Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->freelist(index): links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
 
 
 
 
 
 
 
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
 
  42#include <asm/tlbflush.h>
  43#include <asm/pgtable.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/pseudo_fs.h>
  56#include <linux/migrate.h>
  57#include <linux/wait.h>
  58#include <linux/pagemap.h>
  59#include <linux/fs.h>
 
  60
  61#define ZSPAGE_MAGIC	0x58
  62
  63/*
  64 * This must be power of 2 and greater than of equal to sizeof(link_free).
  65 * These two conditions ensure that any 'struct link_free' itself doesn't
  66 * span more than 1 page which avoids complex case of mapping 2 pages simply
  67 * to restore link_free pointer values.
  68 */
  69#define ZS_ALIGN		8
  70
  71/*
  72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  74 */
  75#define ZS_MAX_ZSPAGE_ORDER 2
  76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  77
  78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  79
  80/*
  81 * Object location (<PFN>, <obj_idx>) is encoded as
  82 * as single (unsigned long) handle value.
  83 *
  84 * Note that object index <obj_idx> starts from 0.
  85 *
  86 * This is made more complicated by various memory models and PAE.
  87 */
  88
  89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  90#ifdef MAX_PHYSMEM_BITS
  91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  92#else
  93/*
  94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  95 * be PAGE_SHIFT
  96 */
  97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  98#endif
  99#endif
 100
 101#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 102
 103/*
 104 * Memory for allocating for handle keeps object position by
 105 * encoding <page, obj_idx> and the encoded value has a room
 106 * in least bit(ie, look at obj_to_location).
 107 * We use the bit to synchronize between object access by
 108 * user and migration.
 109 */
 110#define HANDLE_PIN_BIT	0
 111
 112/*
 113 * Head in allocated object should have OBJ_ALLOCATED_TAG
 114 * to identify the object was allocated or not.
 115 * It's okay to add the status bit in the least bit because
 116 * header keeps handle which is 4byte-aligned address so we
 117 * have room for two bit at least.
 118 */
 119#define OBJ_ALLOCATED_TAG 1
 120#define OBJ_TAG_BITS 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 122#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 123
 
 124#define FULLNESS_BITS	2
 125#define CLASS_BITS	8
 126#define ISOLATED_BITS	3
 127#define MAGIC_VAL_BITS	8
 128
 129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 131#define ZS_MIN_ALLOC_SIZE \
 132	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 133/* each chunk includes extra space to keep handle */
 134#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 135
 136/*
 137 * On systems with 4K page size, this gives 255 size classes! There is a
 138 * trader-off here:
 139 *  - Large number of size classes is potentially wasteful as free page are
 140 *    spread across these classes
 141 *  - Small number of size classes causes large internal fragmentation
 142 *  - Probably its better to use specific size classes (empirically
 143 *    determined). NOTE: all those class sizes must be set as multiple of
 144 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 145 *
 146 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 147 *  (reason above)
 148 */
 149#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 150#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 151				      ZS_SIZE_CLASS_DELTA) + 1)
 152
 153enum fullness_group {
 154	ZS_EMPTY,
 155	ZS_ALMOST_EMPTY,
 156	ZS_ALMOST_FULL,
 157	ZS_FULL,
 158	NR_ZS_FULLNESS,
 159};
 160
 161enum zs_stat_type {
 162	CLASS_EMPTY,
 163	CLASS_ALMOST_EMPTY,
 164	CLASS_ALMOST_FULL,
 165	CLASS_FULL,
 166	OBJ_ALLOCATED,
 167	OBJ_USED,
 168	NR_ZS_STAT_TYPE,
 169};
 170
 171struct zs_size_stat {
 172	unsigned long objs[NR_ZS_STAT_TYPE];
 173};
 174
 175#ifdef CONFIG_ZSMALLOC_STAT
 176static struct dentry *zs_stat_root;
 177#endif
 178
 179#ifdef CONFIG_COMPACTION
 180static struct vfsmount *zsmalloc_mnt;
 181#endif
 182
 183/*
 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 185 *	n <= N / f, where
 186 * n = number of allocated objects
 187 * N = total number of objects zspage can store
 188 * f = fullness_threshold_frac
 189 *
 190 * Similarly, we assign zspage to:
 191 *	ZS_ALMOST_FULL	when n > N / f
 192 *	ZS_EMPTY	when n == 0
 193 *	ZS_FULL		when n == N
 194 *
 195 * (see: fix_fullness_group())
 196 */
 197static const int fullness_threshold_frac = 4;
 198static size_t huge_class_size;
 199
 200struct size_class {
 201	spinlock_t lock;
 202	struct list_head fullness_list[NR_ZS_FULLNESS];
 203	/*
 204	 * Size of objects stored in this class. Must be multiple
 205	 * of ZS_ALIGN.
 206	 */
 207	int size;
 208	int objs_per_zspage;
 209	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 210	int pages_per_zspage;
 211
 212	unsigned int index;
 213	struct zs_size_stat stats;
 214};
 215
 216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 217static void SetPageHugeObject(struct page *page)
 218{
 219	SetPageOwnerPriv1(page);
 220}
 221
 222static void ClearPageHugeObject(struct page *page)
 223{
 224	ClearPageOwnerPriv1(page);
 225}
 226
 227static int PageHugeObject(struct page *page)
 228{
 229	return PageOwnerPriv1(page);
 230}
 231
 232/*
 233 * Placed within free objects to form a singly linked list.
 234 * For every zspage, zspage->freeobj gives head of this list.
 235 *
 236 * This must be power of 2 and less than or equal to ZS_ALIGN
 237 */
 238struct link_free {
 239	union {
 240		/*
 241		 * Free object index;
 242		 * It's valid for non-allocated object
 243		 */
 244		unsigned long next;
 245		/*
 246		 * Handle of allocated object.
 247		 */
 248		unsigned long handle;
 
 
 
 
 
 
 249	};
 250};
 251
 252struct zs_pool {
 253	const char *name;
 254
 255	struct size_class *size_class[ZS_SIZE_CLASSES];
 256	struct kmem_cache *handle_cachep;
 257	struct kmem_cache *zspage_cachep;
 258
 259	atomic_long_t pages_allocated;
 260
 261	struct zs_pool_stats stats;
 262
 263	/* Compact classes */
 264	struct shrinker shrinker;
 265
 
 
 
 
 
 
 
 266#ifdef CONFIG_ZSMALLOC_STAT
 267	struct dentry *stat_dentry;
 268#endif
 269#ifdef CONFIG_COMPACTION
 270	struct inode *inode;
 271	struct work_struct free_work;
 272	/* A wait queue for when migration races with async_free_zspage() */
 273	struct wait_queue_head migration_wait;
 274	atomic_long_t isolated_pages;
 275	bool destroying;
 276#endif
 
 277};
 278
 279struct zspage {
 280	struct {
 
 281		unsigned int fullness:FULLNESS_BITS;
 282		unsigned int class:CLASS_BITS + 1;
 283		unsigned int isolated:ISOLATED_BITS;
 284		unsigned int magic:MAGIC_VAL_BITS;
 285	};
 286	unsigned int inuse;
 287	unsigned int freeobj;
 288	struct page *first_page;
 289	struct list_head list; /* fullness list */
 290#ifdef CONFIG_COMPACTION
 291	rwlock_t lock;
 
 
 
 292#endif
 
 
 
 293};
 294
 295struct mapping_area {
 296#ifdef CONFIG_PGTABLE_MAPPING
 297	struct vm_struct *vm; /* vm area for mapping object that span pages */
 298#else
 299	char *vm_buf; /* copy buffer for objects that span pages */
 300#endif
 301	char *vm_addr; /* address of kmap_atomic()'ed pages */
 302	enum zs_mapmode vm_mm; /* mapping mode */
 303};
 304
 305#ifdef CONFIG_COMPACTION
 306static int zs_register_migration(struct zs_pool *pool);
 307static void zs_unregister_migration(struct zs_pool *pool);
 
 
 
 
 
 
 
 
 308static void migrate_lock_init(struct zspage *zspage);
 309static void migrate_read_lock(struct zspage *zspage);
 310static void migrate_read_unlock(struct zspage *zspage);
 
 
 
 
 
 311static void kick_deferred_free(struct zs_pool *pool);
 312static void init_deferred_free(struct zs_pool *pool);
 313static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 314#else
 315static int zsmalloc_mount(void) { return 0; }
 316static void zsmalloc_unmount(void) {}
 317static int zs_register_migration(struct zs_pool *pool) { return 0; }
 318static void zs_unregister_migration(struct zs_pool *pool) {}
 319static void migrate_lock_init(struct zspage *zspage) {}
 320static void migrate_read_lock(struct zspage *zspage) {}
 321static void migrate_read_unlock(struct zspage *zspage) {}
 322static void kick_deferred_free(struct zs_pool *pool) {}
 323static void init_deferred_free(struct zs_pool *pool) {}
 324static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 325#endif
 326
 327static int create_cache(struct zs_pool *pool)
 328{
 329	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 330					0, 0, NULL);
 331	if (!pool->handle_cachep)
 332		return 1;
 333
 334	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 335					0, 0, NULL);
 336	if (!pool->zspage_cachep) {
 337		kmem_cache_destroy(pool->handle_cachep);
 338		pool->handle_cachep = NULL;
 339		return 1;
 340	}
 341
 342	return 0;
 343}
 344
 345static void destroy_cache(struct zs_pool *pool)
 346{
 347	kmem_cache_destroy(pool->handle_cachep);
 348	kmem_cache_destroy(pool->zspage_cachep);
 349}
 350
 351static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 352{
 353	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 354			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 355}
 356
 357static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 358{
 359	kmem_cache_free(pool->handle_cachep, (void *)handle);
 360}
 361
 362static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 363{
 364	return kmem_cache_alloc(pool->zspage_cachep,
 365			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 366}
 367
 368static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 369{
 370	kmem_cache_free(pool->zspage_cachep, zspage);
 371}
 372
 
 373static void record_obj(unsigned long handle, unsigned long obj)
 374{
 375	/*
 376	 * lsb of @obj represents handle lock while other bits
 377	 * represent object value the handle is pointing so
 378	 * updating shouldn't do store tearing.
 379	 */
 380	WRITE_ONCE(*(unsigned long *)handle, obj);
 381}
 382
 383/* zpool driver */
 384
 385#ifdef CONFIG_ZPOOL
 386
 387static void *zs_zpool_create(const char *name, gfp_t gfp,
 388			     const struct zpool_ops *zpool_ops,
 389			     struct zpool *zpool)
 390{
 391	/*
 392	 * Ignore global gfp flags: zs_malloc() may be invoked from
 393	 * different contexts and its caller must provide a valid
 394	 * gfp mask.
 395	 */
 396	return zs_create_pool(name);
 
 
 
 
 
 
 
 397}
 398
 399static void zs_zpool_destroy(void *pool)
 400{
 401	zs_destroy_pool(pool);
 402}
 403
 404static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 405			unsigned long *handle)
 406{
 407	*handle = zs_malloc(pool, size, gfp);
 408	return *handle ? 0 : -1;
 
 
 
 409}
 410static void zs_zpool_free(void *pool, unsigned long handle)
 411{
 412	zs_free(pool, handle);
 413}
 414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415static void *zs_zpool_map(void *pool, unsigned long handle,
 416			enum zpool_mapmode mm)
 417{
 418	enum zs_mapmode zs_mm;
 419
 420	switch (mm) {
 421	case ZPOOL_MM_RO:
 422		zs_mm = ZS_MM_RO;
 423		break;
 424	case ZPOOL_MM_WO:
 425		zs_mm = ZS_MM_WO;
 426		break;
 427	case ZPOOL_MM_RW: /* fall through */
 428	default:
 429		zs_mm = ZS_MM_RW;
 430		break;
 431	}
 432
 433	return zs_map_object(pool, handle, zs_mm);
 434}
 435static void zs_zpool_unmap(void *pool, unsigned long handle)
 436{
 437	zs_unmap_object(pool, handle);
 438}
 439
 440static u64 zs_zpool_total_size(void *pool)
 441{
 442	return zs_get_total_pages(pool) << PAGE_SHIFT;
 443}
 444
 445static struct zpool_driver zs_zpool_driver = {
 446	.type =			  "zsmalloc",
 447	.owner =		  THIS_MODULE,
 448	.create =		  zs_zpool_create,
 449	.destroy =		  zs_zpool_destroy,
 450	.malloc_support_movable = true,
 451	.malloc =		  zs_zpool_malloc,
 452	.free =			  zs_zpool_free,
 
 453	.map =			  zs_zpool_map,
 454	.unmap =		  zs_zpool_unmap,
 455	.total_size =		  zs_zpool_total_size,
 456};
 457
 458MODULE_ALIAS("zpool-zsmalloc");
 459#endif /* CONFIG_ZPOOL */
 460
 461/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 462static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 463
 464static bool is_zspage_isolated(struct zspage *zspage)
 465{
 466	return zspage->isolated;
 467}
 468
 469static __maybe_unused int is_first_page(struct page *page)
 470{
 471	return PagePrivate(page);
 472}
 473
 474/* Protected by class->lock */
 475static inline int get_zspage_inuse(struct zspage *zspage)
 476{
 477	return zspage->inuse;
 478}
 479
 480
 481static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 482{
 483	zspage->inuse += val;
 484}
 485
 486static inline struct page *get_first_page(struct zspage *zspage)
 487{
 488	struct page *first_page = zspage->first_page;
 489
 490	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 491	return first_page;
 492}
 493
 494static inline int get_first_obj_offset(struct page *page)
 495{
 496	return page->units;
 497}
 498
 499static inline void set_first_obj_offset(struct page *page, int offset)
 500{
 501	page->units = offset;
 502}
 503
 504static inline unsigned int get_freeobj(struct zspage *zspage)
 505{
 506	return zspage->freeobj;
 507}
 508
 509static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 510{
 511	zspage->freeobj = obj;
 512}
 513
 514static void get_zspage_mapping(struct zspage *zspage,
 515				unsigned int *class_idx,
 516				enum fullness_group *fullness)
 517{
 518	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 519
 520	*fullness = zspage->fullness;
 521	*class_idx = zspage->class;
 522}
 523
 
 
 
 
 
 
 524static void set_zspage_mapping(struct zspage *zspage,
 525				unsigned int class_idx,
 526				enum fullness_group fullness)
 527{
 528	zspage->class = class_idx;
 529	zspage->fullness = fullness;
 530}
 531
 532/*
 533 * zsmalloc divides the pool into various size classes where each
 534 * class maintains a list of zspages where each zspage is divided
 535 * into equal sized chunks. Each allocation falls into one of these
 536 * classes depending on its size. This function returns index of the
 537 * size class which has chunk size big enough to hold the give size.
 538 */
 539static int get_size_class_index(int size)
 540{
 541	int idx = 0;
 542
 543	if (likely(size > ZS_MIN_ALLOC_SIZE))
 544		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 545				ZS_SIZE_CLASS_DELTA);
 546
 547	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 548}
 549
 550/* type can be of enum type zs_stat_type or fullness_group */
 551static inline void zs_stat_inc(struct size_class *class,
 552				int type, unsigned long cnt)
 553{
 554	class->stats.objs[type] += cnt;
 555}
 556
 557/* type can be of enum type zs_stat_type or fullness_group */
 558static inline void zs_stat_dec(struct size_class *class,
 559				int type, unsigned long cnt)
 560{
 561	class->stats.objs[type] -= cnt;
 562}
 563
 564/* type can be of enum type zs_stat_type or fullness_group */
 565static inline unsigned long zs_stat_get(struct size_class *class,
 566				int type)
 567{
 568	return class->stats.objs[type];
 569}
 570
 571#ifdef CONFIG_ZSMALLOC_STAT
 572
 573static void __init zs_stat_init(void)
 574{
 575	if (!debugfs_initialized()) {
 576		pr_warn("debugfs not available, stat dir not created\n");
 577		return;
 578	}
 579
 580	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 581}
 582
 583static void __exit zs_stat_exit(void)
 584{
 585	debugfs_remove_recursive(zs_stat_root);
 586}
 587
 588static unsigned long zs_can_compact(struct size_class *class);
 589
 590static int zs_stats_size_show(struct seq_file *s, void *v)
 591{
 592	int i;
 593	struct zs_pool *pool = s->private;
 594	struct size_class *class;
 595	int objs_per_zspage;
 596	unsigned long class_almost_full, class_almost_empty;
 597	unsigned long obj_allocated, obj_used, pages_used, freeable;
 598	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 599	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 600	unsigned long total_freeable = 0;
 601
 602	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 603			"class", "size", "almost_full", "almost_empty",
 604			"obj_allocated", "obj_used", "pages_used",
 605			"pages_per_zspage", "freeable");
 606
 607	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 608		class = pool->size_class[i];
 609
 610		if (class->index != i)
 611			continue;
 612
 613		spin_lock(&class->lock);
 614		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 615		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 616		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 617		obj_used = zs_stat_get(class, OBJ_USED);
 618		freeable = zs_can_compact(class);
 619		spin_unlock(&class->lock);
 620
 621		objs_per_zspage = class->objs_per_zspage;
 622		pages_used = obj_allocated / objs_per_zspage *
 623				class->pages_per_zspage;
 624
 625		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 626				" %10lu %10lu %16d %8lu\n",
 627			i, class->size, class_almost_full, class_almost_empty,
 628			obj_allocated, obj_used, pages_used,
 629			class->pages_per_zspage, freeable);
 630
 631		total_class_almost_full += class_almost_full;
 632		total_class_almost_empty += class_almost_empty;
 633		total_objs += obj_allocated;
 634		total_used_objs += obj_used;
 635		total_pages += pages_used;
 636		total_freeable += freeable;
 637	}
 638
 639	seq_puts(s, "\n");
 640	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 641			"Total", "", total_class_almost_full,
 642			total_class_almost_empty, total_objs,
 643			total_used_objs, total_pages, "", total_freeable);
 644
 645	return 0;
 646}
 647DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 648
 649static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 650{
 651	if (!zs_stat_root) {
 652		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 653		return;
 654	}
 655
 656	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 657
 658	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 659			    &zs_stats_size_fops);
 660}
 661
 662static void zs_pool_stat_destroy(struct zs_pool *pool)
 663{
 664	debugfs_remove_recursive(pool->stat_dentry);
 665}
 666
 667#else /* CONFIG_ZSMALLOC_STAT */
 668static void __init zs_stat_init(void)
 669{
 670}
 671
 672static void __exit zs_stat_exit(void)
 673{
 674}
 675
 676static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 677{
 678}
 679
 680static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 681{
 682}
 683#endif
 684
 685
 686/*
 687 * For each size class, zspages are divided into different groups
 688 * depending on how "full" they are. This was done so that we could
 689 * easily find empty or nearly empty zspages when we try to shrink
 690 * the pool (not yet implemented). This function returns fullness
 691 * status of the given page.
 692 */
 693static enum fullness_group get_fullness_group(struct size_class *class,
 694						struct zspage *zspage)
 695{
 696	int inuse, objs_per_zspage;
 697	enum fullness_group fg;
 698
 699	inuse = get_zspage_inuse(zspage);
 700	objs_per_zspage = class->objs_per_zspage;
 701
 702	if (inuse == 0)
 703		fg = ZS_EMPTY;
 704	else if (inuse == objs_per_zspage)
 705		fg = ZS_FULL;
 706	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 707		fg = ZS_ALMOST_EMPTY;
 708	else
 709		fg = ZS_ALMOST_FULL;
 710
 711	return fg;
 712}
 713
 714/*
 715 * Each size class maintains various freelists and zspages are assigned
 716 * to one of these freelists based on the number of live objects they
 717 * have. This functions inserts the given zspage into the freelist
 718 * identified by <class, fullness_group>.
 719 */
 720static void insert_zspage(struct size_class *class,
 721				struct zspage *zspage,
 722				enum fullness_group fullness)
 723{
 724	struct zspage *head;
 725
 726	zs_stat_inc(class, fullness, 1);
 727	head = list_first_entry_or_null(&class->fullness_list[fullness],
 728					struct zspage, list);
 729	/*
 730	 * We want to see more ZS_FULL pages and less almost empty/full.
 731	 * Put pages with higher ->inuse first.
 732	 */
 733	if (head) {
 734		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 735			list_add(&zspage->list, &head->list);
 736			return;
 737		}
 738	}
 739	list_add(&zspage->list, &class->fullness_list[fullness]);
 740}
 741
 742/*
 743 * This function removes the given zspage from the freelist identified
 744 * by <class, fullness_group>.
 745 */
 746static void remove_zspage(struct size_class *class,
 747				struct zspage *zspage,
 748				enum fullness_group fullness)
 749{
 750	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 751	VM_BUG_ON(is_zspage_isolated(zspage));
 752
 753	list_del_init(&zspage->list);
 754	zs_stat_dec(class, fullness, 1);
 755}
 756
 757/*
 758 * Each size class maintains zspages in different fullness groups depending
 759 * on the number of live objects they contain. When allocating or freeing
 760 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 761 * to ALMOST_EMPTY when freeing an object. This function checks if such
 762 * a status change has occurred for the given page and accordingly moves the
 763 * page from the freelist of the old fullness group to that of the new
 764 * fullness group.
 765 */
 766static enum fullness_group fix_fullness_group(struct size_class *class,
 767						struct zspage *zspage)
 768{
 769	int class_idx;
 770	enum fullness_group currfg, newfg;
 771
 772	get_zspage_mapping(zspage, &class_idx, &currfg);
 773	newfg = get_fullness_group(class, zspage);
 774	if (newfg == currfg)
 775		goto out;
 776
 777	if (!is_zspage_isolated(zspage)) {
 778		remove_zspage(class, zspage, currfg);
 779		insert_zspage(class, zspage, newfg);
 780	}
 781
 782	set_zspage_mapping(zspage, class_idx, newfg);
 783
 784out:
 785	return newfg;
 786}
 787
 788/*
 789 * We have to decide on how many pages to link together
 790 * to form a zspage for each size class. This is important
 791 * to reduce wastage due to unusable space left at end of
 792 * each zspage which is given as:
 793 *     wastage = Zp % class_size
 794 *     usage = Zp - wastage
 795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 796 *
 797 * For example, for size class of 3/8 * PAGE_SIZE, we should
 798 * link together 3 PAGE_SIZE sized pages to form a zspage
 799 * since then we can perfectly fit in 8 such objects.
 800 */
 801static int get_pages_per_zspage(int class_size)
 802{
 803	int i, max_usedpc = 0;
 804	/* zspage order which gives maximum used size per KB */
 805	int max_usedpc_order = 1;
 806
 807	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 808		int zspage_size;
 809		int waste, usedpc;
 810
 811		zspage_size = i * PAGE_SIZE;
 812		waste = zspage_size % class_size;
 813		usedpc = (zspage_size - waste) * 100 / zspage_size;
 814
 815		if (usedpc > max_usedpc) {
 816			max_usedpc = usedpc;
 817			max_usedpc_order = i;
 818		}
 819	}
 820
 821	return max_usedpc_order;
 822}
 823
 824static struct zspage *get_zspage(struct page *page)
 825{
 826	struct zspage *zspage = (struct zspage *)page->private;
 827
 828	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 829	return zspage;
 830}
 831
 832static struct page *get_next_page(struct page *page)
 833{
 834	if (unlikely(PageHugeObject(page)))
 
