ext ? tc_ext->chain : 0;
 
 
 
 
 
885	} else {
886		key->recirc_id = 0;
887	}
888#else
889	key->recirc_id = 0;
890#endif
891
892	err = key_extract(skb, key);
893	if (!err)
894		ovs_ct_fill_key(skb, key);   /* Must be after key_extract(). */
 
 
 
 
 
 
 
 
 
 
 
895	return err;
896}
897
898int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
899				   struct sk_buff *skb,
900				   struct sw_flow_key *key, bool log)
901{
902	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
903	u64 attrs = 0;
904	int err;
905
906	err = parse_flow_nlattrs(attr, a, &attrs, log);
907	if (err)
908		return -EINVAL;
909
910	/* Extract metadata from netlink attributes. */
911	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
912	if (err)
913		return err;
914
915	/* key_extract assumes that skb->protocol is set-up for
916	 * layer 3 packets which is the case for other callers,
917	 * in particular packets received from the network stack.
918	 * Here the correct value can be set from the metadata
919	 * extracted above.
920	 * For L2 packet key eth type would be zero. skb protocol
921	 * would be set to correct value later during key-extact.
922	 */
923
924	skb->protocol = key->eth.type;
925	err = key_extract(skb, key);
926	if (err)
927		return err;
928
929	/* Check that we have conntrack original direction tuple metadata only
930	 * for packets for which it makes sense.  Otherwise the key may be
931	 * corrupted due to overlapping key fields.
932	 */
933	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
934	    key->eth.type != htons(ETH_P_IP))
935		return -EINVAL;
936	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
937	    (key->eth.type != htons(ETH_P_IPV6) ||
938	     sw_flow_key_is_nd(key)))
939		return -EINVAL;
940
941	return 0;
942}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2014 Nicira, Inc.
   4 */
   5
   6#include <linux/uaccess.h>
   7#include <linux/netdevice.h>
   8#include <linux/etherdevice.h>
   9#include <linux/if_ether.h>
  10#include <linux/if_vlan.h>
  11#include <net/llc_pdu.h>
  12#include <linux/kernel.h>
  13#include <linux/jhash.h>
  14#include <linux/jiffies.h>
  15#include <linux/llc.h>
  16#include <linux/module.h>
  17#include <linux/in.h>
  18#include <linux/rcupdate.h>
  19#include <linux/cpumask.h>
  20#include <linux/if_arp.h>
  21#include <linux/ip.h>
  22#include <linux/ipv6.h>
  23#include <linux/mpls.h>
  24#include <linux/sctp.h>
  25#include <linux/smp.h>
  26#include <linux/tcp.h>
  27#include <linux/udp.h>
  28#include <linux/icmp.h>
  29#include <linux/icmpv6.h>
  30#include <linux/rculist.h>
  31#include <net/ip.h>
  32#include <net/ip_tunnels.h>
  33#include <net/ipv6.h>
  34#include <net/mpls.h>
  35#include <net/ndisc.h>
  36#include <net/nsh.h>
  37#include <net/pkt_cls.h>
  38#include <net/netfilter/nf_conntrack_zones.h>
  39
  40#include "conntrack.h"
  41#include "datapath.h"
  42#include "flow.h"
  43#include "flow_netlink.h"
  44#include "vport.h"
  45
  46u64 ovs_flow_used_time(unsigned long flow_jiffies)
  47{
  48	struct timespec64 cur_ts;
  49	u64 cur_ms, idle_ms;
  50
  51	ktime_get_ts64(&cur_ts);
  52	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
  53	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
  54		 cur_ts.tv_nsec / NSEC_PER_MSEC;
  55
  56	return cur_ms - idle_ms;
  57}
  58
  59#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
  60
  61void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
  62			   const struct sk_buff *skb)
  63{
  64	struct sw_flow_stats *stats;
  65	unsigned int cpu = smp_processor_id();
  66	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
  67
  68	stats = rcu_dereference(flow->stats[cpu]);
  69
  70	/* Check if already have CPU-specific stats. */
  71	if (likely(stats)) {
  72		spin_lock(&stats->lock);
  73		/* Mark if we write on the pre-allocated stats. */
  74		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
  75			flow->stats_last_writer = cpu;
  76	} else {
  77		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
  78		spin_lock(&stats->lock);
  79
  80		/* If the current CPU is the only writer on the
  81		 * pre-allocated stats keep using them.
  82		 */
  83		if (unlikely(flow->stats_last_writer != cpu)) {
  84			/* A previous locker may have already allocated the
  85			 * stats, so we need to check again.  If CPU-specific
  86			 * stats were already allocated, we update the pre-
  87			 * allocated stats as we have already locked them.
