Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the UDP module.
8 *
9 * Version: @(#)udp.h 1.0.2 05/07/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 *
14 * Fixes:
15 * Alan Cox : Turned on udp checksums. I don't want to
16 * chase 'memory corruption' bugs that aren't!
17 */
18#ifndef _UDP_H
19#define _UDP_H
20
21#include <linux/list.h>
22#include <linux/bug.h>
23#include <net/inet_sock.h>
24#include <net/sock.h>
25#include <net/snmp.h>
26#include <net/ip.h>
27#include <linux/ipv6.h>
28#include <linux/seq_file.h>
29#include <linux/poll.h>
30
31/**
32 * struct udp_skb_cb - UDP(-Lite) private variables
33 *
34 * @header: private variables used by IPv4/IPv6
35 * @cscov: checksum coverage length (UDP-Lite only)
36 * @partial_cov: if set indicates partial csum coverage
37 */
38struct udp_skb_cb {
39 union {
40 struct inet_skb_parm h4;
41#if IS_ENABLED(CONFIG_IPV6)
42 struct inet6_skb_parm h6;
43#endif
44 } header;
45 __u16 cscov;
46 __u8 partial_cov;
47};
48#define UDP_SKB_CB(__skb) ((struct udp_skb_cb *)((__skb)->cb))
49
50/**
51 * struct udp_hslot - UDP hash slot
52 *
53 * @head: head of list of sockets
54 * @count: number of sockets in 'head' list
55 * @lock: spinlock protecting changes to head/count
56 */
57struct udp_hslot {
58 struct hlist_head head;
59 int count;
60 spinlock_t lock;
61} __attribute__((aligned(2 * sizeof(long))));
62
63/**
64 * struct udp_table - UDP table
65 *
66 * @hash: hash table, sockets are hashed on (local port)
67 * @hash2: hash table, sockets are hashed on (local port, local address)
68 * @mask: number of slots in hash tables, minus 1
69 * @log: log2(number of slots in hash table)
70 */
71struct udp_table {
72 struct udp_hslot *hash;
73 struct udp_hslot *hash2;
74 unsigned int mask;
75 unsigned int log;
76};
77extern struct udp_table udp_table;
78void udp_table_init(struct udp_table *, const char *);
79static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
80 struct net *net, unsigned int num)
81{
82 return &table->hash[udp_hashfn(net, num, table->mask)];
83}
84/*
85 * For secondary hash, net_hash_mix() is performed before calling
86 * udp_hashslot2(), this explains difference with udp_hashslot()
87 */
88static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
89 unsigned int hash)
90{
91 return &table->hash2[hash & table->mask];
92}
93
94extern struct proto udp_prot;
95
96extern atomic_long_t udp_memory_allocated;
97
98/* sysctl variables for udp */
99extern long sysctl_udp_mem[3];
100extern int sysctl_udp_rmem_min;
101extern int sysctl_udp_wmem_min;
102
103struct sk_buff;
104
105/*
106 * Generic checksumming routines for UDP(-Lite) v4 and v6
107 */
108static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
109{
110 return (UDP_SKB_CB(skb)->cscov == skb->len ?