 
 835		return NULL;
 836
 837	return page->freelist;
 838}
 839
 840/**
 841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 842 * @obj: the encoded object value
 843 * @page: page object resides in zspage
 844 * @obj_idx: object index
 845 */
 846static void obj_to_location(unsigned long obj, struct page **page,
 847				unsigned int *obj_idx)
 848{
 849	obj >>= OBJ_TAG_BITS;
 850	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 851	*obj_idx = (obj & OBJ_INDEX_MASK);
 852}
 853
 
 
 
 
 
 
 854/**
 855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 856 * @page: page object resides in zspage
 857 * @obj_idx: object index
 858 */
 859static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 860{
 861	unsigned long obj;
 862
 863	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 864	obj |= obj_idx & OBJ_INDEX_MASK;
 865	obj <<= OBJ_TAG_BITS;
 866
 867	return obj;
 868}
 869
 870static unsigned long handle_to_obj(unsigned long handle)
 871{
 872	return *(unsigned long *)handle;
 873}
 874
 875static unsigned long obj_to_head(struct page *page, void *obj)
 
 876{
 877	if (unlikely(PageHugeObject(page))) {
 
 
 
 878		VM_BUG_ON_PAGE(!is_first_page(page), page);
 879		return page->index;
 880	} else
 881		return *(unsigned long *)obj;
 882}
 883
 884static inline int testpin_tag(unsigned long handle)
 885{
 886	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 887}
 888
 889static inline int trypin_tag(unsigned long handle)
 890{
 891	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 892}
 893
 894static void pin_tag(unsigned long handle)
 895{
 896	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 897}
 898
 899static void unpin_tag(unsigned long handle)
 
 
 900{
 901	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 902}
 
 903
 904static void reset_page(struct page *page)
 905{
 906	__ClearPageMovable(page);
 907	ClearPagePrivate(page);
 908	set_page_private(page, 0);
 909	page_mapcount_reset(page);
 910	ClearPageHugeObject(page);
 911	page->freelist = NULL;
 912}
 913
 914static int trylock_zspage(struct zspage *zspage)
 915{
 916	struct page *cursor, *fail;
 917
 918	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 919					get_next_page(cursor)) {
 920		if (!trylock_page(cursor)) {
 921			fail = cursor;
 922			goto unlock;
 923		}
 924	}
 925
 926	return 1;
 927unlock:
 928	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 929					get_next_page(cursor))
 930		unlock_page(cursor);
 931
 932	return 0;
 933}
 934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 936				struct zspage *zspage)
 937{
 938	struct page *page, *next;
 939	enum fullness_group fg;
 940	unsigned int class_idx;
 941
 942	get_zspage_mapping(zspage, &class_idx, &fg);
 943
 944	assert_spin_locked(&class->lock);
 945
 946	VM_BUG_ON(get_zspage_inuse(zspage));
 947	VM_BUG_ON(fg != ZS_EMPTY);
 948
 
 
 
 949	next = page = get_first_page(zspage);
 950	do {
 951		VM_BUG_ON_PAGE(!PageLocked(page), page);
 952		next = get_next_page(page);
 953		reset_page(page);
 954		unlock_page(page);
 955		dec_zone_page_state(page, NR_ZSPAGES);
 956		put_page(page);
 957		page = next;
 958	} while (page != NULL);
 959
 960	cache_free_zspage(pool, zspage);
 961
 962	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 963	atomic_long_sub(class->pages_per_zspage,
 964					&pool->pages_allocated);
 965}
 966
 967static void free_zspage(struct zs_pool *pool, struct size_class *class,
 968				struct zspage *zspage)
 969{
 970	VM_BUG_ON(get_zspage_inuse(zspage));
 971	VM_BUG_ON(list_empty(&zspage->list));
 972
 
 
 
 
 
 973	if (!trylock_zspage(zspage)) {
 974		kick_deferred_free(pool);
 975		return;
 976	}
 977
 978	remove_zspage(class, zspage, ZS_EMPTY);
 
 
 
 979	__free_zspage(pool, class, zspage);
 980}
 981
 982/* Initialize a newly allocated zspage */
 983static void init_zspage(struct size_class *class, struct zspage *zspage)
 984{
 985	unsigned int freeobj = 1;
 986	unsigned long off = 0;
 987	struct page *page = get_first_page(zspage);
 988
 989	while (page) {
 990		struct page *next_page;
 991		struct link_free *link;
 992		void *vaddr;
 993
 994		set_first_obj_offset(page, off);
 995
 996		vaddr = kmap_atomic(page);
 997		link = (struct link_free *)vaddr + off / sizeof(*link);
 998
 999		while ((off += class->size) < PAGE_SIZE) {
1000			link->next = freeobj++ << OBJ_TAG_BITS;
1001			link += class->size / sizeof(*link);
1002		}
1003
1004		/*
1005		 * We now come to the last (full or partial) object on this
1006		 * page, which must point to the first object on the next
1007		 * page (if present)
1008		 */
1009		next_page = get_next_page(page);
1010		if (next_page) {
1011			link->next = freeobj++ << OBJ_TAG_BITS;
1012		} else {
1013			/*
1014			 * Reset OBJ_TAG_BITS bit to last link to tell
1015			 * whether it's allocated object or not.
1016			 */
1017			link->next = -1UL << OBJ_TAG_BITS;
1018		}
1019		kunmap_atomic(vaddr);
1020		page = next_page;
1021		off %= PAGE_SIZE;
1022	}
1023
 
 
 
 
 
1024	set_freeobj(zspage, 0);
1025}
1026
1027static void create_page_chain(struct size_class *class, struct zspage *zspage,
1028				struct page *pages[])
1029{
1030	int i;
1031	struct page *page;
1032	struct page *prev_page = NULL;
1033	int nr_pages = class->pages_per_zspage;
1034
1035	/*
1036	 * Allocate individual pages and link them together as:
1037	 * 1. all pages are linked together using page->freelist
1038	 * 2. each sub-page point to zspage using page->private
1039	 *
1040	 * we set PG_private to identify the first page (i.e. no other sub-page
1041	 * has this flag set).
1042	 */
1043	for (i = 0; i < nr_pages; i++) {
1044		page = pages[i];
1045		set_page_private(page, (unsigned long)zspage);
1046		page->freelist = NULL;
1047		if (i == 0) {
1048			zspage->first_page = page;
1049			SetPagePrivate(page);
1050			if (unlikely(class->objs_per_zspage == 1 &&
1051					class->pages_per_zspage == 1))
1052				SetPageHugeObject(page);
1053		} else {
1054			prev_page->freelist = page;
1055		}
1056		prev_page = page;
1057	}
1058}
1059
1060/*
1061 * Allocate a zspage for the given size class
1062 */
1063static struct zspage *alloc_zspage(struct zs_pool *pool,
1064					struct size_class *class,
1065					gfp_t gfp)
1066{
1067	int i;
1068	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1069	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1070
1071	if (!zspage)
1072		return NULL;
1073
1074	memset(zspage, 0, sizeof(struct zspage));
1075	zspage->magic = ZSPAGE_MAGIC;
1076	migrate_lock_init(zspage);
1077
1078	for (i = 0; i < class->pages_per_zspage; i++) {
1079		struct page *page;
1080
1081		page = alloc_page(gfp);
1082		if (!page) {
1083			while (--i >= 0) {
1084				dec_zone_page_state(pages[i], NR_ZSPAGES);
1085				__free_page(pages[i]);
1086			}
1087			cache_free_zspage(pool, zspage);
1088			return NULL;
1089		}
1090
1091		inc_zone_page_state(page, NR_ZSPAGES);
1092		pages[i] = page;
1093	}
1094
1095	create_page_chain(class, zspage, pages);
1096	init_zspage(class, zspage);
 
1097
1098	return zspage;
1099}
1100
1101static struct zspage *find_get_zspage(struct size_class *class)
1102{
1103	int i;
1104	struct zspage *zspage;
1105
1106	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1107		zspage = list_first_entry_or_null(&class->fullness_list[i],
1108				struct zspage, list);
1109		if (zspage)
1110			break;
1111	}
1112
1113	return zspage;
1114}
1115
1116#ifdef CONFIG_PGTABLE_MAPPING
1117static inline int __zs_cpu_up(struct mapping_area *area)
1118{
1119	/*
1120	 * Make sure we don't leak memory if a cpu UP notification
1121	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1122	 */
1123	if (area->vm)
1124		return 0;
1125	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1126	if (!area->vm)
1127		return -ENOMEM;
1128	return 0;
1129}
1130
1131static inline void __zs_cpu_down(struct mapping_area *area)
1132{
1133	if (area->vm)
1134		free_vm_area(area->vm);
1135	area->vm = NULL;
1136}
1137
1138static inline void *__zs_map_object(struct mapping_area *area,
1139				struct page *pages[2], int off, int size)
1140{
1141	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1142	area->vm_addr = area->vm->addr;
1143	return area->vm_addr + off;
1144}
1145
1146static inline void __zs_unmap_object(struct mapping_area *area,
1147				struct page *pages[2], int off, int size)
1148{
1149	unsigned long addr = (unsigned long)area->vm_addr;
1150
1151	unmap_kernel_range(addr, PAGE_SIZE * 2);
1152}
1153
1154#else /* CONFIG_PGTABLE_MAPPING */
1155
1156static inline int __zs_cpu_up(struct mapping_area *area)
1157{
1158	/*
1159	 * Make sure we don't leak memory if a cpu UP notification
1160	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1161	 */
1162	if (area->vm_buf)
1163		return 0;
1164	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1165	if (!area->vm_buf)
1166		return -ENOMEM;
1167	return 0;
1168}
1169
1170static inline void __zs_cpu_down(struct mapping_area *area)
1171{
1172	kfree(area->vm_buf);
1173	area->vm_buf = NULL;
1174}
1175
1176static void *__zs_map_object(struct mapping_area *area,
1177			struct page *pages[2], int off, int size)
1178{
1179	int sizes[2];
1180	void *addr;
1181	char *buf = area->vm_buf;
1182
1183	/* disable page faults to match kmap_atomic() return conditions */
1184	pagefault_disable();
1185
1186	/* no read fastpath */
1187	if (area->vm_mm == ZS_MM_WO)
1188		goto out;
1189
1190	sizes[0] = PAGE_SIZE - off;
1191	sizes[1] = size - sizes[0];
1192
1193	/* copy object to per-cpu buffer */
1194	addr = kmap_atomic(pages[0]);
1195	memcpy(buf, addr + off, sizes[0]);
1196	kunmap_atomic(addr);
1197	addr = kmap_atomic(pages[1]);
1198	memcpy(buf + sizes[0], addr, sizes[1]);
1199	kunmap_atomic(addr);
1200out:
1201	return area->vm_buf;
1202}
1203
1204static void __zs_unmap_object(struct mapping_area *area,
1205			struct page *pages[2], int off, int size)
1206{
1207	int sizes[2];
1208	void *addr;
1209	char *buf;
1210
1211	/* no write fastpath */
1212	if (area->vm_mm == ZS_MM_RO)
1213		goto out;
1214
1215	buf = area->vm_buf;
1216	buf = buf + ZS_HANDLE_SIZE;
1217	size -= ZS_HANDLE_SIZE;
1218	off += ZS_HANDLE_SIZE;
1219
1220	sizes[0] = PAGE_SIZE - off;
1221	sizes[1] = size - sizes[0];
1222
1223	/* copy per-cpu buffer to object */
1224	addr = kmap_atomic(pages[0]);
1225	memcpy(addr + off, buf, sizes[0]);
1226	kunmap_atomic(addr);
1227	addr = kmap_atomic(pages[1]);
1228	memcpy(addr, buf + sizes[0], sizes[1]);
1229	kunmap_atomic(addr);
1230
1231out:
1232	/* enable page faults to match kunmap_atomic() return conditions */
1233	pagefault_enable();
1234}
1235
1236#endif /* CONFIG_PGTABLE_MAPPING */
1237
1238static int zs_cpu_prepare(unsigned int cpu)
1239{
1240	struct mapping_area *area;
1241
1242	area = &per_cpu(zs_map_area, cpu);
1243	return __zs_cpu_up(area);
1244}
1245
1246static int zs_cpu_dead(unsigned int cpu)
1247{
1248	struct mapping_area *area;
1249
1250	area = &per_cpu(zs_map_area, cpu);
1251	__zs_cpu_down(area);
1252	return 0;
1253}
1254
1255static bool can_merge(struct size_class *prev, int pages_per_zspage,
1256					int objs_per_zspage)
1257{
1258	if (prev->pages_per_zspage == pages_per_zspage &&
1259		prev->objs_per_zspage == objs_per_zspage)
1260		return true;
1261
1262	return false;
1263}
1264
1265static bool zspage_full(struct size_class *class, struct zspage *zspage)
1266{
1267	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1268}
1269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270unsigned long zs_get_total_pages(struct zs_pool *pool)
1271{
1272	return atomic_long_read(&pool->pages_allocated);
1273}
1274EXPORT_SYMBOL_GPL(zs_get_total_pages);
1275
1276/**
1277 * zs_map_object - get address of allocated object from handle.
1278 * @pool: pool from which the object was allocated
1279 * @handle: handle returned from zs_malloc
1280 * @mm: maping mode to use
1281 *
1282 * Before using an object allocated from zs_malloc, it must be mapped using
1283 * this function. When done with the object, it must be unmapped using
1284 * zs_unmap_object.
1285 *
1286 * Only one object can be mapped per cpu at a time. There is no protection
1287 * against nested mappings.
1288 *
1289 * This function returns with preemption and page faults disabled.
1290 */
1291void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1292			enum zs_mapmode mm)
1293{
1294	struct zspage *zspage;
1295	struct page *page;
1296	unsigned long obj, off;
1297	unsigned int obj_idx;
1298
1299	unsigned int class_idx;
1300	enum fullness_group fg;
1301	struct size_class *class;
1302	struct mapping_area *area;
1303	struct page *pages[2];
1304	void *ret;
1305
1306	/*
1307	 * Because we use per-cpu mapping areas shared among the
1308	 * pools/users, we can't allow mapping in interrupt context
1309	 * because it can corrupt another users mappings.
1310	 */
1311	BUG_ON(in_interrupt());
1312
1313	/* From now on, migration cannot move the object */
1314	pin_tag(handle);
1315
1316	obj = handle_to_obj(handle);
1317	obj_to_location(obj, &page, &obj_idx);
1318	zspage = get_zspage(page);
1319
1320	/* migration cannot move any subpage in this zspage */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321	migrate_read_lock(zspage);
 
1322
1323	get_zspage_mapping(zspage, &class_idx, &fg);
1324	class = pool->size_class[class_idx];
1325	off = (class->size * obj_idx) & ~PAGE_MASK;
1326
1327	area = &get_cpu_var(zs_map_area);
 
1328	area->vm_mm = mm;
1329	if (off + class->size <= PAGE_SIZE) {
1330		/* this object is contained entirely within a page */
1331		area->vm_addr = kmap_atomic(page);
1332		ret = area->vm_addr + off;
1333		goto out;
1334	}
1335
1336	/* this object spans two pages */
1337	pages[0] = page;
1338	pages[1] = get_next_page(page);
1339	BUG_ON(!pages[1]);
1340
1341	ret = __zs_map_object(area, pages, off, class->size);
1342out:
1343	if (likely(!PageHugeObject(page)))
1344		ret += ZS_HANDLE_SIZE;
1345
1346	return ret;
1347}
1348EXPORT_SYMBOL_GPL(zs_map_object);
1349
1350void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1351{
1352	struct zspage *zspage;
1353	struct page *page;
1354	unsigned long obj, off;
1355	unsigned int obj_idx;
1356
1357	unsigned int class_idx;
1358	enum fullness_group fg;
1359	struct size_class *class;
1360	struct mapping_area *area;
1361
1362	obj = handle_to_obj(handle);
1363	obj_to_location(obj, &page, &obj_idx);
1364	zspage = get_zspage(page);
1365	get_zspage_mapping(zspage, &class_idx, &fg);
1366	class = pool->size_class[class_idx];
1367	off = (class->size * obj_idx) & ~PAGE_MASK;
1368
1369	area = this_cpu_ptr(&zs_map_area);
1370	if (off + class->size <= PAGE_SIZE)
1371		kunmap_atomic(area->vm_addr);
1372	else {
1373		struct page *pages[2];
1374
1375		pages[0] = page;
1376		pages[1] = get_next_page(page);
1377		BUG_ON(!pages[1]);
1378
1379		__zs_unmap_object(area, pages, off, class->size);
1380	}
1381	put_cpu_var(zs_map_area);
1382
1383	migrate_read_unlock(zspage);
1384	unpin_tag(handle);
1385}
1386EXPORT_SYMBOL_GPL(zs_unmap_object);
1387
1388/**
1389 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1390 *                        zsmalloc &size_class.
1391 * @pool: zsmalloc pool to use
1392 *
1393 * The function returns the size of the first huge class - any object of equal
1394 * or bigger size will be stored in zspage consisting of a single physical
1395 * page.
1396 *
1397 * Context: Any context.
1398 *
1399 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1400 */
1401size_t zs_huge_class_size(struct zs_pool *pool)
1402{
1403	return huge_class_size;
1404}
1405EXPORT_SYMBOL_GPL(zs_huge_class_size);
1406
1407static unsigned long obj_malloc(struct size_class *class,
1408				struct zspage *zspage, unsigned long handle)
1409{
1410	int i, nr_page, offset;
1411	unsigned long obj;
1412	struct link_free *link;
 
