Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *
   4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
   5 *
   6 */
   7
   8#include <linux/blkdev.h>
   9#include <linux/fs.h>
  10#include <linux/random.h>
  11#include <linux/slab.h>
  12
  13#include "debug.h"
  14#include "ntfs.h"
  15#include "ntfs_fs.h"
  16
  17/*
  18 * LOG FILE structs
  19 */
  20
  21// clang-format off
  22
  23#define MaxLogFileSize     0x100000000ull
  24#define DefaultLogPageSize 4096
  25#define MinLogRecordPages  0x30
  26
  27struct RESTART_HDR {
  28	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
  29	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
  30	__le32 page_size;     // 0x14: Log page size used for this log file.
  31	__le16 ra_off;        // 0x18:
  32	__le16 minor_ver;     // 0x1A:
  33	__le16 major_ver;     // 0x1C:
  34	__le16 fixups[];
  35};
  36
  37#define LFS_NO_CLIENT 0xffff
  38#define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
  39
  40struct CLIENT_REC {
  41	__le64 oldest_lsn;
  42	__le64 restart_lsn; // 0x08:
  43	__le16 prev_client; // 0x10:
  44	__le16 next_client; // 0x12:
  45	__le16 seq_num;     // 0x14:
  46	u8 align[6];        // 0x16:
  47	__le32 name_bytes;  // 0x1C: In bytes.
  48	__le16 name[32];    // 0x20: Name of client.
  49};
  50
  51static_assert(sizeof(struct CLIENT_REC) == 0x60);
  52
  53/* Two copies of these will exist at the beginning of the log file */
  54struct RESTART_AREA {
  55	__le64 current_lsn;    // 0x00: Current logical end of log file.
  56	__le16 log_clients;    // 0x08: Maximum number of clients.
  57	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
  58	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
  59	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
  60	__le16 ra_len;         // 0x14:
  61	__le16 client_off;     // 0x16:
  62	__le64 l_size;         // 0x18: Usable log file size.
  63	__le32 last_lsn_data_len; // 0x20:
  64	__le16 rec_hdr_len;    // 0x24: Log page data offset.
  65	__le16 data_off;       // 0x26: Log page data length.
  66	__le32 open_log_count; // 0x28:
  67	__le32 align[5];       // 0x2C:
  68	struct CLIENT_REC clients[]; // 0x40:
  69};
  70
  71struct LOG_REC_HDR {
  72	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
  73	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
  74	__le16 redo_off;     // 0x04:  Offset to Redo record.
  75	__le16 redo_len;     // 0x06:  Redo length.
  76	__le16 undo_off;     // 0x08:  Offset to Undo record.
  77	__le16 undo_len;     // 0x0A:  Undo length.
  78	__le16 target_attr;  // 0x0C:
  79	__le16 lcns_follow;  // 0x0E:
  80	__le16 record_off;   // 0x10:
  81	__le16 attr_off;     // 0x12:
  82	__le16 cluster_off;  // 0x14:
  83	__le16 reserved;     // 0x16:
  84	__le64 target_vcn;   // 0x18:
  85	__le64 page_lcns[];  // 0x20:
  86};
  87
  88static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
  89
  90#define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
  91#define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
  92
  93struct RESTART_TABLE {
  94	__le16 size;       // 0x00: In bytes
  95	__le16 used;       // 0x02: Entries
  96	__le16 total;      // 0x04: Entries
  97	__le16 res[3];     // 0x06:
  98	__le32 free_goal;  // 0x0C:
  99	__le32 first_free; // 0x10:
 100	__le32 last_free;  // 0x14:
 101
 102};
 103
 104static_assert(sizeof(struct RESTART_TABLE) == 0x18);
 105
 106struct ATTR_NAME_ENTRY {
 107	__le16 off; // Offset in the Open attribute Table.
 108	__le16 name_bytes;
 109	__le16 name[];
 110};
 111
 112struct OPEN_ATTR_ENRTY {
 113	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 114	__le32 bytes_per_index; // 0x04:
 115	enum ATTR_TYPE type;    // 0x08:
 116	u8 is_dirty_pages;      // 0x0C:
 117	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
 118	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
 119	u8 res;
 120	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
 121	__le64 open_record_lsn; // 0x18:
 122	void *ptr;              // 0x20:
 123};
 124
 125/* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
 126struct OPEN_ATTR_ENRTY_32 {
 127	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 128	__le32 ptr;             // 0x04:
 129	struct MFT_REF ref;     // 0x08:
 130	__le64 open_record_lsn; // 0x10:
 131	u8 is_dirty_pages;      // 0x18:
 132	u8 is_attr_name;        // 0x19:
 133	u8 res1[2];
 134	enum ATTR_TYPE type;    // 0x1C:
 135	u8 name_len;            // 0x20: In wchar
 136	u8 res2[3];
 137	__le32 AttributeName;   // 0x24:
 138	__le32 bytes_per_index; // 0x28:
 139};
 140
 141#define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
 142// static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
 143static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
 144
 145/*
 146 * One entry exists in the Dirty Pages Table for each page which is dirty at
 147 * the time the Restart Area is written.
 148 */
 149struct DIR_PAGE_ENTRY {
 150	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 151	__le32 target_attr;  // 0x04: Index into the Open attribute Table
 152	__le32 transfer_len; // 0x08:
 153	__le32 lcns_follow;  // 0x0C:
 154	__le64 vcn;          // 0x10: Vcn of dirty page
 155	__le64 oldest_lsn;   // 0x18:
 156	__le64 page_lcns[];  // 0x20:
 157};
 158
 159static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
 160
 161/* 32 bit version of 'struct DIR_PAGE_ENTRY' */
 162struct DIR_PAGE_ENTRY_32 {
 163	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
 164	__le32 target_attr;	// 0x04: Index into the Open attribute Table
 165	__le32 transfer_len;	// 0x08:
 166	__le32 lcns_follow;	// 0x0C:
 167	__le32 reserved;	// 0x10:
 168	__le32 vcn_low;		// 0x14: Vcn of dirty page
 169	__le32 vcn_hi;		// 0x18: Vcn of dirty page
 170	__le32 oldest_lsn_low;	// 0x1C:
 171	__le32 oldest_lsn_hi;	// 0x1C:
 172	__le32 page_lcns_low;	// 0x24:
 173	__le32 page_lcns_hi;	// 0x24:
 174};
 175
 176static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
 177static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
 178
 179enum transact_state {
 180	TransactionUninitialized = 0,
 181	TransactionActive,
 182	TransactionPrepared,
 183	TransactionCommitted
 184};
 185
 186struct TRANSACTION_ENTRY {
 187	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 188	u8 transact_state;    // 0x04:
 189	u8 reserved[3];       // 0x05:
 190	__le64 first_lsn;     // 0x08:
 191	__le64 prev_lsn;      // 0x10:
 192	__le64 undo_next_lsn; // 0x18:
 193	__le32 undo_records;  // 0x20: Number of undo log records pending abort
 194	__le32 undo_len;      // 0x24: Total undo size
 195};
 196
 197static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
 198
 199struct NTFS_RESTART {
 200	__le32 major_ver;             // 0x00:
 201	__le32 minor_ver;             // 0x04:
 202	__le64 check_point_start;     // 0x08:
 203	__le64 open_attr_table_lsn;   // 0x10:
 204	__le64 attr_names_lsn;        // 0x18:
 205	__le64 dirty_pages_table_lsn; // 0x20:
 206	__le64 transact_table_lsn;    // 0x28:
 207	__le32 open_attr_len;         // 0x30: In bytes
 208	__le32 attr_names_len;        // 0x34: In bytes
 209	__le32 dirty_pages_len;       // 0x38: In bytes
 210	__le32 transact_table_len;    // 0x3C: In bytes
 211};
 212
 213static_assert(sizeof(struct NTFS_RESTART) == 0x40);
 214
 215struct NEW_ATTRIBUTE_SIZES {
 216	__le64 alloc_size;
 217	__le64 valid_size;
 218	__le64 data_size;
 219	__le64 total_size;
 220};
 221
 222struct BITMAP_RANGE {
 223	__le32 bitmap_off;
 224	__le32 bits;
 225};
 226
 227struct LCN_RANGE {
 228	__le64 lcn;
 229	__le64 len;
 230};
 231
 232/* The following type defines the different log record types. */
 233#define LfsClientRecord  cpu_to_le32(1)
 234#define LfsClientRestart cpu_to_le32(2)
 235
 236/* This is used to uniquely identify a client for a particular log file. */
 237struct CLIENT_ID {
 238	__le16 seq_num;
 239	__le16 client_idx;
 240};
 241
 242/* This is the header that begins every Log Record in the log file. */
 243struct LFS_RECORD_HDR {
 244	__le64 this_lsn;		// 0x00:
 245	__le64 client_prev_lsn;		// 0x08:
 246	__le64 client_undo_next_lsn;	// 0x10:
 247	__le32 client_data_len;		// 0x18:
 248	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
 249	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
 250	__le32 transact_id;		// 0x24:
 251	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
 252	u8 align[6];			// 0x2A:
 253};
 254
 255#define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
 256
 257static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
 258
 259struct LFS_RECORD {
 260	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
 261	u8 align[6];		// 0x02:
 262	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
 263};
 264
 265static_assert(sizeof(struct LFS_RECORD) == 0x10);
 266
 267struct RECORD_PAGE_HDR {
 268	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
 269	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
 270	__le16 page_count;		// 0x14:
 271	__le16 page_pos;		// 0x16:
 272	struct LFS_RECORD record_hdr;	// 0x18:
 273	__le16 fixups[10];		// 0x28:
 274	__le32 file_off;		// 0x3c: Used when major version >= 2
 275};
 276
 277// clang-format on
 278
 279// Page contains the end of a log record.
 280#define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
 281
 282static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
 283{
 284	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
 285}
 286
 287static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
 288
 289/*
 290 * END of NTFS LOG structures
 291 */
 292
 293/* Define some tuning parameters to keep the restart tables a reasonable size. */
 294#define INITIAL_NUMBER_TRANSACTIONS 5
 295
 296enum NTFS_LOG_OPERATION {
 297
 298	Noop = 0x00,
 299	CompensationLogRecord = 0x01,
 300	InitializeFileRecordSegment = 0x02,
 301	DeallocateFileRecordSegment = 0x03,
 302	WriteEndOfFileRecordSegment = 0x04,
 303	CreateAttribute = 0x05,
 304	DeleteAttribute = 0x06,
 305	UpdateResidentValue = 0x07,
 306	UpdateNonresidentValue = 0x08,
 307	UpdateMappingPairs = 0x09,
 308	DeleteDirtyClusters = 0x0A,
 309	SetNewAttributeSizes = 0x0B,
 310	AddIndexEntryRoot = 0x0C,
 311	DeleteIndexEntryRoot = 0x0D,
 312	AddIndexEntryAllocation = 0x0E,
 313	DeleteIndexEntryAllocation = 0x0F,
 314	WriteEndOfIndexBuffer = 0x10,
 315	SetIndexEntryVcnRoot = 0x11,
 316	SetIndexEntryVcnAllocation = 0x12,
 317	UpdateFileNameRoot = 0x13,
 318	UpdateFileNameAllocation = 0x14,
 319	SetBitsInNonresidentBitMap = 0x15,
 320	ClearBitsInNonresidentBitMap = 0x16,
 321	HotFix = 0x17,
 322	EndTopLevelAction = 0x18,
 323	PrepareTransaction = 0x19,
 324	CommitTransaction = 0x1A,
 325	ForgetTransaction = 0x1B,
 326	OpenNonresidentAttribute = 0x1C,
 327	OpenAttributeTableDump = 0x1D,
 328	AttributeNamesDump = 0x1E,
 329	DirtyPageTableDump = 0x1F,
 330	TransactionTableDump = 0x20,
 331	UpdateRecordDataRoot = 0x21,
 332	UpdateRecordDataAllocation = 0x22,
 333
 334	UpdateRelativeDataInIndex =
 335		0x23, // NtOfsRestartUpdateRelativeDataInIndex
 336	UpdateRelativeDataInIndex2 = 0x24,
 337	ZeroEndOfFileRecord = 0x25,
 338};
 339
 340/*
 341 * Array for log records which require a target attribute.
 342 * A true indicates that the corresponding restart operation
 343 * requires a target attribute.
 344 */
 345static const u8 AttributeRequired[] = {
 346	0xFC, 0xFB, 0xFF, 0x10, 0x06,
 347};
 348
 349static inline bool is_target_required(u16 op)
 350{
 351	bool ret = op <= UpdateRecordDataAllocation &&
 352		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
 353	return ret;
 354}
 355
 356static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
 357{
 358	switch (op) {
 359	case Noop:
 360	case DeleteDirtyClusters:
 361	case HotFix:
 362	case EndTopLevelAction:
 363	case PrepareTransaction:
 364	case CommitTransaction:
 365	case ForgetTransaction:
 366	case CompensationLogRecord:
 367	case OpenNonresidentAttribute:
 368	case OpenAttributeTableDump:
 369	case AttributeNamesDump:
 370	case DirtyPageTableDump:
 371	case TransactionTableDump:
 372		return true;
 373	default:
 374		return false;
 375	}
 376}
 377
 378enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
 379
 380/* Bytes per restart table. */
 381static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
 382{
 383	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
 384	       sizeof(struct RESTART_TABLE);
 385}
 386
 387/* Log record length. */
 388static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
 389{
 390	u16 t16 = le16_to_cpu(lr->lcns_follow);
 391
 392	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
 393}
 394
 395struct lcb {
 396	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
 397	struct LOG_REC_HDR *log_rec;
 398	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
 399	struct CLIENT_ID client;
 400	bool alloc; // If true the we should deallocate 'log_rec'.
 401};
 402
 403static void lcb_put(struct lcb *lcb)
 404{
 405	if (lcb->alloc)
 406		kfree(lcb->log_rec);
 407	kfree(lcb->lrh);
 408	kfree(lcb);
 409}
 410
 411/* Find the oldest lsn from active clients. */
 412static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
 413				     __le16 next_client, u64 *oldest_lsn)
 414{
 415	while (next_client != LFS_NO_CLIENT_LE) {
 416		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
 417		u64 lsn = le64_to_cpu(cr->oldest_lsn);
 418
 419		/* Ignore this block if it's oldest lsn is 0. */
 420		if (lsn && lsn < *oldest_lsn)
 421			*oldest_lsn = lsn;
 422
 423		next_client = cr->next_client;
 424	}
 425}
 426
 427static inline bool is_rst_page_hdr_valid(u32 file_off,
 428					 const struct RESTART_HDR *rhdr)
 429{
 430	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
 431	u32 page_size = le32_to_cpu(rhdr->page_size);
 432	u32 end_usa;
 433	u16 ro;
 434
 435	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
 436	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
 437		return false;
 438	}
 439
 440	/* Check that if the file offset isn't 0, it is the system page size. */
 441	if (file_off && file_off != sys_page)
 442		return false;
 443
 444	/* Check support version 1.1+. */
 445	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
 446		return false;
 447
 448	if (le16_to_cpu(rhdr->major_ver) > 2)
 449		return false;
 450
 451	ro = le16_to_cpu(rhdr->ra_off);
 452	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
 453		return false;
 454
 455	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
 456	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
 457
 458	if (ro < end_usa)
 459		return false;
 460
 461	return true;
 462}
 463
 464static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
 465{
 466	const struct RESTART_AREA *ra;
 467	u16 cl, fl, ul;
 468	u32 off, l_size, file_dat_bits, file_size_round;
 469	u16 ro = le16_to_cpu(rhdr->ra_off);
 470	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
 471
 472	if (ro + offsetof(struct RESTART_AREA, l_size) >
 473	    SECTOR_SIZE - sizeof(short))
 474		return false;
 475
 476	ra = Add2Ptr(rhdr, ro);
 477	cl = le16_to_cpu(ra->log_clients);
 478
 479	if (cl > 1)
 480		return false;
 481
 482	off = le16_to_cpu(ra->client_off);
 483
 484	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
 485		return false;
 486
 487	off += cl * sizeof(struct CLIENT_REC);
 488
 489	if (off > sys_page)
 490		return false;
 491
 492	/*
 493	 * Check the restart length field and whether the entire
 494	 * restart area is contained that length.
 495	 */
 496	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
 497	    off > le16_to_cpu(ra->ra_len)) {
 498		return false;
 499	}
 500
 501	/*
 502	 * As a final check make sure that the use list and the free list
 503	 * are either empty or point to a valid client.
 504	 */
 505	fl = le16_to_cpu(ra->client_idx[0]);
 506	ul = le16_to_cpu(ra->client_idx[1]);
 507	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
 508	    (ul != LFS_NO_CLIENT && ul >= cl))
 509		return false;
 510
 511	/* Make sure the sequence number bits match the log file size. */
 512	l_size = le64_to_cpu(ra->l_size);
 513
 514	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
 515	file_size_round = 1u << (file_dat_bits + 3);
 516	if (file_size_round != l_size &&
 517	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
 518		return false;
 519	}
 520
 521	/* The log page data offset and record header length must be quad-aligned. */
 522	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
 523	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
 524		return false;
 525
 526	return true;
 527}
 528
 529static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
 530					bool usa_error)
 531{
 532	u16 ro = le16_to_cpu(rhdr->ra_off);
 533	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
 534	u16 ra_len = le16_to_cpu(ra->ra_len);
 535	const struct CLIENT_REC *ca;
 536	u32 i;
 537
 538	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
 539		return false;
 540
 541	/* Find the start of the client array. */
 542	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
 543
 544	/*
 545	 * Start with the free list.
 546	 * Check that all the clients are valid and that there isn't a cycle.
 547	 * Do the in-use list on the second pass.
 548	 */
 549	for (i = 0; i < 2; i++) {
 550		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
 551		bool first_client = true;
 552		u16 clients = le16_to_cpu(ra->log_clients);
 553
 554		while (client_idx != LFS_NO_CLIENT) {
 555			const struct CLIENT_REC *cr;
 556
 557			if (!clients ||
 558			    client_idx >= le16_to_cpu(ra->log_clients))
 559				return false;
 560
 561			clients -= 1;
 562			cr = ca + client_idx;
 563
 564			client_idx = le16_to_cpu(cr->next_client);
 565
 566			if (first_client) {
 567				first_client = false;
 568				if (cr->prev_client != LFS_NO_CLIENT_LE)
 569					return false;
 570			}
 571		}
 572	}
 573
 574	return true;
 575}
 576
 577/*
 578 * remove_client
 579 *
 580 * Remove a client record from a client record list an restart area.
 581 */
 582static inline void remove_client(struct CLIENT_REC *ca,
 583				 const struct CLIENT_REC *cr, __le16 *head)
 584{
 585	if (cr->prev_client == LFS_NO_CLIENT_LE)
 586		*head = cr->next_client;
 587	else
 588		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
 589
 590	if (cr->next_client != LFS_NO_CLIENT_LE)
 591		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
 592}
 593
 594/*
 595 * add_client - Add a client record to the start of a list.