111 __skb_checksum_complete(skb) :
112 __skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
113}
114
115static inline int udp_lib_checksum_complete(struct sk_buff *skb)
116{
117 return !skb_csum_unnecessary(skb) &&
118 __udp_lib_checksum_complete(skb);
119}
120
121/**
122 * udp_csum_outgoing - compute UDPv4/v6 checksum over fragments
123 * @sk: socket we are writing to
124 * @skb: sk_buff containing the filled-in UDP header
125 * (checksum field must be zeroed out)
126 */
127static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
128{
129 __wsum csum = csum_partial(skb_transport_header(skb),
130 sizeof(struct udphdr), 0);
131 skb_queue_walk(&sk->sk_write_queue, skb) {
132 csum = csum_add(csum, skb->csum);
133 }
134 return csum;
135}
136
137static inline __wsum udp_csum(struct sk_buff *skb)
138{
139 __wsum csum = csum_partial(skb_transport_header(skb),
140 sizeof(struct udphdr), skb->csum);
141
142 for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
143 csum = csum_add(csum, skb->csum);
144 }
145 return csum;
146}
147
148static inline __sum16 udp_v4_check(int len, __be32 saddr,
149 __be32 daddr, __wsum base)
150{
151 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
152}
153
154void udp_set_csum(bool nocheck, struct sk_buff *skb,
155 __be32 saddr, __be32 daddr, int len);
156
157static inline void udp_csum_pull_header(struct sk_buff *skb)
158{
159 if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
160 skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
161 skb->csum);
162 skb_pull_rcsum(skb, sizeof(struct udphdr));
163 UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
164}
165
166typedef struct sock *(*udp_lookup_t)(struct sk_buff *skb, __be16 sport,
167 __be16 dport);
168
169struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb,
170 struct udphdr *uh, udp_lookup_t lookup);
171int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup);
172
173struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
174 netdev_features_t features);
175
176static inline struct udphdr *udp_gro_udphdr(struct sk_buff *skb)
177{
178 struct udphdr *uh;
179 unsigned int hlen, off;
180
181 off = skb_gro_offset(skb);
182 hlen = off + sizeof(*uh);
183 uh = skb_gro_header_fast(skb, off);
184 if (skb_gro_header_hard(skb, hlen))
185 uh = skb_gro_header_slow(skb, hlen, off);
186
187 return uh;
188}
189
190/* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
191static inline int udp_lib_hash(struct sock *sk)
192{
193 BUG();
194 return 0;
195}
196
197void udp_lib_unhash(struct sock *sk);
198void udp_lib_rehash(struct sock *sk, u16 new_hash);
199
200static inline void udp_lib_close(struct sock *sk, long timeout)
201{
202 sk_common_release(sk);
203}
204
205int udp_lib_get_port(struct sock *sk, unsigned short snum,
206 unsigned int hash2_nulladdr);
207
208u32 udp_flow_hashrnd(void);
209
210static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
211 int min, int max, bool use_eth)
212{
213 u32 hash;
214
215 if (min >= max) {
216 /* Use default range */
217 inet_get_local_port_range(net, &min, &max);
218 }
219
220 hash = skb_get_hash(skb);
221 if (unlikely(!hash)) {
222 if (use_eth) {
223 /* Can't find a normal hash, caller has indicated an
224 * Ethernet packet so use that to compute a hash.
225 */
226 hash = jhash(skb->data, 2 * ETH_ALEN,
227 (__force u32) skb->protocol);
228 } else {
229 /* Can't derive any sort of hash for the packet, set
230 * to some consistent random value.
231 */
232 hash = udp_flow_hashrnd();
233 }
234 }
235
236 /* Since this is being sent on the wire obfuscate hash a bit
237 * to minimize possbility that any useful information to an
238 * attacker is leaked. Only upper 16 bits are relevant in the
239 * computation for 16 bit port value.
240 */
241 hash ^= hash << 16;
242
243 return htons((((u64) hash * (max - min)) >> 32) + min);
244}
245
246static inline int udp_rqueue_get(struct sock *sk)
247{
248 return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
249}
250
251static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
252 int dif, int sdif)
253{
254#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
255 return inet_bound_dev_eq(!!net->ipv4.sysctl_udp_l3mdev_accept,
256 bound_dev_if, dif, sdif);
257#else
258 return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
259#endif
260}
261
262/* net/ipv4/udp.c */
263void udp_destruct_sock(struct sock *sk);
264void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
265int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
266void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
267struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
268 int noblock, int *off, int *err);
269static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
270 int noblock, int *err)
271{
272 int off = 0;
273
274 return __skb_recv_udp(sk, flags, noblock, &off, err);
275}
276
277int udp_v4_early_demux(struct sk_buff *skb);
278bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