  88			 */
  89			if (likely(flow->stats_last_writer != -1) &&
  90			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
  91				/* Try to allocate CPU-specific stats. */
  92				struct sw_flow_stats *new_stats;
  93
  94				new_stats =
  95					kmem_cache_alloc_node(flow_stats_cache,
  96							      GFP_NOWAIT |
  97							      __GFP_THISNODE |
  98							      __GFP_NOWARN |
  99							      __GFP_NOMEMALLOC,
 100							      numa_node_id());
 101				if (likely(new_stats)) {
 102					new_stats->used = jiffies;
 103					new_stats->packet_count = 1;
 104					new_stats->byte_count = len;
 105					new_stats->tcp_flags = tcp_flags;
 106					spin_lock_init(&new_stats->lock);
 107
 108					rcu_assign_pointer(flow->stats[cpu],
 109							   new_stats);
 110					cpumask_set_cpu(cpu, &flow->cpu_used_mask);
 111					goto unlock;
 112				}
 113			}
 114			flow->stats_last_writer = cpu;
 115		}
 116	}
 117
 118	stats->used = jiffies;
 119	stats->packet_count++;
 120	stats->byte_count += len;
 121	stats->tcp_flags |= tcp_flags;
 122unlock:
 123	spin_unlock(&stats->lock);
 124}
 125
 126/* Must be called with rcu_read_lock or ovs_mutex. */
 127void ovs_flow_stats_get(const struct sw_flow *flow,
 128			struct ovs_flow_stats *ovs_stats,
 129			unsigned long *used, __be16 *tcp_flags)
 130{
 131	int cpu;
 132
 133	*used = 0;
 134	*tcp_flags = 0;
 135	memset(ovs_stats, 0, sizeof(*ovs_stats));
 136
 137	/* We open code this to make sure cpu 0 is always considered */
 138	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
 139		struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
 140
 141		if (stats) {
 142			/* Local CPU may write on non-local stats, so we must
 143			 * block bottom-halves here.
 144			 */
 145			spin_lock_bh(&stats->lock);
 146			if (!*used || time_after(stats->used, *used))
 147				*used = stats->used;
 148			*tcp_flags |= stats->tcp_flags;
 149			ovs_stats->n_packets += stats->packet_count;
 150			ovs_stats->n_bytes += stats->byte_count;
 151			spin_unlock_bh(&stats->lock);
 152		}
 153	}
 154}
 155
 156/* Called with ovs_mutex. */
 157void ovs_flow_stats_clear(struct sw_flow *flow)
 158{
 159	int cpu;
 160
 161	/* We open code this to make sure cpu 0 is always considered */
 162	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
 163		struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
 164
 165		if (stats) {
 166			spin_lock_bh(&stats->lock);
 167			stats->used = 0;
 168			stats->packet_count = 0;
 169			stats->byte_count = 0;
 170			stats->tcp_flags = 0;
 171			spin_unlock_bh(&stats->lock);
 172		}
 173	}
 174}
 175
 176static int check_header(struct sk_buff *skb, int len)
 177{
 178	if (unlikely(skb->len < len))
 179		return -EINVAL;
 180	if (unlikely(!pskb_may_pull(skb, len)))
 181		return -ENOMEM;
 182	return 0;
 183}
 184
 185static bool arphdr_ok(struct sk_buff *skb)
 186{
 187	return pskb_may_pull(skb, skb_network_offset(skb) +
 188				  sizeof(struct arp_eth_header));
 189}
 190
 191static int check_iphdr(struct sk_buff *skb)
 192{
 193	unsigned int nh_ofs = skb_network_offset(skb);
 194	unsigned int ip_len;
 195	int err;
 196
 197	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
 198	if (unlikely(err))
 199		return err;
 200
 201	ip_len = ip_hdrlen(skb);
 202	if (unlikely(ip_len < sizeof(struct iphdr) ||
 203		     skb->len < nh_ofs + ip_len))
 204		return -EINVAL;
 205
 206	skb_set_transport_header(skb, nh_ofs + ip_len);
 207	return 0;
 208}
 209
 210static bool tcphdr_ok(struct sk_buff *skb)
 211{
 212	int th_ofs = skb_transport_offset(skb);
 213	int tcp_len;
 214
 215	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
 216		return false;
 217
 218	tcp_len = tcp_hdrlen(skb);
 219	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
 220		     skb->len < th_ofs + tcp_len))
 221		return false;
 222
 223	return true;
 224}
 225
 226static bool udphdr_ok(struct sk_buff *skb)
 227{
 228	return pskb_may_pull(skb, skb_transport_offset(skb) +
 229				  sizeof(struct udphdr));
 230}
 231
 232static bool sctphdr_ok(struct sk_buff *skb)
 233{
 234	return pskb_may_pull(skb, skb_transport_offset(skb) +
 235				  sizeof(struct sctphdr));
 236}
 237
 238static bool icmphdr_ok(struct sk_buff *skb)
 239{
 240	return pskb_may_pull(skb, skb_transport_offset(skb) +
 241				  sizeof(struct icmphdr));
 242}
 243
 244/**
 245 * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
 246 *
 247 * @skb: buffer where extension header data starts in packet
 248 * @nh: ipv6 header
 249 * @ext_hdrs: flags are stored here
 250 *
 251 * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
 252 * is unexpectedly encountered. (Two destination options headers may be
 253 * expected and would not cause this bit to be set.)