1413
1414	struct page *m_page;
1415	unsigned long m_offset;
1416	void *vaddr;
1417
 
1418	handle |= OBJ_ALLOCATED_TAG;
1419	obj = get_freeobj(zspage);
1420
1421	offset = obj * class->size;
1422	nr_page = offset >> PAGE_SHIFT;
1423	m_offset = offset & ~PAGE_MASK;
1424	m_page = get_first_page(zspage);
1425
1426	for (i = 0; i < nr_page; i++)
1427		m_page = get_next_page(m_page);
1428
1429	vaddr = kmap_atomic(m_page);
1430	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1431	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1432	if (likely(!PageHugeObject(m_page)))
1433		/* record handle in the header of allocated chunk */
1434		link->handle = handle;
1435	else
1436		/* record handle to page->index */
1437		zspage->first_page->index = handle;
1438
1439	kunmap_atomic(vaddr);
1440	mod_zspage_inuse(zspage, 1);
1441	zs_stat_inc(class, OBJ_USED, 1);
1442
1443	obj = location_to_obj(m_page, obj);
1444
1445	return obj;
1446}
1447
1448
1449/**
1450 * zs_malloc - Allocate block of given size from pool.
1451 * @pool: pool to allocate from
1452 * @size: size of block to allocate
1453 * @gfp: gfp flags when allocating object
1454 *
1455 * On success, handle to the allocated object is returned,
1456 * otherwise 0.
1457 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1458 */
1459unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1460{
1461	unsigned long handle, obj;
1462	struct size_class *class;
1463	enum fullness_group newfg;
1464	struct zspage *zspage;
1465
1466	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1467		return 0;
1468
1469	handle = cache_alloc_handle(pool, gfp);
1470	if (!handle)
1471		return 0;
1472
1473	/* extra space in chunk to keep the handle */
1474	size += ZS_HANDLE_SIZE;
1475	class = pool->size_class[get_size_class_index(size)];
1476
1477	spin_lock(&class->lock);
 
1478	zspage = find_get_zspage(class);
1479	if (likely(zspage)) {
1480		obj = obj_malloc(class, zspage, handle);
1481		/* Now move the zspage to another fullness group, if required */
1482		fix_fullness_group(class, zspage);
1483		record_obj(handle, obj);
1484		spin_unlock(&class->lock);
 
1485
1486		return handle;
1487	}
1488
1489	spin_unlock(&class->lock);
1490
1491	zspage = alloc_zspage(pool, class, gfp);
1492	if (!zspage) {
1493		cache_free_handle(pool, handle);
1494		return 0;
1495	}
1496
1497	spin_lock(&class->lock);
1498	obj = obj_malloc(class, zspage, handle);
1499	newfg = get_fullness_group(class, zspage);
1500	insert_zspage(class, zspage, newfg);
1501	set_zspage_mapping(zspage, class->index, newfg);
1502	record_obj(handle, obj);
1503	atomic_long_add(class->pages_per_zspage,
1504				&pool->pages_allocated);
1505	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
 
1506
1507	/* We completely set up zspage so mark them as movable */
1508	SetZsPageMovable(pool, zspage);
1509	spin_unlock(&class->lock);
1510
1511	return handle;
1512}
1513EXPORT_SYMBOL_GPL(zs_malloc);
1514
1515static void obj_free(struct size_class *class, unsigned long obj)
1516{
1517	struct link_free *link;
1518	struct zspage *zspage;
1519	struct page *f_page;
1520	unsigned long f_offset;
1521	unsigned int f_objidx;
1522	void *vaddr;
1523
1524	obj &= ~OBJ_ALLOCATED_TAG;
1525	obj_to_location(obj, &f_page, &f_objidx);
1526	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1527	zspage = get_zspage(f_page);
1528
1529	vaddr = kmap_atomic(f_page);
1530
1531	/* Insert this object in containing zspage's freelist */
1532	link = (struct link_free *)(vaddr + f_offset);
1533	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534	kunmap_atomic(vaddr);
1535	set_freeobj(zspage, f_objidx);
1536	mod_zspage_inuse(zspage, -1);
1537	zs_stat_dec(class, OBJ_USED, 1);
1538}
1539
1540void zs_free(struct zs_pool *pool, unsigned long handle)
1541{
1542	struct zspage *zspage;
1543	struct page *f_page;
1544	unsigned long obj;
1545	unsigned int f_objidx;
1546	int class_idx;
1547	struct size_class *class;
1548	enum fullness_group fullness;
1549	bool isolated;
1550
1551	if (unlikely(!handle))
1552		return;
1553
1554	pin_tag(handle);
 
 
 
 
1555	obj = handle_to_obj(handle);
1556	obj_to_location(obj, &f_page, &f_objidx);
1557	zspage = get_zspage(f_page);
 
1558
1559	migrate_read_lock(zspage);
1560
1561	get_zspage_mapping(zspage, &class_idx, &fullness);
1562	class = pool->size_class[class_idx];
1563
1564	spin_lock(&class->lock);
1565	obj_free(class, obj);
1566	fullness = fix_fullness_group(class, zspage);
1567	if (fullness != ZS_EMPTY) {
1568		migrate_read_unlock(zspage);
1569		goto out;
 
 
 
 
 
1570	}
 
 
1571
1572	isolated = is_zspage_isolated(zspage);
1573	migrate_read_unlock(zspage);
1574	/* If zspage is isolated, zs_page_putback will free the zspage */
1575	if (likely(!isolated))
1576		free_zspage(pool, class, zspage);
1577out:
1578
1579	spin_unlock(&class->lock);
1580	unpin_tag(handle);
1581	cache_free_handle(pool, handle);
1582}
1583EXPORT_SYMBOL_GPL(zs_free);
1584
1585static void zs_object_copy(struct size_class *class, unsigned long dst,
1586				unsigned long src)
1587{
1588	struct page *s_page, *d_page;
1589	unsigned int s_objidx, d_objidx;
1590	unsigned long s_off, d_off;
1591	void *s_addr, *d_addr;
1592	int s_size, d_size, size;
1593	int written = 0;
1594
1595	s_size = d_size = class->size;
1596
1597	obj_to_location(src, &s_page, &s_objidx);
1598	obj_to_location(dst, &d_page, &d_objidx);
1599
1600	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1601	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1602
1603	if (s_off + class->size > PAGE_SIZE)
1604		s_size = PAGE_SIZE - s_off;
1605
1606	if (d_off + class->size > PAGE_SIZE)
1607		d_size = PAGE_SIZE - d_off;
1608
1609	s_addr = kmap_atomic(s_page);
1610	d_addr = kmap_atomic(d_page);
1611
1612	while (1) {
1613		size = min(s_size, d_size);
1614		memcpy(d_addr + d_off, s_addr + s_off, size);
1615		written += size;
1616
1617		if (written == class->size)
1618			break;
1619
1620		s_off += size;
1621		s_size -= size;
1622		d_off += size;
1623		d_size -= size;
1624
 
 
 
 
 
 
 
1625		if (s_off >= PAGE_SIZE) {
1626			kunmap_atomic(d_addr);
1627			kunmap_atomic(s_addr);
1628			s_page = get_next_page(s_page);
1629			s_addr = kmap_atomic(s_page);
1630			d_addr = kmap_atomic(d_page);
1631			s_size = class->size - written;
1632			s_off = 0;
1633		}
1634
1635		if (d_off >= PAGE_SIZE) {
1636			kunmap_atomic(d_addr);
1637			d_page = get_next_page(d_page);
1638			d_addr = kmap_atomic(d_page);
1639			d_size = class->size - written;
1640			d_off = 0;
1641		}
1642	}
1643
1644	kunmap_atomic(d_addr);
1645	kunmap_atomic(s_addr);
1646}
1647
1648/*
1649 * Find alloced object in zspage from index object and
1650 * return handle.
1651 */
1652static unsigned long find_alloced_obj(struct size_class *class,
1653					struct page *page, int *obj_idx)
1654{
1655	unsigned long head;
1656	int offset = 0;
1657	int index = *obj_idx;
1658	unsigned long handle = 0;
1659	void *addr = kmap_atomic(page);
1660
1661	offset = get_first_obj_offset(page);
1662	offset += class->size * index;
1663
1664	while (offset < PAGE_SIZE) {
1665		head = obj_to_head(page, addr + offset);
1666		if (head & OBJ_ALLOCATED_TAG) {
1667			handle = head & ~OBJ_ALLOCATED_TAG;
1668			if (trypin_tag(handle))
1669				break;
1670			handle = 0;
1671		}
1672
1673		offset += class->size;
1674		index++;
1675	}
1676
1677	kunmap_atomic(addr);
1678
1679	*obj_idx = index;
1680
1681	return handle;
1682}
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684struct zs_compact_control {
1685	/* Source spage for migration which could be a subpage of zspage */
1686	struct page *s_page;
1687	/* Destination page for migration which should be a first page
1688	 * of zspage. */
1689	struct page *d_page;
1690	 /* Starting object index within @s_page which used for live object
1691	  * in the subpage. */
1692	int obj_idx;
1693};
1694
1695static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1696				struct zs_compact_control *cc)
1697{
1698	unsigned long used_obj, free_obj;
1699	unsigned long handle;
1700	struct page *s_page = cc->s_page;
1701	struct page *d_page = cc->d_page;
1702	int obj_idx = cc->obj_idx;
1703	int ret = 0;
1704
1705	while (1) {
1706		handle = find_alloced_obj(class, s_page, &obj_idx);
1707		if (!handle) {
1708			s_page = get_next_page(s_page);
1709			if (!s_page)
1710				break;
1711			obj_idx = 0;
1712			continue;
1713		}
1714
1715		/* Stop if there is no more space */
1716		if (zspage_full(class, get_zspage(d_page))) {
1717			unpin_tag(handle);
1718			ret = -ENOMEM;
1719			break;
1720		}
1721
1722		used_obj = handle_to_obj(handle);
1723		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1724		zs_object_copy(class, free_obj, used_obj);
1725		obj_idx++;
1726		/*
1727		 * record_obj updates handle's value to free_obj and it will
1728		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1729		 * breaks synchronization using pin_tag(e,g, zs_free) so
1730		 * let's keep the lock bit.
1731		 */
1732		free_obj |= BIT(HANDLE_PIN_BIT);
1733		record_obj(handle, free_obj);
1734		unpin_tag(handle);
1735		obj_free(class, used_obj);
1736	}
1737
1738	/* Remember last position in this iteration */
1739	cc->s_page = s_page;
1740	cc->obj_idx = obj_idx;
1741
1742	return ret;
1743}
1744
1745static struct zspage *isolate_zspage(struct size_class *class, bool source)
1746{
1747	int i;
1748	struct zspage *zspage;
1749	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1750
1751	if (!source) {
1752		fg[0] = ZS_ALMOST_FULL;
1753		fg[1] = ZS_ALMOST_EMPTY;
1754	}
1755
1756	for (i = 0; i < 2; i++) {
1757		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1758							struct zspage, list);
1759		if (zspage) {
1760			VM_BUG_ON(is_zspage_isolated(zspage));
1761			remove_zspage(class, zspage, fg[i]);
1762			return zspage;
1763		}
1764	}
1765
1766	return zspage;
1767}
1768
1769/*
1770 * putback_zspage - add @zspage into right class's fullness list
1771 * @class: destination class
1772 * @zspage: target page
1773 *
1774 * Return @zspage's fullness_group
1775 */
1776static enum fullness_group putback_zspage(struct size_class *class,
1777			struct zspage *zspage)
1778{
1779	enum fullness_group fullness;
1780
1781	VM_BUG_ON(is_zspage_isolated(zspage));
1782
1783	fullness = get_fullness_group(class, zspage);
1784	insert_zspage(class, zspage, fullness);
1785	set_zspage_mapping(zspage, class->index, fullness);
1786
1787	return fullness;
1788}
1789
1790#ifdef CONFIG_COMPACTION
1791/*
1792 * To prevent zspage destroy during migration, zspage freeing should
1793 * hold locks of all pages in the zspage.
1794 */
1795static void lock_zspage(struct zspage *zspage)
1796{
1797	struct page *page = get_first_page(zspage);
1798
1799	do {
1800		lock_page(page);
1801	} while ((page = get_next_page(page)) != NULL);
1802}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804static int zs_init_fs_context(struct fs_context *fc)
1805{
1806	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
1807}
 
1808
1809static struct file_system_type zsmalloc_fs = {
1810	.name		= "zsmalloc",
1811	.init_fs_context = zs_init_fs_context,
1812	.kill_sb	= kill_anon_super,
1813};
1814
1815static int zsmalloc_mount(void)
 
1816{
1817	int ret = 0;
1818
1819	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1820	if (IS_ERR(zsmalloc_mnt))
1821		ret = PTR_ERR(zsmalloc_mnt);
1822
1823	return ret;
1824}
1825
1826static void zsmalloc_unmount(void)
1827{
1828	kern_unmount(zsmalloc_mnt);
1829}
 
1830
1831static void migrate_lock_init(struct zspage *zspage)
1832{
1833	rwlock_init(&zspage->lock);
1834}
1835
1836static void migrate_read_lock(struct zspage *zspage)
1837{
1838	read_lock(&zspage->lock);
1839}
1840
1841static void migrate_read_unlock(struct zspage *zspage)
1842{
1843	read_unlock(&zspage->lock);
1844}
1845
 
1846static void migrate_write_lock(struct zspage *zspage)
1847{
1848	write_lock(&zspage->lock);
1849}
1850
 
 
 
 
 
1851static void migrate_write_unlock(struct zspage *zspage)
1852{
1853	write_unlock(&zspage->lock);
1854}
1855
1856/* Number of isolated subpage for *page migration* in this zspage */
1857static void inc_zspage_isolation(struct zspage *zspage)
1858{
1859	zspage->isolated++;
1860}
1861
1862static void dec_zspage_isolation(struct zspage *zspage)
1863{
 
1864	zspage->isolated--;
1865}
1866
1867static void putback_zspage_deferred(struct zs_pool *pool,
1868				    struct size_class *class,
1869				    struct zspage *zspage)
1870{
1871	enum fullness_group fg;
1872
1873	fg = putback_zspage(class, zspage);
1874	if (fg == ZS_EMPTY)
1875		schedule_work(&pool->free_work);
1876
1877}
1878
1879static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1880{
1881	VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1882	atomic_long_dec(&pool->isolated_pages);
1883	/*
1884	 * There's no possibility of racing, since wait_for_isolated_drain()
1885	 * checks the isolated count under &class->lock after enqueuing
1886	 * on migration_wait.
1887	 */
1888	if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1889		wake_up_all(&pool->migration_wait);
1890}
1891
1892static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1893				struct page *newpage, struct page *oldpage)
1894{
1895	struct page *page;
1896	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1897	int idx = 0;
1898
1899	page = get_first_page(zspage);
1900	do {
1901		if (page == oldpage)
1902			pages[idx] = newpage;
1903		else
1904			pages[idx] = page;
1905		idx++;
1906	} while ((page = get_next_page(page)) != NULL);
1907
1908	create_page_chain(class, zspage, pages);
1909	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1910	if (unlikely(PageHugeObject(oldpage)))
1911		newpage->index = oldpage->index;
1912	__SetPageMovable(newpage, page_mapping(oldpage));
1913}
1914
1915static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1916{
1917	struct zs_pool *pool;
1918	struct size_class *class;
1919	int class_idx;
1920	enum fullness_group fullness;
1921	struct zspage *zspage;
1922	struct address_space *mapping;
1923
1924	/*
1925	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1926	 * lock_zspage in free_zspage.
1927	 */
1928	VM_BUG_ON_PAGE(!PageMovable(page), page);
1929	VM_BUG_ON_PAGE(PageIsolated(page), page);
1930
1931	zspage = get_zspage(page);
1932
1933	/*
1934	 * Without class lock, fullness could be stale while class_idx is okay
1935	 * because class_idx is constant unless page is freed so we should get
1936	 * fullness again under class lock.
1937	 */
1938	get_zspage_mapping(zspage, &class_idx, &fullness);
1939	mapping = page_mapping(page);
1940	pool = mapping->private_data;
1941	class = pool->size_class[class_idx];
1942
1943	spin_lock(&class->lock);
1944	if (get_zspage_inuse(zspage) == 0) {
1945		spin_unlock(&class->lock);
1946		return false;
1947	}
1948
1949	/* zspage is isolated for object migration */
1950	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1951		spin_unlock(&class->lock);
1952		return false;
1953	}
1954
1955	/*
1956	 * If this is first time isolation for the zspage, isolate zspage from
1957	 * size_class to prevent further object allocation from the zspage.
1958	 */
1959	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1960		get_zspage_mapping(zspage, &class_idx, &fullness);
1961		atomic_long_inc(&pool->isolated_pages);
1962		remove_zspage(class, zspage, fullness);
1963	}
1964
1965	inc_zspage_isolation(zspage);
1966	spin_unlock(&class->lock);
1967
1968	return true;
1969}
1970
1971static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1972		struct page *page, enum migrate_mode mode)
1973{
1974	struct zs_pool *pool;
1975	struct size_class *class;
1976	int class_idx;
1977	enum fullness_group fullness;
1978	struct zspage *zspage;
1979	struct page *dummy;
1980	void *s_addr, *d_addr, *addr;
1981	int offset, pos;
1982	unsigned long handle, head;
1983	unsigned long old_obj, new_obj;
1984	unsigned int obj_idx;
1985	int ret = -EAGAIN;
1986
1987	/*
1988	 * We cannot support the _NO_COPY case here, because copy needs to
1989	 * happen under the zs lock, which does not work with
1990	 * MIGRATE_SYNC_NO_COPY workflow.
1991	 */
1992	if (mode == MIGRATE_SYNC_NO_COPY)
1993		return -EINVAL;
1994
1995	VM_BUG_ON_PAGE(!PageMovable(page), page);
1996	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1997
 
1998	zspage = get_zspage(page);
 
1999
2000	/* Concurrent compactor cannot migrate any subpage in zspage */
2001	migrate_write_lock(zspage);
2002	get_zspage_mapping(zspage, &class_idx, &fullness);
2003	pool = mapping->private_data;
2004	class = pool->size_class[class_idx];
2005	offset = get_first_obj_offset(page);
2006
2007	spin_lock(&class->lock);
2008	if (!get_zspage_inuse(zspage)) {
2009		/*
2010		 * Set "offset" to end of the page so that every loops
2011		 * skips unnecessary object scanning.
2012		 */
2013		offset = PAGE_SIZE;
2014	}
2015
2016	pos = offset;
2017	s_addr = kmap_atomic(page);
2018	while (pos < PAGE_SIZE) {
2019		head = obj_to_head(page, s_addr + pos);
2020		if (head & OBJ_ALLOCATED_TAG) {
2021			handle = head & ~OBJ_ALLOCATED_TAG;
2022			if (!trypin_tag(handle))
2023				goto unpin_objects;
2024		}
2025		pos += class->size;
2026	}
2027
2028	/*
2029	 * Here, any user cannot access all objects in the zspage so let's move.
2030	 */
2031	d_addr = kmap_atomic(newpage);
2032	memcpy(d_addr, s_addr, PAGE_SIZE);
2033	kunmap_atomic(d_addr);
2034
2035	for (addr = s_addr + offset; addr < s_addr + pos;
2036					addr += class->size) {
2037		head = obj_to_head(page, addr);
2038		if (head & OBJ_ALLOCATED_TAG) {
2039			handle = head & ~OBJ_ALLOCATED_TAG;
2040			if (!testpin_tag(handle))
2041				BUG();
2042
2043			old_obj = handle_to_obj(handle);
2044			obj_to_location(old_obj, &dummy, &obj_idx);
2045			new_obj = (unsigned long)location_to_obj(newpage,
2046								obj_idx);
2047			new_obj |= BIT(HANDLE_PIN_BIT);
2048			record_obj(handle, new_obj);
2049		}
2050	}
 
