Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
 
  77#include <linux/uaccess.h>
  78#include <asm/ioctls.h>
  79#include <linux/memblock.h>
  80#include <linux/highmem.h>
  81#include <linux/swap.h>
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip_tunnels.h>
 104#include <net/route.h>
 105#include <net/checksum.h>
 106#include <net/xfrm.h>
 107#include <trace/events/udp.h>
 108#include <linux/static_key.h>
 
 109#include <trace/events/skb.h>
 110#include <net/busy_poll.h>
 111#include "udp_impl.h"
 112#include <net/sock_reuseport.h>
 113#include <net/addrconf.h>
 114#include <net/udp_tunnel.h>
 
 
 
 115
 116struct udp_table udp_table __read_mostly;
 117EXPORT_SYMBOL(udp_table);
 118
 119long sysctl_udp_mem[3] __read_mostly;
 120EXPORT_SYMBOL(sysctl_udp_mem);
 121
 122atomic_long_t udp_memory_allocated;
 123EXPORT_SYMBOL(udp_memory_allocated);
 
 
 124
 125#define MAX_UDP_PORTS 65536
 126#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 
 
 
 
 
 127
 128static int udp_lib_lport_inuse(struct net *net, __u16 num,
 129			       const struct udp_hslot *hslot,
 130			       unsigned long *bitmap,
 131			       struct sock *sk, unsigned int log)
 132{
 133	struct sock *sk2;
 134	kuid_t uid = sock_i_uid(sk);
 135
 136	sk_for_each(sk2, &hslot->head) {
 137		if (net_eq(sock_net(sk2), net) &&
 138		    sk2 != sk &&
 139		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 140		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 141		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 142		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 143		    inet_rcv_saddr_equal(sk, sk2, true)) {
 144			if (sk2->sk_reuseport && sk->sk_reuseport &&
 145			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 146			    uid_eq(uid, sock_i_uid(sk2))) {
 147				if (!bitmap)
 148					return 0;
 149			} else {
 150				if (!bitmap)
 151					return 1;
 152				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 153					  bitmap);
 154			}
 155		}
 156	}
 157	return 0;
 158}
 159
 160/*
 161 * Note: we still hold spinlock of primary hash chain, so no other writer
 162 * can insert/delete a socket with local_port == num
 163 */
 164static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 165				struct udp_hslot *hslot2,
 166				struct sock *sk)
 167{
 168	struct sock *sk2;
 169	kuid_t uid = sock_i_uid(sk);
 170	int res = 0;
 171
 172	spin_lock(&hslot2->lock);
 173	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 174		if (net_eq(sock_net(sk2), net) &&
 175		    sk2 != sk &&
 176		    (udp_sk(sk2)->udp_port_hash == num) &&
 177		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 178		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 179		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 180		    inet_rcv_saddr_equal(sk, sk2, true)) {
 181			if (sk2->sk_reuseport && sk->sk_reuseport &&
 182			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 183			    uid_eq(uid, sock_i_uid(sk2))) {
 184				res = 0;
 185			} else {
 186				res = 1;
 187			}
 188			break;
 189		}
 190	}
 191	spin_unlock(&hslot2->lock);
 192	return res;
 193}
 194
 195static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 196{
 197	struct net *net = sock_net(sk);
 198	kuid_t uid = sock_i_uid(sk);
 199	struct sock *sk2;
 200
 201	sk_for_each(sk2, &hslot->head) {
 202		if (net_eq(sock_net(sk2), net) &&
 203		    sk2 != sk &&
 204		    sk2->sk_family == sk->sk_family &&
 205		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 206		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 207		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 208		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 209		    inet_rcv_saddr_equal(sk, sk2, false)) {
 210			return reuseport_add_sock(sk, sk2,
 211						  inet_rcv_saddr_any(sk));
 212		}
 213	}
 214
 215	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 216}
 217
 218/**
 219 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 220 *
 221 *  @sk:          socket struct in question
 222 *  @snum:        port number to look up
 223 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 224 *                   with NULL address
 225 */
 226int udp_lib_get_port(struct sock *sk, unsigned short snum,
 227		     unsigned int hash2_nulladdr)
 228{
 
 229	struct udp_hslot *hslot, *hslot2;
 230	struct udp_table *udptable = sk->sk_prot->h.udp_table;
 231	int    error = 1;
 232	struct net *net = sock_net(sk);
 
 233
 234	if (!snum) {
 
 
 235		int low, high, remaining;
 236		unsigned int rand;
 237		unsigned short first, last;
 238		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 239
 240		inet_get_local_port_range(net, &low, &high);
 241		remaining = (high - low) + 1;
 242
 243		rand = prandom_u32();
 244		first = reciprocal_scale(rand, remaining) + low;
 245		/*
 246		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 247		 */
 248		rand = (rand | 1) * (udptable->mask + 1);
 249		last = first + udptable->mask + 1;
 250		do {
 251			hslot = udp_hashslot(udptable, net, first);
 252			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 253			spin_lock_bh(&hslot->lock);
 254			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 255					    udptable->log);
 256
 257			snum = first;
 258			/*
 259			 * Iterate on all possible values of snum for this hash.
 260			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 261			 * give us randomization and full range coverage.
 262			 */
 263			do {
 264				if (low <= snum && snum <= high &&
 265				    !test_bit(snum >> udptable->log, bitmap) &&
 266				    !inet_is_local_reserved_port(net, snum))
 267					goto found;
 268				snum += rand;
 269			} while (snum != first);
 270			spin_unlock_bh(&hslot->lock);
 271			cond_resched();
 272		} while (++first != last);
 273		goto fail;
 274	} else {
 275		hslot = udp_hashslot(udptable, net, snum);
 276		spin_lock_bh(&hslot->lock);
 277		if (hslot->count > 10) {
 278			int exist;
 279			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 280
 281			slot2          &= udptable->mask;
 282			hash2_nulladdr &= udptable->mask;
 283
 284			hslot2 = udp_hashslot2(udptable, slot2);
 285			if (hslot->count < hslot2->count)
 286				goto scan_primary_hash;
 287
 288			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 289			if (!exist && (hash2_nulladdr != slot2)) {
 290				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 291				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 292							     sk);
 293			}
 294			if (exist)
 295				goto fail_unlock;
 296			else
 297				goto found;
 298		}
 299scan_primary_hash:
 300		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 301			goto fail_unlock;
 302	}
 303found:
 304	inet_sk(sk)->inet_num = snum;
 305	udp_sk(sk)->udp_port_hash = snum;
 306	udp_sk(sk)->udp_portaddr_hash ^= snum;
 307	if (sk_unhashed(sk)) {
 308		if (sk->sk_reuseport &&
 309		    udp_reuseport_add_sock(sk, hslot)) {
 310			inet_sk(sk)->inet_num = 0;
 311			udp_sk(sk)->udp_port_hash = 0;
 312			udp_sk(sk)->udp_portaddr_hash ^= snum;
 313			goto fail_unlock;
 314		}
 315
 316		sk_add_node_rcu(sk, &hslot->head);
 317		hslot->count++;
 318		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 319
 320		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 321		spin_lock(&hslot2->lock);
 322		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 323		    sk->sk_family == AF_INET6)
 324			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 325					   &hslot2->head);
 326		else
 327			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 328					   &hslot2->head);
 329		hslot2->count++;
 330		spin_unlock(&hslot2->lock);
 331	}
 332	sock_set_flag(sk, SOCK_RCU_FREE);
 333	error = 0;
 334fail_unlock:
 335	spin_unlock_bh(&hslot->lock);
 336fail:
 337	return error;
 338}
 339EXPORT_SYMBOL(udp_lib_get_port);
 340
 341int udp_v4_get_port(struct sock *sk, unsigned short snum)
 342{
 343	unsigned int hash2_nulladdr =
 344		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 345	unsigned int hash2_partial =
 346		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 347
 348	/* precompute partial secondary hash */
 349	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 350	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 351}
 352
 353static int compute_score(struct sock *sk, struct net *net,
 354			 __be32 saddr, __be16 sport,
 355			 __be32 daddr, unsigned short hnum,
 356			 int dif, int sdif)
 357{
 358	int score;
 359	struct inet_sock *inet;
 360	bool dev_match;
 361
 362	if (!net_eq(sock_net(sk), net) ||
 363	    udp_sk(sk)->udp_port_hash != hnum ||
 364	    ipv6_only_sock(sk))
 365		return -1;
 366
 367	if (sk->sk_rcv_saddr != daddr)
 368		return -1;
 369
 370	score = (sk->sk_family == PF_INET) ? 2 : 1;
 371
 372	inet = inet_sk(sk);
 373	if (inet->inet_daddr) {
 374		if (inet->inet_daddr != saddr)
 375			return -1;
 376		score += 4;
 377	}
 378
 379	if (inet->inet_dport) {
 380		if (inet->inet_dport != sport)
 381			return -1;
 382		score += 4;
 383	}
 384
 385	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 386					dif, sdif);
 387	if (!dev_match)
 388		return -1;
 389	score += 4;
 
 390
 391	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 392		score++;
 393	return score;
 394}
 395
 396static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 397		       const __u16 lport, const __be32 faddr,
 398		       const __be16 fport)
 399{
 400	static u32 udp_ehash_secret __read_mostly;
 401
 402	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 403
 404	return __inet_ehashfn(laddr, lport, faddr, fport,
 405			      udp_ehash_secret + net_hash_mix(net));
 406}
 407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408/* called with rcu_read_lock() */
 409static struct sock *udp4_lib_lookup2(struct net *net,
 410				     __be32 saddr, __be16 sport,
 411				     __be32 daddr, unsigned int hnum,
 412				     int dif, int sdif,
 413				     struct udp_hslot *hslot2,
 414				     struct sk_buff *skb)
 415{
 416	struct sock *sk, *result;
 417	int score, badness;
 418	u32 hash = 0;
 419
 420	result = NULL;
 421	badness = 0;
 422	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 423		score = compute_score(sk, net, saddr, sport,
 424				      daddr, hnum, dif, sdif);
 425		if (score > badness) {
 426			if (sk->sk_reuseport &&
 427			    sk->sk_state != TCP_ESTABLISHED) {
 428				hash = udp_ehashfn(net, daddr, hnum,
 429						   saddr, sport);
 430				result = reuseport_select_sock(sk, hash, skb,
 431							sizeof(struct udphdr));
 432				if (result && !reuseport_has_conns(sk, false))
 433					return result;
 434			}
 435			badness = score;
 436			result = sk;
 437		}
 438	}
 439	return result;
 440}
 441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 443 * harder than this. -DaveM
 444 */
 445struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 446		__be16 sport, __be32 daddr, __be16 dport, int dif,
 447		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 448{
 449	struct sock *result;
 450	unsigned short hnum = ntohs(dport);
 451	unsigned int hash2, slot2;
 452	struct udp_hslot *hslot2;
 
 453
 454	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 455	slot2 = hash2 & udptable->mask;
 456	hslot2 = &udptable->hash2[slot2];
 457
 
 458	result = udp4_lib_lookup2(net, saddr, sport,
 459				  daddr, hnum, dif, sdif,
 460				  hslot2, skb);
 461	if (!result) {
 462		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 463		slot2 = hash2 & udptable->mask;
 464		hslot2 = &udptable->hash2[slot2];
 465
 466		result = udp4_lib_lookup2(net, saddr, sport,
 467					  htonl(INADDR_ANY), hnum, dif, sdif,
 468					  hslot2, skb);
 
 
 
 469	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470	if (IS_ERR(result))
 471		return NULL;
 472	return result;
 473}
 474EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 475
 476static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 477						 __be16 sport, __be16 dport,
 478						 struct udp_table *udptable)
 479{
 480	const struct iphdr *iph = ip_hdr(skb);
 481
 482	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 483				 iph->daddr, dport, inet_iif(skb),
 484				 inet_sdif(skb), udptable, skb);
 485}
 486
 487struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
 488				 __be16 sport, __be16 dport)
 489{
 490	const struct iphdr *iph = ip_hdr(skb);
 
 491
 492	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 493				 iph->daddr, dport, inet_iif(skb),
 494				 inet_sdif(skb), &udp_table, NULL);
 495}
 496EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
 497
 498/* Must be called under rcu_read_lock().
 499 * Does increment socket refcount.
 500 */
 501#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 502struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 503			     __be32 daddr, __be16 dport, int dif)
 504{
 505	struct sock *sk;
 506
 507	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 508			       dif, 0, &udp_table, NULL);
 509	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 510		sk = NULL;
 511	return sk;
 512}
 513EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 514#endif
 515
 516static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 517				       __be16 loc_port, __be32 loc_addr,
 518				       __be16 rmt_port, __be32 rmt_addr,
 519				       int dif, int sdif, unsigned short hnum)
 520{
 521	struct inet_sock *inet = inet_sk(sk);
 522
 523	if (!net_eq(sock_net(sk), net) ||
 524	    udp_sk(sk)->udp_port_hash != hnum ||
 525	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 526	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 527	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 528	    ipv6_only_sock(sk) ||
 529	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 530		return false;
 531	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 532		return false;
 533	return true;
 534}
 535
 536DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 537void udp_encap_enable(void)
 538{
 539	static_branch_inc(&udp_encap_needed_key);
 540}
 541EXPORT_SYMBOL(udp_encap_enable);
 542
 
 
 
 
 
 
 543/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 544 * through error handlers in encapsulations looking for a match.
 545 */
 546static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 547{
 548	int i;
 549
 550	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 551		int (*handler)(struct sk_buff *skb, u32 info);
 552		const struct ip_tunnel_encap_ops *encap;
 553
 554		encap = rcu_dereference(iptun_encaps[i]);
 555		if (!encap)
 556			continue;
 557		handler = encap->err_handler;
 558		if (handler && !handler(skb, info))
 559			return 0;
 560	}
 561
 562	return -ENOENT;
 563}
 564
 565/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 566 * reversing source and destination port: this will match tunnels that force the
 567 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 568 * lwtunnels might actually break this assumption by being configured with
 569 * different destination ports on endpoints, in this case we won't be able to
 570 * trace ICMP messages back to them.
 571 *
 572 * If this doesn't match any socket, probe tunnels with arbitrary destination
 573 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 574 * we've sent packets to won't necessarily match the local destination port.
 575 *
 576 * Then ask the tunnel implementation to match the error against a valid
 577 * association.
 578 *
 579 * Return an error if we can't find a match, the socket if we need further
 580 * processing, zero otherwise.
 581 */
 582static struct sock *__udp4_lib_err_encap(struct net *net,
 583					 const struct iphdr *iph,
 584					 struct udphdr *uh,
 585					 struct udp_table *udptable,
 
 586					 struct sk_buff *skb, u32 info)
 587{
 
 588	int network_offset, transport_offset;
 589	struct sock *sk;
 590
 591	network_offset = skb_network_offset(skb);
 592	transport_offset = skb_transport_offset(skb);
 593
 594	/* Network header needs to point to the outer IPv4 header inside ICMP */
 595	skb_reset_network_header(skb);
 596
 597	/* Transport header needs to point to the UDP header */
 598	skb_set_transport_header(skb, iph->ihl << 2);
 599
 
 
 
 
 
 
 
 
 
 
 600	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 601			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 602			       udptable, NULL);
 603	if (sk) {
 604		int (*lookup)(struct sock *sk, struct sk_buff *skb);
 605		struct udp_sock *up = udp_sk(sk);
 606
 607		lookup = READ_ONCE(up->encap_err_lookup);
 608		if (!lookup || lookup(sk, skb))
 609			sk = NULL;
 610	}
 611
 
 612	if (!sk)
 613		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 614
 615	skb_set_transport_header(skb, transport_offset);
 616	skb_set_network_header(skb, network_offset);
 617
 618	return sk;
 619}
 620
 621/*
 622 * This routine is called by the ICMP module when it gets some
 623 * sort of error condition.  If err < 0 then the socket should
 624 * be closed and the error returned to the user.  If err > 0
 625 * it's just the icmp type << 8 | icmp code.
 626 * Header points to the ip header of the error packet. We move
 627 * on past this. Then (as it used to claim before adjustment)
 628 * header points to the first 8 bytes of the udp header.  We need
 629 * to find the appropriate port.
 630 */
 631
 632int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 633{
 634	struct inet_sock *inet;
 635	const struct iphdr *iph = (const struct iphdr *)skb->data;
 636	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 637	const int type = icmp_hdr(skb)->type;
 638	const int code = icmp_hdr(skb)->code;
 639	bool tunnel = false;
 640	struct sock *sk;
 641	int harderr;
 642	int err;
 643	struct net *net = dev_net(skb->dev);
 644
 645	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 646			       iph->saddr, uh->source, skb->dev->ifindex,
 647			       inet_sdif(skb), udptable, NULL);
 648	if (!sk) {
 
 649		/* No socket for error: try tunnels before discarding */
 650		sk = ERR_PTR(-ENOENT);
 651		if (static_branch_unlikely(&udp_encap_needed_key)) {
 652			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
 653						  info);
 654			if (!sk)
 655				return 0;
 656		}
 
 657
 658		if (IS_ERR(sk)) {
 659			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 660			return PTR_ERR(sk);
 661		}
 662
 663		tunnel = true;
 664	}
 665
 666	err = 0;
 667	harderr = 0;
 668	inet = inet_sk(sk);
 669
 670	switch (type) {
 671	default:
 672	case ICMP_TIME_EXCEEDED:
 673		err = EHOSTUNREACH;
 674		break;
 675	case ICMP_SOURCE_QUENCH:
 676		goto out;
 677	case ICMP_PARAMETERPROB:
 678		err = EPROTO;
 679		harderr = 1;
 680		break;
 681	case ICMP_DEST_UNREACH:
 682		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 683			ipv4_sk_update_pmtu(skb, sk, info);
 684			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 685				err = EMSGSIZE;
 686				harderr = 1;
 687				break;
 688			}
 689			goto out;
 690		}
 691		err = EHOSTUNREACH;
 692		if (code <= NR_ICMP_UNREACH) {
 693			harderr = icmp_err_convert[code].fatal;
 694			err = icmp_err_convert[code].errno;
 695		}
 696		break;
 697	case ICMP_REDIRECT:
 698		ipv4_sk_redirect(skb, sk);
 699		goto out;
 700	}
 701
 702	/*
 703	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 704	 *	4.1.3.3.
 705	 */
 706	if (tunnel) {
 707		/* ...not for tunnels though: we don't have a sending socket */
 
 
 