 596 */
 597static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
 598{
 599	struct CLIENT_REC *cr = ca + index;
 600
 601	cr->prev_client = LFS_NO_CLIENT_LE;
 602	cr->next_client = *head;
 603
 604	if (*head != LFS_NO_CLIENT_LE)
 605		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
 606
 607	*head = cpu_to_le16(index);
 608}
 609
 610static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
 611{
 612	__le32 *e;
 613	u32 bprt;
 614	u16 rsize = t ? le16_to_cpu(t->size) : 0;
 615
 616	if (!c) {
 617		if (!t || !t->total)
 618			return NULL;
 619		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
 620	} else {
 621		e = Add2Ptr(c, rsize);
 622	}
 623
 624	/* Loop until we hit the first one allocated, or the end of the list. */
 625	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
 626	     e = Add2Ptr(e, rsize)) {
 627		if (*e == RESTART_ENTRY_ALLOCATED_LE)
 628			return e;
 629	}
 630	return NULL;
 631}
 632
 633/*
 634 * find_dp - Search for a @vcn in Dirty Page Table.
 635 */
 636static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
 637					     u32 target_attr, u64 vcn)
 638{
 639	__le32 ta = cpu_to_le32(target_attr);
 640	struct DIR_PAGE_ENTRY *dp = NULL;
 641
 642	while ((dp = enum_rstbl(dptbl, dp))) {
 643		u64 dp_vcn = le64_to_cpu(dp->vcn);
 644
 645		if (dp->target_attr == ta && vcn >= dp_vcn &&
 646		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
 647			return dp;
 648		}
 649	}
 650	return NULL;
 651}
 652
 653static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
 654{
 655	if (use_default)
 656		page_size = DefaultLogPageSize;
 657
 658	/* Round the file size down to a system page boundary. */
 659	*l_size &= ~(page_size - 1);
 660
 661	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
 662	if (*l_size < (MinLogRecordPages + 2) * page_size)
 663		return 0;
 664
 665	return page_size;
 666}
 667
 668static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
 669			  u32 bytes_per_attr_entry)
 670{
 671	u16 t16;
 672
 673	if (bytes < sizeof(struct LOG_REC_HDR))
 674		return false;
 675	if (!tr)
 676		return false;
 677
 678	if ((tr - sizeof(struct RESTART_TABLE)) %
 679	    sizeof(struct TRANSACTION_ENTRY))
 680		return false;
 681
 682	if (le16_to_cpu(lr->redo_off) & 7)
 683		return false;
 684
 685	if (le16_to_cpu(lr->undo_off) & 7)
 686		return false;
 687
 688	if (lr->target_attr)
 689		goto check_lcns;
 690
 691	if (is_target_required(le16_to_cpu(lr->redo_op)))
 692		return false;
 693
 694	if (is_target_required(le16_to_cpu(lr->undo_op)))
 695		return false;
 696
 697check_lcns:
 698	if (!lr->lcns_follow)
 699		goto check_length;
 700
 701	t16 = le16_to_cpu(lr->target_attr);
 702	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
 703		return false;
 704
 705check_length:
 706	if (bytes < lrh_length(lr))
 707		return false;
 708
 709	return true;
 710}
 711
 712static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
 713{
 714	u32 ts;
 715	u32 i, off;
 716	u16 rsize = le16_to_cpu(rt->size);
 717	u16 ne = le16_to_cpu(rt->used);
 718	u32 ff = le32_to_cpu(rt->first_free);
 719	u32 lf = le32_to_cpu(rt->last_free);
 720
 721	ts = rsize * ne + sizeof(struct RESTART_TABLE);
 722
 723	if (!rsize || rsize > bytes ||
 724	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
 725	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
 726	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
 727	    (lf && lf < sizeof(struct RESTART_TABLE))) {
 728		return false;
 729	}
 730
 731	/*
 732	 * Verify each entry is either allocated or points
 733	 * to a valid offset the table.
 734	 */
 735	for (i = 0; i < ne; i++) {
 736		off = le32_to_cpu(*(__le32 *)Add2Ptr(
 737			rt, i * rsize + sizeof(struct RESTART_TABLE)));
 738
 739		if (off != RESTART_ENTRY_ALLOCATED && off &&
 740		    (off < sizeof(struct RESTART_TABLE) ||
 741		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
 742			return false;
 743		}
 744	}
 745
 746	/*
 747	 * Walk through the list headed by the first entry to make
 748	 * sure none of the entries are currently being used.
 749	 */
 750	for (off = ff; off;) {
 751		if (off == RESTART_ENTRY_ALLOCATED)
 752			return false;
 753
 754		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
 755	}
 756
 757	return true;
 758}
 759
 760/*
 761 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
 762 */
 763static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
 764{
 765	__le32 *e;
 766	u32 lf = le32_to_cpu(rt->last_free);
 767	__le32 off_le = cpu_to_le32(off);
 768
 769	e = Add2Ptr(rt, off);
 770
 771	if (off < le32_to_cpu(rt->free_goal)) {
 772		*e = rt->first_free;
 773		rt->first_free = off_le;
 774		if (!lf)
 775			rt->last_free = off_le;
 776	} else {
 777		if (lf)
 778			*(__le32 *)Add2Ptr(rt, lf) = off_le;
 779		else
 780			rt->first_free = off_le;
 781
 782		rt->last_free = off_le;
 783		*e = 0;
 784	}
 785
 786	le16_sub_cpu(&rt->total, 1);
 787}
 788
 789static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
 790{
 791	__le32 *e, *last_free;
 792	u32 off;
 793	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
 794	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
 795	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
 796
 797	if (!t)
 798		return NULL;
 799
 800	t->size = cpu_to_le16(esize);
 801	t->used = cpu_to_le16(used);
 802	t->free_goal = cpu_to_le32(~0u);
 803	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
 804	t->last_free = cpu_to_le32(lf);
 805
 806	e = (__le32 *)(t + 1);
 807	last_free = Add2Ptr(t, lf);
 808
 809	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
 810	     e = Add2Ptr(e, esize), off += esize) {
 811		*e = cpu_to_le32(off);
 812	}
 813	return t;
 814}
 815
 816static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
 817						  u32 add, u32 free_goal)
 818{
 819	u16 esize = le16_to_cpu(tbl->size);
 820	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
 821	u32 used = le16_to_cpu(tbl->used);
 822	struct RESTART_TABLE *rt;
 823
 824	rt = init_rsttbl(esize, used + add);
 825	if (!rt)
 826		return NULL;
 827
 828	memcpy(rt + 1, tbl + 1, esize * used);
 829
 830	rt->free_goal = free_goal == ~0u
 831				? cpu_to_le32(~0u)
 832				: cpu_to_le32(sizeof(struct RESTART_TABLE) +
 833					      free_goal * esize);
 834
 835	if (tbl->first_free) {
 836		rt->first_free = tbl->first_free;
 837		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
 838	} else {
 839		rt->first_free = osize;
 840	}
 841
 842	rt->total = tbl->total;
 843
 844	kfree(tbl);
 845	return rt;
 846}
 847
 848/*
 849 * alloc_rsttbl_idx
 850 *
 851 * Allocate an index from within a previously initialized Restart Table.
 852 */
 853static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
 854{
 855	u32 off;
 856	__le32 *e;
 857	struct RESTART_TABLE *t = *tbl;
 858
 859	if (!t->first_free) {
 860		*tbl = t = extend_rsttbl(t, 16, ~0u);
 861		if (!t)
 862			return NULL;
 863	}
 864
 865	off = le32_to_cpu(t->first_free);
 866
 867	/* Dequeue this entry and zero it. */
 868	e = Add2Ptr(t, off);
 869
 870	t->first_free = *e;
 871
 872	memset(e, 0, le16_to_cpu(t->size));
 873
 874	*e = RESTART_ENTRY_ALLOCATED_LE;
 875
 876	/* If list is going empty, then we fix the last_free as well. */
 877	if (!t->first_free)
 878		t->last_free = 0;
 879
 880	le16_add_cpu(&t->total, 1);
 881
 882	return Add2Ptr(t, off);
 883}
 884
 885/*
 886 * alloc_rsttbl_from_idx
 887 *
 888 * Allocate a specific index from within a previously initialized Restart Table.
 889 */
 890static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
 891{
 892	u32 off;
 893	__le32 *e;
 894	struct RESTART_TABLE *rt = *tbl;
 895	u32 bytes = bytes_per_rt(rt);
 896	u16 esize = le16_to_cpu(rt->size);
 897
 898	/* If the entry is not the table, we will have to extend the table. */
 899	if (vbo >= bytes) {
 900		/*
 901		 * Extend the size by computing the number of entries between
 902		 * the existing size and the desired index and adding 1 to that.
 903		 */
 904		u32 bytes2idx = vbo - bytes;
 905
 906		/*
 907		 * There should always be an integral number of entries
 908		 * being added. Now extend the table.
 909		 */
 910		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
 911		if (!rt)
 912			return NULL;
 913	}
 914
 915	/* See if the entry is already allocated, and just return if it is. */
 916	e = Add2Ptr(rt, vbo);
 917
 918	if (*e == RESTART_ENTRY_ALLOCATED_LE)
 919		return e;
 920
 921	/*
 922	 * Walk through the table, looking for the entry we're
 923	 * interested and the previous entry.
 924	 */
 925	off = le32_to_cpu(rt->first_free);
 926	e = Add2Ptr(rt, off);
 927
 928	if (off == vbo) {
 929		/* this is a match */
 930		rt->first_free = *e;
 931		goto skip_looking;
 932	}
 933
 934	/*
 935	 * Need to walk through the list looking for the predecessor
 936	 * of our entry.
 937	 */
 938	for (;;) {
 939		/* Remember the entry just found */
 940		u32 last_off = off;
 941		__le32 *last_e = e;
 942
 943		/* Should never run of entries. */
 944
 945		/* Lookup up the next entry the list. */
 946		off = le32_to_cpu(*last_e);
 947		e = Add2Ptr(rt, off);
 948
 949		/* If this is our match we are done. */
 950		if (off == vbo) {
 951			*last_e = *e;
 952
 953			/*
 954			 * If this was the last entry, we update that
 955			 * table as well.
 956			 */
 957			if (le32_to_cpu(rt->last_free) == off)
 958				rt->last_free = cpu_to_le32(last_off);
 959			break;
 960		}
 961	}
 962
 963skip_looking:
 964	/* If the list is now empty, we fix the last_free as well. */
 965	if (!rt->first_free)
 966		rt->last_free = 0;
 967
 968	/* Zero this entry. */
 969	memset(e, 0, esize);
 970	*e = RESTART_ENTRY_ALLOCATED_LE;
 971
 972	le16_add_cpu(&rt->total, 1);
 973
 974	return e;
 975}
 976
 977#define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
 978
 979#define NTFSLOG_WRAPPED 0x00000001
 980#define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
 981#define NTFSLOG_NO_LAST_LSN 0x00000004
 982#define NTFSLOG_REUSE_TAIL 0x00000010
 983#define NTFSLOG_NO_OLDEST_LSN 0x00000020
 984
 985/* Helper struct to work with NTFS $LogFile. */
 986struct ntfs_log {
 987	struct ntfs_inode *ni;
 988
 989	u32 l_size;
 990	u32 sys_page_size;
 991	u32 sys_page_mask;
 992	u32 page_size;
 993	u32 page_mask; // page_size - 1
 994	u8 page_bits;
 995	struct RECORD_PAGE_HDR *one_page_buf;
 996
 997	struct RESTART_TABLE *open_attr_tbl;
 998	u32 transaction_id;
 999	u32 clst_per_page;
1000
1001	u32 first_page;
1002	u32 next_page;
1003	u32 ra_off;
1004	u32 data_off;
1005	u32 restart_size;
1006	u32 data_size;
1007	u16 record_header_len;
1008	u64 seq_num;
1009	u32 seq_num_bits;
1010	u32 file_data_bits;
1011	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1012
1013	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014	u32 ra_size; /* The usable size of the restart area. */
1015
1016	/*
1017	 * If true, then the in-memory restart area is to be written
1018	 * to the first position on the disk.
1019	 */
1020	bool init_ra;
1021	bool set_dirty; /* True if we need to set dirty flag. */
1022
1023	u64 oldest_lsn;
1024
1025	u32 oldest_lsn_off;
1026	u64 last_lsn;
1027
1028	u32 total_avail;
1029	u32 total_avail_pages;
1030	u32 total_undo_commit;
1031	u32 max_current_avail;
1032	u32 current_avail;
1033	u32 reserved;
1034
1035	short major_ver;
1036	short minor_ver;
1037
1038	u32 l_flags; /* See NTFSLOG_XXX */
1039	u32 current_openlog_count; /* On-disk value for open_log_count. */
1040
1041	struct CLIENT_ID client_id;
1042	u32 client_undo_commit;
1043};
1044
1045static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1046{
1047	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1048
1049	return vbo;
1050}
1051
1052/* Compute the offset in the log file of the next log page. */
1053static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1054{
1055	off = (off & ~log->sys_page_mask) + log->page_size;
1056	return off >= log->l_size ? log->first_page : off;
1057}
1058
1059static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1060{
1061	return (((u32)lsn) << 3) & log->page_mask;
1062}
1063
1064static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1065{
1066	return (off >> 3) + (Seq << log->file_data_bits);
1067}
1068
1069static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1070{
1071	return lsn >= log->oldest_lsn &&
1072	       lsn <= le64_to_cpu(log->ra->current_lsn);
1073}
1074
1075static inline u32 hdr_file_off(struct ntfs_log *log,
1076			       struct RECORD_PAGE_HDR *hdr)
1077{
1078	if (log->major_ver < 2)
1079		return le64_to_cpu(hdr->rhdr.lsn);
1080
1081	return le32_to_cpu(hdr->file_off);
1082}
1083
1084static inline u64 base_lsn(struct ntfs_log *log,
1085			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1086{
1087	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088	u64 ret = (((h_lsn >> log->file_data_bits) +
1089		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090		   << log->file_data_bits) +
1091		  ((((is_log_record_end(hdr) &&
1092		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1093			     ? le16_to_cpu(hdr->record_hdr.next_record_off)
1094			     : log->page_size) +
1095		    lsn) >>
1096		   3);
1097
1098	return ret;
1099}
1100
1101static inline bool verify_client_lsn(struct ntfs_log *log,
1102				     const struct CLIENT_REC *client, u64 lsn)
1103{
1104	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1106}
1107
1108struct restart_info {
1109	u64 last_lsn;
1110	struct RESTART_HDR *r_page;
1111	u32 vbo;
1112	bool chkdsk_was_run;
1113	bool valid_page;
1114	bool initialized;
1115	bool restart;
1116};
1117
1118static int read_log_page(struct ntfs_log *log, u32 vbo,
1119			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1120{
1121	int err = 0;
1122	u32 page_idx = vbo >> log->page_bits;
1123	u32 page_off = vbo & log->page_mask;
1124	u32 bytes = log->page_size - page_off;
1125	void *to_free = NULL;
1126	u32 page_vbo = page_idx << log->page_bits;
1127	struct RECORD_PAGE_HDR *page_buf;
1128	struct ntfs_inode *ni = log->ni;
1129	bool bBAAD;
1130
1131	if (vbo >= log->l_size)
1132		return -EINVAL;
1133
1134	if (!*buffer) {
1135		to_free = kmalloc(log->page_size, GFP_NOFS);
1136		if (!to_free)
1137			return -ENOMEM;
1138		*buffer = to_free;
1139	}
1140
1141	page_buf = page_off ? log->one_page_buf : *buffer;
1142
1143	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144			       log->page_size, NULL);
1145	if (err)
1146		goto out;
1147
1148	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1150
1151	if (page_buf != *buffer)
1152		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1153
1154	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1155
1156	if (usa_error)
1157		*usa_error = bBAAD;
1158	/* Check that the update sequence array for this page is valid */
1159	/* If we don't allow errors, raise an error status */
1160	else if (bBAAD)
1161		err = -EINVAL;
1162
1163out:
1164	if (err && to_free) {
1165		kfree(to_free);
1166		*buffer = NULL;
1167	}
1168
1169	return err;
1170}
1171
1172/*
1173 * log_read_rst
1174 *
1175 * It walks through 512 blocks of the file looking for a valid
1176 * restart page header. It will stop the first time we find a
1177 * valid page header.
1178 */
1179static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180			struct restart_info *info)
1181{
1182	u32 skip, vbo;
1183	struct RESTART_HDR *r_page = NULL;
1184
1185	/* Determine which restart area we are looking for. */
1186	if (first) {
1187		vbo = 0;
1188		skip = 512;
1189	} else {
1190		vbo = 512;
1191		skip = 0;
1192	}
1193
1194	/* Loop continuously until we succeed. */
1195	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1196		bool usa_error;
1197		bool brst, bchk;
1198		struct RESTART_AREA *ra;
1199
1200		/* Read a page header at the current offset. */
1201		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1202				  &usa_error)) {
1203			/* Ignore any errors. */
1204			continue;
1205		}
1206
1207		/* Exit if the signature is a log record page. */
1208		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1209			info->initialized = true;
1210			break;
1211		}
1212
1213		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1214		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1215
1216		if (!bchk && !brst) {
1217			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1218				/*
1219				 * Remember if the signature does not
1220				 * indicate uninitialized file.
1221				 */
1222				info->initialized = true;
1223			}
1224			continue;
1225		}
1226
1227		ra = NULL;
1228		info->valid_page = false;
1229		info->initialized = true;
1230		info->vbo = vbo;
1231
1232		/* Let's check the restart area if this is a valid page. */
1233		if (!is_rst_page_hdr_valid(vbo, r_page))
1234			goto check_result;
1235		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1236
1237		if (!is_rst_area_valid(r_page))
1238			goto check_result;
1239
1240		/*
1241		 * We have a valid restart page header and restart area.
1242		 * If chkdsk was run or we have no clients then we have
1243		 * no more checking to do.
1244		 */
1245		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1246			info->valid_page = true;
1247			goto check_result;
1248		}
1249
1250		if (is_client_area_valid(r_page, usa_error)) {
1251			info->valid_page = true;
1252			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1253		}
1254
1255check_result:
1256		/*
1257		 * If chkdsk was run then update the caller's
1258		 * values and return.
1259		 */
1260		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1261			info->chkdsk_was_run = true;
1262			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1263			info->restart = true;
1264			info->r_page = r_page;
1265			return 0;
1266		}
1267
1268		/*
1269		 * If we have a valid page then copy the values
1270		 * we need from it.
1271		 */
1272		if (info->valid_page) {
1273			info->last_lsn = le64_to_cpu(ra->current_lsn);
1274			info->restart = true;
1275			info->r_page = r_page;
1276			return 0;
1277		}
1278	}
1279
1280	kfree(r_page);
1281
1282	return 0;
1283}
1284
1285/*
1286 * Ilog_init_pg_hdr - Init @log from restart page header.