2051
2052	replace_sub_page(class, zspage, newpage, page);
2053	get_page(newpage);
2054
2055	dec_zspage_isolation(zspage);
2056
2057	/*
2058	 * Page migration is done so let's putback isolated zspage to
2059	 * the list if @page is final isolated subpage in the zspage.
2060	 */
2061	if (!is_zspage_isolated(zspage)) {
2062		/*
2063		 * We cannot race with zs_destroy_pool() here because we wait
2064		 * for isolation to hit zero before we start destroying.
2065		 * Also, we ensure that everyone can see pool->destroying before
2066		 * we start waiting.
2067		 */
2068		putback_zspage_deferred(pool, class, zspage);
2069		zs_pool_dec_isolated(pool);
2070	}
2071
2072	reset_page(page);
2073	put_page(page);
2074	page = newpage;
2075
2076	ret = MIGRATEPAGE_SUCCESS;
2077unpin_objects:
2078	for (addr = s_addr + offset; addr < s_addr + pos;
2079						addr += class->size) {
2080		head = obj_to_head(page, addr);
2081		if (head & OBJ_ALLOCATED_TAG) {
2082			handle = head & ~OBJ_ALLOCATED_TAG;
2083			if (!testpin_tag(handle))
2084				BUG();
2085			unpin_tag(handle);
2086		}
2087	}
2088	kunmap_atomic(s_addr);
2089	spin_unlock(&class->lock);
2090	migrate_write_unlock(zspage);
2091
2092	return ret;
2093}
2094
2095static void zs_page_putback(struct page *page)
2096{
2097	struct zs_pool *pool;
2098	struct size_class *class;
2099	int class_idx;
2100	enum fullness_group fg;
2101	struct address_space *mapping;
2102	struct zspage *zspage;
2103
2104	VM_BUG_ON_PAGE(!PageMovable(page), page);
2105	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2106
2107	zspage = get_zspage(page);
2108	get_zspage_mapping(zspage, &class_idx, &fg);
2109	mapping = page_mapping(page);
2110	pool = mapping->private_data;
2111	class = pool->size_class[class_idx];
2112
2113	spin_lock(&class->lock);
2114	dec_zspage_isolation(zspage);
2115	if (!is_zspage_isolated(zspage)) {
2116		/*
2117		 * Due to page_lock, we cannot free zspage immediately
2118		 * so let's defer.
2119		 */
2120		putback_zspage_deferred(pool, class, zspage);
2121		zs_pool_dec_isolated(pool);
2122	}
2123	spin_unlock(&class->lock);
2124}
2125
2126static const struct address_space_operations zsmalloc_aops = {
2127	.isolate_page = zs_page_isolate,
2128	.migratepage = zs_page_migrate,
2129	.putback_page = zs_page_putback,
2130};
2131
2132static int zs_register_migration(struct zs_pool *pool)
2133{
2134	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2135	if (IS_ERR(pool->inode)) {
2136		pool->inode = NULL;
2137		return 1;
2138	}
2139
2140	pool->inode->i_mapping->private_data = pool;
2141	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2142	return 0;
2143}
2144
2145static bool pool_isolated_are_drained(struct zs_pool *pool)
2146{
2147	return atomic_long_read(&pool->isolated_pages) == 0;
2148}
2149
2150/* Function for resolving migration */
2151static void wait_for_isolated_drain(struct zs_pool *pool)
2152{
2153
2154	/*
2155	 * We're in the process of destroying the pool, so there are no
2156	 * active allocations. zs_page_isolate() fails for completely free
2157	 * zspages, so we need only wait for the zs_pool's isolated
2158	 * count to hit zero.
2159	 */
2160	wait_event(pool->migration_wait,
2161		   pool_isolated_are_drained(pool));
2162}
2163
2164static void zs_unregister_migration(struct zs_pool *pool)
2165{
2166	pool->destroying = true;
2167	/*
2168	 * We need a memory barrier here to ensure global visibility of
2169	 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2170	 * case we don't care, or it will be > 0 and pool->destroying will
2171	 * ensure that we wake up once isolation hits 0.
2172	 */
2173	smp_mb();
2174	wait_for_isolated_drain(pool); /* This can block */
2175	flush_work(&pool->free_work);
2176	iput(pool->inode);
2177}
2178
2179/*
2180 * Caller should hold page_lock of all pages in the zspage
2181 * In here, we cannot use zspage meta data.
2182 */
2183static void async_free_zspage(struct work_struct *work)
2184{
2185	int i;
2186	struct size_class *class;
2187	unsigned int class_idx;
2188	enum fullness_group fullness;
2189	struct zspage *zspage, *tmp;
2190	LIST_HEAD(free_pages);
2191	struct zs_pool *pool = container_of(work, struct zs_pool,
2192					free_work);
2193
2194	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2195		class = pool->size_class[i];
2196		if (class->index != i)
2197			continue;
2198
2199		spin_lock(&class->lock);
2200		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2201		spin_unlock(&class->lock);
2202	}
2203
2204
2205	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2206		list_del(&zspage->list);
2207		lock_zspage(zspage);
2208
2209		get_zspage_mapping(zspage, &class_idx, &fullness);
2210		VM_BUG_ON(fullness != ZS_EMPTY);
2211		class = pool->size_class[class_idx];
2212		spin_lock(&class->lock);
2213		__free_zspage(pool, pool->size_class[class_idx], zspage);
2214		spin_unlock(&class->lock);
 
 
 
2215	}
2216};
2217
2218static void kick_deferred_free(struct zs_pool *pool)
2219{
2220	schedule_work(&pool->free_work);
2221}
2222
 
 
 
 
 
2223static void init_deferred_free(struct zs_pool *pool)
2224{
2225	INIT_WORK(&pool->free_work, async_free_zspage);
2226}
2227
2228static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2229{
2230	struct page *page = get_first_page(zspage);
2231
2232	do {
2233		WARN_ON(!trylock_page(page));
2234		__SetPageMovable(page, pool->inode->i_mapping);
2235		unlock_page(page);
2236	} while ((page = get_next_page(page)) != NULL);
2237}
 
 
2238#endif
2239
2240/*
2241 *
2242 * Based on the number of unused allocated objects calculate
2243 * and return the number of pages that we can free.
2244 */
2245static unsigned long zs_can_compact(struct size_class *class)
2246{
2247	unsigned long obj_wasted;
2248	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2249	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2250
2251	if (obj_allocated <= obj_used)
2252		return 0;
2253
2254	obj_wasted = obj_allocated - obj_used;
2255	obj_wasted /= class->objs_per_zspage;
2256
2257	return obj_wasted * class->pages_per_zspage;
2258}
2259
2260static void __zs_compact(struct zs_pool *pool, struct size_class *class)
 
2261{
2262	struct zs_compact_control cc;
2263	struct zspage *src_zspage;
2264	struct zspage *dst_zspage = NULL;
 
2265
2266	spin_lock(&class->lock);
 
 
 
 
2267	while ((src_zspage = isolate_zspage(class, true))) {
 
 
2268
2269		if (!zs_can_compact(class))
2270			break;
2271
2272		cc.obj_idx = 0;
2273		cc.s_page = get_first_page(src_zspage);
2274
2275		while ((dst_zspage = isolate_zspage(class, false))) {
 
 
2276			cc.d_page = get_first_page(dst_zspage);
2277			/*
2278			 * If there is no more space in dst_page, resched
2279			 * and see if anyone had allocated another zspage.
2280			 */
2281			if (!migrate_zspage(pool, class, &cc))
2282				break;
2283
2284			putback_zspage(class, dst_zspage);
 
 
 
 
2285		}
2286
2287		/* Stop if we couldn't find slot */
2288		if (dst_zspage == NULL)
2289			break;
2290
2291		putback_zspage(class, dst_zspage);
 
 
2292		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
 
2293			free_zspage(pool, class, src_zspage);
2294			pool->stats.pages_compacted += class->pages_per_zspage;
2295		}
2296		spin_unlock(&class->lock);
 
2297		cond_resched();
2298		spin_lock(&class->lock);
2299	}
2300
2301	if (src_zspage)
2302		putback_zspage(class, src_zspage);
 
 
2303
2304	spin_unlock(&class->lock);
 
 
2305}
2306
2307unsigned long zs_compact(struct zs_pool *pool)
2308{
2309	int i;
2310	struct size_class *class;
 
2311
2312	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2313		class = pool->size_class[i];
2314		if (!class)
2315			continue;
2316		if (class->index != i)
2317			continue;
2318		__zs_compact(pool, class);
2319	}
 
2320
2321	return pool->stats.pages_compacted;
2322}
2323EXPORT_SYMBOL_GPL(zs_compact);
2324
2325void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2326{
2327	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2328}
2329EXPORT_SYMBOL_GPL(zs_pool_stats);
2330
2331static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2332		struct shrink_control *sc)
2333{
2334	unsigned long pages_freed;
2335	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2336			shrinker);
2337
2338	pages_freed = pool->stats.pages_compacted;
2339	/*
2340	 * Compact classes and calculate compaction delta.
2341	 * Can run concurrently with a manually triggered
2342	 * (by user) compaction.
2343	 */
2344	pages_freed = zs_compact(pool) - pages_freed;
2345
2346	return pages_freed ? pages_freed : SHRINK_STOP;
2347}
2348
2349static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2350		struct shrink_control *sc)
2351{
2352	int i;
2353	struct size_class *class;
2354	unsigned long pages_to_free = 0;
2355	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2356			shrinker);
2357
2358	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2359		class = pool->size_class[i];
2360		if (!class)
2361			continue;
2362		if (class->index != i)
2363			continue;
2364
2365		pages_to_free += zs_can_compact(class);
2366	}
2367
2368	return pages_to_free;
2369}
2370
2371static void zs_unregister_shrinker(struct zs_pool *pool)
2372{
2373	unregister_shrinker(&pool->shrinker);
2374}
2375
2376static int zs_register_shrinker(struct zs_pool *pool)
2377{
2378	pool->shrinker.scan_objects = zs_shrinker_scan;
2379	pool->shrinker.count_objects = zs_shrinker_count;
2380	pool->shrinker.batch = 0;
2381	pool->shrinker.seeks = DEFAULT_SEEKS;
2382
2383	return register_shrinker(&pool->shrinker);
 
2384}
2385
2386/**
2387 * zs_create_pool - Creates an allocation pool to work from.
2388 * @name: pool name to be created
2389 *
2390 * This function must be called before anything when using
2391 * the zsmalloc allocator.
2392 *
2393 * On success, a pointer to the newly created pool is returned,
2394 * otherwise NULL.
2395 */
2396struct zs_pool *zs_create_pool(const char *name)
2397{
2398	int i;
2399	struct zs_pool *pool;
2400	struct size_class *prev_class = NULL;
2401
2402	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2403	if (!pool)
2404		return NULL;
2405
2406	init_deferred_free(pool);
 
2407
2408	pool->name = kstrdup(name, GFP_KERNEL);
2409	if (!pool->name)
2410		goto err;
2411
2412#ifdef CONFIG_COMPACTION
2413	init_waitqueue_head(&pool->migration_wait);
2414#endif
2415
2416	if (create_cache(pool))
2417		goto err;
2418
2419	/*
2420	 * Iterate reversely, because, size of size_class that we want to use
2421	 * for merging should be larger or equal to current size.
2422	 */
2423	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2424		int size;
2425		int pages_per_zspage;
2426		int objs_per_zspage;
2427		struct size_class *class;
2428		int fullness = 0;
2429
2430		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2431		if (size > ZS_MAX_ALLOC_SIZE)
2432			size = ZS_MAX_ALLOC_SIZE;
2433		pages_per_zspage = get_pages_per_zspage(size);
2434		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2435
2436		/*
2437		 * We iterate from biggest down to smallest classes,
2438		 * so huge_class_size holds the size of the first huge
2439		 * class. Any object bigger than or equal to that will
2440		 * endup in the huge class.
2441		 */
2442		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2443				!huge_class_size) {
2444			huge_class_size = size;
2445			/*
2446			 * The object uses ZS_HANDLE_SIZE bytes to store the
2447			 * handle. We need to subtract it, because zs_malloc()
2448			 * unconditionally adds handle size before it performs
2449			 * size class search - so object may be smaller than
2450			 * huge class size, yet it still can end up in the huge
2451			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2452			 * right before class lookup.
2453			 */
2454			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2455		}
2456
2457		/*
2458		 * size_class is used for normal zsmalloc operation such
2459		 * as alloc/free for that size. Although it is natural that we
2460		 * have one size_class for each size, there is a chance that we
2461		 * can get more memory utilization if we use one size_class for
2462		 * many different sizes whose size_class have same
2463		 * characteristics. So, we makes size_class point to
2464		 * previous size_class if possible.
2465		 */
2466		if (prev_class) {
2467			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2468				pool->size_class[i] = prev_class;
2469				continue;
2470			}
2471		}
2472
2473		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2474		if (!class)
2475			goto err;
2476
2477		class->size = size;
2478		class->index = i;
2479		class->pages_per_zspage = pages_per_zspage;
2480		class->objs_per_zspage = objs_per_zspage;
2481		spin_lock_init(&class->lock);
2482		pool->size_class[i] = class;
2483		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2484							fullness++)
2485			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2486
2487		prev_class = class;
2488	}
2489
2490	/* debug only, don't abort if it fails */
2491	zs_pool_stat_create(pool, name);
2492
2493	if (zs_register_migration(pool))
2494		goto err;
2495
2496	/*
2497	 * Not critical since shrinker is only used to trigger internal
2498	 * defragmentation of the pool which is pretty optional thing.  If
2499	 * registration fails we still can use the pool normally and user can
2500	 * trigger compaction manually. Thus, ignore return code.
2501	 */
2502	zs_register_shrinker(pool);
2503
 
 
 
 
2504	return pool;
2505
2506err:
2507	zs_destroy_pool(pool);
2508	return NULL;
2509}
2510EXPORT_SYMBOL_GPL(zs_create_pool);
2511
2512void zs_destroy_pool(struct zs_pool *pool)
2513{
2514	int i;
2515
2516	zs_unregister_shrinker(pool);
2517	zs_unregister_migration(pool);
2518	zs_pool_stat_destroy(pool);
2519
2520	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2521		int fg;
2522		struct size_class *class = pool->size_class[i];
2523
2524		if (!class)
2525			continue;
2526
2527		if (class->index != i)
2528			continue;
2529
2530		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2531			if (!list_empty(&class->fullness_list[fg])) {
2532				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2533					class->size, fg);
2534			}
2535		}
2536		kfree(class);
2537	}
2538
2539	destroy_cache(pool);
2540	kfree(pool->name);
2541	kfree(pool);
2542}
2543EXPORT_SYMBOL_GPL(zs_destroy_pool);
2544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545static int __init zs_init(void)
2546{
2547	int ret;
2548
2549	ret = zsmalloc_mount();
2550	if (ret)
2551		goto out;
2552
2553	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2554				zs_cpu_prepare, zs_cpu_dead);
2555	if (ret)
2556		goto hp_setup_fail;
2557
2558#ifdef CONFIG_ZPOOL
2559	zpool_register_driver(&zs_zpool_driver);
2560#endif
2561
2562	zs_stat_init();
2563
2564	return 0;
2565
2566hp_setup_fail:
2567	zsmalloc_unmount();
2568out:
2569	return ret;
2570}
2571
2572static void __exit zs_exit(void)
2573{
2574#ifdef CONFIG_ZPOOL
2575	zpool_unregister_driver(&zs_zpool_driver);
2576#endif
2577	zsmalloc_unmount();
2578	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2579
2580	zs_stat_exit();
2581}
2582
2583module_init(zs_init);
2584module_exit(zs_exit);
2585
2586MODULE_LICENSE("Dual BSD/GPL");
2587MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
v6.2
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->index: links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->page_type: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33/*
  34 * lock ordering:
  35 *	page_lock
  36 *	pool->lock
  37 *	zspage->lock
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/kernel.h>
  42#include <linux/sched.h>
 
  43#include <linux/bitops.h>
  44#include <linux/errno.h>
  45#include <linux/highmem.h>
  46#include <linux/string.h>
  47#include <linux/slab.h>
  48#include <linux/pgtable.h>
  49#include <asm/tlbflush.h>
 
  50#include <linux/cpumask.h>
  51#include <linux/cpu.h>
  52#include <linux/vmalloc.h>
  53#include <linux/preempt.h>
  54#include <linux/spinlock.h>
  55#include <linux/shrinker.h>
  56#include <linux/types.h>
  57#include <linux/debugfs.h>
  58#include <linux/zsmalloc.h>
  59#include <linux/zpool.h>
 
 
  60#include <linux/migrate.h>
  61#include <linux/wait.h>
  62#include <linux/pagemap.h>
  63#include <linux/fs.h>
  64#include <linux/local_lock.h>
  65
  66#define ZSPAGE_MAGIC	0x58
  67
  68/*
  69 * This must be power of 2 and greater than or equal to sizeof(link_free).
  70 * These two conditions ensure that any 'struct link_free' itself doesn't
  71 * span more than 1 page which avoids complex case of mapping 2 pages simply
  72 * to restore link_free pointer values.
  73 */
  74#define ZS_ALIGN		8
  75
  76/*
  77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  79 */
  80#define ZS_MAX_ZSPAGE_ORDER 2
  81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  82
  83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  84
  85/*
  86 * Object location (<PFN>, <obj_idx>) is encoded as
  87 * a single (unsigned long) handle value.
  88 *
  89 * Note that object index <obj_idx> starts from 0.
  90 *
  91 * This is made more complicated by various memory models and PAE.
  92 */
  93
  94#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  95#ifdef MAX_PHYSMEM_BITS
  96#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  97#else
  98/*
  99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 100 * be PAGE_SHIFT
 101 */
 102#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
 103#endif
 104#endif
 105
 106#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 107
 108/*
 
 
 
 
 
 
 
 
 
