Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *
   4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
   5 *
   6 */
   7
   8#include <linux/fiemap.h>
   9#include <linux/fs.h>
  10#include <linux/minmax.h>
  11#include <linux/vmalloc.h>
  12
  13#include "debug.h"
  14#include "ntfs.h"
  15#include "ntfs_fs.h"
  16#ifdef CONFIG_NTFS3_LZX_XPRESS
  17#include "lib/lib.h"
  18#endif
  19
  20static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
  21				   CLST ino, struct rb_node *ins)
  22{
  23	struct rb_node **p = &tree->rb_node;
  24	struct rb_node *pr = NULL;
  25
  26	while (*p) {
  27		struct mft_inode *mi;
  28
  29		pr = *p;
  30		mi = rb_entry(pr, struct mft_inode, node);
  31		if (mi->rno > ino)
  32			p = &pr->rb_left;
  33		else if (mi->rno < ino)
  34			p = &pr->rb_right;
  35		else
  36			return mi;
  37	}
  38
  39	if (!ins)
  40		return NULL;
  41
  42	rb_link_node(ins, pr, p);
  43	rb_insert_color(ins, tree);
  44	return rb_entry(ins, struct mft_inode, node);
  45}
  46
  47/*
  48 * ni_find_mi - Find mft_inode by record number.
  49 */
  50static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
  51{
  52	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
  53}
  54
  55/*
  56 * ni_add_mi - Add new mft_inode into ntfs_inode.
  57 */
  58static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
  59{
  60	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
  61}
  62
  63/*
  64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
  65 */
  66void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
  67{
  68	rb_erase(&mi->node, &ni->mi_tree);
  69}
  70
  71/*
  72 * ni_std - Return: Pointer into std_info from primary record.
  73 */
  74struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
  75{
  76	const struct ATTRIB *attr;
  77
  78	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
  79	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
  80		    : NULL;
  81}
  82
  83/*
  84 * ni_std5
  85 *
  86 * Return: Pointer into std_info from primary record.
  87 */
  88struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
  89{
  90	const struct ATTRIB *attr;
  91
  92	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
  93
  94	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
  95		    : NULL;
  96}
  97
  98/*
  99 * ni_clear - Clear resources allocated by ntfs_inode.
 100 */
 101void ni_clear(struct ntfs_inode *ni)
 102{
 103	struct rb_node *node;
 104
 105	if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
 106		ni_delete_all(ni);
 107
 108	al_destroy(ni);
 109
 110	for (node = rb_first(&ni->mi_tree); node;) {
 111		struct rb_node *next = rb_next(node);
 112		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
 113
 114		rb_erase(node, &ni->mi_tree);
 115		mi_put(mi);
 116		node = next;
 117	}
 118
 119	/* Bad inode always has mode == S_IFREG. */
 120	if (ni->ni_flags & NI_FLAG_DIR)
 121		indx_clear(&ni->dir);
 122	else {
 123		run_close(&ni->file.run);
 124#ifdef CONFIG_NTFS3_LZX_XPRESS
 125		if (ni->file.offs_page) {
 126			/* On-demand allocated page for offsets. */
 127			put_page(ni->file.offs_page);
 128			ni->file.offs_page = NULL;
 129		}
 130#endif
 131	}
 132
 133	mi_clear(&ni->mi);
 134}
 135
 136/*
 137 * ni_load_mi_ex - Find mft_inode by record number.
 138 */
 139int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
 140{
 141	int err;
 142	struct mft_inode *r;
 143
 144	r = ni_find_mi(ni, rno);
 145	if (r)
 146		goto out;
 147
 148	err = mi_get(ni->mi.sbi, rno, &r);
 149	if (err)
 150		return err;
 151
 152	ni_add_mi(ni, r);
 153
 154out:
 155	if (mi)
 156		*mi = r;
 157	return 0;
 158}
 159
 160/*
 161 * ni_load_mi - Load mft_inode corresponded list_entry.
 162 */
 163int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
 164	       struct mft_inode **mi)
 165{
 166	CLST rno;
 167
 168	if (!le) {
 169		*mi = &ni->mi;
 170		return 0;
 171	}
 172
 173	rno = ino_get(&le->ref);
 174	if (rno == ni->mi.rno) {
 175		*mi = &ni->mi;
 176		return 0;
 177	}
 178	return ni_load_mi_ex(ni, rno, mi);
 179}
 180
 181/*
 182 * ni_find_attr
 183 *
 184 * Return: Attribute and record this attribute belongs to.
 185 */
 186struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
 187			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
 188			    const __le16 *name, u8 name_len, const CLST *vcn,
 189			    struct mft_inode **mi)
 190{
 191	struct ATTR_LIST_ENTRY *le;
 192	struct mft_inode *m;
 193
 194	if (!ni->attr_list.size ||
 195	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
 196		if (le_o)
 197			*le_o = NULL;
 198		if (mi)
 199			*mi = &ni->mi;
 200
 201		/* Look for required attribute in primary record. */
 202		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
 203	}
 204
 205	/* First look for list entry of required type. */
 206	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
 207	if (!le)
 208		return NULL;
 209
 210	if (le_o)
 211		*le_o = le;
 212
 213	/* Load record that contains this attribute. */
 214	if (ni_load_mi(ni, le, &m))
 215		return NULL;
 216
 217	/* Look for required attribute. */
 218	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
 219
 220	if (!attr)
 221		goto out;
 222
 223	if (!attr->non_res) {
 224		if (vcn && *vcn)
 225			goto out;
 226	} else if (!vcn) {
 227		if (attr->nres.svcn)
 228			goto out;
 229	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
 230		   *vcn > le64_to_cpu(attr->nres.evcn)) {
 231		goto out;
 232	}
 233
 234	if (mi)
 235		*mi = m;
 236	return attr;
 237
 238out:
 239	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
 240	return NULL;
 241}
 242
 243/*
 244 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
 245 */
 246struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
 247			       struct ATTR_LIST_ENTRY **le,
 248			       struct mft_inode **mi)
 249{
 250	struct mft_inode *mi2;
 251	struct ATTR_LIST_ENTRY *le2;
 252
 253	/* Do we have an attribute list? */
 254	if (!ni->attr_list.size) {
 255		*le = NULL;
 256		if (mi)
 257			*mi = &ni->mi;
 258		/* Enum attributes in primary record. */
 259		return mi_enum_attr(&ni->mi, attr);
 260	}
 261
 262	/* Get next list entry. */
 263	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
 264	if (!le2)
 265		return NULL;
 266
 267	/* Load record that contains the required attribute. */
 268	if (ni_load_mi(ni, le2, &mi2))
 269		return NULL;
 270
 271	if (mi)
 272		*mi = mi2;
 273
 274	/* Find attribute in loaded record. */
 275	return rec_find_attr_le(mi2, le2);
 276}
 277
 278/*
 279 * ni_load_attr - Load attribute that contains given VCN.
 280 */
 281struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
 282			    const __le16 *name, u8 name_len, CLST vcn,
 283			    struct mft_inode **pmi)
 284{
 285	struct ATTR_LIST_ENTRY *le;
 286	struct ATTRIB *attr;
 287	struct mft_inode *mi;
 288	struct ATTR_LIST_ENTRY *next;
 289
 290	if (!ni->attr_list.size) {
 291		if (pmi)
 292			*pmi = &ni->mi;
 293		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
 294	}
 295
 296	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
 297	if (!le)
 298		return NULL;
 299
 300	/*
 301	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
 302	 * So to find the ATTRIB segment that contains 'vcn' we should
 303	 * enumerate some entries.
 304	 */
 305	if (vcn) {
 306		for (;; le = next) {
 307			next = al_find_ex(ni, le, type, name, name_len, NULL);
 308			if (!next || le64_to_cpu(next->vcn) > vcn)
 309				break;
 310		}
 311	}
 312
 313	if (ni_load_mi(ni, le, &mi))
 314		return NULL;
 315
 316	if (pmi)
 317		*pmi = mi;
 318
 319	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
 320	if (!attr)
 321		return NULL;
 322
 323	if (!attr->non_res)
 324		return attr;
 325
 326	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
 327	    vcn <= le64_to_cpu(attr->nres.evcn))
 328		return attr;
 329
 330	return NULL;
 331}
 332
 333/*
 334 * ni_load_all_mi - Load all subrecords.
