Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Support for INET connection oriented protocols.
   8 *
   9 * Authors:	See the TCP sources
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/jhash.h>
  14
  15#include <net/inet_connection_sock.h>
  16#include <net/inet_hashtables.h>
  17#include <net/inet_timewait_sock.h>
  18#include <net/ip.h>
  19#include <net/route.h>
  20#include <net/tcp_states.h>
  21#include <net/xfrm.h>
  22#include <net/tcp.h>
  23#include <net/sock_reuseport.h>
  24#include <net/addrconf.h>
  25
  26#if IS_ENABLED(CONFIG_IPV6)
  27/* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
  28 *                          only, and any IPv4 addresses if not IPv6 only
  29 * match_wildcard == false: addresses must be exactly the same, i.e.
  30 *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
  31 *                          and 0.0.0.0 equals to 0.0.0.0 only
 
  32 */
  33static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
  34				 const struct in6_addr *sk2_rcv_saddr6,
  35				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  36				 bool sk1_ipv6only, bool sk2_ipv6only,
  37				 bool match_wildcard)
 
  38{
  39	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
  40	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  41
  42	/* if both are mapped, treat as IPv4 */
  43	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
  44		if (!sk2_ipv6only) {
  45			if (sk1_rcv_saddr == sk2_rcv_saddr)
  46				return true;
  47			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
  48				return match_wildcard;
  49		}
  50		return false;
  51	}
  52
  53	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
  54		return true;
  55
  56	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
  57	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  58		return true;
  59
  60	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
  61	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  62		return true;
  63
  64	if (sk2_rcv_saddr6 &&
  65	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
  66		return true;
  67
  68	return false;
  69}
  70#endif
  71
  72/* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
  73 * match_wildcard == false: addresses must be exactly the same, i.e.
  74 *                          0.0.0.0 only equals to 0.0.0.0
  75 */
  76static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  77				 bool sk2_ipv6only, bool match_wildcard)
 
  78{
  79	if (!sk2_ipv6only) {
  80		if (sk1_rcv_saddr == sk2_rcv_saddr)
  81			return true;
  82		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
  83			return match_wildcard;
  84	}
  85	return false;
  86}
  87
  88bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
  89			  bool match_wildcard)
  90{
  91#if IS_ENABLED(CONFIG_IPV6)
  92	if (sk->sk_family == AF_INET6)
  93		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
  94					    inet6_rcv_saddr(sk2),
  95					    sk->sk_rcv_saddr,
  96					    sk2->sk_rcv_saddr,
  97					    ipv6_only_sock(sk),
  98					    ipv6_only_sock(sk2),
 
  99					    match_wildcard);
 100#endif
 101	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
 102				    ipv6_only_sock(sk2), match_wildcard);
 
 103}
 104EXPORT_SYMBOL(inet_rcv_saddr_equal);
 105
 106bool inet_rcv_saddr_any(const struct sock *sk)
 107{
 108#if IS_ENABLED(CONFIG_IPV6)
 109	if (sk->sk_family == AF_INET6)
 110		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
 111#endif
 112	return !sk->sk_rcv_saddr;
 113}
 114
 115void inet_get_local_port_range(struct net *net, int *low, int *high)
 116{
 117	unsigned int seq;
 118
 119	do {
 120		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
 121
 122		*low = net->ipv4.ip_local_ports.range[0];
 123		*high = net->ipv4.ip_local_ports.range[1];
 124	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
 125}
 126EXPORT_SYMBOL(inet_get_local_port_range);
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128static int inet_csk_bind_conflict(const struct sock *sk,
 129				  const struct inet_bind_bucket *tb,
 
 130				  bool relax, bool reuseport_ok)
 131{
 132	struct sock *sk2;
 133	bool reuse = sk->sk_reuse;
 134	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
 135	kuid_t uid = sock_i_uid((struct sock *)sk);
 136
 
 
 
 
 
 
 137	/*
 138	 * Unlike other sk lookup places we do not check
 139	 * for sk_net here, since _all_ the socks listed
 140	 * in tb->owners list belong to the same net - the
 141	 * one this bucket belongs to.
 142	 */
 143
 144	sk_for_each_bound(sk2, &tb->owners) {
 145		if (sk != sk2 &&
 146		    (!sk->sk_bound_dev_if ||
 147		     !sk2->sk_bound_dev_if ||
 148		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
 149			if ((!reuse || !sk2->sk_reuse ||
 150			    sk2->sk_state == TCP_LISTEN) &&
 151			    (!reuseport || !sk2->sk_reuseport ||
 152			     rcu_access_pointer(sk->sk_reuseport_cb) ||
 153			     (sk2->sk_state != TCP_TIME_WAIT &&
 154			     !uid_eq(uid, sock_i_uid(sk2))))) {
 155				if (inet_rcv_saddr_equal(sk, sk2, true))
 156					break;
 157			}
 158			if (!relax && reuse && sk2->sk_reuse &&
 159			    sk2->sk_state != TCP_LISTEN) {
 160				if (inet_rcv_saddr_equal(sk, sk2, true))
 161					break;
 162			}
 163		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164	}
 165	return sk2 != NULL;
 
 
 166}
 167
 168/*
 169 * Find an open port number for the socket.  Returns with the
 170 * inet_bind_hashbucket lock held.
 171 */
 172static struct inet_bind_hashbucket *
 173inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
 174{
 175	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
 176	int port = 0;
 177	struct inet_bind_hashbucket *head;
 
 
 178	struct net *net = sock_net(sk);
 179	int i, low, high, attempt_half;
 180	struct inet_bind_bucket *tb;
 181	u32 remaining, offset;
 182	int l3mdev;
 183
 184	l3mdev = inet_sk_bound_l3mdev(sk);
 
 185	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
 186other_half_scan:
 187	inet_get_local_port_range(net, &low, &high);
 188	high++; /* [32768, 60999] -> [32768, 61000[ */
 189	if (high - low < 4)
 190		attempt_half = 0;
 191	if (attempt_half) {
 192		int half = low + (((high - low) >> 2) << 1);
 193
 194		if (attempt_half == 1)
 195			high = half;
 196		else
 197			low = half;
 198	}
 199	remaining = high - low;
 200	if (likely(remaining > 1))
 201		remaining &= ~1U;
 202
 203	offset = prandom_u32() % remaining;
 204	/* __inet_hash_connect() favors ports having @low parity
 205	 * We do the opposite to not pollute connect() users.
 206	 */
 207	offset |= 1U;
 208
 209other_parity_scan:
 210	port = low + offset;
 211	for (i = 0; i < remaining; i += 2, port += 2) {
 212		if (unlikely(port >= high))
 213			port -= remaining;
 214		if (inet_is_local_reserved_port(net, port))
 215			continue;
 216		head = &hinfo->bhash[inet_bhashfn(net, port,
 217						  hinfo->bhash_size)];
 218		spin_lock_bh(&head->lock);
 
 
 
 
 
 
 
 
 219		inet_bind_bucket_for_each(tb, &head->chain)
 220			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
 221			    tb->port == port) {
 222				if (!inet_csk_bind_conflict(sk, tb, false, false))
 223					goto success;
 
 224				goto next_port;
 225			}
 226		tb = NULL;
 227		goto success;
 228next_port:
 229		spin_unlock_bh(&head->lock);
 230		cond_resched();
 231	}
 232
 233	offset--;
 234	if (!(offset & 1))
 235		goto other_parity_scan;
 236
 237	if (attempt_half == 1) {
 238		/* OK we now try the upper half of the range */
 239		attempt_half = 2;
 240		goto other_half_scan;
 241	}
 
 
 
 
 
 
 242	return NULL;
 243success:
 244	*port_ret = port;
 245	*tb_ret = tb;
 
 
 246	return head;
 247}
 248
 249static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
 250				     struct sock *sk)
 251{
 252	kuid_t uid = sock_i_uid(sk);
 253
 254	if (tb->fastreuseport <= 0)
 255		return 0;
 256	if (!sk->sk_reuseport)
 257		return 0;
 258	if (rcu_access_pointer(sk->sk_reuseport_cb))
 259		return 0;
 260	if (!uid_eq(tb->fastuid, uid))
 261		return 0;
 262	/* We only need to check the rcv_saddr if this tb was once marked
 263	 * without fastreuseport and then was reset, as we can only know that
 264	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
 265	 * owners list.
 266	 */
 267	if (tb->fastreuseport == FASTREUSEPORT_ANY)
 268		return 1;
 269#if IS_ENABLED(CONFIG_IPV6)
 270	if (tb->fast_sk_family == AF_INET6)
 271		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
 272					    inet6_rcv_saddr(sk),
 273					    tb->fast_rcv_saddr,
 274					    sk->sk_rcv_saddr,
 275					    tb->fast_ipv6_only,
 276					    ipv6_only_sock(sk), true);
 277#endif
 278	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
 279				    ipv6_only_sock(sk), true);
 280}
 281
 282/* Obtain a reference to a local port for the given sock,
 283 * if snum is zero it means select any available local port.
 284 * We try to allocate an odd port (and leave even ports for connect())
 285 */
 286int inet_csk_get_port(struct sock *sk, unsigned short snum)
 287{
 288	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
 289	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
 290	int ret = 1, port = snum;
 291	struct inet_bind_hashbucket *head;
 292	struct net *net = sock_net(sk);
 293	struct inet_bind_bucket *tb = NULL;
 294	kuid_t uid = sock_i_uid(sk);
 295	int l3mdev;
 296
 297	l3mdev = inet_sk_bound_l3mdev(sk);
 298
 299	if (!port) {
 300		head = inet_csk_find_open_port(sk, &tb, &port);
 301		if (!head)
 302			return ret;
 303		if (!tb)
 304			goto tb_not_found;
 305		goto success;
 306	}
 307	head = &hinfo->bhash[inet_bhashfn(net, port,
 308					  hinfo->bhash_size)];
 309	spin_lock_bh(&head->lock);
 310	inet_bind_bucket_for_each(tb, &head->chain)
 311		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
 312		    tb->port == port)
 313			goto tb_found;
 314tb_not_found:
 315	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
 316				     net, head, port, l3mdev);
 317	if (!tb)
 318		goto fail_unlock;
 319tb_found:
 320	if (!hlist_empty(&tb->owners)) {
 321		if (sk->sk_reuse == SK_FORCE_REUSE)
 322			goto success;
 323
 324		if ((tb->fastreuse > 0 && reuse) ||
 325		    sk_reuseport_match(tb, sk))
 326			goto success;
 327		if (inet_csk_bind_conflict(sk, tb, true, true))
 328			goto fail_unlock;
 329	}
 330success:
 331	if (hlist_empty(&tb->owners)) {
 332		tb->fastreuse = reuse;
 333		if (sk->sk_reuseport) {
 334			tb->fastreuseport = FASTREUSEPORT_ANY;
 335			tb->fastuid = uid;
 336			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 337			tb->fast_ipv6_only = ipv6_only_sock(sk);
 338			tb->fast_sk_family = sk->sk_family;
 339#if IS_ENABLED(CONFIG_IPV6)
 340			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 341#endif
 342		} else {
 343			tb->fastreuseport = 0;
 344		}
 345	} else {
 346		if (!reuse)
 347			tb->fastreuse = 0;
 348		if (sk->sk_reuseport) {
 349			/* We didn't match or we don't have fastreuseport set on
 350			 * the tb, but we have sk_reuseport set on this socket
 351			 * and we know that there are no bind conflicts with
 352			 * this socket in this tb, so reset our tb's reuseport
 353			 * settings so that any subsequent sockets that match
 354			 * our current socket will be put on the fast path.
 355			 *
 356			 * If we reset we need to set FASTREUSEPORT_STRICT so we
 357			 * do extra checking for all subsequent sk_reuseport
 358			 * socks.
 359			 */
 360			if (!sk_reuseport_match(tb, sk)) {
 361				tb->fastreuseport = FASTREUSEPORT_STRICT;
 362				tb->fastuid = uid;
 363				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 364				tb->fast_ipv6_only = ipv6_only_sock(sk);
 365				tb->fast_sk_family = sk->sk_family;
 366#if IS_ENABLED(CONFIG_IPV6)
 367				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 368#endif
 369			}
 370		} else {
 371			tb->fastreuseport = 0;
 372		}
 373	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374	if (!inet_csk(sk)->icsk_bind_hash)
 375		inet_bind_hash(sk, tb, port);
 376	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
 