 254 *
 255 * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
 256 * preferred (but not required) by RFC 2460:
 257 *
 258 * When more than one extension header is used in the same packet, it is
 259 * recommended that those headers appear in the following order:
 260 *      IPv6 header
 261 *      Hop-by-Hop Options header
 262 *      Destination Options header
 263 *      Routing header
 264 *      Fragment header
 265 *      Authentication header
 266 *      Encapsulating Security Payload header
 267 *      Destination Options header
 268 *      upper-layer header
 269 */
 270static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
 271			      u16 *ext_hdrs)
 272{
 273	u8 next_type = nh->nexthdr;
 274	unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
 275	int dest_options_header_count = 0;
 276
 277	*ext_hdrs = 0;
 278
 279	while (ipv6_ext_hdr(next_type)) {
 280		struct ipv6_opt_hdr _hdr, *hp;
 281
 282		switch (next_type) {
 283		case IPPROTO_NONE:
 284			*ext_hdrs |= OFPIEH12_NONEXT;
 285			/* stop parsing */
 286			return;
 287
 288		case IPPROTO_ESP:
 289			if (*ext_hdrs & OFPIEH12_ESP)
 290				*ext_hdrs |= OFPIEH12_UNREP;
 291			if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
 292					   OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
 293					   OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
 294			    dest_options_header_count >= 2) {
 295				*ext_hdrs |= OFPIEH12_UNSEQ;
 296			}
 297			*ext_hdrs |= OFPIEH12_ESP;
 298			break;
 299
 300		case IPPROTO_AH:
 301			if (*ext_hdrs & OFPIEH12_AUTH)
 302				*ext_hdrs |= OFPIEH12_UNREP;
 303			if ((*ext_hdrs &
 304			     ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
 305			       IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
 306			    dest_options_header_count >= 2) {
 307				*ext_hdrs |= OFPIEH12_UNSEQ;
 308			}
 309			*ext_hdrs |= OFPIEH12_AUTH;
 310			break;
 311
 312		case IPPROTO_DSTOPTS:
 313			if (dest_options_header_count == 0) {
 314				if (*ext_hdrs &
 315				    ~(OFPIEH12_HOP | OFPIEH12_UNREP))
 316					*ext_hdrs |= OFPIEH12_UNSEQ;
 317				*ext_hdrs |= OFPIEH12_DEST;
 318			} else if (dest_options_header_count == 1) {
 319				if (*ext_hdrs &
 320				    ~(OFPIEH12_HOP | OFPIEH12_DEST |
 321				      OFPIEH12_ROUTER | OFPIEH12_FRAG |
 322				      OFPIEH12_AUTH | OFPIEH12_ESP |
 323				      OFPIEH12_UNREP)) {
 324					*ext_hdrs |= OFPIEH12_UNSEQ;
 325				}
 326			} else {
 327				*ext_hdrs |= OFPIEH12_UNREP;
 328			}
 329			dest_options_header_count++;
 330			break;
 331
 332		case IPPROTO_FRAGMENT:
 333			if (*ext_hdrs & OFPIEH12_FRAG)
 334				*ext_hdrs |= OFPIEH12_UNREP;
 335			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 336					   OFPIEH12_DEST |
 337					   OFPIEH12_ROUTER |
 338					   OFPIEH12_UNREP)) ||
 339			    dest_options_header_count >= 2) {
 340				*ext_hdrs |= OFPIEH12_UNSEQ;
 341			}
 342			*ext_hdrs |= OFPIEH12_FRAG;
 343			break;
 344
 345		case IPPROTO_ROUTING:
 346			if (*ext_hdrs & OFPIEH12_ROUTER)
 347				*ext_hdrs |= OFPIEH12_UNREP;
 348			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 349					   OFPIEH12_DEST |
 350					   OFPIEH12_UNREP)) ||
 351			    dest_options_header_count >= 2) {
 352				*ext_hdrs |= OFPIEH12_UNSEQ;
 353			}
 354			*ext_hdrs |= OFPIEH12_ROUTER;
 355			break;
 356
 357		case IPPROTO_HOPOPTS:
 358			if (*ext_hdrs & OFPIEH12_HOP)
 359				*ext_hdrs |= OFPIEH12_UNREP;
 360			/* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
 361			 * extension header is present as the first
 362			 * extension header in the packet.