 708		goto out;
 709	}
 710	if (!inet->recverr) {
 711		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 712			goto out;
 713	} else
 714		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 715
 716	sk->sk_err = err;
 717	sk->sk_error_report(sk);
 718out:
 719	return 0;
 720}
 721
 722int udp_err(struct sk_buff *skb, u32 info)
 723{
 724	return __udp4_lib_err(skb, info, &udp_table);
 725}
 726
 727/*
 728 * Throw away all pending data and cancel the corking. Socket is locked.
 729 */
 730void udp_flush_pending_frames(struct sock *sk)
 731{
 732	struct udp_sock *up = udp_sk(sk);
 733
 734	if (up->pending) {
 735		up->len = 0;
 736		up->pending = 0;
 737		ip_flush_pending_frames(sk);
 738	}
 739}
 740EXPORT_SYMBOL(udp_flush_pending_frames);
 741
 742/**
 743 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 744 * 	@skb: 	sk_buff containing the filled-in UDP header
 745 * 	        (checksum field must be zeroed out)
 746 *	@src:	source IP address
 747 *	@dst:	destination IP address
 748 */
 749void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 750{
 751	struct udphdr *uh = udp_hdr(skb);
 752	int offset = skb_transport_offset(skb);
 753	int len = skb->len - offset;
 754	int hlen = len;
 755	__wsum csum = 0;
 756
 757	if (!skb_has_frag_list(skb)) {
 758		/*
 759		 * Only one fragment on the socket.
 760		 */
 761		skb->csum_start = skb_transport_header(skb) - skb->head;
 762		skb->csum_offset = offsetof(struct udphdr, check);
 763		uh->check = ~csum_tcpudp_magic(src, dst, len,
 764					       IPPROTO_UDP, 0);
 765	} else {
 766		struct sk_buff *frags;
 767
 768		/*
 769		 * HW-checksum won't work as there are two or more
 770		 * fragments on the socket so that all csums of sk_buffs
 771		 * should be together
 772		 */
 773		skb_walk_frags(skb, frags) {
 774			csum = csum_add(csum, frags->csum);
 775			hlen -= frags->len;
 776		}
 777
 778		csum = skb_checksum(skb, offset, hlen, csum);
 779		skb->ip_summed = CHECKSUM_NONE;
 780
 781		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 782		if (uh->check == 0)
 783			uh->check = CSUM_MANGLED_0;
 784	}
 785}
 786EXPORT_SYMBOL_GPL(udp4_hwcsum);
 787
 788/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 789 * for the simple case like when setting the checksum for a UDP tunnel.
 790 */
 791void udp_set_csum(bool nocheck, struct sk_buff *skb,
 792		  __be32 saddr, __be32 daddr, int len)
 793{
 794	struct udphdr *uh = udp_hdr(skb);
 795
 796	if (nocheck) {
 797		uh->check = 0;
 798	} else if (skb_is_gso(skb)) {
 799		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 800	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 801		uh->check = 0;
 802		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 803		if (uh->check == 0)
 804			uh->check = CSUM_MANGLED_0;
 805	} else {
 806		skb->ip_summed = CHECKSUM_PARTIAL;
 807		skb->csum_start = skb_transport_header(skb) - skb->head;
 808		skb->csum_offset = offsetof(struct udphdr, check);
 809		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 810	}
 811}
 812EXPORT_SYMBOL(udp_set_csum);
 813
 814static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 815			struct inet_cork *cork)
 816{
 817	struct sock *sk = skb->sk;
 818	struct inet_sock *inet = inet_sk(sk);
 819	struct udphdr *uh;
 820	int err = 0;
 821	int is_udplite = IS_UDPLITE(sk);
 822	int offset = skb_transport_offset(skb);
 823	int len = skb->len - offset;
 824	int datalen = len - sizeof(*uh);
 825	__wsum csum = 0;
 826
 827	/*
 828	 * Create a UDP header
 829	 */
 830	uh = udp_hdr(skb);
 831	uh->source = inet->inet_sport;
 832	uh->dest = fl4->fl4_dport;
 833	uh->len = htons(len);
 834	uh->check = 0;
 835
 836	if (cork->gso_size) {
 837		const int hlen = skb_network_header_len(skb) +
 838				 sizeof(struct udphdr);
 839
 840		if (hlen + cork->gso_size > cork->fragsize) {
 841			kfree_skb(skb);
 842			return -EINVAL;
 843		}
 844		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
 845			kfree_skb(skb);
 846			return -EINVAL;
 847		}
 848		if (sk->sk_no_check_tx) {
 849			kfree_skb(skb);
 850			return -EINVAL;
 851		}
 852		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 853		    dst_xfrm(skb_dst(skb))) {
 854			kfree_skb(skb);
 855			return -EIO;
 856		}
 857
 858		if (datalen > cork->gso_size) {
 859			skb_shinfo(skb)->gso_size = cork->gso_size;
 860			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 861			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 862								 cork->gso_size);
 863		}
 864		goto csum_partial;
 865	}
 866
 867	if (is_udplite)  				 /*     UDP-Lite      */
 868		csum = udplite_csum(skb);
 869
 870	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 871
 872		skb->ip_summed = CHECKSUM_NONE;
 873		goto send;
 874
 875	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 876csum_partial:
 877
 878		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 879		goto send;
 880
 881	} else
 882		csum = udp_csum(skb);
 883
 884	/* add protocol-dependent pseudo-header */
 885	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 886				      sk->sk_protocol, csum);
 887	if (uh->check == 0)
 888		uh->check = CSUM_MANGLED_0;
 889
 890send:
 891	err = ip_send_skb(sock_net(sk), skb);
 892	if (err) {
 893		if (err == -ENOBUFS && !inet->recverr) {
 894			UDP_INC_STATS(sock_net(sk),
 895				      UDP_MIB_SNDBUFERRORS, is_udplite);
 896			err = 0;
 897		}
 898	} else
 899		UDP_INC_STATS(sock_net(sk),
 900			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 901	return err;
 902}
 903
 904/*
 905 * Push out all pending data as one UDP datagram. Socket is locked.
 906 */
 907int udp_push_pending_frames(struct sock *sk)
 908{
 909	struct udp_sock  *up = udp_sk(sk);
 910	struct inet_sock *inet = inet_sk(sk);
 911	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 912	struct sk_buff *skb;
 913	int err = 0;
 914
 915	skb = ip_finish_skb(sk, fl4);
 916	if (!skb)
 917		goto out;
 918
 919	err = udp_send_skb(skb, fl4, &inet->cork.base);
 920
 921out:
 922	up->len = 0;
 923	up->pending = 0;
 924	return err;
 925}
 926EXPORT_SYMBOL(udp_push_pending_frames);
 927
 928static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
 929{
 930	switch (cmsg->cmsg_type) {
 931	case UDP_SEGMENT:
 932		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
 933			return -EINVAL;
 934		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
 935		return 0;
 936	default:
 937		return -EINVAL;
 938	}
 939}
 940
 941int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
 942{
 943	struct cmsghdr *cmsg;
 944	bool need_ip = false;
 945	int err;
 946
 947	for_each_cmsghdr(cmsg, msg) {
 948		if (!CMSG_OK(msg, cmsg))
 949			return -EINVAL;
 950
 951		if (cmsg->cmsg_level != SOL_UDP) {
 952			need_ip = true;
 953			continue;
 954		}
 955
 956		err = __udp_cmsg_send(cmsg, gso_size);
 957		if (err)
 958			return err;
 959	}
 960
 961	return need_ip;
 962}
 963EXPORT_SYMBOL_GPL(udp_cmsg_send);
 964
 965int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
 966{
 967	struct inet_sock *inet = inet_sk(sk);
 968	struct udp_sock *up = udp_sk(sk);
 969	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 970	struct flowi4 fl4_stack;
 971	struct flowi4 *fl4;
 972	int ulen = len;
 973	struct ipcm_cookie ipc;
 974	struct rtable *rt = NULL;
 975	int free = 0;
 976	int connected = 0;
 977	__be32 daddr, faddr, saddr;
 978	__be16 dport;
 979	u8  tos;
 980	int err, is_udplite = IS_UDPLITE(sk);
 981	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 982	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 983	struct sk_buff *skb;
 984	struct ip_options_data opt_copy;
 985
 986	if (len > 0xFFFF)
 987		return -EMSGSIZE;
 988
 989	/*
 990	 *	Check the flags.
 991	 */
 992
 993	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 994		return -EOPNOTSUPP;
 995
 996	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
 997
 998	fl4 = &inet->cork.fl.u.ip4;
 999	if (up->pending) {
1000		/*
1001		 * There are pending frames.
1002		 * The socket lock must be held while it's corked.
1003		 */
1004		lock_sock(sk);
1005		if (likely(up->pending)) {
1006			if (unlikely(up->pending != AF_INET)) {
1007				release_sock(sk);
1008				return -EINVAL;
1009			}
1010			goto do_append_data;
1011		}
1012		release_sock(sk);
1013	}
1014	ulen += sizeof(struct udphdr);
1015
1016	/*
1017	 *	Get and verify the address.
1018	 */
1019	if (usin) {
1020		if (msg->msg_namelen < sizeof(*usin))
1021			return -EINVAL;
1022		if (usin->sin_family != AF_INET) {
1023			if (usin->sin_family != AF_UNSPEC)
1024				return -EAFNOSUPPORT;
1025		}
1026
1027		daddr = usin->sin_addr.s_addr;
1028		dport = usin->sin_port;
1029		if (dport == 0)
1030			return -EINVAL;
1031	} else {
1032		if (sk->sk_state != TCP_ESTABLISHED)
1033			return -EDESTADDRREQ;
1034		daddr = inet->inet_daddr;
1035		dport = inet->inet_dport;
1036		/* Open fast path for connected socket.
1037		   Route will not be used, if at least one option is set.
1038		 */
1039		connected = 1;
1040	}
1041
1042	ipcm_init_sk(&ipc, inet);
1043	ipc.gso_size = up->gso_size;
1044
1045	if (msg->msg_controllen) {
1046		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1047		if (err > 0)
1048			err = ip_cmsg_send(sk, msg, &ipc,
1049					   sk->sk_family == AF_INET6);
1050		if (unlikely(err < 0)) {
1051			kfree(ipc.opt);
1052			return err;
1053		}
1054		if (ipc.opt)
1055			free = 1;
1056		connected = 0;
1057	}
1058	if (!ipc.opt) {
1059		struct ip_options_rcu *inet_opt;
1060
1061		rcu_read_lock();
1062		inet_opt = rcu_dereference(inet->inet_opt);
1063		if (inet_opt) {
1064			memcpy(&opt_copy, inet_opt,
1065			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1066			ipc.opt = &opt_copy.opt;
1067		}
1068		rcu_read_unlock();
1069	}
1070
1071	if (cgroup_bpf_enabled && !connected) {
1072		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1073					    (struct sockaddr *)usin, &ipc.addr);
1074		if (err)
1075			goto out_free;
1076		if (usin) {
1077			if (usin->sin_port == 0) {
1078				/* BPF program set invalid port. Reject it. */
1079				err = -EINVAL;
1080				goto out_free;
1081			}
1082			daddr = usin->sin_addr.s_addr;
1083			dport = usin->sin_port;
1084		}
1085	}
1086
1087	saddr = ipc.addr;
1088	ipc.addr = faddr = daddr;
1089
1090	if (ipc.opt && ipc.opt->opt.srr) {
1091		if (!daddr) {
1092			err = -EINVAL;
1093			goto out_free;
1094		}
1095		faddr = ipc.opt->opt.faddr;
1096		connected = 0;
1097	}
1098	tos = get_rttos(&ipc, inet);
1099	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1100	    (msg->msg_flags & MSG_DONTROUTE) ||
1101	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1102		tos |= RTO_ONLINK;
1103		connected = 0;
1104	}
1105
1106	if (ipv4_is_multicast(daddr)) {
1107		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1108			ipc.oif = inet->mc_index;
1109		if (!saddr)
1110			saddr = inet->mc_addr;
1111		connected = 0;
1112	} else if (!ipc.oif) {
1113		ipc.oif = inet->uc_index;
1114	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1115		/* oif is set, packet is to local broadcast and
1116		 * and uc_index is set. oif is most likely set
1117		 * by sk_bound_dev_if. If uc_index != oif check if the
1118		 * oif is an L3 master and uc_index is an L3 slave.
1119		 * If so, we want to allow the send using the uc_index.
1120		 */
1121		if (ipc.oif != inet->uc_index &&
1122		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1123							      inet->uc_index)) {
1124			ipc.oif = inet->uc_index;
1125		}
1126	}
1127
1128	if (connected)
1129		rt = (struct rtable *)sk_dst_check(sk, 0);
1130
1131	if (!rt) {
1132		struct net *net = sock_net(sk);
1133		__u8 flow_flags = inet_sk_flowi_flags(sk);
1134
1135		fl4 = &fl4_stack;
1136
1137		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1138				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1139				   flow_flags,
1140				   faddr, saddr, dport, inet->inet_sport,
1141				   sk->sk_uid);
1142
1143		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1144		rt = ip_route_output_flow(net, fl4, sk);
1145		if (IS_ERR(rt)) {
1146			err = PTR_ERR(rt);
1147			rt = NULL;
1148			if (err == -ENETUNREACH)
1149				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1150			goto out;
1151		}
1152
1153		err = -EACCES;
1154		if ((rt->rt_flags & RTCF_BROADCAST) &&
1155		    !sock_flag(sk, SOCK_BROADCAST))
1156			goto out;
1157		if (connected)
1158			sk_dst_set(sk, dst_clone(&rt->dst));
1159	}
1160
1161	if (msg->msg_flags&MSG_CONFIRM)
1162		goto do_confirm;
1163back_from_confirm:
1164
1165	saddr = fl4->saddr;
1166	if (!ipc.addr)
1167		daddr = ipc.addr = fl4->daddr;
1168
1169	/* Lockless fast path for the non-corking case. */
1170	if (!corkreq) {
1171		struct inet_cork cork;
1172
1173		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1174				  sizeof(struct udphdr), &ipc, &rt,
1175				  &cork, msg->msg_flags);
1176		err = PTR_ERR(skb);
1177		if (!IS_ERR_OR_NULL(skb))
1178			err = udp_send_skb(skb, fl4, &cork);
1179		goto out;
1180	}
1181
1182	lock_sock(sk);
1183	if (unlikely(up->pending)) {
1184		/* The socket is already corked while preparing it. */
1185		/* ... which is an evident application bug. --ANK */
1186		release_sock(sk);
1187
1188		net_dbg_ratelimited("socket already corked\n");
1189		err = -EINVAL;
1190		goto out;
1191	}
1192	/*
1193	 *	Now cork the socket to pend data.
1194	 */
1195	fl4 = &inet->cork.fl.u.ip4;
1196	fl4->daddr = daddr;
1197	fl4->saddr = saddr;
1198	fl4->fl4_dport = dport;
1199	fl4->fl4_sport = inet->inet_sport;
1200	up->pending = AF_INET;
1201
1202do_append_data:
1203	up->len += ulen;
1204	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1205			     sizeof(struct udphdr), &ipc, &rt,
1206			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1207	if (err)
1208		udp_flush_pending_frames(sk);
1209	else if (!corkreq)
1210		err = udp_push_pending_frames(sk);
1211	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1212		up->pending = 0;
1213	release_sock(sk);
1214
1215out:
1216	ip_rt_put(rt);
1217out_free:
1218	if (free)
1219		kfree(ipc.opt);
1220	if (!err)
1221		return len;
1222	/*
1223	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1224	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1225	 * we don't have a good statistic (IpOutDiscards but it can be too many
1226	 * things).  We could add another new stat but at least for now that
1227	 * seems like overkill.
1228	 */
1229	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1230		UDP_INC_STATS(sock_net(sk),
1231			      UDP_MIB_SNDBUFERRORS, is_udplite);
1232	}
1233	return err;
1234
1235do_confirm:
1236	if (msg->msg_flags & MSG_PROBE)
1237		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1238	if (!(msg->msg_flags&MSG_PROBE) || len)
1239		goto back_from_confirm;
1240	err = 0;
1241	goto out;
1242}
1243EXPORT_SYMBOL(udp_sendmsg);
1244
1245int udp_sendpage(struct sock *sk, struct page *page, int offset,
1246		 size_t size, int flags)
1247{
1248	struct inet_sock *inet = inet_sk(sk);
1249	struct udp_sock *up = udp_sk(sk);
1250	int ret;
1251
1252	if (flags & MSG_SENDPAGE_NOTLAST)
1253		flags |= MSG_MORE;
1254
1255	if (!up->pending) {
1256		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1257
1258		/* Call udp_sendmsg to specify destination address which
1259		 * sendpage interface can't pass.
1260		 * This will succeed only when the socket is connected.
1261		 */
1262		ret = udp_sendmsg(sk, &msg, 0);
1263		if (ret < 0)
1264			return ret;
1265	}
1266
1267	lock_sock(sk);
1268
1269	if (unlikely(!up->pending)) {
1270		release_sock(sk);
1271
1272		net_dbg_ratelimited("cork failed\n");
1273		return -EINVAL;
1274	}
1275
1276	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1277			     page, offset, size, flags);
1278	if (ret == -EOPNOTSUPP) {
1279		release_sock(sk);
1280		return sock_no_sendpage(sk->sk_socket, page, offset,
1281					size, flags);
1282	}
1283	if (ret < 0) {
1284		udp_flush_pending_frames(sk);
1285		goto out;
1286	}
1287
1288	up->len += size;
1289	if (!(up->corkflag || (flags&MSG_MORE)))
1290		ret = udp_push_pending_frames(sk);
1291	if (!ret)
1292		ret = size;
1293out:
1294	release_sock(sk);
1295	return ret;
1296}
1297
1298#define UDP_SKB_IS_STATELESS 0x80000000
1299
1300/* all head states (dst, sk, nf conntrack) except skb extensions are
1301 * cleared by udp_rcv().
1302 *
1303 * We need to preserve secpath, if present, to eventually process
1304 * IP_CMSG_PASSSEC at recvmsg() time.
1305 *
1306 * Other extensions can be cleared.
1307 */
1308static bool udp_try_make_stateless(struct sk_buff *skb)
1309{
1310	if (!skb_has_extensions(skb))
1311		return true;
1312
1313	if (!secpath_exists(skb)) {
1314		skb_ext_reset(skb);
1315		return true;
1316	}
1317
1318	return false;
1319}
1320
1321static void udp_set_dev_scratch(struct sk_buff *skb)
1322{
1323	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1324
1325	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1326	scratch->_tsize_state = skb->truesize;
1327#if BITS_PER_LONG == 64
1328	scratch->len = skb->len;
1329	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1330	scratch->is_linear = !skb_is_nonlinear(skb);
1331#endif
1332	if (udp_try_make_stateless(skb))
1333		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1334}
1335
1336static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1337{
1338	/* We come here after udp_lib_checksum_complete() returned 0.
1339	 * This means that __skb_checksum_complete() might have
1340	 * set skb->csum_valid to 1.
1341	 * On 64bit platforms, we can set csum_unnecessary
1342	 * to true, but only if the skb is not shared.
1343	 */
1344#if BITS_PER_LONG == 64
1345	if (!skb_shared(skb))
1346		udp_skb_scratch(skb)->csum_unnecessary = true;
1347#endif
1348}
1349
1350static int udp_skb_truesize(struct sk_buff *skb)
1351{
1352	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1353}
1354
1355static bool udp_skb_has_head_state(struct sk_buff *skb)
1356{
1357	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1358}
1359
1360/* fully reclaim rmem/fwd memory allocated for skb */
1361static void udp_rmem_release(struct sock *sk, int size, int partial,
1362			     bool rx_queue_lock_held)
1363{
1364	struct udp_sock *up = udp_sk(sk);
1365	struct sk_buff_head *sk_queue;
1366	int amt;
1367
1368	if (likely(partial)) {
1369		up->forward_deficit += size;
1370		size = up->forward_deficit;
1371		if (size < (sk->sk_rcvbuf >> 2))
 
1372			return;
1373	} else {
1374		size += up->forward_deficit;
1375	}
1376	up->forward_deficit = 0;
1377
1378	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1379	 * if the called don't held it already
1380	 */
1381	sk_queue = &sk->sk_receive_queue;
1382	if (!rx_queue_lock_held)
1383		spin_lock(&sk_queue->lock);
1384
1385
1386	sk->sk_forward_alloc += size;
1387	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1388	sk->sk_forward_alloc -= amt;
1389
1390	if (amt)
1391		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1392
1393	atomic_sub(size, &sk->sk_rmem_alloc);
1394
1395	/* this can save us from acquiring the rx queue lock on next receive */
1396	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1397
1398	if (!rx_queue_lock_held)
1399		spin_unlock(&sk_queue->lock);
1400}
1401
1402/* Note: called with reader_queue.lock held.
1403 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1404 * This avoids a cache line miss while receive_queue lock is held.
1405 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1406 */
1407void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1408{
1409	prefetch(&skb->data);
1410	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1411}
1412EXPORT_SYMBOL(udp_skb_destructor);
1413
1414/* as above, but the caller held the rx queue lock, too */
1415static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1416{
1417	prefetch(&skb->data);
1418	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1419}
1420
1421/* Idea of busylocks is to let producers grab an extra spinlock
1422 * to relieve pressure on the receive_queue spinlock shared by consumer.
1423 * Under flood, this means that only one producer can be in line
1424 * trying to acquire the receive_queue spinlock.
1425 * These busylock can be allocated on a per cpu manner, instead of a
1426 * per socket one (that would consume a cache line per socket)
1427 */
1428static int udp_busylocks_log __read_mostly;
1429static spinlock_t *udp_busylocks __read_mostly;
1430
1431static spinlock_t *busylock_acquire(void *ptr)
1432{
1433	spinlock_t *busy;
1434
1435	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1436	spin_lock(busy);
1437	return busy;
1438}
1439
1440static void busylock_release(spinlock_t *busy)
1441{
1442	if (busy)
1443		spin_unlock(busy);
1444}
1445
1446int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1447{
1448	struct sk_buff_head *list = &sk->sk_receive_queue;
1449	int rmem, delta, amt, err = -ENOMEM;
1450	spinlock_t *busy = NULL;
1451	int size;
1452
1453	/* try to avoid the costly atomic add/sub pair when the receive
1454	 * queue is full; always allow at least a packet
1455	 */
1456	rmem = atomic_read(&sk->sk_rmem_alloc);
1457	if (rmem > sk->sk_rcvbuf)
1458		goto drop;
1459
1460	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1461	 * having linear skbs :
1462	 * - Reduce memory overhead and thus increase receive queue capacity
1463	 * - Less cache line misses at copyout() time
1464	 * - Less work at consume_skb() (less alien page frag freeing)
1465	 */
1466	if (rmem > (sk->sk_rcvbuf >> 1)) {
1467		skb_condense(skb);
1468
1469		busy = busylock_acquire(sk);
1470	}
1471	size = skb->truesize;
1472	udp_set_dev_scratch(skb);
1473
1474	/* we drop only if the receive buf is full and the receive
1475	 * queue contains some other skb
1476	 */
1477	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1478	if (rmem > (size + sk->sk_rcvbuf))
1479		goto uncharge_drop;
1480
1481	spin_lock(&list->lock);
1482	if (size >= sk->sk_forward_alloc) {
1483		amt = sk_mem_pages(size);
1484		delta = amt << SK_MEM_QUANTUM_SHIFT;
1485		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1486			err = -ENOBUFS;
1487			spin_unlock(&list->lock);
1488			goto uncharge_drop;
1489		}
1490
1491		sk->sk_forward_alloc += delta;
1492	}
1493
1494	sk->sk_forward_alloc -= size;
1495
1496	/* no need to setup a destructor, we will explicitly release the
1497	 * forward allocated memory on dequeue
1498	 */
1499	sock_skb_set_dropcount(sk, skb);
1500
1501	__skb_queue_tail(list, skb);
1502	spin_unlock(&list->lock);
1503
1504	if (!sock_flag(sk, SOCK_DEAD))
1505		sk->sk_data_ready(sk);
1506
1507	busylock_release(busy);
1508	return 0;
1509
1510uncharge_drop:
1511	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1512
1513drop:
1514	atomic_inc(&sk->sk_drops);
1515	busylock_release(busy);
1516	return err;
1517}
1518EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1519
1520void udp_destruct_sock(struct sock *sk)
1521{
1522	/* reclaim completely the forward allocated memory */
1523	struct udp_sock *up = udp_sk(sk);
1524	unsigned int total = 0;
1525	struct sk_buff *skb;
1526
1527	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1528	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1529		total += skb->truesize;
1530		kfree_skb(skb);
1531	}
1532	udp_rmem_release(sk, total, 0, true);
 
 
1533
 
 
 
1534	inet_sock_destruct(sk);
1535}
1536EXPORT_SYMBOL_GPL(udp_destruct_sock);
1537
1538int udp_init_sock(struct sock *sk)
1539{
1540	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1541	sk->sk_destruct = udp_destruct_sock;
 
1542	return 0;
1543}
1544EXPORT_SYMBOL_GPL(udp_init_sock);
1545
1546void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1547{
1548	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1549		bool slow = lock_sock_fast(sk);
1550
1551		sk_peek_offset_bwd(sk, len);
1552		unlock_sock_fast(sk, slow);
1553	}
1554
1555	if (!skb_unref(skb))
1556		return;
1557
1558	/* In the more common cases we cleared the head states previously,
1559	 * see __udp_queue_rcv_skb().
1560	 */
1561	if (unlikely(udp_skb_has_head_state(skb)))
1562		skb_release_head_state(skb);
1563	__consume_stateless_skb(skb);
1564}
1565EXPORT_SYMBOL_GPL(skb_consume_udp);
1566
1567static struct sk_buff *__first_packet_length(struct sock *sk,
1568					     struct sk_buff_head *rcvq,
1569					     int *total)
1570{
1571	struct sk_buff *skb;
1572
1573	while ((skb = skb_peek(rcvq)) != NULL) {
1574		if (udp_lib_checksum_complete(skb)) {
1575			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1576					IS_UDPLITE(sk));
1577			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1578					IS_UDPLITE(sk));
1579			atomic_inc(&sk->sk_drops);
1580			__skb_unlink(skb, rcvq);
1581			*total += skb->truesize;
1582			kfree_skb(skb);
1583		} else {
1584			udp_skb_csum_unnecessary_set(skb);
1585			break;
1586		}
1587	}
1588	return skb;
1589}
1590
1591/**
1592 *	first_packet_length	- return length of first packet in receive queue
1593 *	@sk: socket
1594 *
1595 *	Drops all bad checksum frames, until a valid one is found.
1596 *	Returns the length of found skb, or -1 if none is found.
1597 */
1598static int first_packet_length(struct sock *sk)
1599{
1600	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1601	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1602	struct sk_buff *skb;
1603	int total = 0;
1604	int res;
1605
1606	spin_lock_bh(&rcvq->lock);
1607	skb = __first_packet_length(sk, rcvq, &total);
1608	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1609		spin_lock(&sk_queue->lock);
1610		skb_queue_splice_tail_init(sk_queue, rcvq);
1611		spin_unlock(&sk_queue->lock);
1612
1613		skb = __first_packet_length(sk, rcvq, &total);
1614	}
1615	res = skb ? skb->len : -1;
1616	if (total)
1617		udp_rmem_release(sk, total, 1, false);
1618	spin_unlock_bh(&rcvq->lock);
1619	return res;
1620}
1621
1622/*
1623 *	IOCTL requests applicable to the UDP protocol
1624 */
1625
1626int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1627{
1628	switch (cmd) {
1629	case SIOCOUTQ:
1630	{
1631		int amount = sk_wmem_alloc_get(sk);
1632
1633		return put_user(amount, (int __user *)arg);
1634	}
1635
1636	case SIOCINQ:
1637	{
1638		int amount = max_t(int, 0, first_packet_length(sk));
1639
1640		return put_user(amount, (int __user *)arg);
1641	}
1642
1643	default:
1644		return -ENOIOCTLCMD;
1645	}
1646
1647	return 0;
1648}
1649EXPORT_SYMBOL(udp_ioctl);
1650
1651struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1652			       int noblock, int *off, int *err)
1653{
1654	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1655	struct sk_buff_head *queue;
1656	struct sk_buff *last;
1657	long timeo;
1658	int error;
1659
1660	queue = &udp_sk(sk)->reader_queue;
1661	flags |= noblock ? MSG_DONTWAIT : 0;
1662	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1663	do {
1664		struct sk_buff *skb;
1665
1666		error = sock_error(sk);
1667		if (error)
1668			break;
1669
1670		error = -EAGAIN;
1671		do {
1672			spin_lock_bh(&queue->lock);
1673			skb = __skb_try_recv_from_queue(sk, queue, flags,
1674							udp_skb_destructor,
1675							off, err, &last);
1676			if (skb) {
 
 
1677				spin_unlock_bh(&queue->lock);
1678				return skb;
1679			}
1680
1681			if (skb_queue_empty_lockless(sk_queue)) {
1682				spin_unlock_bh(&queue->lock);
1683				goto busy_check;
1684			}
1685
1686			/* refill the reader queue and walk it again
1687			 * keep both queues locked to avoid re-acquiring
1688			 * the sk_receive_queue lock if fwd memory scheduling
1689			 * is needed.
1690			 */
1691			spin_lock(&sk_queue->lock);
1692			skb_queue_splice_tail_init(sk_queue, queue);
1693
1694			skb = __skb_try_recv_from_queue(sk, queue, flags,
1695							udp_skb_dtor_locked,
1696							off, err, &last);
 