 377	ret = 0;
 378
 379fail_unlock:
 
 
 
 
 
 
 
 
 
 380	spin_unlock_bh(&head->lock);
 381	return ret;
 382}
 383EXPORT_SYMBOL_GPL(inet_csk_get_port);
 384
 385/*
 386 * Wait for an incoming connection, avoid race conditions. This must be called
 387 * with the socket locked.
 388 */
 389static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
 390{
 391	struct inet_connection_sock *icsk = inet_csk(sk);
 392	DEFINE_WAIT(wait);
 393	int err;
 394
 395	/*
 396	 * True wake-one mechanism for incoming connections: only
 397	 * one process gets woken up, not the 'whole herd'.
 398	 * Since we do not 'race & poll' for established sockets
 399	 * anymore, the common case will execute the loop only once.
 400	 *
 401	 * Subtle issue: "add_wait_queue_exclusive()" will be added
 402	 * after any current non-exclusive waiters, and we know that
 403	 * it will always _stay_ after any new non-exclusive waiters
 404	 * because all non-exclusive waiters are added at the
 405	 * beginning of the wait-queue. As such, it's ok to "drop"
 406	 * our exclusiveness temporarily when we get woken up without
 407	 * having to remove and re-insert us on the wait queue.
 408	 */
 409	for (;;) {
 410		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
 411					  TASK_INTERRUPTIBLE);
 412		release_sock(sk);
 413		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
 414			timeo = schedule_timeout(timeo);
 415		sched_annotate_sleep();
 416		lock_sock(sk);
 417		err = 0;
 418		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
 419			break;
 420		err = -EINVAL;
 421		if (sk->sk_state != TCP_LISTEN)
 422			break;
 423		err = sock_intr_errno(timeo);
 424		if (signal_pending(current))
 425			break;
 426		err = -EAGAIN;
 427		if (!timeo)
 428			break;
 429	}
 430	finish_wait(sk_sleep(sk), &wait);
 431	return err;
 432}
 433
 434/*
 435 * This will accept the next outstanding connection.
 436 */
 437struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
 438{
 439	struct inet_connection_sock *icsk = inet_csk(sk);
 440	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
 441	struct request_sock *req;
 442	struct sock *newsk;
 443	int error;
 444
 445	lock_sock(sk);
 446
 447	/* We need to make sure that this socket is listening,
 448	 * and that it has something pending.
 449	 */
 450	error = -EINVAL;
 451	if (sk->sk_state != TCP_LISTEN)
 452		goto out_err;
 453
 454	/* Find already established connection */
 455	if (reqsk_queue_empty(queue)) {
 456		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
 457
 458		/* If this is a non blocking socket don't sleep */
 459		error = -EAGAIN;
 460		if (!timeo)
 461			goto out_err;
 462
 463		error = inet_csk_wait_for_connect(sk, timeo);
 464		if (error)
 465			goto out_err;
 466	}
 467	req = reqsk_queue_remove(queue, sk);
 468	newsk = req->sk;
 469
 470	if (sk->sk_protocol == IPPROTO_TCP &&
 471	    tcp_rsk(req)->tfo_listener) {
 472		spin_lock_bh(&queue->fastopenq.lock);
 473		if (tcp_rsk(req)->tfo_listener) {
 474			/* We are still waiting for the final ACK from 3WHS
 475			 * so can't free req now. Instead, we set req->sk to
 476			 * NULL to signify that the child socket is taken
 477			 * so reqsk_fastopen_remove() will free the req
 478			 * when 3WHS finishes (or is aborted).
 479			 */
 480			req->sk = NULL;
 481			req = NULL;
 482		}
 483		spin_unlock_bh(&queue->fastopenq.lock);
 484	}
 
 485out:
 486	release_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487	if (req)
 488		reqsk_put(req);
 489	return newsk;
 490out_err:
 491	newsk = NULL;
 492	req = NULL;
 493	*err = error;
 494	goto out;
 495}
 496EXPORT_SYMBOL(inet_csk_accept);
 497
 498/*
 499 * Using different timers for retransmit, delayed acks and probes
 500 * We may wish use just one timer maintaining a list of expire jiffies
 501 * to optimize.
 502 */
 503void inet_csk_init_xmit_timers(struct sock *sk,
 504			       void (*retransmit_handler)(struct timer_list *t),
 505			       void (*delack_handler)(struct timer_list *t),
 506			       void (*keepalive_handler)(struct timer_list *t))
 507{
 508	struct inet_connection_sock *icsk = inet_csk(sk);
 509
 510	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
 511	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
 512	timer_setup(&sk->sk_timer, keepalive_handler, 0);
 513	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 514}
 515EXPORT_SYMBOL(inet_csk_init_xmit_timers);
 516
 517void inet_csk_clear_xmit_timers(struct sock *sk)
 518{
 519	struct inet_connection_sock *icsk = inet_csk(sk);
 520
 521	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
 522
 523	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
 524	sk_stop_timer(sk, &icsk->icsk_delack_timer);
 525	sk_stop_timer(sk, &sk->sk_timer);
 526}
 527EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
 528
 529void inet_csk_delete_keepalive_timer(struct sock *sk)
 530{
 531	sk_stop_timer(sk, &sk->sk_timer);
 532}
 533EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
 534
 535void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
 536{
 537	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
 538}
 539EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
 540
 541struct dst_entry *inet_csk_route_req(const struct sock *sk,
 542				     struct flowi4 *fl4,
 543				     const struct request_sock *req)
 544{
 545	const struct inet_request_sock *ireq = inet_rsk(req);
 546	struct net *net = read_pnet(&ireq->ireq_net);
 547	struct ip_options_rcu *opt;
 548	struct rtable *rt;
 549
 550	rcu_read_lock();
 551	opt = rcu_dereference(ireq->ireq_opt);
 552
 553	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 554			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
 555			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 556			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 557			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 558			   htons(ireq->ir_num), sk->sk_uid);
 559	security_req_classify_flow(req, flowi4_to_flowi(fl4));
 560	rt = ip_route_output_flow(net, fl4, sk);
 561	if (IS_ERR(rt))
 562		goto no_route;
 563	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 564		goto route_err;
 565	rcu_read_unlock();
 566	return &rt->dst;
 567
 568route_err:
 569	ip_rt_put(rt);
 570no_route:
 571	rcu_read_unlock();
 572	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 573	return NULL;
 574}
 575EXPORT_SYMBOL_GPL(inet_csk_route_req);
 576
 577struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
 578					    struct sock *newsk,
 579					    const struct request_sock *req)
 580{
 581	const struct inet_request_sock *ireq = inet_rsk(req);
 582	struct net *net = read_pnet(&ireq->ireq_net);
 583	struct inet_sock *newinet = inet_sk(newsk);
 584	struct ip_options_rcu *opt;
 585	struct flowi4 *fl4;
 586	struct rtable *rt;
 587
 588	opt = rcu_dereference(ireq->ireq_opt);
 589	fl4 = &newinet->cork.fl.u.ip4;
 590
 591	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 592			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
 593			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 594			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 595			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 596			   htons(ireq->ir_num), sk->sk_uid);
 597	security_req_classify_flow(req, flowi4_to_flowi(fl4));
 598	rt = ip_route_output_flow(net, fl4, sk);
 599	if (IS_ERR(rt))
 600		goto no_route;
 601	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 602		goto route_err;
 603	return &rt->dst;
 604
 605route_err:
 606	ip_rt_put(rt);
 607no_route:
 608	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 609	return NULL;
 610}
 611EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
 612
 613#if IS_ENABLED(CONFIG_IPV6)
 614#define AF_INET_FAMILY(fam) ((fam) == AF_INET)
 615#else
 616#define AF_INET_FAMILY(fam) true
 617#endif
 618
 619/* Decide when to expire the request and when to resend SYN-ACK */
 620static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
 621				  const int max_retries,
 622				  const u8 rskq_defer_accept,
 623				  int *expire, int *resend)
 624{
 625	if (!rskq_defer_accept) {
 626		*expire = req->num_timeout >= thresh;
 627		*resend = 1;
 628		return;
 629	}
 630	*expire = req->num_timeout >= thresh &&
 631		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
 632	/*
 633	 * Do not resend while waiting for data after ACK,
 634	 * start to resend on end of deferring period to give
 635	 * last chance for data or ACK to create established socket.
 636	 */
 637	*resend = !inet_rsk(req)->acked ||
 638		  req->num_timeout >= rskq_defer_accept - 1;
 639}
 640
 641int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
 642{
 643	int err = req->rsk_ops->rtx_syn_ack(parent, req);
 644
 645	if (!err)
 646		req->num_retrans++;
 647	return err;
 648}
 649EXPORT_SYMBOL(inet_rtx_syn_ack);
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651/* return true if req was found in the ehash table */
 652static bool reqsk_queue_unlink(struct request_sock *req)
 653{
 654	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
 655	bool found = false;
 656
 657	if (sk_hashed(req_to_sk(req))) {
 