 109 * Head in allocated object should have OBJ_ALLOCATED_TAG
 110 * to identify the object was allocated or not.
 111 * It's okay to add the status bit in the least bit because
 112 * header keeps handle which is 4byte-aligned address so we
 113 * have room for two bit at least.
 114 */
 115#define OBJ_ALLOCATED_TAG 1
 116
 117#ifdef CONFIG_ZPOOL
 118/*
 119 * The second least-significant bit in the object's header identifies if the
 120 * value stored at the header is a deferred handle from the last reclaim
 121 * attempt.
 122 *
 123 * As noted above, this is valid because we have room for two bits.
 124 */
 125#define OBJ_DEFERRED_HANDLE_TAG	2
 126#define OBJ_TAG_BITS	2
 127#define OBJ_TAG_MASK	(OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
 128#else
 129#define OBJ_TAG_BITS	1
 130#define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
 131#endif /* CONFIG_ZPOOL */
 132
 133#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 134#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 135
 136#define HUGE_BITS	1
 137#define FULLNESS_BITS	2
 138#define CLASS_BITS	8
 139#define ISOLATED_BITS	3
 140#define MAGIC_VAL_BITS	8
 141
 142#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 143/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 144#define ZS_MIN_ALLOC_SIZE \
 145	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 146/* each chunk includes extra space to keep handle */
 147#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 148
 149/*
 150 * On systems with 4K page size, this gives 255 size classes! There is a
 151 * trader-off here:
 152 *  - Large number of size classes is potentially wasteful as free page are
 153 *    spread across these classes
 154 *  - Small number of size classes causes large internal fragmentation
 155 *  - Probably its better to use specific size classes (empirically
 156 *    determined). NOTE: all those class sizes must be set as multiple of
 157 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 158 *
 159 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 160 *  (reason above)
 161 */
 162#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 163#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 164				      ZS_SIZE_CLASS_DELTA) + 1)
 165
 166enum fullness_group {
 167	ZS_EMPTY,
 168	ZS_ALMOST_EMPTY,
 169	ZS_ALMOST_FULL,
 170	ZS_FULL,
 171	NR_ZS_FULLNESS,
 172};
 173
 174enum class_stat_type {
 175	CLASS_EMPTY,
 176	CLASS_ALMOST_EMPTY,
 177	CLASS_ALMOST_FULL,
 178	CLASS_FULL,
 179	OBJ_ALLOCATED,
 180	OBJ_USED,
 181	NR_ZS_STAT_TYPE,
 182};
 183
 184struct zs_size_stat {
 185	unsigned long objs[NR_ZS_STAT_TYPE];
 186};
 187
 188#ifdef CONFIG_ZSMALLOC_STAT
 189static struct dentry *zs_stat_root;
 190#endif
 191
 
 
 
 
 192/*
 193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 194 *	n <= N / f, where
 195 * n = number of allocated objects
 196 * N = total number of objects zspage can store
 197 * f = fullness_threshold_frac
 198 *
 199 * Similarly, we assign zspage to:
 200 *	ZS_ALMOST_FULL	when n > N / f
 201 *	ZS_EMPTY	when n == 0
 202 *	ZS_FULL		when n == N
 203 *
 204 * (see: fix_fullness_group())
 205 */
 206static const int fullness_threshold_frac = 4;
 207static size_t huge_class_size;
 208
 209struct size_class {
 
 210	struct list_head fullness_list[NR_ZS_FULLNESS];
 211	/*
 212	 * Size of objects stored in this class. Must be multiple
 213	 * of ZS_ALIGN.
 214	 */
 215	int size;
 216	int objs_per_zspage;
 217	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 218	int pages_per_zspage;
 219
 220	unsigned int index;
 221	struct zs_size_stat stats;
 222};
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224/*
 225 * Placed within free objects to form a singly linked list.
 226 * For every zspage, zspage->freeobj gives head of this list.
 227 *
 228 * This must be power of 2 and less than or equal to ZS_ALIGN
 229 */
 230struct link_free {
 231	union {
 232		/*
 233		 * Free object index;
 234		 * It's valid for non-allocated object
 235		 */
 236		unsigned long next;
 237		/*
 238		 * Handle of allocated object.
 239		 */
 240		unsigned long handle;
 241#ifdef CONFIG_ZPOOL
 242		/*
 243		 * Deferred handle of a reclaimed object.
 244		 */
 245		unsigned long deferred_handle;
 246#endif
 247	};
 248};
 249
 250struct zs_pool {
 251	const char *name;
 252
 253	struct size_class *size_class[ZS_SIZE_CLASSES];
 254	struct kmem_cache *handle_cachep;
 255	struct kmem_cache *zspage_cachep;
 256
 257	atomic_long_t pages_allocated;
 258
 259	struct zs_pool_stats stats;
 260
 261	/* Compact classes */
 262	struct shrinker shrinker;
 263
 264#ifdef CONFIG_ZPOOL
 265	/* List tracking the zspages in LRU order by most recently added object */
 266	struct list_head lru;
 267	struct zpool *zpool;
 268	const struct zpool_ops *zpool_ops;
 269#endif
 270
 271#ifdef CONFIG_ZSMALLOC_STAT
 272	struct dentry *stat_dentry;
 273#endif
 274#ifdef CONFIG_COMPACTION
 
 275	struct work_struct free_work;
 
 
 
 
 276#endif
 277	spinlock_t lock;
 278};
 279
 280struct zspage {
 281	struct {
 282		unsigned int huge:HUGE_BITS;
 283		unsigned int fullness:FULLNESS_BITS;
 284		unsigned int class:CLASS_BITS + 1;
 285		unsigned int isolated:ISOLATED_BITS;
 286		unsigned int magic:MAGIC_VAL_BITS;
 287	};
 288	unsigned int inuse;
 289	unsigned int freeobj;
 290	struct page *first_page;
 291	struct list_head list; /* fullness list */
 292
 293#ifdef CONFIG_ZPOOL
 294	/* links the zspage to the lru list in the pool */
 295	struct list_head lru;
 296	bool under_reclaim;
 297#endif
 298
 299	struct zs_pool *pool;
 300	rwlock_t lock;
 301};
 302
 303struct mapping_area {
 304	local_lock_t lock;
 
 
 305	char *vm_buf; /* copy buffer for objects that span pages */
 
 306	char *vm_addr; /* address of kmap_atomic()'ed pages */
 307	enum zs_mapmode vm_mm; /* mapping mode */
 308};
 309
 310/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 311static void SetZsHugePage(struct zspage *zspage)
 312{
 313	zspage->huge = 1;
 314}
 315
 316static bool ZsHugePage(struct zspage *zspage)
 317{
 318	return zspage->huge;
 319}
 320
 321static void migrate_lock_init(struct zspage *zspage);
 322static void migrate_read_lock(struct zspage *zspage);
 323static void migrate_read_unlock(struct zspage *zspage);
 324
 325#ifdef CONFIG_COMPACTION
 326static void migrate_write_lock(struct zspage *zspage);
 327static void migrate_write_lock_nested(struct zspage *zspage);
 328static void migrate_write_unlock(struct zspage *zspage);
 329static void kick_deferred_free(struct zs_pool *pool);
 330static void init_deferred_free(struct zs_pool *pool);
 331static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 332#else
 333static void migrate_write_lock(struct zspage *zspage) {}
 334static void migrate_write_lock_nested(struct zspage *zspage) {}
 335static void migrate_write_unlock(struct zspage *zspage) {}
 
 
 
 
 336static void kick_deferred_free(struct zs_pool *pool) {}
 337static void init_deferred_free(struct zs_pool *pool) {}
 338static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 339#endif
 340
 341static int create_cache(struct zs_pool *pool)
 342{
 343	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 344					0, 0, NULL);
 345	if (!pool->handle_cachep)
 346		return 1;
 347
 348	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 349					0, 0, NULL);
 350	if (!pool->zspage_cachep) {
 351		kmem_cache_destroy(pool->handle_cachep);
 352		pool->handle_cachep = NULL;
 353		return 1;
 354	}
 355
 356	return 0;
 357}
 358
 359static void destroy_cache(struct zs_pool *pool)
 360{
 361	kmem_cache_destroy(pool->handle_cachep);
 362	kmem_cache_destroy(pool->zspage_cachep);
 363}
 364
 365static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 366{
 367	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 368			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 369}
 370
 371static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 372{
 373	kmem_cache_free(pool->handle_cachep, (void *)handle);
 374}
 375
 376static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 377{
 378	return kmem_cache_zalloc(pool->zspage_cachep,
 379			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 380}
 381
 382static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 383{
 384	kmem_cache_free(pool->zspage_cachep, zspage);
 385}
 386
 387/* pool->lock(which owns the handle) synchronizes races */
 388static void record_obj(unsigned long handle, unsigned long obj)
 389{
 390	*(unsigned long *)handle = obj;
 
 
 
 
 
 391}
 392
 393/* zpool driver */
 394
 395#ifdef CONFIG_ZPOOL
 396
 397static void *zs_zpool_create(const char *name, gfp_t gfp,
 398			     const struct zpool_ops *zpool_ops,
 399			     struct zpool *zpool)
 400{
 401	/*
 402	 * Ignore global gfp flags: zs_malloc() may be invoked from
 403	 * different contexts and its caller must provide a valid
 404	 * gfp mask.
 405	 */
 406	struct zs_pool *pool = zs_create_pool(name);
 407
 408	if (pool) {
 409		pool->zpool = zpool;
 410		pool->zpool_ops = zpool_ops;
 411	}
 412
 413	return pool;
 414}
 415
 416static void zs_zpool_destroy(void *pool)
 417{
 418	zs_destroy_pool(pool);
 419}
 420
 421static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 422			unsigned long *handle)
 423{
 424	*handle = zs_malloc(pool, size, gfp);
 425
 426	if (IS_ERR_VALUE(*handle))
 427		return PTR_ERR((void *)*handle);
 428	return 0;
 429}
 430static void zs_zpool_free(void *pool, unsigned long handle)
 431{
 432	zs_free(pool, handle);
 433}
 434
 435static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
 436
 437static int zs_zpool_shrink(void *pool, unsigned int pages,
 438			unsigned int *reclaimed)
 439{
 440	unsigned int total = 0;
 441	int ret = -EINVAL;
 442
 443	while (total < pages) {
 444		ret = zs_reclaim_page(pool, 8);
 445		if (ret < 0)
 446			break;
 447		total++;
 448	}
 449
 450	if (reclaimed)
 451		*reclaimed = total;
 452
 453	return ret;
 454}
 455
 456static void *zs_zpool_map(void *pool, unsigned long handle,
 457			enum zpool_mapmode mm)
 458{
 459	enum zs_mapmode zs_mm;
 460
 461	switch (mm) {
 462	case ZPOOL_MM_RO:
 463		zs_mm = ZS_MM_RO;
 464		break;
 465	case ZPOOL_MM_WO:
 466		zs_mm = ZS_MM_WO;
 467		break;
 468	case ZPOOL_MM_RW:
 469	default:
 470		zs_mm = ZS_MM_RW;
 471		break;
 472	}
 473
 474	return zs_map_object(pool, handle, zs_mm);
 475}
 476static void zs_zpool_unmap(void *pool, unsigned long handle)
 477{
 478	zs_unmap_object(pool, handle);
 479}
 480
 481static u64 zs_zpool_total_size(void *pool)
 482{
 483	return zs_get_total_pages(pool) << PAGE_SHIFT;
 484}
 485
 486static struct zpool_driver zs_zpool_driver = {
 487	.type =			  "zsmalloc",
 488	.owner =		  THIS_MODULE,
 489	.create =		  zs_zpool_create,
 490	.destroy =		  zs_zpool_destroy,
 491	.malloc_support_movable = true,
 492	.malloc =		  zs_zpool_malloc,
 493	.free =			  zs_zpool_free,
 494	.shrink =		  zs_zpool_shrink,
 495	.map =			  zs_zpool_map,
 496	.unmap =		  zs_zpool_unmap,
 497	.total_size =		  zs_zpool_total_size,
 498};
 499
 500MODULE_ALIAS("zpool-zsmalloc");
 501#endif /* CONFIG_ZPOOL */
 502
 503/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 504static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
 505	.lock	= INIT_LOCAL_LOCK(lock),
 506};
 
 
 
 507
 508static __maybe_unused int is_first_page(struct page *page)
 509{
 510	return PagePrivate(page);
 511}
 512
 513/* Protected by pool->lock */
 514static inline int get_zspage_inuse(struct zspage *zspage)
 515{
 516	return zspage->inuse;
 517}
 518
 519
 520static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 521{
 522	zspage->inuse += val;
 523}
 524
 525static inline struct page *get_first_page(struct zspage *zspage)
 526{
 527	struct page *first_page = zspage->first_page;
 528
 529	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 530	return first_page;
 531}
 532
 533static inline unsigned int get_first_obj_offset(struct page *page)
 534{
 535	return page->page_type;
 536}
 537
 538static inline void set_first_obj_offset(struct page *page, unsigned int offset)
 539{
 540	page->page_type = offset;
 541}
 542
 543static inline unsigned int get_freeobj(struct zspage *zspage)
 544{
 545	return zspage->freeobj;
 546}
 547
 548static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 549{
 550	zspage->freeobj = obj;
 551}
 552
 553static void get_zspage_mapping(struct zspage *zspage,
 554				unsigned int *class_idx,
 555				enum fullness_group *fullness)
 556{
 557	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 558
 559	*fullness = zspage->fullness;
 560	*class_idx = zspage->class;
 561}
 562
 563static struct size_class *zspage_class(struct zs_pool *pool,
 564					     struct zspage *zspage)
 565{
 566	return pool->size_class[zspage->class];
 567}
 568
 569static void set_zspage_mapping(struct zspage *zspage,
 570				unsigned int class_idx,
 571				enum fullness_group fullness)
 572{
 573	zspage->class = class_idx;
 574	zspage->fullness = fullness;
 575}
 576
 577/*
 578 * zsmalloc divides the pool into various size classes where each
 579 * class maintains a list of zspages where each zspage is divided
 580 * into equal sized chunks. Each allocation falls into one of these
 581 * classes depending on its size. This function returns index of the
 582 * size class which has chunk size big enough to hold the given size.
 583 */
 584static int get_size_class_index(int size)
 585{
 586	int idx = 0;
 587
 588	if (likely(size > ZS_MIN_ALLOC_SIZE))
 589		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 590				ZS_SIZE_CLASS_DELTA);
 591
 592	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 593}
 594
 595/* type can be of enum type class_stat_type or fullness_group */
 596static inline void class_stat_inc(struct size_class *class,
 597				int type, unsigned long cnt)
 598{
 599	class->stats.objs[type] += cnt;
 600}
 601
 602/* type can be of enum type class_stat_type or fullness_group */
 603static inline void class_stat_dec(struct size_class *class,
 604				int type, unsigned long cnt)
 605{
 606	class->stats.objs[type] -= cnt;
 607}
 608
 609/* type can be of enum type class_stat_type or fullness_group */
 610static inline unsigned long zs_stat_get(struct size_class *class,
 611				int type)
 612{
 613	return class->stats.objs[type];
 614}
 615
 616#ifdef CONFIG_ZSMALLOC_STAT
 617
 618static void __init zs_stat_init(void)
 619{
 620	if (!debugfs_initialized()) {
 621		pr_warn("debugfs not available, stat dir not created\n");
 622		return;
 623	}
 624
 625	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 626}
 627
 628static void __exit zs_stat_exit(void)
 629{
 630	debugfs_remove_recursive(zs_stat_root);
 631}
 632
 633static unsigned long zs_can_compact(struct size_class *class);
 634
 635static int zs_stats_size_show(struct seq_file *s, void *v)
 636{
 637	int i;
 638	struct zs_pool *pool = s->private;
 639	struct size_class *class;
 640	int objs_per_zspage;
 641	unsigned long class_almost_full, class_almost_empty;
 642	unsigned long obj_allocated, obj_used, pages_used, freeable;
 643	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 644	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 645	unsigned long total_freeable = 0;
 646
 647	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 648			"class", "size", "almost_full", "almost_empty",
 649			"obj_allocated", "obj_used", "pages_used",
 650			"pages_per_zspage", "freeable");
 651
 652	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 653		class = pool->size_class[i];
 654
 655		if (class->index != i)
 656			continue;
 657
 658		spin_lock(&pool->lock);
 659		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 660		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 661		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 662		obj_used = zs_stat_get(class, OBJ_USED);
 663		freeable = zs_can_compact(class);
 664		spin_unlock(&pool->lock);
 665
 666		objs_per_zspage = class->objs_per_zspage;
 667		pages_used = obj_allocated / objs_per_zspage *
 668				class->pages_per_zspage;
 669
 670		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 671				" %10lu %10lu %16d %8lu\n",
 672			i, class->size, class_almost_full, class_almost_empty,
 673			obj_allocated, obj_used, pages_used,
 674			class->pages_per_zspage, freeable);
 675
 676		total_class_almost_full += class_almost_full;
 677		total_class_almost_empty += class_almost_empty;
 678		total_objs += obj_allocated;
 679		total_used_objs += obj_used;
 680		total_pages += pages_used;
 681		total_freeable += freeable;
 682	}
 683
 684	seq_puts(s, "\n");
 685	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 686			"Total", "", total_class_almost_full,
 687			total_class_almost_empty, total_objs,
 688			total_used_objs, total_pages, "", total_freeable);
 689
 690	return 0;
 691}
 692DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 693
 694static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 695{
 696	if (!zs_stat_root) {
 697		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 698		return;
 699	}
 700
 701	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 702
 703	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 704			    &zs_stats_size_fops);
 705}
 706
 707static void zs_pool_stat_destroy(struct zs_pool *pool)
 708{
 709	debugfs_remove_recursive(pool->stat_dentry);
 710}
 711
 712#else /* CONFIG_ZSMALLOC_STAT */
 713static void __init zs_stat_init(void)
 714{
 715}
 716
 717static void __exit zs_stat_exit(void)
 718{
 719}
 720
 721static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 722{
 723}
 724
 725static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 726{
 727}
 728#endif
 729
 730
 731/*
 732 * For each size class, zspages are divided into different groups
 733 * depending on how "full" they are. This was done so that we could
 734 * easily find empty or nearly empty zspages when we try to shrink
 735 * the pool (not yet implemented). This function returns fullness
 736 * status of the given page.
 737 */
 738static enum fullness_group get_fullness_group(struct size_class *class,
 739						struct zspage *zspage)
 740{
 741	int inuse, objs_per_zspage;
 742	enum fullness_group fg;
 743
 744	inuse = get_zspage_inuse(zspage);
 745	objs_per_zspage = class->objs_per_zspage;
 746
 747	if (inuse == 0)
 748		fg = ZS_EMPTY;
 749	else if (inuse == objs_per_zspage)
 750		fg = ZS_FULL;
 751	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 752		fg = ZS_ALMOST_EMPTY;
 753	else
 754		fg = ZS_ALMOST_FULL;
 755
 756	return fg;
 757}
 758
 759/*
 760 * Each size class maintains various freelists and zspages are assigned
 761 * to one of these freelists based on the number of live objects they
 762 * have. This functions inserts the given zspage into the freelist
 763 * identified by <class, fullness_group>.
 764 */
 765static void insert_zspage(struct size_class *class,
 766				struct zspage *zspage,
 767				enum fullness_group fullness)
 768{
 769	struct zspage *head;
 770
 771	class_stat_inc(class, fullness, 1);
 772	head = list_first_entry_or_null(&class->fullness_list[fullness],
 773					struct zspage, list);
 774	/*
 775	 * We want to see more ZS_FULL pages and less almost empty/full.
 776	 * Put pages with higher ->inuse first.
 777	 */
 778	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
 779		list_add(&zspage->list, &head->list);
 780	else
 781		list_add(&zspage->list, &class->fullness_list[fullness]);
 
 
 
 782}
 783
 784/*
 785 * This function removes the given zspage from the freelist identified
 786 * by <class, fullness_group>.
 787 */
 788static void remove_zspage(struct size_class *class,
 789				struct zspage *zspage,
 790				enum fullness_group fullness)
 791{
 792	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 
 793
 794	list_del_init(&zspage->list);
 795	class_stat_dec(class, fullness, 1);
 796}
 797
 798/*
 799 * Each size class maintains zspages in different fullness groups depending
 800 * on the number of live objects they contain. When allocating or freeing
 801 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 802 * to ALMOST_EMPTY when freeing an object. This function checks if such
 803 * a status change has occurred for the given page and accordingly moves the
 804 * page from the freelist of the old fullness group to that of the new
 805 * fullness group.
 806 */
 807static enum fullness_group fix_fullness_group(struct size_class *class,
 808						struct zspage *zspage)
 809{
 810	int class_idx;
 811	enum fullness_group currfg, newfg;
 812
 813	get_zspage_mapping(zspage, &class_idx, &currfg);
 814	newfg = get_fullness_group(class, zspage);
 815	if (newfg == currfg)
 816		goto out;
 817
 818	remove_zspage(class, zspage, currfg);
 819	insert_zspage(class, zspage, newfg);
 
 
 