1697			spin_unlock(&sk_queue->lock);
1698			spin_unlock_bh(&queue->lock);
1699			if (skb)
1700				return skb;
1701
1702busy_check:
1703			if (!sk_can_busy_loop(sk))
1704				break;
1705
1706			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1707		} while (!skb_queue_empty_lockless(sk_queue));
1708
1709		/* sk_queue is empty, reader_queue may contain peeked packets */
1710	} while (timeo &&
1711		 !__skb_wait_for_more_packets(sk, &error, &timeo,
 
1712					      (struct sk_buff *)sk_queue));
1713
1714	*err = error;
1715	return NULL;
1716}
1717EXPORT_SYMBOL(__skb_recv_udp);
1718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719/*
1720 * 	This should be easy, if there is something there we
1721 * 	return it, otherwise we block.
1722 */
1723
1724int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1725		int flags, int *addr_len)
1726{
1727	struct inet_sock *inet = inet_sk(sk);
1728	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1729	struct sk_buff *skb;
1730	unsigned int ulen, copied;
1731	int off, err, peeking = flags & MSG_PEEK;
1732	int is_udplite = IS_UDPLITE(sk);
1733	bool checksum_valid = false;
1734
1735	if (flags & MSG_ERRQUEUE)
1736		return ip_recv_error(sk, msg, len, addr_len);
1737
1738try_again:
1739	off = sk_peek_offset(sk, flags);
1740	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1741	if (!skb)
1742		return err;
1743
1744	ulen = udp_skb_len(skb);
1745	copied = len;
1746	if (copied > ulen - off)
1747		copied = ulen - off;
1748	else if (copied < ulen)
1749		msg->msg_flags |= MSG_TRUNC;
1750
1751	/*
1752	 * If checksum is needed at all, try to do it while copying the
1753	 * data.  If the data is truncated, or if we only want a partial
1754	 * coverage checksum (UDP-Lite), do it before the copy.
1755	 */
1756
1757	if (copied < ulen || peeking ||
1758	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1759		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1760				!__udp_lib_checksum_complete(skb);
1761		if (!checksum_valid)
1762			goto csum_copy_err;
1763	}
1764
1765	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1766		if (udp_skb_is_linear(skb))
1767			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1768		else
1769			err = skb_copy_datagram_msg(skb, off, msg, copied);
1770	} else {
1771		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1772
1773		if (err == -EINVAL)
1774			goto csum_copy_err;
1775	}
1776
1777	if (unlikely(err)) {
1778		if (!peeking) {
1779			atomic_inc(&sk->sk_drops);
1780			UDP_INC_STATS(sock_net(sk),
1781				      UDP_MIB_INERRORS, is_udplite);
1782		}
1783		kfree_skb(skb);
1784		return err;
1785	}
1786
1787	if (!peeking)
1788		UDP_INC_STATS(sock_net(sk),
1789			      UDP_MIB_INDATAGRAMS, is_udplite);
1790
1791	sock_recv_ts_and_drops(msg, sk, skb);
1792
1793	/* Copy the address. */
1794	if (sin) {
1795		sin->sin_family = AF_INET;
1796		sin->sin_port = udp_hdr(skb)->source;
1797		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1798		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1799		*addr_len = sizeof(*sin);
1800
1801		if (cgroup_bpf_enabled)
1802			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1803							(struct sockaddr *)sin);
1804	}
1805
1806	if (udp_sk(sk)->gro_enabled)
1807		udp_cmsg_recv(msg, sk, skb);
1808
1809	if (inet->cmsg_flags)
1810		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1811
1812	err = copied;
1813	if (flags & MSG_TRUNC)
1814		err = ulen;
1815
1816	skb_consume_udp(sk, skb, peeking ? -err : err);
1817	return err;
1818
1819csum_copy_err:
1820	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1821				 udp_skb_destructor)) {
1822		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1823		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1824	}
1825	kfree_skb(skb);
1826
1827	/* starting over for a new packet, but check if we need to yield */
1828	cond_resched();
1829	msg->msg_flags &= ~MSG_TRUNC;
1830	goto try_again;
1831}
1832
1833int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1834{
1835	/* This check is replicated from __ip4_datagram_connect() and
1836	 * intended to prevent BPF program called below from accessing bytes
1837	 * that are out of the bound specified by user in addr_len.
1838	 */
1839	if (addr_len < sizeof(struct sockaddr_in))
1840		return -EINVAL;
1841
1842	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1843}
1844EXPORT_SYMBOL(udp_pre_connect);
1845
1846int __udp_disconnect(struct sock *sk, int flags)
1847{
1848	struct inet_sock *inet = inet_sk(sk);
1849	/*
1850	 *	1003.1g - break association.
1851	 */
1852
1853	sk->sk_state = TCP_CLOSE;
1854	inet->inet_daddr = 0;
1855	inet->inet_dport = 0;
1856	sock_rps_reset_rxhash(sk);
1857	sk->sk_bound_dev_if = 0;
1858	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1859		inet_reset_saddr(sk);
 
 
 
 
1860
1861	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1862		sk->sk_prot->unhash(sk);
1863		inet->inet_sport = 0;
1864	}
1865	sk_dst_reset(sk);
1866	return 0;
1867}
1868EXPORT_SYMBOL(__udp_disconnect);
1869
1870int udp_disconnect(struct sock *sk, int flags)
1871{
1872	lock_sock(sk);
1873	__udp_disconnect(sk, flags);
1874	release_sock(sk);
1875	return 0;
1876}
1877EXPORT_SYMBOL(udp_disconnect);
1878
1879void udp_lib_unhash(struct sock *sk)
1880{
1881	if (sk_hashed(sk)) {
1882		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1883		struct udp_hslot *hslot, *hslot2;
1884
1885		hslot  = udp_hashslot(udptable, sock_net(sk),
1886				      udp_sk(sk)->udp_port_hash);
1887		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1888
1889		spin_lock_bh(&hslot->lock);
1890		if (rcu_access_pointer(sk->sk_reuseport_cb))
1891			reuseport_detach_sock(sk);
1892		if (sk_del_node_init_rcu(sk)) {
1893			hslot->count--;
1894			inet_sk(sk)->inet_num = 0;
1895			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1896
1897			spin_lock(&hslot2->lock);
1898			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1899			hslot2->count--;
1900			spin_unlock(&hslot2->lock);
1901		}
1902		spin_unlock_bh(&hslot->lock);
1903	}
1904}
1905EXPORT_SYMBOL(udp_lib_unhash);
1906
1907/*
1908 * inet_rcv_saddr was changed, we must rehash secondary hash
1909 */
1910void udp_lib_rehash(struct sock *sk, u16 newhash)
1911{
1912	if (sk_hashed(sk)) {
1913		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1914		struct udp_hslot *hslot, *hslot2, *nhslot2;
1915
1916		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1917		nhslot2 = udp_hashslot2(udptable, newhash);
1918		udp_sk(sk)->udp_portaddr_hash = newhash;
1919
1920		if (hslot2 != nhslot2 ||
1921		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1922			hslot = udp_hashslot(udptable, sock_net(sk),
1923					     udp_sk(sk)->udp_port_hash);
1924			/* we must lock primary chain too */
1925			spin_lock_bh(&hslot->lock);
1926			if (rcu_access_pointer(sk->sk_reuseport_cb))
1927				reuseport_detach_sock(sk);
1928
1929			if (hslot2 != nhslot2) {
1930				spin_lock(&hslot2->lock);
1931				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1932				hslot2->count--;
1933				spin_unlock(&hslot2->lock);
1934
1935				spin_lock(&nhslot2->lock);
1936				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1937							 &nhslot2->head);
1938				nhslot2->count++;
1939				spin_unlock(&nhslot2->lock);
1940			}
1941
1942			spin_unlock_bh(&hslot->lock);
1943		}
1944	}
1945}
1946EXPORT_SYMBOL(udp_lib_rehash);
1947
1948void udp_v4_rehash(struct sock *sk)
1949{
1950	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1951					  inet_sk(sk)->inet_rcv_saddr,
1952					  inet_sk(sk)->inet_num);
1953	udp_lib_rehash(sk, new_hash);
1954}
1955
1956static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1957{
1958	int rc;
1959
1960	if (inet_sk(sk)->inet_daddr) {
1961		sock_rps_save_rxhash(sk, skb);
1962		sk_mark_napi_id(sk, skb);
1963		sk_incoming_cpu_update(sk);
1964	} else {
1965		sk_mark_napi_id_once(sk, skb);
1966	}
1967
1968	rc = __udp_enqueue_schedule_skb(sk, skb);
1969	if (rc < 0) {
1970		int is_udplite = IS_UDPLITE(sk);
 
1971
1972		/* Note that an ENOMEM error is charged twice */
1973		if (rc == -ENOMEM)
1974			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1975					is_udplite);
 
 
 
 
 
 
1976		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1977		kfree_skb(skb);
1978		trace_udp_fail_queue_rcv_skb(rc, sk);
1979		return -1;
1980	}
1981
1982	return 0;
1983}
1984
1985/* returns:
1986 *  -1: error
1987 *   0: success
1988 *  >0: "udp encap" protocol resubmission
1989 *
1990 * Note that in the success and error cases, the skb is assumed to
1991 * have either been requeued or freed.
1992 */
1993static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1994{
 
1995	struct udp_sock *up = udp_sk(sk);
1996	int is_udplite = IS_UDPLITE(sk);
1997
1998	/*
1999	 *	Charge it to the socket, dropping if the queue is full.
2000	 */
2001	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
2002		goto drop;
 
2003	nf_reset_ct(skb);
2004
2005	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2006		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2007
2008		/*
2009		 * This is an encapsulation socket so pass the skb to
2010		 * the socket's udp_encap_rcv() hook. Otherwise, just
2011		 * fall through and pass this up the UDP socket.
2012		 * up->encap_rcv() returns the following value:
2013		 * =0 if skb was successfully passed to the encap
2014		 *    handler or was discarded by it.
2015		 * >0 if skb should be passed on to UDP.
2016		 * <0 if skb should be resubmitted as proto -N
2017		 */
2018
2019		/* if we're overly short, let UDP handle it */
2020		encap_rcv = READ_ONCE(up->encap_rcv);
2021		if (encap_rcv) {
2022			int ret;
2023
2024			/* Verify checksum before giving to encap */
2025			if (udp_lib_checksum_complete(skb))
2026				goto csum_error;
2027
2028			ret = encap_rcv(sk, skb);
2029			if (ret <= 0) {
2030				__UDP_INC_STATS(sock_net(sk),
2031						UDP_MIB_INDATAGRAMS,
2032						is_udplite);
2033				return -ret;
2034			}
2035		}
2036
2037		/* FALLTHROUGH -- it's a UDP Packet */
2038	}
2039
2040	/*
2041	 * 	UDP-Lite specific tests, ignored on UDP sockets
2042	 */
2043	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2044
2045		/*
2046		 * MIB statistics other than incrementing the error count are
2047		 * disabled for the following two types of errors: these depend
2048		 * on the application settings, not on the functioning of the
2049		 * protocol stack as such.
2050		 *
2051		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2052		 * way ... to ... at least let the receiving application block
2053		 * delivery of packets with coverage values less than a value
2054		 * provided by the application."
2055		 */
2056		if (up->pcrlen == 0) {          /* full coverage was set  */
2057			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2058					    UDP_SKB_CB(skb)->cscov, skb->len);
2059			goto drop;
2060		}
2061		/* The next case involves violating the min. coverage requested
2062		 * by the receiver. This is subtle: if receiver wants x and x is
2063		 * greater than the buffersize/MTU then receiver will complain
2064		 * that it wants x while sender emits packets of smaller size y.
2065		 * Therefore the above ...()->partial_cov statement is essential.
2066		 */
2067		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2068			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2069					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2070			goto drop;
2071		}
2072	}
2073
2074	prefetch(&sk->sk_rmem_alloc);
2075	if (rcu_access_pointer(sk->sk_filter) &&
2076	    udp_lib_checksum_complete(skb))
2077			goto csum_error;
2078
2079	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
 
2080		goto drop;
 
2081
2082	udp_csum_pull_header(skb);
2083
2084	ipv4_pktinfo_prepare(sk, skb);
2085	return __udp_queue_rcv_skb(sk, skb);
2086
2087csum_error:
 
2088	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2089drop:
2090	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2091	atomic_inc(&sk->sk_drops);
2092	kfree_skb(skb);
2093	return -1;
2094}
2095
2096static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2097{
2098	struct sk_buff *next, *segs;
2099	int ret;
2100
2101	if (likely(!udp_unexpected_gso(sk, skb)))
2102		return udp_queue_rcv_one_skb(sk, skb);
2103
2104	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2105	__skb_push(skb, -skb_mac_offset(skb));
2106	segs = udp_rcv_segment(sk, skb, true);
2107	for (skb = segs; skb; skb = next) {
2108		next = skb->next;
2109		__skb_pull(skb, skb_transport_offset(skb));
 
 
2110		ret = udp_queue_rcv_one_skb(sk, skb);
2111		if (ret > 0)
2112			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2113	}
2114	return 0;
2115}
2116
2117/* For TCP sockets, sk_rx_dst is protected by socket lock
2118 * For UDP, we use xchg() to guard against concurrent changes.
2119 */
2120bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2121{
2122	struct dst_entry *old;
2123
2124	if (dst_hold_safe(dst)) {
2125		old = xchg(&sk->sk_rx_dst, dst);
2126		dst_release(old);
2127		return old != dst;
2128	}
2129	return false;
2130}
2131EXPORT_SYMBOL(udp_sk_rx_dst_set);
2132
2133/*
2134 *	Multicasts and broadcasts go to each listener.
2135 *
2136 *	Note: called only from the BH handler context.
2137 */
2138static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2139				    struct udphdr  *uh,
2140				    __be32 saddr, __be32 daddr,
2141				    struct udp_table *udptable,
2142				    int proto)
2143{
2144	struct sock *sk, *first = NULL;
2145	unsigned short hnum = ntohs(uh->dest);
2146	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2147	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2148	unsigned int offset = offsetof(typeof(*sk), sk_node);
2149	int dif = skb->dev->ifindex;
2150	int sdif = inet_sdif(skb);
2151	struct hlist_node *node;
2152	struct sk_buff *nskb;
2153
2154	if (use_hash2) {
2155		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2156			    udptable->mask;
2157		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2158start_lookup:
2159		hslot = &udptable->hash2[hash2];
2160		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2161	}
2162
2163	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2164		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2165					 uh->source, saddr, dif, sdif, hnum))
2166			continue;
2167
2168		if (!first) {
2169			first = sk;
2170			continue;
2171		}
2172		nskb = skb_clone(skb, GFP_ATOMIC);
2173
2174		if (unlikely(!nskb)) {
2175			atomic_inc(&sk->sk_drops);
2176			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2177					IS_UDPLITE(sk));
2178			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2179					IS_UDPLITE(sk));
2180			continue;
2181		}
2182		if (udp_queue_rcv_skb(sk, nskb) > 0)
2183			consume_skb(nskb);
2184	}
2185
2186	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2187	if (use_hash2 && hash2 != hash2_any) {
2188		hash2 = hash2_any;
2189		goto start_lookup;
2190	}
2191
2192	if (first) {
2193		if (udp_queue_rcv_skb(first, skb) > 0)
2194			consume_skb(skb);
2195	} else {
2196		kfree_skb(skb);
2197		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2198				proto == IPPROTO_UDPLITE);
2199	}
2200	return 0;
2201}
2202
2203/* Initialize UDP checksum. If exited with zero value (success),
2204 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2205 * Otherwise, csum completion requires checksumming packet body,
2206 * including udp header and folding it to skb->csum.
2207 */
2208static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2209				 int proto)
2210{
2211	int err;
2212
2213	UDP_SKB_CB(skb)->partial_cov = 0;
2214	UDP_SKB_CB(skb)->cscov = skb->len;
2215
2216	if (proto == IPPROTO_UDPLITE) {
2217		err = udplite_checksum_init(skb, uh);
2218		if (err)
2219			return err;
2220
2221		if (UDP_SKB_CB(skb)->partial_cov) {
2222			skb->csum = inet_compute_pseudo(skb, proto);
2223			return 0;
2224		}
2225	}
2226
2227	/* Note, we are only interested in != 0 or == 0, thus the
2228	 * force to int.
2229	 */
2230	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2231							inet_compute_pseudo);
2232	if (err)
2233		return err;
2234
2235	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2236		/* If SW calculated the value, we know it's bad */
2237		if (skb->csum_complete_sw)
2238			return 1;
2239
2240		/* HW says the value is bad. Let's validate that.
2241		 * skb->csum is no longer the full packet checksum,
2242		 * so don't treat it as such.
2243		 */
2244		skb_checksum_complete_unset(skb);
2245	}
2246
2247	return 0;
2248}
2249
2250/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2251 * return code conversion for ip layer consumption
2252 */
2253static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2254			       struct udphdr *uh)
2255{
2256	int ret;
2257
2258	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2259		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2260
2261	ret = udp_queue_rcv_skb(sk, skb);
2262
2263	/* a return value > 0 means to resubmit the input, but
2264	 * it wants the return to be -protocol, or 0
2265	 */
2266	if (ret > 0)
2267		return -ret;
2268	return 0;
2269}
2270
2271/*
2272 *	All we need to do is get the socket, and then do a checksum.
2273 */
2274
2275int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2276		   int proto)
2277{
2278	struct sock *sk;
2279	struct udphdr *uh;
2280	unsigned short ulen;
2281	struct rtable *rt = skb_rtable(skb);
2282	__be32 saddr, daddr;
2283	struct net *net = dev_net(skb->dev);
 
 
 
 
2284
2285	/*
2286	 *  Validate the packet.
2287	 */
2288	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2289		goto drop;		/* No space for header. */
2290
2291	uh   = udp_hdr(skb);
2292	ulen = ntohs(uh->len);
2293	saddr = ip_hdr(skb)->saddr;
2294	daddr = ip_hdr(skb)->daddr;
2295
2296	if (ulen > skb->len)
2297		goto short_packet;
2298
2299	if (proto == IPPROTO_UDP) {
2300		/* UDP validates ulen. */
2301		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2302			goto short_packet;
2303		uh = udp_hdr(skb);
2304	}
2305
2306	if (udp4_csum_init(skb, uh, proto))
2307		goto csum_error;
2308
2309	sk = skb_steal_sock(skb);
2310	if (sk) {
2311		struct dst_entry *dst = skb_dst(skb);
2312		int ret;
2313
2314		if (unlikely(sk->sk_rx_dst != dst))
2315			udp_sk_rx_dst_set(sk, dst);
2316
2317		ret = udp_unicast_rcv_skb(sk, skb, uh);
2318		sock_put(sk);
 
2319		return ret;
2320	}
2321
2322	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2323		return __udp4_lib_mcast_deliver(net, skb, uh,
2324						saddr, daddr, udptable, proto);
2325
2326	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2327	if (sk)
2328		return udp_unicast_rcv_skb(sk, skb, uh);
2329
2330	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2331		goto drop;
2332	nf_reset_ct(skb);
2333
2334	/* No socket. Drop packet silently, if checksum is wrong */
2335	if (udp_lib_checksum_complete(skb))
2336		goto csum_error;
2337
 
2338	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2339	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2340
2341	/*
2342	 * Hmm.  We got an UDP packet to a port to which we
2343	 * don't wanna listen.  Ignore it.
2344	 */
2345	kfree_skb(skb);
2346	return 0;
2347
2348short_packet:
 
2349	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2350			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2351			    &saddr, ntohs(uh->source),
2352			    ulen, skb->len,
2353			    &daddr, ntohs(uh->dest));
2354	goto drop;
2355
2356csum_error:
2357	/*
2358	 * RFC1122: OK.  Discards the bad packet silently (as far as
2359	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2360	 */
 
2361	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2362			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2363			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2364			    ulen);
2365	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2366drop:
2367	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2368	kfree_skb(skb);
2369	return 0;
2370}
2371
2372/* We can only early demux multicast if there is a single matching socket.
2373 * If more than one socket found returns NULL
2374 */
2375static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2376						  __be16 loc_port, __be32 loc_addr,
2377						  __be16 rmt_port, __be32 rmt_addr,
2378						  int dif, int sdif)
2379{
2380	struct sock *sk, *result;
2381	unsigned short hnum = ntohs(loc_port);
2382	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2383	struct udp_hslot *hslot = &udp_table.hash[slot];
 
 
 
 
2384
2385	/* Do not bother scanning a too big list */
2386	if (hslot->count > 10)
2387		return NULL;
2388
2389	result = NULL;
2390	sk_for_each_rcu(sk, &hslot->head) {
2391		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2392					rmt_port, rmt_addr, dif, sdif, hnum)) {
2393			if (result)
2394				return NULL;
2395			result = sk;
2396		}
2397	}
2398
2399	return result;
2400}
2401
2402/* For unicast we should only early demux connected sockets or we can
2403 * break forwarding setups.  The chains here can be long so only check
2404 * if the first socket is an exact match and if not move on.
2405 */
2406static struct sock *__udp4_lib_demux_lookup(struct net *net,
2407					    __be16 loc_port, __be32 loc_addr,
2408					    __be16 rmt_port, __be32 rmt_addr,
2409					    int dif, int sdif)
2410{
2411	unsigned short hnum = ntohs(loc_port);
2412	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2413	unsigned int slot2 = hash2 & udp_table.mask;
2414	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2415	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2416	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
 
 
 
2417	struct sock *sk;
2418
 
 
 
 
 
2419	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2420		if (INET_MATCH(sk, net, acookie, rmt_addr,
2421			       loc_addr, ports, dif, sdif))
2422			return sk;
2423		/* Only check first socket in chain */
2424		break;
2425	}
2426	return NULL;
2427}
2428
2429int udp_v4_early_demux(struct sk_buff *skb)
2430{
2431	struct net *net = dev_net(skb->dev);
2432	struct in_device *in_dev = NULL;
2433	const struct iphdr *iph;
2434	const struct udphdr *uh;
2435	struct sock *sk = NULL;
2436	struct dst_entry *dst;
2437	int dif = skb->dev->ifindex;
2438	int sdif = inet_sdif(skb);
2439	int ours;
2440
2441	/* validate the packet */
2442	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2443		return 0;
2444
2445	iph = ip_hdr(skb);
2446	uh = udp_hdr(skb);
2447
2448	if (skb->pkt_type == PACKET_MULTICAST) {
2449		in_dev = __in_dev_get_rcu(skb->dev);
2450
2451		if (!in_dev)
2452			return 0;
2453
2454		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2455				       iph->protocol);
2456		if (!ours)
2457			return 0;
2458
2459		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2460						   uh->source, iph->saddr,
2461						   dif, sdif);
2462	} else if (skb->pkt_type == PACKET_HOST) {
2463		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2464					     uh->source, iph->saddr, dif, sdif);
2465	}
2466
2467	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2468		return 0;
2469
2470	skb->sk = sk;
2471	skb->destructor = sock_efree;
2472	dst = READ_ONCE(sk->sk_rx_dst);
2473
2474	if (dst)
2475		dst = dst_check(dst, 0);
2476	if (dst) {
2477		u32 itag = 0;
2478
2479		/* set noref for now.
2480		 * any place which wants to hold dst has to call
2481		 * dst_hold_safe()
2482		 */
2483		skb_dst_set_noref(skb, dst);
2484
2485		/* for unconnected multicast sockets we need to validate
2486		 * the source on each packet
2487		 */
2488		if (!inet_sk(sk)->inet_daddr && in_dev)
2489			return ip_mc_validate_source(skb, iph->daddr,
2490						     iph->saddr, iph->tos,
 