 658		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
 659
 660		spin_lock(lock);
 661		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
 662		spin_unlock(lock);
 663	}
 664	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
 665		reqsk_put(req);
 666	return found;
 667}
 668
 669void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
 670{
 671	if (reqsk_queue_unlink(req)) {
 
 
 672		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
 673		reqsk_put(req);
 674	}
 
 675}
 676EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
 677
 678void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
 679{
 680	inet_csk_reqsk_queue_drop(sk, req);
 681	reqsk_put(req);
 682}
 683EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
 684
 685static void reqsk_timer_handler(struct timer_list *t)
 686{
 687	struct request_sock *req = from_timer(req, t, rsk_timer);
 
 688	struct sock *sk_listener = req->rsk_listener;
 689	struct net *net = sock_net(sk_listener);
 690	struct inet_connection_sock *icsk = inet_csk(sk_listener);
 691	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
 692	int qlen, expire = 0, resend = 0;
 693	int max_retries, thresh;
 694	u8 defer_accept;
 695
 696	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
 697		goto drop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
 700	thresh = max_retries;
 
 
 701	/* Normally all the openreqs are young and become mature
 702	 * (i.e. converted to established socket) for first timeout.
 703	 * If synack was not acknowledged for 1 second, it means
 704	 * one of the following things: synack was lost, ack was lost,
 705	 * rtt is high or nobody planned to ack (i.e. synflood).
 706	 * When server is a bit loaded, queue is populated with old
 707	 * open requests, reducing effective size of queue.
 708	 * When server is well loaded, queue size reduces to zero
 709	 * after several minutes of work. It is not synflood,
 710	 * it is normal operation. The solution is pruning
 711	 * too old entries overriding normal timeout, when
 712	 * situation becomes dangerous.
 713	 *
 714	 * Essentially, we reserve half of room for young
 715	 * embrions; and abort old ones without pity, if old
 716	 * ones are about to clog our table.
 717	 */
 
 718	qlen = reqsk_queue_len(queue);
 719	if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
 720		int young = reqsk_queue_len_young(queue) << 1;
 721
 722		while (thresh > 2) {
 723			if (qlen < young)
 724				break;
 725			thresh--;
 726			young <<= 1;
 727		}
 728	}
 729	defer_accept = READ_ONCE(queue->rskq_defer_accept);
 730	if (defer_accept)
 731		max_retries = defer_accept;
 732	syn_ack_recalc(req, thresh, max_retries, defer_accept,
 733		       &expire, &resend);
 734	req->rsk_ops->syn_ack_timeout(req);
 735	if (!expire &&
 736	    (!resend ||
 737	     !inet_rtx_syn_ack(sk_listener, req) ||
 738	     inet_rsk(req)->acked)) {
 739		unsigned long timeo;
 740
 741		if (req->num_timeout++ == 0)
 742			atomic_dec(&queue->young);
 743		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
 744		mod_timer(&req->rsk_timer, jiffies + timeo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745		return;
 746	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 747drop:
 748	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
 749}
 750
 751static void reqsk_queue_hash_req(struct request_sock *req,
 752				 unsigned long timeout)
 753{
 754	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
 755	mod_timer(&req->rsk_timer, jiffies + timeout);
 756
 757	inet_ehash_insert(req_to_sk(req), NULL);
 758	/* before letting lookups find us, make sure all req fields
 759	 * are committed to memory and refcnt initialized.
 760	 */
 761	smp_wmb();
 762	refcount_set(&req->rsk_refcnt, 2 + 1);
 763}
 764
 765void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
 766				   unsigned long timeout)
 767{
 768	reqsk_queue_hash_req(req, timeout);
 769	inet_csk_reqsk_queue_added(sk);
 770}
 771EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
 772
 
 
 
 
 
 
 
 
 
 
 
 
 773/**
 774 *	inet_csk_clone_lock - clone an inet socket, and lock its clone
 775 *	@sk: the socket to clone
 776 *	@req: request_sock
 777 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
 778 *
 779 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
 780 */
 781struct sock *inet_csk_clone_lock(const struct sock *sk,
 782				 const struct request_sock *req,
 783				 const gfp_t priority)
 784{
 785	struct sock *newsk = sk_clone_lock(sk, priority);
 786
 787	if (newsk) {
 788		struct inet_connection_sock *newicsk = inet_csk(newsk);
 789
 790		inet_sk_set_state(newsk, TCP_SYN_RECV);
 791		newicsk->icsk_bind_hash = NULL;
 
 792
 793		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
 794		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
 795		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
 796
 797		/* listeners have SOCK_RCU_FREE, not the children */
 798		sock_reset_flag(newsk, SOCK_RCU_FREE);
 799
 800		inet_sk(newsk)->mc_list = NULL;
 801
 802		newsk->sk_mark = inet_rsk(req)->ir_mark;
 803		atomic64_set(&newsk->sk_cookie,
 804			     atomic64_read(&inet_rsk(req)->ir_cookie));
 805
 806		newicsk->icsk_retransmits = 0;
 807		newicsk->icsk_backoff	  = 0;
 808		newicsk->icsk_probes_out  = 0;
 
 809
 810		/* Deinitialize accept_queue to trap illegal accesses. */
 811		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
 812
 
 
 813		security_inet_csk_clone(newsk, req);
 814	}
 815	return newsk;
 816}
 817EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
 818
 819/*
 820 * At this point, there should be no process reference to this
 821 * socket, and thus no user references at all.  Therefore we
 822 * can assume the socket waitqueue is inactive and nobody will
 823 * try to jump onto it.
 824 */
 825void inet_csk_destroy_sock(struct sock *sk)
 826{
 827	WARN_ON(sk->sk_state != TCP_CLOSE);
 828	WARN_ON(!sock_flag(sk, SOCK_DEAD));
 829
 830	/* It cannot be in hash table! */
 831	WARN_ON(!sk_unhashed(sk));
 832
 833	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
 834	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
 835
 836	sk->sk_prot->destroy(sk);
 837
 838	sk_stream_kill_queues(sk);
 839
 840	xfrm_sk_free_policy(sk);
 841
 842	sk_refcnt_debug_release(sk);
 843
 844	percpu_counter_dec(sk->sk_prot->orphan_count);
 845
 846	sock_put(sk);
 847}
 848EXPORT_SYMBOL(inet_csk_destroy_sock);
 849
 850/* This function allows to force a closure of a socket after the call to
 851 * tcp/dccp_create_openreq_child().
 852 */
 853void inet_csk_prepare_forced_close(struct sock *sk)
 854	__releases(&sk->sk_lock.slock)
 855{
 856	/* sk_clone_lock locked the socket and set refcnt to 2 */
 857	bh_unlock_sock(sk);
 858	sock_put(sk);
 859
 860	/* The below has to be done to allow calling inet_csk_destroy_sock */
 861	sock_set_flag(sk, SOCK_DEAD);
 862	percpu_counter_inc(sk->sk_prot->orphan_count);
 863	inet_sk(sk)->inet_num = 0;
 864}
 865EXPORT_SYMBOL(inet_csk_prepare_forced_close);
 866
 867int inet_csk_listen_start(struct sock *sk, int backlog)
 
 
 
 
 
 
 
 
 
 
 868{
 869	struct inet_connection_sock *icsk = inet_csk(sk);
 870	struct inet_sock *inet = inet_sk(sk);
 871	int err = -EADDRINUSE;
 
 
 
 
 872
 873	reqsk_queue_alloc(&icsk->icsk_accept_queue);
 874
 875	sk->sk_ack_backlog = 0;
 876	inet_csk_delack_init(sk);
 877
 878	/* There is race window here: we announce ourselves listening,
 879	 * but this transition is still not validated by get_port().
 880	 * It is OK, because this socket enters to hash table only
 881	 * after validation is complete.
 882	 */
 883	inet_sk_state_store(sk, TCP_LISTEN);
 884	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
 
 885		inet->inet_sport = htons(inet->inet_num);
 886
 887		sk_dst_reset(sk);
 888		err = sk->sk_prot->hash(sk);
 889
 890		if (likely(!err))
 891			return 0;
 892	}
 893
 894	inet_sk_set_state(sk, TCP_CLOSE);
 895	return err;
 896}
 897EXPORT_SYMBOL_GPL(inet_csk_listen_start);
 898
 899static void inet_child_forget(struct sock *sk, struct request_sock *req,
 900			      struct sock *child)
 901{
 902	sk->sk_prot->disconnect(child, O_NONBLOCK);
 903
 904	sock_orphan(child);
 905
 906	percpu_counter_inc(sk->sk_prot->orphan_count);
 907
 908	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
 909		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
 910		BUG_ON(sk != req->rsk_listener);
 911
 912		/* Paranoid, to prevent race condition if
 913		 * an inbound pkt destined for child is
 914		 * blocked by sock lock in tcp_v4_rcv().
 915		 * Also to satisfy an assertion in
 916		 * tcp_v4_destroy_sock().
 917		 */
 918		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
 919	}
 920	inet_csk_destroy_sock(child);
 921}
 922
 923struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
 924				      struct request_sock *req,
 925				      struct sock *child)
 926{
 927	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
 928
 929	spin_lock(&queue->rskq_lock);
 930	if (unlikely(sk->sk_state != TCP_LISTEN)) {
 931		inet_child_forget(sk, req, child);
 932		child = NULL;
 933	} else {
 934		req->sk = child;
 935		req->dl_next = NULL;
 936		if (queue->rskq_accept_head == NULL)
 937			WRITE_ONCE(queue->rskq_accept_head, req);
 938		else
 939			queue->rskq_accept_tail->dl_next = req;
 940		queue->rskq_accept_tail = req;
 941		sk_acceptq_added(sk);
 942	}
 943	spin_unlock(&queue->rskq_lock);
 944	return child;
 945}
 946EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
 947
 948struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
 949					 struct request_sock *req, bool own_req)
 950{
 951	if (own_req) {
 952		inet_csk_reqsk_queue_drop(sk, req);
 953		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
 954		if (inet_csk_reqsk_queue_add(sk, req, child))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955			return child;
 