 820	set_zspage_mapping(zspage, class_idx, newfg);
 
 821out:
 822	return newfg;
 823}
 824
 825/*
 826 * We have to decide on how many pages to link together
 827 * to form a zspage for each size class. This is important
 828 * to reduce wastage due to unusable space left at end of
 829 * each zspage which is given as:
 830 *     wastage = Zp % class_size
 831 *     usage = Zp - wastage
 832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 833 *
 834 * For example, for size class of 3/8 * PAGE_SIZE, we should
 835 * link together 3 PAGE_SIZE sized pages to form a zspage
 836 * since then we can perfectly fit in 8 such objects.
 837 */
 838static int get_pages_per_zspage(int class_size)
 839{
 840	int i, max_usedpc = 0;
 841	/* zspage order which gives maximum used size per KB */
 842	int max_usedpc_order = 1;
 843
 844	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 845		int zspage_size;
 846		int waste, usedpc;
 847
 848		zspage_size = i * PAGE_SIZE;
 849		waste = zspage_size % class_size;
 850		usedpc = (zspage_size - waste) * 100 / zspage_size;
 851
 852		if (usedpc > max_usedpc) {
 853			max_usedpc = usedpc;
 854			max_usedpc_order = i;
 855		}
 856	}
 857
 858	return max_usedpc_order;
 859}
 860
 861static struct zspage *get_zspage(struct page *page)
 862{
 863	struct zspage *zspage = (struct zspage *)page_private(page);
 864
 865	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 866	return zspage;
 867}
 868
 869static struct page *get_next_page(struct page *page)
 870{
 871	struct zspage *zspage = get_zspage(page);
 872
 873	if (unlikely(ZsHugePage(zspage)))
 874		return NULL;
 875
 876	return (struct page *)page->index;
 877}
 878
 879/**
 880 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 881 * @obj: the encoded object value
 882 * @page: page object resides in zspage
 883 * @obj_idx: object index
 884 */
 885static void obj_to_location(unsigned long obj, struct page **page,
 886				unsigned int *obj_idx)
 887{
 888	obj >>= OBJ_TAG_BITS;
 889	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 890	*obj_idx = (obj & OBJ_INDEX_MASK);
 891}
 892
 893static void obj_to_page(unsigned long obj, struct page **page)
 894{
 895	obj >>= OBJ_TAG_BITS;
 896	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 897}
 898
 899/**
 900 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 901 * @page: page object resides in zspage
 902 * @obj_idx: object index
 903 */
 904static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 905{
 906	unsigned long obj;
 907
 908	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 909	obj |= obj_idx & OBJ_INDEX_MASK;
 910	obj <<= OBJ_TAG_BITS;
 911
 912	return obj;
 913}
 914
 915static unsigned long handle_to_obj(unsigned long handle)
 916{
 917	return *(unsigned long *)handle;
 918}
 919
 920static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
 921		int tag)
 922{
 923	unsigned long handle;
 924	struct zspage *zspage = get_zspage(page);
 925
 926	if (unlikely(ZsHugePage(zspage))) {
 927		VM_BUG_ON_PAGE(!is_first_page(page), page);
 928		handle = page->index;
 929	} else
 930		handle = *(unsigned long *)obj;
 
 931
 932	if (!(handle & tag))
 933		return false;
 
 
 934
 935	/* Clear all tags before returning the handle */
 936	*phandle = handle & ~OBJ_TAG_MASK;
 937	return true;
 938}
 939
 940static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
 941{
 942	return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
 943}
 944
 945#ifdef CONFIG_ZPOOL
 946static bool obj_stores_deferred_handle(struct page *page, void *obj,
 947		unsigned long *phandle)
 948{
 949	return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
 950}
 951#endif
 952
 953static void reset_page(struct page *page)
 954{
 955	__ClearPageMovable(page);
 956	ClearPagePrivate(page);
 957	set_page_private(page, 0);
 958	page_mapcount_reset(page);
 959	page->index = 0;
 
 960}
 961
 962static int trylock_zspage(struct zspage *zspage)
 963{
 964	struct page *cursor, *fail;
 965
 966	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 967					get_next_page(cursor)) {
 968		if (!trylock_page(cursor)) {
 969			fail = cursor;
 970			goto unlock;
 971		}
 972	}
 973
 974	return 1;
 975unlock:
 976	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 977					get_next_page(cursor))
 978		unlock_page(cursor);
 979
 980	return 0;
 981}
 982
 983#ifdef CONFIG_ZPOOL
 984static unsigned long find_deferred_handle_obj(struct size_class *class,
 985		struct page *page, int *obj_idx);
 986
 987/*
 988 * Free all the deferred handles whose objects are freed in zs_free.
 989 */
 990static void free_handles(struct zs_pool *pool, struct size_class *class,
 991		struct zspage *zspage)
 992{
 993	int obj_idx = 0;
 994	struct page *page = get_first_page(zspage);
 995	unsigned long handle;
 996
 997	while (1) {
 998		handle = find_deferred_handle_obj(class, page, &obj_idx);
 999		if (!handle) {
1000			page = get_next_page(page);
1001			if (!page)
1002				break;
1003			obj_idx = 0;
1004			continue;
1005		}
1006
1007		cache_free_handle(pool, handle);
1008		obj_idx++;
1009	}
1010}
1011#else
1012static inline void free_handles(struct zs_pool *pool, struct size_class *class,
1013		struct zspage *zspage) {}
1014#endif
1015
1016static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1017				struct zspage *zspage)
1018{
1019	struct page *page, *next;
1020	enum fullness_group fg;
1021	unsigned int class_idx;
1022
1023	get_zspage_mapping(zspage, &class_idx, &fg);
1024
1025	assert_spin_locked(&pool->lock);
1026
1027	VM_BUG_ON(get_zspage_inuse(zspage));
1028	VM_BUG_ON(fg != ZS_EMPTY);
1029
1030	/* Free all deferred handles from zs_free */
1031	free_handles(pool, class, zspage);
1032
1033	next = page = get_first_page(zspage);
1034	do {
1035		VM_BUG_ON_PAGE(!PageLocked(page), page);
1036		next = get_next_page(page);
1037		reset_page(page);
1038		unlock_page(page);
1039		dec_zone_page_state(page, NR_ZSPAGES);
1040		put_page(page);
1041		page = next;
1042	} while (page != NULL);
1043
1044	cache_free_zspage(pool, zspage);
1045
1046	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1047	atomic_long_sub(class->pages_per_zspage,
1048					&pool->pages_allocated);
1049}
1050
1051static void free_zspage(struct zs_pool *pool, struct size_class *class,
1052				struct zspage *zspage)
1053{
1054	VM_BUG_ON(get_zspage_inuse(zspage));
1055	VM_BUG_ON(list_empty(&zspage->list));
1056
1057	/*
1058	 * Since zs_free couldn't be sleepable, this function cannot call
1059	 * lock_page. The page locks trylock_zspage got will be released
1060	 * by __free_zspage.
1061	 */
1062	if (!trylock_zspage(zspage)) {
1063		kick_deferred_free(pool);
1064		return;
1065	}
1066
1067	remove_zspage(class, zspage, ZS_EMPTY);
1068#ifdef CONFIG_ZPOOL
1069	list_del(&zspage->lru);
1070#endif
1071	__free_zspage(pool, class, zspage);
1072}
1073
1074/* Initialize a newly allocated zspage */
1075static void init_zspage(struct size_class *class, struct zspage *zspage)
1076{
1077	unsigned int freeobj = 1;
1078	unsigned long off = 0;
1079	struct page *page = get_first_page(zspage);
1080
1081	while (page) {
1082		struct page *next_page;
1083		struct link_free *link;
1084		void *vaddr;
1085
1086		set_first_obj_offset(page, off);
1087
1088		vaddr = kmap_atomic(page);
1089		link = (struct link_free *)vaddr + off / sizeof(*link);
1090
1091		while ((off += class->size) < PAGE_SIZE) {
1092			link->next = freeobj++ << OBJ_TAG_BITS;
1093			link += class->size / sizeof(*link);
1094		}
1095
1096		/*
1097		 * We now come to the last (full or partial) object on this
1098		 * page, which must point to the first object on the next
1099		 * page (if present)
1100		 */
1101		next_page = get_next_page(page);
1102		if (next_page) {
1103			link->next = freeobj++ << OBJ_TAG_BITS;
1104		} else {
1105			/*
1106			 * Reset OBJ_TAG_BITS bit to last link to tell
1107			 * whether it's allocated object or not.
1108			 */
1109			link->next = -1UL << OBJ_TAG_BITS;
1110		}
1111		kunmap_atomic(vaddr);
1112		page = next_page;
1113		off %= PAGE_SIZE;
1114	}
1115
1116#ifdef CONFIG_ZPOOL
1117	INIT_LIST_HEAD(&zspage->lru);
1118	zspage->under_reclaim = false;
1119#endif
1120
1121	set_freeobj(zspage, 0);
1122}
1123
1124static void create_page_chain(struct size_class *class, struct zspage *zspage,
1125				struct page *pages[])
1126{
1127	int i;
1128	struct page *page;
1129	struct page *prev_page = NULL;
1130	int nr_pages = class->pages_per_zspage;
1131
1132	/*
1133	 * Allocate individual pages and link them together as:
1134	 * 1. all pages are linked together using page->index
1135	 * 2. each sub-page point to zspage using page->private
1136	 *
1137	 * we set PG_private to identify the first page (i.e. no other sub-page
1138	 * has this flag set).
1139	 */
1140	for (i = 0; i < nr_pages; i++) {
1141		page = pages[i];
1142		set_page_private(page, (unsigned long)zspage);
1143		page->index = 0;
1144		if (i == 0) {
1145			zspage->first_page = page;
1146			SetPagePrivate(page);
1147			if (unlikely(class->objs_per_zspage == 1 &&
1148					class->pages_per_zspage == 1))
1149				SetZsHugePage(zspage);
1150		} else {
1151			prev_page->index = (unsigned long)page;
1152		}
1153		prev_page = page;
1154	}
1155}
1156
1157/*
1158 * Allocate a zspage for the given size class
1159 */
1160static struct zspage *alloc_zspage(struct zs_pool *pool,
1161					struct size_class *class,
1162					gfp_t gfp)
1163{
1164	int i;
1165	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1166	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1167
1168	if (!zspage)
1169		return NULL;
1170
 
1171	zspage->magic = ZSPAGE_MAGIC;
1172	migrate_lock_init(zspage);
1173
1174	for (i = 0; i < class->pages_per_zspage; i++) {
1175		struct page *page;
1176
1177		page = alloc_page(gfp);
1178		if (!page) {
1179			while (--i >= 0) {
1180				dec_zone_page_state(pages[i], NR_ZSPAGES);
1181				__free_page(pages[i]);
1182			}
1183			cache_free_zspage(pool, zspage);
1184			return NULL;
1185		}
1186
1187		inc_zone_page_state(page, NR_ZSPAGES);
1188		pages[i] = page;
1189	}
1190
1191	create_page_chain(class, zspage, pages);
1192	init_zspage(class, zspage);
1193	zspage->pool = pool;
1194
1195	return zspage;
1196}
1197
1198static struct zspage *find_get_zspage(struct size_class *class)
1199{
1200	int i;
1201	struct zspage *zspage;
1202
1203	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1204		zspage = list_first_entry_or_null(&class->fullness_list[i],
1205				struct zspage, list);
1206		if (zspage)
1207			break;
1208	}
1209
1210	return zspage;
1211}
1212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213static inline int __zs_cpu_up(struct mapping_area *area)
1214{
1215	/*
1216	 * Make sure we don't leak memory if a cpu UP notification
1217	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1218	 */
1219	if (area->vm_buf)
1220		return 0;
1221	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1222	if (!area->vm_buf)
1223		return -ENOMEM;
1224	return 0;
1225}
1226
1227static inline void __zs_cpu_down(struct mapping_area *area)
1228{
1229	kfree(area->vm_buf);
1230	area->vm_buf = NULL;
1231}
1232
1233static void *__zs_map_object(struct mapping_area *area,
1234			struct page *pages[2], int off, int size)
1235{
1236	int sizes[2];
1237	void *addr;
1238	char *buf = area->vm_buf;
1239
1240	/* disable page faults to match kmap_atomic() return conditions */
1241	pagefault_disable();
1242
1243	/* no read fastpath */
1244	if (area->vm_mm == ZS_MM_WO)
1245		goto out;
1246
1247	sizes[0] = PAGE_SIZE - off;
1248	sizes[1] = size - sizes[0];
1249
1250	/* copy object to per-cpu buffer */
1251	addr = kmap_atomic(pages[0]);
1252	memcpy(buf, addr + off, sizes[0]);
1253	kunmap_atomic(addr);
1254	addr = kmap_atomic(pages[1]);
1255	memcpy(buf + sizes[0], addr, sizes[1]);
1256	kunmap_atomic(addr);
1257out:
1258	return area->vm_buf;
1259}
1260
1261static void __zs_unmap_object(struct mapping_area *area,
1262			struct page *pages[2], int off, int size)
1263{
1264	int sizes[2];
1265	void *addr;
1266	char *buf;
1267
1268	/* no write fastpath */
1269	if (area->vm_mm == ZS_MM_RO)
1270		goto out;
1271
1272	buf = area->vm_buf;
1273	buf = buf + ZS_HANDLE_SIZE;
1274	size -= ZS_HANDLE_SIZE;
1275	off += ZS_HANDLE_SIZE;
1276
1277	sizes[0] = PAGE_SIZE - off;
1278	sizes[1] = size - sizes[0];
1279
1280	/* copy per-cpu buffer to object */
1281	addr = kmap_atomic(pages[0]);
1282	memcpy(addr + off, buf, sizes[0]);
1283	kunmap_atomic(addr);
1284	addr = kmap_atomic(pages[1]);
1285	memcpy(addr, buf + sizes[0], sizes[1]);
1286	kunmap_atomic(addr);
1287
1288out:
1289	/* enable page faults to match kunmap_atomic() return conditions */
1290	pagefault_enable();
1291}
1292
 
 
1293static int zs_cpu_prepare(unsigned int cpu)
1294{
1295	struct mapping_area *area;
1296
1297	area = &per_cpu(zs_map_area, cpu);
1298	return __zs_cpu_up(area);
1299}
1300
1301static int zs_cpu_dead(unsigned int cpu)
1302{
1303	struct mapping_area *area;
1304
1305	area = &per_cpu(zs_map_area, cpu);
1306	__zs_cpu_down(area);
1307	return 0;
1308}
1309
1310static bool can_merge(struct size_class *prev, int pages_per_zspage,
1311					int objs_per_zspage)
1312{
1313	if (prev->pages_per_zspage == pages_per_zspage &&
1314		prev->objs_per_zspage == objs_per_zspage)
1315		return true;
1316
1317	return false;
1318}
1319
1320static bool zspage_full(struct size_class *class, struct zspage *zspage)
1321{
1322	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1323}
1324
1325/**
1326 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1327 * that hold objects of the provided size.
1328 * @pool: zsmalloc pool to use
1329 * @size: object size
1330 *
1331 * Context: Any context.
1332 *
1333 * Return: the index of the zsmalloc &size_class that hold objects of the
1334 * provided size.
1335 */
1336unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1337{
1338	struct size_class *class;
1339
1340	class = pool->size_class[get_size_class_index(size)];
1341
1342	return class->index;
1343}
1344EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1345
1346unsigned long zs_get_total_pages(struct zs_pool *pool)
1347{
1348	return atomic_long_read(&pool->pages_allocated);
1349}
1350EXPORT_SYMBOL_GPL(zs_get_total_pages);
1351
1352/**
1353 * zs_map_object - get address of allocated object from handle.
1354 * @pool: pool from which the object was allocated
1355 * @handle: handle returned from zs_malloc
1356 * @mm: mapping mode to use
1357 *
1358 * Before using an object allocated from zs_malloc, it must be mapped using
1359 * this function. When done with the object, it must be unmapped using
1360 * zs_unmap_object.
1361 *
1362 * Only one object can be mapped per cpu at a time. There is no protection
1363 * against nested mappings.
1364 *
1365 * This function returns with preemption and page faults disabled.
1366 */
1367void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1368			enum zs_mapmode mm)
1369{
1370	struct zspage *zspage;
1371	struct page *page;
1372	unsigned long obj, off;
1373	unsigned int obj_idx;
1374
 
 
1375	struct size_class *class;
1376	struct mapping_area *area;
1377	struct page *pages[2];
1378	void *ret;
1379
1380	/*
1381	 * Because we use per-cpu mapping areas shared among the
1382	 * pools/users, we can't allow mapping in interrupt context
1383	 * because it can corrupt another users mappings.
1384	 */
1385	BUG_ON(in_interrupt());
1386
1387	/* It guarantees it can get zspage from handle safely */
1388	spin_lock(&pool->lock);
 
1389	obj = handle_to_obj(handle);
1390	obj_to_location(obj, &page, &obj_idx);
1391	zspage = get_zspage(page);
1392
1393#ifdef CONFIG_ZPOOL
1394	/*
1395	 * Move the zspage to front of pool's LRU.
1396	 *
1397	 * Note that this is swap-specific, so by definition there are no ongoing
1398	 * accesses to the memory while the page is swapped out that would make
1399	 * it "hot". A new entry is hot, then ages to the tail until it gets either
1400	 * written back or swaps back in.
1401	 *
1402	 * Furthermore, map is also called during writeback. We must not put an
1403	 * isolated page on the LRU mid-reclaim.
1404	 *
1405	 * As a result, only update the LRU when the page is mapped for write
1406	 * when it's first instantiated.
1407	 *
1408	 * This is a deviation from the other backends, which perform this update
1409	 * in the allocation function (zbud_alloc, z3fold_alloc).
1410	 */
1411	if (mm == ZS_MM_WO) {
1412		if (!list_empty(&zspage->lru))
1413			list_del(&zspage->lru);
1414		list_add(&zspage->lru, &pool->lru);
1415	}
1416#endif
1417
1418	/*
1419	 * migration cannot move any zpages in this zspage. Here, pool->lock
1420	 * is too heavy since callers would take some time until they calls
1421	 * zs_unmap_object API so delegate the locking from class to zspage
1422	 * which is smaller granularity.
1423	 */
1424	migrate_read_lock(zspage);
1425	spin_unlock(&pool->lock);
1426
1427	class = zspage_class(pool, zspage);
 
1428	off = (class->size * obj_idx) & ~PAGE_MASK;
1429
1430	local_lock(&zs_map_area.lock);
1431	area = this_cpu_ptr(&zs_map_area);
1432	area->vm_mm = mm;
1433	if (off + class->size <= PAGE_SIZE) {
1434		/* this object is contained entirely within a page */
1435		area->vm_addr = kmap_atomic(page);
1436		ret = area->vm_addr + off;
1437		goto out;
1438	}
1439
1440	/* this object spans two pages */
1441	pages[0] = page;
1442	pages[1] = get_next_page(page);
1443	BUG_ON(!pages[1]);
1444
1445	ret = __zs_map_object(area, pages, off, class->size);
1446out:
1447	if (likely(!ZsHugePage(zspage)))
1448		ret += ZS_HANDLE_SIZE;
1449
1450	return ret;
1451}
1452EXPORT_SYMBOL_GPL(zs_map_object);
1453
1454void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1455{
1456	struct zspage *zspage;
1457	struct page *page;
1458	unsigned long obj, off;
1459	unsigned int obj_idx;
1460
 
 
1461	struct size_class *class;
1462	struct mapping_area *area;
1463
1464	obj = handle_to_obj(handle);
1465	obj_to_location(obj, &page, &obj_idx);
1466	zspage = get_zspage(page);
1467	class = zspage_class(pool, zspage);
 