 335 */
 336int ni_load_all_mi(struct ntfs_inode *ni)
 337{
 338	int err;
 339	struct ATTR_LIST_ENTRY *le;
 340
 341	if (!ni->attr_list.size)
 342		return 0;
 343
 344	le = NULL;
 345
 346	while ((le = al_enumerate(ni, le))) {
 347		CLST rno = ino_get(&le->ref);
 348
 349		if (rno == ni->mi.rno)
 350			continue;
 351
 352		err = ni_load_mi_ex(ni, rno, NULL);
 353		if (err)
 354			return err;
 355	}
 356
 357	return 0;
 358}
 359
 360/*
 361 * ni_add_subrecord - Allocate + format + attach a new subrecord.
 362 */
 363bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
 364{
 365	struct mft_inode *m;
 366
 367	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
 368	if (!m)
 369		return false;
 370
 371	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
 372		mi_put(m);
 373		return false;
 374	}
 375
 376	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
 377
 378	ni_add_mi(ni, m);
 379	*mi = m;
 380	return true;
 381}
 382
 383/*
 384 * ni_remove_attr - Remove all attributes for the given type/name/id.
 385 */
 386int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
 387		   const __le16 *name, size_t name_len, bool base_only,
 388		   const __le16 *id)
 389{
 390	int err;
 391	struct ATTRIB *attr;
 392	struct ATTR_LIST_ENTRY *le;
 393	struct mft_inode *mi;
 394	u32 type_in;
 395	int diff;
 396
 397	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
 398		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
 399		if (!attr)
 400			return -ENOENT;
 401
 402		mi_remove_attr(ni, &ni->mi, attr);
 403		return 0;
 404	}
 405
 406	type_in = le32_to_cpu(type);
 407	le = NULL;
 408
 409	for (;;) {
 410		le = al_enumerate(ni, le);
 411		if (!le)
 412			return 0;
 413
 414next_le2:
 415		diff = le32_to_cpu(le->type) - type_in;
 416		if (diff < 0)
 417			continue;
 418
 419		if (diff > 0)
 420			return 0;
 421
 422		if (le->name_len != name_len)
 423			continue;
 424
 425		if (name_len &&
 426		    memcmp(le_name(le), name, name_len * sizeof(short)))
 427			continue;
 428
 429		if (id && le->id != *id)
 430			continue;
 431		err = ni_load_mi(ni, le, &mi);
 432		if (err)
 433			return err;
 434
 435		al_remove_le(ni, le);
 436
 437		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
 438		if (!attr)
 439			return -ENOENT;
 440
 441		mi_remove_attr(ni, mi, attr);
 442
 443		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
 444			return 0;
 445		goto next_le2;
 446	}
 447}
 448
 449/*
 450 * ni_ins_new_attr - Insert the attribute into record.
 451 *
 452 * Return: Not full constructed attribute or NULL if not possible to create.
 453 */
 454static struct ATTRIB *
 455ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
 456		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
 457		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
 458		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
 459{
 460	int err;
 461	struct ATTRIB *attr;
 462	bool le_added = false;
 463	struct MFT_REF ref;
 464
 465	mi_get_ref(mi, &ref);
 466
 467	if (type != ATTR_LIST && !le && ni->attr_list.size) {
 468		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
 469				&ref, &le);
 470		if (err) {
 471			/* No memory or no space. */
 472			return ERR_PTR(err);
 473		}
 474		le_added = true;
 475
 476		/*
 477		 * al_add_le -> attr_set_size (list) -> ni_expand_list
 478		 * which moves some attributes out of primary record
 479		 * this means that name may point into moved memory
 480		 * reinit 'name' from le.
 481		 */
 482		name = le->name;
 483	}
 484
 485	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
 486	if (!attr) {
 487		if (le_added)
 488			al_remove_le(ni, le);
 489		return NULL;
 490	}
 491
 492	if (type == ATTR_LIST) {
 493		/* Attr list is not in list entry array. */
 494		goto out;
 495	}
 496
 497	if (!le)
 498		goto out;
 499
 500	/* Update ATTRIB Id and record reference. */
 501	le->id = attr->id;
 502	ni->attr_list.dirty = true;
 503	le->ref = ref;
 504
 505out:
 506	if (ins_le)
 507		*ins_le = le;
 508	return attr;
 509}
 510
 511/*
 512 * ni_repack
 513 *
 514 * Random write access to sparsed or compressed file may result to
 515 * not optimized packed runs.
 516 * Here is the place to optimize it.
 517 */
 518static int ni_repack(struct ntfs_inode *ni)
 519{
 520	int err = 0;
 521	struct ntfs_sb_info *sbi = ni->mi.sbi;
 522	struct mft_inode *mi, *mi_p = NULL;
 523	struct ATTRIB *attr = NULL, *attr_p;
 524	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
 525	CLST alloc = 0;
 526	u8 cluster_bits = sbi->cluster_bits;
 527	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
 528	u32 roff, rs = sbi->record_size;
 529	struct runs_tree run;
 530
 531	run_init(&run);
 532
 533	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
 534		if (!attr->non_res)
 535			continue;
 536
 537		svcn = le64_to_cpu(attr->nres.svcn);
 538		if (svcn != le64_to_cpu(le->vcn)) {
 539			err = -EINVAL;
 540			break;
 541		}
 542
 543		if (!svcn) {
 544			alloc = le64_to_cpu(attr->nres.alloc_size) >>
 545				cluster_bits;
 546			mi_p = NULL;
 547		} else if (svcn != evcn + 1) {
 548			err = -EINVAL;
 549			break;
 550		}
 551
 552		evcn = le64_to_cpu(attr->nres.evcn);
 553
 554		if (svcn > evcn + 1) {
 555			err = -EINVAL;
 556			break;
 557		}
 558
 559		if (!mi_p) {
 560			/* Do not try if not enough free space. */
 561			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
 562				continue;
 563
 564			/* Do not try if last attribute segment. */
 565			if (evcn + 1 == alloc)
 566				continue;
 567			run_close(&run);
 568		}
 569
 570		roff = le16_to_cpu(attr->nres.run_off);
 571
 572		if (roff > le32_to_cpu(attr->size)) {
 573			err = -EINVAL;
 574			break;
 575		}
 576
 577		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
 578				 Add2Ptr(attr, roff),
 579				 le32_to_cpu(attr->size) - roff);
 580		if (err < 0)
 581			break;
 582
 583		if (!mi_p) {
 584			mi_p = mi;
 585			attr_p = attr;
 586			svcn_p = svcn;
 587			evcn_p = evcn;
 588			le_p = le;
 589			err = 0;
 590			continue;
 591		}
 592
 593		/*
 594		 * Run contains data from two records: mi_p and mi
 595		 * Try to pack in one.
 596		 */
 597		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
 598		if (err)
 599			break;
 600
 601		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
 602
 603		if (next_svcn >= evcn + 1) {
 604			/* We can remove this attribute segment. */
 605			al_remove_le(ni, le);
 606			mi_remove_attr(NULL, mi, attr);
 607			le = le_p;
 608			continue;
 609		}
 610
 611		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
 612		mi->dirty = true;
 613		ni->attr_list.dirty = true;
 614
 615		if (evcn + 1 == alloc) {
 616			err = mi_pack_runs(mi, attr, &run,
 617					   evcn + 1 - next_svcn);
 618			if (err)
 619				break;
 620			mi_p = NULL;
 621		} else {
 622			mi_p = mi;
 623			attr_p = attr;
 624			svcn_p = next_svcn;
 625			evcn_p = evcn;
 626			le_p = le;
 627			run_truncate_head(&run, next_svcn);
 628		}
 629	}
 630
 631	if (err) {
 632		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
 633		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
 634
 635		/* Pack loaded but not packed runs. */
 636		if (mi_p)
 637			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
 638	}
 639
 640	run_close(&run);
 641	return err;
 642}
 643
 644/*
 645 * ni_try_remove_attr_list
 646 *
 647 * Can we remove attribute list?