279int udp_get_port(struct sock *sk, unsigned short snum,
280 int (*saddr_cmp)(const struct sock *,
281 const struct sock *));
282int udp_err(struct sk_buff *, u32);
283int udp_abort(struct sock *sk, int err);
284int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
285int udp_push_pending_frames(struct sock *sk);
286void udp_flush_pending_frames(struct sock *sk);
287int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
288void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
289int udp_rcv(struct sk_buff *skb);
290int udp_ioctl(struct sock *sk, int cmd, unsigned long arg);
291int udp_init_sock(struct sock *sk);
292int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
293int __udp_disconnect(struct sock *sk, int flags);
294int udp_disconnect(struct sock *sk, int flags);
295__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
296struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
297 netdev_features_t features,
298 bool is_ipv6);
299int udp_lib_getsockopt(struct sock *sk, int level, int optname,
300 char __user *optval, int __user *optlen);
301int udp_lib_setsockopt(struct sock *sk, int level, int optname,
302 char __user *optval, unsigned int optlen,
303 int (*push_pending_frames)(struct sock *));
304struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
305 __be32 daddr, __be16 dport, int dif);
306struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
307 __be32 daddr, __be16 dport, int dif, int sdif,
308 struct udp_table *tbl, struct sk_buff *skb);
309struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
310 __be16 sport, __be16 dport);
311struct sock *udp6_lib_lookup(struct net *net,
312 const struct in6_addr *saddr, __be16 sport,
313 const struct in6_addr *daddr, __be16 dport,
314 int dif);
315struct sock *__udp6_lib_lookup(struct net *net,
316 const struct in6_addr *saddr, __be16 sport,
317 const struct in6_addr *daddr, __be16 dport,
318 int dif, int sdif, struct udp_table *tbl,
319 struct sk_buff *skb);
320struct sock *udp6_lib_lookup_skb(struct sk_buff *skb,
321 __be16 sport, __be16 dport);
322
323/* UDP uses skb->dev_scratch to cache as much information as possible and avoid
324 * possibly multiple cache miss on dequeue()
325 */
326struct udp_dev_scratch {
327 /* skb->truesize and the stateless bit are embedded in a single field;
328 * do not use a bitfield since the compiler emits better/smaller code
329 * this way
330 */
331 u32 _tsize_state;
332
333#if BITS_PER_LONG == 64
334 /* len and the bit needed to compute skb_csum_unnecessary
335 * will be on cold cache lines at recvmsg time.
336 * skb->len can be stored on 16 bits since the udp header has been
337 * already validated and pulled.
338 */
339 u16 len;
340 bool is_linear;
341 bool csum_unnecessary;
342#endif
343};
344
345static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
346{
347 return (struct udp_dev_scratch *)&skb->dev_scratch;
348}
349
350#if BITS_PER_LONG == 64
351static inline unsigned int udp_skb_len(struct sk_buff *skb)
352{
353 return udp_skb_scratch(skb)->len;
354}
355
356static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
357{
358 return udp_skb_scratch(skb)->csum_unnecessary;
359}
360
361static inline bool udp_skb_is_linear(struct sk_buff *skb)
362{
363 return udp_skb_scratch(skb)->is_linear;
364}
365
366#else
367static inline unsigned int udp_skb_len(struct sk_buff *skb)
368{
369 return skb->len;
370}
371
372static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
373{
374 return skb_csum_unnecessary(skb);
375}
376
377static inline bool udp_skb_is_linear(struct sk_buff *skb)
378{
379 return !skb_is_nonlinear(skb);
380}
381#endif
382
383static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
384 struct iov_iter *to)
385{
386 int n;
387
388 n = copy_to_iter(skb->data + off, len, to);
389 if (n == len)
390 return 0;
391
392 iov_iter_revert(to, n);
393 return -EFAULT;
394}
395
396/*
397 * SNMP statistics for UDP and UDP-Lite
398 */
399#define UDP_INC_STATS(net, field, is_udplite) do { \
400 if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field); \
401 else SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0)
402#define __UDP_INC_STATS(net, field, is_udplite) do { \
403 if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field); \
404 else __SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0)
405
406#define __UDP6_INC_STATS(net, field, is_udplite) do { \
407 if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
408 else __SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \
409} while(0)
410#define UDP6_INC_STATS(net, field, __lite) do { \
411 if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field); \
412 else SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \
413} while(0)
414
415#if IS_ENABLED(CONFIG_IPV6)
416#define __UDPX_MIB(sk, ipv4) \
417({ \
418 ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \
419 sock_net(sk)->mib.udp_statistics) : \
420 (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 : \