1287 */
1288static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1289			    u32 page_size, u16 major_ver, u16 minor_ver)
1290{
1291	log->sys_page_size = sys_page_size;
1292	log->sys_page_mask = sys_page_size - 1;
1293	log->page_size = page_size;
1294	log->page_mask = page_size - 1;
1295	log->page_bits = blksize_bits(page_size);
1296
1297	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1298	if (!log->clst_per_page)
1299		log->clst_per_page = 1;
1300
1301	log->first_page = major_ver >= 2
1302				  ? 0x22 * page_size
1303				  : ((sys_page_size << 1) + (page_size << 1));
1304	log->major_ver = major_ver;
1305	log->minor_ver = minor_ver;
1306}
1307
1308/*
1309 * log_create - Init @log in cases when we don't have a restart area to use.
1310 */
1311static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1312		       u32 open_log_count, bool wrapped, bool use_multi_page)
1313{
1314	log->l_size = l_size;
1315	/* All file offsets must be quadword aligned. */
1316	log->file_data_bits = blksize_bits(l_size) - 3;
1317	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1318	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1319	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1320	log->next_page = log->first_page;
1321	log->oldest_lsn = log->seq_num << log->file_data_bits;
1322	log->oldest_lsn_off = 0;
1323	log->last_lsn = log->oldest_lsn;
1324
1325	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1326
1327	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1328	if (wrapped)
1329		log->l_flags |= NTFSLOG_WRAPPED;
1330
1331	if (use_multi_page)
1332		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1333
1334	/* Compute the log page values. */
1335	log->data_off = ALIGN(
1336		offsetof(struct RECORD_PAGE_HDR, fixups) +
1337			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1338		8);
1339	log->data_size = log->page_size - log->data_off;
1340	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1341
1342	/* Remember the different page sizes for reservation. */
1343	log->reserved = log->data_size - log->record_header_len;
1344
1345	/* Compute the restart page values. */
1346	log->ra_off = ALIGN(
1347		offsetof(struct RESTART_HDR, fixups) +
1348			sizeof(short) *
1349				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1350		8);
1351	log->restart_size = log->sys_page_size - log->ra_off;
1352	log->ra_size = struct_size(log->ra, clients, 1);
1353	log->current_openlog_count = open_log_count;
1354
1355	/*
1356	 * The total available log file space is the number of
1357	 * log file pages times the space available on each page.
1358	 */
1359	log->total_avail_pages = log->l_size - log->first_page;
1360	log->total_avail = log->total_avail_pages >> log->page_bits;
1361
1362	/*
1363	 * We assume that we can't use the end of the page less than
1364	 * the file record size.
1365	 * Then we won't need to reserve more than the caller asks for.
1366	 */
1367	log->max_current_avail = log->total_avail * log->reserved;
1368	log->total_avail = log->total_avail * log->data_size;
1369	log->current_avail = log->max_current_avail;
1370}
1371
1372/*
1373 * log_create_ra - Fill a restart area from the values stored in @log.
1374 */
1375static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1376{
1377	struct CLIENT_REC *cr;
1378	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1379
1380	if (!ra)
1381		return NULL;
1382
1383	ra->current_lsn = cpu_to_le64(log->last_lsn);
1384	ra->log_clients = cpu_to_le16(1);
1385	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1386	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1387		ra->flags = RESTART_SINGLE_PAGE_IO;
1388	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1389	ra->ra_len = cpu_to_le16(log->ra_size);
1390	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1391	ra->l_size = cpu_to_le64(log->l_size);
1392	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1393	ra->data_off = cpu_to_le16(log->data_off);
1394	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1395
1396	cr = ra->clients;
1397
1398	cr->prev_client = LFS_NO_CLIENT_LE;
1399	cr->next_client = LFS_NO_CLIENT_LE;
1400
1401	return ra;
1402}
1403
1404static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1405{
1406	u32 base_vbo = lsn << 3;
1407	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1408	u32 page_off = base_vbo & log->page_mask;
1409	u32 tail = log->page_size - page_off;
1410
1411	page_off -= 1;
1412
1413	/* Add the length of the header. */
1414	data_len += log->record_header_len;
1415
1416	/*
1417	 * If this lsn is contained this log page we are done.
1418	 * Otherwise we need to walk through several log pages.
1419	 */
1420	if (data_len > tail) {
1421		data_len -= tail;
1422		tail = log->data_size;
1423		page_off = log->data_off - 1;
1424
1425		for (;;) {
1426			final_log_off = next_page_off(log, final_log_off);
1427
1428			/*
1429			 * We are done if the remaining bytes
1430			 * fit on this page.
1431			 */
1432			if (data_len <= tail)
1433				break;
1434			data_len -= tail;
1435		}
1436	}
1437
1438	/*
1439	 * We add the remaining bytes to our starting position on this page
1440	 * and then add that value to the file offset of this log page.
1441	 */
1442	return final_log_off + data_len + page_off;
1443}
1444
1445static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1446			u64 *lsn)
1447{
1448	int err;
1449	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1450	u32 vbo = lsn_to_vbo(log, this_lsn);
1451	u32 end =
1452		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1453	u32 hdr_off = end & ~log->sys_page_mask;
1454	u64 seq = this_lsn >> log->file_data_bits;
1455	struct RECORD_PAGE_HDR *page = NULL;
1456
1457	/* Remember if we wrapped. */
1458	if (end <= vbo)
1459		seq += 1;
1460
1461	/* Log page header for this page. */
1462	err = read_log_page(log, hdr_off, &page, NULL);
1463	if (err)
1464		return err;
1465
1466	/*
1467	 * If the lsn we were given was not the last lsn on this page,
1468	 * then the starting offset for the next lsn is on a quad word
1469	 * boundary following the last file offset for the current lsn.
1470	 * Otherwise the file offset is the start of the data on the next page.
1471	 */
1472	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1473		/* If we wrapped, we need to increment the sequence number. */
1474		hdr_off = next_page_off(log, hdr_off);
1475		if (hdr_off == log->first_page)
1476			seq += 1;
1477
1478		vbo = hdr_off + log->data_off;
1479	} else {
1480		vbo = ALIGN(end, 8);
1481	}
1482
1483	/* Compute the lsn based on the file offset and the sequence count. */
1484	*lsn = vbo_to_lsn(log, vbo, seq);
1485
1486	/*
1487	 * If this lsn is within the legal range for the file, we return true.
1488	 * Otherwise false indicates that there are no more lsn's.
1489	 */
1490	if (!is_lsn_in_file(log, *lsn))
1491		*lsn = 0;
1492
1493	kfree(page);
1494
1495	return 0;
1496}
1497
1498/*
1499 * current_log_avail - Calculate the number of bytes available for log records.
1500 */
1501static u32 current_log_avail(struct ntfs_log *log)
1502{
1503	u32 oldest_off, next_free_off, free_bytes;
1504
1505	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1506		/* The entire file is available. */
1507		return log->max_current_avail;
1508	}
1509
1510	/*
1511	 * If there is a last lsn the restart area then we know that we will
1512	 * have to compute the free range.
1513	 * If there is no oldest lsn then start at the first page of the file.
1514	 */
1515	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1516			     ? log->first_page
1517			     : (log->oldest_lsn_off & ~log->sys_page_mask);
1518
1519	/*
1520	 * We will use the next log page offset to compute the next free page.
1521	 * If we are going to reuse this page go to the next page.
1522	 * If we are at the first page then use the end of the file.
1523	 */
1524	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1525				? log->next_page + log->page_size
1526				: log->next_page == log->first_page
1527					  ? log->l_size
1528					  : log->next_page;
1529
1530	/* If the two offsets are the same then there is no available space. */
1531	if (oldest_off == next_free_off)
1532		return 0;
1533	/*
1534	 * If the free offset follows the oldest offset then subtract
1535	 * this range from the total available pages.
1536	 */
1537	free_bytes =
1538		oldest_off < next_free_off
1539			? log->total_avail_pages - (next_free_off - oldest_off)
1540			: oldest_off - next_free_off;
1541
1542	free_bytes >>= log->page_bits;
1543	return free_bytes * log->reserved;
1544}
1545
1546static bool check_subseq_log_page(struct ntfs_log *log,
1547				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1548				  u64 seq)
1549{
1550	u64 lsn_seq;
1551	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1552	u64 lsn = le64_to_cpu(rhdr->lsn);
1553
1554	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1555		return false;
1556
1557	/*
1558	 * If the last lsn on the page occurs was written after the page
1559	 * that caused the original error then we have a fatal error.
1560	 */
1561	lsn_seq = lsn >> log->file_data_bits;
1562
1563	/*
1564	 * If the sequence number for the lsn the page is equal or greater
1565	 * than lsn we expect, then this is a subsequent write.
1566	 */
1567	return lsn_seq >= seq ||
1568	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1569		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1570}
1571
1572/*
1573 * last_log_lsn
1574 *
1575 * Walks through the log pages for a file, searching for the
1576 * last log page written to the file.
1577 */
1578static int last_log_lsn(struct ntfs_log *log)
1579{
1580	int err;
1581	bool usa_error = false;
1582	bool replace_page = false;
1583	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1584	bool wrapped_file, wrapped;
1585
1586	u32 page_cnt = 1, page_pos = 1;
1587	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1588	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1589	u32 first_file_off = 0, second_file_off = 0;
1590	u32 part_io_count = 0;
1591	u32 tails = 0;
1592	u32 this_off, curpage_off, nextpage_off, remain_pages;
1593
1594	u64 expected_seq, seq_base = 0, lsn_base = 0;
1595	u64 best_lsn, best_lsn1, best_lsn2;
1596	u64 lsn_cur, lsn1, lsn2;
1597	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1598
1599	u16 cur_pos, best_page_pos;
1600
1601	struct RECORD_PAGE_HDR *page = NULL;
1602	struct RECORD_PAGE_HDR *tst_page = NULL;
1603	struct RECORD_PAGE_HDR *first_tail = NULL;
1604	struct RECORD_PAGE_HDR *second_tail = NULL;
1605	struct RECORD_PAGE_HDR *tail_page = NULL;
1606	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1607	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1608	struct RECORD_PAGE_HDR *page_bufs = NULL;
1609	struct RECORD_PAGE_HDR *best_page;
1610
1611	if (log->major_ver >= 2) {
1612		final_off = 0x02 * log->page_size;
1613		second_off = 0x12 * log->page_size;
1614
1615		// 0x10 == 0x12 - 0x2
1616		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1617		if (!page_bufs)
1618			return -ENOMEM;
1619	} else {
1620		second_off = log->first_page - log->page_size;
1621		final_off = second_off - log->page_size;
1622	}
1623
1624next_tail:
1625	/* Read second tail page (at pos 3/0x12000). */
1626	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1627	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1628		kfree(second_tail);
1629		second_tail = NULL;
1630		second_file_off = 0;
1631		lsn2 = 0;
1632	} else {
1633		second_file_off = hdr_file_off(log, second_tail);
1634		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1635	}
1636
1637	/* Read first tail page (at pos 2/0x2000). */
1638	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1639	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1640		kfree(first_tail);
1641		first_tail = NULL;
1642		first_file_off = 0;
1643		lsn1 = 0;
1644	} else {
1645		first_file_off = hdr_file_off(log, first_tail);
1646		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1647	}
1648
1649	if (log->major_ver < 2) {
1650		int best_page;
1651
1652		first_tail_prev = first_tail;
1653		final_off_prev = first_file_off;
1654		second_tail_prev = second_tail;
1655		second_off_prev = second_file_off;
1656		tails = 1;
1657
1658		if (!first_tail && !second_tail)
1659			goto tail_read;
1660
1661		if (first_tail && second_tail)
1662			best_page = lsn1 < lsn2 ? 1 : 0;
1663		else if (first_tail)
1664			best_page = 0;
1665		else
1666			best_page = 1;
1667
1668		page_off = best_page ? second_file_off : first_file_off;
1669		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1670		goto tail_read;
1671	}
1672
1673	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1674	best_lsn2 =
1675		second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1676
1677	if (first_tail && second_tail) {
1678		if (best_lsn1 > best_lsn2) {
1679			best_lsn = best_lsn1;
1680			best_page = first_tail;
1681			this_off = first_file_off;
1682		} else {
1683			best_lsn = best_lsn2;
1684			best_page = second_tail;
1685			this_off = second_file_off;
1686		}
1687	} else if (first_tail) {
1688		best_lsn = best_lsn1;
1689		best_page = first_tail;
1690		this_off = first_file_off;
1691	} else if (second_tail) {
1692		best_lsn = best_lsn2;
1693		best_page = second_tail;
1694		this_off = second_file_off;
1695	} else {
1696		goto tail_read;
1697	}
1698
1699	best_page_pos = le16_to_cpu(best_page->page_pos);
1700
1701	if (!tails) {
1702		if (best_page_pos == page_pos) {
1703			seq_base = best_lsn >> log->file_data_bits;
1704			saved_off = page_off = le32_to_cpu(best_page->file_off);
1705			lsn_base = best_lsn;
1706
1707			memmove(page_bufs, best_page, log->page_size);
1708
1709			page_cnt = le16_to_cpu(best_page->page_count);
1710			if (page_cnt > 1)
1711				page_pos += 1;
1712
1713			tails = 1;
1714		}
1715	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1716		   saved_off + log->page_size == this_off &&
1717		   lsn_base < best_lsn &&
1718		   (page_pos != page_cnt || best_page_pos == page_pos ||
1719		    best_page_pos == 1) &&
1720		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1721		u16 bppc = le16_to_cpu(best_page->page_count);
1722
1723		saved_off += log->page_size;
1724		lsn_base = best_lsn;
1725
1726		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1727			log->page_size);
1728
1729		tails += 1;
1730
1731		if (best_page_pos != bppc) {
1732			page_cnt = bppc;
1733			page_pos = best_page_pos;
1734
1735			if (page_cnt > 1)
1736				page_pos += 1;
1737		} else {
1738			page_pos = page_cnt = 1;
1739		}
1740	} else {
1741		kfree(first_tail);
1742		kfree(second_tail);
1743		goto tail_read;
1744	}
1745
1746	kfree(first_tail_prev);
1747	first_tail_prev = first_tail;
1748	final_off_prev = first_file_off;
1749	first_tail = NULL;
1750
1751	kfree(second_tail_prev);
1752	second_tail_prev = second_tail;
1753	second_off_prev = second_file_off;
1754	second_tail = NULL;
1755
1756	final_off += log->page_size;
1757	second_off += log->page_size;
1758
1759	if (tails < 0x10)
1760		goto next_tail;
1761tail_read:
1762	first_tail = first_tail_prev;
1763	final_off = final_off_prev;
1764
1765	second_tail = second_tail_prev;
1766	second_off = second_off_prev;
1767
1768	page_cnt = page_pos = 1;
1769
1770	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1771					       : log->next_page;
1772
1773	wrapped_file =
1774		curpage_off == log->first_page &&
1775		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1776
1777	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1778
1779	nextpage_off = curpage_off;
1780
1781next_page:
1782	tail_page = NULL;
1783	/* Read the next log page. */
1784	err = read_log_page(log, curpage_off, &page, &usa_error);
1785
1786	/* Compute the next log page offset the file. */
1787	nextpage_off = next_page_off(log, curpage_off);
1788	wrapped = nextpage_off == log->first_page;
1789
1790	if (tails > 1) {
1791		struct RECORD_PAGE_HDR *cur_page =
1792			Add2Ptr(page_bufs, curpage_off - page_off);
1793
1794		if (curpage_off == saved_off) {
1795			tail_page = cur_page;
1796			goto use_tail_page;
1797		}
1798
1799		if (page_off > curpage_off || curpage_off >= saved_off)
1800			goto use_tail_page;
1801
1802		if (page_off1)
1803			goto use_cur_page;
1804
1805		if (!err && !usa_error &&
1806		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1807		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1808		    cur_page->record_hdr.next_record_off ==
1809			    page->record_hdr.next_record_off &&
1810		    ((page_pos == page_cnt &&
1811		      le16_to_cpu(page->page_pos) == 1) ||
1812		     (page_pos != page_cnt &&
1813		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1814		      le16_to_cpu(page->page_count) == page_cnt))) {
1815			cur_page = NULL;
1816			goto use_tail_page;
1817		}
1818
1819		page_off1 = page_off;
1820
1821use_cur_page:
1822
1823		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1824
1825		if (last_ok_lsn !=
1826			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1827		    ((lsn_cur >> log->file_data_bits) +
1828		     ((curpage_off <
1829		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1830			      ? 1
1831			      : 0)) != expected_seq) {
1832			goto check_tail;
1833		}
1834
1835		if (!is_log_record_end(cur_page)) {
1836			tail_page = NULL;
1837			last_ok_lsn = lsn_cur;
1838			goto next_page_1;
1839		}
1840
1841		log->seq_num = expected_seq;
1842		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1843		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1844		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1845
1846		if (log->record_header_len <=
1847		    log->page_size -
1848			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1849			log->l_flags |= NTFSLOG_REUSE_TAIL;
1850			log->next_page = curpage_off;
1851		} else {
1852			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1853			log->next_page = nextpage_off;
1854		}
1855
1856		if (wrapped_file)
1857			log->l_flags |= NTFSLOG_WRAPPED;
1858
1859		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1860		goto next_page_1;
1861	}
1862
1863	/*
1864	 * If we are at the expected first page of a transfer check to see
1865	 * if either tail copy is at this offset.
1866	 * If this page is the last page of a transfer, check if we wrote
1867	 * a subsequent tail copy.
1868	 */
1869	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1870		/*
1871		 * Check if the offset matches either the first or second
1872		 * tail copy. It is possible it will match both.
1873		 */
1874		if (curpage_off == final_off)
1875			tail_page = first_tail;
1876
1877		/*
1878		 * If we already matched on the first page then
1879		 * check the ending lsn's.
1880		 */
1881		if (curpage_off == second_off) {
1882			if (!tail_page ||
1883			    (second_tail &&
1884			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1885				     le64_to_cpu(first_tail->record_hdr
1886							 .last_end_lsn))) {
1887				tail_page = second_tail;
1888			}
1889		}
1890	}
1891
1892use_tail_page:
1893	if (tail_page) {
1894		/* We have a candidate for a tail copy. */
1895		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1896
1897		if (last_ok_lsn < lsn_cur) {
1898			/*
1899			 * If the sequence number is not expected,
1900			 * then don't use the tail copy.
1901			 */
1902			if (expected_seq != (lsn_cur >> log->file_data_bits))
1903				tail_page = NULL;
1904		} else if (last_ok_lsn > lsn_cur) {
1905			/*
1906			 * If the last lsn is greater than the one on
1907			 * this page then forget this tail.
1908			 */
1909			tail_page = NULL;
1910		}
1911	}
1912
1913	/*
1914	 *If we have an error on the current page,
1915	 * we will break of this loop.
1916	 */
1917	if (err || usa_error)
1918		goto check_tail;
1919
1920	/*
1921	 * Done if the last lsn on this page doesn't match the previous known
1922	 * last lsn or the sequence number is not expected.
1923	 */
1924	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1925	if (last_ok_lsn != lsn_cur &&
1926	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1927		goto check_tail;
1928	}
1929
1930	/*
1931	 * Check that the page position and page count values are correct.
1932	 * If this is the first page of a transfer the position must be 1
1933	 * and the count will be unknown.