 648 * Check the case when primary record contains enough space for all attributes.
 649 */
 650static int ni_try_remove_attr_list(struct ntfs_inode *ni)
 651{
 652	int err = 0;
 653	struct ntfs_sb_info *sbi = ni->mi.sbi;
 654	struct ATTRIB *attr, *attr_list, *attr_ins;
 655	struct ATTR_LIST_ENTRY *le;
 656	struct mft_inode *mi;
 657	u32 asize, free;
 658	struct MFT_REF ref;
 659	struct MFT_REC *mrec;
 660	__le16 id;
 661
 662	if (!ni->attr_list.dirty)
 663		return 0;
 664
 665	err = ni_repack(ni);
 666	if (err)
 667		return err;
 668
 669	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
 670	if (!attr_list)
 671		return 0;
 672
 673	asize = le32_to_cpu(attr_list->size);
 674
 675	/* Free space in primary record without attribute list. */
 676	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
 677	mi_get_ref(&ni->mi, &ref);
 678
 679	le = NULL;
 680	while ((le = al_enumerate(ni, le))) {
 681		if (!memcmp(&le->ref, &ref, sizeof(ref)))
 682			continue;
 683
 684		if (le->vcn)
 685			return 0;
 686
 687		mi = ni_find_mi(ni, ino_get(&le->ref));
 688		if (!mi)
 689			return 0;
 690
 691		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
 692				    le->name_len, &le->id);
 693		if (!attr)
 694			return 0;
 695
 696		asize = le32_to_cpu(attr->size);
 697		if (asize > free)
 698			return 0;
 699
 700		free -= asize;
 701	}
 702
 703	/* Make a copy of primary record to restore if error. */
 704	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
 705	if (!mrec)
 706		return 0; /* Not critical. */
 707
 708	/* It seems that attribute list can be removed from primary record. */
 709	mi_remove_attr(NULL, &ni->mi, attr_list);
 710
 711	/*
 712	 * Repeat the cycle above and copy all attributes to primary record.
 713	 * Do not remove original attributes from subrecords!
 714	 * It should be success!
 715	 */
 716	le = NULL;
 717	while ((le = al_enumerate(ni, le))) {
 718		if (!memcmp(&le->ref, &ref, sizeof(ref)))
 719			continue;
 720
 721		mi = ni_find_mi(ni, ino_get(&le->ref));
 722		if (!mi) {
 723			/* Should never happened, 'cause already checked. */
 724			goto out;
 725		}
 726
 727		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
 728				    le->name_len, &le->id);
 729		if (!attr) {
 730			/* Should never happened, 'cause already checked. */
 731			goto out;
 732		}
 733		asize = le32_to_cpu(attr->size);
 734
 735		/* Insert into primary record. */
 736		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
 737					  le->name_len, asize,
 738					  le16_to_cpu(attr->name_off));
 739		if (!attr_ins) {
 740			/*
 741			 * No space in primary record (already checked).
 742			 */
 743			goto out;
 744		}
 745
 746		/* Copy all except id. */
 747		id = attr_ins->id;
 748		memcpy(attr_ins, attr, asize);
 749		attr_ins->id = id;
 750	}
 751
 752	/*
 753	 * Repeat the cycle above and remove all attributes from subrecords.
 754	 */
 755	le = NULL;
 756	while ((le = al_enumerate(ni, le))) {
 757		if (!memcmp(&le->ref, &ref, sizeof(ref)))
 758			continue;
 759
 760		mi = ni_find_mi(ni, ino_get(&le->ref));
 761		if (!mi)
 762			continue;
 763
 764		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
 765				    le->name_len, &le->id);
 766		if (!attr)
 767			continue;
 768
 769		/* Remove from original record. */
 770		mi_remove_attr(NULL, mi, attr);
 771	}
 772
 773	run_deallocate(sbi, &ni->attr_list.run, true);
 774	run_close(&ni->attr_list.run);
 775	ni->attr_list.size = 0;
 776	kfree(ni->attr_list.le);
 777	ni->attr_list.le = NULL;
 778	ni->attr_list.dirty = false;
 779
 780	kfree(mrec);
 781	return 0;
 782out:
 783	/* Restore primary record. */
 784	swap(mrec, ni->mi.mrec);
 785	kfree(mrec);
 786	return 0;
 787}
 788
 789/*
 790 * ni_create_attr_list - Generates an attribute list for this primary record.
 791 */
 792int ni_create_attr_list(struct ntfs_inode *ni)
 793{
 794	struct ntfs_sb_info *sbi = ni->mi.sbi;
 795	int err;
 796	u32 lsize;
 797	struct ATTRIB *attr;
 798	struct ATTRIB *arr_move[7];
 799	struct ATTR_LIST_ENTRY *le, *le_b[7];
 800	struct MFT_REC *rec;
 801	bool is_mft;
 802	CLST rno = 0;
 803	struct mft_inode *mi;
 804	u32 free_b, nb, to_free, rs;
 805	u16 sz;
 806
 807	is_mft = ni->mi.rno == MFT_REC_MFT;
 808	rec = ni->mi.mrec;
 809	rs = sbi->record_size;
 810
 811	/*
 812	 * Skip estimating exact memory requirement.
 813	 * Looks like one record_size is always enough.
 814	 */
 815	le = kmalloc(al_aligned(rs), GFP_NOFS);
 816	if (!le) {
 817		err = -ENOMEM;
 818		goto out;
 819	}
 820
 821	mi_get_ref(&ni->mi, &le->ref);
 822	ni->attr_list.le = le;
 823
 824	attr = NULL;
 825	nb = 0;
 826	free_b = 0;
 827	attr = NULL;
 828
 829	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
 830		sz = le_size(attr->name_len);
 831		le->type = attr->type;
 832		le->size = cpu_to_le16(sz);
 833		le->name_len = attr->name_len;
 834		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
 835		le->vcn = 0;
 836		if (le != ni->attr_list.le)
 837			le->ref = ni->attr_list.le->ref;
 838		le->id = attr->id;
 839
 840		if (attr->name_len)
 841			memcpy(le->name, attr_name(attr),
 842			       sizeof(short) * attr->name_len);
 843		else if (attr->type == ATTR_STD)
 844			continue;
 845		else if (attr->type == ATTR_LIST)
 846			continue;
 847		else if (is_mft && attr->type == ATTR_DATA)
 848			continue;
 849
 850		if (!nb || nb < ARRAY_SIZE(arr_move)) {
 851			le_b[nb] = le;
 852			arr_move[nb++] = attr;
 853			free_b += le32_to_cpu(attr->size);
 854		}
 855	}
 856
 857	lsize = PtrOffset(ni->attr_list.le, le);
 858	ni->attr_list.size = lsize;
 859
 860	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
 861	if (to_free <= rs) {
 862		to_free = 0;
 863	} else {
 864		to_free -= rs;
 865
 866		if (to_free > free_b) {
 867			err = -EINVAL;
 868			goto out1;
 869		}
 870	}
 871
 872	/* Allocate child MFT. */
 873	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
 874	if (err)
 875		goto out1;
 876
 877	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
 878	while (to_free > 0) {
 879		struct ATTRIB *b = arr_move[--nb];
 880		u32 asize = le32_to_cpu(b->size);
 881		u16 name_off = le16_to_cpu(b->name_off);
 882
 883		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
 884				      b->name_len, asize, name_off);
 885		WARN_ON(!attr);
 886
 887		mi_get_ref(mi, &le_b[nb]->ref);
 888		le_b[nb]->id = attr->id;
 889
 890		/* Copy all except id. */
 891		memcpy(attr, b, asize);
 892		attr->id = le_b[nb]->id;
 893
 894		/* Remove from primary record. */
 895		WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
 896
 897		if (to_free <= asize)
 898			break;
 899		to_free -= asize;
 900		WARN_ON(!nb);
 901	}
 902
 903	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
 904			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
 905	WARN_ON(!attr);
 906
 907	attr->non_res = 0;
 908	attr->flags = 0;
 909	attr->res.data_size = cpu_to_le32(lsize);
 910	attr->res.data_off = SIZEOF_RESIDENT_LE;
 911	attr->res.flags = 0;
 912	attr->res.res = 0;
 913
 914	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
 915
 916	ni->attr_list.dirty = false;
 917
 918	mark_inode_dirty(&ni->vfs_inode);
 919	goto out;
 920
 921out1:
 922	kfree(ni->attr_list.le);
 923	ni->attr_list.le = NULL;
 924	ni->attr_list.size = 0;
 925
 926out:
 927	return err;
 928}
 929
 930/*
 931 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
 932 */
 933static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
 934			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
 935			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
 936			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
 937			   struct ATTR_LIST_ENTRY **ins_le)
 938{
 939	struct ATTRIB *attr;
 940	struct mft_inode *mi;
 941	CLST rno;
 942	u64 vbo;
 943	struct rb_node *node;
 944	int err;
 945	bool is_mft, is_mft_data;
 946	struct ntfs_sb_info *sbi = ni->mi.sbi;
 947
 948	is_mft = ni->mi.rno == MFT_REC_MFT;
 949	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
 950
 951	if (asize > sbi->max_bytes_per_attr) {
 952		err = -EINVAL;
 953		goto out;
 954	}
 955
 956	/*
 957	 * Standard information and attr_list cannot be made external.