 363			 */
 364			if (*ext_hdrs == 0)
 365				*ext_hdrs |= OFPIEH12_HOP;
 366			else
 367				*ext_hdrs |= OFPIEH12_UNSEQ;
 368			break;
 369
 370		default:
 371			return;
 372		}
 373
 374		hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
 375		if (!hp)
 376			break;
 377		next_type = hp->nexthdr;
 378		start += ipv6_optlen(hp);
 379	}
 380}
 381
 382static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
 383{
 384	unsigned short frag_off;
 385	unsigned int payload_ofs = 0;
 386	unsigned int nh_ofs = skb_network_offset(skb);
 387	unsigned int nh_len;
 388	struct ipv6hdr *nh;
 389	int err, nexthdr, flags = 0;
 390
 391	err = check_header(skb, nh_ofs + sizeof(*nh));
 392	if (unlikely(err))
 393		return err;
 394
 395	nh = ipv6_hdr(skb);
 396
 397	get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
 398
 399	key->ip.proto = NEXTHDR_NONE;
 400	key->ip.tos = ipv6_get_dsfield(nh);
 401	key->ip.ttl = nh->hop_limit;
 402	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 403	key->ipv6.addr.src = nh->saddr;
 404	key->ipv6.addr.dst = nh->daddr;
 405
 406	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
 407	if (flags & IP6_FH_F_FRAG) {
 408		if (frag_off) {
 409			key->ip.frag = OVS_FRAG_TYPE_LATER;
 410			key->ip.proto = NEXTHDR_FRAGMENT;
 411			return 0;
 412		}
 413		key->ip.frag = OVS_FRAG_TYPE_FIRST;
 414	} else {
 415		key->ip.frag = OVS_FRAG_TYPE_NONE;
 416	}
 417
 418	/* Delayed handling of error in ipv6_find_hdr() as it
 419	 * always sets flags and frag_off to a valid value which may be
 420	 * used to set key->ip.frag above.
 421	 */
 422	if (unlikely(nexthdr < 0))
 423		return -EPROTO;
 424
 425	nh_len = payload_ofs - nh_ofs;
 426	skb_set_transport_header(skb, nh_ofs + nh_len);
 427	key->ip.proto = nexthdr;
 428	return nh_len;
 429}
 430
 431static bool icmp6hdr_ok(struct sk_buff *skb)
 432{
 433	return pskb_may_pull(skb, skb_transport_offset(skb) +
 434				  sizeof(struct icmp6hdr));
 435}
 436
 437/**
 438 * parse_vlan_tag - Parse vlan tag from vlan header.
 439 * @skb: skb containing frame to parse
 440 * @key_vh: pointer to parsed vlan tag
 441 * @untag_vlan: should the vlan header be removed from the frame
 442 *
 443 * Return: ERROR on memory error.
 444 * %0 if it encounters a non-vlan or incomplete packet.
 445 * %1 after successfully parsing vlan tag.
 446 */
 447static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
 448			  bool untag_vlan)
 449{
 450	struct vlan_head *vh = (struct vlan_head *)skb->data;
 451
 452	if (likely(!eth_type_vlan(vh->tpid)))
 453		return 0;
 454
 455	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
 456		return 0;
 457
 458	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
 459				 sizeof(__be16))))
 460		return -ENOMEM;
 461
 462	vh = (struct vlan_head *)skb->data;
 463	key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
 464	key_vh->tpid = vh->tpid;
 465
 466	if (unlikely(untag_vlan)) {
 467		int offset = skb->data - skb_mac_header(skb);
 468		u16 tci;
 469		int err;
 470
 471		__skb_push(skb, offset);
 472		err = __skb_vlan_pop(skb, &tci);
 473		__skb_pull(skb, offset);
 474		if (err)
 475			return err;
 476		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
 477	} else {
 478		__skb_pull(skb, sizeof(struct vlan_head));
 479	}
 480	return 1;
 481}
 482
 483static void clear_vlan(struct sw_flow_key *key)
 484{
 485	key->eth.vlan.tci = 0;
 486	key->eth.vlan.tpid = 0;
 487	key->eth.cvlan.tci = 0;
 488	key->eth.cvlan.tpid = 0;
 489}
 490
 491static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 492{
 493	int res;
 494
 495	if (skb_vlan_tag_present(skb)) {
 496		key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
 497		key->eth.vlan.tpid = skb->vlan_proto;
 498	} else {
 499		/* Parse outer vlan tag in the non-accelerated case. */
 500		res = parse_vlan_tag(skb, &key->eth.vlan, true);
 501		if (res <= 0)
 502			return res;
 503	}
 504
 505	/* Parse inner vlan tag. */
 506	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
 507	if (res <= 0)
 508		return res;
 509
 510	return 0;
 511}
 512
 513static __be16 parse_ethertype(struct sk_buff *skb)
 514{
 515	struct llc_snap_hdr {
 516		u8  dsap;  /* Always 0xAA */
 517		u8  ssap;  /* Always 0xAA */
 518		u8  ctrl;
 519		u8  oui[3];
 520		__be16 ethertype;
 521	};
 522	struct llc_snap_hdr *llc;
 523	__be16 proto;
 524
 525	proto = *(__be16 *) skb->data;
 526	__skb_pull(skb, sizeof(__be16));
 527
 528	if (eth_proto_is_802_3(proto))
 529		return proto;
 530
 531	if (skb->len < sizeof(struct llc_snap_hdr))
 532		return htons(ETH_P_802_2);
 533
 534	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
 535		return htons(0);
 536
 537	llc = (struct llc_snap_hdr *) skb->data;
 538	if (llc->dsap != LLC_SAP_SNAP ||
 539	    llc->ssap != LLC_SAP_SNAP ||
 540	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
 541		return htons(ETH_P_802_2);
 542
 543	__skb_pull(skb, sizeof(struct llc_snap_hdr));
 544
 545	if (eth_proto_is_802_3(llc->ethertype))
 546		return llc->ethertype;
 547
 548	return htons(ETH_P_802_2);
 549}
 550
 551static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
 552			int nh_len)
 553{
 554	struct icmp6hdr *icmp = icmp6_hdr(skb);
 555
 556	/* The ICMPv6 type and code fields use the 16-bit transport port
 557	 * fields, so we need to store them in 16-bit network byte order.