2491						     skb->dev, in_dev, &itag);
2492	}
2493	return 0;
2494}
2495
2496int udp_rcv(struct sk_buff *skb)
2497{
2498	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2499}
2500
2501void udp_destroy_sock(struct sock *sk)
2502{
2503	struct udp_sock *up = udp_sk(sk);
2504	bool slow = lock_sock_fast(sk);
 
 
 
2505	udp_flush_pending_frames(sk);
2506	unlock_sock_fast(sk, slow);
2507	if (static_branch_unlikely(&udp_encap_needed_key)) {
2508		if (up->encap_type) {
2509			void (*encap_destroy)(struct sock *sk);
2510			encap_destroy = READ_ONCE(up->encap_destroy);
2511			if (encap_destroy)
2512				encap_destroy(sk);
2513		}
2514		if (up->encap_enabled)
2515			static_branch_dec(&udp_encap_needed_key);
2516	}
2517}
2518
2519/*
2520 *	Socket option code for UDP
2521 */
2522int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2523		       char __user *optval, unsigned int optlen,
2524		       int (*push_pending_frames)(struct sock *))
2525{
2526	struct udp_sock *up = udp_sk(sk);
2527	int val, valbool;
2528	int err = 0;
2529	int is_udplite = IS_UDPLITE(sk);
2530
 
 
 
 
 
 
 
 
 
 
 
 
2531	if (optlen < sizeof(int))
2532		return -EINVAL;
2533
2534	if (get_user(val, (int __user *)optval))
2535		return -EFAULT;
2536
2537	valbool = val ? 1 : 0;
2538
2539	switch (optname) {
2540	case UDP_CORK:
2541		if (val != 0) {
2542			up->corkflag = 1;
2543		} else {
2544			up->corkflag = 0;
2545			lock_sock(sk);
2546			push_pending_frames(sk);
2547			release_sock(sk);
2548		}
2549		break;
2550
2551	case UDP_ENCAP:
2552		switch (val) {
2553		case 0:
 
2554		case UDP_ENCAP_ESPINUDP:
2555		case UDP_ENCAP_ESPINUDP_NON_IKE:
2556			up->encap_rcv = xfrm4_udp_encap_rcv;
2557			/* FALLTHROUGH */
 
 
 
 
 
 
2558		case UDP_ENCAP_L2TPINUDP:
2559			up->encap_type = val;
2560			lock_sock(sk);
2561			udp_tunnel_encap_enable(sk->sk_socket);
2562			release_sock(sk);
2563			break;
2564		default:
2565			err = -ENOPROTOOPT;
2566			break;
2567		}
2568		break;
2569
2570	case UDP_NO_CHECK6_TX:
2571		up->no_check6_tx = valbool;
2572		break;
2573
2574	case UDP_NO_CHECK6_RX:
2575		up->no_check6_rx = valbool;
2576		break;
2577
2578	case UDP_SEGMENT:
2579		if (val < 0 || val > USHRT_MAX)
2580			return -EINVAL;
2581		up->gso_size = val;
2582		break;
2583
2584	case UDP_GRO:
2585		lock_sock(sk);
 
 
2586		if (valbool)
2587			udp_tunnel_encap_enable(sk->sk_socket);
2588		up->gro_enabled = valbool;
 
2589		release_sock(sk);
2590		break;
2591
2592	/*
2593	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2594	 */
2595	/* The sender sets actual checksum coverage length via this option.
2596	 * The case coverage > packet length is handled by send module. */
2597	case UDPLITE_SEND_CSCOV:
2598		if (!is_udplite)         /* Disable the option on UDP sockets */
2599			return -ENOPROTOOPT;
2600		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2601			val = 8;
2602		else if (val > USHRT_MAX)
2603			val = USHRT_MAX;
2604		up->pcslen = val;
2605		up->pcflag |= UDPLITE_SEND_CC;
2606		break;
2607
2608	/* The receiver specifies a minimum checksum coverage value. To make
2609	 * sense, this should be set to at least 8 (as done below). If zero is
2610	 * used, this again means full checksum coverage.                     */
2611	case UDPLITE_RECV_CSCOV:
2612		if (!is_udplite)         /* Disable the option on UDP sockets */
2613			return -ENOPROTOOPT;
2614		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2615			val = 8;
2616		else if (val > USHRT_MAX)
2617			val = USHRT_MAX;
2618		up->pcrlen = val;
2619		up->pcflag |= UDPLITE_RECV_CC;
2620		break;
2621
2622	default:
2623		err = -ENOPROTOOPT;
2624		break;
2625	}
2626
2627	return err;
2628}
2629EXPORT_SYMBOL(udp_lib_setsockopt);
2630
2631int udp_setsockopt(struct sock *sk, int level, int optname,
2632		   char __user *optval, unsigned int optlen)
2633{
2634	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2635		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
 
2636					  udp_push_pending_frames);
2637	return ip_setsockopt(sk, level, optname, optval, optlen);
2638}
2639
2640#ifdef CONFIG_COMPAT
2641int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2642			  char __user *optval, unsigned int optlen)
2643{
2644	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2645		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2646					  udp_push_pending_frames);
2647	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2648}
2649#endif
2650
2651int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2652		       char __user *optval, int __user *optlen)
2653{
2654	struct udp_sock *up = udp_sk(sk);
2655	int val, len;
2656
2657	if (get_user(len, optlen))
2658		return -EFAULT;
2659
2660	len = min_t(unsigned int, len, sizeof(int));
2661
2662	if (len < 0)
2663		return -EINVAL;
2664
2665	switch (optname) {
2666	case UDP_CORK:
2667		val = up->corkflag;
2668		break;
2669
2670	case UDP_ENCAP:
2671		val = up->encap_type;
2672		break;
2673
2674	case UDP_NO_CHECK6_TX:
2675		val = up->no_check6_tx;
2676		break;
2677
2678	case UDP_NO_CHECK6_RX:
2679		val = up->no_check6_rx;
2680		break;
2681
2682	case UDP_SEGMENT:
2683		val = up->gso_size;
 
 
 
 
2684		break;
2685
2686	/* The following two cannot be changed on UDP sockets, the return is
2687	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2688	case UDPLITE_SEND_CSCOV:
2689		val = up->pcslen;
2690		break;
2691
2692	case UDPLITE_RECV_CSCOV:
2693		val = up->pcrlen;
2694		break;
2695
2696	default:
2697		return -ENOPROTOOPT;
2698	}
2699
2700	if (put_user(len, optlen))
2701		return -EFAULT;
2702	if (copy_to_user(optval, &val, len))
2703		return -EFAULT;
2704	return 0;
2705}
2706EXPORT_SYMBOL(udp_lib_getsockopt);
2707
2708int udp_getsockopt(struct sock *sk, int level, int optname,
2709		   char __user *optval, int __user *optlen)
2710{
2711	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2712		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2713	return ip_getsockopt(sk, level, optname, optval, optlen);
2714}
2715
2716#ifdef CONFIG_COMPAT
2717int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2718				 char __user *optval, int __user *optlen)
2719{
2720	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2721		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2722	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2723}
2724#endif
2725/**
2726 * 	udp_poll - wait for a UDP event.
2727 *	@file - file struct
2728 *	@sock - socket
2729 *	@wait - poll table
2730 *
2731 *	This is same as datagram poll, except for the special case of
2732 *	blocking sockets. If application is using a blocking fd
2733 *	and a packet with checksum error is in the queue;
2734 *	then it could get return from select indicating data available
2735 *	but then block when reading it. Add special case code
2736 *	to work around these arguably broken applications.
2737 */
2738__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2739{
2740	__poll_t mask = datagram_poll(file, sock, wait);
2741	struct sock *sk = sock->sk;
2742
2743	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2744		mask |= EPOLLIN | EPOLLRDNORM;
2745
2746	/* Check for false positives due to checksum errors */
2747	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2748	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2749		mask &= ~(EPOLLIN | EPOLLRDNORM);
2750
 
 
 
2751	return mask;
2752
2753}
2754EXPORT_SYMBOL(udp_poll);
2755
2756int udp_abort(struct sock *sk, int err)
2757{
2758	lock_sock(sk);
2759
 
 
 
 
 
 
2760	sk->sk_err = err;
2761	sk->sk_error_report(sk);
2762	__udp_disconnect(sk, 0);
2763
 
2764	release_sock(sk);
2765
2766	return 0;
2767}
2768EXPORT_SYMBOL_GPL(udp_abort);
2769
2770struct proto udp_prot = {
2771	.name			= "UDP",
2772	.owner			= THIS_MODULE,
2773	.close			= udp_lib_close,
2774	.pre_connect		= udp_pre_connect,
2775	.connect		= ip4_datagram_connect,
2776	.disconnect		= udp_disconnect,
2777	.ioctl			= udp_ioctl,
2778	.init			= udp_init_sock,
2779	.destroy		= udp_destroy_sock,
2780	.setsockopt		= udp_setsockopt,
2781	.getsockopt		= udp_getsockopt,
2782	.sendmsg		= udp_sendmsg,
2783	.recvmsg		= udp_recvmsg,
2784	.sendpage		= udp_sendpage,
2785	.release_cb		= ip4_datagram_release_cb,
2786	.hash			= udp_lib_hash,
2787	.unhash			= udp_lib_unhash,
2788	.rehash			= udp_v4_rehash,
2789	.get_port		= udp_v4_get_port,
 
 
 
 
2790	.memory_allocated	= &udp_memory_allocated,
 
 
2791	.sysctl_mem		= sysctl_udp_mem,
2792	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2793	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2794	.obj_size		= sizeof(struct udp_sock),
2795	.h.udp_table		= &udp_table,
2796#ifdef CONFIG_COMPAT
2797	.compat_setsockopt	= compat_udp_setsockopt,
2798	.compat_getsockopt	= compat_udp_getsockopt,
2799#endif
2800	.diag_destroy		= udp_abort,
2801};
2802EXPORT_SYMBOL(udp_prot);
2803
2804/* ------------------------------------------------------------------------ */
2805#ifdef CONFIG_PROC_FS
2806
 
 
 
 
 
 
2807static struct sock *udp_get_first(struct seq_file *seq, int start)
2808{
2809	struct sock *sk;
2810	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2811	struct udp_iter_state *state = seq->private;
2812	struct net *net = seq_file_net(seq);
 
 
 
2813
2814	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
 
 
 
 
 
 
 
2815	     ++state->bucket) {
2816		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2817
2818		if (hlist_empty(&hslot->head))
2819			continue;
2820
2821		spin_lock_bh(&hslot->lock);
2822		sk_for_each(sk, &hslot->head) {
2823			if (!net_eq(sock_net(sk), net))
2824				continue;
2825			if (sk->sk_family == afinfo->family)
 
2826				goto found;
2827		}
2828		spin_unlock_bh(&hslot->lock);
2829	}
2830	sk = NULL;
2831found:
2832	return sk;
2833}
2834
2835static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2836{
2837	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2838	struct udp_iter_state *state = seq->private;
2839	struct net *net = seq_file_net(seq);
 
 
 
 
 
 
 
2840
2841	do {
2842		sk = sk_next(sk);
2843	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
 
 
2844
2845	if (!sk) {
2846		if (state->bucket <= afinfo->udp_table->mask)
2847			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
 
 
 
2848		return udp_get_first(seq, state->bucket + 1);
2849	}
2850	return sk;
2851}
2852
2853static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2854{
2855	struct sock *sk = udp_get_first(seq, 0);
2856
2857	if (sk)
2858		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2859			--pos;
2860	return pos ? NULL : sk;
2861}
2862
2863void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2864{
2865	struct udp_iter_state *state = seq->private;
2866	state->bucket = MAX_UDP_PORTS;
2867
2868	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2869}
2870EXPORT_SYMBOL(udp_seq_start);
2871
2872void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2873{
2874	struct sock *sk;
2875
2876	if (v == SEQ_START_TOKEN)
2877		sk = udp_get_idx(seq, 0);
2878	else
2879		sk = udp_get_next(seq, v);
2880
2881	++*pos;
2882	return sk;
2883}
2884EXPORT_SYMBOL(udp_seq_next);
2885
2886void udp_seq_stop(struct seq_file *seq, void *v)
2887{
2888	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2889	struct udp_iter_state *state = seq->private;
 
 
2890
2891	if (state->bucket <= afinfo->udp_table->mask)
2892		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
 
 
 
 
 
 
 
2893}
2894EXPORT_SYMBOL(udp_seq_stop);
2895
2896/* ------------------------------------------------------------------------ */
2897static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2898		int bucket)
2899{
2900	struct inet_sock *inet = inet_sk(sp);
2901	__be32 dest = inet->inet_daddr;
2902	__be32 src  = inet->inet_rcv_saddr;
2903	__u16 destp	  = ntohs(inet->inet_dport);
2904	__u16 srcp	  = ntohs(inet->inet_sport);
2905
2906	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2907		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2908		bucket, src, srcp, dest, destp, sp->sk_state,
2909		sk_wmem_alloc_get(sp),
2910		udp_rqueue_get(sp),
2911		0, 0L, 0,
2912		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2913		0, sock_i_ino(sp),
2914		refcount_read(&sp->sk_refcnt), sp,
2915		atomic_read(&sp->sk_drops));
2916}
2917
2918int udp4_seq_show(struct seq_file *seq, void *v)
2919{
2920	seq_setwidth(seq, 127);
2921	if (v == SEQ_START_TOKEN)
2922		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2923			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2924			   "inode ref pointer drops");
2925	else {
2926		struct udp_iter_state *state = seq->private;
2927
2928		udp4_format_sock(v, seq, state->bucket);
2929	}
2930	seq_pad(seq, '\n');
2931	return 0;
2932}
2933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2934const struct seq_operations udp_seq_ops = {
2935	.start		= udp_seq_start,
2936	.next		= udp_seq_next,
2937	.stop		= udp_seq_stop,
2938	.show		= udp4_seq_show,
2939};
2940EXPORT_SYMBOL(udp_seq_ops);
2941
2942static struct udp_seq_afinfo udp4_seq_afinfo = {
2943	.family		= AF_INET,
2944	.udp_table	= &udp_table,
2945};
2946
2947static int __net_init udp4_proc_init_net(struct net *net)
2948{
2949	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2950			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2951		return -ENOMEM;
2952	return 0;
2953}
2954
2955static void __net_exit udp4_proc_exit_net(struct net *net)
2956{
2957	remove_proc_entry("udp", net->proc_net);
2958}
2959
2960static struct pernet_operations udp4_net_ops = {
2961	.init = udp4_proc_init_net,
2962	.exit = udp4_proc_exit_net,
2963};
2964
2965int __init udp4_proc_init(void)
2966{
2967	return register_pernet_subsys(&udp4_net_ops);
2968}
2969
2970void udp4_proc_exit(void)
2971{
2972	unregister_pernet_subsys(&udp4_net_ops);
2973}
2974#endif /* CONFIG_PROC_FS */
2975
2976static __initdata unsigned long uhash_entries;
2977static int __init set_uhash_entries(char *str)
2978{
2979	ssize_t ret;
2980
2981	if (!str)
2982		return 0;
2983
2984	ret = kstrtoul(str, 0, &uhash_entries);
2985	if (ret)
2986		return 0;
2987
2988	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2989		uhash_entries = UDP_HTABLE_SIZE_MIN;
2990	return 1;
2991}
2992__setup("uhash_entries=", set_uhash_entries);
2993
2994void __init udp_table_init(struct udp_table *table, const char *name)
2995{
2996	unsigned int i;
2997
2998	table->hash = alloc_large_system_hash(name,
2999					      2 * sizeof(struct udp_hslot),
3000					      uhash_entries,
3001					      21, /* one slot per 2 MB */
3002					      0,
3003					      &table->log,
3004					      &table->mask,
3005					      UDP_HTABLE_SIZE_MIN,
3006					      64 * 1024);
3007
3008	table->hash2 = table->hash + (table->mask + 1);
3009	for (i = 0; i <= table->mask; i++) {
3010		INIT_HLIST_HEAD(&table->hash[i].head);
3011		table->hash[i].count = 0;
3012		spin_lock_init(&table->hash[i].lock);
3013	}
3014	for (i = 0; i <= table->mask; i++) {
3015		INIT_HLIST_HEAD(&table->hash2[i].head);
3016		table->hash2[i].count = 0;
3017		spin_lock_init(&table->hash2[i].lock);
3018	}
3019}
3020
3021u32 udp_flow_hashrnd(void)
3022{
3023	static u32 hashrnd __read_mostly;
3024
3025	net_get_random_once(&hashrnd, sizeof(hashrnd));
3026
3027	return hashrnd;
3028}
3029EXPORT_SYMBOL(udp_flow_hashrnd);
3030
3031static void __udp_sysctl_init(struct net *net)
3032{
3033	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3034	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3035
3036#ifdef CONFIG_NET_L3_MASTER_DEV
3037	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3038#endif
3039}
3040
3041static int __net_init udp_sysctl_init(struct net *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3042{
3043	__udp_sysctl_init(net);
 
 
3044	return 0;
3045}
3046
 
 
 
 
 
3047static struct pernet_operations __net_initdata udp_sysctl_ops = {
3048	.init	= udp_sysctl_init,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3049};
3050
 
 
 
 
 
 
 
 
3051void __init udp_init(void)
3052{
3053	unsigned long limit;
3054	unsigned int i;
3055
3056	udp_table_init(&udp_table, "UDP");
3057	limit = nr_free_buffer_pages() / 8;
3058	limit = max(limit, 128UL);
3059	sysctl_udp_mem[0] = limit / 4 * 3;
3060	sysctl_udp_mem[1] = limit;
3061	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3062
3063	__udp_sysctl_init(&init_net);
3064
3065	/* 16 spinlocks per cpu */
3066	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3067	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3068				GFP_KERNEL);
3069	if (!udp_busylocks)
3070		panic("UDP: failed to alloc udp_busylocks\n");
3071	for (i = 0; i < (1U << udp_busylocks_log); i++)
3072		spin_lock_init(udp_busylocks + i);
3073
3074	if (register_pernet_subsys(&udp_sysctl_ops))
3075		panic("UDP: failed to init sysctl parameters.\n");
 
 
 
 
3076}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
  77#include <linux/bpf-cgroup.h>
  78#include <linux/uaccess.h>
  79#include <asm/ioctls.h>
  80#include <linux/memblock.h>
  81#include <linux/highmem.h>
 
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip_tunnels.h>
 104#include <net/route.h>
 105#include <net/checksum.h>
 106#include <net/xfrm.h>
 107#include <trace/events/udp.h>
 108#include <linux/static_key.h>
 109#include <linux/btf_ids.h>
 110#include <trace/events/skb.h>
 111#include <net/busy_poll.h>
 112#include "udp_impl.h"
 113#include <net/sock_reuseport.h>
 114#include <net/addrconf.h>
 115#include <net/udp_tunnel.h>
 116#if IS_ENABLED(CONFIG_IPV6)
 117#include <net/ipv6_stubs.h>
 118#endif
 119
 120struct udp_table udp_table __read_mostly;
 121EXPORT_SYMBOL(udp_table);
 122
 123long sysctl_udp_mem[3] __read_mostly;
 124EXPORT_SYMBOL(sysctl_udp_mem);
 125
 126atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
 127EXPORT_SYMBOL(udp_memory_allocated);
 128DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
 129EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
 130
 131#define MAX_UDP_PORTS 65536
 132#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
 133
 134static struct udp_table *udp_get_table_prot(struct sock *sk)
 135{
 136	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
 137}
 138
 139static int udp_lib_lport_inuse(struct net *net, __u16 num,
 140			       const struct udp_hslot *hslot,
 141			       unsigned long *bitmap,
 142			       struct sock *sk, unsigned int log)
 143{
 144	struct sock *sk2;
 145	kuid_t uid = sock_i_uid(sk);
 146
 147	sk_for_each(sk2, &hslot->head) {
 148		if (net_eq(sock_net(sk2), net) &&
 149		    sk2 != sk &&
 150		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 151		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 152		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 153		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 154		    inet_rcv_saddr_equal(sk, sk2, true)) {
 155			if (sk2->sk_reuseport && sk->sk_reuseport &&
 156			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 157			    uid_eq(uid, sock_i_uid(sk2))) {
 158				if (!bitmap)
 159					return 0;
 160			} else {
 161				if (!bitmap)
 162					return 1;
 163				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 164					  bitmap);
 165			}
 166		}
 167	}
 168	return 0;
 169}
 170
 171/*
 172 * Note: we still hold spinlock of primary hash chain, so no other writer
 173 * can insert/delete a socket with local_port == num
 174 */
 175static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 176				struct udp_hslot *hslot2,
 177				struct sock *sk)
 178{
 179	struct sock *sk2;
 180	kuid_t uid = sock_i_uid(sk);
 181	int res = 0;
 182
 183	spin_lock(&hslot2->lock);
 184	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 185		if (net_eq(sock_net(sk2), net) &&
 186		    sk2 != sk &&
 187		    (udp_sk(sk2)->udp_port_hash == num) &&
 188		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 189		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 190		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 191		    inet_rcv_saddr_equal(sk, sk2, true)) {
 192			if (sk2->sk_reuseport && sk->sk_reuseport &&
 193			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 194			    uid_eq(uid, sock_i_uid(sk2))) {
 195				res = 0;
 196			} else {
 197				res = 1;
 198			}
 199			break;
 200		}
 201	}
 202	spin_unlock(&hslot2->lock);
 203	return res;
 204}
 205
 206static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 207{
 208	struct net *net = sock_net(sk);
 209	kuid_t uid = sock_i_uid(sk);
 210	struct sock *sk2;
 211
 212	sk_for_each(sk2, &hslot->head) {
 213		if (net_eq(sock_net(sk2), net) &&
 214		    sk2 != sk &&
 215		    sk2->sk_family == sk->sk_family &&
 216		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 217		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 218		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 219		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 220		    inet_rcv_saddr_equal(sk, sk2, false)) {
 221			return reuseport_add_sock(sk, sk2,
 222						  inet_rcv_saddr_any(sk));
 223		}
 224	}
 225
 226	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 227}
 228
 229/**
 230 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 231 *
 232 *  @sk:          socket struct in question
 233 *  @snum:        port number to look up
 234 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 235 *                   with NULL address
 236 */
 237int udp_lib_get_port(struct sock *sk, unsigned short snum,
 238		     unsigned int hash2_nulladdr)
 239{
 240	struct udp_table *udptable = udp_get_table_prot(sk);
 241	struct udp_hslot *hslot, *hslot2;
 
 
 242	struct net *net = sock_net(sk);
 243	int error = -EADDRINUSE;
 244
 245	if (!snum) {
 246		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 247		unsigned short first, last;
 248		int low, high, remaining;
 249		unsigned int rand;
 