1934	 */
1935	if (page_cnt == page_pos) {
1936		if (page->page_pos != cpu_to_le16(1) &&
1937		    (!reuse_page || page->page_pos != page->page_count)) {
1938			/*
1939			 * If the current page is the first page we are
1940			 * looking at and we are reusing this page then
1941			 * it can be either the first or last page of a
1942			 * transfer. Otherwise it can only be the first.
1943			 */
1944			goto check_tail;
1945		}
1946	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1947		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1948		/*
1949		 * The page position better be 1 more than the last page
1950		 * position and the page count better match.
1951		 */
1952		goto check_tail;
1953	}
1954
1955	/*
1956	 * We have a valid page the file and may have a valid page
1957	 * the tail copy area.
1958	 * If the tail page was written after the page the file then
1959	 * break of the loop.
1960	 */
1961	if (tail_page &&
1962	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1963		/* Remember if we will replace the page. */
1964		replace_page = true;
1965		goto check_tail;
1966	}
1967
1968	tail_page = NULL;
1969
1970	if (is_log_record_end(page)) {
1971		/*
1972		 * Since we have read this page we know the sequence number
1973		 * is the same as our expected value.
1974		 */
1975		log->seq_num = expected_seq;
1976		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1977		log->ra->current_lsn = page->record_hdr.last_end_lsn;
1978		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1979
1980		/*
1981		 * If there is room on this page for another header then
1982		 * remember we want to reuse the page.
1983		 */
1984		if (log->record_header_len <=
1985		    log->page_size -
1986			    le16_to_cpu(page->record_hdr.next_record_off)) {
1987			log->l_flags |= NTFSLOG_REUSE_TAIL;
1988			log->next_page = curpage_off;
1989		} else {
1990			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1991			log->next_page = nextpage_off;
1992		}
1993
1994		/* Remember if we wrapped the log file. */
1995		if (wrapped_file)
1996			log->l_flags |= NTFSLOG_WRAPPED;
1997	}
1998
1999	/*
2000	 * Remember the last page count and position.
2001	 * Also remember the last known lsn.
2002	 */
2003	page_cnt = le16_to_cpu(page->page_count);
2004	page_pos = le16_to_cpu(page->page_pos);
2005	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2006
2007next_page_1:
2008
2009	if (wrapped) {
2010		expected_seq += 1;
2011		wrapped_file = 1;
2012	}
2013
2014	curpage_off = nextpage_off;
2015	kfree(page);
2016	page = NULL;
2017	reuse_page = 0;
2018	goto next_page;
2019
2020check_tail:
2021	if (tail_page) {
2022		log->seq_num = expected_seq;
2023		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2024		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2025		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2026
2027		if (log->page_size -
2028			    le16_to_cpu(
2029				    tail_page->record_hdr.next_record_off) >=
2030		    log->record_header_len) {
2031			log->l_flags |= NTFSLOG_REUSE_TAIL;
2032			log->next_page = curpage_off;
2033		} else {
2034			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2035			log->next_page = nextpage_off;
2036		}
2037
2038		if (wrapped)
2039			log->l_flags |= NTFSLOG_WRAPPED;
2040	}
2041
2042	/* Remember that the partial IO will start at the next page. */
2043	second_off = nextpage_off;
2044
2045	/*
2046	 * If the next page is the first page of the file then update
2047	 * the sequence number for log records which begon the next page.
2048	 */
2049	if (wrapped)
2050		expected_seq += 1;
2051
2052	/*
2053	 * If we have a tail copy or are performing single page I/O we can
2054	 * immediately look at the next page.
2055	 */
2056	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2057		page_cnt = 2;
2058		page_pos = 1;
2059		goto check_valid;
2060	}
2061
2062	if (page_pos != page_cnt)
2063		goto check_valid;
2064	/*
2065	 * If the next page causes us to wrap to the beginning of the log
2066	 * file then we know which page to check next.
2067	 */
2068	if (wrapped) {
2069		page_cnt = 2;
2070		page_pos = 1;
2071		goto check_valid;
2072	}
2073
2074	cur_pos = 2;
2075
2076next_test_page:
2077	kfree(tst_page);
2078	tst_page = NULL;
2079
2080	/* Walk through the file, reading log pages. */
2081	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2082
2083	/*
2084	 * If we get a USA error then assume that we correctly found
2085	 * the end of the original transfer.
2086	 */
2087	if (usa_error)
2088		goto file_is_valid;
2089
2090	/*
2091	 * If we were able to read the page, we examine it to see if it
2092	 * is the same or different Io block.
2093	 */
2094	if (err)
2095		goto next_test_page_1;
2096
2097	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2098	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2099		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2100		page_pos = le16_to_cpu(tst_page->page_pos);
2101		goto check_valid;
2102	} else {
2103		goto file_is_valid;
2104	}
2105
2106next_test_page_1:
2107
2108	nextpage_off = next_page_off(log, curpage_off);
2109	wrapped = nextpage_off == log->first_page;
2110
2111	if (wrapped) {
2112		expected_seq += 1;
2113		page_cnt = 2;
2114		page_pos = 1;
2115	}
2116
2117	cur_pos += 1;
2118	part_io_count += 1;
2119	if (!wrapped)
2120		goto next_test_page;
2121
2122check_valid:
2123	/* Skip over the remaining pages this transfer. */
2124	remain_pages = page_cnt - page_pos - 1;
2125	part_io_count += remain_pages;
2126
2127	while (remain_pages--) {
2128		nextpage_off = next_page_off(log, curpage_off);
2129		wrapped = nextpage_off == log->first_page;
2130
2131		if (wrapped)
2132			expected_seq += 1;
2133	}
2134
2135	/* Call our routine to check this log page. */
2136	kfree(tst_page);
2137	tst_page = NULL;
2138
2139	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2140	if (!err && !usa_error &&
2141	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2142		err = -EINVAL;
2143		goto out;
2144	}
2145
2146file_is_valid:
2147
2148	/* We have a valid file. */
2149	if (page_off1 || tail_page) {
2150		struct RECORD_PAGE_HDR *tmp_page;
2151
2152		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2153			err = -EROFS;
2154			goto out;
2155		}
2156
2157		if (page_off1) {
2158			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2159			tails -= (page_off1 - page_off) / log->page_size;
2160			if (!tail_page)
2161				tails -= 1;
2162		} else {
2163			tmp_page = tail_page;
2164			tails = 1;
2165		}
2166
2167		while (tails--) {
2168			u64 off = hdr_file_off(log, tmp_page);
2169
2170			if (!page) {
2171				page = kmalloc(log->page_size, GFP_NOFS);
2172				if (!page)
2173					return -ENOMEM;
2174			}
2175
2176			/*
2177			 * Correct page and copy the data from this page
2178			 * into it and flush it to disk.
2179			 */
2180			memcpy(page, tmp_page, log->page_size);
2181
2182			/* Fill last flushed lsn value flush the page. */
2183			if (log->major_ver < 2)
2184				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2185			else
2186				page->file_off = 0;
2187
2188			page->page_pos = page->page_count = cpu_to_le16(1);
2189
2190			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2191
2192			err = ntfs_sb_write_run(log->ni->mi.sbi,
2193						&log->ni->file.run, off, page,
2194						log->page_size, 0);
2195
2196			if (err)
2197				goto out;
2198
2199			if (part_io_count && second_off == off) {
2200				second_off += log->page_size;
2201				part_io_count -= 1;
2202			}
2203
2204			tmp_page = Add2Ptr(tmp_page, log->page_size);
2205		}
2206	}
2207
2208	if (part_io_count) {
2209		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2210			err = -EROFS;
2211			goto out;
2212		}
2213	}
2214
2215out:
2216	kfree(second_tail);
2217	kfree(first_tail);
2218	kfree(page);
2219	kfree(tst_page);
2220	kfree(page_bufs);
2221
2222	return err;
2223}
2224
2225/*
2226 * read_log_rec_buf - Copy a log record from the file to a buffer.
2227 *
2228 * The log record may span several log pages and may even wrap the file.
2229 */
2230static int read_log_rec_buf(struct ntfs_log *log,
2231			    const struct LFS_RECORD_HDR *rh, void *buffer)
2232{
2233	int err;
2234	struct RECORD_PAGE_HDR *ph = NULL;
2235	u64 lsn = le64_to_cpu(rh->this_lsn);
2236	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2237	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2238	u32 data_len = le32_to_cpu(rh->client_data_len);
2239
2240	/*
2241	 * While there are more bytes to transfer,
2242	 * we continue to attempt to perform the read.
2243	 */
2244	for (;;) {
2245		bool usa_error;
2246		u32 tail = log->page_size - off;
2247
2248		if (tail >= data_len)
2249			tail = data_len;
2250
2251		data_len -= tail;
2252
2253		err = read_log_page(log, vbo, &ph, &usa_error);
2254		if (err)
2255			goto out;
2256
2257		/*
2258		 * The last lsn on this page better be greater or equal
2259		 * to the lsn we are copying.
2260		 */
2261		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2262			err = -EINVAL;
2263			goto out;
2264		}
2265
2266		memcpy(buffer, Add2Ptr(ph, off), tail);
2267
2268		/* If there are no more bytes to transfer, we exit the loop. */
2269		if (!data_len) {
2270			if (!is_log_record_end(ph) ||
2271			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2272				err = -EINVAL;
2273				goto out;
2274			}
2275			break;
2276		}
2277
2278		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2279		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2280			err = -EINVAL;
2281			goto out;
2282		}
2283
2284		vbo = next_page_off(log, vbo);
2285		off = log->data_off;
2286
2287		/*
2288		 * Adjust our pointer the user's buffer to transfer
2289		 * the next block to.
2290		 */
2291		buffer = Add2Ptr(buffer, tail);
2292	}
2293
2294out:
2295	kfree(ph);
2296	return err;
2297}
2298
2299static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2300			 u64 *lsn)
2301{
2302	int err;
2303	struct LFS_RECORD_HDR *rh = NULL;
2304	const struct CLIENT_REC *cr =
2305		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2306	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2307	u32 len;
2308	struct NTFS_RESTART *rst;
2309
2310	*lsn = 0;
2311	*rst_ = NULL;
2312
2313	/* If the client doesn't have a restart area, go ahead and exit now. */
2314	if (!lsnc)
2315		return 0;
2316
2317	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2318			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2319	if (err)
2320		return err;
2321
2322	rst = NULL;
2323	lsnr = le64_to_cpu(rh->this_lsn);
2324
2325	if (lsnc != lsnr) {
2326		/* If the lsn values don't match, then the disk is corrupt. */
2327		err = -EINVAL;
2328		goto out;
2329	}
2330
2331	*lsn = lsnr;
2332	len = le32_to_cpu(rh->client_data_len);
2333
2334	if (!len) {
2335		err = 0;
2336		goto out;
2337	}
2338
2339	if (len < sizeof(struct NTFS_RESTART)) {
2340		err = -EINVAL;
2341		goto out;
2342	}
2343
2344	rst = kmalloc(len, GFP_NOFS);
2345	if (!rst) {
2346		err = -ENOMEM;
2347		goto out;
2348	}
2349
2350	/* Copy the data into the 'rst' buffer. */
2351	err = read_log_rec_buf(log, rh, rst);
2352	if (err)
2353		goto out;
2354
2355	*rst_ = rst;
2356	rst = NULL;
2357
2358out:
2359	kfree(rh);
2360	kfree(rst);
2361
2362	return err;
2363}
2364
2365static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2366{
2367	int err;
2368	struct LFS_RECORD_HDR *rh = lcb->lrh;
2369	u32 rec_len, len;
2370
2371	/* Read the record header for this lsn. */
2372	if (!rh) {
2373		err = read_log_page(log, lsn_to_vbo(log, lsn),
2374				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2375
2376		lcb->lrh = rh;
2377		if (err)
2378			return err;
2379	}
2380
2381	/*
2382	 * If the lsn the log record doesn't match the desired
2383	 * lsn then the disk is corrupt.
2384	 */
2385	if (lsn != le64_to_cpu(rh->this_lsn))
2386		return -EINVAL;
2387
2388	len = le32_to_cpu(rh->client_data_len);
2389
2390	/*
2391	 * Check that the length field isn't greater than the total
2392	 * available space the log file.
2393	 */
2394	rec_len = len + log->record_header_len;
2395	if (rec_len >= log->total_avail)
2396		return -EINVAL;
2397
2398	/*
2399	 * If the entire log record is on this log page,
2400	 * put a pointer to the log record the context block.
2401	 */
2402	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2403		void *lr = kmalloc(len, GFP_NOFS);
2404
2405		if (!lr)
2406			return -ENOMEM;
2407
2408		lcb->log_rec = lr;
2409		lcb->alloc = true;
2410
2411		/* Copy the data into the buffer returned. */
2412		err = read_log_rec_buf(log, rh, lr);
2413		if (err)
2414			return err;
2415	} else {
2416		/* If beyond the end of the current page -> an error. */
2417		u32 page_off = lsn_to_page_off(log, lsn);
2418
2419		if (page_off + len + log->record_header_len > log->page_size)
2420			return -EINVAL;
2421
2422		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2423		lcb->alloc = false;
2424	}
2425
2426	return 0;
2427}
2428
2429/*
2430 * read_log_rec_lcb - Init the query operation.
2431 */
2432static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2433			    struct lcb **lcb_)
2434{
2435	int err;
2436	const struct CLIENT_REC *cr;
2437	struct lcb *lcb;
2438
2439	switch (ctx_mode) {
2440	case lcb_ctx_undo_next:
2441	case lcb_ctx_prev:
2442	case lcb_ctx_next:
2443		break;
2444	default:
2445		return -EINVAL;
2446	}
2447
2448	/* Check that the given lsn is the legal range for this client. */
2449	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2450
2451	if (!verify_client_lsn(log, cr, lsn))
2452		return -EINVAL;
2453
2454	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2455	if (!lcb)
2456		return -ENOMEM;
2457	lcb->client = log->client_id;
2458	lcb->ctx_mode = ctx_mode;
2459
2460	/* Find the log record indicated by the given lsn. */
2461	err = find_log_rec(log, lsn, lcb);
2462	if (err)
2463		goto out;
2464
2465	*lcb_ = lcb;
2466	return 0;
2467
2468out:
2469	lcb_put(lcb);
2470	*lcb_ = NULL;
2471	return err;
2472}
2473
2474/*
2475 * find_client_next_lsn
2476 *
2477 * Attempt to find the next lsn to return to a client based on the context mode.