 958	 * The Log File cannot have any external attributes.
 959	 */
 960	if (type == ATTR_STD || type == ATTR_LIST ||
 961	    ni->mi.rno == MFT_REC_LOG) {
 962		err = -EINVAL;
 963		goto out;
 964	}
 965
 966	/* Create attribute list if it is not already existed. */
 967	if (!ni->attr_list.size) {
 968		err = ni_create_attr_list(ni);
 969		if (err)
 970			goto out;
 971	}
 972
 973	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
 974
 975	if (force_ext)
 976		goto insert_ext;
 977
 978	/* Load all subrecords into memory. */
 979	err = ni_load_all_mi(ni);
 980	if (err)
 981		goto out;
 982
 983	/* Check each of loaded subrecord. */
 984	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
 985		mi = rb_entry(node, struct mft_inode, node);
 986
 987		if (is_mft_data &&
 988		    (mi_enum_attr(mi, NULL) ||
 989		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
 990			/* We can't accept this record 'cause MFT's bootstrapping. */
 991			continue;
 992		}
 993		if (is_mft &&
 994		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
 995			/*
 996			 * This child record already has a ATTR_DATA.
 997			 * So it can't accept any other records.
 998			 */
 999			continue;
1000		}
1001
1002		if ((type != ATTR_NAME || name_len) &&
1003		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1004			/* Only indexed attributes can share same record. */
1005			continue;
1006		}
1007
1008		/*
1009		 * Do not try to insert this attribute
1010		 * if there is no room in record.
1011		 */
1012		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1013			continue;
1014
1015		/* Try to insert attribute into this subrecord. */
1016		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1017				       name_off, svcn, ins_le);
1018		if (!attr)
1019			continue;
1020		if (IS_ERR(attr))
1021			return PTR_ERR(attr);
1022
1023		if (ins_attr)
1024			*ins_attr = attr;
1025		if (ins_mi)
1026			*ins_mi = mi;
1027		return 0;
1028	}
1029
1030insert_ext:
1031	/* We have to allocate a new child subrecord. */
1032	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1033	if (err)
1034		goto out;
1035
1036	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1037		err = -EINVAL;
1038		goto out1;
1039	}
1040
1041	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1042			       name_off, svcn, ins_le);
1043	if (!attr) {
1044		err = -EINVAL;
1045		goto out2;
1046	}
1047
1048	if (IS_ERR(attr)) {
1049		err = PTR_ERR(attr);
1050		goto out2;
1051	}
1052
1053	if (ins_attr)
1054		*ins_attr = attr;
1055	if (ins_mi)
1056		*ins_mi = mi;
1057
1058	return 0;
1059
1060out2:
1061	ni_remove_mi(ni, mi);
1062	mi_put(mi);
1063
1064out1:
1065	ntfs_mark_rec_free(sbi, rno, is_mft);
1066
1067out:
1068	return err;
1069}
1070
1071/*
1072 * ni_insert_attr - Insert an attribute into the file.
1073 *
1074 * If the primary record has room, it will just insert the attribute.
1075 * If not, it may make the attribute external.
1076 * For $MFT::Data it may make room for the attribute by
1077 * making other attributes external.
1078 *
1079 * NOTE:
1080 * The ATTR_LIST and ATTR_STD cannot be made external.
1081 * This function does not fill new attribute full.
1082 * It only fills 'size'/'type'/'id'/'name_len' fields.
1083 */
1084static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1085			  const __le16 *name, u8 name_len, u32 asize,
1086			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1087			  struct mft_inode **ins_mi,
1088			  struct ATTR_LIST_ENTRY **ins_le)
1089{
1090	struct ntfs_sb_info *sbi = ni->mi.sbi;
1091	int err;
1092	struct ATTRIB *attr, *eattr;
1093	struct MFT_REC *rec;
1094	bool is_mft;
1095	struct ATTR_LIST_ENTRY *le;
1096	u32 list_reserve, max_free, free, used, t32;
1097	__le16 id;
1098	u16 t16;
1099
1100	is_mft = ni->mi.rno == MFT_REC_MFT;
1101	rec = ni->mi.mrec;
1102
1103	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1104	used = le32_to_cpu(rec->used);
1105	free = sbi->record_size - used;
1106
1107	if (is_mft && type != ATTR_LIST) {
1108		/* Reserve space for the ATTRIB list. */
1109		if (free < list_reserve)
1110			free = 0;
1111		else
1112			free -= list_reserve;
1113	}
1114
1115	if (asize <= free) {
1116		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1117				       asize, name_off, svcn, ins_le);
1118		if (IS_ERR(attr)) {
1119			err = PTR_ERR(attr);
1120			goto out;
1121		}
1122
1123		if (attr) {
1124			if (ins_attr)
1125				*ins_attr = attr;
1126			if (ins_mi)
1127				*ins_mi = &ni->mi;
1128			err = 0;
1129			goto out;
1130		}
1131	}
1132
1133	if (!is_mft || type != ATTR_DATA || svcn) {
1134		/* This ATTRIB will be external. */
1135		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1136				      svcn, name_off, false, ins_attr, ins_mi,
1137				      ins_le);
1138		goto out;
1139	}
1140
1141	/*
1142	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1143	 *
1144	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1145	 * Evict as many other attributes as possible.