 558	 */
 559	key->tp.src = htons(icmp->icmp6_type);
 560	key->tp.dst = htons(icmp->icmp6_code);
 561	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
 562
 563	if (icmp->icmp6_code == 0 &&
 564	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 565	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 566		int icmp_len = skb->len - skb_transport_offset(skb);
 567		struct nd_msg *nd;
 568		int offset;
 569
 570		/* In order to process neighbor discovery options, we need the
 571		 * entire packet.
 572		 */
 573		if (unlikely(icmp_len < sizeof(*nd)))
 574			return 0;
 575
 576		if (unlikely(skb_linearize(skb)))
 577			return -ENOMEM;
 578
 579		nd = (struct nd_msg *)skb_transport_header(skb);
 580		key->ipv6.nd.target = nd->target;
 581
 582		icmp_len -= sizeof(*nd);
 583		offset = 0;
 584		while (icmp_len >= 8) {
 585			struct nd_opt_hdr *nd_opt =
 586				 (struct nd_opt_hdr *)(nd->opt + offset);
 587			int opt_len = nd_opt->nd_opt_len * 8;
 588
 589			if (unlikely(!opt_len || opt_len > icmp_len))
 590				return 0;
 591
 592			/* Store the link layer address if the appropriate
 593			 * option is provided.  It is considered an error if
 594			 * the same link layer option is specified twice.
 595			 */
 596			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
 597			    && opt_len == 8) {
 598				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
 599					goto invalid;
 600				ether_addr_copy(key->ipv6.nd.sll,
 601						&nd->opt[offset+sizeof(*nd_opt)]);
 602			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
 603				   && opt_len == 8) {
 604				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
 605					goto invalid;
 606				ether_addr_copy(key->ipv6.nd.tll,
 607						&nd->opt[offset+sizeof(*nd_opt)]);
 608			}
 609
 610			icmp_len -= opt_len;
 611			offset += opt_len;
 612		}
 613	}
 614
 615	return 0;
 616
 617invalid:
 618	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
 619	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
 620	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
 621
 622	return 0;
 623}
 624
 625static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 626{
 627	struct nshhdr *nh;
 628	unsigned int nh_ofs = skb_network_offset(skb);
 629	u8 version, length;
 630	int err;
 631
 632	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
 633	if (unlikely(err))
 634		return err;
 635
 636	nh = nsh_hdr(skb);
 637	version = nsh_get_ver(nh);
 638	length = nsh_hdr_len(nh);
 639
 640	if (version != 0)
 641		return -EINVAL;
 642
 643	err = check_header(skb, nh_ofs + length);
 644	if (unlikely(err))
 645		return err;
 646
 647	nh = nsh_hdr(skb);
 648	key->nsh.base.flags = nsh_get_flags(nh);
 649	key->nsh.base.ttl = nsh_get_ttl(nh);
 650	key->nsh.base.mdtype = nh->mdtype;
 651	key->nsh.base.np = nh->np;
 652	key->nsh.base.path_hdr = nh->path_hdr;
 653	switch (key->nsh.base.mdtype) {
 654	case NSH_M_TYPE1:
 655		if (length != NSH_M_TYPE1_LEN)
 656			return -EINVAL;
 657		memcpy(key->nsh.context, nh->md1.context,
 658		       sizeof(nh->md1));
 659		break;
 660	case NSH_M_TYPE2:
 661		memset(key->nsh.context, 0,
 662		       sizeof(nh->md1));
 663		break;
 664	default:
 665		return -EINVAL;
 666	}
 667
 668	return 0;
 669}
 670
 671/**
 672 * key_extract_l3l4 - extracts L3/L4 header information.
 673 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 674 *       L3 header
 675 * @key: output flow key
 676 *
 677 * Return: %0 if successful, otherwise a negative errno value.