 956	}
 957	/* Too bad, another child took ownership of the request, undo. */
 
 958	bh_unlock_sock(child);
 959	sock_put(child);
 960	return NULL;
 961}
 962EXPORT_SYMBOL(inet_csk_complete_hashdance);
 963
 964/*
 965 *	This routine closes sockets which have been at least partially
 966 *	opened, but not yet accepted.
 967 */
 968void inet_csk_listen_stop(struct sock *sk)
 969{
 970	struct inet_connection_sock *icsk = inet_csk(sk);
 971	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
 972	struct request_sock *next, *req;
 973
 974	/* Following specs, it would be better either to send FIN
 975	 * (and enter FIN-WAIT-1, it is normal close)
 976	 * or to send active reset (abort).
 977	 * Certainly, it is pretty dangerous while synflood, but it is
 978	 * bad justification for our negligence 8)
 979	 * To be honest, we are not able to make either
 980	 * of the variants now.			--ANK
 981	 */
 982	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
 983		struct sock *child = req->sk;
 
 984
 985		local_bh_disable();
 986		bh_lock_sock(child);
 987		WARN_ON(sock_owned_by_user(child));
 988		sock_hold(child);
 989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990		inet_child_forget(sk, req, child);
 
 991		reqsk_put(req);
 992		bh_unlock_sock(child);
 993		local_bh_enable();
 994		sock_put(child);
 995
 996		cond_resched();
 997	}
 998	if (queue->fastopenq.rskq_rst_head) {
 999		/* Free all the reqs queued in rskq_rst_head. */
1000		spin_lock_bh(&queue->fastopenq.lock);
1001		req = queue->fastopenq.rskq_rst_head;
1002		queue->fastopenq.rskq_rst_head = NULL;
1003		spin_unlock_bh(&queue->fastopenq.lock);
1004		while (req != NULL) {
1005			next = req->dl_next;
1006			reqsk_put(req);
1007			req = next;
1008		}
1009	}
1010	WARN_ON_ONCE(sk->sk_ack_backlog);
1011}
1012EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1013
1014void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1015{
1016	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1017	const struct inet_sock *inet = inet_sk(sk);
1018
1019	sin->sin_family		= AF_INET;
1020	sin->sin_addr.s_addr	= inet->inet_daddr;
1021	sin->sin_port		= inet->inet_dport;
1022}
1023EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1024
1025#ifdef CONFIG_COMPAT
1026int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1027			       char __user *optval, int __user *optlen)
1028{
1029	const struct inet_connection_sock *icsk = inet_csk(sk);
1030
1031	if (icsk->icsk_af_ops->compat_getsockopt)
1032		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1033							    optval, optlen);
1034	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1035					     optval, optlen);
1036}
1037EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1038
1039int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1040			       char __user *optval, unsigned int optlen)
1041{
1042	const struct inet_connection_sock *icsk = inet_csk(sk);
1043
1044	if (icsk->icsk_af_ops->compat_setsockopt)
1045		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1046							    optval, optlen);
1047	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1048					     optval, optlen);
1049}
1050EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1051#endif
1052
1053static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1054{
1055	const struct inet_sock *inet = inet_sk(sk);
1056	const struct ip_options_rcu *inet_opt;
1057	__be32 daddr = inet->inet_daddr;
1058	struct flowi4 *fl4;
1059	struct rtable *rt;
1060
1061	rcu_read_lock();
1062	inet_opt = rcu_dereference(inet->inet_opt);
1063	if (inet_opt && inet_opt->opt.srr)
1064		daddr = inet_opt->opt.faddr;
1065	fl4 = &fl->u.ip4;
1066	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1067				   inet->inet_saddr, inet->inet_dport,
1068				   inet->inet_sport, sk->sk_protocol,
1069				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1070	if (IS_ERR(rt))
1071		rt = NULL;
1072	if (rt)
1073		sk_setup_caps(sk, &rt->dst);
1074	rcu_read_unlock();
1075
1076	return &rt->dst;
1077}
1078
1079struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1080{
1081	struct dst_entry *dst = __sk_dst_check(sk, 0);
1082	struct inet_sock *inet = inet_sk(sk);
1083
1084	if (!dst) {
1085		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1086		if (!dst)
1087			goto out;
1088	}
1089	dst->ops->update_pmtu(dst, sk, NULL, mtu);
1090
1091	dst = __sk_dst_check(sk, 0);
1092	if (!dst)
1093		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1094out:
1095	return dst;
1096}
1097EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Support for INET connection oriented protocols.
   8 *
   9 * Authors:	See the TCP sources
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/jhash.h>
  14
  15#include <net/inet_connection_sock.h>
  16#include <net/inet_hashtables.h>
  17#include <net/inet_timewait_sock.h>
  18#include <net/ip.h>
  19#include <net/route.h>
  20#include <net/tcp_states.h>
  21#include <net/xfrm.h>
  22#include <net/tcp.h>
  23#include <net/sock_reuseport.h>
  24#include <net/addrconf.h>
  25
  26#if IS_ENABLED(CONFIG_IPV6)
  27/* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
  28 *				if IPv6 only, and any IPv4 addresses
  29 *				if not IPv6 only
  30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
  31 *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
  32 *				and 0.0.0.0 equals to 0.0.0.0 only
  33 */
  34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
  35				 const struct in6_addr *sk2_rcv_saddr6,
  36				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  37				 bool sk1_ipv6only, bool sk2_ipv6only,
  38				 bool match_sk1_wildcard,
  39				 bool match_sk2_wildcard)
  40{
  41	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
  42	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  43
  44	/* if both are mapped, treat as IPv4 */
  45	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
  46		if (!sk2_ipv6only) {
  47			if (sk1_rcv_saddr == sk2_rcv_saddr)
  48				return true;
  49			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
  50				(match_sk2_wildcard && !sk2_rcv_saddr);
  51		}
  52		return false;
  53	}
  54
  55	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
  56		return true;
  57
  58	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
  59	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  60		return true;
  61
  62	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
  63	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  64		return true;
  65
  66	if (sk2_rcv_saddr6 &&
  67	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
  68		return true;
  69
  70	return false;
  71}
  72#endif
  73
  74/* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
  75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
  76 *				0.0.0.0 only equals to 0.0.0.0
  77 */
  78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  79				 bool sk2_ipv6only, bool match_sk1_wildcard,
  80				 bool match_sk2_wildcard)
  81{
  82	if (!sk2_ipv6only) {
  83		if (sk1_rcv_saddr == sk2_rcv_saddr)
  84			return true;
  85		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
  86			(match_sk2_wildcard && !sk2_rcv_saddr);
  87	}
  88	return false;
  89}
  90
  91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
  92			  bool match_wildcard)
  93{
  94#if IS_ENABLED(CONFIG_IPV6)
  95	if (sk->sk_family == AF_INET6)
  96		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
  97					    inet6_rcv_saddr(sk2),
  98					    sk->sk_rcv_saddr,
  99					    sk2->sk_rcv_saddr,
 100					    ipv6_only_sock(sk),
 101					    ipv6_only_sock(sk2),
 102					    match_wildcard,
 103					    match_wildcard);
 104#endif
 105	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
 106				    ipv6_only_sock(sk2), match_wildcard,
 107				    match_wildcard);
 108}
 109EXPORT_SYMBOL(inet_rcv_saddr_equal);
 110
 111bool inet_rcv_saddr_any(const struct sock *sk)
 112{
 113#if IS_ENABLED(CONFIG_IPV6)
 114	if (sk->sk_family == AF_INET6)
 115		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
 116#endif
 117	return !sk->sk_rcv_saddr;
 118}
 119
 120void inet_get_local_port_range(struct net *net, int *low, int *high)
 121{
 122	unsigned int seq;
 123
 124	do {
 125		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
 126
 127		*low = net->ipv4.ip_local_ports.range[0];
 128		*high = net->ipv4.ip_local_ports.range[1];
 129	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
 130}
 131EXPORT_SYMBOL(inet_get_local_port_range);
 132
 133static bool inet_use_bhash2_on_bind(const struct sock *sk)
 134{
 135#if IS_ENABLED(CONFIG_IPV6)
 136	if (sk->sk_family == AF_INET6) {
 137		int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
 138
 139		return addr_type != IPV6_ADDR_ANY &&
 140			addr_type != IPV6_ADDR_MAPPED;
 141	}
 142#endif
 143	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
 144}
 145
 146static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
 147			       kuid_t sk_uid, bool relax,
 148			       bool reuseport_cb_ok, bool reuseport_ok)
 149{
 150	int bound_dev_if2;
 151
 152	if (sk == sk2)
 153		return false;
 154
 155	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
 156
 157	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
 158	    sk->sk_bound_dev_if == bound_dev_if2) {
 159		if (sk->sk_reuse && sk2->sk_reuse &&
 160		    sk2->sk_state != TCP_LISTEN) {
 161			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
 162				       sk2->sk_reuseport && reuseport_cb_ok &&
 163				       (sk2->sk_state == TCP_TIME_WAIT ||
 164					uid_eq(sk_uid, sock_i_uid(sk2)))))
 165				return true;
 166		} else if (!reuseport_ok || !sk->sk_reuseport ||
 167			   !sk2->sk_reuseport || !reuseport_cb_ok ||
 168			   (sk2->sk_state != TCP_TIME_WAIT &&
 169			    !uid_eq(sk_uid, sock_i_uid(sk2)))) {
 170			return true;
 171		}
 172	}
 173	return false;
 174}
 175
 176static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
 177				   kuid_t sk_uid, bool relax,
 178				   bool reuseport_cb_ok, bool reuseport_ok)
 179{
 180	if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
 181		return false;
 182
 183	return inet_bind_conflict(sk, sk2, sk_uid, relax,
 184				  reuseport_cb_ok, reuseport_ok);
 185}
 186
 187static bool inet_bhash2_conflict(const struct sock *sk,
 188				 const struct inet_bind2_bucket *tb2,
 189				 kuid_t sk_uid,
 190				 bool relax, bool reuseport_cb_ok,
 191				 bool reuseport_ok)
 192{
 193	struct inet_timewait_sock *tw2;
 194	struct sock *sk2;
 195
 196	sk_for_each_bound_bhash2(sk2, &tb2->owners) {
 197		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
 198					   reuseport_cb_ok, reuseport_ok))
 199			return true;
 200	}
 201
 202	twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
 203		sk2 = (struct sock *)tw2;
 204
 205		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
 206					   reuseport_cb_ok, reuseport_ok))
 207			return true;
 208	}
 209
 210	return false;
 211}
 212
 213/* This should be called only when the tb and tb2 hashbuckets' locks are held */
 214static int inet_csk_bind_conflict(const struct sock *sk,
 215				  const struct inet_bind_bucket *tb,
 216				  const struct inet_bind2_bucket *tb2, /* may be null */
 217				  bool relax, bool reuseport_ok)
 218{
 219	bool reuseport_cb_ok;
 220	struct sock_reuseport *reuseport_cb;
 