2478 */
2479static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2480{
2481	int err;
2482	u64 next_lsn;
2483	struct LFS_RECORD_HDR *hdr;
2484
2485	hdr = lcb->lrh;
2486	*lsn = 0;
2487
2488	if (lcb_ctx_next != lcb->ctx_mode)
2489		goto check_undo_next;
2490
2491	/* Loop as long as another lsn can be found. */
2492	for (;;) {
2493		u64 current_lsn;
2494
2495		err = next_log_lsn(log, hdr, &current_lsn);
2496		if (err)
2497			goto out;
2498
2499		if (!current_lsn)
2500			break;
2501
2502		if (hdr != lcb->lrh)
2503			kfree(hdr);
2504
2505		hdr = NULL;
2506		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2507				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2508		if (err)
2509			goto out;
2510
2511		if (memcmp(&hdr->client, &lcb->client,
2512			   sizeof(struct CLIENT_ID))) {
2513			/*err = -EINVAL; */
2514		} else if (LfsClientRecord == hdr->record_type) {
2515			kfree(lcb->lrh);
2516			lcb->lrh = hdr;
2517			*lsn = current_lsn;
2518			return 0;
2519		}
2520	}
2521
2522out:
2523	if (hdr != lcb->lrh)
2524		kfree(hdr);
2525	return err;
2526
2527check_undo_next:
2528	if (lcb_ctx_undo_next == lcb->ctx_mode)
2529		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2530	else if (lcb_ctx_prev == lcb->ctx_mode)
2531		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2532	else
2533		return 0;
2534
2535	if (!next_lsn)
2536		return 0;
2537
2538	if (!verify_client_lsn(
2539		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2540		    next_lsn))
2541		return 0;
2542
2543	hdr = NULL;
2544	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2545			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2546	if (err)
2547		return err;
2548	kfree(lcb->lrh);
2549	lcb->lrh = hdr;
2550
2551	*lsn = next_lsn;
2552
2553	return 0;
2554}
2555
2556static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2557{
2558	int err;
2559
2560	err = find_client_next_lsn(log, lcb, lsn);
2561	if (err)
2562		return err;
2563
2564	if (!*lsn)
2565		return 0;
2566
2567	if (lcb->alloc)
2568		kfree(lcb->log_rec);
2569
2570	lcb->log_rec = NULL;
2571	lcb->alloc = false;
2572	kfree(lcb->lrh);
2573	lcb->lrh = NULL;
2574
2575	return find_log_rec(log, *lsn, lcb);
2576}
2577
2578static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2579{
2580	__le16 mask;
2581	u32 min_de, de_off, used, total;
2582	const struct NTFS_DE *e;
2583
2584	if (hdr_has_subnode(hdr)) {
2585		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2586		mask = NTFS_IE_HAS_SUBNODES;
2587	} else {
2588		min_de = sizeof(struct NTFS_DE);
2589		mask = 0;
2590	}
2591
2592	de_off = le32_to_cpu(hdr->de_off);
2593	used = le32_to_cpu(hdr->used);
2594	total = le32_to_cpu(hdr->total);
2595
2596	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2597	    de_off + min_de > used || used > total) {
2598		return false;
2599	}
2600
2601	e = Add2Ptr(hdr, de_off);
2602	for (;;) {
2603		u16 esize = le16_to_cpu(e->size);
2604		struct NTFS_DE *next = Add2Ptr(e, esize);
2605
2606		if (esize < min_de || PtrOffset(hdr, next) > used ||
2607		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2608			return false;
2609		}
2610
2611		if (de_is_last(e))
2612			break;
2613
2614		e = next;
2615	}
2616
2617	return true;
2618}
2619
2620static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2621{
2622	u16 fo;
2623	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2624
2625	if (r->sign != NTFS_INDX_SIGNATURE)
2626		return false;
2627
2628	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2629
2630	if (le16_to_cpu(r->fix_off) > fo)
2631		return false;
2632
2633	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2634		return false;
2635
2636	return check_index_header(&ib->ihdr,
2637				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2638}
2639
2640static inline bool check_index_root(const struct ATTRIB *attr,
2641				    struct ntfs_sb_info *sbi)
2642{
2643	bool ret;
2644	const struct INDEX_ROOT *root = resident_data(attr);
2645	u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2646				? sbi->cluster_bits
2647				: SECTOR_SHIFT;
2648	u8 block_clst = root->index_block_clst;
2649
2650	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2651	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2652	    (root->type == ATTR_NAME &&
2653	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2654	    (le32_to_cpu(root->index_block_size) !=
2655	     (block_clst << index_bits)) ||
2656	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2657	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2658	     block_clst != 0x40 && block_clst != 0x80)) {
2659		return false;
2660	}
2661
2662	ret = check_index_header(&root->ihdr,
2663				 le32_to_cpu(attr->res.data_size) -
2664					 offsetof(struct INDEX_ROOT, ihdr));
2665	return ret;
2666}
2667
2668static inline bool check_attr(const struct MFT_REC *rec,
2669			      const struct ATTRIB *attr,
2670			      struct ntfs_sb_info *sbi)
2671{
2672	u32 asize = le32_to_cpu(attr->size);
2673	u32 rsize = 0;
2674	u64 dsize, svcn, evcn;
2675	u16 run_off;
2676
2677	/* Check the fixed part of the attribute record header. */
2678	if (asize >= sbi->record_size ||
2679	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2680	    (attr->name_len &&
2681	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2682		     asize)) {
2683		return false;
2684	}
2685
2686	/* Check the attribute fields. */
2687	switch (attr->non_res) {
2688	case 0:
2689		rsize = le32_to_cpu(attr->res.data_size);
2690		if (rsize >= asize ||
2691		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2692			return false;
2693		}
2694		break;
2695
2696	case 1:
2697		dsize = le64_to_cpu(attr->nres.data_size);
2698		svcn = le64_to_cpu(attr->nres.svcn);
2699		evcn = le64_to_cpu(attr->nres.evcn);
2700		run_off = le16_to_cpu(attr->nres.run_off);
2701
2702		if (svcn > evcn + 1 || run_off >= asize ||
2703		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2704		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2705			return false;
2706		}
2707
2708		if (run_off > asize)
2709			return false;
2710
2711		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2712			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2713			return false;
2714		}
2715
2716		return true;
2717
2718	default:
2719		return false;
2720	}
2721
2722	switch (attr->type) {
2723	case ATTR_NAME:
2724		if (fname_full_size(Add2Ptr(
2725			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2726			return false;
2727		}
2728		break;
2729
2730	case ATTR_ROOT:
2731		return check_index_root(attr, sbi);
2732
2733	case ATTR_STD:
2734		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2735		    rsize != sizeof(struct ATTR_STD_INFO)) {
2736			return false;
2737		}
2738		break;
2739
2740	case ATTR_LIST:
2741	case ATTR_ID:
2742	case ATTR_SECURE:
2743	case ATTR_LABEL:
2744	case ATTR_VOL_INFO:
2745	case ATTR_DATA:
2746	case ATTR_ALLOC:
2747	case ATTR_BITMAP:
2748	case ATTR_REPARSE:
2749	case ATTR_EA_INFO:
2750	case ATTR_EA:
2751	case ATTR_PROPERTYSET:
2752	case ATTR_LOGGED_UTILITY_STREAM:
2753		break;
2754
2755	default:
2756		return false;
2757	}
2758
2759	return true;
2760}
2761
2762static inline bool check_file_record(const struct MFT_REC *rec,
2763				     const struct MFT_REC *rec2,
2764				     struct ntfs_sb_info *sbi)
2765{
2766	const struct ATTRIB *attr;
2767	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2768	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2769	u16 ao = le16_to_cpu(rec->attr_off);
2770	u32 rs = sbi->record_size;
2771
2772	/* Check the file record header for consistency. */
2773	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2774	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2775	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2776	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2777	    le32_to_cpu(rec->total) != rs) {
2778		return false;
2779	}
2780
2781	/* Loop to check all of the attributes. */
2782	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2783	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2784		if (check_attr(rec, attr, sbi))
2785			continue;
2786		return false;
2787	}
2788
2789	return true;
2790}
2791
2792static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2793			    const u64 *rlsn)
2794{
2795	u64 lsn;
2796
2797	if (!rlsn)
2798		return true;
2799
2800	lsn = le64_to_cpu(hdr->lsn);
2801
2802	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2803		return false;
2804
2805	if (*rlsn > lsn)
2806		return true;
2807
2808	return false;
2809}
2810
2811static inline bool check_if_attr(const struct MFT_REC *rec,
2812				 const struct LOG_REC_HDR *lrh)
2813{
2814	u16 ro = le16_to_cpu(lrh->record_off);
2815	u16 o = le16_to_cpu(rec->attr_off);
2816	const struct ATTRIB *attr = Add2Ptr(rec, o);
2817
2818	while (o < ro) {
2819		u32 asize;
2820
2821		if (attr->type == ATTR_END)
2822			break;
2823
2824		asize = le32_to_cpu(attr->size);
2825		if (!asize)
2826			break;
2827
2828		o += asize;
2829		attr = Add2Ptr(attr, asize);
2830	}
2831
2832	return o == ro;
2833}
2834
2835static inline bool check_if_index_root(const struct MFT_REC *rec,
2836				       const struct LOG_REC_HDR *lrh)
2837{
2838	u16 ro = le16_to_cpu(lrh->record_off);
2839	u16 o = le16_to_cpu(rec->attr_off);
2840	const struct ATTRIB *attr = Add2Ptr(rec, o);
2841
2842	while (o < ro) {
2843		u32 asize;
2844
2845		if (attr->type == ATTR_END)
2846			break;
2847
2848		asize = le32_to_cpu(attr->size);
2849		if (!asize)
2850			break;
2851
2852		o += asize;
2853		attr = Add2Ptr(attr, asize);
2854	}
2855
2856	return o == ro && attr->type == ATTR_ROOT;
2857}
2858
2859static inline bool check_if_root_index(const struct ATTRIB *attr,
2860				       const struct INDEX_HDR *hdr,
2861				       const struct LOG_REC_HDR *lrh)
2862{
2863	u16 ao = le16_to_cpu(lrh->attr_off);
2864	u32 de_off = le32_to_cpu(hdr->de_off);
2865	u32 o = PtrOffset(attr, hdr) + de_off;
2866	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2867	u32 asize = le32_to_cpu(attr->size);
2868
2869	while (o < ao) {
2870		u16 esize;
2871
2872		if (o >= asize)
2873			break;
2874
2875		esize = le16_to_cpu(e->size);
2876		if (!esize)
2877			break;
2878
2879		o += esize;
2880		e = Add2Ptr(e, esize);
2881	}
2882
2883	return o == ao;
2884}
2885
2886static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2887					u32 attr_off)
2888{
2889	u32 de_off = le32_to_cpu(hdr->de_off);
2890	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2891	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2892	u32 used = le32_to_cpu(hdr->used);
2893
2894	while (o < attr_off) {
2895		u16 esize;
2896
2897		if (de_off >= used)
2898			break;
2899
2900		esize = le16_to_cpu(e->size);
2901		if (!esize)
2902			break;
2903
2904		o += esize;
2905		de_off += esize;
2906		e = Add2Ptr(e, esize);
2907	}
2908
2909	return o == attr_off;
2910}
2911
2912static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2913				    u32 nsize)
2914{
2915	u32 asize = le32_to_cpu(attr->size);
2916	int dsize = nsize - asize;
2917	u8 *next = Add2Ptr(attr, asize);
2918	u32 used = le32_to_cpu(rec->used);
2919
2920	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2921
2922	rec->used = cpu_to_le32(used + dsize);
2923	attr->size = cpu_to_le32(nsize);
2924}
2925
2926struct OpenAttr {
2927	struct ATTRIB *attr;
2928	struct runs_tree *run1;
2929	struct runs_tree run0;
2930	struct ntfs_inode *ni;
2931	// CLST rno;
2932};
2933
2934/*
2935 * cmp_type_and_name
2936 *
2937 * Return: 0 if 'attr' has the same type and name.
2938 */
2939static inline int cmp_type_and_name(const struct ATTRIB *a1,
2940				    const struct ATTRIB *a2)
2941{
2942	return a1->type != a2->type || a1->name_len != a2->name_len ||
2943	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2944				       a1->name_len * sizeof(short)));
2945}
2946
2947static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2948					 const struct ATTRIB *attr, CLST rno)
2949{
2950	struct OPEN_ATTR_ENRTY *oe = NULL;
2951
2952	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2953		struct OpenAttr *op_attr;
2954
2955		if (ino_get(&oe->ref) != rno)
2956			continue;
2957
2958		op_attr = (struct OpenAttr *)oe->ptr;
2959		if (!cmp_type_and_name(op_attr->attr, attr))
2960			return op_attr;
2961	}
2962	return NULL;
2963}
2964
2965static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2966					     enum ATTR_TYPE type, u64 size,
2967					     const u16 *name, size_t name_len,
2968					     __le16 flags)
2969{
2970	struct ATTRIB *attr;
2971	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2972	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2973	u32 asize = name_size +
2974		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2975
2976	attr = kzalloc(asize, GFP_NOFS);
2977	if (!attr)
2978		return NULL;
2979
2980	attr->type = type;
2981	attr->size = cpu_to_le32(asize);
2982	attr->flags = flags;
2983	attr->non_res = 1;
2984	attr->name_len = name_len;
2985
2986	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2987	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2988	attr->nres.data_size = cpu_to_le64(size);
2989	attr->nres.valid_size = attr->nres.data_size;
2990	if (is_ext) {
2991		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2992		if (is_attr_compressed(attr))
2993			attr->nres.c_unit = COMPRESSION_UNIT;
2994
2995		attr->nres.run_off =
2996			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2997		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
2998		       name_len * sizeof(short));
2999	} else {
3000		attr->name_off = SIZEOF_NONRESIDENT_LE;
3001		attr->nres.run_off =
3002			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3003		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3004		       name_len * sizeof(short));
3005	}
3006
3007	return attr;
3008}
3009
3010/*
3011 * do_action - Common routine for the Redo and Undo Passes.
3012 * @rlsn: If it is NULL then undo.
3013 */
3014static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3015		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3016		     u32 dlen, u32 rec_len, const u64 *rlsn)
3017{
3018	int err = 0;
3019	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3020	struct inode *inode = NULL, *inode_parent;
3021	struct mft_inode *mi = NULL, *mi2_child = NULL;
3022	CLST rno = 0, rno_base = 0;
3023	struct INDEX_BUFFER *ib = NULL;
3024	struct MFT_REC *rec = NULL;
3025	struct ATTRIB *attr = NULL, *attr2;
3026	struct INDEX_HDR *hdr;
3027	struct INDEX_ROOT *root;
3028	struct NTFS_DE *e, *e1, *e2;
3029	struct NEW_ATTRIBUTE_SIZES *new_sz;
3030	struct ATTR_FILE_NAME *fname;
3031	struct OpenAttr *oa, *oa2;
3032	u32 nsize, t32, asize, used, esize, off, bits;
3033	u16 id, id2;
3034	u32 record_size = sbi->record_size;
3035	u64 t64;
3036	u16 roff = le16_to_cpu(lrh->record_off);
3037	u16 aoff = le16_to_cpu(lrh->attr_off);
3038	u64 lco = 0;
3039	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3040	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3041	u64 vbo = cbo + tvo;
3042	void *buffer_le = NULL;
3043	u32 bytes = 0;
3044	bool a_dirty = false;
3045	u16 data_off;
3046
3047	oa = oe->ptr;
3048
3049	/* Big switch to prepare. */
3050	switch (op) {
3051	/* ============================================================
3052	 * Process MFT records, as described by the current log record.
3053	 * ============================================================
3054	 */
3055	case InitializeFileRecordSegment:
3056	case DeallocateFileRecordSegment:
3057	case WriteEndOfFileRecordSegment:
3058	case CreateAttribute:
3059	case DeleteAttribute:
3060	case UpdateResidentValue:
3061	case UpdateMappingPairs:
3062	case SetNewAttributeSizes:
3063	case AddIndexEntryRoot:
3064	case DeleteIndexEntryRoot:
3065	case SetIndexEntryVcnRoot:
3066	case UpdateFileNameRoot:
3067	case UpdateRecordDataRoot:
3068	case ZeroEndOfFileRecord:
3069		rno = vbo >> sbi->record_bits;
3070		inode = ilookup(sbi->sb, rno);
3071		if (inode) {
3072			mi = &ntfs_i(inode)->mi;
3073		} else if (op == InitializeFileRecordSegment) {
3074			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3075			if (!mi)
3076				return -ENOMEM;
3077			err = mi_format_new(mi, sbi, rno, 0, false);
3078			if (err)
3079				goto out;
3080		} else {
3081			/* Read from disk. */
3082			err = mi_get(sbi, rno, &mi);
3083			if (err)
3084				return err;
3085		}
3086		rec = mi->mrec;
3087
3088		if (op == DeallocateFileRecordSegment)
3089			goto skip_load_parent;
3090
3091		if (InitializeFileRecordSegment != op) {
3092			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3093				goto dirty_vol;
3094			if (!check_lsn(&rec->rhdr, rlsn))
3095				goto out;
3096			if (!check_file_record(rec, NULL, sbi))
3097				goto dirty_vol;
3098			attr = Add2Ptr(rec, roff);
3099		}
3100
3101		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3102			rno_base = rno;
3103			goto skip_load_parent;
3104		}
3105
3106		rno_base = ino_get(&rec->parent_ref);
3107		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3108		if (IS_ERR(inode_parent))
3109			goto skip_load_parent;
3110
3111		if (is_bad_inode(inode_parent)) {
3112			iput(inode_parent);
3113			goto skip_load_parent;
3114		}
3115
3116		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3117			iput(inode_parent);
3118		} else {
3119			if (mi2_child->mrec != mi->mrec)
3120				memcpy(mi2_child->mrec, mi->mrec,
3121				       sbi->record_size);
3122
3123			if (inode)
3124				iput(inode);
3125			else if (mi)
3126				mi_put(mi);
3127
3128			inode = inode_parent;
3129			mi = mi2_child;
3130			rec = mi2_child->mrec;
3131			attr = Add2Ptr(rec, roff);
3132		}
3133
3134skip_load_parent:
3135		inode_parent = NULL;
3136		break;
3137
3138	/*
3139	 * Process attributes, as described by the current log record.
3140	 */
3141	case UpdateNonresidentValue:
3142	case AddIndexEntryAllocation:
3143	case DeleteIndexEntryAllocation:
3144	case WriteEndOfIndexBuffer:
3145	case SetIndexEntryVcnAllocation:
3146	case UpdateFileNameAllocation:
3147	case SetBitsInNonresidentBitMap:
3148	case ClearBitsInNonresidentBitMap:
3149	case UpdateRecordDataAllocation:
3150		attr = oa->attr;
3151		bytes = UpdateNonresidentValue == op ? dlen : 0;
3152		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3153
3154		if (attr->type == ATTR_ALLOC) {
3155			t32 = le32_to_cpu(oe->bytes_per_index);
3156			if (bytes < t32)
3157				bytes = t32;
3158		}
3159
3160		if (!bytes)
3161			bytes = lco - cbo;
3162
3163		bytes += roff;
3164		if (attr->type == ATTR_ALLOC)
3165			bytes = (bytes + 511) & ~511; // align
3166
3167		buffer_le = kmalloc(bytes, GFP_NOFS);
3168		if (!buffer_le)
3169			return -ENOMEM;
3170
3171		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3172				       NULL);
3173		if (err)
3174			goto out;
3175
3176		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3177			ntfs_fix_post_read(buffer_le, bytes, false);
3178		break;
3179
3180	default:
3181		WARN_ON(1);
3182	}
3183
3184	/* Big switch to do operation. */
3185	switch (op) {
3186	case InitializeFileRecordSegment:
3187		if (roff + dlen > record_size)
3188			goto dirty_vol;
3189
3190		memcpy(Add2Ptr(rec, roff), data, dlen);
3191		mi->dirty = true;
3192		break;
3193
3194	case DeallocateFileRecordSegment:
3195		clear_rec_inuse(rec);
3196		le16_add_cpu(&rec->seq, 1);
3197		mi->dirty = true;
3198		break;
3199
3200	case WriteEndOfFileRecordSegment:
3201		attr2 = (struct ATTRIB *)data;
3202		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3203			goto dirty_vol;
3204
3205		memmove(attr, attr2, dlen);
3206		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3207
3208		mi->dirty = true;
3209		break;
3210
3211	case CreateAttribute:
3212		attr2 = (struct ATTRIB *)data;
3213		asize = le32_to_cpu(attr2->size);
3214		used = le32_to_cpu(rec->used);
3215
3216		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3217		    !IS_ALIGNED(asize, 8) ||
3218		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3219		    dlen > record_size - used) {
3220			goto dirty_vol;
3221		}
3222
3223		memmove(Add2Ptr(attr, asize), attr, used - roff);
3224		memcpy(attr, attr2, asize);
3225
3226		rec->used = cpu_to_le32(used + asize);
3227		id = le16_to_cpu(rec->next_attr_id);
3228		id2 = le16_to_cpu(attr2->id);
3229		if (id <= id2)
3230			rec->next_attr_id = cpu_to_le16(id2 + 1);
3231		if (is_attr_indexed(attr))
3232			le16_add_cpu(&rec->hard_links, 1);
3233
3234		oa2 = find_loaded_attr(log, attr, rno_base);
3235		if (oa2) {
3236			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3237					   GFP_NOFS);
3238			if (p2) {
3239				// run_close(oa2->run1);
3240				kfree(oa2->attr);
3241				oa2->attr = p2;
3242			}
3243		}
3244
3245		mi->dirty = true;
3246		break;
3247
3248	case DeleteAttribute:
3249		asize = le32_to_cpu(attr->size);
3250		used = le32_to_cpu(rec->used);
3251
3252		if (!check_if_attr(rec, lrh))
3253			goto dirty_vol;
3254
3255		rec->used = cpu_to_le32(used - asize);
3256		if (is_attr_indexed(attr))
3257			le16_add_cpu(&rec->hard_links, -1);
3258
3259		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3260
3261		mi->dirty = true;
3262		break;
3263
3264	case UpdateResidentValue:
3265		nsize = aoff + dlen;
3266
3267		if (!check_if_attr(rec, lrh))
3268			goto dirty_vol;
3269
3270		asize = le32_to_cpu(attr->size);
3271		used = le32_to_cpu(rec->used);
3272
3273		if (lrh->redo_len == lrh->undo_len) {
3274			if (nsize > asize)
3275				goto dirty_vol;
3276			goto move_data;
3277		}
3278
3279		if (nsize > asize && nsize - asize > record_size - used)
3280			goto dirty_vol;
3281
3282		nsize = ALIGN(nsize, 8);
3283		data_off = le16_to_cpu(attr->res.data_off);
3284
3285		if (nsize < asize) {
3286			memmove(Add2Ptr(attr, aoff), data, dlen);
3287			data = NULL; // To skip below memmove().