 
 250
 251		inet_get_local_port_range(net, &low, &high);
 252		remaining = (high - low) + 1;
 253
 254		rand = get_random_u32();
 255		first = reciprocal_scale(rand, remaining) + low;
 256		/*
 257		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 258		 */
 259		rand = (rand | 1) * (udptable->mask + 1);
 260		last = first + udptable->mask + 1;
 261		do {
 262			hslot = udp_hashslot(udptable, net, first);
 263			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 264			spin_lock_bh(&hslot->lock);
 265			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 266					    udptable->log);
 267
 268			snum = first;
 269			/*
 270			 * Iterate on all possible values of snum for this hash.
 271			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 272			 * give us randomization and full range coverage.
 273			 */
 274			do {
 275				if (low <= snum && snum <= high &&
 276				    !test_bit(snum >> udptable->log, bitmap) &&
 277				    !inet_is_local_reserved_port(net, snum))
 278					goto found;
 279				snum += rand;
 280			} while (snum != first);
 281			spin_unlock_bh(&hslot->lock);
 282			cond_resched();
 283		} while (++first != last);
 284		goto fail;
 285	} else {
 286		hslot = udp_hashslot(udptable, net, snum);
 287		spin_lock_bh(&hslot->lock);
 288		if (hslot->count > 10) {
 289			int exist;
 290			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 291
 292			slot2          &= udptable->mask;
 293			hash2_nulladdr &= udptable->mask;
 294
 295			hslot2 = udp_hashslot2(udptable, slot2);
 296			if (hslot->count < hslot2->count)
 297				goto scan_primary_hash;
 298
 299			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 300			if (!exist && (hash2_nulladdr != slot2)) {
 301				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 302				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 303							     sk);
 304			}
 305			if (exist)
 306				goto fail_unlock;
 307			else
 308				goto found;
 309		}
 310scan_primary_hash:
 311		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 312			goto fail_unlock;
 313	}
 314found:
 315	inet_sk(sk)->inet_num = snum;
 316	udp_sk(sk)->udp_port_hash = snum;
 317	udp_sk(sk)->udp_portaddr_hash ^= snum;
 318	if (sk_unhashed(sk)) {
 319		if (sk->sk_reuseport &&
 320		    udp_reuseport_add_sock(sk, hslot)) {
 321			inet_sk(sk)->inet_num = 0;
 322			udp_sk(sk)->udp_port_hash = 0;
 323			udp_sk(sk)->udp_portaddr_hash ^= snum;
 324			goto fail_unlock;
 325		}
 326
 327		sk_add_node_rcu(sk, &hslot->head);
 328		hslot->count++;
 329		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 330
 331		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 332		spin_lock(&hslot2->lock);
 333		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 334		    sk->sk_family == AF_INET6)
 335			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 336					   &hslot2->head);
 337		else
 338			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 339					   &hslot2->head);
 340		hslot2->count++;
 341		spin_unlock(&hslot2->lock);
 342	}
 343	sock_set_flag(sk, SOCK_RCU_FREE);
 344	error = 0;
 345fail_unlock:
 346	spin_unlock_bh(&hslot->lock);
 347fail:
 348	return error;
 349}
 350EXPORT_SYMBOL(udp_lib_get_port);
 351
 352int udp_v4_get_port(struct sock *sk, unsigned short snum)
 353{
 354	unsigned int hash2_nulladdr =
 355		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 356	unsigned int hash2_partial =
 357		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 358
 359	/* precompute partial secondary hash */
 360	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 361	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 362}
 363
 364static int compute_score(struct sock *sk, struct net *net,
 365			 __be32 saddr, __be16 sport,
 366			 __be32 daddr, unsigned short hnum,
 367			 int dif, int sdif)
 368{
 369	int score;
 370	struct inet_sock *inet;
 371	bool dev_match;
 372
 373	if (!net_eq(sock_net(sk), net) ||
 374	    udp_sk(sk)->udp_port_hash != hnum ||
 375	    ipv6_only_sock(sk))
 376		return -1;
 377
 378	if (sk->sk_rcv_saddr != daddr)
 379		return -1;
 380
 381	score = (sk->sk_family == PF_INET) ? 2 : 1;
 382
 383	inet = inet_sk(sk);
 384	if (inet->inet_daddr) {
 385		if (inet->inet_daddr != saddr)
 386			return -1;
 387		score += 4;
 388	}
 389
 390	if (inet->inet_dport) {
 391		if (inet->inet_dport != sport)
 392			return -1;
 393		score += 4;
 394	}
 395
 396	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 397					dif, sdif);
 398	if (!dev_match)
 399		return -1;
 400	if (sk->sk_bound_dev_if)
 401		score += 4;
 402
 403	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 404		score++;
 405	return score;
 406}
 407
 408static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 409		       const __u16 lport, const __be32 faddr,
 410		       const __be16 fport)
 411{
 412	static u32 udp_ehash_secret __read_mostly;
 413
 414	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 415
 416	return __inet_ehashfn(laddr, lport, faddr, fport,
 417			      udp_ehash_secret + net_hash_mix(net));
 418}
 419
 420static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
 421				     struct sk_buff *skb,
 422				     __be32 saddr, __be16 sport,
 423				     __be32 daddr, unsigned short hnum)
 424{
 425	struct sock *reuse_sk = NULL;
 426	u32 hash;
 427
 428	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
 429		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
 430		reuse_sk = reuseport_select_sock(sk, hash, skb,
 431						 sizeof(struct udphdr));
 432	}
 433	return reuse_sk;
 434}
 435
 436/* called with rcu_read_lock() */
 437static struct sock *udp4_lib_lookup2(struct net *net,
 438				     __be32 saddr, __be16 sport,
 439				     __be32 daddr, unsigned int hnum,
 440				     int dif, int sdif,
 441				     struct udp_hslot *hslot2,
 442				     struct sk_buff *skb)
 443{
 444	struct sock *sk, *result;
 445	int score, badness;
 
 446
 447	result = NULL;
 448	badness = 0;
 449	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 450		score = compute_score(sk, net, saddr, sport,
 451				      daddr, hnum, dif, sdif);
 452		if (score > badness) {
 453			result = lookup_reuseport(net, sk, skb,
 454						  saddr, sport, daddr, hnum);
 455			/* Fall back to scoring if group has connections */
 456			if (result && !reuseport_has_conns(sk))
 457				return result;
 458
 459			result = result ? : sk;
 
 
 460			badness = score;
 
 461		}
 462	}
 463	return result;
 464}
 465
 466static struct sock *udp4_lookup_run_bpf(struct net *net,
 467					struct udp_table *udptable,
 468					struct sk_buff *skb,
 469					__be32 saddr, __be16 sport,
 470					__be32 daddr, u16 hnum, const int dif)
 471{
 472	struct sock *sk, *reuse_sk;
 473	bool no_reuseport;
 474
 475	if (udptable != net->ipv4.udp_table)
 476		return NULL; /* only UDP is supported */
 477
 478	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
 479					    daddr, hnum, dif, &sk);
 480	if (no_reuseport || IS_ERR_OR_NULL(sk))
 481		return sk;
 482
 483	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
 484	if (reuse_sk)
 485		sk = reuse_sk;
 486	return sk;
 487}
 488
 489/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 490 * harder than this. -DaveM
 491 */
 492struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 493		__be16 sport, __be32 daddr, __be16 dport, int dif,
 494		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 495{
 
 496	unsigned short hnum = ntohs(dport);
 497	unsigned int hash2, slot2;
 498	struct udp_hslot *hslot2;
 499	struct sock *result, *sk;
 500
 501	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 502	slot2 = hash2 & udptable->mask;
 503	hslot2 = &udptable->hash2[slot2];
 504
 505	/* Lookup connected or non-wildcard socket */
 506	result = udp4_lib_lookup2(net, saddr, sport,
 507				  daddr, hnum, dif, sdif,
 508				  hslot2, skb);
 509	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 510		goto done;
 511
 512	/* Lookup redirect from BPF */
 513	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
 514		sk = udp4_lookup_run_bpf(net, udptable, skb,
 515					 saddr, sport, daddr, hnum, dif);
 516		if (sk) {
 517			result = sk;
 518			goto done;
 519		}
 520	}
 521
 522	/* Got non-wildcard socket or error on first lookup */
 523	if (result)
 524		goto done;
 525
 526	/* Lookup wildcard sockets */
 527	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 528	slot2 = hash2 & udptable->mask;
 529	hslot2 = &udptable->hash2[slot2];
 530
 531	result = udp4_lib_lookup2(net, saddr, sport,
 532				  htonl(INADDR_ANY), hnum, dif, sdif,
 533				  hslot2, skb);
 534done:
 535	if (IS_ERR(result))
 536		return NULL;
 537	return result;
 538}
 539EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 540
 541static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 542						 __be16 sport, __be16 dport,
 543						 struct udp_table *udptable)
 544{
 545	const struct iphdr *iph = ip_hdr(skb);
 546
 547	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 548				 iph->daddr, dport, inet_iif(skb),
 549				 inet_sdif(skb), udptable, skb);
 550}
 551
 552struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 553				 __be16 sport, __be16 dport)
 554{
 555	const struct iphdr *iph = ip_hdr(skb);
 556	struct net *net = dev_net(skb->dev);
 557
 558	return __udp4_lib_lookup(net, iph->saddr, sport,
 559				 iph->daddr, dport, inet_iif(skb),
 560				 inet_sdif(skb), net->ipv4.udp_table, NULL);
 561}
 
 562
 563/* Must be called under rcu_read_lock().
 564 * Does increment socket refcount.
 565 */
 566#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 567struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 568			     __be32 daddr, __be16 dport, int dif)
 569{
 570	struct sock *sk;
 571
 572	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 573			       dif, 0, net->ipv4.udp_table, NULL);
 574	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 575		sk = NULL;
 576	return sk;
 577}
 578EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 579#endif
 580
 581static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 582				       __be16 loc_port, __be32 loc_addr,
 583				       __be16 rmt_port, __be32 rmt_addr,
 584				       int dif, int sdif, unsigned short hnum)
 585{
 586	struct inet_sock *inet = inet_sk(sk);
 587
 588	if (!net_eq(sock_net(sk), net) ||
 589	    udp_sk(sk)->udp_port_hash != hnum ||
 590	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 591	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 592	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 593	    ipv6_only_sock(sk) ||
 594	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 595		return false;
 596	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 597		return false;
 598	return true;
 599}
 600
 601DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 602void udp_encap_enable(void)
 603{
 604	static_branch_inc(&udp_encap_needed_key);
 605}
 606EXPORT_SYMBOL(udp_encap_enable);
 607
 608void udp_encap_disable(void)
 609{
 610	static_branch_dec(&udp_encap_needed_key);
 611}
 612EXPORT_SYMBOL(udp_encap_disable);
 613
 614/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 615 * through error handlers in encapsulations looking for a match.
 616 */
 617static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 618{
 619	int i;
 620
 621	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 622		int (*handler)(struct sk_buff *skb, u32 info);
 623		const struct ip_tunnel_encap_ops *encap;
 624
 625		encap = rcu_dereference(iptun_encaps[i]);
 626		if (!encap)
 627			continue;
 628		handler = encap->err_handler;
 629		if (handler && !handler(skb, info))
 630			return 0;
 631	}
 632
 633	return -ENOENT;
 634}
 635
 636/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 637 * reversing source and destination port: this will match tunnels that force the
 638 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 639 * lwtunnels might actually break this assumption by being configured with
 640 * different destination ports on endpoints, in this case we won't be able to
 641 * trace ICMP messages back to them.
 642 *
 643 * If this doesn't match any socket, probe tunnels with arbitrary destination
 644 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 645 * we've sent packets to won't necessarily match the local destination port.
 646 *
 647 * Then ask the tunnel implementation to match the error against a valid
 648 * association.
 649 *
 650 * Return an error if we can't find a match, the socket if we need further
 651 * processing, zero otherwise.
 652 */
 653static struct sock *__udp4_lib_err_encap(struct net *net,
 654					 const struct iphdr *iph,
 655					 struct udphdr *uh,
 656					 struct udp_table *udptable,
 657					 struct sock *sk,
 658					 struct sk_buff *skb, u32 info)
 659{
 660	int (*lookup)(struct sock *sk, struct sk_buff *skb);
 661	int network_offset, transport_offset;
 662	struct udp_sock *up;
 663
 664	network_offset = skb_network_offset(skb);
 665	transport_offset = skb_transport_offset(skb);
 666
 667	/* Network header needs to point to the outer IPv4 header inside ICMP */
 668	skb_reset_network_header(skb);
 669
 670	/* Transport header needs to point to the UDP header */
 671	skb_set_transport_header(skb, iph->ihl << 2);
 672
 673	if (sk) {
 674		up = udp_sk(sk);
 675
 676		lookup = READ_ONCE(up->encap_err_lookup);
 677		if (lookup && lookup(sk, skb))
 678			sk = NULL;
 679
 680		goto out;
 681	}
 682
 683	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 684			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 685			       udptable, NULL);
 686	if (sk) {
 687		up = udp_sk(sk);
 
 688
 689		lookup = READ_ONCE(up->encap_err_lookup);
 690		if (!lookup || lookup(sk, skb))
 691			sk = NULL;
 692	}
 693
 694out:
 695	if (!sk)
 696		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 697
 698	skb_set_transport_header(skb, transport_offset);
 699	skb_set_network_header(skb, network_offset);
 700
 701	return sk;
 702}
 703
 704/*
 705 * This routine is called by the ICMP module when it gets some
 706 * sort of error condition.  If err < 0 then the socket should
 707 * be closed and the error returned to the user.  If err > 0
 708 * it's just the icmp type << 8 | icmp code.
 709 * Header points to the ip header of the error packet. We move
 710 * on past this. Then (as it used to claim before adjustment)
 711 * header points to the first 8 bytes of the udp header.  We need
 712 * to find the appropriate port.
 713 */
 714
 715int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 716{
 717	struct inet_sock *inet;
 718	const struct iphdr *iph = (const struct iphdr *)skb->data;
 719	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 720	const int type = icmp_hdr(skb)->type;
 721	const int code = icmp_hdr(skb)->code;
 722	bool tunnel = false;
 723	struct sock *sk;
 724	int harderr;
 725	int err;
 726	struct net *net = dev_net(skb->dev);
 727
 728	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 729			       iph->saddr, uh->source, skb->dev->ifindex,
 730			       inet_sdif(skb), udptable, NULL);
 731
 732	if (!sk || udp_sk(sk)->encap_type) {
 733		/* No socket for error: try tunnels before discarding */
 