 221	kuid_t uid = sock_i_uid((struct sock *)sk);
 222
 223	rcu_read_lock();
 224	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
 225	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
 226	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
 227	rcu_read_unlock();
 228
 229	/*
 230	 * Unlike other sk lookup places we do not check
 231	 * for sk_net here, since _all_ the socks listed
 232	 * in tb->owners and tb2->owners list belong
 233	 * to the same net - the one this bucket belongs to.
 234	 */
 235
 236	if (!inet_use_bhash2_on_bind(sk)) {
 237		struct sock *sk2;
 238
 239		sk_for_each_bound(sk2, &tb->owners)
 240			if (inet_bind_conflict(sk, sk2, uid, relax,
 241					       reuseport_cb_ok, reuseport_ok) &&
 242			    inet_rcv_saddr_equal(sk, sk2, true))
 243				return true;
 244
 245		return false;
 246	}
 247
 248	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
 249	 * ipv4) should have been checked already. We need to do these two
 250	 * checks separately because their spinlocks have to be acquired/released
 251	 * independently of each other, to prevent possible deadlocks
 252	 */
 253	return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
 254					   reuseport_ok);
 255}
 256
 257/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
 258 * INADDR_ANY (if ipv4) socket.
 259 *
 260 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
 261 * against concurrent binds on the port for addr any
 262 */
 263static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
 264					  bool relax, bool reuseport_ok)
 265{
 266	kuid_t uid = sock_i_uid((struct sock *)sk);
 267	const struct net *net = sock_net(sk);
 268	struct sock_reuseport *reuseport_cb;
 269	struct inet_bind_hashbucket *head2;
 270	struct inet_bind2_bucket *tb2;
 271	bool reuseport_cb_ok;
 272
 273	rcu_read_lock();
 274	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
 275	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
 276	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
 277	rcu_read_unlock();
 278
 279	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
 280
 281	spin_lock(&head2->lock);
 282
 283	inet_bind_bucket_for_each(tb2, &head2->chain)
 284		if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
 285			break;
 286
 287	if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
 288					reuseport_ok)) {
 289		spin_unlock(&head2->lock);
 290		return true;
 291	}
 292
 293	spin_unlock(&head2->lock);
 294	return false;
 295}
 296
 297/*
 298 * Find an open port number for the socket.  Returns with the
 299 * inet_bind_hashbucket locks held if successful.
 300 */
 301static struct inet_bind_hashbucket *
 302inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
 303			struct inet_bind2_bucket **tb2_ret,
 304			struct inet_bind_hashbucket **head2_ret, int *port_ret)
 305{
 306	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
 307	int i, low, high, attempt_half, port, l3mdev;
 308	struct inet_bind_hashbucket *head, *head2;
 309	struct net *net = sock_net(sk);
 310	struct inet_bind2_bucket *tb2;
 311	struct inet_bind_bucket *tb;
 312	u32 remaining, offset;
 313	bool relax = false;
 314
 315	l3mdev = inet_sk_bound_l3mdev(sk);
 316ports_exhausted:
 317	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
 318other_half_scan:
 319	inet_get_local_port_range(net, &low, &high);
 320	high++; /* [32768, 60999] -> [32768, 61000[ */
 321	if (high - low < 4)
 322		attempt_half = 0;
 323	if (attempt_half) {
 324		int half = low + (((high - low) >> 2) << 1);
 325
 326		if (attempt_half == 1)
 327			high = half;
 328		else
 329			low = half;
 330	}
 331	remaining = high - low;
 332	if (likely(remaining > 1))
 333		remaining &= ~1U;
 334
 335	offset = get_random_u32_below(remaining);
 336	/* __inet_hash_connect() favors ports having @low parity
 337	 * We do the opposite to not pollute connect() users.
 338	 */
 339	offset |= 1U;
 340
 341other_parity_scan:
 342	port = low + offset;
 343	for (i = 0; i < remaining; i += 2, port += 2) {
 344		if (unlikely(port >= high))
 345			port -= remaining;
 346		if (inet_is_local_reserved_port(net, port))
 347			continue;
 348		head = &hinfo->bhash[inet_bhashfn(net, port,
 349						  hinfo->bhash_size)];
 350		spin_lock_bh(&head->lock);
 351		if (inet_use_bhash2_on_bind(sk)) {
 352			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
 353				goto next_port;
 354		}
 355
 356		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
 357		spin_lock(&head2->lock);
 358		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
 359		inet_bind_bucket_for_each(tb, &head->chain)
 360			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
 361				if (!inet_csk_bind_conflict(sk, tb, tb2,
 362							    relax, false))
 363					goto success;
 364				spin_unlock(&head2->lock);
 365				goto next_port;
 366			}
 367		tb = NULL;
 368		goto success;
 369next_port:
 370		spin_unlock_bh(&head->lock);
 371		cond_resched();
 372	}
 373
 374	offset--;
 375	if (!(offset & 1))
 376		goto other_parity_scan;
 377
 378	if (attempt_half == 1) {
 379		/* OK we now try the upper half of the range */
 380		attempt_half = 2;
 381		goto other_half_scan;
 382	}
 383
 384	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
 385		/* We still have a chance to connect to different destinations */
 386		relax = true;
 387		goto ports_exhausted;
 388	}
 389	return NULL;
 390success:
 391	*port_ret = port;
 392	*tb_ret = tb;
 393	*tb2_ret = tb2;
 394	*head2_ret = head2;
 395	return head;
 396}
 397
 398static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
 399				     struct sock *sk)
 400{
 401	kuid_t uid = sock_i_uid(sk);
 402
 403	if (tb->fastreuseport <= 0)
 404		return 0;
 405	if (!sk->sk_reuseport)
 406		return 0;
 407	if (rcu_access_pointer(sk->sk_reuseport_cb))
 408		return 0;
 409	if (!uid_eq(tb->fastuid, uid))
 410		return 0;
 411	/* We only need to check the rcv_saddr if this tb was once marked
 412	 * without fastreuseport and then was reset, as we can only know that
 413	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
 414	 * owners list.
 415	 */
 416	if (tb->fastreuseport == FASTREUSEPORT_ANY)
 417		return 1;
 418#if IS_ENABLED(CONFIG_IPV6)
 419	if (tb->fast_sk_family == AF_INET6)
 420		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
 421					    inet6_rcv_saddr(sk),
 422					    tb->fast_rcv_saddr,
 423					    sk->sk_rcv_saddr,
 424					    tb->fast_ipv6_only,
 425					    ipv6_only_sock(sk), true, false);
 426#endif
 427	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
 428				    ipv6_only_sock(sk), true, false);
 429}
 430
 431void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
 432			       struct sock *sk)
 
 
 
 433{
 
 
 
 
 
 
 434	kuid_t uid = sock_i_uid(sk);
 435	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436
 
 
 
 
 
 
 