 678 */
 679static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 680{
 681	int error;
 682
 683	/* Network layer. */
 684	if (key->eth.type == htons(ETH_P_IP)) {
 685		struct iphdr *nh;
 686		__be16 offset;
 687
 688		error = check_iphdr(skb);
 689		if (unlikely(error)) {
 690			memset(&key->ip, 0, sizeof(key->ip));
 691			memset(&key->ipv4, 0, sizeof(key->ipv4));
 692			if (error == -EINVAL) {
 693				skb->transport_header = skb->network_header;
 694				error = 0;
 695			}
 696			return error;
 697		}
 698
 699		nh = ip_hdr(skb);
 700		key->ipv4.addr.src = nh->saddr;
 701		key->ipv4.addr.dst = nh->daddr;
 702
 703		key->ip.proto = nh->protocol;
 704		key->ip.tos = nh->tos;
 705		key->ip.ttl = nh->ttl;
 706
 707		offset = nh->frag_off & htons(IP_OFFSET);
 708		if (offset) {
 709			key->ip.frag = OVS_FRAG_TYPE_LATER;
 710			memset(&key->tp, 0, sizeof(key->tp));
 711			return 0;
 712		}
 713		if (nh->frag_off & htons(IP_MF) ||
 714			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 715			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 716		else
 717			key->ip.frag = OVS_FRAG_TYPE_NONE;
 718
 719		/* Transport layer. */
 720		if (key->ip.proto == IPPROTO_TCP) {
 721			if (tcphdr_ok(skb)) {
 722				struct tcphdr *tcp = tcp_hdr(skb);
 723				key->tp.src = tcp->source;
 724				key->tp.dst = tcp->dest;
 725				key->tp.flags = TCP_FLAGS_BE16(tcp);
 726			} else {
 727				memset(&key->tp, 0, sizeof(key->tp));
 728			}
 729
 730		} else if (key->ip.proto == IPPROTO_UDP) {
 731			if (udphdr_ok(skb)) {
 732				struct udphdr *udp = udp_hdr(skb);
 733				key->tp.src = udp->source;
 734				key->tp.dst = udp->dest;
 735			} else {
 736				memset(&key->tp, 0, sizeof(key->tp));
 737			}
 738		} else if (key->ip.proto == IPPROTO_SCTP) {
 739			if (sctphdr_ok(skb)) {
 740				struct sctphdr *sctp = sctp_hdr(skb);
 741				key->tp.src = sctp->source;
 742				key->tp.dst = sctp->dest;
 743			} else {
 744				memset(&key->tp, 0, sizeof(key->tp));
 745			}
 746		} else if (key->ip.proto == IPPROTO_ICMP) {
 747			if (icmphdr_ok(skb)) {
 748				struct icmphdr *icmp = icmp_hdr(skb);
 749				/* The ICMP type and code fields use the 16-bit
 750				 * transport port fields, so we need to store
 751				 * them in 16-bit network byte order. */
 752				key->tp.src = htons(icmp->type);
 753				key->tp.dst = htons(icmp->code);
 754			} else {
 755				memset(&key->tp, 0, sizeof(key->tp));
 756			}
 757		}
 758
 759	} else if (key->eth.type == htons(ETH_P_ARP) ||
 760		   key->eth.type == htons(ETH_P_RARP)) {
 761		struct arp_eth_header *arp;
 762		bool arp_available = arphdr_ok(skb);
 763
 764		arp = (struct arp_eth_header *)skb_network_header(skb);
 765
 766		if (arp_available &&
 767		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
 768		    arp->ar_pro == htons(ETH_P_IP) &&
 769		    arp->ar_hln == ETH_ALEN &&
 770		    arp->ar_pln == 4) {
 771
 772			/* We only match on the lower 8 bits of the opcode. */
 773			if (ntohs(arp->ar_op) <= 0xff)
 774				key->ip.proto = ntohs(arp->ar_op);
 775			else
 776				key->ip.proto = 0;
 777
 778			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
 779			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
 780			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
 781			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
 782		} else {
 783			memset(&key->ip, 0, sizeof(key->ip));
 784			memset(&key->ipv4, 0, sizeof(key->ipv4));
 785		}
 786	} else if (eth_p_mpls(key->eth.type)) {
 787		u8 label_count = 1;
 788
 789		memset(&key->mpls, 0, sizeof(key->mpls));
 790		skb_set_inner_network_header(skb, skb->mac_len);
 791		while (1) {
 792			__be32 lse;
 793
 794			error = check_header(skb, skb->mac_len +
 795					     label_count * MPLS_HLEN);
 796			if (unlikely(error))
 797				return 0;
 798
 799			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
 800
 801			if (label_count <= MPLS_LABEL_DEPTH)
 802				memcpy(&key->mpls.lse[label_count - 1], &lse,
 803				       MPLS_HLEN);
 804
 805			skb_set_inner_network_header(skb, skb->mac_len +
 806						     label_count * MPLS_HLEN);
 807			if (lse & htonl(MPLS_LS_S_MASK))
 808				break;
 809
 810			label_count++;
 811		}
 812		if (label_count > MPLS_LABEL_DEPTH)
 813			label_count = MPLS_LABEL_DEPTH;