3288		}
3289
3290		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3291			used - le16_to_cpu(lrh->record_off) - asize);
3292
3293		rec->used = cpu_to_le32(used + nsize - asize);
3294		attr->size = cpu_to_le32(nsize);
3295		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3296
3297move_data:
3298		if (data)
3299			memmove(Add2Ptr(attr, aoff), data, dlen);
3300
3301		oa2 = find_loaded_attr(log, attr, rno_base);
3302		if (oa2) {
3303			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3304					   GFP_NOFS);
3305			if (p2) {
3306				// run_close(&oa2->run0);
3307				oa2->run1 = &oa2->run0;
3308				kfree(oa2->attr);
3309				oa2->attr = p2;
3310			}
3311		}
3312
3313		mi->dirty = true;
3314		break;
3315
3316	case UpdateMappingPairs:
3317		nsize = aoff + dlen;
3318		asize = le32_to_cpu(attr->size);
3319		used = le32_to_cpu(rec->used);
3320
3321		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3322		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3323		    (nsize > asize && nsize - asize > record_size - used)) {
3324			goto dirty_vol;
3325		}
3326
3327		nsize = ALIGN(nsize, 8);
3328
3329		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3330			used - le16_to_cpu(lrh->record_off) - asize);
3331		rec->used = cpu_to_le32(used + nsize - asize);
3332		attr->size = cpu_to_le32(nsize);
3333		memmove(Add2Ptr(attr, aoff), data, dlen);
3334
3335		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3336					attr_run(attr), &t64)) {
3337			goto dirty_vol;
3338		}
3339
3340		attr->nres.evcn = cpu_to_le64(t64);
3341		oa2 = find_loaded_attr(log, attr, rno_base);
3342		if (oa2 && oa2->attr->non_res)
3343			oa2->attr->nres.evcn = attr->nres.evcn;
3344
3345		mi->dirty = true;
3346		break;
3347
3348	case SetNewAttributeSizes:
3349		new_sz = data;
3350		if (!check_if_attr(rec, lrh) || !attr->non_res)
3351			goto dirty_vol;
3352
3353		attr->nres.alloc_size = new_sz->alloc_size;
3354		attr->nres.data_size = new_sz->data_size;
3355		attr->nres.valid_size = new_sz->valid_size;
3356
3357		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3358			attr->nres.total_size = new_sz->total_size;
3359
3360		oa2 = find_loaded_attr(log, attr, rno_base);
3361		if (oa2) {
3362			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3363					   GFP_NOFS);
3364			if (p2) {
3365				kfree(oa2->attr);
3366				oa2->attr = p2;
3367			}
3368		}
3369		mi->dirty = true;
3370		break;
3371
3372	case AddIndexEntryRoot:
3373		e = (struct NTFS_DE *)data;
3374		esize = le16_to_cpu(e->size);
3375		root = resident_data(attr);
3376		hdr = &root->ihdr;
3377		used = le32_to_cpu(hdr->used);
3378
3379		if (!check_if_index_root(rec, lrh) ||
3380		    !check_if_root_index(attr, hdr, lrh) ||
3381		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3382		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3383			goto dirty_vol;
3384		}
3385
3386		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3387
3388		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3389
3390		memmove(Add2Ptr(e1, esize), e1,
3391			PtrOffset(e1, Add2Ptr(hdr, used)));
3392		memmove(e1, e, esize);
3393
3394		le32_add_cpu(&attr->res.data_size, esize);
3395		hdr->used = cpu_to_le32(used + esize);
3396		le32_add_cpu(&hdr->total, esize);
3397
3398		mi->dirty = true;
3399		break;
3400
3401	case DeleteIndexEntryRoot:
3402		root = resident_data(attr);
3403		hdr = &root->ihdr;
3404		used = le32_to_cpu(hdr->used);
3405
3406		if (!check_if_index_root(rec, lrh) ||
3407		    !check_if_root_index(attr, hdr, lrh)) {
3408			goto dirty_vol;
3409		}
3410
3411		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3412		esize = le16_to_cpu(e1->size);
3413		e2 = Add2Ptr(e1, esize);
3414
3415		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3416
3417		le32_sub_cpu(&attr->res.data_size, esize);
3418		hdr->used = cpu_to_le32(used - esize);
3419		le32_sub_cpu(&hdr->total, esize);
3420
3421		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3422
3423		mi->dirty = true;
3424		break;
3425
3426	case SetIndexEntryVcnRoot:
3427		root = resident_data(attr);
3428		hdr = &root->ihdr;
3429
3430		if (!check_if_index_root(rec, lrh) ||
3431		    !check_if_root_index(attr, hdr, lrh)) {
3432			goto dirty_vol;
3433		}
3434
3435		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3436
3437		de_set_vbn_le(e, *(__le64 *)data);
3438		mi->dirty = true;
3439		break;
3440
3441	case UpdateFileNameRoot:
3442		root = resident_data(attr);
3443		hdr = &root->ihdr;
3444
3445		if (!check_if_index_root(rec, lrh) ||
3446		    !check_if_root_index(attr, hdr, lrh)) {
3447			goto dirty_vol;
3448		}
3449
3450		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3451		fname = (struct ATTR_FILE_NAME *)(e + 1);
3452		memmove(&fname->dup, data, sizeof(fname->dup)); //
3453		mi->dirty = true;
3454		break;
3455
3456	case UpdateRecordDataRoot:
3457		root = resident_data(attr);
3458		hdr = &root->ihdr;
3459
3460		if (!check_if_index_root(rec, lrh) ||
3461		    !check_if_root_index(attr, hdr, lrh)) {
3462			goto dirty_vol;
3463		}
3464
3465		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3466
3467		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3468
3469		mi->dirty = true;
3470		break;
3471
3472	case ZeroEndOfFileRecord:
3473		if (roff + dlen > record_size)
3474			goto dirty_vol;
3475
3476		memset(attr, 0, dlen);
3477		mi->dirty = true;
3478		break;
3479
3480	case UpdateNonresidentValue:
3481		if (lco < cbo + roff + dlen)
3482			goto dirty_vol;
3483
3484		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3485
3486		a_dirty = true;
3487		if (attr->type == ATTR_ALLOC)
3488			ntfs_fix_pre_write(buffer_le, bytes);
3489		break;
3490
3491	case AddIndexEntryAllocation:
3492		ib = Add2Ptr(buffer_le, roff);
3493		hdr = &ib->ihdr;
3494		e = data;
3495		esize = le16_to_cpu(e->size);
3496		e1 = Add2Ptr(ib, aoff);
3497
3498		if (is_baad(&ib->rhdr))
3499			goto dirty_vol;
3500		if (!check_lsn(&ib->rhdr, rlsn))
3501			goto out;
3502
3503		used = le32_to_cpu(hdr->used);
3504
3505		if (!check_index_buffer(ib, bytes) ||
3506		    !check_if_alloc_index(hdr, aoff) ||
3507		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3508		    used + esize > le32_to_cpu(hdr->total)) {
3509			goto dirty_vol;
3510		}
3511
3512		memmove(Add2Ptr(e1, esize), e1,
3513			PtrOffset(e1, Add2Ptr(hdr, used)));
3514		memcpy(e1, e, esize);
3515
3516		hdr->used = cpu_to_le32(used + esize);
3517
3518		a_dirty = true;
3519
3520		ntfs_fix_pre_write(&ib->rhdr, bytes);
3521		break;
3522
3523	case DeleteIndexEntryAllocation:
3524		ib = Add2Ptr(buffer_le, roff);
3525		hdr = &ib->ihdr;
3526		e = Add2Ptr(ib, aoff);
3527		esize = le16_to_cpu(e->size);
3528
3529		if (is_baad(&ib->rhdr))
3530			goto dirty_vol;
3531		if (!check_lsn(&ib->rhdr, rlsn))
3532			goto out;
3533
3534		if (!check_index_buffer(ib, bytes) ||
3535		    !check_if_alloc_index(hdr, aoff)) {
3536			goto dirty_vol;
3537		}
3538
3539		e1 = Add2Ptr(e, esize);
3540		nsize = esize;
3541		used = le32_to_cpu(hdr->used);
3542
3543		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3544
3545		hdr->used = cpu_to_le32(used - nsize);
3546
3547		a_dirty = true;
3548
3549		ntfs_fix_pre_write(&ib->rhdr, bytes);
3550		break;
3551
3552	case WriteEndOfIndexBuffer:
3553		ib = Add2Ptr(buffer_le, roff);
3554		hdr = &ib->ihdr;
3555		e = Add2Ptr(ib, aoff);
3556
3557		if (is_baad(&ib->rhdr))
3558			goto dirty_vol;
3559		if (!check_lsn(&ib->rhdr, rlsn))
3560			goto out;
3561		if (!check_index_buffer(ib, bytes) ||
3562		    !check_if_alloc_index(hdr, aoff) ||
3563		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3564					  le32_to_cpu(hdr->total)) {
3565			goto dirty_vol;
3566		}
3567
3568		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3569		memmove(e, data, dlen);
3570
3571		a_dirty = true;
3572		ntfs_fix_pre_write(&ib->rhdr, bytes);
3573		break;
3574
3575	case SetIndexEntryVcnAllocation:
3576		ib = Add2Ptr(buffer_le, roff);
3577		hdr = &ib->ihdr;
3578		e = Add2Ptr(ib, aoff);
3579
3580		if (is_baad(&ib->rhdr))
3581			goto dirty_vol;
3582
3583		if (!check_lsn(&ib->rhdr, rlsn))
3584			goto out;
3585		if (!check_index_buffer(ib, bytes) ||
3586		    !check_if_alloc_index(hdr, aoff)) {
3587			goto dirty_vol;
3588		}
3589
3590		de_set_vbn_le(e, *(__le64 *)data);
3591
3592		a_dirty = true;
3593		ntfs_fix_pre_write(&ib->rhdr, bytes);
3594		break;
3595
3596	case UpdateFileNameAllocation:
3597		ib = Add2Ptr(buffer_le, roff);
3598		hdr = &ib->ihdr;
3599		e = Add2Ptr(ib, aoff);
3600
3601		if (is_baad(&ib->rhdr))
3602			goto dirty_vol;
3603
3604		if (!check_lsn(&ib->rhdr, rlsn))
3605			goto out;
3606		if (!check_index_buffer(ib, bytes) ||
3607		    !check_if_alloc_index(hdr, aoff)) {
3608			goto dirty_vol;
3609		}
3610
3611		fname = (struct ATTR_FILE_NAME *)(e + 1);
3612		memmove(&fname->dup, data, sizeof(fname->dup));
3613
3614		a_dirty = true;
3615		ntfs_fix_pre_write(&ib->rhdr, bytes);
3616		break;
3617
3618	case SetBitsInNonresidentBitMap:
3619		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3620		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3621
3622		if (cbo + (off + 7) / 8 > lco ||
3623		    cbo + ((off + bits + 7) / 8) > lco) {
3624			goto dirty_vol;
3625		}
3626
3627		ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3628		a_dirty = true;
3629		break;
3630
3631	case ClearBitsInNonresidentBitMap:
3632		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3633		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3634
3635		if (cbo + (off + 7) / 8 > lco ||
3636		    cbo + ((off + bits + 7) / 8) > lco) {
3637			goto dirty_vol;
3638		}
3639
3640		ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3641		a_dirty = true;
3642		break;
3643
3644	case UpdateRecordDataAllocation:
3645		ib = Add2Ptr(buffer_le, roff);
3646		hdr = &ib->ihdr;
3647		e = Add2Ptr(ib, aoff);
3648
3649		if (is_baad(&ib->rhdr))
3650			goto dirty_vol;
3651
3652		if (!check_lsn(&ib->rhdr, rlsn))
3653			goto out;
3654		if (!check_index_buffer(ib, bytes) ||
3655		    !check_if_alloc_index(hdr, aoff)) {
3656			goto dirty_vol;
3657		}
3658
3659		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3660
3661		a_dirty = true;
3662		ntfs_fix_pre_write(&ib->rhdr, bytes);
3663		break;
3664
3665	default:
3666		WARN_ON(1);
3667	}
3668
3669	if (rlsn) {
3670		__le64 t64 = cpu_to_le64(*rlsn);
3671
3672		if (rec)
3673			rec->rhdr.lsn = t64;
3674		if (ib)
3675			ib->rhdr.lsn = t64;
3676	}
3677
3678	if (mi && mi->dirty) {
3679		err = mi_write(mi, 0);
3680		if (err)
3681			goto out;
3682	}
3683
3684	if (a_dirty) {
3685		attr = oa->attr;
3686		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
3687		if (err)
3688			goto out;
3689	}
3690
3691out:
3692
3693	if (inode)
3694		iput(inode);
3695	else if (mi != mi2_child)
3696		mi_put(mi);
3697
3698	kfree(buffer_le);
3699
3700	return err;
3701
3702dirty_vol:
3703	log->set_dirty = true;
3704	goto out;
3705}
3706
3707/*
3708 * log_replay - Replays log and empties it.
3709 *
3710 * This function is called during mount operation.
3711 * It replays log and empties it.
3712 * Initialized is set false if logfile contains '-1'.
3713 */
3714int log_replay(struct ntfs_inode *ni, bool *initialized)
3715{
3716	int err;
3717	struct ntfs_sb_info *sbi = ni->mi.sbi;
3718	struct ntfs_log *log;
3719
3720	struct restart_info rst_info, rst_info2;
3721	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3722	struct ATTR_NAME_ENTRY *attr_names = NULL;
3723	struct ATTR_NAME_ENTRY *ane;
3724	struct RESTART_TABLE *dptbl = NULL;
3725	struct RESTART_TABLE *trtbl = NULL;
3726	const struct RESTART_TABLE *rt;
3727	struct RESTART_TABLE *oatbl = NULL;
3728	struct inode *inode;
3729	struct OpenAttr *oa;
3730	struct ntfs_inode *ni_oe;
3731	struct ATTRIB *attr = NULL;
3732	u64 size, vcn, undo_next_lsn;
3733	CLST rno, lcn, lcn0, len0, clen;
3734	void *data;
3735	struct NTFS_RESTART *rst = NULL;
3736	struct lcb *lcb = NULL;
3737	struct OPEN_ATTR_ENRTY *oe;
3738	struct TRANSACTION_ENTRY *tr;
3739	struct DIR_PAGE_ENTRY *dp;
3740	u32 i, bytes_per_attr_entry;
3741	u32 l_size = ni->vfs_inode.i_size;
3742	u32 orig_file_size = l_size;
3743	u32 page_size, vbo, tail, off, dlen;
3744	u32 saved_len, rec_len, transact_id;
3745	bool use_second_page;
3746	struct RESTART_AREA *ra2, *ra = NULL;
3747	struct CLIENT_REC *ca, *cr;
3748	__le16 client;
3749	struct RESTART_HDR *rh;
3750	const struct LFS_RECORD_HDR *frh;
3751	const struct LOG_REC_HDR *lrh;
3752	bool is_mapped;
3753	bool is_ro = sb_rdonly(sbi->sb);
3754	u64 t64;
3755	u16 t16;
3756	u32 t32;
3757
3758	/* Get the size of page. NOTE: To replay we can use default page. */
3759#if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3760	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3761#else
3762	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3763#endif
3764	if (!page_size)
3765		return -EINVAL;
3766
3767	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3768	if (!log)
3769		return -ENOMEM;
3770
3771	memset(&rst_info, 0, sizeof(struct restart_info));
3772
3773	log->ni = ni;
3774	log->l_size = l_size;
3775	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3776	if (!log->one_page_buf) {
3777		err = -ENOMEM;
3778		goto out;
3779	}
3780
3781	log->page_size = page_size;
3782	log->page_mask = page_size - 1;
3783	log->page_bits = blksize_bits(page_size);
3784
3785	/* Look for a restart area on the disk. */
3786	err = log_read_rst(log, l_size, true, &rst_info);
3787	if (err)
3788		goto out;
3789
3790	/* remember 'initialized' */
3791	*initialized = rst_info.initialized;
3792
3793	if (!rst_info.restart) {
3794		if (rst_info.initialized) {
3795			/* No restart area but the file is not initialized. */
3796			err = -EINVAL;
3797			goto out;
3798		}
3799
3800		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3801		log_create(log, l_size, 0, get_random_u32(), false, false);
3802
3803		log->ra = ra;
3804
3805		ra = log_create_ra(log);
3806		if (!ra) {
3807			err = -ENOMEM;
3808			goto out;
3809		}
3810		log->ra = ra;
3811		log->init_ra = true;
3812
3813		goto process_log;
3814	}
3815
3816	/*
3817	 * If the restart offset above wasn't zero then we won't
3818	 * look for a second restart.
3819	 */
3820	if (rst_info.vbo)
3821		goto check_restart_area;
3822
3823	memset(&rst_info2, 0, sizeof(struct restart_info));
3824	err = log_read_rst(log, l_size, false, &rst_info2);
3825	if (err)
3826		goto out;
3827
3828	/* Determine which restart area to use. */
3829	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3830		goto use_first_page;
3831
3832	use_second_page = true;
3833
3834	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3835		struct RECORD_PAGE_HDR *sp = NULL;
3836		bool usa_error;
3837
3838		if (!read_log_page(log, page_size, &sp, &usa_error) &&
3839		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3840			use_second_page = false;
3841		}
3842		kfree(sp);
3843	}
3844
3845	if (use_second_page) {
3846		kfree(rst_info.r_page);
3847		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3848		rst_info2.r_page = NULL;
3849	}
3850
3851use_first_page:
3852	kfree(rst_info2.r_page);
3853
3854check_restart_area:
3855	/*
3856	 * If the restart area is at offset 0, we want
3857	 * to write the second restart area first.
3858	 */
3859	log->init_ra = !!rst_info.vbo;
3860
3861	/* If we have a valid page then grab a pointer to the restart area. */
3862	ra2 = rst_info.valid_page
3863		      ? Add2Ptr(rst_info.r_page,
3864				le16_to_cpu(rst_info.r_page->ra_off))
3865		      : NULL;
3866
3867	if (rst_info.chkdsk_was_run ||
3868	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3869		bool wrapped = false;
3870		bool use_multi_page = false;
3871		u32 open_log_count;
3872
3873		/* Do some checks based on whether we have a valid log page. */
3874		if (!rst_info.valid_page) {
3875			open_log_count = get_random_u32();
3876			goto init_log_instance;
3877		}
3878		open_log_count = le32_to_cpu(ra2->open_log_count);
3879
3880		/*
3881		 * If the restart page size isn't changing then we want to
3882		 * check how much work we need to do.
3883		 */
3884		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3885			goto init_log_instance;
3886
3887init_log_instance:
3888		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3889
3890		log_create(log, l_size, rst_info.last_lsn, open_log_count,
3891			   wrapped, use_multi_page);
3892
3893		ra = log_create_ra(log);
3894		if (!ra) {
3895			err = -ENOMEM;
3896			goto out;
3897		}
3898		log->ra = ra;
3899
3900		/* Put the restart areas and initialize
3901		 * the log file as required.
3902		 */
3903		goto process_log;
3904	}
3905
3906	if (!ra2) {
3907		err = -EINVAL;
3908		goto out;
3909	}
3910
3911	/*
3912	 * If the log page or the system page sizes have changed, we can't
3913	 * use the log file. We must use the system page size instead of the
3914	 * default size if there is not a clean shutdown.