 437	if (hlist_empty(&tb->owners)) {
 438		tb->fastreuse = reuse;
 439		if (sk->sk_reuseport) {
 440			tb->fastreuseport = FASTREUSEPORT_ANY;
 441			tb->fastuid = uid;
 442			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 443			tb->fast_ipv6_only = ipv6_only_sock(sk);
 444			tb->fast_sk_family = sk->sk_family;
 445#if IS_ENABLED(CONFIG_IPV6)
 446			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 447#endif
 448		} else {
 449			tb->fastreuseport = 0;
 450		}
 451	} else {
 452		if (!reuse)
 453			tb->fastreuse = 0;
 454		if (sk->sk_reuseport) {
 455			/* We didn't match or we don't have fastreuseport set on
 456			 * the tb, but we have sk_reuseport set on this socket
 457			 * and we know that there are no bind conflicts with
 458			 * this socket in this tb, so reset our tb's reuseport
 459			 * settings so that any subsequent sockets that match
 460			 * our current socket will be put on the fast path.
 461			 *
 462			 * If we reset we need to set FASTREUSEPORT_STRICT so we
 463			 * do extra checking for all subsequent sk_reuseport
 464			 * socks.
 465			 */
 466			if (!sk_reuseport_match(tb, sk)) {
 467				tb->fastreuseport = FASTREUSEPORT_STRICT;
 468				tb->fastuid = uid;
 469				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 470				tb->fast_ipv6_only = ipv6_only_sock(sk);
 471				tb->fast_sk_family = sk->sk_family;
 472#if IS_ENABLED(CONFIG_IPV6)
 473				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 474#endif
 475			}
 476		} else {
 477			tb->fastreuseport = 0;
 478		}
 479	}
 480}
 481
 482/* Obtain a reference to a local port for the given sock,
 483 * if snum is zero it means select any available local port.
 484 * We try to allocate an odd port (and leave even ports for connect())
 485 */
 486int inet_csk_get_port(struct sock *sk, unsigned short snum)
 487{
 488	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
 489	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
 490	bool found_port = false, check_bind_conflict = true;
 491	bool bhash_created = false, bhash2_created = false;
 492	int ret = -EADDRINUSE, port = snum, l3mdev;
 493	struct inet_bind_hashbucket *head, *head2;
 494	struct inet_bind2_bucket *tb2 = NULL;
 495	struct inet_bind_bucket *tb = NULL;
 496	bool head2_lock_acquired = false;
 497	struct net *net = sock_net(sk);
 498
 499	l3mdev = inet_sk_bound_l3mdev(sk);
 500
 501	if (!port) {
 502		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
 503		if (!head)
 504			return ret;
 505
 506		head2_lock_acquired = true;
 507
 508		if (tb && tb2)
 509			goto success;
 510		found_port = true;
 511	} else {
 512		head = &hinfo->bhash[inet_bhashfn(net, port,
 513						  hinfo->bhash_size)];
 514		spin_lock_bh(&head->lock);
 515		inet_bind_bucket_for_each(tb, &head->chain)
 516			if (inet_bind_bucket_match(tb, net, port, l3mdev))
 517				break;
 518	}
 519
 520	if (!tb) {
 521		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
 522					     head, port, l3mdev);
 523		if (!tb)
 524			goto fail_unlock;
 525		bhash_created = true;
 526	}
 527
 528	if (!found_port) {
 529		if (!hlist_empty(&tb->owners)) {
 530			if (sk->sk_reuse == SK_FORCE_REUSE ||
 531			    (tb->fastreuse > 0 && reuse) ||
 532			    sk_reuseport_match(tb, sk))
 533				check_bind_conflict = false;
 534		}
 535
 536		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
 537			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
 538				goto fail_unlock;
 539		}
 540
 541		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
 542		spin_lock(&head2->lock);
 543		head2_lock_acquired = true;
 544		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
 545	}
 546
 547	if (!tb2) {
 548		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
 549					       net, head2, port, l3mdev, sk);
 550		if (!tb2)
 551			goto fail_unlock;
 552		bhash2_created = true;
 553	}
 554
 555	if (!found_port && check_bind_conflict) {
 556		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
 557			goto fail_unlock;
 558	}
 559
 560success:
 561	inet_csk_update_fastreuse(tb, sk);
 562
 563	if (!inet_csk(sk)->icsk_bind_hash)
 564		inet_bind_hash(sk, tb, tb2, port);
 565	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
 566	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
 567	ret = 0;
 568
 569fail_unlock:
 570	if (ret) {
 571		if (bhash_created)
 572			inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
 573		if (bhash2_created)
 574			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
 575						  tb2);
 576	}
 577	if (head2_lock_acquired)
 578		spin_unlock(&head2->lock);
 579	spin_unlock_bh(&head->lock);
 580	return ret;
 581}
 582EXPORT_SYMBOL_GPL(inet_csk_get_port);
 583
 584/*
 585 * Wait for an incoming connection, avoid race conditions. This must be called
 586 * with the socket locked.
 587 */
 588static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
 589{
 590	struct inet_connection_sock *icsk = inet_csk(sk);
 591	DEFINE_WAIT(wait);
 592	int err;
 593
 594	/*
 595	 * True wake-one mechanism for incoming connections: only
 596	 * one process gets woken up, not the 'whole herd'.
 597	 * Since we do not 'race & poll' for established sockets
 598	 * anymore, the common case will execute the loop only once.
 599	 *
 600	 * Subtle issue: "add_wait_queue_exclusive()" will be added
 601	 * after any current non-exclusive waiters, and we know that
 602	 * it will always _stay_ after any new non-exclusive waiters
 603	 * because all non-exclusive waiters are added at the
 604	 * beginning of the wait-queue. As such, it's ok to "drop"
 605	 * our exclusiveness temporarily when we get woken up without
 606	 * having to remove and re-insert us on the wait queue.
 607	 */
 608	for (;;) {
 609		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
 610					  TASK_INTERRUPTIBLE);
 611		release_sock(sk);
 612		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
 613			timeo = schedule_timeout(timeo);
 614		sched_annotate_sleep();
 615		lock_sock(sk);
 616		err = 0;
 617		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
 618			break;
 619		err = -EINVAL;
 620		if (sk->sk_state != TCP_LISTEN)
 621			break;
 622		err = sock_intr_errno(timeo);
 623		if (signal_pending(current))
 624			break;
 625		err = -EAGAIN;
 626		if (!timeo)
 627			break;
 628	}
 629	finish_wait(sk_sleep(sk), &wait);
 630	return err;
 631}
 632
 633/*
 634 * This will accept the next outstanding connection.
 635 */
 636struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
 637{
 638	struct inet_connection_sock *icsk = inet_csk(sk);
 639	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
 640	struct request_sock *req;
 641	struct sock *newsk;
 642	int error;
 643
 644	lock_sock(sk);
 645
 646	/* We need to make sure that this socket is listening,
 647	 * and that it has something pending.
 648	 */
 649	error = -EINVAL;
 650	if (sk->sk_state != TCP_LISTEN)
 651		goto out_err;
 652
 653	/* Find already established connection */
 654	if (reqsk_queue_empty(queue)) {
 655		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
 656
 657		/* If this is a non blocking socket don't sleep */
 658		error = -EAGAIN;
 659		if (!timeo)
 660			goto out_err;
 661
 662		error = inet_csk_wait_for_connect(sk, timeo);
 663		if (error)
 664			goto out_err;
 665	}
 666	req = reqsk_queue_remove(queue, sk);
 667	newsk = req->sk;
 668
 669	if (sk->sk_protocol == IPPROTO_TCP &&
 670	    tcp_rsk(req)->tfo_listener) {
 671		spin_lock_bh(&queue->fastopenq.lock);
 672		if (tcp_rsk(req)->tfo_listener) {
 673			/* We are still waiting for the final ACK from 3WHS
 674			 * so can't free req now. Instead, we set req->sk to
 675			 * NULL to signify that the child socket is taken
 676			 * so reqsk_fastopen_remove() will free the req
 677			 * when 3WHS finishes (or is aborted).
 678			 */
 679			req->sk = NULL;
 680			req = NULL;
 681		}
 682		spin_unlock_bh(&queue->fastopenq.lock);
 683	}
 684
 685out:
 686	release_sock(sk);
 687	if (newsk && mem_cgroup_sockets_enabled) {
 688		int amt;
 689
 690		/* atomically get the memory usage, set and charge the
 691		 * newsk->sk_memcg.
 692		 */
 693		lock_sock(newsk);
 694
 695		/* The socket has not been accepted yet, no need to look at
 696		 * newsk->sk_wmem_queued.
 697		 */
 698		amt = sk_mem_pages(newsk->sk_forward_alloc +
 699				   atomic_read(&newsk->sk_rmem_alloc));
 700		mem_cgroup_sk_alloc(newsk);
 701		if (newsk->sk_memcg && amt)
 702			mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
 703						GFP_KERNEL | __GFP_NOFAIL);
 704
 705		release_sock(newsk);
 706	}
 707	if (req)
 708		reqsk_put(req);
 709	return newsk;
 710out_err:
 711	newsk = NULL;
 712	req = NULL;
 713	*err = error;
 714	goto out;
 715}
 716EXPORT_SYMBOL(inet_csk_accept);
 717
 718/*
 719 * Using different timers for retransmit, delayed acks and probes
 720 * We may wish use just one timer maintaining a list of expire jiffies
 721 * to optimize.
 722 */
 723void inet_csk_init_xmit_timers(struct sock *sk,
 724			       void (*retransmit_handler)(struct timer_list *t),
 725			       void (*delack_handler)(struct timer_list *t),
 726			       void (*keepalive_handler)(struct timer_list *t))
 727{
 728	struct inet_connection_sock *icsk = inet_csk(sk);
 729
 730	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
 731	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
 732	timer_setup(&sk->sk_timer, keepalive_handler, 0);
 733	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 734}
 735EXPORT_SYMBOL(inet_csk_init_xmit_timers);
 736
 737void inet_csk_clear_xmit_timers(struct sock *sk)
 738{
 739	struct inet_connection_sock *icsk = inet_csk(sk);
 740
 741	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 742
 743	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
 744	sk_stop_timer(sk, &icsk->icsk_delack_timer);
 745	sk_stop_timer(sk, &sk->sk_timer);
 746}
 747EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
 748
 749void inet_csk_delete_keepalive_timer(struct sock *sk)
 750{
 751	sk_stop_timer(sk, &sk->sk_timer);
 752}
 753EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
 754
 755void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
 756{
 757	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
 758}
 759EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
 760
 761struct dst_entry *inet_csk_route_req(const struct sock *sk,
 762				     struct flowi4 *fl4,
 763				     const struct request_sock *req)
 764{
 765	const struct inet_request_sock *ireq = inet_rsk(req);
 766	struct net *net = read_pnet(&ireq->ireq_net);
 767	struct ip_options_rcu *opt;
 768	struct rtable *rt;
 769
 770	rcu_read_lock();
 771	opt = rcu_dereference(ireq->ireq_opt);
 772
 773	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 774			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
 775			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 776			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 777			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 778			   htons(ireq->ir_num), sk->sk_uid);
 779	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
 780	rt = ip_route_output_flow(net, fl4, sk);
 781	if (IS_ERR(rt))
 782		goto no_route;
 783	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 784		goto route_err;
 785	rcu_read_unlock();
 786	return &rt->dst;
 787
 788route_err:
 789	ip_rt_put(rt);
 790no_route:
 791	rcu_read_unlock();
 792	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 793	return NULL;
 794}
 795EXPORT_SYMBOL_GPL(inet_csk_route_req);
 796
 797struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
 798					    struct sock *newsk,
 799					    const struct request_sock *req)
 800{
 801	const struct inet_request_sock *ireq = inet_rsk(req);
 802	struct net *net = read_pnet(&ireq->ireq_net);
 803	struct inet_sock *newinet = inet_sk(newsk);
 804	struct ip_options_rcu *opt;
 805	struct flowi4 *fl4;
 806	struct rtable *rt;
 807
 808	opt = rcu_dereference(ireq->ireq_opt);
 809	fl4 = &newinet->cork.fl.u.ip4;
 810
 811	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 812			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
 813			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 814			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 815			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 816			   htons(ireq->ir_num), sk->sk_uid);
 817	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
 818	rt = ip_route_output_flow(net, fl4, sk);
 819	if (IS_ERR(rt))
 820		goto no_route;
 821	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 822		goto route_err;
 823	return &rt->dst;
 824
 825route_err:
 826	ip_rt_put(rt);
 827no_route:
 828	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 829	return NULL;
 830}
 831EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
 832
 