 814
 815		key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
 816	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 817		int nh_len;             /* IPv6 Header + Extensions */
 818
 819		nh_len = parse_ipv6hdr(skb, key);
 820		if (unlikely(nh_len < 0)) {
 821			switch (nh_len) {
 822			case -EINVAL:
 823				memset(&key->ip, 0, sizeof(key->ip));
 824				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
 825				fallthrough;
 826			case -EPROTO:
 827				skb->transport_header = skb->network_header;
 828				error = 0;
 829				break;
 830			default:
 831				error = nh_len;
 832			}
 833			return error;
 834		}
 835
 836		if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
 837			memset(&key->tp, 0, sizeof(key->tp));
 838			return 0;
 839		}
 840		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 841			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 842
 843		/* Transport layer. */
 844		if (key->ip.proto == NEXTHDR_TCP) {
 845			if (tcphdr_ok(skb)) {
 846				struct tcphdr *tcp = tcp_hdr(skb);
 847				key->tp.src = tcp->source;
 848				key->tp.dst = tcp->dest;
 849				key->tp.flags = TCP_FLAGS_BE16(tcp);
 850			} else {
 851				memset(&key->tp, 0, sizeof(key->tp));
 852			}
 853		} else if (key->ip.proto == NEXTHDR_UDP) {
 854			if (udphdr_ok(skb)) {
 855				struct udphdr *udp = udp_hdr(skb);
 856				key->tp.src = udp->source;
 857				key->tp.dst = udp->dest;
 858			} else {
 859				memset(&key->tp, 0, sizeof(key->tp));
 860			}
 861		} else if (key->ip.proto == NEXTHDR_SCTP) {
 862			if (sctphdr_ok(skb)) {
 863				struct sctphdr *sctp = sctp_hdr(skb);
 864				key->tp.src = sctp->source;
 865				key->tp.dst = sctp->dest;
 866			} else {
 867				memset(&key->tp, 0, sizeof(key->tp));
 868			}
 869		} else if (key->ip.proto == NEXTHDR_ICMP) {
 870			if (icmp6hdr_ok(skb)) {
 871				error = parse_icmpv6(skb, key, nh_len);
 872				if (error)
 873					return error;
 874			} else {
 875				memset(&key->tp, 0, sizeof(key->tp));
 876			}
 877		}
 878	} else if (key->eth.type == htons(ETH_P_NSH)) {
 879		error = parse_nsh(skb, key);
 880		if (error)
 881			return error;
 882	}
 883	return 0;
 884}
 885
 886/**
 887 * key_extract - extracts a flow key from an Ethernet frame.
 888 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 889 * Ethernet header
 890 * @key: output flow key
 891 *
 892 * The caller must ensure that skb->len >= ETH_HLEN.
 893 *
 
 
 894 * Initializes @skb header fields as follows:
 895 *
 896 *    - skb->mac_header: the L2 header.
 897 *
 898 *    - skb->network_header: just past the L2 header, or just past the
 899 *      VLAN header, to the first byte of the L2 payload.
 900 *
 901 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
 902 *      on output, then just past the IP header, if one is present and
 903 *      of a correct length, otherwise the same as skb->network_header.
 904 *      For other key->eth.type values it is left untouched.
 905 *
 906 *    - skb->protocol: the type of the data starting at skb->network_header.
 907 *      Equals to key->eth.type.
 908 *
 909 * Return: %0 if successful, otherwise a negative errno value.
 910 */
 911static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
 912{
 913	struct ethhdr *eth;
 914
 915	/* Flags are always used as part of stats */
 916	key->tp.flags = 0;
 917
 918	skb_reset_mac_header(skb);
 919
 920	/* Link layer. */
 921	clear_vlan(key);
 922	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
 923		if (unlikely(eth_type_vlan(skb->protocol)))
 924			return -EINVAL;
 925
 926		skb_reset_network_header(skb);
 927		key->eth.type = skb->protocol;
 928	} else {
 929		eth = eth_hdr(skb);
 930		ether_addr_copy(key->eth.src, eth->h_source);
 931		ether_addr_copy(key->eth.dst, eth->h_dest);
 932
 933		__skb_pull(skb, 2 * ETH_ALEN);
 934		/* We are going to push all headers that we pull, so no need to
 935		 * update skb->csum here.
 936		 */
 937
 938		if (unlikely(parse_vlan(skb, key)))
 939			return -ENOMEM;
 940
 941		key->eth.type = parse_ethertype(skb);
 942		if (unlikely(key->eth.type == htons(0)))
 943			return -ENOMEM;
 944
 945		/* Multiple tagged packets need to retain TPID to satisfy
 946		 * skb_vlan_pop(), which will later shift the ethertype into
 947		 * skb->protocol.