1468	off = (class->size * obj_idx) & ~PAGE_MASK;
1469
1470	area = this_cpu_ptr(&zs_map_area);
1471	if (off + class->size <= PAGE_SIZE)
1472		kunmap_atomic(area->vm_addr);
1473	else {
1474		struct page *pages[2];
1475
1476		pages[0] = page;
1477		pages[1] = get_next_page(page);
1478		BUG_ON(!pages[1]);
1479
1480		__zs_unmap_object(area, pages, off, class->size);
1481	}
1482	local_unlock(&zs_map_area.lock);
1483
1484	migrate_read_unlock(zspage);
 
1485}
1486EXPORT_SYMBOL_GPL(zs_unmap_object);
1487
1488/**
1489 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1490 *                        zsmalloc &size_class.
1491 * @pool: zsmalloc pool to use
1492 *
1493 * The function returns the size of the first huge class - any object of equal
1494 * or bigger size will be stored in zspage consisting of a single physical
1495 * page.
1496 *
1497 * Context: Any context.
1498 *
1499 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1500 */
1501size_t zs_huge_class_size(struct zs_pool *pool)
1502{
1503	return huge_class_size;
1504}
1505EXPORT_SYMBOL_GPL(zs_huge_class_size);
1506
1507static unsigned long obj_malloc(struct zs_pool *pool,
1508				struct zspage *zspage, unsigned long handle)
1509{
1510	int i, nr_page, offset;
1511	unsigned long obj;
1512	struct link_free *link;
1513	struct size_class *class;
1514
1515	struct page *m_page;
1516	unsigned long m_offset;
1517	void *vaddr;
1518
1519	class = pool->size_class[zspage->class];
1520	handle |= OBJ_ALLOCATED_TAG;
1521	obj = get_freeobj(zspage);
1522
1523	offset = obj * class->size;
1524	nr_page = offset >> PAGE_SHIFT;
1525	m_offset = offset & ~PAGE_MASK;
1526	m_page = get_first_page(zspage);
1527
1528	for (i = 0; i < nr_page; i++)
1529		m_page = get_next_page(m_page);
1530
1531	vaddr = kmap_atomic(m_page);
1532	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1533	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1534	if (likely(!ZsHugePage(zspage)))
1535		/* record handle in the header of allocated chunk */
1536		link->handle = handle;
1537	else
1538		/* record handle to page->index */
1539		zspage->first_page->index = handle;
1540
1541	kunmap_atomic(vaddr);
1542	mod_zspage_inuse(zspage, 1);
 
1543
1544	obj = location_to_obj(m_page, obj);
1545
1546	return obj;
1547}
1548
1549
1550/**
1551 * zs_malloc - Allocate block of given size from pool.
1552 * @pool: pool to allocate from
1553 * @size: size of block to allocate
1554 * @gfp: gfp flags when allocating object
1555 *
1556 * On success, handle to the allocated object is returned,
1557 * otherwise an ERR_PTR().
1558 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1559 */
1560unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1561{
1562	unsigned long handle, obj;
1563	struct size_class *class;
1564	enum fullness_group newfg;
1565	struct zspage *zspage;
1566
1567	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1568		return (unsigned long)ERR_PTR(-EINVAL);
1569
1570	handle = cache_alloc_handle(pool, gfp);
1571	if (!handle)
1572		return (unsigned long)ERR_PTR(-ENOMEM);
1573
1574	/* extra space in chunk to keep the handle */
1575	size += ZS_HANDLE_SIZE;
1576	class = pool->size_class[get_size_class_index(size)];
1577
1578	/* pool->lock effectively protects the zpage migration */
1579	spin_lock(&pool->lock);
1580	zspage = find_get_zspage(class);
1581	if (likely(zspage)) {
1582		obj = obj_malloc(pool, zspage, handle);
1583		/* Now move the zspage to another fullness group, if required */
1584		fix_fullness_group(class, zspage);
1585		record_obj(handle, obj);
1586		class_stat_inc(class, OBJ_USED, 1);
1587		spin_unlock(&pool->lock);
1588
1589		return handle;
1590	}
1591
1592	spin_unlock(&pool->lock);
1593
1594	zspage = alloc_zspage(pool, class, gfp);
1595	if (!zspage) {
1596		cache_free_handle(pool, handle);
1597		return (unsigned long)ERR_PTR(-ENOMEM);
1598	}
1599
1600	spin_lock(&pool->lock);
1601	obj = obj_malloc(pool, zspage, handle);
1602	newfg = get_fullness_group(class, zspage);
1603	insert_zspage(class, zspage, newfg);
1604	set_zspage_mapping(zspage, class->index, newfg);
1605	record_obj(handle, obj);
1606	atomic_long_add(class->pages_per_zspage,
1607				&pool->pages_allocated);
1608	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1609	class_stat_inc(class, OBJ_USED, 1);
1610
1611	/* We completely set up zspage so mark them as movable */
1612	SetZsPageMovable(pool, zspage);
1613	spin_unlock(&pool->lock);
1614
1615	return handle;
1616}
1617EXPORT_SYMBOL_GPL(zs_malloc);
1618
1619static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1620{
1621	struct link_free *link;
1622	struct zspage *zspage;
1623	struct page *f_page;
1624	unsigned long f_offset;
1625	unsigned int f_objidx;
1626	void *vaddr;
1627
 
1628	obj_to_location(obj, &f_page, &f_objidx);
1629	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1630	zspage = get_zspage(f_page);
1631
1632	vaddr = kmap_atomic(f_page);
 
 
1633	link = (struct link_free *)(vaddr + f_offset);
1634
1635	if (handle) {
1636#ifdef CONFIG_ZPOOL
1637		/* Stores the (deferred) handle in the object's header */
1638		*handle |= OBJ_DEFERRED_HANDLE_TAG;
1639		*handle &= ~OBJ_ALLOCATED_TAG;
1640
1641		if (likely(!ZsHugePage(zspage)))
1642			link->deferred_handle = *handle;
1643		else
1644			f_page->index = *handle;
1645#endif
1646	} else {
1647		/* Insert this object in containing zspage's freelist */
1648		if (likely(!ZsHugePage(zspage)))
1649			link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1650		else
1651			f_page->index = 0;
1652		set_freeobj(zspage, f_objidx);
1653	}
1654
1655	kunmap_atomic(vaddr);
 
1656	mod_zspage_inuse(zspage, -1);
 
1657}
1658
1659void zs_free(struct zs_pool *pool, unsigned long handle)
1660{
1661	struct zspage *zspage;
1662	struct page *f_page;
1663	unsigned long obj;
 
 
1664	struct size_class *class;
1665	enum fullness_group fullness;
 
1666
1667	if (IS_ERR_OR_NULL((void *)handle))
1668		return;
1669
1670	/*
1671	 * The pool->lock protects the race with zpage's migration
1672	 * so it's safe to get the page from handle.
1673	 */
1674	spin_lock(&pool->lock);
1675	obj = handle_to_obj(handle);
1676	obj_to_page(obj, &f_page);
1677	zspage = get_zspage(f_page);
1678	class = zspage_class(pool, zspage);
1679
1680	class_stat_dec(class, OBJ_USED, 1);
 
 
 
1681
1682#ifdef CONFIG_ZPOOL
1683	if (zspage->under_reclaim) {
1684		/*
1685		 * Reclaim needs the handles during writeback. It'll free
1686		 * them along with the zspage when it's done with them.
1687		 *
1688		 * Record current deferred handle in the object's header.
1689		 */
1690		obj_free(class->size, obj, &handle);
1691		spin_unlock(&pool->lock);
1692		return;
1693	}
1694#endif
1695	obj_free(class->size, obj, NULL);
1696
1697	fullness = fix_fullness_group(class, zspage);
1698	if (fullness == ZS_EMPTY)
 
 
1699		free_zspage(pool, class, zspage);
 
1700
1701	spin_unlock(&pool->lock);
 
1702	cache_free_handle(pool, handle);
1703}
1704EXPORT_SYMBOL_GPL(zs_free);
1705
1706static void zs_object_copy(struct size_class *class, unsigned long dst,
1707				unsigned long src)
1708{
1709	struct page *s_page, *d_page;
1710	unsigned int s_objidx, d_objidx;
1711	unsigned long s_off, d_off;
1712	void *s_addr, *d_addr;
1713	int s_size, d_size, size;
1714	int written = 0;
1715
1716	s_size = d_size = class->size;
1717
1718	obj_to_location(src, &s_page, &s_objidx);
1719	obj_to_location(dst, &d_page, &d_objidx);
1720
1721	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1722	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1723
1724	if (s_off + class->size > PAGE_SIZE)
1725		s_size = PAGE_SIZE - s_off;
1726
1727	if (d_off + class->size > PAGE_SIZE)
1728		d_size = PAGE_SIZE - d_off;
1729
1730	s_addr = kmap_atomic(s_page);
1731	d_addr = kmap_atomic(d_page);
1732
1733	while (1) {
1734		size = min(s_size, d_size);
1735		memcpy(d_addr + d_off, s_addr + s_off, size);
1736		written += size;
1737
1738		if (written == class->size)
1739			break;
1740
1741		s_off += size;
1742		s_size -= size;
1743		d_off += size;
1744		d_size -= size;
1745
1746		/*
1747		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1748		 * calls must occurs in reverse order of calls to kmap_atomic().
1749		 * So, to call kunmap_atomic(s_addr) we should first call
1750		 * kunmap_atomic(d_addr). For more details see
1751		 * Documentation/mm/highmem.rst.
1752		 */
1753		if (s_off >= PAGE_SIZE) {
1754			kunmap_atomic(d_addr);
1755			kunmap_atomic(s_addr);
1756			s_page = get_next_page(s_page);
1757			s_addr = kmap_atomic(s_page);
1758			d_addr = kmap_atomic(d_page);
1759			s_size = class->size - written;
1760			s_off = 0;
1761		}
1762
1763		if (d_off >= PAGE_SIZE) {
1764			kunmap_atomic(d_addr);
1765			d_page = get_next_page(d_page);
1766			d_addr = kmap_atomic(d_page);
1767			d_size = class->size - written;
1768			d_off = 0;
1769		}
1770	}
1771
1772	kunmap_atomic(d_addr);
1773	kunmap_atomic(s_addr);
1774}
1775
1776/*
1777 * Find object with a certain tag in zspage from index object and
1778 * return handle.
1779 */
1780static unsigned long find_tagged_obj(struct size_class *class,
1781					struct page *page, int *obj_idx, int tag)
1782{
1783	unsigned int offset;
 
1784	int index = *obj_idx;
1785	unsigned long handle = 0;
1786	void *addr = kmap_atomic(page);
1787
1788	offset = get_first_obj_offset(page);
1789	offset += class->size * index;
1790
1791	while (offset < PAGE_SIZE) {
1792		if (obj_tagged(page, addr + offset, &handle, tag))
1793			break;
 
 
 
 
 
1794
1795		offset += class->size;
1796		index++;
1797	}
1798
1799	kunmap_atomic(addr);
1800
1801	*obj_idx = index;
1802
1803	return handle;
1804}
1805
1806/*
1807 * Find alloced object in zspage from index object and
1808 * return handle.
1809 */
1810static unsigned long find_alloced_obj(struct size_class *class,
1811					struct page *page, int *obj_idx)
1812{
1813	return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1814}
1815
1816#ifdef CONFIG_ZPOOL
1817/*
1818 * Find object storing a deferred handle in header in zspage from index object
1819 * and return handle.
1820 */
1821static unsigned long find_deferred_handle_obj(struct size_class *class,
1822		struct page *page, int *obj_idx)
1823{
1824	return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1825}
1826#endif
1827
1828struct zs_compact_control {
1829	/* Source spage for migration which could be a subpage of zspage */
1830	struct page *s_page;
1831	/* Destination page for migration which should be a first page
1832	 * of zspage. */
1833	struct page *d_page;
1834	 /* Starting object index within @s_page which used for live object
1835	  * in the subpage. */
1836	int obj_idx;
1837};
1838
1839static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1840				struct zs_compact_control *cc)
1841{
1842	unsigned long used_obj, free_obj;
1843	unsigned long handle;
1844	struct page *s_page = cc->s_page;
1845	struct page *d_page = cc->d_page;
1846	int obj_idx = cc->obj_idx;
1847	int ret = 0;
1848
1849	while (1) {
1850		handle = find_alloced_obj(class, s_page, &obj_idx);
1851		if (!handle) {
1852			s_page = get_next_page(s_page);
1853			if (!s_page)
1854				break;
1855			obj_idx = 0;
1856			continue;
1857		}
1858
1859		/* Stop if there is no more space */
1860		if (zspage_full(class, get_zspage(d_page))) {
 
1861			ret = -ENOMEM;
1862			break;
1863		}
1864
1865		used_obj = handle_to_obj(handle);
1866		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1867		zs_object_copy(class, free_obj, used_obj);
1868		obj_idx++;
 
 
 
 
 
 
 
1869		record_obj(handle, free_obj);
1870		obj_free(class->size, used_obj, NULL);
 
1871	}
1872
1873	/* Remember last position in this iteration */
1874	cc->s_page = s_page;
1875	cc->obj_idx = obj_idx;
1876
1877	return ret;
1878}
1879
1880static struct zspage *isolate_zspage(struct size_class *class, bool source)
1881{
1882	int i;
1883	struct zspage *zspage;
1884	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1885
1886	if (!source) {
1887		fg[0] = ZS_ALMOST_FULL;
1888		fg[1] = ZS_ALMOST_EMPTY;
1889	}
1890
1891	for (i = 0; i < 2; i++) {
1892		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1893							struct zspage, list);
1894		if (zspage) {
 
1895			remove_zspage(class, zspage, fg[i]);
1896			return zspage;
1897		}
1898	}
1899
1900	return zspage;
1901}
1902
1903/*
1904 * putback_zspage - add @zspage into right class's fullness list
1905 * @class: destination class
1906 * @zspage: target page
1907 *
1908 * Return @zspage's fullness_group
1909 */
1910static enum fullness_group putback_zspage(struct size_class *class,
1911			struct zspage *zspage)
1912{
1913	enum fullness_group fullness;
1914
 
 
1915	fullness = get_fullness_group(class, zspage);
1916	insert_zspage(class, zspage, fullness);
1917	set_zspage_mapping(zspage, class->index, fullness);
1918
1919	return fullness;
1920}
1921
1922#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1923/*
1924 * To prevent zspage destroy during migration, zspage freeing should
1925 * hold locks of all pages in the zspage.
1926 */
1927static void lock_zspage(struct zspage *zspage)
1928{
1929	struct page *curr_page, *page;
1930
1931	/*
1932	 * Pages we haven't locked yet can be migrated off the list while we're
1933	 * trying to lock them, so we need to be careful and only attempt to
1934	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1935	 * may no longer belong to the zspage. This means that we may wait for
1936	 * the wrong page to unlock, so we must take a reference to the page
1937	 * prior to waiting for it to unlock outside migrate_read_lock().
1938	 */
1939	while (1) {
1940		migrate_read_lock(zspage);
1941		page = get_first_page(zspage);
1942		if (trylock_page(page))
1943			break;
1944		get_page(page);
1945		migrate_read_unlock(zspage);
1946		wait_on_page_locked(page);
1947		put_page(page);
1948	}
1949
1950	curr_page = page;
1951	while ((page = get_next_page(curr_page))) {
1952		if (trylock_page(page)) {
1953			curr_page = page;
1954		} else {
1955			get_page(page);
1956			migrate_read_unlock(zspage);
1957			wait_on_page_locked(page);
1958			put_page(page);
1959			migrate_read_lock(zspage);
1960		}
1961	}
1962	migrate_read_unlock(zspage);
1963}
1964#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1965
1966#ifdef CONFIG_ZPOOL
1967/*
1968 * Unlocks all the pages of the zspage.
1969 *
1970 * pool->lock must be held before this function is called
1971 * to prevent the underlying pages from migrating.
1972 */
1973static void unlock_zspage(struct zspage *zspage)
1974{
1975	struct page *page = get_first_page(zspage);
 
 
 
 
 
 
 
1976
1977	do {
1978		unlock_page(page);
1979	} while ((page = get_next_page(page)) != NULL);
1980}
1981#endif /* CONFIG_ZPOOL */
1982
1983static void migrate_lock_init(struct zspage *zspage)
1984{
1985	rwlock_init(&zspage->lock);
1986}
1987
1988static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1989{
1990	read_lock(&zspage->lock);
1991}
1992
1993static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1994{
1995	read_unlock(&zspage->lock);
1996}
1997
1998#ifdef CONFIG_COMPACTION
1999static void migrate_write_lock(struct zspage *zspage)
2000{
2001	write_lock(&zspage->lock);
2002}
2003
2004static void migrate_write_lock_nested(struct zspage *zspage)
2005{
2006	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
2007}
2008
2009static void migrate_write_unlock(struct zspage *zspage)
2010{
2011	write_unlock(&zspage->lock);
2012}
2013
2014/* Number of isolated subpage for *page migration* in this zspage */
2015static void inc_zspage_isolation(struct zspage *zspage)
2016{
2017	zspage->isolated++;
2018}
2019
2020static void dec_zspage_isolation(struct zspage *zspage)
2021{
2022	VM_BUG_ON(zspage->isolated == 0);
2023	zspage->isolated--;
2024}
2025
2026static const struct movable_operations zsmalloc_mops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027
2028static void replace_sub_page(struct size_class *class, struct zspage *zspage,
2029				struct page *newpage, struct page *oldpage)
2030{
2031	struct page *page;
2032	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
2033	int idx = 0;
2034
2035	page = get_first_page(zspage);
2036	do {
2037		if (page == oldpage)
2038			pages[idx] = newpage;
2039		else
2040			pages[idx] = page;
2041		idx++;
2042	} while ((page = get_next_page(page)) != NULL);
2043
2044	create_page_chain(class, zspage, pages);
2045	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2046	if (unlikely(ZsHugePage(zspage)))
2047		newpage->index = oldpage->index;
2048	__SetPageMovable(newpage, &zsmalloc_mops);
2049}
2050
2051static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2052{
 
 
 
 
2053	struct zspage *zspage;
 
2054
2055	/*
2056	 * Page is locked so zspage couldn't be destroyed. For detail, look at
2057	 * lock_zspage in free_zspage.
2058	 */
2059	VM_BUG_ON_PAGE(!PageMovable(page), page);
2060	VM_BUG_ON_PAGE(PageIsolated(page), page);
2061
2062	zspage = get_zspage(page);
2063	migrate_write_lock(zspage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064	inc_zspage_isolation(zspage);
2065	migrate_write_unlock(zspage);
2066
2067	return true;
2068}
2069
2070static int zs_page_migrate(struct page *newpage, struct page *page,
2071		enum migrate_mode mode)
2072{
2073	struct zs_pool *pool;
2074	struct size_class *class;
 
 
2075	struct zspage *zspage;
2076	struct page *dummy;
2077	void *s_addr, *d_addr, *addr;
2078	unsigned int offset;
2079	unsigned long handle;
2080	unsigned long old_obj, new_obj;
2081	unsigned int obj_idx;
 
2082
2083	/*
2084	 * We cannot support the _NO_COPY case here, because copy needs to
2085	 * happen under the zs lock, which does not work with
2086	 * MIGRATE_SYNC_NO_COPY workflow.
2087	 */
2088	if (mode == MIGRATE_SYNC_NO_COPY)
2089		return -EINVAL;
2090
2091	VM_BUG_ON_PAGE(!PageMovable(page), page);
2092	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2093
2094	/* The page is locked, so this pointer must remain valid */
2095	zspage = get_zspage(page);
2096	pool = zspage->pool;
2097
2098	/*
2099	 * The pool's lock protects the race between zpage migration
2100	 * and zs_free.
2101	 */
2102	spin_lock(&pool->lock);
2103	class = zspage_class(pool, zspage);
2104
2105	/* the migrate_write_lock protects zpage access via zs_map_object */
2106	migrate_write_lock(zspage);
 
 
 
 
 