1146	 */
1147	max_free = free;
1148
1149	/* Estimate the result of moving all possible attributes away. */
1150	attr = NULL;
1151
1152	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1153		if (attr->type == ATTR_STD)
1154			continue;
1155		if (attr->type == ATTR_LIST)
1156			continue;
1157		max_free += le32_to_cpu(attr->size);
1158	}
1159
1160	if (max_free < asize + list_reserve) {
1161		/* Impossible to insert this attribute into primary record. */
1162		err = -EINVAL;
1163		goto out;
1164	}
1165
1166	/* Start real attribute moving. */
1167	attr = NULL;
1168
1169	for (;;) {
1170		attr = mi_enum_attr(&ni->mi, attr);
1171		if (!attr) {
1172			/* We should never be here 'cause we have already check this case. */
1173			err = -EINVAL;
1174			goto out;
1175		}
1176
1177		/* Skip attributes that MUST be primary record. */
1178		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1179			continue;
1180
1181		le = NULL;
1182		if (ni->attr_list.size) {
1183			le = al_find_le(ni, NULL, attr);
1184			if (!le) {
1185				/* Really this is a serious bug. */
1186				err = -EINVAL;
1187				goto out;
1188			}
1189		}
1190
1191		t32 = le32_to_cpu(attr->size);
1192		t16 = le16_to_cpu(attr->name_off);
1193		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1194				      attr->name_len, t32, attr_svcn(attr), t16,
1195				      false, &eattr, NULL, NULL);
1196		if (err)
1197			return err;
1198
1199		id = eattr->id;
1200		memcpy(eattr, attr, t32);
1201		eattr->id = id;
1202
1203		/* Remove from primary record. */
1204		mi_remove_attr(NULL, &ni->mi, attr);
1205
1206		/* attr now points to next attribute. */
1207		if (attr->type == ATTR_END)
1208			goto out;
1209	}
1210	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1211		;
1212
1213	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1214			       name_off, svcn, ins_le);
1215	if (!attr) {
1216		err = -EINVAL;
1217		goto out;
1218	}
1219
1220	if (IS_ERR(attr)) {
1221		err = PTR_ERR(attr);
1222		goto out;
1223	}
1224
1225	if (ins_attr)
1226		*ins_attr = attr;
1227	if (ins_mi)
1228		*ins_mi = &ni->mi;
1229
1230out:
1231	return err;
1232}
1233
1234/* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1235static int ni_expand_mft_list(struct ntfs_inode *ni)
1236{
1237	int err = 0;
1238	struct runs_tree *run = &ni->file.run;
1239	u32 asize, run_size, done = 0;
1240	struct ATTRIB *attr;
1241	struct rb_node *node;
1242	CLST mft_min, mft_new, svcn, evcn, plen;
1243	struct mft_inode *mi, *mi_min, *mi_new;
1244	struct ntfs_sb_info *sbi = ni->mi.sbi;
1245
1246	/* Find the nearest MFT. */
1247	mft_min = 0;
1248	mft_new = 0;
1249	mi_min = NULL;
1250
1251	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1252		mi = rb_entry(node, struct mft_inode, node);
1253
1254		attr = mi_enum_attr(mi, NULL);
1255
1256		if (!attr) {
1257			mft_min = mi->rno;
1258			mi_min = mi;
1259			break;
1260		}
1261	}
1262
1263	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1264		mft_new = 0;
1265		/* Really this is not critical. */
1266	} else if (mft_min > mft_new) {
1267		mft_min = mft_new;
1268		mi_min = mi_new;
1269	} else {
1270		ntfs_mark_rec_free(sbi, mft_new, true);
1271		mft_new = 0;
1272		ni_remove_mi(ni, mi_new);
1273	}
1274
1275	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1276	if (!attr) {
1277		err = -EINVAL;
1278		goto out;
1279	}
1280
1281	asize = le32_to_cpu(attr->size);
1282
1283	evcn = le64_to_cpu(attr->nres.evcn);
1284	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1285	if (evcn + 1 >= svcn) {
1286		err = -EINVAL;
1287		goto out;
1288	}
1289
1290	/*
1291	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1292	 *
1293	 * Update first part of ATTR_DATA in 'primary MFT.
1294	 */
1295	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1296		       asize - SIZEOF_NONRESIDENT, &plen);
1297	if (err < 0)
1298		goto out;
1299
1300	run_size = ALIGN(err, 8);
1301	err = 0;
1302
1303	if (plen < svcn) {
1304		err = -EINVAL;
1305		goto out;
1306	}
1307
1308	attr->nres.evcn = cpu_to_le64(svcn - 1);
1309	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1310	/* 'done' - How many bytes of primary MFT becomes free. */
1311	done = asize - run_size - SIZEOF_NONRESIDENT;
1312	le32_sub_cpu(&ni->mi.mrec->used, done);
1313
1314	/* Estimate packed size (run_buf=NULL). */
1315	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1316		       &plen);
1317	if (err < 0)
1318		goto out;
1319
1320	run_size = ALIGN(err, 8);
1321	err = 0;
1322
1323	if (plen < evcn + 1 - svcn) {
1324		err = -EINVAL;
1325		goto out;
1326	}
1327
1328	/*
1329	 * This function may implicitly call expand attr_list.
1330	 * Insert second part of ATTR_DATA in 'mi_min'.
1331	 */
1332	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1333			       SIZEOF_NONRESIDENT + run_size,
1334			       SIZEOF_NONRESIDENT, svcn, NULL);
1335	if (!attr) {
1336		err = -EINVAL;
1337		goto out;
1338	}
1339
1340	if (IS_ERR(attr)) {
1341		err = PTR_ERR(attr);
1342		goto out;
1343	}
1344
1345	attr->non_res = 1;
1346	attr->name_off = SIZEOF_NONRESIDENT_LE;
1347	attr->flags = 0;
1348
1349	/* This function can't fail - cause already checked above. */
1350	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1351		 run_size, &plen);
1352
1353	attr->nres.svcn = cpu_to_le64(svcn);
1354	attr->nres.evcn = cpu_to_le64(evcn);
1355	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1356
1357out:
1358	if (mft_new) {
1359		ntfs_mark_rec_free(sbi, mft_new, true);
1360		ni_remove_mi(ni, mi_new);
1361	}
1362
1363	return !err && !done ? -EOPNOTSUPP : err;
1364}
1365
1366/*
1367 * ni_expand_list - Move all possible attributes out of primary record.
1368 */
1369int ni_expand_list(struct ntfs_inode *ni)
1370{
1371	int err = 0;
1372	u32 asize, done = 0;
1373	struct ATTRIB *attr, *ins_attr;
1374	struct ATTR_LIST_ENTRY *le;
1375	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1376	struct MFT_REF ref;
1377
1378	mi_get_ref(&ni->mi, &ref);
1379	le = NULL;
1380
1381	while ((le = al_enumerate(ni, le))) {
1382		if (le->type == ATTR_STD)
1383			continue;
1384
1385		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1386			continue;
1387
1388		if (is_mft && le->type == ATTR_DATA)
1389			continue;
1390
1391		/* Find attribute in primary record. */
1392		attr = rec_find_attr_le(&ni->mi, le);
1393		if (!attr) {
1394			err = -EINVAL;
1395			goto out;
1396		}
1397
1398		asize = le32_to_cpu(attr->size);
1399
1400		/* Always insert into new record to avoid collisions (deep recursive). */
1401		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1402				      attr->name_len, asize, attr_svcn(attr),
1403				      le16_to_cpu(attr->name_off), true,
1404				      &ins_attr, NULL, NULL);
1405
1406		if (err)
1407			goto out;
1408
1409		memcpy(ins_attr, attr, asize);
1410		ins_attr->id = le->id;
1411		/* Remove from primary record. */
1412		mi_remove_attr(NULL, &ni->mi, attr);
1413
1414		done += asize;
1415		goto out;
1416	}
1417
1418	if (!is_mft) {
1419		err = -EFBIG; /* Attr list is too big(?) */
1420		goto out;
1421	}
1422
1423	/* Split MFT data as much as possible. */
1424	err = ni_expand_mft_list(ni);
1425
1426out:
1427	return !err && !done ? -EOPNOTSUPP : err;
1428}
1429
1430/*
1431 * ni_insert_nonresident - Insert new nonresident attribute.
1432 */
1433int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1434			  const __le16 *name, u8 name_len,
1435			  const struct runs_tree *run, CLST svcn, CLST len,
1436			  __le16 flags, struct ATTRIB **new_attr,
1437			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1438{
1439	int err;
1440	CLST plen;
1441	struct ATTRIB *attr;
1442	bool is_ext =
1443		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1444	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1445	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1446	u32 run_off = name_off + name_size;
1447	u32 run_size, asize;
1448	struct ntfs_sb_info *sbi = ni->mi.sbi;
1449
1450	/* Estimate packed size (run_buf=NULL). */
1451	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1452		       &plen);
1453	if (err < 0)
1454		goto out;
1455
1456	run_size = ALIGN(err, 8);
1457
1458	if (plen < len) {
1459		err = -EINVAL;
1460		goto out;
1461	}
1462
1463	asize = run_off + run_size;
1464
1465	if (asize > sbi->max_bytes_per_attr) {
1466		err = -EINVAL;
1467		goto out;
1468	}
1469
1470	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1471			     &attr, mi, le);
1472
1473	if (err)
1474		goto out;
1475
1476	attr->non_res = 1;
1477	attr->name_off = cpu_to_le16(name_off);
1478	attr->flags = flags;
1479
1480	/* This function can't fail - cause already checked above. */
1481	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1482
1483	attr->nres.svcn = cpu_to_le64(svcn);
1484	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1485
1486	if (new_attr)
1487		*new_attr = attr;
1488
1489	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1490
1491	attr->nres.alloc_size =
1492		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1493	attr->nres.data_size = attr->nres.alloc_size;
1494	attr->nres.valid_size = attr->nres.alloc_size;
1495
1496	if (is_ext) {
1497		if (flags & ATTR_FLAG_COMPRESSED)
1498			attr->nres.c_unit = COMPRESSION_UNIT;
1499		attr->nres.total_size = attr->nres.alloc_size;
1500	}
1501
1502out:
1503	return err;
1504}
1505
1506/*
1507 * ni_insert_resident - Inserts new resident attribute.