 734		if (static_branch_unlikely(&udp_encap_needed_key)) {
 735			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 736						  info);
 737			if (!sk)
 738				return 0;
 739		} else
 740			sk = ERR_PTR(-ENOENT);
 741
 742		if (IS_ERR(sk)) {
 743			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 744			return PTR_ERR(sk);
 745		}
 746
 747		tunnel = true;
 748	}
 749
 750	err = 0;
 751	harderr = 0;
 752	inet = inet_sk(sk);
 753
 754	switch (type) {
 755	default:
 756	case ICMP_TIME_EXCEEDED:
 757		err = EHOSTUNREACH;
 758		break;
 759	case ICMP_SOURCE_QUENCH:
 760		goto out;
 761	case ICMP_PARAMETERPROB:
 762		err = EPROTO;
 763		harderr = 1;
 764		break;
 765	case ICMP_DEST_UNREACH:
 766		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 767			ipv4_sk_update_pmtu(skb, sk, info);
 768			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 769				err = EMSGSIZE;
 770				harderr = 1;
 771				break;
 772			}
 773			goto out;
 774		}
 775		err = EHOSTUNREACH;
 776		if (code <= NR_ICMP_UNREACH) {
 777			harderr = icmp_err_convert[code].fatal;
 778			err = icmp_err_convert[code].errno;
 779		}
 780		break;
 781	case ICMP_REDIRECT:
 782		ipv4_sk_redirect(skb, sk);
 783		goto out;
 784	}
 785
 786	/*
 787	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 788	 *	4.1.3.3.
 789	 */
 790	if (tunnel) {
 791		/* ...not for tunnels though: we don't have a sending socket */
 792		if (udp_sk(sk)->encap_err_rcv)
 793			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
 794						  (u8 *)(uh+1));
 795		goto out;
 796	}
 797	if (!inet->recverr) {
 798		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 799			goto out;
 800	} else
 801		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 802
 803	sk->sk_err = err;
 804	sk_error_report(sk);
 805out:
 806	return 0;
 807}
 808
 809int udp_err(struct sk_buff *skb, u32 info)
 810{
 811	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
 812}
 813
 814/*
 815 * Throw away all pending data and cancel the corking. Socket is locked.
 816 */
 817void udp_flush_pending_frames(struct sock *sk)
 818{
 819	struct udp_sock *up = udp_sk(sk);
 820
 821	if (up->pending) {
 822		up->len = 0;
 823		up->pending = 0;
 824		ip_flush_pending_frames(sk);
 825	}
 826}
 827EXPORT_SYMBOL(udp_flush_pending_frames);
 828
 829/**
 830 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 831 * 	@skb: 	sk_buff containing the filled-in UDP header
 832 * 	        (checksum field must be zeroed out)
 833 *	@src:	source IP address
 834 *	@dst:	destination IP address
 835 */
 836void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 837{
 838	struct udphdr *uh = udp_hdr(skb);
 839	int offset = skb_transport_offset(skb);
 840	int len = skb->len - offset;
 841	int hlen = len;
 842	__wsum csum = 0;
 843
 844	if (!skb_has_frag_list(skb)) {
 845		/*
 846		 * Only one fragment on the socket.
 847		 */
 848		skb->csum_start = skb_transport_header(skb) - skb->head;
 849		skb->csum_offset = offsetof(struct udphdr, check);
 850		uh->check = ~csum_tcpudp_magic(src, dst, len,
 851					       IPPROTO_UDP, 0);
 852	} else {
 853		struct sk_buff *frags;
 854
 855		/*
 856		 * HW-checksum won't work as there are two or more
 857		 * fragments on the socket so that all csums of sk_buffs
 858		 * should be together
 859		 */
 860		skb_walk_frags(skb, frags) {
 861			csum = csum_add(csum, frags->csum);
 862			hlen -= frags->len;
 863		}
 864
 865		csum = skb_checksum(skb, offset, hlen, csum);
 866		skb->ip_summed = CHECKSUM_NONE;
 867
 868		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 869		if (uh->check == 0)
 870			uh->check = CSUM_MANGLED_0;
 871	}
 872}
 873EXPORT_SYMBOL_GPL(udp4_hwcsum);
 874
 875/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 876 * for the simple case like when setting the checksum for a UDP tunnel.
 877 */
 878void udp_set_csum(bool nocheck, struct sk_buff *skb,
 879		  __be32 saddr, __be32 daddr, int len)
 880{
 881	struct udphdr *uh = udp_hdr(skb);
 882
 883	if (nocheck) {
 884		uh->check = 0;
 885	} else if (skb_is_gso(skb)) {
 886		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 887	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 888		uh->check = 0;
 889		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 890		if (uh->check == 0)
 891			uh->check = CSUM_MANGLED_0;
 892	} else {
 893		skb->ip_summed = CHECKSUM_PARTIAL;
 894		skb->csum_start = skb_transport_header(skb) - skb->head;
 895		skb->csum_offset = offsetof(struct udphdr, check);
 896		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 897	}
 898}
 899EXPORT_SYMBOL(udp_set_csum);
 900
 901static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 902			struct inet_cork *cork)
 903{
 904	struct sock *sk = skb->sk;
 905	struct inet_sock *inet = inet_sk(sk);
 906	struct udphdr *uh;
 907	int err;
 908	int is_udplite = IS_UDPLITE(sk);
 909	int offset = skb_transport_offset(skb);
 910	int len = skb->len - offset;
 911	int datalen = len - sizeof(*uh);
 912	__wsum csum = 0;
 913
 914	/*
 915	 * Create a UDP header
 916	 */
 917	uh = udp_hdr(skb);
 918	uh->source = inet->inet_sport;
 919	uh->dest = fl4->fl4_dport;
 920	uh->len = htons(len);
 921	uh->check = 0;
 922
 923	if (cork->gso_size) {
 924		const int hlen = skb_network_header_len(skb) +
 925				 sizeof(struct udphdr);
 926
 927		if (hlen + cork->gso_size > cork->fragsize) {
 928			kfree_skb(skb);
 929			return -EINVAL;
 930		}
 931		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
 932			kfree_skb(skb);
 933			return -EINVAL;
 934		}
 935		if (sk->sk_no_check_tx) {
 936			kfree_skb(skb);
 937			return -EINVAL;
 938		}
 939		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 940		    dst_xfrm(skb_dst(skb))) {
 941			kfree_skb(skb);
 942			return -EIO;
 943		}
 944
 945		if (datalen > cork->gso_size) {
 946			skb_shinfo(skb)->gso_size = cork->gso_size;
 947			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 948			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 949								 cork->gso_size);
 950		}
 951		goto csum_partial;
 952	}
 953
 954	if (is_udplite)  				 /*     UDP-Lite      */
 955		csum = udplite_csum(skb);
 956
 957	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 958
 959		skb->ip_summed = CHECKSUM_NONE;
 960		goto send;
 961
 962	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 963csum_partial:
 964
 965		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 966		goto send;
 967
 968	} else
 969		csum = udp_csum(skb);
 970
 971	/* add protocol-dependent pseudo-header */
 972	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 973				      sk->sk_protocol, csum);
 974	if (uh->check == 0)
 975		uh->check = CSUM_MANGLED_0;
 976
 977send:
 978	err = ip_send_skb(sock_net(sk), skb);
 979	if (err) {
 980		if (err == -ENOBUFS && !inet->recverr) {
 981			UDP_INC_STATS(sock_net(sk),
 982				      UDP_MIB_SNDBUFERRORS, is_udplite);
 983			err = 0;
 984		}
 985	} else
 986		UDP_INC_STATS(sock_net(sk),
 987			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 988	return err;
 989}
 990
 991/*
 992 * Push out all pending data as one UDP datagram. Socket is locked.
 993 */
 994int udp_push_pending_frames(struct sock *sk)
 995{
 996	struct udp_sock  *up = udp_sk(sk);
 997	struct inet_sock *inet = inet_sk(sk);
 998	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 999	struct sk_buff *skb;
1000	int err = 0;
1001
1002	skb = ip_finish_skb(sk, fl4);
1003	if (!skb)
1004		goto out;
1005
1006	err = udp_send_skb(skb, fl4, &inet->cork.base);
1007
1008out:
1009	up->len = 0;
1010	up->pending = 0;
1011	return err;
1012}
1013EXPORT_SYMBOL(udp_push_pending_frames);
1014
1015static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1016{
1017	switch (cmsg->cmsg_type) {
1018	case UDP_SEGMENT:
1019		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1020			return -EINVAL;
1021		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1022		return 0;
1023	default:
1024		return -EINVAL;
1025	}
1026}
1027
1028int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1029{
1030	struct cmsghdr *cmsg;
1031	bool need_ip = false;
1032	int err;
1033
1034	for_each_cmsghdr(cmsg, msg) {
1035		if (!CMSG_OK(msg, cmsg))
1036			return -EINVAL;
1037
1038		if (cmsg->cmsg_level != SOL_UDP) {
1039			need_ip = true;
1040			continue;
1041		}
1042
1043		err = __udp_cmsg_send(cmsg, gso_size);
1044		if (err)
1045			return err;
1046	}
1047
1048	return need_ip;
1049}
1050EXPORT_SYMBOL_GPL(udp_cmsg_send);
1051
1052int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1053{
1054	struct inet_sock *inet = inet_sk(sk);
1055	struct udp_sock *up = udp_sk(sk);
1056	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1057	struct flowi4 fl4_stack;
1058	struct flowi4 *fl4;
1059	int ulen = len;
1060	struct ipcm_cookie ipc;
1061	struct rtable *rt = NULL;
1062	int free = 0;
1063	int connected = 0;
1064	__be32 daddr, faddr, saddr;
1065	__be16 dport;
1066	u8  tos;
1067	int err, is_udplite = IS_UDPLITE(sk);
1068	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1069	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1070	struct sk_buff *skb;
1071	struct ip_options_data opt_copy;
1072
1073	if (len > 0xFFFF)
1074		return -EMSGSIZE;
1075
1076	/*
1077	 *	Check the flags.
1078	 */
1079
1080	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1081		return -EOPNOTSUPP;
1082
1083	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1084
1085	fl4 = &inet->cork.fl.u.ip4;
1086	if (up->pending) {
1087		/*
1088		 * There are pending frames.
1089		 * The socket lock must be held while it's corked.
1090		 */
1091		lock_sock(sk);
1092		if (likely(up->pending)) {
1093			if (unlikely(up->pending != AF_INET)) {
1094				release_sock(sk);
1095				return -EINVAL;
1096			}
1097			goto do_append_data;
1098		}
1099		release_sock(sk);
1100	}
1101	ulen += sizeof(struct udphdr);
1102
1103	/*
1104	 *	Get and verify the address.
1105	 */
1106	if (usin) {
1107		if (msg->msg_namelen < sizeof(*usin))
1108			return -EINVAL;
1109		if (usin->sin_family != AF_INET) {
1110			if (usin->sin_family != AF_UNSPEC)
1111				return -EAFNOSUPPORT;
1112		}
1113
1114		daddr = usin->sin_addr.s_addr;
1115		dport = usin->sin_port;
1116		if (dport == 0)
1117			return -EINVAL;
1118	} else {
1119		if (sk->sk_state != TCP_ESTABLISHED)
1120			return -EDESTADDRREQ;
1121		daddr = inet->inet_daddr;
1122		dport = inet->inet_dport;
1123		/* Open fast path for connected socket.
1124		   Route will not be used, if at least one option is set.
1125		 */
1126		connected = 1;
1127	}
1128
1129	ipcm_init_sk(&ipc, inet);
1130	ipc.gso_size = READ_ONCE(up->gso_size);
1131
1132	if (msg->msg_controllen) {
1133		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1134		if (err > 0)
1135			err = ip_cmsg_send(sk, msg, &ipc,
1136					   sk->sk_family == AF_INET6);
1137		if (unlikely(err < 0)) {
1138			kfree(ipc.opt);
1139			return err;
1140		}
1141		if (ipc.opt)
1142			free = 1;
1143		connected = 0;
1144	}
1145	if (!ipc.opt) {
1146		struct ip_options_rcu *inet_opt;
1147
1148		rcu_read_lock();
1149		inet_opt = rcu_dereference(inet->inet_opt);
1150		if (inet_opt) {
1151			memcpy(&opt_copy, inet_opt,
1152			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1153			ipc.opt = &opt_copy.opt;
1154		}
1155		rcu_read_unlock();
1156	}
1157
1158	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1159		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1160					    (struct sockaddr *)usin, &ipc.addr);
1161		if (err)
1162			goto out_free;
1163		if (usin) {
1164			if (usin->sin_port == 0) {
1165				/* BPF program set invalid port. Reject it. */
1166				err = -EINVAL;
1167				goto out_free;
1168			}
1169			daddr = usin->sin_addr.s_addr;
1170			dport = usin->sin_port;
1171		}
1172	}
1173
1174	saddr = ipc.addr;
1175	ipc.addr = faddr = daddr;
1176
1177	if (ipc.opt && ipc.opt->opt.srr) {
1178		if (!daddr) {
1179			err = -EINVAL;
1180			goto out_free;
1181		}
1182		faddr = ipc.opt->opt.faddr;
1183		connected = 0;
1184	}
1185	tos = get_rttos(&ipc, inet);
1186	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1187	    (msg->msg_flags & MSG_DONTROUTE) ||
1188	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1189		tos |= RTO_ONLINK;
1190		connected = 0;
1191	}
1192
1193	if (ipv4_is_multicast(daddr)) {
1194		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1195			ipc.oif = inet->mc_index;
1196		if (!saddr)
1197			saddr = inet->mc_addr;
1198		connected = 0;
1199	} else if (!ipc.oif) {
1200		ipc.oif = inet->uc_index;
1201	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1202		/* oif is set, packet is to local broadcast and
1203		 * uc_index is set. oif is most likely set
1204		 * by sk_bound_dev_if. If uc_index != oif check if the
1205		 * oif is an L3 master and uc_index is an L3 slave.
1206		 * If so, we want to allow the send using the uc_index.
1207		 */
1208		if (ipc.oif != inet->uc_index &&
1209		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1210							      inet->uc_index)) {
1211			ipc.oif = inet->uc_index;
1212		}
1213	}
1214
1215	if (connected)
1216		rt = (struct rtable *)sk_dst_check(sk, 0);
1217
1218	if (!rt) {
1219		struct net *net = sock_net(sk);
1220		__u8 flow_flags = inet_sk_flowi_flags(sk);
1221
1222		fl4 = &fl4_stack;
1223
1224		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1225				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1226				   flow_flags,
1227				   faddr, saddr, dport, inet->inet_sport,
1228				   sk->sk_uid);
1229
1230		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1231		rt = ip_route_output_flow(net, fl4, sk);
1232		if (IS_ERR(rt)) {
1233			err = PTR_ERR(rt);
1234			rt = NULL;
1235			if (err == -ENETUNREACH)
1236				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1237			goto out;
1238		}
1239
1240		err = -EACCES;
1241		if ((rt->rt_flags & RTCF_BROADCAST) &&
1242		    !sock_flag(sk, SOCK_BROADCAST))
1243			goto out;
1244		if (connected)
1245			sk_dst_set(sk, dst_clone(&rt->dst));
1246	}
1247
1248	if (msg->msg_flags&MSG_CONFIRM)
1249		goto do_confirm;
1250back_from_confirm:
1251
1252	saddr = fl4->saddr;
1253	if (!ipc.addr)
1254		daddr = ipc.addr = fl4->daddr;
1255
1256	/* Lockless fast path for the non-corking case. */
1257	if (!corkreq) {
1258		struct inet_cork cork;
1259
1260		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1261				  sizeof(struct udphdr), &ipc, &rt,
1262				  &cork, msg->msg_flags);
1263		err = PTR_ERR(skb);
1264		if (!IS_ERR_OR_NULL(skb))
1265			err = udp_send_skb(skb, fl4, &cork);
1266		goto out;
1267	}
1268
1269	lock_sock(sk);
1270	if (unlikely(up->pending)) {
1271		/* The socket is already corked while preparing it. */
1272		/* ... which is an evident application bug. --ANK */
1273		release_sock(sk);
1274
1275		net_dbg_ratelimited("socket already corked\n");
1276		err = -EINVAL;
1277		goto out;
1278	}
1279	/*
1280	 *	Now cork the socket to pend data.
1281	 */
1282	fl4 = &inet->cork.fl.u.ip4;
1283	fl4->daddr = daddr;
1284	fl4->saddr = saddr;
1285	fl4->fl4_dport = dport;
1286	fl4->fl4_sport = inet->inet_sport;
1287	up->pending = AF_INET;
1288
1289do_append_data:
1290	up->len += ulen;
1291	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1292			     sizeof(struct udphdr), &ipc, &rt,
1293			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1294	if (err)
1295		udp_flush_pending_frames(sk);
1296	else if (!corkreq)
1297		err = udp_push_pending_frames(sk);
1298	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1299		up->pending = 0;
1300	release_sock(sk);
1301
1302out:
1303	ip_rt_put(rt);
1304out_free:
1305	if (free)
1306		kfree(ipc.opt);
1307	if (!err)
1308		return len;
1309	/*
1310	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1311	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1312	 * we don't have a good statistic (IpOutDiscards but it can be too many
1313	 * things).  We could add another new stat but at least for now that
1314	 * seems like overkill.
1315	 */
1316	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1317		UDP_INC_STATS(sock_net(sk),
1318			      UDP_MIB_SNDBUFERRORS, is_udplite);
1319	}
1320	return err;
1321
1322do_confirm:
1323	if (msg->msg_flags & MSG_PROBE)
1324		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1325	if (!(msg->msg_flags&MSG_PROBE) || len)
1326		goto back_from_confirm;
1327	err = 0;
1328	goto out;
1329}
1330EXPORT_SYMBOL(udp_sendmsg);
1331
1332int udp_sendpage(struct sock *sk, struct page *page, int offset,
1333		 size_t size, int flags)
1334{
1335	struct inet_sock *inet = inet_sk(sk);
1336	struct udp_sock *up = udp_sk(sk);
1337	int ret;
1338
1339	if (flags & MSG_SENDPAGE_NOTLAST)
1340		flags |= MSG_MORE;
1341
1342	if (!up->pending) {
1343		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1344
1345		/* Call udp_sendmsg to specify destination address which
1346		 * sendpage interface can't pass.
1347		 * This will succeed only when the socket is connected.
1348		 */
1349		ret = udp_sendmsg(sk, &msg, 0);
1350		if (ret < 0)
1351			return ret;
1352	}
1353
1354	lock_sock(sk);
1355
1356	if (unlikely(!up->pending)) {
1357		release_sock(sk);
1358
1359		net_dbg_ratelimited("cork failed\n");
1360		return -EINVAL;
1361	}
1362
1363	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1364			     page, offset, size, flags);
1365	if (ret == -EOPNOTSUPP) {
1366		release_sock(sk);
1367		return sock_no_sendpage(sk->sk_socket, page, offset,
1368					size, flags);
1369	}
1370	if (ret < 0) {
1371		udp_flush_pending_frames(sk);
1372		goto out;
1373	}
1374
1375	up->len += size;
1376	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1377		ret = udp_push_pending_frames(sk);
1378	if (!ret)
1379		ret = size;
1380out:
1381	release_sock(sk);
1382	return ret;
1383}
1384
1385#define UDP_SKB_IS_STATELESS 0x80000000
1386
1387/* all head states (dst, sk, nf conntrack) except skb extensions are
1388 * cleared by udp_rcv().
1389 *
1390 * We need to preserve secpath, if present, to eventually process
1391 * IP_CMSG_PASSSEC at recvmsg() time.
1392 *
1393 * Other extensions can be cleared.
1394 */
1395static bool udp_try_make_stateless(struct sk_buff *skb)
1396{
1397	if (!skb_has_extensions(skb))
1398		return true;
1399
1400	if (!secpath_exists(skb)) {
1401		skb_ext_reset(skb);
1402		return true;
1403	}
1404
1405	return false;
1406}
1407
1408static void udp_set_dev_scratch(struct sk_buff *skb)
1409{
1410	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1411
1412	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1413	scratch->_tsize_state = skb->truesize;
1414#if BITS_PER_LONG == 64
1415	scratch->len = skb->len;
1416	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1417	scratch->is_linear = !skb_is_nonlinear(skb);
1418#endif
1419	if (udp_try_make_stateless(skb))
1420		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1421}
1422
1423static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1424{
1425	/* We come here after udp_lib_checksum_complete() returned 0.
1426	 * This means that __skb_checksum_complete() might have
1427	 * set skb->csum_valid to 1.
1428	 * On 64bit platforms, we can set csum_unnecessary
1429	 * to true, but only if the skb is not shared.
1430	 */
1431#if BITS_PER_LONG == 64
1432	if (!skb_shared(skb))
1433		udp_skb_scratch(skb)->csum_unnecessary = true;
1434#endif
1435}
1436
1437static int udp_skb_truesize(struct sk_buff *skb)
1438{
1439	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1440}
1441
1442static bool udp_skb_has_head_state(struct sk_buff *skb)
1443{
1444	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1445}
1446
1447/* fully reclaim rmem/fwd memory allocated for skb */
1448static void udp_rmem_release(struct sock *sk, int size, int partial,
1449			     bool rx_queue_lock_held)
1450{
1451	struct udp_sock *up = udp_sk(sk);
1452	struct sk_buff_head *sk_queue;
1453	int amt;
1454
1455	if (likely(partial)) {
1456		up->forward_deficit += size;
1457		size = up->forward_deficit;
1458		if (size < READ_ONCE(up->forward_threshold) &&
1459		    !skb_queue_empty(&up->reader_queue))
1460			return;
1461	} else {
1462		size += up->forward_deficit;
1463	}
1464	up->forward_deficit = 0;
1465
1466	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1467	 * if the called don't held it already
1468	 */
1469	sk_queue = &sk->sk_receive_queue;
1470	if (!rx_queue_lock_held)
1471		spin_lock(&sk_queue->lock);
1472
1473
1474	sk->sk_forward_alloc += size;
1475	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1476	sk->sk_forward_alloc -= amt;
1477
1478	if (amt)
1479		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1480
1481	atomic_sub(size, &sk->sk_rmem_alloc);
1482
1483	/* this can save us from acquiring the rx queue lock on next receive */
1484	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1485
1486	if (!rx_queue_lock_held)
1487		spin_unlock(&sk_queue->lock);
1488}
1489
1490/* Note: called with reader_queue.lock held.
1491 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1492 * This avoids a cache line miss while receive_queue lock is held.
1493 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1494 */
1495void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1496{
1497	prefetch(&skb->data);
1498	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1499}
1500EXPORT_SYMBOL(udp_skb_destructor);
1501
1502/* as above, but the caller held the rx queue lock, too */
1503static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1504{
1505	prefetch(&skb->data);
1506	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1507}
1508
1509/* Idea of busylocks is to let producers grab an extra spinlock
1510 * to relieve pressure on the receive_queue spinlock shared by consumer.
1511 * Under flood, this means that only one producer can be in line
1512 * trying to acquire the receive_queue spinlock.
1513 * These busylock can be allocated on a per cpu manner, instead of a
1514 * per socket one (that would consume a cache line per socket)
1515 */
1516static int udp_busylocks_log __read_mostly;
1517static spinlock_t *udp_busylocks __read_mostly;
1518
1519static spinlock_t *busylock_acquire(void *ptr)
1520{
1521	spinlock_t *busy;
1522
1523	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1524	spin_lock(busy);
1525	return busy;
1526}
1527
1528static void busylock_release(spinlock_t *busy)
1529{
1530	if (busy)
1531		spin_unlock(busy);
1532}
1533
1534int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1535{
1536	struct sk_buff_head *list = &sk->sk_receive_queue;
1537	int rmem, delta, amt, err = -ENOMEM;
1538	spinlock_t *busy = NULL;
1539	int size;
1540
1541	/* try to avoid the costly atomic add/sub pair when the receive
1542	 * queue is full; always allow at least a packet
1543	 */
1544	rmem = atomic_read(&sk->sk_rmem_alloc);
1545	if (rmem > sk->sk_rcvbuf)
1546		goto drop;
1547
1548	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1549	 * having linear skbs :
1550	 * - Reduce memory overhead and thus increase receive queue capacity
1551	 * - Less cache line misses at copyout() time
1552	 * - Less work at consume_skb() (less alien page frag freeing)
1553	 */
1554	if (rmem > (sk->sk_rcvbuf >> 1)) {
1555		skb_condense(skb);
1556
1557		busy = busylock_acquire(sk);
1558	}
1559	size = skb->truesize;
1560	udp_set_dev_scratch(skb);
1561
1562	/* we drop only if the receive buf is full and the receive
1563	 * queue contains some other skb
1564	 */
1565	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1566	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1567		goto uncharge_drop;
1568
1569	spin_lock(&list->lock);
1570	if (size >= sk->sk_forward_alloc) {
1571		amt = sk_mem_pages(size);
1572		delta = amt << PAGE_SHIFT;
1573		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1574			err = -ENOBUFS;
1575			spin_unlock(&list->lock);
1576			goto uncharge_drop;
1577		}
1578
1579		sk->sk_forward_alloc += delta;
1580	}
1581
1582	sk->sk_forward_alloc -= size;
1583
1584	/* no need to setup a destructor, we will explicitly release the
1585	 * forward allocated memory on dequeue
1586	 */
1587	sock_skb_set_dropcount(sk, skb);
1588
1589	__skb_queue_tail(list, skb);
1590	spin_unlock(&list->lock);
1591
1592	if (!sock_flag(sk, SOCK_DEAD))
1593		sk->sk_data_ready(sk);
1594
1595	busylock_release(busy);
1596	return 0;
1597
1598uncharge_drop:
1599	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1600
1601drop:
1602	atomic_inc(&sk->sk_drops);
1603	busylock_release(busy);
1604	return err;
1605}
1606EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1607
1608void udp_destruct_common(struct sock *sk)
1609{
1610	/* reclaim completely the forward allocated memory */
1611	struct udp_sock *up = udp_sk(sk);
1612	unsigned int total = 0;
1613	struct sk_buff *skb;
1614
1615	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1616	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1617		total += skb->truesize;
1618		kfree_skb(skb);
1619	}
1620	udp_rmem_release(sk, total, 0, true);
1621}
1622EXPORT_SYMBOL_GPL(udp_destruct_common);
1623
1624static void udp_destruct_sock(struct sock *sk)
1625{
1626	udp_destruct_common(sk);
1627	inet_sock_destruct(sk);
1628}
 
1629
1630int udp_init_sock(struct sock *sk)
1631{
1632	udp_lib_init_sock(sk);
1633	sk->sk_destruct = udp_destruct_sock;
1634	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1635	return 0;
1636}
 
1637
1638void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1639{
1640	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1641		bool slow = lock_sock_fast(sk);
1642
1643		sk_peek_offset_bwd(sk, len);
1644		unlock_sock_fast(sk, slow);
1645	}
1646
1647	if (!skb_unref(skb))
1648		return;
1649
1650	/* In the more common cases we cleared the head states previously,
1651	 * see __udp_queue_rcv_skb().
1652	 */
1653	if (unlikely(udp_skb_has_head_state(skb)))
1654		skb_release_head_state(skb);
1655	__consume_stateless_skb(skb);
1656}
1657EXPORT_SYMBOL_GPL(skb_consume_udp);
1658
1659static struct sk_buff *__first_packet_length(struct sock *sk,
1660					     struct sk_buff_head *rcvq,
1661					     int *total)
1662{
1663	struct sk_buff *skb;
1664
1665	while ((skb = skb_peek(rcvq)) != NULL) {
1666		if (udp_lib_checksum_complete(skb)) {
1667			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1668					IS_UDPLITE(sk));
1669			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1670					IS_UDPLITE(sk));
1671			atomic_inc(&sk->sk_drops);
1672			__skb_unlink(skb, rcvq);
1673			*total += skb->truesize;
1674			kfree_skb(skb);
1675		} else {
1676			udp_skb_csum_unnecessary_set(skb);
1677			break;
1678		}
1679	}
1680	return skb;
1681}
1682
1683/**
1684 *	first_packet_length	- return length of first packet in receive queue
1685 *	@sk: socket
1686 *
1687 *	Drops all bad checksum frames, until a valid one is found.
1688 *	Returns the length of found skb, or -1 if none is found.
1689 */
1690static int first_packet_length(struct sock *sk)
1691{
1692	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1693	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1694	struct sk_buff *skb;
1695	int total = 0;
1696	int res;
1697
1698	spin_lock_bh(&rcvq->lock);
1699	skb = __first_packet_length(sk, rcvq, &total);
1700	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1701		spin_lock(&sk_queue->lock);
1702		skb_queue_splice_tail_init(sk_queue, rcvq);
1703		spin_unlock(&sk_queue->lock);
1704
1705		skb = __first_packet_length(sk, rcvq, &total);
1706	}
1707	res = skb ? skb->len : -1;
1708	if (total)
1709		udp_rmem_release(sk, total, 1, false);
1710	spin_unlock_bh(&rcvq->lock);
1711	return res;
1712}
1713
1714/*
1715 *	IOCTL requests applicable to the UDP protocol
1716 */
1717
1718int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1719{
1720	switch (cmd) {
1721	case SIOCOUTQ:
1722	{
1723		int amount = sk_wmem_alloc_get(sk);
1724
1725		return put_user(amount, (int __user *)arg);
1726	}
1727
1728	case SIOCINQ:
1729	{
1730		int amount = max_t(int, 0, first_packet_length(sk));
1731
1732		return put_user(amount, (int __user *)arg);
1733	}
1734
1735	default:
1736		return -ENOIOCTLCMD;
1737	}
1738
1739	return 0;
1740}
1741EXPORT_SYMBOL(udp_ioctl);
1742
1743struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1744			       int *off, int *err)
1745{
1746	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1747	struct sk_buff_head *queue;
1748	struct sk_buff *last;
1749	long timeo;
1750	int error;
1751
1752	queue = &udp_sk(sk)->reader_queue;
 
1753	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1754	do {
1755		struct sk_buff *skb;
1756
1757		error = sock_error(sk);
1758		if (error)
1759			break;
1760
1761		error = -EAGAIN;
1762		do {
1763			spin_lock_bh(&queue->lock);
1764			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1765							err, &last);
 
1766			if (skb) {
1767				if (!(flags & MSG_PEEK))
1768					udp_skb_destructor(sk, skb);
1769				spin_unlock_bh(&queue->lock);
1770				return skb;
1771			}
1772
1773			if (skb_queue_empty_lockless(sk_queue)) {
1774				spin_unlock_bh(&queue->lock);
1775				goto busy_check;
1776			}
1777
1778			/* refill the reader queue and walk it again
1779			 * keep both queues locked to avoid re-acquiring
1780			 * the sk_receive_queue lock if fwd memory scheduling
1781			 * is needed.
1782			 */
1783			spin_lock(&sk_queue->lock);
1784			skb_queue_splice_tail_init(sk_queue, queue);
1785
1786			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1787							err, &last);
1788			if (skb && !(flags & MSG_PEEK))
1789				udp_skb_dtor_locked(sk, skb);
1790			spin_unlock(&sk_queue->lock);
1791			spin_unlock_bh(&queue->lock);
1792			if (skb)
1793				return skb;
1794
1795busy_check:
1796			if (!sk_can_busy_loop(sk))
1797				break;
1798
1799			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1800		} while (!skb_queue_empty_lockless(sk_queue));
1801
1802		/* sk_queue is empty, reader_queue may contain peeked packets */
1803	} while (timeo &&
1804		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1805					      &error, &timeo,
1806					      (struct sk_buff *)sk_queue));
1807
1808	*err = error;
1809	return NULL;
1810}
1811EXPORT_SYMBOL(__skb_recv_udp);
1812
1813int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1814{
1815	struct sk_buff *skb;
1816	int err, copied;
1817
1818try_again:
1819	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1820	if (!skb)
1821		return err;
1822
1823	if (udp_lib_checksum_complete(skb)) {
1824		int is_udplite = IS_UDPLITE(sk);
1825		struct net *net = sock_net(sk);
1826
1827		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1828		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1829		atomic_inc(&sk->sk_drops);
1830		kfree_skb(skb);
1831		goto try_again;
1832	}
1833
1834	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1835	copied = recv_actor(sk, skb);
1836	kfree_skb(skb);
1837
1838	return copied;
1839}
1840EXPORT_SYMBOL(udp_read_skb);
1841
1842/*
1843 * 	This should be easy, if there is something there we
1844 * 	return it, otherwise we block.
1845 */
1846
1847int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1848		int *addr_len)
1849{
1850	struct inet_sock *inet = inet_sk(sk);
1851	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1852	struct sk_buff *skb;
1853	unsigned int ulen, copied;
1854	int off, err, peeking = flags & MSG_PEEK;
1855	int is_udplite = IS_UDPLITE(sk);
1856	bool checksum_valid = false;
1857
1858	if (flags & MSG_ERRQUEUE)
1859		return ip_recv_error(sk, msg, len, addr_len);
1860
1861try_again:
1862	off = sk_peek_offset(sk, flags);
1863	skb = __skb_recv_udp(sk, flags, &off, &err);
1864	if (!skb)
1865		return err;
1866
1867	ulen = udp_skb_len(skb);
1868	copied = len;
1869	if (copied > ulen - off)
1870		copied = ulen - off;
1871	else if (copied < ulen)
1872		msg->msg_flags |= MSG_TRUNC;
1873
1874	/*
1875	 * If checksum is needed at all, try to do it while copying the
1876	 * data.  If the data is truncated, or if we only want a partial
1877	 * coverage checksum (UDP-Lite), do it before the copy.
1878	 */
1879
1880	if (copied < ulen || peeking ||
1881	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1882		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1883				!__udp_lib_checksum_complete(skb);
1884		if (!checksum_valid)
1885			goto csum_copy_err;
1886	}
1887
1888	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1889		if (udp_skb_is_linear(skb))
1890			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1891		else
1892			err = skb_copy_datagram_msg(skb, off, msg, copied);
1893	} else {
1894		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1895
1896		if (err == -EINVAL)
1897			goto csum_copy_err;
1898	}
1899
1900	if (unlikely(err)) {
1901		if (!peeking) {
1902			atomic_inc(&sk->sk_drops);
1903			UDP_INC_STATS(sock_net(sk),
1904				      UDP_MIB_INERRORS, is_udplite);
1905		}
1906		kfree_skb(skb);
1907		return err;
1908	}
1909
1910	if (!peeking)
1911		UDP_INC_STATS(sock_net(sk),
1912			      UDP_MIB_INDATAGRAMS, is_udplite);
1913
1914	sock_recv_cmsgs(msg, sk, skb);
1915
1916	/* Copy the address. */
1917	if (sin) {
1918		sin->sin_family = AF_INET;
1919		sin->sin_port = udp_hdr(skb)->source;
1920		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1921		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1922		*addr_len = sizeof(*sin);
1923
1924		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1925						      (struct sockaddr *)sin);
 