3915	 */
3916	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3917	if (page_size != t32) {
3918		l_size = orig_file_size;
3919		page_size =
3920			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3921	}
3922
3923	if (page_size != t32 ||
3924	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3925		err = -EINVAL;
3926		goto out;
3927	}
3928
3929	/* If the file size has shrunk then we won't mount it. */
3930	if (l_size < le64_to_cpu(ra2->l_size)) {
3931		err = -EINVAL;
3932		goto out;
3933	}
3934
3935	log_init_pg_hdr(log, page_size, page_size,
3936			le16_to_cpu(rst_info.r_page->major_ver),
3937			le16_to_cpu(rst_info.r_page->minor_ver));
3938
3939	log->l_size = le64_to_cpu(ra2->l_size);
3940	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3941	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3942	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3943	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3944	log->seq_num = log->last_lsn >> log->file_data_bits;
3945	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3946	log->restart_size = log->sys_page_size - log->ra_off;
3947	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3948	log->ra_size = le16_to_cpu(ra2->ra_len);
3949	log->data_off = le16_to_cpu(ra2->data_off);
3950	log->data_size = log->page_size - log->data_off;
3951	log->reserved = log->data_size - log->record_header_len;
3952
3953	vbo = lsn_to_vbo(log, log->last_lsn);
3954
3955	if (vbo < log->first_page) {
3956		/* This is a pseudo lsn. */
3957		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3958		log->next_page = log->first_page;
3959		goto find_oldest;
3960	}
3961
3962	/* Find the end of this log record. */
3963	off = final_log_off(log, log->last_lsn,
3964			    le32_to_cpu(ra2->last_lsn_data_len));
3965
3966	/* If we wrapped the file then increment the sequence number. */
3967	if (off <= vbo) {
3968		log->seq_num += 1;
3969		log->l_flags |= NTFSLOG_WRAPPED;
3970	}
3971
3972	/* Now compute the next log page to use. */
3973	vbo &= ~log->sys_page_mask;
3974	tail = log->page_size - (off & log->page_mask) - 1;
3975
3976	/*
3977	 *If we can fit another log record on the page,
3978	 * move back a page the log file.
3979	 */
3980	if (tail >= log->record_header_len) {
3981		log->l_flags |= NTFSLOG_REUSE_TAIL;
3982		log->next_page = vbo;
3983	} else {
3984		log->next_page = next_page_off(log, vbo);
3985	}
3986
3987find_oldest:
3988	/*
3989	 * Find the oldest client lsn. Use the last
3990	 * flushed lsn as a starting point.
3991	 */
3992	log->oldest_lsn = log->last_lsn;
3993	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3994			  ra2->client_idx[1], &log->oldest_lsn);
3995	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3996
3997	if (log->oldest_lsn_off < log->first_page)
3998		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3999
4000	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4001		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4002
4003	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4004	log->total_avail_pages = log->l_size - log->first_page;
4005	log->total_avail = log->total_avail_pages >> log->page_bits;
4006	log->max_current_avail = log->total_avail * log->reserved;
4007	log->total_avail = log->total_avail * log->data_size;
4008
4009	log->current_avail = current_log_avail(log);
4010
4011	ra = kzalloc(log->restart_size, GFP_NOFS);
4012	if (!ra) {
4013		err = -ENOMEM;
4014		goto out;
4015	}
4016	log->ra = ra;
4017
4018	t16 = le16_to_cpu(ra2->client_off);
4019	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4020		memcpy(ra, ra2, log->ra_size);
4021	} else {
4022		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4023		memcpy(ra->clients, Add2Ptr(ra2, t16),
4024		       le16_to_cpu(ra2->ra_len) - t16);
4025
4026		log->current_openlog_count = get_random_u32();
4027		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4028		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4029			       sizeof(struct CLIENT_REC);
4030		ra->client_off =
4031			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4032		ra->ra_len = cpu_to_le16(log->ra_size);
4033	}
4034
4035	le32_add_cpu(&ra->open_log_count, 1);
4036
4037	/* Now we need to walk through looking for the last lsn. */
4038	err = last_log_lsn(log);
4039	if (err)
4040		goto out;
4041
4042	log->current_avail = current_log_avail(log);
4043
4044	/* Remember which restart area to write first. */
4045	log->init_ra = rst_info.vbo;
4046
4047process_log:
4048	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4049	switch ((log->major_ver << 16) + log->minor_ver) {
4050	case 0x10000:
4051	case 0x10001:
4052	case 0x20000:
4053		break;
4054	default:
4055		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4056			  log->major_ver, log->minor_ver);
4057		err = -EOPNOTSUPP;
4058		log->set_dirty = true;
4059		goto out;
4060	}
4061
4062	/* One client "NTFS" per logfile. */
4063	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4064
4065	for (client = ra->client_idx[1];; client = cr->next_client) {
4066		if (client == LFS_NO_CLIENT_LE) {
4067			/* Insert "NTFS" client LogFile. */
4068			client = ra->client_idx[0];
4069			if (client == LFS_NO_CLIENT_LE) {
4070				err = -EINVAL;
4071				goto out;
4072			}
4073
4074			t16 = le16_to_cpu(client);
4075			cr = ca + t16;
4076
4077			remove_client(ca, cr, &ra->client_idx[0]);
4078
4079			cr->restart_lsn = 0;
4080			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4081			cr->name_bytes = cpu_to_le32(8);
4082			cr->name[0] = cpu_to_le16('N');
4083			cr->name[1] = cpu_to_le16('T');
4084			cr->name[2] = cpu_to_le16('F');
4085			cr->name[3] = cpu_to_le16('S');
4086
4087			add_client(ca, t16, &ra->client_idx[1]);
4088			break;
4089		}
4090
4091		cr = ca + le16_to_cpu(client);
4092
4093		if (cpu_to_le32(8) == cr->name_bytes &&
4094		    cpu_to_le16('N') == cr->name[0] &&
4095		    cpu_to_le16('T') == cr->name[1] &&
4096		    cpu_to_le16('F') == cr->name[2] &&
4097		    cpu_to_le16('S') == cr->name[3])
4098			break;
4099	}
4100
4101	/* Update the client handle with the client block information. */
4102	log->client_id.seq_num = cr->seq_num;
4103	log->client_id.client_idx = client;
4104
4105	err = read_rst_area(log, &rst, &ra_lsn);
4106	if (err)
4107		goto out;
4108
4109	if (!rst)
4110		goto out;
4111
4112	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4113
4114	checkpt_lsn = le64_to_cpu(rst->check_point_start);
4115	if (!checkpt_lsn)
4116		checkpt_lsn = ra_lsn;
4117
4118	/* Allocate and Read the Transaction Table. */
4119	if (!rst->transact_table_len)
4120		goto check_dirty_page_table;
4121
4122	t64 = le64_to_cpu(rst->transact_table_lsn);
4123	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4124	if (err)
4125		goto out;
4126
4127	lrh = lcb->log_rec;
4128	frh = lcb->lrh;
4129	rec_len = le32_to_cpu(frh->client_data_len);
4130
4131	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4132			   bytes_per_attr_entry)) {
4133		err = -EINVAL;
4134		goto out;
4135	}
4136
4137	t16 = le16_to_cpu(lrh->redo_off);
4138
4139	rt = Add2Ptr(lrh, t16);
4140	t32 = rec_len - t16;
4141
4142	/* Now check that this is a valid restart table. */
4143	if (!check_rstbl(rt, t32)) {
4144		err = -EINVAL;
4145		goto out;
4146	}
4147
4148	trtbl = kmemdup(rt, t32, GFP_NOFS);
4149	if (!trtbl) {
4150		err = -ENOMEM;
4151		goto out;
4152	}
4153
4154	lcb_put(lcb);
4155	lcb = NULL;
4156
4157check_dirty_page_table:
4158	/* The next record back should be the Dirty Pages Table. */
4159	if (!rst->dirty_pages_len)
4160		goto check_attribute_names;
4161
4162	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4163	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4164	if (err)
4165		goto out;
4166
4167	lrh = lcb->log_rec;
4168	frh = lcb->lrh;
4169	rec_len = le32_to_cpu(frh->client_data_len);
4170
4171	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4172			   bytes_per_attr_entry)) {
4173		err = -EINVAL;
4174		goto out;
4175	}
4176
4177	t16 = le16_to_cpu(lrh->redo_off);
4178
4179	rt = Add2Ptr(lrh, t16);
4180	t32 = rec_len - t16;
4181
4182	/* Now check that this is a valid restart table. */
4183	if (!check_rstbl(rt, t32)) {
4184		err = -EINVAL;
4185		goto out;
4186	}
4187
4188	dptbl = kmemdup(rt, t32, GFP_NOFS);
4189	if (!dptbl) {
4190		err = -ENOMEM;
4191		goto out;
4192	}
4193
4194	/* Convert Ra version '0' into version '1'. */
4195	if (rst->major_ver)
4196		goto end_conv_1;
4197
4198	dp = NULL;
4199	while ((dp = enum_rstbl(dptbl, dp))) {
4200		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4201		// NOTE: Danger. Check for of boundary.
4202		memmove(&dp->vcn, &dp0->vcn_low,
4203			2 * sizeof(u64) +
4204				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4205	}
4206
4207end_conv_1:
4208	lcb_put(lcb);
4209	lcb = NULL;
4210
4211	/*
4212	 * Go through the table and remove the duplicates,
4213	 * remembering the oldest lsn values.
4214	 */
4215	if (sbi->cluster_size <= log->page_size)
4216		goto trace_dp_table;
4217
4218	dp = NULL;
4219	while ((dp = enum_rstbl(dptbl, dp))) {
4220		struct DIR_PAGE_ENTRY *next = dp;
4221
4222		while ((next = enum_rstbl(dptbl, next))) {
4223			if (next->target_attr == dp->target_attr &&
4224			    next->vcn == dp->vcn) {
4225				if (le64_to_cpu(next->oldest_lsn) <
4226				    le64_to_cpu(dp->oldest_lsn)) {
4227					dp->oldest_lsn = next->oldest_lsn;
4228				}
4229
4230				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4231			}
4232		}
4233	}
4234trace_dp_table:
4235check_attribute_names:
4236	/* The next record should be the Attribute Names. */
4237	if (!rst->attr_names_len)
4238		goto check_attr_table;
4239
4240	t64 = le64_to_cpu(rst->attr_names_lsn);
4241	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4242	if (err)
4243		goto out;
4244
4245	lrh = lcb->log_rec;
4246	frh = lcb->lrh;
4247	rec_len = le32_to_cpu(frh->client_data_len);
4248
4249	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4250			   bytes_per_attr_entry)) {
4251		err = -EINVAL;
4252		goto out;
4253	}
4254
4255	t32 = lrh_length(lrh);
4256	rec_len -= t32;
4257
4258	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4259
4260	lcb_put(lcb);
4261	lcb = NULL;
4262
4263check_attr_table:
4264	/* The next record should be the attribute Table. */
4265	if (!rst->open_attr_len)
4266		goto check_attribute_names2;
4267
4268	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4269	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4270	if (err)
4271		goto out;
4272
4273	lrh = lcb->log_rec;
4274	frh = lcb->lrh;
4275	rec_len = le32_to_cpu(frh->client_data_len);
4276
4277	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4278			   bytes_per_attr_entry)) {
4279		err = -EINVAL;
4280		goto out;
4281	}
4282
4283	t16 = le16_to_cpu(lrh->redo_off);
4284
4285	rt = Add2Ptr(lrh, t16);
4286	t32 = rec_len - t16;
4287
4288	if (!check_rstbl(rt, t32)) {
4289		err = -EINVAL;
4290		goto out;
4291	}
4292
4293	oatbl = kmemdup(rt, t32, GFP_NOFS);
4294	if (!oatbl) {
4295		err = -ENOMEM;
4296		goto out;
4297	}
4298
4299	log->open_attr_tbl = oatbl;
4300
4301	/* Clear all of the Attr pointers. */
4302	oe = NULL;
4303	while ((oe = enum_rstbl(oatbl, oe))) {
4304		if (!rst->major_ver) {
4305			struct OPEN_ATTR_ENRTY_32 oe0;
4306
4307			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4308			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4309
4310			oe->bytes_per_index = oe0.bytes_per_index;
4311			oe->type = oe0.type;
4312			oe->is_dirty_pages = oe0.is_dirty_pages;
4313			oe->name_len = 0;
4314			oe->ref = oe0.ref;
4315			oe->open_record_lsn = oe0.open_record_lsn;
4316		}
4317
4318		oe->is_attr_name = 0;
4319		oe->ptr = NULL;
4320	}
4321
4322	lcb_put(lcb);
4323	lcb = NULL;
4324
4325check_attribute_names2:
4326	if (!rst->attr_names_len)
4327		goto trace_attribute_table;
4328
4329	ane = attr_names;
4330	if (!oatbl)
4331		goto trace_attribute_table;
4332	while (ane->off) {
4333		/* TODO: Clear table on exit! */
4334		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4335		t16 = le16_to_cpu(ane->name_bytes);
4336		oe->name_len = t16 / sizeof(short);
4337		oe->ptr = ane->name;
4338		oe->is_attr_name = 2;
4339		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4340	}
4341
4342trace_attribute_table:
4343	/*
4344	 * If the checkpt_lsn is zero, then this is a freshly
4345	 * formatted disk and we have no work to do.
4346	 */
4347	if (!checkpt_lsn) {
4348		err = 0;
4349		goto out;
4350	}
4351
4352	if (!oatbl) {
4353		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4354		if (!oatbl) {
4355			err = -ENOMEM;
4356			goto out;
4357		}
4358	}
4359
4360	log->open_attr_tbl = oatbl;
4361
4362	/* Start the analysis pass from the Checkpoint lsn. */
4363	rec_lsn = checkpt_lsn;
4364
4365	/* Read the first lsn. */
4366	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4367	if (err)
4368		goto out;
4369
4370	/* Loop to read all subsequent records to the end of the log file. */
4371next_log_record_analyze:
4372	err = read_next_log_rec(log, lcb, &rec_lsn);
4373	if (err)
4374		goto out;
4375
4376	if (!rec_lsn)
4377		goto end_log_records_enumerate;
4378
4379	frh = lcb->lrh;
4380	transact_id = le32_to_cpu(frh->transact_id);
4381	rec_len = le32_to_cpu(frh->client_data_len);
4382	lrh = lcb->log_rec;
4383
4384	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4385		err = -EINVAL;
4386		goto out;
4387	}
4388
4389	/*
4390	 * The first lsn after the previous lsn remembered
4391	 * the checkpoint is the first candidate for the rlsn.
4392	 */
4393	if (!rlsn)
4394		rlsn = rec_lsn;
4395
4396	if (LfsClientRecord != frh->record_type)
4397		goto next_log_record_analyze;
4398
4399	/*
4400	 * Now update the Transaction Table for this transaction. If there
4401	 * is no entry present or it is unallocated we allocate the entry.
4402	 */
4403	if (!trtbl) {
4404		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4405				    INITIAL_NUMBER_TRANSACTIONS);
4406		if (!trtbl) {
4407			err = -ENOMEM;
4408			goto out;
4409		}
4410	}
4411
4412	tr = Add2Ptr(trtbl, transact_id);
4413
4414	if (transact_id >= bytes_per_rt(trtbl) ||
4415	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4416		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4417		if (!tr) {
4418			err = -ENOMEM;
4419			goto out;
4420		}
4421		tr->transact_state = TransactionActive;
4422		tr->first_lsn = cpu_to_le64(rec_lsn);
4423	}
4424
4425	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4426
4427	/*
4428	 * If this is a compensation log record, then change
4429	 * the undo_next_lsn to be the undo_next_lsn of this record.
4430	 */
4431	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4432		tr->undo_next_lsn = frh->client_undo_next_lsn;
4433
4434	/* Dispatch to handle log record depending on type. */
4435	switch (le16_to_cpu(lrh->redo_op)) {
4436	case InitializeFileRecordSegment:
4437	case DeallocateFileRecordSegment:
4438	case WriteEndOfFileRecordSegment:
4439	case CreateAttribute:
4440	case DeleteAttribute:
4441	case UpdateResidentValue:
4442	case UpdateNonresidentValue:
4443	case UpdateMappingPairs:
4444	case SetNewAttributeSizes:
4445	case AddIndexEntryRoot:
4446	case DeleteIndexEntryRoot:
4447	case AddIndexEntryAllocation:
4448	case DeleteIndexEntryAllocation:
4449	case WriteEndOfIndexBuffer:
4450	case SetIndexEntryVcnRoot:
4451	case SetIndexEntryVcnAllocation:
4452	case UpdateFileNameRoot:
4453	case UpdateFileNameAllocation:
4454	case SetBitsInNonresidentBitMap:
4455	case ClearBitsInNonresidentBitMap:
4456	case UpdateRecordDataRoot:
4457	case UpdateRecordDataAllocation:
4458	case ZeroEndOfFileRecord:
4459		t16 = le16_to_cpu(lrh->target_attr);
4460		t64 = le64_to_cpu(lrh->target_vcn);
4461		dp = find_dp(dptbl, t16, t64);
4462
4463		if (dp)
4464			goto copy_lcns;
4465
4466		/*
4467		 * Calculate the number of clusters per page the system
4468		 * which wrote the checkpoint, possibly creating the table.
4469		 */
4470		if (dptbl) {
4471			t32 = (le16_to_cpu(dptbl->size) -
4472			       sizeof(struct DIR_PAGE_ENTRY)) /
4473			      sizeof(u64);
4474		} else {
4475			t32 = log->clst_per_page;
4476			kfree(dptbl);
4477			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4478					    32);
4479			if (!dptbl) {
4480				err = -ENOMEM;
4481				goto out;
4482			}
4483		}
4484
4485		dp = alloc_rsttbl_idx(&dptbl);
4486		if (!dp) {
4487			err = -ENOMEM;
4488			goto out;
4489		}
4490		dp->target_attr = cpu_to_le32(t16);
4491		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4492		dp->lcns_follow = cpu_to_le32(t32);
4493		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4494		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4495
4496copy_lcns:
4497		/*
4498		 * Copy the Lcns from the log record into the Dirty Page Entry.
4499		 * TODO: For different page size support, must somehow make
4500		 * whole routine a loop, case Lcns do not fit below.
4501		 */
4502		t16 = le16_to_cpu(lrh->lcns_follow);
4503		for (i = 0; i < t16; i++) {
4504			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4505					    le64_to_cpu(dp->vcn));
4506			dp->page_lcns[j + i] = lrh->page_lcns[i];
4507		}
4508
4509		goto next_log_record_analyze;
4510
4511	case DeleteDirtyClusters: {
4512		u32 range_count =
4513			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4514		const struct LCN_RANGE *r =
4515			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4516
4517		/* Loop through all of the Lcn ranges this log record. */
4518		for (i = 0; i < range_count; i++, r++) {
4519			u64 lcn0 = le64_to_cpu(r->lcn);
4520			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4521
4522			dp = NULL;
4523			while ((dp = enum_rstbl(dptbl, dp))) {
4524				u32 j;
4525
4526				t32 = le32_to_cpu(dp->lcns_follow);
4527				for (j = 0; j < t32; j++) {
4528					t64 = le64_to_cpu(dp->page_lcns[j]);
4529					if (t64 >= lcn0 && t64 <= lcn_e)
4530						dp->page_lcns[j] = 0;
4531				}
4532			}
4533		}
4534		goto next_log_record_analyze;
4535		;
4536	}
4537
4538	case OpenNonresidentAttribute:
4539		t16 = le16_to_cpu(lrh->target_attr);
4540		if (t16 >= bytes_per_rt(oatbl)) {
4541			/*
4542			 * Compute how big the table needs to be.