1508 */
1509int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1510		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1511		       struct ATTRIB **new_attr, struct mft_inode **mi,
1512		       struct ATTR_LIST_ENTRY **le)
1513{
1514	int err;
1515	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1516	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1517	struct ATTRIB *attr;
1518
1519	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1520			     0, &attr, mi, le);
1521	if (err)
1522		return err;
1523
1524	attr->non_res = 0;
1525	attr->flags = 0;
1526
1527	attr->res.data_size = cpu_to_le32(data_size);
1528	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1529	if (type == ATTR_NAME) {
1530		attr->res.flags = RESIDENT_FLAG_INDEXED;
1531
1532		/* is_attr_indexed(attr)) == true */
1533		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1534		ni->mi.dirty = true;
1535	}
1536	attr->res.res = 0;
1537
1538	if (new_attr)
1539		*new_attr = attr;
1540
1541	return 0;
1542}
1543
1544/*
1545 * ni_remove_attr_le - Remove attribute from record.
1546 */
1547void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1548		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1549{
1550	mi_remove_attr(ni, mi, attr);
1551
1552	if (le)
1553		al_remove_le(ni, le);
1554}
1555
1556/*
1557 * ni_delete_all - Remove all attributes and frees allocates space.
1558 *
1559 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1560 */
1561int ni_delete_all(struct ntfs_inode *ni)
1562{
1563	int err;
1564	struct ATTR_LIST_ENTRY *le = NULL;
1565	struct ATTRIB *attr = NULL;
1566	struct rb_node *node;
1567	u16 roff;
1568	u32 asize;
1569	CLST svcn, evcn;
1570	struct ntfs_sb_info *sbi = ni->mi.sbi;
1571	bool nt3 = is_ntfs3(sbi);
1572	struct MFT_REF ref;
1573
1574	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1575		if (!nt3 || attr->name_len) {
1576			;
1577		} else if (attr->type == ATTR_REPARSE) {
1578			mi_get_ref(&ni->mi, &ref);
1579			ntfs_remove_reparse(sbi, 0, &ref);
1580		} else if (attr->type == ATTR_ID && !attr->non_res &&
1581			   le32_to_cpu(attr->res.data_size) >=
1582				   sizeof(struct GUID)) {
1583			ntfs_objid_remove(sbi, resident_data(attr));
1584		}
1585
1586		if (!attr->non_res)
1587			continue;
1588
1589		svcn = le64_to_cpu(attr->nres.svcn);
1590		evcn = le64_to_cpu(attr->nres.evcn);
1591
1592		if (evcn + 1 <= svcn)
1593			continue;
1594
1595		asize = le32_to_cpu(attr->size);
1596		roff = le16_to_cpu(attr->nres.run_off);
1597
1598		if (roff > asize)
1599			return -EINVAL;
1600
1601		/* run==1 means unpack and deallocate. */
1602		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1603			      Add2Ptr(attr, roff), asize - roff);
1604	}
1605
1606	if (ni->attr_list.size) {
1607		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1608		al_destroy(ni);
1609	}
1610
1611	/* Free all subrecords. */
1612	for (node = rb_first(&ni->mi_tree); node;) {
1613		struct rb_node *next = rb_next(node);
1614		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1615
1616		clear_rec_inuse(mi->mrec);
1617		mi->dirty = true;
1618		mi_write(mi, 0);
1619
1620		ntfs_mark_rec_free(sbi, mi->rno, false);
1621		ni_remove_mi(ni, mi);
1622		mi_put(mi);
1623		node = next;
1624	}
1625
1626	/* Free base record. */
1627	clear_rec_inuse(ni->mi.mrec);
1628	ni->mi.dirty = true;
1629	err = mi_write(&ni->mi, 0);
1630
1631	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1632
1633	return err;
1634}
1635
1636/* ni_fname_name
1637 *
1638 * Return: File name attribute by its value.
1639 */
1640struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1641				     const struct cpu_str *uni,
1642				     const struct MFT_REF *home_dir,
1643				     struct mft_inode **mi,
1644				     struct ATTR_LIST_ENTRY **le)
1645{
1646	struct ATTRIB *attr = NULL;
1647	struct ATTR_FILE_NAME *fname;
1648       struct le_str *fns;
1649
1650	if (le)
1651		*le = NULL;
1652
1653	/* Enumerate all names. */
1654next:
1655	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1656	if (!attr)
1657		return NULL;
1658
1659	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1660	if (!fname)
1661		goto next;
1662
1663	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1664		goto next;
1665
1666	if (!uni)
1667		return fname;
1668
1669	if (uni->len != fname->name_len)
1670		goto next;
1671
1672	fns = (struct le_str *)&fname->name_len;
1673	if (ntfs_cmp_names_cpu(uni, fns, NULL, false))
1674		goto next;
1675
1676	return fname;
1677}
1678
1679/*
1680 * ni_fname_type
1681 *
1682 * Return: File name attribute with given type.
1683 */
1684struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1685				     struct mft_inode **mi,
1686				     struct ATTR_LIST_ENTRY **le)
1687{
1688	struct ATTRIB *attr = NULL;
1689	struct ATTR_FILE_NAME *fname;
1690
1691	*le = NULL;
1692
1693	if (name_type == FILE_NAME_POSIX)
1694		return NULL;
1695
1696	/* Enumerate all names. */
1697	for (;;) {
1698		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1699		if (!attr)
1700			return NULL;
1701
1702		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1703		if (fname && name_type == fname->type)
1704			return fname;
1705	}
1706}
1707
1708/*
1709 * ni_new_attr_flags
1710 *
1711 * Process compressed/sparsed in special way.
1712 * NOTE: You need to set ni->std_fa = new_fa
1713 * after this function to keep internal structures in consistency.
1714 */
1715int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1716{
1717	struct ATTRIB *attr;
1718	struct mft_inode *mi;
1719	__le16 new_aflags;
1720	u32 new_asize;
1721
1722	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1723	if (!attr)
1724		return -EINVAL;
1725
1726	new_aflags = attr->flags;
1727
1728	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1729		new_aflags |= ATTR_FLAG_SPARSED;
1730	else
1731		new_aflags &= ~ATTR_FLAG_SPARSED;
1732
1733	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1734		new_aflags |= ATTR_FLAG_COMPRESSED;
1735	else
1736		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1737
1738	if (new_aflags == attr->flags)
1739		return 0;
1740
1741	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1742	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1743		ntfs_inode_warn(&ni->vfs_inode,
1744				"file can't be sparsed and compressed");
1745		return -EOPNOTSUPP;
1746	}
1747
1748	if (!attr->non_res)
1749		goto out;
1750
1751	if (attr->nres.data_size) {
1752		ntfs_inode_warn(
1753			&ni->vfs_inode,
1754			"one can change sparsed/compressed only for empty files");
1755		return -EOPNOTSUPP;
1756	}
1757
1758	/* Resize nonresident empty attribute in-place only. */
1759	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1760			    ? (SIZEOF_NONRESIDENT_EX + 8)
1761			    : (SIZEOF_NONRESIDENT + 8);
1762
1763	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1764		return -EOPNOTSUPP;
1765
1766	if (new_aflags & ATTR_FLAG_SPARSED) {
1767		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1768		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1769		attr->nres.c_unit = 0;
1770		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1771	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1772		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1773		/* The only allowed: 16 clusters per frame. */
1774		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1775		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1776	} else {
1777		attr->name_off = SIZEOF_NONRESIDENT_LE;
1778		/* Normal files. */
1779		attr->nres.c_unit = 0;
1780		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1781	}
1782	attr->nres.run_off = attr->name_off;
1783out:
1784	attr->flags = new_aflags;
1785	mi->dirty = true;
1786
1787	return 0;
1788}
1789
1790/*
1791 * ni_parse_reparse
1792 *
1793 * buffer - memory for reparse buffer header
1794 */
1795enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1796				   struct REPARSE_DATA_BUFFER *buffer)
1797{
1798	const struct REPARSE_DATA_BUFFER *rp = NULL;
1799	u8 bits;
1800	u16 len;
1801	typeof(rp->CompressReparseBuffer) *cmpr;
1802
1803	/* Try to estimate reparse point. */
1804	if (!attr->non_res) {
1805		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1806	} else if (le64_to_cpu(attr->nres.data_size) >=
1807		   sizeof(struct REPARSE_DATA_BUFFER)) {
1808		struct runs_tree run;
1809
1810		run_init(&run);
1811
1812		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1813		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1814				      sizeof(struct REPARSE_DATA_BUFFER),
1815				      NULL)) {
1816			rp = buffer;
1817		}
1818
1819		run_close(&run);
1820	}
1821
1822	if (!rp)
1823		return REPARSE_NONE;
1824
1825	len = le16_to_cpu(rp->ReparseDataLength);
1826	switch (rp->ReparseTag) {
1827	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1828		break; /* Symbolic link. */
1829	case IO_REPARSE_TAG_MOUNT_POINT:
1830		break; /* Mount points and junctions. */
1831	case IO_REPARSE_TAG_SYMLINK:
1832		break;
1833	case IO_REPARSE_TAG_COMPRESS:
1834		/*
1835		 * WOF - Windows Overlay Filter - Used to compress files with
1836		 * LZX/Xpress.