1926	}
1927
1928	if (udp_sk(sk)->gro_enabled)
1929		udp_cmsg_recv(msg, sk, skb);
1930
1931	if (inet->cmsg_flags)
1932		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1933
1934	err = copied;
1935	if (flags & MSG_TRUNC)
1936		err = ulen;
1937
1938	skb_consume_udp(sk, skb, peeking ? -err : err);
1939	return err;
1940
1941csum_copy_err:
1942	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1943				 udp_skb_destructor)) {
1944		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1945		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1946	}
1947	kfree_skb(skb);
1948
1949	/* starting over for a new packet, but check if we need to yield */
1950	cond_resched();
1951	msg->msg_flags &= ~MSG_TRUNC;
1952	goto try_again;
1953}
1954
1955int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1956{
1957	/* This check is replicated from __ip4_datagram_connect() and
1958	 * intended to prevent BPF program called below from accessing bytes
1959	 * that are out of the bound specified by user in addr_len.
1960	 */
1961	if (addr_len < sizeof(struct sockaddr_in))
1962		return -EINVAL;
1963
1964	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1965}
1966EXPORT_SYMBOL(udp_pre_connect);
1967
1968int __udp_disconnect(struct sock *sk, int flags)
1969{
1970	struct inet_sock *inet = inet_sk(sk);
1971	/*
1972	 *	1003.1g - break association.
1973	 */
1974
1975	sk->sk_state = TCP_CLOSE;
1976	inet->inet_daddr = 0;
1977	inet->inet_dport = 0;
1978	sock_rps_reset_rxhash(sk);
1979	sk->sk_bound_dev_if = 0;
1980	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1981		inet_reset_saddr(sk);
1982		if (sk->sk_prot->rehash &&
1983		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1984			sk->sk_prot->rehash(sk);
1985	}
1986
1987	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1988		sk->sk_prot->unhash(sk);
1989		inet->inet_sport = 0;
1990	}
1991	sk_dst_reset(sk);
1992	return 0;
1993}
1994EXPORT_SYMBOL(__udp_disconnect);
1995
1996int udp_disconnect(struct sock *sk, int flags)
1997{
1998	lock_sock(sk);
1999	__udp_disconnect(sk, flags);
2000	release_sock(sk);
2001	return 0;
2002}
2003EXPORT_SYMBOL(udp_disconnect);
2004
2005void udp_lib_unhash(struct sock *sk)
2006{
2007	if (sk_hashed(sk)) {
2008		struct udp_table *udptable = udp_get_table_prot(sk);
2009		struct udp_hslot *hslot, *hslot2;
2010
2011		hslot  = udp_hashslot(udptable, sock_net(sk),
2012				      udp_sk(sk)->udp_port_hash);
2013		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2014
2015		spin_lock_bh(&hslot->lock);
2016		if (rcu_access_pointer(sk->sk_reuseport_cb))
2017			reuseport_detach_sock(sk);
2018		if (sk_del_node_init_rcu(sk)) {
2019			hslot->count--;
2020			inet_sk(sk)->inet_num = 0;
2021			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2022
2023			spin_lock(&hslot2->lock);
2024			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2025			hslot2->count--;
2026			spin_unlock(&hslot2->lock);
2027		}
2028		spin_unlock_bh(&hslot->lock);
2029	}
2030}
2031EXPORT_SYMBOL(udp_lib_unhash);
2032
2033/*
2034 * inet_rcv_saddr was changed, we must rehash secondary hash
2035 */
2036void udp_lib_rehash(struct sock *sk, u16 newhash)
2037{
2038	if (sk_hashed(sk)) {
2039		struct udp_table *udptable = udp_get_table_prot(sk);
2040		struct udp_hslot *hslot, *hslot2, *nhslot2;
2041
2042		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2043		nhslot2 = udp_hashslot2(udptable, newhash);
2044		udp_sk(sk)->udp_portaddr_hash = newhash;
2045
2046		if (hslot2 != nhslot2 ||
2047		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2048			hslot = udp_hashslot(udptable, sock_net(sk),
2049					     udp_sk(sk)->udp_port_hash);
2050			/* we must lock primary chain too */
2051			spin_lock_bh(&hslot->lock);
2052			if (rcu_access_pointer(sk->sk_reuseport_cb))
2053				reuseport_detach_sock(sk);
2054
2055			if (hslot2 != nhslot2) {
2056				spin_lock(&hslot2->lock);
2057				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2058				hslot2->count--;
2059				spin_unlock(&hslot2->lock);
2060
2061				spin_lock(&nhslot2->lock);
2062				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2063							 &nhslot2->head);
2064				nhslot2->count++;
2065				spin_unlock(&nhslot2->lock);
2066			}
2067
2068			spin_unlock_bh(&hslot->lock);
2069		}
2070	}
2071}
2072EXPORT_SYMBOL(udp_lib_rehash);
2073
2074void udp_v4_rehash(struct sock *sk)
2075{
2076	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2077					  inet_sk(sk)->inet_rcv_saddr,
2078					  inet_sk(sk)->inet_num);
2079	udp_lib_rehash(sk, new_hash);
2080}
2081
2082static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2083{
2084	int rc;
2085
2086	if (inet_sk(sk)->inet_daddr) {
2087		sock_rps_save_rxhash(sk, skb);
2088		sk_mark_napi_id(sk, skb);
2089		sk_incoming_cpu_update(sk);
2090	} else {
2091		sk_mark_napi_id_once(sk, skb);
2092	}
2093
2094	rc = __udp_enqueue_schedule_skb(sk, skb);
2095	if (rc < 0) {
2096		int is_udplite = IS_UDPLITE(sk);
2097		int drop_reason;
2098
2099		/* Note that an ENOMEM error is charged twice */
2100		if (rc == -ENOMEM) {
2101			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2102					is_udplite);
2103			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2104		} else {
2105			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2106				      is_udplite);
2107			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2108		}
2109		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2110		kfree_skb_reason(skb, drop_reason);
2111		trace_udp_fail_queue_rcv_skb(rc, sk);
2112		return -1;
2113	}
2114
2115	return 0;
2116}
2117
2118/* returns:
2119 *  -1: error
2120 *   0: success
2121 *  >0: "udp encap" protocol resubmission
2122 *
2123 * Note that in the success and error cases, the skb is assumed to
2124 * have either been requeued or freed.
2125 */
2126static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2127{
2128	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2129	struct udp_sock *up = udp_sk(sk);
2130	int is_udplite = IS_UDPLITE(sk);
2131
2132	/*
2133	 *	Charge it to the socket, dropping if the queue is full.
2134	 */
2135	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2136		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2137		goto drop;
2138	}
2139	nf_reset_ct(skb);
2140
2141	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2142		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2143
2144		/*
2145		 * This is an encapsulation socket so pass the skb to
2146		 * the socket's udp_encap_rcv() hook. Otherwise, just
2147		 * fall through and pass this up the UDP socket.
2148		 * up->encap_rcv() returns the following value:
2149		 * =0 if skb was successfully passed to the encap
2150		 *    handler or was discarded by it.
2151		 * >0 if skb should be passed on to UDP.
2152		 * <0 if skb should be resubmitted as proto -N
2153		 */
2154
2155		/* if we're overly short, let UDP handle it */
2156		encap_rcv = READ_ONCE(up->encap_rcv);
2157		if (encap_rcv) {
2158			int ret;
2159
2160			/* Verify checksum before giving to encap */
2161			if (udp_lib_checksum_complete(skb))
2162				goto csum_error;
2163
2164			ret = encap_rcv(sk, skb);
2165			if (ret <= 0) {
2166				__UDP_INC_STATS(sock_net(sk),
2167						UDP_MIB_INDATAGRAMS,
2168						is_udplite);
2169				return -ret;
2170			}
2171		}
2172
2173		/* FALLTHROUGH -- it's a UDP Packet */
2174	}
2175
2176	/*
2177	 * 	UDP-Lite specific tests, ignored on UDP sockets
2178	 */
2179	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2180
2181		/*
2182		 * MIB statistics other than incrementing the error count are
2183		 * disabled for the following two types of errors: these depend
2184		 * on the application settings, not on the functioning of the
2185		 * protocol stack as such.
2186		 *
2187		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2188		 * way ... to ... at least let the receiving application block
2189		 * delivery of packets with coverage values less than a value
2190		 * provided by the application."
2191		 */
2192		if (up->pcrlen == 0) {          /* full coverage was set  */
2193			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2194					    UDP_SKB_CB(skb)->cscov, skb->len);
2195			goto drop;
2196		}
2197		/* The next case involves violating the min. coverage requested
2198		 * by the receiver. This is subtle: if receiver wants x and x is
2199		 * greater than the buffersize/MTU then receiver will complain
2200		 * that it wants x while sender emits packets of smaller size y.
2201		 * Therefore the above ...()->partial_cov statement is essential.
2202		 */
2203		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2204			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2205					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2206			goto drop;
2207		}
2208	}
2209
2210	prefetch(&sk->sk_rmem_alloc);
2211	if (rcu_access_pointer(sk->sk_filter) &&
2212	    udp_lib_checksum_complete(skb))
2213			goto csum_error;
2214
2215	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2216		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2217		goto drop;
2218	}
2219
2220	udp_csum_pull_header(skb);
2221
2222	ipv4_pktinfo_prepare(sk, skb);
2223	return __udp_queue_rcv_skb(sk, skb);
2224
2225csum_error:
2226	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2227	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2228drop:
2229	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2230	atomic_inc(&sk->sk_drops);
2231	kfree_skb_reason(skb, drop_reason);
2232	return -1;
2233}
2234
2235static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2236{
2237	struct sk_buff *next, *segs;
2238	int ret;
2239
2240	if (likely(!udp_unexpected_gso(sk, skb)))
2241		return udp_queue_rcv_one_skb(sk, skb);
2242
2243	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2244	__skb_push(skb, -skb_mac_offset(skb));
2245	segs = udp_rcv_segment(sk, skb, true);
2246	skb_list_walk_safe(segs, skb, next) {
 
2247		__skb_pull(skb, skb_transport_offset(skb));
2248
2249		udp_post_segment_fix_csum(skb);
2250		ret = udp_queue_rcv_one_skb(sk, skb);
2251		if (ret > 0)
2252			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2253	}
2254	return 0;
2255}
2256
2257/* For TCP sockets, sk_rx_dst is protected by socket lock
2258 * For UDP, we use xchg() to guard against concurrent changes.
2259 */
2260bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2261{
2262	struct dst_entry *old;
2263
2264	if (dst_hold_safe(dst)) {
2265		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2266		dst_release(old);
2267		return old != dst;
2268	}
2269	return false;
2270}
2271EXPORT_SYMBOL(udp_sk_rx_dst_set);
2272
2273/*
2274 *	Multicasts and broadcasts go to each listener.
2275 *
2276 *	Note: called only from the BH handler context.
2277 */
2278static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2279				    struct udphdr  *uh,
2280				    __be32 saddr, __be32 daddr,
2281				    struct udp_table *udptable,
2282				    int proto)
2283{
2284	struct sock *sk, *first = NULL;
2285	unsigned short hnum = ntohs(uh->dest);
2286	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2287	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2288	unsigned int offset = offsetof(typeof(*sk), sk_node);
2289	int dif = skb->dev->ifindex;
2290	int sdif = inet_sdif(skb);
2291	struct hlist_node *node;
2292	struct sk_buff *nskb;
2293
2294	if (use_hash2) {
2295		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2296			    udptable->mask;
2297		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2298start_lookup:
2299		hslot = &udptable->hash2[hash2];
2300		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2301	}
2302
2303	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2304		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2305					 uh->source, saddr, dif, sdif, hnum))
2306			continue;
2307
2308		if (!first) {
2309			first = sk;
2310			continue;
2311		}
2312		nskb = skb_clone(skb, GFP_ATOMIC);
2313
2314		if (unlikely(!nskb)) {
2315			atomic_inc(&sk->sk_drops);
2316			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2317					IS_UDPLITE(sk));
2318			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2319					IS_UDPLITE(sk));
2320			continue;
2321		}
2322		if (udp_queue_rcv_skb(sk, nskb) > 0)
2323			consume_skb(nskb);
2324	}
2325
2326	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2327	if (use_hash2 && hash2 != hash2_any) {
2328		hash2 = hash2_any;
2329		goto start_lookup;
2330	}
2331
2332	if (first) {
2333		if (udp_queue_rcv_skb(first, skb) > 0)
2334			consume_skb(skb);
2335	} else {
2336		kfree_skb(skb);
2337		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2338				proto == IPPROTO_UDPLITE);
2339	}
2340	return 0;
2341}
2342
2343/* Initialize UDP checksum. If exited with zero value (success),
2344 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2345 * Otherwise, csum completion requires checksumming packet body,
2346 * including udp header and folding it to skb->csum.
2347 */
2348static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2349				 int proto)
2350{
2351	int err;
2352
2353	UDP_SKB_CB(skb)->partial_cov = 0;
2354	UDP_SKB_CB(skb)->cscov = skb->len;
2355
2356	if (proto == IPPROTO_UDPLITE) {
2357		err = udplite_checksum_init(skb, uh);
2358		if (err)
2359			return err;
2360
2361		if (UDP_SKB_CB(skb)->partial_cov) {
2362			skb->csum = inet_compute_pseudo(skb, proto);
2363			return 0;
2364		}
2365	}
2366
2367	/* Note, we are only interested in != 0 or == 0, thus the
2368	 * force to int.
2369	 */
2370	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2371							inet_compute_pseudo);
2372	if (err)
2373		return err;
2374
2375	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2376		/* If SW calculated the value, we know it's bad */
2377		if (skb->csum_complete_sw)
2378			return 1;
2379
2380		/* HW says the value is bad. Let's validate that.
2381		 * skb->csum is no longer the full packet checksum,
2382		 * so don't treat it as such.
2383		 */
2384		skb_checksum_complete_unset(skb);
2385	}
2386
2387	return 0;
2388}
2389
2390/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2391 * return code conversion for ip layer consumption
2392 */
2393static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2394			       struct udphdr *uh)
2395{
2396	int ret;
2397
2398	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2399		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2400
2401	ret = udp_queue_rcv_skb(sk, skb);
2402
2403	/* a return value > 0 means to resubmit the input, but
2404	 * it wants the return to be -protocol, or 0
2405	 */
2406	if (ret > 0)
2407		return -ret;
2408	return 0;
2409}
2410
2411/*
2412 *	All we need to do is get the socket, and then do a checksum.
2413 */
2414
2415int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2416		   int proto)
2417{
2418	struct sock *sk;
2419	struct udphdr *uh;
2420	unsigned short ulen;
2421	struct rtable *rt = skb_rtable(skb);
2422	__be32 saddr, daddr;
2423	struct net *net = dev_net(skb->dev);
2424	bool refcounted;
2425	int drop_reason;
2426
2427	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2428
2429	/*
2430	 *  Validate the packet.
2431	 */
2432	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2433		goto drop;		/* No space for header. */
2434
2435	uh   = udp_hdr(skb);
2436	ulen = ntohs(uh->len);
2437	saddr = ip_hdr(skb)->saddr;
2438	daddr = ip_hdr(skb)->daddr;
2439
2440	if (ulen > skb->len)
2441		goto short_packet;
2442
2443	if (proto == IPPROTO_UDP) {
2444		/* UDP validates ulen. */
2445		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2446			goto short_packet;
2447		uh = udp_hdr(skb);
2448	}
2449
2450	if (udp4_csum_init(skb, uh, proto))
2451		goto csum_error;
2452
2453	sk = skb_steal_sock(skb, &refcounted);
2454	if (sk) {
2455		struct dst_entry *dst = skb_dst(skb);
2456		int ret;
2457
2458		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2459			udp_sk_rx_dst_set(sk, dst);
2460
2461		ret = udp_unicast_rcv_skb(sk, skb, uh);
2462		if (refcounted)
2463			sock_put(sk);
2464		return ret;
2465	}
2466
2467	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2468		return __udp4_lib_mcast_deliver(net, skb, uh,
2469						saddr, daddr, udptable, proto);
2470
2471	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2472	if (sk)
2473		return udp_unicast_rcv_skb(sk, skb, uh);
2474
2475	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2476		goto drop;
2477	nf_reset_ct(skb);
2478
2479	/* No socket. Drop packet silently, if checksum is wrong */
2480	if (udp_lib_checksum_complete(skb))
2481		goto csum_error;
2482
2483	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2484	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2485	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2486
2487	/*
2488	 * Hmm.  We got an UDP packet to a port to which we
2489	 * don't wanna listen.  Ignore it.
2490	 */
2491	kfree_skb_reason(skb, drop_reason);
2492	return 0;
2493
2494short_packet:
2495	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2496	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2497			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2498			    &saddr, ntohs(uh->source),
2499			    ulen, skb->len,
2500			    &daddr, ntohs(uh->dest));
2501	goto drop;
2502
2503csum_error:
2504	/*
2505	 * RFC1122: OK.  Discards the bad packet silently (as far as
2506	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2507	 */
2508	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2509	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2510			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2511			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2512			    ulen);
2513	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2514drop:
2515	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2516	kfree_skb_reason(skb, drop_reason);
2517	return 0;
2518}
2519
2520/* We can only early demux multicast if there is a single matching socket.
2521 * If more than one socket found returns NULL
2522 */
2523static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2524						  __be16 loc_port, __be32 loc_addr,
2525						  __be16 rmt_port, __be32 rmt_addr,
2526						  int dif, int sdif)
2527{
2528	struct udp_table *udptable = net->ipv4.udp_table;
2529	unsigned short hnum = ntohs(loc_port);
2530	struct sock *sk, *result;
2531	struct udp_hslot *hslot;
2532	unsigned int slot;
2533
2534	slot = udp_hashfn(net, hnum, udptable->mask);
2535	hslot = &udptable->hash[slot];
2536
2537	/* Do not bother scanning a too big list */
2538	if (hslot->count > 10)
2539		return NULL;
2540
2541	result = NULL;
2542	sk_for_each_rcu(sk, &hslot->head) {
2543		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2544					rmt_port, rmt_addr, dif, sdif, hnum)) {
2545			if (result)
2546				return NULL;
2547			result = sk;
2548		}
2549	}
2550
2551	return result;
2552}
2553
2554/* For unicast we should only early demux connected sockets or we can
2555 * break forwarding setups.  The chains here can be long so only check
2556 * if the first socket is an exact match and if not move on.
2557 */
2558static struct sock *__udp4_lib_demux_lookup(struct net *net,
2559					    __be16 loc_port, __be32 loc_addr,
2560					    __be16 rmt_port, __be32 rmt_addr,
2561					    int dif, int sdif)
2562{
2563	struct udp_table *udptable = net->ipv4.udp_table;
 
 
 
2564	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2565	unsigned short hnum = ntohs(loc_port);
2566	unsigned int hash2, slot2;
2567	struct udp_hslot *hslot2;
2568	__portpair ports;
2569	struct sock *sk;
2570
2571	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2572	slot2 = hash2 & udptable->mask;
2573	hslot2 = &udptable->hash2[slot2];
2574	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2575
2576	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2577		if (inet_match(net, sk, acookie, ports, dif, sdif))
 
2578			return sk;
2579		/* Only check first socket in chain */
2580		break;
2581	}
2582	return NULL;
2583}
2584
2585int udp_v4_early_demux(struct sk_buff *skb)
2586{
2587	struct net *net = dev_net(skb->dev);
2588	struct in_device *in_dev = NULL;
2589	const struct iphdr *iph;
2590	const struct udphdr *uh;
2591	struct sock *sk = NULL;
2592	struct dst_entry *dst;
2593	int dif = skb->dev->ifindex;
2594	int sdif = inet_sdif(skb);
2595	int ours;
2596
2597	/* validate the packet */
2598	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2599		return 0;
2600
2601	iph = ip_hdr(skb);
2602	uh = udp_hdr(skb);
2603
2604	if (skb->pkt_type == PACKET_MULTICAST) {
2605		in_dev = __in_dev_get_rcu(skb->dev);
2606
2607		if (!in_dev)
2608			return 0;
2609
2610		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2611				       iph->protocol);
2612		if (!ours)
2613			return 0;
2614
2615		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2616						   uh->source, iph->saddr,
2617						   dif, sdif);
2618	} else if (skb->pkt_type == PACKET_HOST) {
2619		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2620					     uh->source, iph->saddr, dif, sdif);
2621	}
2622
2623	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2624		return 0;
2625
2626	skb->sk = sk;
2627	skb->destructor = sock_efree;
2628	dst = rcu_dereference(sk->sk_rx_dst);
2629
2630	if (dst)
2631		dst = dst_check(dst, 0);
2632	if (dst) {
2633		u32 itag = 0;
2634
2635		/* set noref for now.
2636		 * any place which wants to hold dst has to call
2637		 * dst_hold_safe()
2638		 */
2639		skb_dst_set_noref(skb, dst);
2640
2641		/* for unconnected multicast sockets we need to validate
2642		 * the source on each packet
2643		 */
2644		if (!inet_sk(sk)->inet_daddr && in_dev)
2645			return ip_mc_validate_source(skb, iph->daddr,
2646						     iph->saddr,
2647						     iph->tos & IPTOS_RT_MASK,
2648						     skb->dev, in_dev, &itag);
2649	}
2650	return 0;
2651}
2652
2653int udp_rcv(struct sk_buff *skb)
2654{
2655	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2656}
2657
2658void udp_destroy_sock(struct sock *sk)
2659{
2660	struct udp_sock *up = udp_sk(sk);
2661	bool slow = lock_sock_fast(sk);
2662
2663	/* protects from races with udp_abort() */
2664	sock_set_flag(sk, SOCK_DEAD);
2665	udp_flush_pending_frames(sk);
2666	unlock_sock_fast(sk, slow);
2667	if (static_branch_unlikely(&udp_encap_needed_key)) {
2668		if (up->encap_type) {
2669			void (*encap_destroy)(struct sock *sk);
2670			encap_destroy = READ_ONCE(up->encap_destroy);
2671			if (encap_destroy)
2672				encap_destroy(sk);
2673		}
2674		if (up->encap_enabled)
2675			static_branch_dec(&udp_encap_needed_key);
2676	}
2677}
2678
2679/*
2680 *	Socket option code for UDP
2681 */
2682int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2683		       sockptr_t optval, unsigned int optlen,
2684		       int (*push_pending_frames)(struct sock *))
2685{
2686	struct udp_sock *up = udp_sk(sk);
2687	int val, valbool;
2688	int err = 0;
2689	int is_udplite = IS_UDPLITE(sk);
2690
2691	if (level == SOL_SOCKET) {
2692		err = sk_setsockopt(sk, level, optname, optval, optlen);
2693
2694		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2695			sockopt_lock_sock(sk);
2696			/* paired with READ_ONCE in udp_rmem_release() */
2697			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2698			sockopt_release_sock(sk);
2699		}
2700		return err;
2701	}
2702
2703	if (optlen < sizeof(int))
2704		return -EINVAL;
2705
2706	if (copy_from_sockptr(&val, optval, sizeof(val)))
2707		return -EFAULT;
2708
2709	valbool = val ? 1 : 0;
2710
2711	switch (optname) {
2712	case UDP_CORK:
2713		if (val != 0) {
2714			WRITE_ONCE(up->corkflag, 1);
2715		} else {
2716			WRITE_ONCE(up->corkflag, 0);
2717			lock_sock(sk);
2718			push_pending_frames(sk);
2719			release_sock(sk);
2720		}
2721		break;
2722
2723	case UDP_ENCAP:
2724		switch (val) {
2725		case 0:
2726#ifdef CONFIG_XFRM
2727		case UDP_ENCAP_ESPINUDP:
2728		case UDP_ENCAP_ESPINUDP_NON_IKE:
2729#if IS_ENABLED(CONFIG_IPV6)
2730			if (sk->sk_family == AF_INET6)
2731				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2732			else
2733#endif
2734				up->encap_rcv = xfrm4_udp_encap_rcv;
2735#endif
2736			fallthrough;
2737		case UDP_ENCAP_L2TPINUDP:
2738			up->encap_type = val;
2739			lock_sock(sk);
2740			udp_tunnel_encap_enable(sk->sk_socket);
2741			release_sock(sk);
2742			break;
2743		default:
2744			err = -ENOPROTOOPT;
2745			break;
2746		}
2747		break;
2748
2749	case UDP_NO_CHECK6_TX:
2750		up->no_check6_tx = valbool;
2751		break;
2752
2753	case UDP_NO_CHECK6_RX:
2754		up->no_check6_rx = valbool;
2755		break;
2756
2757	case UDP_SEGMENT:
2758		if (val < 0 || val > USHRT_MAX)
2759			return -EINVAL;
2760		WRITE_ONCE(up->gso_size, val);
2761		break;
2762
2763	case UDP_GRO:
2764		lock_sock(sk);
2765
2766		/* when enabling GRO, accept the related GSO packet type */
2767		if (valbool)
2768			udp_tunnel_encap_enable(sk->sk_socket);
2769		up->gro_enabled = valbool;
2770		up->accept_udp_l4 = valbool;
2771		release_sock(sk);
2772		break;
2773
2774	/*
2775	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2776	 */
2777	/* The sender sets actual checksum coverage length via this option.
2778	 * The case coverage > packet length is handled by send module. */
2779	case UDPLITE_SEND_CSCOV:
2780		if (!is_udplite)         /* Disable the option on UDP sockets */
2781			return -ENOPROTOOPT;
2782		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2783			val = 8;
2784		else if (val > USHRT_MAX)
2785			val = USHRT_MAX;
2786		up->pcslen = val;
2787		up->pcflag |= UDPLITE_SEND_CC;
2788		break;
2789
2790	/* The receiver specifies a minimum checksum coverage value. To make
2791	 * sense, this should be set to at least 8 (as done below). If zero is
2792	 * used, this again means full checksum coverage.                     */
2793	case UDPLITE_RECV_CSCOV:
2794		if (!is_udplite)         /* Disable the option on UDP sockets */
2795			return -ENOPROTOOPT;
2796		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2797			val = 8;
2798		else if (val > USHRT_MAX)
2799			val = USHRT_MAX;
2800		up->pcrlen = val;
2801		up->pcflag |= UDPLITE_RECV_CC;
2802		break;
2803
2804	default:
2805		err = -ENOPROTOOPT;
2806		break;
2807	}
2808
2809	return err;
2810}
2811EXPORT_SYMBOL(udp_lib_setsockopt);
2812
2813int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2814		   unsigned int optlen)
2815{
2816	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2817		return udp_lib_setsockopt(sk, level, optname,
2818					  optval, optlen,
2819					  udp_push_pending_frames);
2820	return ip_setsockopt(sk, level, optname, optval, optlen);
2821}
2822
 