4543			 * Add 10 extra entries for some cushion.
4544			 */
4545			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4546
4547			new_e += 10 - le16_to_cpu(oatbl->used);
4548
4549			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4550			log->open_attr_tbl = oatbl;
4551			if (!oatbl) {
4552				err = -ENOMEM;
4553				goto out;
4554			}
4555		}
4556
4557		/* Point to the entry being opened. */
4558		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4559		log->open_attr_tbl = oatbl;
4560		if (!oe) {
4561			err = -ENOMEM;
4562			goto out;
4563		}
4564
4565		/* Initialize this entry from the log record. */
4566		t16 = le16_to_cpu(lrh->redo_off);
4567		if (!rst->major_ver) {
4568			/* Convert version '0' into version '1'. */
4569			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4570
4571			oe->bytes_per_index = oe0->bytes_per_index;
4572			oe->type = oe0->type;
4573			oe->is_dirty_pages = oe0->is_dirty_pages;
4574			oe->name_len = 0; //oe0.name_len;
4575			oe->ref = oe0->ref;
4576			oe->open_record_lsn = oe0->open_record_lsn;
4577		} else {
4578			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4579		}
4580
4581		t16 = le16_to_cpu(lrh->undo_len);
4582		if (t16) {
4583			oe->ptr = kmalloc(t16, GFP_NOFS);
4584			if (!oe->ptr) {
4585				err = -ENOMEM;
4586				goto out;
4587			}
4588			oe->name_len = t16 / sizeof(short);
4589			memcpy(oe->ptr,
4590			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4591			oe->is_attr_name = 1;
4592		} else {
4593			oe->ptr = NULL;
4594			oe->is_attr_name = 0;
4595		}
4596
4597		goto next_log_record_analyze;
4598
4599	case HotFix:
4600		t16 = le16_to_cpu(lrh->target_attr);
4601		t64 = le64_to_cpu(lrh->target_vcn);
4602		dp = find_dp(dptbl, t16, t64);
4603		if (dp) {
4604			size_t j = le64_to_cpu(lrh->target_vcn) -
4605				   le64_to_cpu(dp->vcn);
4606			if (dp->page_lcns[j])
4607				dp->page_lcns[j] = lrh->page_lcns[0];
4608		}
4609		goto next_log_record_analyze;
4610
4611	case EndTopLevelAction:
4612		tr = Add2Ptr(trtbl, transact_id);
4613		tr->prev_lsn = cpu_to_le64(rec_lsn);
4614		tr->undo_next_lsn = frh->client_undo_next_lsn;
4615		goto next_log_record_analyze;
4616
4617	case PrepareTransaction:
4618		tr = Add2Ptr(trtbl, transact_id);
4619		tr->transact_state = TransactionPrepared;
4620		goto next_log_record_analyze;
4621
4622	case CommitTransaction:
4623		tr = Add2Ptr(trtbl, transact_id);
4624		tr->transact_state = TransactionCommitted;
4625		goto next_log_record_analyze;
4626
4627	case ForgetTransaction:
4628		free_rsttbl_idx(trtbl, transact_id);
4629		goto next_log_record_analyze;
4630
4631	case Noop:
4632	case OpenAttributeTableDump:
4633	case AttributeNamesDump:
4634	case DirtyPageTableDump:
4635	case TransactionTableDump:
4636		/* The following cases require no action the Analysis Pass. */
4637		goto next_log_record_analyze;
4638
4639	default:
4640		/*
4641		 * All codes will be explicitly handled.
4642		 * If we see a code we do not expect, then we are trouble.
4643		 */
4644		goto next_log_record_analyze;
4645	}
4646
4647end_log_records_enumerate:
4648	lcb_put(lcb);
4649	lcb = NULL;
4650
4651	/*
4652	 * Scan the Dirty Page Table and Transaction Table for
4653	 * the lowest lsn, and return it as the Redo lsn.
4654	 */
4655	dp = NULL;
4656	while ((dp = enum_rstbl(dptbl, dp))) {
4657		t64 = le64_to_cpu(dp->oldest_lsn);
4658		if (t64 && t64 < rlsn)
4659			rlsn = t64;
4660	}
4661
4662	tr = NULL;
4663	while ((tr = enum_rstbl(trtbl, tr))) {
4664		t64 = le64_to_cpu(tr->first_lsn);
4665		if (t64 && t64 < rlsn)
4666			rlsn = t64;
4667	}
4668
4669	/*
4670	 * Only proceed if the Dirty Page Table or Transaction
4671	 * table are not empty.
4672	 */
4673	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4674		goto end_reply;
4675
4676	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4677	if (is_ro)
4678		goto out;
4679
4680	/* Reopen all of the attributes with dirty pages. */
4681	oe = NULL;
4682next_open_attribute:
4683
4684	oe = enum_rstbl(oatbl, oe);
4685	if (!oe) {
4686		err = 0;
4687		dp = NULL;
4688		goto next_dirty_page;
4689	}
4690
4691	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4692	if (!oa) {
4693		err = -ENOMEM;
4694		goto out;
4695	}
4696
4697	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4698	if (IS_ERR(inode))
4699		goto fake_attr;
4700
4701	if (is_bad_inode(inode)) {
4702		iput(inode);
4703fake_attr:
4704		if (oa->ni) {
4705			iput(&oa->ni->vfs_inode);
4706			oa->ni = NULL;
4707		}
4708
4709		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4710					      oe->name_len, 0);
4711		if (!attr) {
4712			kfree(oa);
4713			err = -ENOMEM;
4714			goto out;
4715		}
4716		oa->attr = attr;
4717		oa->run1 = &oa->run0;
4718		goto final_oe;
4719	}
4720
4721	ni_oe = ntfs_i(inode);
4722	oa->ni = ni_oe;
4723
4724	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4725			    NULL, NULL);
4726
4727	if (!attr)
4728		goto fake_attr;
4729
4730	t32 = le32_to_cpu(attr->size);
4731	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4732	if (!oa->attr)
4733		goto fake_attr;
4734
4735	if (!S_ISDIR(inode->i_mode)) {
4736		if (attr->type == ATTR_DATA && !attr->name_len) {
4737			oa->run1 = &ni_oe->file.run;
4738			goto final_oe;
4739		}
4740	} else {
4741		if (attr->type == ATTR_ALLOC &&
4742		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4743		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4744			oa->run1 = &ni_oe->dir.alloc_run;
4745			goto final_oe;
4746		}
4747	}
4748
4749	if (attr->non_res) {
4750		u16 roff = le16_to_cpu(attr->nres.run_off);
4751		CLST svcn = le64_to_cpu(attr->nres.svcn);
4752
4753		if (roff > t32) {
4754			kfree(oa->attr);
4755			oa->attr = NULL;
4756			goto fake_attr;
4757		}
4758
4759		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4760				 le64_to_cpu(attr->nres.evcn), svcn,
4761				 Add2Ptr(attr, roff), t32 - roff);
4762		if (err < 0) {
4763			kfree(oa->attr);
4764			oa->attr = NULL;
4765			goto fake_attr;
4766		}
4767		err = 0;
4768	}
4769	oa->run1 = &oa->run0;
4770	attr = oa->attr;
4771
4772final_oe:
4773	if (oe->is_attr_name == 1)
4774		kfree(oe->ptr);
4775	oe->is_attr_name = 0;
4776	oe->ptr = oa;
4777	oe->name_len = attr->name_len;
4778
4779	goto next_open_attribute;
4780
4781	/*
4782	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4783	 * Mapping that we have, and insert it into the appropriate run.
4784	 */
4785next_dirty_page:
4786	dp = enum_rstbl(dptbl, dp);
4787	if (!dp)
4788		goto do_redo_1;
4789
4790	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4791
4792	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4793		goto next_dirty_page;
4794
4795	oa = oe->ptr;
4796	if (!oa)
4797		goto next_dirty_page;
4798
4799	i = -1;
4800next_dirty_page_vcn:
4801	i += 1;
4802	if (i >= le32_to_cpu(dp->lcns_follow))
4803		goto next_dirty_page;
4804
4805	vcn = le64_to_cpu(dp->vcn) + i;
4806	size = (vcn + 1) << sbi->cluster_bits;
4807
4808	if (!dp->page_lcns[i])
4809		goto next_dirty_page_vcn;
4810
4811	rno = ino_get(&oe->ref);
4812	if (rno <= MFT_REC_MIRR &&
4813	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4814	    oe->type == ATTR_DATA) {
4815		goto next_dirty_page_vcn;
4816	}
4817
4818	lcn = le64_to_cpu(dp->page_lcns[i]);
4819
4820	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4821	     lcn0 != lcn) &&
4822	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4823		err = -ENOMEM;
4824		goto out;
4825	}
4826	attr = oa->attr;
4827	if (size > le64_to_cpu(attr->nres.alloc_size)) {
4828		attr->nres.valid_size = attr->nres.data_size =
4829			attr->nres.alloc_size = cpu_to_le64(size);
4830	}
4831	goto next_dirty_page_vcn;
4832
4833do_redo_1:
4834	/*
4835	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4836	 * contents that they had immediately before the crash. If the dirty
4837	 * page table is empty, then we can skip the entire Redo Pass.
4838	 */
4839	if (!dptbl || !dptbl->total)
4840		goto do_undo_action;
4841
4842	rec_lsn = rlsn;
4843
4844	/*
4845	 * Read the record at the Redo lsn, before falling
4846	 * into common code to handle each record.
4847	 */
4848	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4849	if (err)
4850		goto out;
4851
4852	/*
4853	 * Now loop to read all of our log records forwards, until
4854	 * we hit the end of the file, cleaning up at the end.
4855	 */
4856do_action_next:
4857	frh = lcb->lrh;
4858
4859	if (LfsClientRecord != frh->record_type)
4860		goto read_next_log_do_action;
4861
4862	transact_id = le32_to_cpu(frh->transact_id);
4863	rec_len = le32_to_cpu(frh->client_data_len);
4864	lrh = lcb->log_rec;
4865
4866	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4867		err = -EINVAL;
4868		goto out;
4869	}
4870
4871	/* Ignore log records that do not update pages. */
4872	if (lrh->lcns_follow)
4873		goto find_dirty_page;
4874
4875	goto read_next_log_do_action;
4876
4877find_dirty_page:
4878	t16 = le16_to_cpu(lrh->target_attr);
4879	t64 = le64_to_cpu(lrh->target_vcn);
4880	dp = find_dp(dptbl, t16, t64);
4881
4882	if (!dp)
4883		goto read_next_log_do_action;
4884
4885	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4886		goto read_next_log_do_action;
4887
4888	t16 = le16_to_cpu(lrh->target_attr);
4889	if (t16 >= bytes_per_rt(oatbl)) {
4890		err = -EINVAL;
4891		goto out;
4892	}
4893
4894	oe = Add2Ptr(oatbl, t16);
4895
4896	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4897		err = -EINVAL;
4898		goto out;
4899	}
4900
4901	oa = oe->ptr;
4902
4903	if (!oa) {
4904		err = -EINVAL;
4905		goto out;
4906	}
4907	attr = oa->attr;
4908
4909	vcn = le64_to_cpu(lrh->target_vcn);
4910
4911	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4912	    lcn == SPARSE_LCN) {
4913		goto read_next_log_do_action;
4914	}
4915
4916	/* Point to the Redo data and get its length. */
4917	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4918	dlen = le16_to_cpu(lrh->redo_len);
4919
4920	/* Shorten length by any Lcns which were deleted. */
4921	saved_len = dlen;
4922
4923	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4924		size_t j;
4925		u32 alen, voff;
4926
4927		voff = le16_to_cpu(lrh->record_off) +
4928		       le16_to_cpu(lrh->attr_off);
4929		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4930
4931		/* If the Vcn question is allocated, we can just get out. */
4932		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4933		if (dp->page_lcns[j + i - 1])
4934			break;
4935
4936		if (!saved_len)
4937			saved_len = 1;
4938
4939		/*
4940		 * Calculate the allocated space left relative to the
4941		 * log record Vcn, after removing this unallocated Vcn.
4942		 */
4943		alen = (i - 1) << sbi->cluster_bits;
4944
4945		/*
4946		 * If the update described this log record goes beyond
4947		 * the allocated space, then we will have to reduce the length.
4948		 */
4949		if (voff >= alen)
4950			dlen = 0;
4951		else if (voff + dlen > alen)
4952			dlen = alen - voff;
4953	}
4954
4955	/*
4956	 * If the resulting dlen from above is now zero,
4957	 * we can skip this log record.
4958	 */
4959	if (!dlen && saved_len)
4960		goto read_next_log_do_action;
4961
4962	t16 = le16_to_cpu(lrh->redo_op);
4963	if (can_skip_action(t16))
4964		goto read_next_log_do_action;
4965
4966	/* Apply the Redo operation a common routine. */
4967	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4968	if (err)
4969		goto out;
4970
4971	/* Keep reading and looping back until end of file. */
4972read_next_log_do_action:
4973	err = read_next_log_rec(log, lcb, &rec_lsn);
4974	if (!err && rec_lsn)
4975		goto do_action_next;
4976
4977	lcb_put(lcb);
4978	lcb = NULL;
4979
4980do_undo_action:
4981	/* Scan Transaction Table. */
4982	tr = NULL;
4983transaction_table_next:
4984	tr = enum_rstbl(trtbl, tr);
4985	if (!tr)
4986		goto undo_action_done;
4987
4988	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4989		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4990		goto transaction_table_next;
4991	}
4992
4993	log->transaction_id = PtrOffset(trtbl, tr);
4994	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
4995
4996	/*
4997	 * We only have to do anything if the transaction has
4998	 * something its undo_next_lsn field.
4999	 */
5000	if (!undo_next_lsn)
5001		goto commit_undo;
5002
5003	/* Read the first record to be undone by this transaction. */
5004	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5005	if (err)
5006		goto out;
5007
5008	/*
5009	 * Now loop to read all of our log records forwards,
5010	 * until we hit the end of the file, cleaning up at the end.
5011	 */
5012undo_action_next:
5013
5014	lrh = lcb->log_rec;
5015	frh = lcb->lrh;
5016	transact_id = le32_to_cpu(frh->transact_id);
5017	rec_len = le32_to_cpu(frh->client_data_len);
5018
5019	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5020		err = -EINVAL;
5021		goto out;
5022	}
5023
5024	if (lrh->undo_op == cpu_to_le16(Noop))
5025		goto read_next_log_undo_action;
5026
5027	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5028	oa = oe->ptr;
5029
5030	t16 = le16_to_cpu(lrh->lcns_follow);
5031	if (!t16)
5032		goto add_allocated_vcns;
5033
5034	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5035				     &lcn, &clen, NULL);
5036
5037	/*
5038	 * If the mapping isn't already the table or the  mapping
5039	 * corresponds to a hole the mapping, we need to make sure
5040	 * there is no partial page already memory.
5041	 */
5042	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5043		goto add_allocated_vcns;
5044
5045	vcn = le64_to_cpu(lrh->target_vcn);
5046	vcn &= ~(u64)(log->clst_per_page - 1);
5047
5048add_allocated_vcns:
5049	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5050	    size = (vcn + 1) << sbi->cluster_bits;
5051	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5052		attr = oa->attr;
5053		if (!attr->non_res) {
5054			if (size > le32_to_cpu(attr->res.data_size))
5055				attr->res.data_size = cpu_to_le32(size);
5056		} else {
5057			if (size > le64_to_cpu(attr->nres.data_size))
5058				attr->nres.valid_size = attr->nres.data_size =
5059					attr->nres.alloc_size =
5060						cpu_to_le64(size);
5061		}
5062	}
5063
5064	t16 = le16_to_cpu(lrh->undo_op);
5065	if (can_skip_action(t16))
5066		goto read_next_log_undo_action;
5067
5068	/* Point to the Redo data and get its length. */
5069	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5070	dlen = le16_to_cpu(lrh->undo_len);
5071
5072	/* It is time to apply the undo action. */
5073	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5074
5075read_next_log_undo_action:
5076	/*
5077	 * Keep reading and looping back until we have read the
5078	 * last record for this transaction.
5079	 */
5080	err = read_next_log_rec(log, lcb, &rec_lsn);
5081	if (err)
5082		goto out;
5083
5084	if (rec_lsn)
5085		goto undo_action_next;
5086
5087	lcb_put(lcb);
5088	lcb = NULL;
5089
5090commit_undo:
5091	free_rsttbl_idx(trtbl, log->transaction_id);
5092
5093	log->transaction_id = 0;
5094
5095	goto transaction_table_next;
5096
5097undo_action_done:
5098
5099	ntfs_update_mftmirr(sbi, 0);
5100
5101	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5102
5103end_reply:
5104
5105	err = 0;
5106	if (is_ro)
5107		goto out;
5108
5109	rh = kzalloc(log->page_size, GFP_NOFS);
5110	if (!rh) {
5111		err = -ENOMEM;
5112		goto out;
5113	}
5114
5115	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5116	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5117	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5118	rh->rhdr.fix_num = cpu_to_le16(t16);
5119	rh->sys_page_size = cpu_to_le32(log->page_size);
5120	rh->page_size = cpu_to_le32(log->page_size);
5121
5122	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5123		    8);
5124	rh->ra_off = cpu_to_le16(t16);
5125	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5126	rh->major_ver = cpu_to_le16(1); // 0x1C:
5127
5128	ra2 = Add2Ptr(rh, t16);
5129	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5130
5131	ra2->client_idx[0] = 0;
5132	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5133	ra2->flags = cpu_to_le16(2);
5134
5135	le32_add_cpu(&ra2->open_log_count, 1);
5136
5137	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5138
5139	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5140	if (!err)
5141		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5142					rh, log->page_size, 0);
5143
5144	kfree(rh);
5145	if (err)
5146		goto out;
5147
5148out:
5149	kfree(rst);
5150	if (lcb)
5151		lcb_put(lcb);
5152
5153	/*
5154	 * Scan the Open Attribute Table to close all of
5155	 * the open attributes.
5156	 */
5157	oe = NULL;
5158	while ((oe = enum_rstbl(oatbl, oe))) {
5159		rno = ino_get(&oe->ref);
5160
5161		if (oe->is_attr_name == 1) {
5162			kfree(oe->ptr);
5163			oe->ptr = NULL;
5164			continue;
5165		}
5166
5167		if (oe->is_attr_name)
5168			continue;
5169
5170		oa = oe->ptr;
5171		if (!oa)
5172			continue;
5173
5174		run_close(&oa->run0);
5175		kfree(oa->attr);
5176		if (oa->ni)
5177			iput(&oa->ni->vfs_inode);
5178		kfree(oa);
5179	}
5180
5181	kfree(trtbl);
5182	kfree(oatbl);
5183	kfree(dptbl);
5184	kfree(attr_names);
5185	kfree(rst_info.r_page);
5186
5187	kfree(ra);
5188	kfree(log->one_page_buf);
5189
5190	if (err)
5191		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5192
5193	if (err == -EROFS)
5194		err = 0;
5195	else if (log->set_dirty)
5196		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5197
5198	kfree(log);
5199
5200	return err;
5201}