 
2107
2108	offset = get_first_obj_offset(page);
2109	s_addr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
2110
2111	/*
2112	 * Here, any user cannot access all objects in the zspage so let's move.
2113	 */
2114	d_addr = kmap_atomic(newpage);
2115	memcpy(d_addr, s_addr, PAGE_SIZE);
2116	kunmap_atomic(d_addr);
2117
2118	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2119					addr += class->size) {
2120		if (obj_allocated(page, addr, &handle)) {
 
 
 
 
2121
2122			old_obj = handle_to_obj(handle);
2123			obj_to_location(old_obj, &dummy, &obj_idx);
2124			new_obj = (unsigned long)location_to_obj(newpage,
2125								obj_idx);
 
2126			record_obj(handle, new_obj);
2127		}
2128	}
2129	kunmap_atomic(s_addr);
2130
2131	replace_sub_page(class, zspage, newpage, page);
 
 
 
 
2132	/*
2133	 * Since we complete the data copy and set up new zspage structure,
2134	 * it's okay to release the pool's lock.
2135	 */
2136	spin_unlock(&pool->lock);
2137	dec_zspage_isolation(zspage);
2138	migrate_write_unlock(zspage);
2139
2140	get_page(newpage);
2141	if (page_zone(newpage) != page_zone(page)) {
2142		dec_zone_page_state(page, NR_ZSPAGES);
2143		inc_zone_page_state(newpage, NR_ZSPAGES);
 
2144	}
2145
2146	reset_page(page);
2147	put_page(page);
 
2148
2149	return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2150}
2151
2152static void zs_page_putback(struct page *page)
2153{
 
 
 
 
 
2154	struct zspage *zspage;
2155
2156	VM_BUG_ON_PAGE(!PageMovable(page), page);
2157	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2158
2159	zspage = get_zspage(page);
2160	migrate_write_lock(zspage);
 
 
 
 
 
2161	dec_zspage_isolation(zspage);
2162	migrate_write_unlock(zspage);
 
 
 
 
 
 
 
 
2163}
2164
2165static const struct movable_operations zsmalloc_mops = {
2166	.isolate_page = zs_page_isolate,
2167	.migrate_page = zs_page_migrate,
2168	.putback_page = zs_page_putback,
2169};
2170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171/*
2172 * Caller should hold page_lock of all pages in the zspage
2173 * In here, we cannot use zspage meta data.
2174 */
2175static void async_free_zspage(struct work_struct *work)
2176{
2177	int i;
2178	struct size_class *class;
2179	unsigned int class_idx;
2180	enum fullness_group fullness;
2181	struct zspage *zspage, *tmp;
2182	LIST_HEAD(free_pages);
2183	struct zs_pool *pool = container_of(work, struct zs_pool,
2184					free_work);
2185
2186	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187		class = pool->size_class[i];
2188		if (class->index != i)
2189			continue;
2190
2191		spin_lock(&pool->lock);
2192		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193		spin_unlock(&pool->lock);
2194	}
2195
 
2196	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2197		list_del(&zspage->list);
2198		lock_zspage(zspage);
2199
2200		get_zspage_mapping(zspage, &class_idx, &fullness);
2201		VM_BUG_ON(fullness != ZS_EMPTY);
2202		class = pool->size_class[class_idx];
2203		spin_lock(&pool->lock);
2204#ifdef CONFIG_ZPOOL
2205		list_del(&zspage->lru);
2206#endif
2207		__free_zspage(pool, class, zspage);
2208		spin_unlock(&pool->lock);
2209	}
2210};
2211
2212static void kick_deferred_free(struct zs_pool *pool)
2213{
2214	schedule_work(&pool->free_work);
2215}
2216
2217static void zs_flush_migration(struct zs_pool *pool)
2218{
2219	flush_work(&pool->free_work);
2220}
2221
2222static void init_deferred_free(struct zs_pool *pool)
2223{
2224	INIT_WORK(&pool->free_work, async_free_zspage);
2225}
2226
2227static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2228{
2229	struct page *page = get_first_page(zspage);
2230
2231	do {
2232		WARN_ON(!trylock_page(page));
2233		__SetPageMovable(page, &zsmalloc_mops);
2234		unlock_page(page);
2235	} while ((page = get_next_page(page)) != NULL);
2236}
2237#else
2238static inline void zs_flush_migration(struct zs_pool *pool) { }
2239#endif
2240
2241/*
2242 *
2243 * Based on the number of unused allocated objects calculate
2244 * and return the number of pages that we can free.
2245 */
2246static unsigned long zs_can_compact(struct size_class *class)
2247{
2248	unsigned long obj_wasted;
2249	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251
2252	if (obj_allocated <= obj_used)
2253		return 0;
2254
2255	obj_wasted = obj_allocated - obj_used;
2256	obj_wasted /= class->objs_per_zspage;
2257
2258	return obj_wasted * class->pages_per_zspage;
2259}
2260
2261static unsigned long __zs_compact(struct zs_pool *pool,
2262				  struct size_class *class)
2263{
2264	struct zs_compact_control cc;
2265	struct zspage *src_zspage;
2266	struct zspage *dst_zspage = NULL;
2267	unsigned long pages_freed = 0;
2268
2269	/*
2270	 * protect the race between zpage migration and zs_free
2271	 * as well as zpage allocation/free
2272	 */
2273	spin_lock(&pool->lock);
2274	while ((src_zspage = isolate_zspage(class, true))) {
2275		/* protect someone accessing the zspage(i.e., zs_map_object) */
2276		migrate_write_lock(src_zspage);
2277
2278		if (!zs_can_compact(class))
2279			break;
2280
2281		cc.obj_idx = 0;
2282		cc.s_page = get_first_page(src_zspage);
2283
2284		while ((dst_zspage = isolate_zspage(class, false))) {
2285			migrate_write_lock_nested(dst_zspage);
2286
2287			cc.d_page = get_first_page(dst_zspage);
2288			/*
2289			 * If there is no more space in dst_page, resched
2290			 * and see if anyone had allocated another zspage.
2291			 */
2292			if (!migrate_zspage(pool, class, &cc))
2293				break;
2294
2295			putback_zspage(class, dst_zspage);
2296			migrate_write_unlock(dst_zspage);
2297			dst_zspage = NULL;
2298			if (spin_is_contended(&pool->lock))
2299				break;
2300		}
2301
2302		/* Stop if we couldn't find slot */
2303		if (dst_zspage == NULL)
2304			break;
2305
2306		putback_zspage(class, dst_zspage);
2307		migrate_write_unlock(dst_zspage);
2308
2309		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2310			migrate_write_unlock(src_zspage);
2311			free_zspage(pool, class, src_zspage);
2312			pages_freed += class->pages_per_zspage;
2313		} else
2314			migrate_write_unlock(src_zspage);
2315		spin_unlock(&pool->lock);
2316		cond_resched();
2317		spin_lock(&pool->lock);
2318	}
2319
2320	if (src_zspage) {
2321		putback_zspage(class, src_zspage);
2322		migrate_write_unlock(src_zspage);
2323	}
2324
2325	spin_unlock(&pool->lock);
2326
2327	return pages_freed;
2328}
2329
2330unsigned long zs_compact(struct zs_pool *pool)
2331{
2332	int i;
2333	struct size_class *class;
2334	unsigned long pages_freed = 0;
2335
2336	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2337		class = pool->size_class[i];
 
 
2338		if (class->index != i)
2339			continue;
2340		pages_freed += __zs_compact(pool, class);
2341	}
2342	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2343
2344	return pages_freed;
2345}
2346EXPORT_SYMBOL_GPL(zs_compact);
2347
2348void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2349{
2350	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2351}
2352EXPORT_SYMBOL_GPL(zs_pool_stats);
2353
2354static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2355		struct shrink_control *sc)
2356{
2357	unsigned long pages_freed;
2358	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359			shrinker);
2360
 
2361	/*
2362	 * Compact classes and calculate compaction delta.
2363	 * Can run concurrently with a manually triggered
2364	 * (by user) compaction.
2365	 */
2366	pages_freed = zs_compact(pool);
2367
2368	return pages_freed ? pages_freed : SHRINK_STOP;
2369}
2370
2371static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2372		struct shrink_control *sc)
2373{
2374	int i;
2375	struct size_class *class;
2376	unsigned long pages_to_free = 0;
2377	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2378			shrinker);
2379
2380	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381		class = pool->size_class[i];
 
 
2382		if (class->index != i)
2383			continue;
2384
2385		pages_to_free += zs_can_compact(class);
2386	}
2387
2388	return pages_to_free;
2389}
2390
2391static void zs_unregister_shrinker(struct zs_pool *pool)
2392{
2393	unregister_shrinker(&pool->shrinker);
2394}
2395
2396static int zs_register_shrinker(struct zs_pool *pool)
2397{
2398	pool->shrinker.scan_objects = zs_shrinker_scan;
2399	pool->shrinker.count_objects = zs_shrinker_count;
2400	pool->shrinker.batch = 0;
2401	pool->shrinker.seeks = DEFAULT_SEEKS;
2402
2403	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2404				 pool->name);
2405}
2406
2407/**
2408 * zs_create_pool - Creates an allocation pool to work from.
2409 * @name: pool name to be created
2410 *
2411 * This function must be called before anything when using
2412 * the zsmalloc allocator.
2413 *
2414 * On success, a pointer to the newly created pool is returned,
2415 * otherwise NULL.
2416 */
2417struct zs_pool *zs_create_pool(const char *name)
2418{
2419	int i;
2420	struct zs_pool *pool;
2421	struct size_class *prev_class = NULL;
2422
2423	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2424	if (!pool)
2425		return NULL;
2426
2427	init_deferred_free(pool);
2428	spin_lock_init(&pool->lock);
2429
2430	pool->name = kstrdup(name, GFP_KERNEL);
2431	if (!pool->name)
2432		goto err;
2433
 
 
 
 
2434	if (create_cache(pool))
2435		goto err;
2436
2437	/*
2438	 * Iterate reversely, because, size of size_class that we want to use
2439	 * for merging should be larger or equal to current size.
2440	 */
2441	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2442		int size;
2443		int pages_per_zspage;
2444		int objs_per_zspage;
2445		struct size_class *class;
2446		int fullness = 0;
2447
2448		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2449		if (size > ZS_MAX_ALLOC_SIZE)
2450			size = ZS_MAX_ALLOC_SIZE;
2451		pages_per_zspage = get_pages_per_zspage(size);
2452		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2453
2454		/*
2455		 * We iterate from biggest down to smallest classes,
2456		 * so huge_class_size holds the size of the first huge
2457		 * class. Any object bigger than or equal to that will
2458		 * endup in the huge class.
2459		 */
2460		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2461				!huge_class_size) {
2462			huge_class_size = size;
2463			/*
2464			 * The object uses ZS_HANDLE_SIZE bytes to store the
2465			 * handle. We need to subtract it, because zs_malloc()
2466			 * unconditionally adds handle size before it performs
2467			 * size class search - so object may be smaller than
2468			 * huge class size, yet it still can end up in the huge
2469			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2470			 * right before class lookup.
2471			 */
2472			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2473		}
2474
2475		/*
2476		 * size_class is used for normal zsmalloc operation such
2477		 * as alloc/free for that size. Although it is natural that we
2478		 * have one size_class for each size, there is a chance that we
2479		 * can get more memory utilization if we use one size_class for
2480		 * many different sizes whose size_class have same
2481		 * characteristics. So, we makes size_class point to
2482		 * previous size_class if possible.
2483		 */
2484		if (prev_class) {
2485			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2486				pool->size_class[i] = prev_class;
2487				continue;
2488			}
2489		}
2490
2491		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2492		if (!class)
2493			goto err;
2494
2495		class->size = size;
2496		class->index = i;
2497		class->pages_per_zspage = pages_per_zspage;
2498		class->objs_per_zspage = objs_per_zspage;
 
2499		pool->size_class[i] = class;
2500		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2501							fullness++)
2502			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2503
2504		prev_class = class;
2505	}
2506
2507	/* debug only, don't abort if it fails */
2508	zs_pool_stat_create(pool, name);
2509
 
 
 
2510	/*
2511	 * Not critical since shrinker is only used to trigger internal
2512	 * defragmentation of the pool which is pretty optional thing.  If
2513	 * registration fails we still can use the pool normally and user can
2514	 * trigger compaction manually. Thus, ignore return code.
2515	 */
2516	zs_register_shrinker(pool);
2517
2518#ifdef CONFIG_ZPOOL
2519	INIT_LIST_HEAD(&pool->lru);
2520#endif
2521
2522	return pool;
2523
2524err:
2525	zs_destroy_pool(pool);
2526	return NULL;
2527}
2528EXPORT_SYMBOL_GPL(zs_create_pool);
2529
2530void zs_destroy_pool(struct zs_pool *pool)
2531{
2532	int i;
2533
2534	zs_unregister_shrinker(pool);
2535	zs_flush_migration(pool);
2536	zs_pool_stat_destroy(pool);
2537
2538	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2539		int fg;
2540		struct size_class *class = pool->size_class[i];
2541
2542		if (!class)
2543			continue;
2544
2545		if (class->index != i)
2546			continue;
2547
2548		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2549			if (!list_empty(&class->fullness_list[fg])) {
2550				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2551					class->size, fg);
2552			}
2553		}
2554		kfree(class);
2555	}
2556
2557	destroy_cache(pool);
2558	kfree(pool->name);
2559	kfree(pool);
2560}
2561EXPORT_SYMBOL_GPL(zs_destroy_pool);
2562
2563#ifdef CONFIG_ZPOOL
2564static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2565		struct zspage *zspage)
2566{
2567	unsigned int obj_idx = 0;
2568	unsigned long handle, off = 0; /* off is within-page offset */
2569	struct page *page = get_first_page(zspage);
2570	struct link_free *prev_free = NULL;
2571	void *prev_page_vaddr = NULL;
2572
2573	/* in case no free object found */
2574	set_freeobj(zspage, (unsigned int)(-1UL));
2575
2576	while (page) {
2577		void *vaddr = kmap_atomic(page);
2578		struct page *next_page;
2579
2580		while (off < PAGE_SIZE) {
2581			void *obj_addr = vaddr + off;
2582
2583			/* skip allocated object */
2584			if (obj_allocated(page, obj_addr, &handle)) {
2585				obj_idx++;
2586				off += class->size;
2587				continue;
2588			}
2589
2590			/* free deferred handle from reclaim attempt */
2591			if (obj_stores_deferred_handle(page, obj_addr, &handle))
2592				cache_free_handle(pool, handle);
2593
2594			if (prev_free)
2595				prev_free->next = obj_idx << OBJ_TAG_BITS;
2596			else /* first free object found */
2597				set_freeobj(zspage, obj_idx);
2598
2599			prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2600			/* if last free object in a previous page, need to unmap */
2601			if (prev_page_vaddr) {
2602				kunmap_atomic(prev_page_vaddr);
2603				prev_page_vaddr = NULL;
2604			}
2605
2606			obj_idx++;
2607			off += class->size;
2608		}
2609
2610		/*
2611		 * Handle the last (full or partial) object on this page.
2612		 */
2613		next_page = get_next_page(page);
2614		if (next_page) {
2615			if (!prev_free || prev_page_vaddr) {
2616				/*
2617				 * There is no free object in this page, so we can safely
2618				 * unmap it.
2619				 */
2620				kunmap_atomic(vaddr);
2621			} else {
2622				/* update prev_page_vaddr since prev_free is on this page */
2623				prev_page_vaddr = vaddr;
2624			}
2625		} else { /* this is the last page */
2626			if (prev_free) {
2627				/*
2628				 * Reset OBJ_TAG_BITS bit to last link to tell
2629				 * whether it's allocated object or not.
2630				 */
2631				prev_free->next = -1UL << OBJ_TAG_BITS;
2632			}
2633
2634			/* unmap previous page (if not done yet) */
2635			if (prev_page_vaddr) {
2636				kunmap_atomic(prev_page_vaddr);
2637				prev_page_vaddr = NULL;
2638			}
2639
2640			kunmap_atomic(vaddr);
2641		}
2642
2643		page = next_page;
2644		off %= PAGE_SIZE;
2645	}
2646}
2647
2648static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2649{
2650	int i, obj_idx, ret = 0;
2651	unsigned long handle;
2652	struct zspage *zspage;
2653	struct page *page;
2654	enum fullness_group fullness;
2655
2656	/* Lock LRU and fullness list */
2657	spin_lock(&pool->lock);
2658	if (list_empty(&pool->lru)) {
2659		spin_unlock(&pool->lock);
2660		return -EINVAL;
2661	}
2662
2663	for (i = 0; i < retries; i++) {
2664		struct size_class *class;
2665
2666		zspage = list_last_entry(&pool->lru, struct zspage, lru);
2667		list_del(&zspage->lru);
2668
2669		/* zs_free may free objects, but not the zspage and handles */
2670		zspage->under_reclaim = true;
2671
2672		class = zspage_class(pool, zspage);
2673		fullness = get_fullness_group(class, zspage);
2674
2675		/* Lock out object allocations and object compaction */
2676		remove_zspage(class, zspage, fullness);
2677
2678		spin_unlock(&pool->lock);
2679		cond_resched();
2680
2681		/* Lock backing pages into place */
2682		lock_zspage(zspage);
2683
2684		obj_idx = 0;
2685		page = get_first_page(zspage);
2686		while (1) {
2687			handle = find_alloced_obj(class, page, &obj_idx);
2688			if (!handle) {
2689				page = get_next_page(page);
2690				if (!page)
2691					break;
2692				obj_idx = 0;
2693				continue;
2694			}
2695
2696			/*
2697			 * This will write the object and call zs_free.
2698			 *
2699			 * zs_free will free the object, but the
2700			 * under_reclaim flag prevents it from freeing
2701			 * the zspage altogether. This is necessary so
2702			 * that we can continue working with the
2703			 * zspage potentially after the last object
2704			 * has been freed.
2705			 */
2706			ret = pool->zpool_ops->evict(pool->zpool, handle);
2707			if (ret)
2708				goto next;
2709
2710			obj_idx++;
2711		}
2712
2713next:
2714		/* For freeing the zspage, or putting it back in the pool and LRU list. */
2715		spin_lock(&pool->lock);
2716		zspage->under_reclaim = false;
2717
2718		if (!get_zspage_inuse(zspage)) {
2719			/*
2720			 * Fullness went stale as zs_free() won't touch it
2721			 * while the page is removed from the pool. Fix it
2722			 * up for the check in __free_zspage().
2723			 */
2724			zspage->fullness = ZS_EMPTY;
2725
2726			__free_zspage(pool, class, zspage);
2727			spin_unlock(&pool->lock);
2728			return 0;
2729		}
2730
2731		/*
2732		 * Eviction fails on one of the handles, so we need to restore zspage.
2733		 * We need to rebuild its freelist (and free stored deferred handles),
2734		 * put it back to the correct size class, and add it to the LRU list.
2735		 */
2736		restore_freelist(pool, class, zspage);
2737		putback_zspage(class, zspage);
2738		list_add(&zspage->lru, &pool->lru);
2739		unlock_zspage(zspage);
2740	}
2741
2742	spin_unlock(&pool->lock);
2743	return -EAGAIN;
2744}
2745#endif /* CONFIG_ZPOOL */
2746
2747static int __init zs_init(void)
2748{
2749	int ret;
2750
 
 
 
 
2751	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2752				zs_cpu_prepare, zs_cpu_dead);
2753	if (ret)
2754		goto out;
2755
2756#ifdef CONFIG_ZPOOL
2757	zpool_register_driver(&zs_zpool_driver);
2758#endif
2759
2760	zs_stat_init();
2761
2762	return 0;
2763
 
 
2764out:
2765	return ret;
2766}
2767
2768static void __exit zs_exit(void)
2769{
2770#ifdef CONFIG_ZPOOL
2771	zpool_unregister_driver(&zs_zpool_driver);
2772#endif
 
2773	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2774
2775	zs_stat_exit();
2776}
2777
2778module_init(zs_init);
2779module_exit(zs_exit);
2780
2781MODULE_LICENSE("Dual BSD/GPL");
2782MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");