421 sock_net(sk)->mib.udp_stats_in6); \
422})
423#else
424#define __UDPX_MIB(sk, ipv4) \
425({ \
426 IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \
427 sock_net(sk)->mib.udp_statistics; \
428})
429#endif
430
431#define __UDPX_INC_STATS(sk, field) \
432 __SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
433
434#ifdef CONFIG_PROC_FS
435struct udp_seq_afinfo {
436 sa_family_t family;
437 struct udp_table *udp_table;
438};
439
440struct udp_iter_state {
441 struct seq_net_private p;
442 int bucket;
443};
444
445void *udp_seq_start(struct seq_file *seq, loff_t *pos);
446void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
447void udp_seq_stop(struct seq_file *seq, void *v);
448
449extern const struct seq_operations udp_seq_ops;
450extern const struct seq_operations udp6_seq_ops;
451
452int udp4_proc_init(void);
453void udp4_proc_exit(void);
454#endif /* CONFIG_PROC_FS */
455
456int udpv4_offload_init(void);
457
458void udp_init(void);
459
460DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
461void udp_encap_enable(void);
462#if IS_ENABLED(CONFIG_IPV6)
463DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
464void udpv6_encap_enable(void);
465#endif
466
467static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
468 struct sk_buff *skb, bool ipv4)
469{
470 netdev_features_t features = NETIF_F_SG;
471 struct sk_buff *segs;
472
473 /* Avoid csum recalculation by skb_segment unless userspace explicitly
474 * asks for the final checksum values
475 */
476 if (!inet_get_convert_csum(sk))
477 features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
478
479 /* the GSO CB lays after the UDP one, no need to save and restore any
480 * CB fragment
481 */
482 segs = __skb_gso_segment(skb, features, false);
483 if (IS_ERR_OR_NULL(segs)) {
484 int segs_nr = skb_shinfo(skb)->gso_segs;
485
486 atomic_add(segs_nr, &sk->sk_drops);
487 SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
488 kfree_skb(skb);
489 return NULL;
490 }
491
492 consume_skb(skb);
493 return segs;
494}
495
496#endif /* _UDP_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the UDP module.
8 *
9 * Version: @(#)udp.h 1.0.2 05/07/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 *
14 * Fixes:
15 * Alan Cox : Turned on udp checksums. I don't want to
16 * chase 'memory corruption' bugs that aren't!
17 */
18#ifndef _UDP_H
19#define _UDP_H
20
21#include <linux/list.h>
22#include <linux/bug.h>
23#include <net/inet_sock.h>
24#include <net/sock.h>
25#include <net/snmp.h>
26#include <net/ip.h>
27#include <linux/ipv6.h>
28#include <linux/seq_file.h>
29#include <linux/poll.h>
30#include <linux/indirect_call_wrapper.h>
31
32/**
33 * struct udp_skb_cb - UDP(-Lite) private variables
34 *
35 * @header: private variables used by IPv4/IPv6
36 * @cscov: checksum coverage length (UDP-Lite only)
37 * @partial_cov: if set indicates partial csum coverage
38 */
39struct udp_skb_cb {
40 union {
41 struct inet_skb_parm h4;
42#if IS_ENABLED(CONFIG_IPV6)
43 struct inet6_skb_parm h6;
44#endif
45 } header;
46 __u16 cscov;
47 __u8 partial_cov;
48};
49#define UDP_SKB_CB(__skb) ((struct udp_skb_cb *)((__skb)->cb))
50
51/**
52 * struct udp_hslot - UDP hash slot
53 *
54 * @head: head of list of sockets
55 * @count: number of sockets in 'head' list
56 * @lock: spinlock protecting changes to head/count
57 */
58struct udp_hslot {
59 struct hlist_head head;
60 int count;
61 spinlock_t lock;
62} __attribute__((aligned(2 * sizeof(long))));
63
64/**
65 * struct udp_table - UDP table
66 *
67 * @hash: hash table, sockets are hashed on (local port)
68 * @hash2: hash table, sockets are hashed on (local port, local address)
69 * @mask: number of slots in hash tables, minus 1
70 * @log: log2(number of slots in hash table)
71 */
72struct udp_table {
73 struct udp_hslot *hash;
74 struct udp_hslot *hash2;
75 unsigned int mask;
76 unsigned int log;
77};
78extern struct udp_table udp_table;
79void udp_table_init(struct udp_table *, const char *);
80static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
81 struct net *net, unsigned int num)
82{
83 return &table->hash[udp_hashfn(net, num, table->mask)];
84}
85/*
86 * For secondary hash, net_hash_mix() is performed before calling
87 * udp_hashslot2(), this explains difference with udp_hashslot()
88 */
89static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
90 unsigned int hash)
91{
92 return &table->hash2[hash & table->mask];
93}
94
95extern struct proto udp_prot;
96
97extern atomic_long_t udp_memory_allocated;
98DECLARE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
99
100/* sysctl variables for udp */
101extern long sysctl_udp_mem[3];
102extern int sysctl_udp_rmem_min;
103extern int sysctl_udp_wmem_min;
104
105struct sk_buff;
106
107/*
108 * Generic checksumming routines for UDP(-Lite) v4 and v6
109 */
110static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
111{
112 return (UDP_SKB_CB(skb)->cscov == skb->len ?