1837		 *
1838		 * Unlike native NTFS file compression, the Windows
1839		 * Overlay Filter supports only read operations. This means
1840		 * that it doesn't need to sector-align each compressed chunk,
1841		 * so the compressed data can be packed more tightly together.
1842		 * If you open the file for writing, the WOF just decompresses
1843		 * the entire file, turning it back into a plain file.
1844		 *
1845		 * Ntfs3 driver decompresses the entire file only on write or
1846		 * change size requests.
1847		 */
1848
1849		cmpr = &rp->CompressReparseBuffer;
1850		if (len < sizeof(*cmpr) ||
1851		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1852		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1853		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1854			return REPARSE_NONE;
1855		}
1856
1857		switch (cmpr->CompressionFormat) {
1858		case WOF_COMPRESSION_XPRESS4K:
1859			bits = 0xc; // 4k
1860			break;
1861		case WOF_COMPRESSION_XPRESS8K:
1862			bits = 0xd; // 8k
1863			break;
1864		case WOF_COMPRESSION_XPRESS16K:
1865			bits = 0xe; // 16k
1866			break;
1867		case WOF_COMPRESSION_LZX32K:
1868			bits = 0xf; // 32k
1869			break;
1870		default:
1871			bits = 0x10; // 64k
1872			break;
1873		}
1874		ni_set_ext_compress_bits(ni, bits);
1875		return REPARSE_COMPRESSED;
1876
1877	case IO_REPARSE_TAG_DEDUP:
1878		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1879		return REPARSE_DEDUPLICATED;
1880
1881	default:
1882		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1883			break;
1884
1885		return REPARSE_NONE;
1886	}
1887
1888	if (buffer != rp)
1889		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1890
1891	/* Looks like normal symlink. */
1892	return REPARSE_LINK;
1893}
1894
1895/*
1896 * ni_fiemap - Helper for file_fiemap().
1897 *
1898 * Assumed ni_lock.
1899 * TODO: Less aggressive locks.
1900 */
1901int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1902	      __u64 vbo, __u64 len)
1903{
1904	int err = 0;
1905	struct ntfs_sb_info *sbi = ni->mi.sbi;
1906	u8 cluster_bits = sbi->cluster_bits;
1907	struct runs_tree *run;
1908	struct rw_semaphore *run_lock;
1909	struct ATTRIB *attr;
1910	CLST vcn = vbo >> cluster_bits;
1911	CLST lcn, clen;
1912	u64 valid = ni->i_valid;
1913	u64 lbo, bytes;
1914	u64 end, alloc_size;
1915	size_t idx = -1;
1916	u32 flags;
1917	bool ok;
1918
1919	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1920		run = &ni->dir.alloc_run;
1921		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1922				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1923		run_lock = &ni->dir.run_lock;
1924	} else {
1925		run = &ni->file.run;
1926		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1927				    NULL);
1928		if (!attr) {
1929			err = -EINVAL;
1930			goto out;
1931		}
1932		if (is_attr_compressed(attr)) {
1933			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1934			err = -EOPNOTSUPP;
1935			ntfs_inode_warn(
1936				&ni->vfs_inode,
1937				"fiemap is not supported for compressed file (cp -r)");
1938			goto out;
1939		}
1940		run_lock = &ni->file.run_lock;
1941	}
1942
1943	if (!attr || !attr->non_res) {
1944		err = fiemap_fill_next_extent(
1945			fieinfo, 0, 0,
1946			attr ? le32_to_cpu(attr->res.data_size) : 0,
1947			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1948				FIEMAP_EXTENT_MERGED);
1949		goto out;
1950	}
1951
1952	end = vbo + len;
1953	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1954	if (end > alloc_size)
1955		end = alloc_size;
1956
1957	down_read(run_lock);
1958
1959	while (vbo < end) {
1960		if (idx == -1) {
1961			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1962		} else {
1963			CLST vcn_next = vcn;
1964
1965			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1966			     vcn == vcn_next;
1967			if (!ok)
1968				vcn = vcn_next;
1969		}
1970
1971		if (!ok) {
1972			up_read(run_lock);
1973			down_write(run_lock);
1974
1975			err = attr_load_runs_vcn(ni, attr->type,
1976						 attr_name(attr),
1977						 attr->name_len, run, vcn);
1978
1979			up_write(run_lock);
1980			down_read(run_lock);
1981
1982			if (err)
1983				break;
1984
1985			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1986
1987			if (!ok) {
1988				err = -EINVAL;
1989				break;
1990			}
1991		}
1992
1993		if (!clen) {
1994			err = -EINVAL; // ?
1995			break;
1996		}
1997
1998		if (lcn == SPARSE_LCN) {
1999			vcn += clen;
2000			vbo = (u64)vcn << cluster_bits;
2001			continue;
2002		}
2003
2004		flags = FIEMAP_EXTENT_MERGED;
2005		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2006			;
2007		} else if (is_attr_compressed(attr)) {
2008			CLST clst_data;
2009
2010			err = attr_is_frame_compressed(
2011				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2012			if (err)
2013				break;
2014			if (clst_data < NTFS_LZNT_CLUSTERS)
2015				flags |= FIEMAP_EXTENT_ENCODED;
2016		} else if (is_attr_encrypted(attr)) {
2017			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2018		}
2019
2020		vbo = (u64)vcn << cluster_bits;
2021		bytes = (u64)clen << cluster_bits;
2022		lbo = (u64)lcn << cluster_bits;
2023
2024		vcn += clen;
2025
2026		if (vbo + bytes >= end)
2027			bytes = end - vbo;
2028
2029		if (vbo + bytes <= valid) {
2030			;
2031		} else if (vbo >= valid) {
2032			flags |= FIEMAP_EXTENT_UNWRITTEN;
2033		} else {
2034			/* vbo < valid && valid < vbo + bytes */
2035			u64 dlen = valid - vbo;
2036
2037			if (vbo + dlen >= end)
2038				flags |= FIEMAP_EXTENT_LAST;
2039
2040			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2041						      flags);
2042			if (err < 0)
2043				break;
2044			if (err == 1) {
2045				err = 0;
2046				break;
2047			}
2048
2049			vbo = valid;
2050			bytes -= dlen;
2051			if (!bytes)
2052				continue;
2053
2054			lbo += dlen;
2055			flags |= FIEMAP_EXTENT_UNWRITTEN;
2056		}
2057
2058		if (vbo + bytes >= end)
2059			flags |= FIEMAP_EXTENT_LAST;
2060
2061		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2062		if (err < 0)
2063			break;
2064		if (err == 1) {
2065			err = 0;
2066			break;
2067		}
2068
2069		vbo += bytes;
2070	}
2071
2072	up_read(run_lock);
2073
2074out:
2075	return err;
2076}
2077
2078/*
2079 * ni_readpage_cmpr
2080 *
2081 * When decompressing, we typically obtain more than one page per reference.