 948		 */
 949		if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
 950			skb->protocol = key->eth.cvlan.tpid;
 951		else
 952			skb->protocol = key->eth.type;
 953
 954		skb_reset_network_header(skb);
 955		__skb_push(skb, skb->data - skb_mac_header(skb));
 956	}
 957
 958	skb_reset_mac_len(skb);
 959
 960	/* Fill out L3/L4 key info, if any */
 961	return key_extract_l3l4(skb, key);
 962}
 963
 964/* In the case of conntrack fragment handling it expects L3 headers,
 965 * add a helper.
 966 */
 967int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 968{
 969	return key_extract_l3l4(skb, key);
 970}
 971
 972int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
 973{
 974	int res;
 975
 976	res = key_extract(skb, key);
 977	if (!res)
 978		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
 979
 980	return res;
 981}
 982
 983static int key_extract_mac_proto(struct sk_buff *skb)
 984{
 985	switch (skb->dev->type) {
 986	case ARPHRD_ETHER:
 987		return MAC_PROTO_ETHERNET;
 988	case ARPHRD_NONE:
 989		if (skb->protocol == htons(ETH_P_TEB))
 990			return MAC_PROTO_ETHERNET;
 991		return MAC_PROTO_NONE;
 992	}
 993	WARN_ON_ONCE(1);
 994	return -EINVAL;
 995}
 996
 997int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
 998			 struct sk_buff *skb, struct sw_flow_key *key)
 999{
1000#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1001	struct tc_skb_ext *tc_ext;
1002#endif
1003	bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
1004	int res, err;
1005	u16 zone = 0;
1006
1007	/* Extract metadata from packet. */
1008	if (tun_info) {
1009		key->tun_proto = ip_tunnel_info_af(tun_info);
1010		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
1011
1012		if (tun_info->options_len) {
1013			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
1014						   8)) - 1
1015					> sizeof(key->tun_opts));
1016
1017			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
1018						tun_info);
1019			key->tun_opts_len = tun_info->options_len;
1020		} else {
1021			key->tun_opts_len = 0;
1022		}
1023	} else  {
1024		key->tun_proto = 0;
1025		key->tun_opts_len = 0;
1026		memset(&key->tun_key, 0, sizeof(key->tun_key));
1027	}
1028
1029	key->phy.priority = skb->priority;
1030	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
1031	key->phy.skb_mark = skb->mark;
1032	key->ovs_flow_hash = 0;
1033	res = key_extract_mac_proto(skb);
1034	if (res < 0)
1035		return res;
1036	key->mac_proto = res;
1037
1038#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1039	if (tc_skb_ext_tc_enabled()) {
1040		tc_ext = skb_ext_find(skb, TC_SKB_EXT);
1041		key->recirc_id = tc_ext ? tc_ext->chain : 0;
1042		OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
1043		post_ct = tc_ext ? tc_ext->post_ct : false;
1044		post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
1045		post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
1046		zone = post_ct ? tc_ext->zone : 0;
1047	} else {
1048		key->recirc_id = 0;
1049	}
1050#else
1051	key->recirc_id = 0;
1052#endif
1053
1054	err = key_extract(skb, key);
1055	if (!err) {
1056		ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
1057		if (post_ct) {
1058			if (!skb_get_nfct(skb)) {
1059				key->ct_zone = zone;
1060			} else {
1061				if (!post_ct_dnat)
1062					key->ct_state &= ~OVS_CS_F_DST_NAT;
1063				if (!post_ct_snat)
1064					key->ct_state &= ~OVS_CS_F_SRC_NAT;
1065			}
1066		}
1067	}
1068	return err;
1069}
1070
1071int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
1072				   struct sk_buff *skb,
1073				   struct sw_flow_key *key, bool log)
1074{
1075	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1076	u64 attrs = 0;
1077	int err;
1078
1079	err = parse_flow_nlattrs(attr, a, &attrs, log);
1080	if (err)
1081		return -EINVAL;
1082
1083	/* Extract metadata from netlink attributes. */
1084	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
1085	if (err)
1086		return err;
1087
1088	/* key_extract assumes that skb->protocol is set-up for
1089	 * layer 3 packets which is the case for other callers,
1090	 * in particular packets received from the network stack.
1091	 * Here the correct value can be set from the metadata
1092	 * extracted above.
1093	 * For L2 packet key eth type would be zero. skb protocol
1094	 * would be set to correct value later during key-extact.
1095	 */
1096
1097	skb->protocol = key->eth.type;
1098	err = key_extract(skb, key);
1099	if (err)
1100		return err;
1101
1102	/* Check that we have conntrack original direction tuple metadata only
1103	 * for packets for which it makes sense.  Otherwise the key may be
1104	 * corrupted due to overlapping key fields.
1105	 */
1106	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
1107	    key->eth.type != htons(ETH_P_IP))
1108		return -EINVAL;
1109	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
1110	    (key->eth.type != htons(ETH_P_IPV6) ||
1111	     sw_flow_key_is_nd(key)))
1112		return -EINVAL;
1113
1114	return 0;
1115}