113 __skb_checksum_complete(skb) :
114 __skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
115}
116
117static inline int udp_lib_checksum_complete(struct sk_buff *skb)
118{
119 return !skb_csum_unnecessary(skb) &&
120 __udp_lib_checksum_complete(skb);
121}
122
123/**
124 * udp_csum_outgoing - compute UDPv4/v6 checksum over fragments
125 * @sk: socket we are writing to
126 * @skb: sk_buff containing the filled-in UDP header
127 * (checksum field must be zeroed out)
128 */
129static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
130{
131 __wsum csum = csum_partial(skb_transport_header(skb),
132 sizeof(struct udphdr), 0);
133 skb_queue_walk(&sk->sk_write_queue, skb) {
134 csum = csum_add(csum, skb->csum);
135 }
136 return csum;
137}
138
139static inline __wsum udp_csum(struct sk_buff *skb)
140{
141 __wsum csum = csum_partial(skb_transport_header(skb),
142 sizeof(struct udphdr), skb->csum);
143
144 for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
145 csum = csum_add(csum, skb->csum);
146 }
147 return csum;
148}
149
150static inline __sum16 udp_v4_check(int len, __be32 saddr,
151 __be32 daddr, __wsum base)
152{
153 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
154}
155
156void udp_set_csum(bool nocheck, struct sk_buff *skb,
157 __be32 saddr, __be32 daddr, int len);
158
159static inline void udp_csum_pull_header(struct sk_buff *skb)
160{
161 if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
162 skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
163 skb->csum);
164 skb_pull_rcsum(skb, sizeof(struct udphdr));
165 UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
166}
167
168typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport,
169 __be16 dport);
170
171void udp_v6_early_demux(struct sk_buff *skb);
172INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *));
173
174struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
175 netdev_features_t features, bool is_ipv6);
176
177static inline void udp_lib_init_sock(struct sock *sk)
178{
179 struct udp_sock *up = udp_sk(sk);
180
181 skb_queue_head_init(&up->reader_queue);
182 up->forward_threshold = sk->sk_rcvbuf >> 2;
183 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
184}
185
186/* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
187static inline int udp_lib_hash(struct sock *sk)
188{
189 BUG();
190 return 0;
191}
192
193void udp_lib_unhash(struct sock *sk);
194void udp_lib_rehash(struct sock *sk, u16 new_hash);
195
196static inline void udp_lib_close(struct sock *sk, long timeout)
197{
198 sk_common_release(sk);
199}
200
201int udp_lib_get_port(struct sock *sk, unsigned short snum,
202 unsigned int hash2_nulladdr);
203
204u32 udp_flow_hashrnd(void);
205
206static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
207 int min, int max, bool use_eth)
208{
209 u32 hash;
210
211 if (min >= max) {
212 /* Use default range */
213 inet_get_local_port_range(net, &min, &max);
214 }
215
216 hash = skb_get_hash(skb);
217 if (unlikely(!hash)) {
218 if (use_eth) {
219 /* Can't find a normal hash, caller has indicated an
220 * Ethernet packet so use that to compute a hash.
221 */
222 hash = jhash(skb->data, 2 * ETH_ALEN,
223 (__force u32) skb->protocol);
224 } else {
225 /* Can't derive any sort of hash for the packet, set
226 * to some consistent random value.
227 */
228 hash = udp_flow_hashrnd();
229 }
230 }
231
232 /* Since this is being sent on the wire obfuscate hash a bit
233 * to minimize possbility that any useful information to an
234 * attacker is leaked. Only upper 16 bits are relevant in the
235 * computation for 16 bit port value.