 
 
 
 
 
 833/* Decide when to expire the request and when to resend SYN-ACK */
 834static void syn_ack_recalc(struct request_sock *req,
 835			   const int max_syn_ack_retries,
 836			   const u8 rskq_defer_accept,
 837			   int *expire, int *resend)
 838{
 839	if (!rskq_defer_accept) {
 840		*expire = req->num_timeout >= max_syn_ack_retries;
 841		*resend = 1;
 842		return;
 843	}
 844	*expire = req->num_timeout >= max_syn_ack_retries &&
 845		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
 846	/* Do not resend while waiting for data after ACK,
 
 847	 * start to resend on end of deferring period to give
 848	 * last chance for data or ACK to create established socket.
 849	 */
 850	*resend = !inet_rsk(req)->acked ||
 851		  req->num_timeout >= rskq_defer_accept - 1;
 852}
 853
 854int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
 855{
 856	int err = req->rsk_ops->rtx_syn_ack(parent, req);
 857
 858	if (!err)
 859		req->num_retrans++;
 860	return err;
 861}
 862EXPORT_SYMBOL(inet_rtx_syn_ack);
 863
 864static struct request_sock *inet_reqsk_clone(struct request_sock *req,
 865					     struct sock *sk)
 866{
 867	struct sock *req_sk, *nreq_sk;
 868	struct request_sock *nreq;
 869
 870	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
 871	if (!nreq) {
 872		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
 873
 874		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
 875		sock_put(sk);
 876		return NULL;
 877	}
 878
 879	req_sk = req_to_sk(req);
 880	nreq_sk = req_to_sk(nreq);
 881
 882	memcpy(nreq_sk, req_sk,
 883	       offsetof(struct sock, sk_dontcopy_begin));
 884	memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
 885	       req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
 886
 887	sk_node_init(&nreq_sk->sk_node);
 888	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
 889#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 890	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
 891#endif
 892	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
 893
 894	nreq->rsk_listener = sk;
 895
 896	/* We need not acquire fastopenq->lock
 897	 * because the child socket is locked in inet_csk_listen_stop().
 898	 */
 899	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
 900		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
 901
 902	return nreq;
 903}
 904
 905static void reqsk_queue_migrated(struct request_sock_queue *queue,
 906				 const struct request_sock *req)
 907{
 908	if (req->num_timeout == 0)
 909		atomic_inc(&queue->young);
 910	atomic_inc(&queue->qlen);
 911}
 912
 913static void reqsk_migrate_reset(struct request_sock *req)
 914{
 915	req->saved_syn = NULL;
 916#if IS_ENABLED(CONFIG_IPV6)
 917	inet_rsk(req)->ipv6_opt = NULL;
 918	inet_rsk(req)->pktopts = NULL;
 919#else
 920	inet_rsk(req)->ireq_opt = NULL;
 921#endif
 922}
 923
 924/* return true if req was found in the ehash table */
 925static bool reqsk_queue_unlink(struct request_sock *req)
 926{
 927	struct sock *sk = req_to_sk(req);
 928	bool found = false;
 929
 930	if (sk_hashed(sk)) {
 931		struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
 932		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
 933
 934		spin_lock(lock);
 935		found = __sk_nulls_del_node_init_rcu(sk);
 936		spin_unlock(lock);
 937	}
 938	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
 939		reqsk_put(req);
 940	return found;
 941}
 942
 943bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
 944{
 945	bool unlinked = reqsk_queue_unlink(req);
 946
 947	if (unlinked) {
 948		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
 949		reqsk_put(req);
 950	}
 951	return unlinked;
 952}
 953EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
 954
 955void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
 956{
 957	inet_csk_reqsk_queue_drop(sk, req);
 958	reqsk_put(req);
 959}
 960EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
 961
 962static void reqsk_timer_handler(struct timer_list *t)
 963{
 964	struct request_sock *req = from_timer(req, t, rsk_timer);
 965	struct request_sock *nreq = NULL, *oreq = req;
 966	struct sock *sk_listener = req->rsk_listener;
 967	struct inet_connection_sock *icsk;
 968	struct request_sock_queue *queue;
 969	struct net *net;
 970	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
 971
 972	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
 973		struct sock *nsk;
 974
 975		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
 976		if (!nsk)
 977			goto drop;
 978
 979		nreq = inet_reqsk_clone(req, nsk);
 980		if (!nreq)
 981			goto drop;
 982
 983		/* The new timer for the cloned req can decrease the 2
 984		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
 985		 * hold another count to prevent use-after-free and
 986		 * call reqsk_put() just before return.
 987		 */
 988		refcount_set(&nreq->rsk_refcnt, 2 + 1);
 989		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
 990		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
 991
 992		req = nreq;
 993		sk_listener = nsk;
 994	}
 995
 996	icsk = inet_csk(sk_listener);
 997	net = sock_net(sk_listener);
 998	max_syn_ack_retries = icsk->icsk_syn_retries ? :
 999		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1000	/* Normally all the openreqs are young and become mature
1001	 * (i.e. converted to established socket) for first timeout.
1002	 * If synack was not acknowledged for 1 second, it means
1003	 * one of the following things: synack was lost, ack was lost,
1004	 * rtt is high or nobody planned to ack (i.e. synflood).
1005	 * When server is a bit loaded, queue is populated with old
1006	 * open requests, reducing effective size of queue.
1007	 * When server is well loaded, queue size reduces to zero
1008	 * after several minutes of work. It is not synflood,
1009	 * it is normal operation. The solution is pruning
1010	 * too old entries overriding normal timeout, when
1011	 * situation becomes dangerous.
1012	 *
1013	 * Essentially, we reserve half of room for young
1014	 * embrions; and abort old ones without pity, if old
1015	 * ones are about to clog our table.
1016	 */
1017	queue = &icsk->icsk_accept_queue;
1018	qlen = reqsk_queue_len(queue);
1019	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1020		int young = reqsk_queue_len_young(queue) << 1;
1021
1022		while (max_syn_ack_retries > 2) {
1023			if (qlen < young)
1024				break;
1025			max_syn_ack_retries--;
1026			young <<= 1;
1027		}
1028	}
1029	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
 
 
 
1030		       &expire, &resend);
1031	req->rsk_ops->syn_ack_timeout(req);
1032	if (!expire &&
1033	    (!resend ||
1034	     !inet_rtx_syn_ack(sk_listener, req) ||
1035	     inet_rsk(req)->acked)) {
 
 
1036		if (req->num_timeout++ == 0)
1037			atomic_dec(&queue->young);
1038		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1039
1040		if (!nreq)
1041			return;
1042
1043		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1044			/* delete timer */
1045			inet_csk_reqsk_queue_drop(sk_listener, nreq);
1046			goto no_ownership;
1047		}
1048
1049		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1050		reqsk_migrate_reset(oreq);
1051		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1052		reqsk_put(oreq);
1053
1054		reqsk_put(nreq);
1055		return;
1056	}
1057
1058	/* Even if we can clone the req, we may need not retransmit any more
1059	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1060	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1061	 */
1062	if (nreq) {
1063		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1064no_ownership:
1065		reqsk_migrate_reset(nreq);
1066		reqsk_queue_removed(queue, nreq);
1067		__reqsk_free(nreq);
1068	}
1069
1070drop:
1071	inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1072}
1073
1074static void reqsk_queue_hash_req(struct request_sock *req,
1075				 unsigned long timeout)
1076{
1077	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1078	mod_timer(&req->rsk_timer, jiffies + timeout);
1079
1080	inet_ehash_insert(req_to_sk(req), NULL, NULL);
1081	/* before letting lookups find us, make sure all req fields
1082	 * are committed to memory and refcnt initialized.
1083	 */
1084	smp_wmb();
1085	refcount_set(&req->rsk_refcnt, 2 + 1);
1086}
1087
1088void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1089				   unsigned long timeout)
1090{
1091	reqsk_queue_hash_req(req, timeout);
1092	inet_csk_reqsk_queue_added(sk);
1093}
1094EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1095
1096static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1097			   const gfp_t priority)
1098{
1099	struct inet_connection_sock *icsk = inet_csk(newsk);
1100
1101	if (!icsk->icsk_ulp_ops)
1102		return;
1103
1104	if (icsk->icsk_ulp_ops->clone)
1105		icsk->icsk_ulp_ops->clone(req, newsk, priority);
1106}
1107
1108/**
1109 *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1110 *	@sk: the socket to clone
1111 *	@req: request_sock
1112 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1113 *
1114 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1115 */
1116struct sock *inet_csk_clone_lock(const struct sock *sk,
1117				 const struct request_sock *req,
1118				 const gfp_t priority)
1119{
1120	struct sock *newsk = sk_clone_lock(sk, priority);
1121
1122	if (newsk) {
1123		struct inet_connection_sock *newicsk = inet_csk(newsk);
1124
1125		inet_sk_set_state(newsk, TCP_SYN_RECV);
1126		newicsk->icsk_bind_hash = NULL;
1127		newicsk->icsk_bind2_hash = NULL;
1128
1129		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1130		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1131		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1132
1133		/* listeners have SOCK_RCU_FREE, not the children */
1134		sock_reset_flag(newsk, SOCK_RCU_FREE);
1135
1136		inet_sk(newsk)->mc_list = NULL;
1137
1138		newsk->sk_mark = inet_rsk(req)->ir_mark;
1139		atomic64_set(&newsk->sk_cookie,
1140			     atomic64_read(&inet_rsk(req)->ir_cookie));
1141
1142		newicsk->icsk_retransmits = 0;
1143		newicsk->icsk_backoff	  = 0;
1144		newicsk->icsk_probes_out  = 0;
1145		newicsk->icsk_probes_tstamp = 0;
1146
1147		/* Deinitialize accept_queue to trap illegal accesses. */
1148		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1149
1150		inet_clone_ulp(req, newsk, priority);
1151
1152		security_inet_csk_clone(newsk, req);
1153	}
1154	return newsk;
1155}
1156EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1157
1158/*
1159 * At this point, there should be no process reference to this
1160 * socket, and thus no user references at all.  Therefore we
1161 * can assume the socket waitqueue is inactive and nobody will
1162 * try to jump onto it.
1163 */
1164void inet_csk_destroy_sock(struct sock *sk)
1165{
1166	WARN_ON(sk->sk_state != TCP_CLOSE);
1167	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1168
1169	/* It cannot be in hash table! */
1170	WARN_ON(!sk_unhashed(sk));
1171
1172	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1173	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1174
1175	sk->sk_prot->destroy(sk);
1176
1177	sk_stream_kill_queues(sk);
1178
1179	xfrm_sk_free_policy(sk);
1180
1181	sk_refcnt_debug_release(sk);
1182
1183	this_cpu_dec(*sk->sk_prot->orphan_count);
1184
1185	sock_put(sk);
1186}
1187EXPORT_SYMBOL(inet_csk_destroy_sock);
1188
1189/* This function allows to force a closure of a socket after the call to
1190 * tcp/dccp_create_openreq_child().
1191 */
1192void inet_csk_prepare_forced_close(struct sock *sk)
1193	__releases(&sk->sk_lock.slock)
1194{
1195	/* sk_clone_lock locked the socket and set refcnt to 2 */
1196	bh_unlock_sock(sk);
1197	sock_put(sk);
1198	inet_csk_prepare_for_destroy_sock(sk);
 