 
 
 
 
 
 
 
 
 
 
2823int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2824		       char __user *optval, int __user *optlen)
2825{
2826	struct udp_sock *up = udp_sk(sk);
2827	int val, len;
2828
2829	if (get_user(len, optlen))
2830		return -EFAULT;
2831
2832	len = min_t(unsigned int, len, sizeof(int));
2833
2834	if (len < 0)
2835		return -EINVAL;
2836
2837	switch (optname) {
2838	case UDP_CORK:
2839		val = READ_ONCE(up->corkflag);
2840		break;
2841
2842	case UDP_ENCAP:
2843		val = up->encap_type;
2844		break;
2845
2846	case UDP_NO_CHECK6_TX:
2847		val = up->no_check6_tx;
2848		break;
2849
2850	case UDP_NO_CHECK6_RX:
2851		val = up->no_check6_rx;
2852		break;
2853
2854	case UDP_SEGMENT:
2855		val = READ_ONCE(up->gso_size);
2856		break;
2857
2858	case UDP_GRO:
2859		val = up->gro_enabled;
2860		break;
2861
2862	/* The following two cannot be changed on UDP sockets, the return is
2863	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2864	case UDPLITE_SEND_CSCOV:
2865		val = up->pcslen;
2866		break;
2867
2868	case UDPLITE_RECV_CSCOV:
2869		val = up->pcrlen;
2870		break;
2871
2872	default:
2873		return -ENOPROTOOPT;
2874	}
2875
2876	if (put_user(len, optlen))
2877		return -EFAULT;
2878	if (copy_to_user(optval, &val, len))
2879		return -EFAULT;
2880	return 0;
2881}
2882EXPORT_SYMBOL(udp_lib_getsockopt);
2883
2884int udp_getsockopt(struct sock *sk, int level, int optname,
2885		   char __user *optval, int __user *optlen)
2886{
2887	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2888		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2889	return ip_getsockopt(sk, level, optname, optval, optlen);
2890}
2891
 
 
 
 
 
 
 
 
 
2892/**
2893 * 	udp_poll - wait for a UDP event.
2894 *	@file: - file struct
2895 *	@sock: - socket
2896 *	@wait: - poll table
2897 *
2898 *	This is same as datagram poll, except for the special case of
2899 *	blocking sockets. If application is using a blocking fd
2900 *	and a packet with checksum error is in the queue;
2901 *	then it could get return from select indicating data available
2902 *	but then block when reading it. Add special case code
2903 *	to work around these arguably broken applications.
2904 */
2905__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2906{
2907	__poll_t mask = datagram_poll(file, sock, wait);
2908	struct sock *sk = sock->sk;
2909
2910	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2911		mask |= EPOLLIN | EPOLLRDNORM;
2912
2913	/* Check for false positives due to checksum errors */
2914	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2915	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2916		mask &= ~(EPOLLIN | EPOLLRDNORM);
2917
2918	/* psock ingress_msg queue should not contain any bad checksum frames */
2919	if (sk_is_readable(sk))
2920		mask |= EPOLLIN | EPOLLRDNORM;
2921	return mask;
2922
2923}
2924EXPORT_SYMBOL(udp_poll);
2925
2926int udp_abort(struct sock *sk, int err)
2927{
2928	lock_sock(sk);
2929
2930	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2931	 * with close()
2932	 */
2933	if (sock_flag(sk, SOCK_DEAD))
2934		goto out;
2935
2936	sk->sk_err = err;
2937	sk_error_report(sk);
2938	__udp_disconnect(sk, 0);
2939
2940out:
2941	release_sock(sk);
2942
2943	return 0;
2944}
2945EXPORT_SYMBOL_GPL(udp_abort);
2946
2947struct proto udp_prot = {
2948	.name			= "UDP",
2949	.owner			= THIS_MODULE,
2950	.close			= udp_lib_close,
2951	.pre_connect		= udp_pre_connect,
2952	.connect		= ip4_datagram_connect,
2953	.disconnect		= udp_disconnect,
2954	.ioctl			= udp_ioctl,
2955	.init			= udp_init_sock,
2956	.destroy		= udp_destroy_sock,
2957	.setsockopt		= udp_setsockopt,
2958	.getsockopt		= udp_getsockopt,
2959	.sendmsg		= udp_sendmsg,
2960	.recvmsg		= udp_recvmsg,
2961	.sendpage		= udp_sendpage,
2962	.release_cb		= ip4_datagram_release_cb,
2963	.hash			= udp_lib_hash,
2964	.unhash			= udp_lib_unhash,
2965	.rehash			= udp_v4_rehash,
2966	.get_port		= udp_v4_get_port,
2967	.put_port		= udp_lib_unhash,
2968#ifdef CONFIG_BPF_SYSCALL
2969	.psock_update_sk_prot	= udp_bpf_update_proto,
2970#endif
2971	.memory_allocated	= &udp_memory_allocated,
2972	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2973
2974	.sysctl_mem		= sysctl_udp_mem,
2975	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2976	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2977	.obj_size		= sizeof(struct udp_sock),
2978	.h.udp_table		= NULL,
 
 
 
 
2979	.diag_destroy		= udp_abort,
2980};
2981EXPORT_SYMBOL(udp_prot);
2982
2983/* ------------------------------------------------------------------------ */
2984#ifdef CONFIG_PROC_FS
2985
2986static struct udp_table *udp_get_table_afinfo(struct udp_seq_afinfo *afinfo,
2987					      struct net *net)
2988{
2989	return afinfo->udp_table ? : net->ipv4.udp_table;
2990}
2991
2992static struct sock *udp_get_first(struct seq_file *seq, int start)
2993{
 
 
2994	struct udp_iter_state *state = seq->private;
2995	struct net *net = seq_file_net(seq);
2996	struct udp_seq_afinfo *afinfo;
2997	struct udp_table *udptable;
2998	struct sock *sk;
2999
3000	if (state->bpf_seq_afinfo)
3001		afinfo = state->bpf_seq_afinfo;
3002	else
3003		afinfo = pde_data(file_inode(seq->file));
3004
3005	udptable = udp_get_table_afinfo(afinfo, net);
3006
3007	for (state->bucket = start; state->bucket <= udptable->mask;
3008	     ++state->bucket) {
3009		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3010
3011		if (hlist_empty(&hslot->head))
3012			continue;
3013
3014		spin_lock_bh(&hslot->lock);
3015		sk_for_each(sk, &hslot->head) {
3016			if (!net_eq(sock_net(sk), net))
3017				continue;
3018			if (afinfo->family == AF_UNSPEC ||
3019			    sk->sk_family == afinfo->family)
3020				goto found;
3021		}
3022		spin_unlock_bh(&hslot->lock);
3023	}
3024	sk = NULL;
3025found:
3026	return sk;
3027}
3028
3029static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3030{
 
3031	struct udp_iter_state *state = seq->private;
3032	struct net *net = seq_file_net(seq);
3033	struct udp_seq_afinfo *afinfo;
3034	struct udp_table *udptable;
3035
3036	if (state->bpf_seq_afinfo)
3037		afinfo = state->bpf_seq_afinfo;
3038	else
3039		afinfo = pde_data(file_inode(seq->file));
3040
3041	do {
3042		sk = sk_next(sk);
3043	} while (sk && (!net_eq(sock_net(sk), net) ||
3044			(afinfo->family != AF_UNSPEC &&
3045			 sk->sk_family != afinfo->family)));
3046
3047	if (!sk) {
3048		udptable = udp_get_table_afinfo(afinfo, net);
3049
3050		if (state->bucket <= udptable->mask)
3051			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3052
3053		return udp_get_first(seq, state->bucket + 1);
3054	}
3055	return sk;
3056}
3057
3058static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3059{
3060	struct sock *sk = udp_get_first(seq, 0);
3061
3062	if (sk)
3063		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3064			--pos;
3065	return pos ? NULL : sk;
3066}
3067
3068void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3069{
3070	struct udp_iter_state *state = seq->private;
3071	state->bucket = MAX_UDP_PORTS;
3072
3073	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3074}
3075EXPORT_SYMBOL(udp_seq_start);
3076
3077void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3078{
3079	struct sock *sk;
3080
3081	if (v == SEQ_START_TOKEN)
3082		sk = udp_get_idx(seq, 0);
3083	else
3084		sk = udp_get_next(seq, v);
3085
3086	++*pos;
3087	return sk;
3088}
3089EXPORT_SYMBOL(udp_seq_next);
3090
3091void udp_seq_stop(struct seq_file *seq, void *v)
3092{
 
3093	struct udp_iter_state *state = seq->private;
3094	struct udp_seq_afinfo *afinfo;
3095	struct udp_table *udptable;
3096
3097	if (state->bpf_seq_afinfo)
3098		afinfo = state->bpf_seq_afinfo;
3099	else
3100		afinfo = pde_data(file_inode(seq->file));
3101
3102	udptable = udp_get_table_afinfo(afinfo, seq_file_net(seq));
3103
3104	if (state->bucket <= udptable->mask)
3105		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3106}
3107EXPORT_SYMBOL(udp_seq_stop);
3108
3109/* ------------------------------------------------------------------------ */
3110static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3111		int bucket)
3112{
3113	struct inet_sock *inet = inet_sk(sp);
3114	__be32 dest = inet->inet_daddr;
3115	__be32 src  = inet->inet_rcv_saddr;
3116	__u16 destp	  = ntohs(inet->inet_dport);
3117	__u16 srcp	  = ntohs(inet->inet_sport);
3118
3119	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3120		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3121		bucket, src, srcp, dest, destp, sp->sk_state,
3122		sk_wmem_alloc_get(sp),
3123		udp_rqueue_get(sp),
3124		0, 0L, 0,
3125		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3126		0, sock_i_ino(sp),
3127		refcount_read(&sp->sk_refcnt), sp,
3128		atomic_read(&sp->sk_drops));
3129}
3130
3131int udp4_seq_show(struct seq_file *seq, void *v)
3132{
3133	seq_setwidth(seq, 127);
3134	if (v == SEQ_START_TOKEN)
3135		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3136			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3137			   "inode ref pointer drops");
3138	else {
3139		struct udp_iter_state *state = seq->private;
3140
3141		udp4_format_sock(v, seq, state->bucket);
3142	}
3143	seq_pad(seq, '\n');
3144	return 0;
3145}
3146
3147#ifdef CONFIG_BPF_SYSCALL
3148struct bpf_iter__udp {
3149	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3150	__bpf_md_ptr(struct udp_sock *, udp_sk);
3151	uid_t uid __aligned(8);
3152	int bucket __aligned(8);
3153};
3154
3155static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3156			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3157{
3158	struct bpf_iter__udp ctx;
3159
3160	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3161	ctx.meta = meta;
3162	ctx.udp_sk = udp_sk;
3163	ctx.uid = uid;
3164	ctx.bucket = bucket;
3165	return bpf_iter_run_prog(prog, &ctx);
3166}
3167
3168static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3169{
3170	struct udp_iter_state *state = seq->private;
3171	struct bpf_iter_meta meta;
3172	struct bpf_prog *prog;
3173	struct sock *sk = v;
3174	uid_t uid;
3175
3176	if (v == SEQ_START_TOKEN)
3177		return 0;
3178
3179	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3180	meta.seq = seq;
3181	prog = bpf_iter_get_info(&meta, false);
3182	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3183}
3184
3185static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3186{
3187	struct bpf_iter_meta meta;
3188	struct bpf_prog *prog;
3189
3190	if (!v) {
3191		meta.seq = seq;
3192		prog = bpf_iter_get_info(&meta, true);
3193		if (prog)
3194			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3195	}
3196
3197	udp_seq_stop(seq, v);
3198}
3199
3200static const struct seq_operations bpf_iter_udp_seq_ops = {
3201	.start		= udp_seq_start,
3202	.next		= udp_seq_next,
3203	.stop		= bpf_iter_udp_seq_stop,
3204	.show		= bpf_iter_udp_seq_show,
3205};
3206#endif
3207
3208const struct seq_operations udp_seq_ops = {
3209	.start		= udp_seq_start,
3210	.next		= udp_seq_next,
3211	.stop		= udp_seq_stop,
3212	.show		= udp4_seq_show,
3213};
3214EXPORT_SYMBOL(udp_seq_ops);
3215
3216static struct udp_seq_afinfo udp4_seq_afinfo = {
3217	.family		= AF_INET,
3218	.udp_table	= NULL,
3219};
3220
3221static int __net_init udp4_proc_init_net(struct net *net)
3222{
3223	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3224			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3225		return -ENOMEM;
3226	return 0;
3227}
3228
3229static void __net_exit udp4_proc_exit_net(struct net *net)
3230{
3231	remove_proc_entry("udp", net->proc_net);
3232}
3233
3234static struct pernet_operations udp4_net_ops = {
3235	.init = udp4_proc_init_net,
3236	.exit = udp4_proc_exit_net,
3237};
3238
3239int __init udp4_proc_init(void)
3240{
3241	return register_pernet_subsys(&udp4_net_ops);
3242}
3243
3244void udp4_proc_exit(void)
3245{
3246	unregister_pernet_subsys(&udp4_net_ops);
3247}
3248#endif /* CONFIG_PROC_FS */
3249
3250static __initdata unsigned long uhash_entries;
3251static int __init set_uhash_entries(char *str)
3252{
3253	ssize_t ret;
3254
3255	if (!str)
3256		return 0;
3257
3258	ret = kstrtoul(str, 0, &uhash_entries);
3259	if (ret)
3260		return 0;
3261
3262	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3263		uhash_entries = UDP_HTABLE_SIZE_MIN;
3264	return 1;
3265}
3266__setup("uhash_entries=", set_uhash_entries);
3267
3268void __init udp_table_init(struct udp_table *table, const char *name)
3269{
3270	unsigned int i;
3271
3272	table->hash = alloc_large_system_hash(name,
3273					      2 * sizeof(struct udp_hslot),
3274					      uhash_entries,
3275					      21, /* one slot per 2 MB */
3276					      0,
3277					      &table->log,
3278					      &table->mask,
3279					      UDP_HTABLE_SIZE_MIN,
3280					      UDP_HTABLE_SIZE_MAX);
3281
3282	table->hash2 = table->hash + (table->mask + 1);
3283	for (i = 0; i <= table->mask; i++) {
3284		INIT_HLIST_HEAD(&table->hash[i].head);
3285		table->hash[i].count = 0;
3286		spin_lock_init(&table->hash[i].lock);
3287	}
3288	for (i = 0; i <= table->mask; i++) {
3289		INIT_HLIST_HEAD(&table->hash2[i].head);
3290		table->hash2[i].count = 0;
3291		spin_lock_init(&table->hash2[i].lock);
3292	}
3293}
3294
3295u32 udp_flow_hashrnd(void)
3296{
3297	static u32 hashrnd __read_mostly;
3298
3299	net_get_random_once(&hashrnd, sizeof(hashrnd));
3300
3301	return hashrnd;
3302}
3303EXPORT_SYMBOL(udp_flow_hashrnd);
3304
3305static void __net_init udp_sysctl_init(struct net *net)
3306{
3307	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3308	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3309
3310#ifdef CONFIG_NET_L3_MASTER_DEV
3311	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3312#endif
3313}
3314
3315static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3316{
3317	struct udp_table *udptable;
3318	int i;
3319
3320	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3321	if (!udptable)
3322		goto out;
3323
3324	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3325				      GFP_KERNEL_ACCOUNT);
3326	if (!udptable->hash)
3327		goto free_table;
3328
3329	udptable->hash2 = udptable->hash + hash_entries;
3330	udptable->mask = hash_entries - 1;
3331	udptable->log = ilog2(hash_entries);
3332
3333	for (i = 0; i < hash_entries; i++) {
3334		INIT_HLIST_HEAD(&udptable->hash[i].head);
3335		udptable->hash[i].count = 0;
3336		spin_lock_init(&udptable->hash[i].lock);
3337
3338		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3339		udptable->hash2[i].count = 0;
3340		spin_lock_init(&udptable->hash2[i].lock);
3341	}
3342
3343	return udptable;
3344
3345free_table:
3346	kfree(udptable);
3347out:
3348	return NULL;
3349}
3350
3351static void __net_exit udp_pernet_table_free(struct net *net)
3352{
3353	struct udp_table *udptable = net->ipv4.udp_table;
3354
3355	if (udptable == &udp_table)
3356		return;
3357
3358	kvfree(udptable->hash);
3359	kfree(udptable);
3360}
3361
3362static void __net_init udp_set_table(struct net *net)
3363{
3364	struct udp_table *udptable;
3365	unsigned int hash_entries;
3366	struct net *old_net;
3367
3368	if (net_eq(net, &init_net))
3369		goto fallback;
3370
3371	old_net = current->nsproxy->net_ns;
3372	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3373	if (!hash_entries)
3374		goto fallback;
3375
3376	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3377	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3378		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3379	else
3380		hash_entries = roundup_pow_of_two(hash_entries);
3381
3382	udptable = udp_pernet_table_alloc(hash_entries);
3383	if (udptable) {
3384		net->ipv4.udp_table = udptable;
3385	} else {
3386		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3387			"for a netns, fallback to the global one\n",
3388			hash_entries);
3389fallback:
3390		net->ipv4.udp_table = &udp_table;
3391	}
3392}
3393
3394static int __net_init udp_pernet_init(struct net *net)
3395{
3396	udp_sysctl_init(net);
3397	udp_set_table(net);
3398
3399	return 0;
3400}
3401
3402static void __net_exit udp_pernet_exit(struct net *net)
3403{
3404	udp_pernet_table_free(net);
3405}
3406
3407static struct pernet_operations __net_initdata udp_sysctl_ops = {
3408	.init	= udp_pernet_init,
3409	.exit	= udp_pernet_exit,
3410};
3411
3412#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3413DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3414		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3415
3416static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3417{
3418	struct udp_iter_state *st = priv_data;
3419	struct udp_seq_afinfo *afinfo;
3420	int ret;
3421
3422	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3423	if (!afinfo)
3424		return -ENOMEM;
3425
3426	afinfo->family = AF_UNSPEC;
3427	afinfo->udp_table = NULL;
3428	st->bpf_seq_afinfo = afinfo;
3429	ret = bpf_iter_init_seq_net(priv_data, aux);
3430	if (ret)
3431		kfree(afinfo);
3432	return ret;
3433}
3434
3435static void bpf_iter_fini_udp(void *priv_data)
3436{
3437	struct udp_iter_state *st = priv_data;
3438
3439	kfree(st->bpf_seq_afinfo);
3440	bpf_iter_fini_seq_net(priv_data);
3441}
3442
3443static const struct bpf_iter_seq_info udp_seq_info = {
3444	.seq_ops		= &bpf_iter_udp_seq_ops,
3445	.init_seq_private	= bpf_iter_init_udp,
3446	.fini_seq_private	= bpf_iter_fini_udp,
3447	.seq_priv_size		= sizeof(struct udp_iter_state),
3448};
3449
3450static struct bpf_iter_reg udp_reg_info = {
3451	.target			= "udp",
3452	.ctx_arg_info_size	= 1,
3453	.ctx_arg_info		= {
3454		{ offsetof(struct bpf_iter__udp, udp_sk),
3455		  PTR_TO_BTF_ID_OR_NULL },
3456	},
3457	.seq_info		= &udp_seq_info,
3458};
3459
3460static void __init bpf_iter_register(void)
3461{
3462	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3463	if (bpf_iter_reg_target(&udp_reg_info))
3464		pr_warn("Warning: could not register bpf iterator udp\n");
3465}
3466#endif
3467
3468void __init udp_init(void)
3469{
3470	unsigned long limit;
3471	unsigned int i;
3472
3473	udp_table_init(&udp_table, "UDP");
3474	limit = nr_free_buffer_pages() / 8;
3475	limit = max(limit, 128UL);
3476	sysctl_udp_mem[0] = limit / 4 * 3;
3477	sysctl_udp_mem[1] = limit;
3478	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3479
 
 
3480	/* 16 spinlocks per cpu */
3481	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3482	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3483				GFP_KERNEL);
3484	if (!udp_busylocks)
3485		panic("UDP: failed to alloc udp_busylocks\n");
3486	for (i = 0; i < (1U << udp_busylocks_log); i++)
3487		spin_lock_init(udp_busylocks + i);
3488
3489	if (register_pernet_subsys(&udp_sysctl_ops))
3490		panic("UDP: failed to init sysctl parameters.\n");
3491
3492#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3493	bpf_iter_register();
3494#endif
3495}