236 */
237 hash ^= hash << 16;
238
239 return htons((((u64) hash * (max - min)) >> 32) + min);
240}
241
242static inline int udp_rqueue_get(struct sock *sk)
243{
244 return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
245}
246
247static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
248 int dif, int sdif)
249{
250#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
251 return inet_bound_dev_eq(!!READ_ONCE(net->ipv4.sysctl_udp_l3mdev_accept),
252 bound_dev_if, dif, sdif);
253#else
254 return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
255#endif
256}
257
258/* net/ipv4/udp.c */
259void udp_destruct_common(struct sock *sk);
260void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
261int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
262void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
263struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int *off,
264 int *err);
265static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
266 int *err)
267{
268 int off = 0;
269
270 return __skb_recv_udp(sk, flags, &off, err);
271}
272
273int udp_v4_early_demux(struct sk_buff *skb);
274bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
275int udp_get_port(struct sock *sk, unsigned short snum,
276 int (*saddr_cmp)(const struct sock *,
277 const struct sock *));
278int udp_err(struct sk_buff *, u32);
279int udp_abort(struct sock *sk, int err);
280int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
281int udp_push_pending_frames(struct sock *sk);
282void udp_flush_pending_frames(struct sock *sk);
283int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
284void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
285int udp_rcv(struct sk_buff *skb);
286int udp_ioctl(struct sock *sk, int cmd, unsigned long arg);
287int udp_init_sock(struct sock *sk);
288int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
289int __udp_disconnect(struct sock *sk, int flags);
290int udp_disconnect(struct sock *sk, int flags);
291__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
292struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
293 netdev_features_t features,
294 bool is_ipv6);
295int udp_lib_getsockopt(struct sock *sk, int level, int optname,
296 char __user *optval, int __user *optlen);
297int udp_lib_setsockopt(struct sock *sk, int level, int optname,
298 sockptr_t optval, unsigned int optlen,
299 int (*push_pending_frames)(struct sock *));
300struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
301 __be32 daddr, __be16 dport, int dif);
302struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
303 __be32 daddr, __be16 dport, int dif, int sdif,
304 struct udp_table *tbl, struct sk_buff *skb);
305struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
306 __be16 sport, __be16 dport);
307struct sock *udp6_lib_lookup(struct net *net,
308 const struct in6_addr *saddr, __be16 sport,
309 const struct in6_addr *daddr, __be16 dport,
310 int dif);
311struct sock *__udp6_lib_lookup(struct net *net,
312 const struct in6_addr *saddr, __be16 sport,
313 const struct in6_addr *daddr, __be16 dport,
314 int dif, int sdif, struct udp_table *tbl,
315 struct sk_buff *skb);
316struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb,
317 __be16 sport, __be16 dport);
318int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
319
320/* UDP uses skb->dev_scratch to cache as much information as possible and avoid
321 * possibly multiple cache miss on dequeue()
322 */
323struct udp_dev_scratch {
324 /* skb->truesize and the stateless bit are embedded in a single field;
325 * do not use a bitfield since the compiler emits better/smaller code
326 * this way
327 */
328 u32 _tsize_state;
329
330#if BITS_PER_LONG == 64
331 /* len and the bit needed to compute skb_csum_unnecessary
332 * will be on cold cache lines at recvmsg time.
333 * skb->len can be stored on 16 bits since the udp header has been
334 * already validated and pulled.
335 */
336 u16 len;
337 bool is_linear;
338 bool csum_unnecessary;
339#endif
340};
341
342static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
343{
344 return (struct udp_dev_scratch *)&skb->dev_scratch;
345}
346
347#if BITS_PER_LONG == 64
348static inline unsigned int udp_skb_len(struct sk_buff *skb)
349{
350 return udp_skb_scratch(skb)->len;
351}
352
353static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
354{
355 return udp_skb_scratch(skb)->csum_unnecessary;
356}
357
358static inline bool udp_skb_is_linear(struct sk_buff *skb)
359{
360 return udp_skb_scratch(skb)->is_linear;
361}
362
363#else
364static inline unsigned int udp_skb_len(struct sk_buff *skb)
365{
366 return skb->len;
367}
368
369static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
370{
371 return skb_csum_unnecessary(skb);
372}
373
374static inline bool udp_skb_is_linear(struct sk_buff *skb)
375{
376 return !skb_is_nonlinear(skb);
377}
378#endif
379
380static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
381 struct iov_iter *to)
382{
383 int n;
384