 
 
1199	inet_sk(sk)->inet_num = 0;
1200}
1201EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1202
1203static int inet_ulp_can_listen(const struct sock *sk)
1204{
1205	const struct inet_connection_sock *icsk = inet_csk(sk);
1206
1207	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1208		return -EINVAL;
1209
1210	return 0;
1211}
1212
1213int inet_csk_listen_start(struct sock *sk)
1214{
1215	struct inet_connection_sock *icsk = inet_csk(sk);
1216	struct inet_sock *inet = inet_sk(sk);
1217	int err;
1218
1219	err = inet_ulp_can_listen(sk);
1220	if (unlikely(err))
1221		return err;
1222
1223	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1224
1225	sk->sk_ack_backlog = 0;
1226	inet_csk_delack_init(sk);
1227
1228	/* There is race window here: we announce ourselves listening,
1229	 * but this transition is still not validated by get_port().
1230	 * It is OK, because this socket enters to hash table only
1231	 * after validation is complete.
1232	 */
1233	inet_sk_state_store(sk, TCP_LISTEN);
1234	err = sk->sk_prot->get_port(sk, inet->inet_num);
1235	if (!err) {
1236		inet->inet_sport = htons(inet->inet_num);
1237
1238		sk_dst_reset(sk);
1239		err = sk->sk_prot->hash(sk);
1240
1241		if (likely(!err))
1242			return 0;
1243	}
1244
1245	inet_sk_set_state(sk, TCP_CLOSE);
1246	return err;
1247}
1248EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1249
1250static void inet_child_forget(struct sock *sk, struct request_sock *req,
1251			      struct sock *child)
1252{
1253	sk->sk_prot->disconnect(child, O_NONBLOCK);
1254
1255	sock_orphan(child);
1256
1257	this_cpu_inc(*sk->sk_prot->orphan_count);
1258
1259	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1260		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1261		BUG_ON(sk != req->rsk_listener);
1262
1263		/* Paranoid, to prevent race condition if
1264		 * an inbound pkt destined for child is
1265		 * blocked by sock lock in tcp_v4_rcv().
1266		 * Also to satisfy an assertion in
1267		 * tcp_v4_destroy_sock().
1268		 */
1269		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1270	}
1271	inet_csk_destroy_sock(child);
1272}
1273
1274struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1275				      struct request_sock *req,
1276				      struct sock *child)
1277{
1278	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1279
1280	spin_lock(&queue->rskq_lock);
1281	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1282		inet_child_forget(sk, req, child);
1283		child = NULL;
1284	} else {
1285		req->sk = child;
1286		req->dl_next = NULL;
1287		if (queue->rskq_accept_head == NULL)
1288			WRITE_ONCE(queue->rskq_accept_head, req);
1289		else
1290			queue->rskq_accept_tail->dl_next = req;
1291		queue->rskq_accept_tail = req;
1292		sk_acceptq_added(sk);
1293	}
1294	spin_unlock(&queue->rskq_lock);
1295	return child;
1296}
1297EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1298
1299struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1300					 struct request_sock *req, bool own_req)
1301{
1302	if (own_req) {
1303		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1304		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1305
1306		if (sk != req->rsk_listener) {
1307			/* another listening sk has been selected,
1308			 * migrate the req to it.
1309			 */
1310			struct request_sock *nreq;
1311
1312			/* hold a refcnt for the nreq->rsk_listener
1313			 * which is assigned in inet_reqsk_clone()
1314			 */
1315			sock_hold(sk);
1316			nreq = inet_reqsk_clone(req, sk);
1317			if (!nreq) {
1318				inet_child_forget(sk, req, child);
1319				goto child_put;
1320			}
1321
1322			refcount_set(&nreq->rsk_refcnt, 1);
1323			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1324				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1325				reqsk_migrate_reset(req);
1326				reqsk_put(req);
1327				return child;
1328			}
1329
1330			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1331			reqsk_migrate_reset(nreq);
1332			__reqsk_free(nreq);
1333		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1334			return child;
1335		}
1336	}
1337	/* Too bad, another child took ownership of the request, undo. */
1338child_put:
1339	bh_unlock_sock(child);
1340	sock_put(child);
1341	return NULL;
1342}
1343EXPORT_SYMBOL(inet_csk_complete_hashdance);
1344
1345/*
1346 *	This routine closes sockets which have been at least partially
1347 *	opened, but not yet accepted.
1348 */
1349void inet_csk_listen_stop(struct sock *sk)
1350{
1351	struct inet_connection_sock *icsk = inet_csk(sk);
1352	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1353	struct request_sock *next, *req;
1354
1355	/* Following specs, it would be better either to send FIN
1356	 * (and enter FIN-WAIT-1, it is normal close)
1357	 * or to send active reset (abort).
1358	 * Certainly, it is pretty dangerous while synflood, but it is
1359	 * bad justification for our negligence 8)
1360	 * To be honest, we are not able to make either
1361	 * of the variants now.			--ANK
1362	 */
1363	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1364		struct sock *child = req->sk, *nsk;
1365		struct request_sock *nreq;
1366
1367		local_bh_disable();
1368		bh_lock_sock(child);
1369		WARN_ON(sock_owned_by_user(child));
1370		sock_hold(child);
1371
1372		nsk = reuseport_migrate_sock(sk, child, NULL);
1373		if (nsk) {
1374			nreq = inet_reqsk_clone(req, nsk);
1375			if (nreq) {
1376				refcount_set(&nreq->rsk_refcnt, 1);
1377
1378				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1379					__NET_INC_STATS(sock_net(nsk),
1380							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1381					reqsk_migrate_reset(req);
1382				} else {
1383					__NET_INC_STATS(sock_net(nsk),
1384							LINUX_MIB_TCPMIGRATEREQFAILURE);
1385					reqsk_migrate_reset(nreq);
1386					__reqsk_free(nreq);
1387				}
1388
1389				/* inet_csk_reqsk_queue_add() has already
1390				 * called inet_child_forget() on failure case.
1391				 */
1392				goto skip_child_forget;
1393			}
1394		}
1395
1396		inet_child_forget(sk, req, child);
1397skip_child_forget:
1398		reqsk_put(req);
1399		bh_unlock_sock(child);
1400		local_bh_enable();
1401		sock_put(child);
1402
1403		cond_resched();
1404	}
1405	if (queue->fastopenq.rskq_rst_head) {
1406		/* Free all the reqs queued in rskq_rst_head. */
1407		spin_lock_bh(&queue->fastopenq.lock);
1408		req = queue->fastopenq.rskq_rst_head;
1409		queue->fastopenq.rskq_rst_head = NULL;
1410		spin_unlock_bh(&queue->fastopenq.lock);
1411		while (req != NULL) {
1412			next = req->dl_next;
1413			reqsk_put(req);
1414			req = next;
1415		}
1416	}
1417	WARN_ON_ONCE(sk->sk_ack_backlog);
1418}
1419EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1420
1421void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1422{
1423	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1424	const struct inet_sock *inet = inet_sk(sk);
1425
1426	sin->sin_family		= AF_INET;
1427	sin->sin_addr.s_addr	= inet->inet_daddr;
1428	sin->sin_port		= inet->inet_dport;
1429}
1430EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1433{
1434	const struct inet_sock *inet = inet_sk(sk);
1435	const struct ip_options_rcu *inet_opt;
1436	__be32 daddr = inet->inet_daddr;
1437	struct flowi4 *fl4;
1438	struct rtable *rt;
1439
1440	rcu_read_lock();
1441	inet_opt = rcu_dereference(inet->inet_opt);
1442	if (inet_opt && inet_opt->opt.srr)
1443		daddr = inet_opt->opt.faddr;
1444	fl4 = &fl->u.ip4;
1445	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1446				   inet->inet_saddr, inet->inet_dport,
1447				   inet->inet_sport, sk->sk_protocol,
1448				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1449	if (IS_ERR(rt))
1450		rt = NULL;
1451	if (rt)
1452		sk_setup_caps(sk, &rt->dst);
1453	rcu_read_unlock();
1454
1455	return &rt->dst;
1456}
1457
1458struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1459{
1460	struct dst_entry *dst = __sk_dst_check(sk, 0);
1461	struct inet_sock *inet = inet_sk(sk);
1462
1463	if (!dst) {
1464		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1465		if (!dst)
1466			goto out;
1467	}
1468	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1469
1470	dst = __sk_dst_check(sk, 0);
1471	if (!dst)
1472		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1473out:
1474	return dst;
1475}
1476EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);