385 n = copy_to_iter(skb->data + off, len, to);
386 if (n == len)
387 return 0;
388
389 iov_iter_revert(to, n);
390 return -EFAULT;
391}
392
393/*
394 * SNMP statistics for UDP and UDP-Lite
395 */
396#define UDP_INC_STATS(net, field, is_udplite) do { \
397 if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field); \
398 else SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0)
399#define __UDP_INC_STATS(net, field, is_udplite) do { \
400 if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field); \
401 else __SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0)
402
403#define __UDP6_INC_STATS(net, field, is_udplite) do { \
404 if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
405 else __SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \
406} while(0)
407#define UDP6_INC_STATS(net, field, __lite) do { \
408 if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field); \
409 else SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \
410} while(0)
411
412#if IS_ENABLED(CONFIG_IPV6)
413#define __UDPX_MIB(sk, ipv4) \
414({ \
415 ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \
416 sock_net(sk)->mib.udp_statistics) : \
417 (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 : \
418 sock_net(sk)->mib.udp_stats_in6); \
419})
420#else
421#define __UDPX_MIB(sk, ipv4) \
422({ \
423 IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \
424 sock_net(sk)->mib.udp_statistics; \
425})
426#endif
427
428#define __UDPX_INC_STATS(sk, field) \
429 __SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
430
431#ifdef CONFIG_PROC_FS
432struct udp_seq_afinfo {
433 sa_family_t family;
434 struct udp_table *udp_table;
435};
436
437struct udp_iter_state {
438 struct seq_net_private p;
439 int bucket;
440 struct udp_seq_afinfo *bpf_seq_afinfo;
441};
442
443void *udp_seq_start(struct seq_file *seq, loff_t *pos);
444void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
445void udp_seq_stop(struct seq_file *seq, void *v);
446
447extern const struct seq_operations udp_seq_ops;
448extern const struct seq_operations udp6_seq_ops;
449
450int udp4_proc_init(void);
451void udp4_proc_exit(void);
452#endif /* CONFIG_PROC_FS */
453
454int udpv4_offload_init(void);
455
456void udp_init(void);
457
458DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
459void udp_encap_enable(void);
460void udp_encap_disable(void);
461#if IS_ENABLED(CONFIG_IPV6)
462DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
463void udpv6_encap_enable(void);
464#endif
465
466static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
467 struct sk_buff *skb, bool ipv4)
468{
469 netdev_features_t features = NETIF_F_SG;
470 struct sk_buff *segs;
471
472 /* Avoid csum recalculation by skb_segment unless userspace explicitly
473 * asks for the final checksum values
474 */
475 if (!inet_get_convert_csum(sk))
476 features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
477
478 /* UDP segmentation expects packets of type CHECKSUM_PARTIAL or
479 * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial
480 * packets in udp_gro_complete_segment. As does UDP GSO, verified by
481 * udp_send_skb. But when those packets are looped in dev_loopback_xmit
482 * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY.
483 * Reset in this specific case, where PARTIAL is both correct and
484 * required.
485 */
486 if (skb->pkt_type == PACKET_LOOPBACK)
487 skb->ip_summed = CHECKSUM_PARTIAL;
488
489 /* the GSO CB lays after the UDP one, no need to save and restore any
490 * CB fragment
491 */
492 segs = __skb_gso_segment(skb, features, false);
493 if (IS_ERR_OR_NULL(segs)) {
494 int segs_nr = skb_shinfo(skb)->gso_segs;
495
496 atomic_add(segs_nr, &sk->sk_drops);
497 SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
498 kfree_skb(skb);
499 return NULL;
500 }
501
502 consume_skb(skb);
503 return segs;
504}
505
506static inline void udp_post_segment_fix_csum(struct sk_buff *skb)
507{
508 /* UDP-lite can't land here - no GRO */
509 WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov);
510
511 /* UDP packets generated with UDP_SEGMENT and traversing:
512 *
513 * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx)
514 *
515 * can reach an UDP socket with CHECKSUM_NONE, because
516 * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE.
517 * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will
518 * have a valid checksum, as the GRO engine validates the UDP csum
519 * before the aggregation and nobody strips such info in between.
520 * Instead of adding another check in the tunnel fastpath, we can force
521 * a valid csum after the segmentation.
522 * Additionally fixup the UDP CB.
523 */
524 UDP_SKB_CB(skb)->cscov = skb->len;
525 if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid)
526 skb->csum_valid = 1;
527}
528
529#ifdef CONFIG_BPF_SYSCALL
530struct sk_psock;
531struct proto *udp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
532int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
533#endif
534
535#endif /* _UDP_H */