2082 * We inject the additional pages into the page cache.
2083 */
2084int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2085{
2086	int err;
2087	struct ntfs_sb_info *sbi = ni->mi.sbi;
2088	struct address_space *mapping = page->mapping;
2089	pgoff_t index = page->index;
2090	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2091	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2092	u8 frame_bits;
2093	CLST frame;
2094	u32 i, idx, frame_size, pages_per_frame;
2095	gfp_t gfp_mask;
2096	struct page *pg;
2097
2098	if (vbo >= ni->vfs_inode.i_size) {
2099		SetPageUptodate(page);
2100		err = 0;
2101		goto out;
2102	}
2103
2104	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2105		/* Xpress or LZX. */
2106		frame_bits = ni_ext_compress_bits(ni);
2107	} else {
2108		/* LZNT compression. */
2109		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2110	}
2111	frame_size = 1u << frame_bits;
2112	frame = vbo >> frame_bits;
2113	frame_vbo = (u64)frame << frame_bits;
2114	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2115
2116	pages_per_frame = frame_size >> PAGE_SHIFT;
2117	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2118	if (!pages) {
2119		err = -ENOMEM;
2120		goto out;
2121	}
2122
2123	pages[idx] = page;
2124	index = frame_vbo >> PAGE_SHIFT;
2125	gfp_mask = mapping_gfp_mask(mapping);
2126
2127	for (i = 0; i < pages_per_frame; i++, index++) {
2128		if (i == idx)
2129			continue;
2130
2131		pg = find_or_create_page(mapping, index, gfp_mask);
2132		if (!pg) {
2133			err = -ENOMEM;
2134			goto out1;
2135		}
2136		pages[i] = pg;
2137	}
2138
2139	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2140
2141out1:
2142	if (err)
2143		SetPageError(page);
2144
2145	for (i = 0; i < pages_per_frame; i++) {
2146		pg = pages[i];
2147		if (i == idx)
2148			continue;
2149		unlock_page(pg);
2150		put_page(pg);
2151	}
2152
2153out:
2154	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2155	kfree(pages);
2156	unlock_page(page);
2157
2158	return err;
2159}
2160
2161#ifdef CONFIG_NTFS3_LZX_XPRESS
2162/*
2163 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2164 *
2165 * Remove ATTR_DATA::WofCompressedData.
2166 * Remove ATTR_REPARSE.
2167 */
2168int ni_decompress_file(struct ntfs_inode *ni)
2169{
2170	struct ntfs_sb_info *sbi = ni->mi.sbi;
2171	struct inode *inode = &ni->vfs_inode;
2172	loff_t i_size = inode->i_size;
2173	struct address_space *mapping = inode->i_mapping;
2174	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2175	struct page **pages = NULL;
2176	struct ATTR_LIST_ENTRY *le;
2177	struct ATTRIB *attr;
2178	CLST vcn, cend, lcn, clen, end;
2179	pgoff_t index;
2180	u64 vbo;
2181	u8 frame_bits;
2182	u32 i, frame_size, pages_per_frame, bytes;
2183	struct mft_inode *mi;
2184	int err;
2185
2186	/* Clusters for decompressed data. */
2187	cend = bytes_to_cluster(sbi, i_size);
2188
2189	if (!i_size)
2190		goto remove_wof;
2191
2192	/* Check in advance. */
2193	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2194		err = -ENOSPC;
2195		goto out;
2196	}
2197
2198	frame_bits = ni_ext_compress_bits(ni);
2199	frame_size = 1u << frame_bits;
2200	pages_per_frame = frame_size >> PAGE_SHIFT;
2201	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2202	if (!pages) {
2203		err = -ENOMEM;
2204		goto out;
2205	}
2206
2207	/*
2208	 * Step 1: Decompress data and copy to new allocated clusters.
2209	 */
2210	index = 0;
2211	for (vbo = 0; vbo < i_size; vbo += bytes) {
2212		u32 nr_pages;
2213		bool new;
2214
2215		if (vbo + frame_size > i_size) {
2216			bytes = i_size - vbo;
2217			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2218		} else {
2219			nr_pages = pages_per_frame;
2220			bytes = frame_size;
2221		}
2222
2223		end = bytes_to_cluster(sbi, vbo + bytes);
2224
2225		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2226			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2227						  &clen, &new, false);
2228			if (err)
2229				goto out;
2230		}
2231
2232		for (i = 0; i < pages_per_frame; i++, index++) {
2233			struct page *pg;
2234
2235			pg = find_or_create_page(mapping, index, gfp_mask);
2236			if (!pg) {
2237				while (i--) {
2238					unlock_page(pages[i]);
2239					put_page(pages[i]);
2240				}
2241				err = -ENOMEM;
2242				goto out;
2243			}
2244			pages[i] = pg;
2245		}
2246
2247		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2248
2249		if (!err) {
2250			down_read(&ni->file.run_lock);
2251			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2252					     nr_pages, vbo, bytes,
2253					     REQ_OP_WRITE);
2254			up_read(&ni->file.run_lock);
2255		}
2256
2257		for (i = 0; i < pages_per_frame; i++) {
2258			unlock_page(pages[i]);
2259			put_page(pages[i]);
2260		}
2261
2262		if (err)
2263			goto out;
2264
2265		cond_resched();
2266	}
2267
2268remove_wof:
2269	/*
2270	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2271	 * and ATTR_REPARSE.
2272	 */
2273	attr = NULL;
2274	le = NULL;
2275	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2276		CLST svcn, evcn;
2277		u32 asize, roff;
2278
2279		if (attr->type == ATTR_REPARSE) {
2280			struct MFT_REF ref;
2281
2282			mi_get_ref(&ni->mi, &ref);
2283			ntfs_remove_reparse(sbi, 0, &ref);
2284		}
2285
2286		if (!attr->non_res)
2287			continue;
2288
2289		if (attr->type != ATTR_REPARSE &&
2290		    (attr->type != ATTR_DATA ||
2291		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2292		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2293			continue;
2294
2295		svcn = le64_to_cpu(attr->nres.svcn);
2296		evcn = le64_to_cpu(attr->nres.evcn);
2297
2298		if (evcn + 1 <= svcn)
2299			continue;
2300
2301		asize = le32_to_cpu(attr->size);
2302		roff = le16_to_cpu(attr->nres.run_off);
2303
2304		if (roff > asize) {
2305			err = -EINVAL;
2306			goto out;
2307		}
2308
2309		/*run==1  Means unpack and deallocate. */
2310		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2311			      Add2Ptr(attr, roff), asize - roff);
2312	}
2313
2314	/*
2315	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2316	 */
2317	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2318			     false, NULL);
2319	if (err)
2320		goto out;
2321
2322	/*
2323	 * Step 4: Remove ATTR_REPARSE.
2324	 */
2325	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2326	if (err)
2327		goto out;
2328
2329	/*
2330	 * Step 5: Remove sparse flag from data attribute.
2331	 */
2332	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2333	if (!attr) {
2334		err = -EINVAL;
2335		goto out;
2336	}
2337
2338	if (attr->non_res && is_attr_sparsed(attr)) {
2339		/* Sparsed attribute header is 8 bytes bigger than normal. */
2340		struct MFT_REC *rec = mi->mrec;
2341		u32 used = le32_to_cpu(rec->used);
2342		u32 asize = le32_to_cpu(attr->size);
2343		u16 roff = le16_to_cpu(attr->nres.run_off);
2344		char *rbuf = Add2Ptr(attr, roff);
2345
2346		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2347		attr->size = cpu_to_le32(asize - 8);
2348		attr->flags &= ~ATTR_FLAG_SPARSED;
2349		attr->nres.run_off = cpu_to_le16(roff - 8);
2350		attr->nres.c_unit = 0;
2351		rec->used = cpu_to_le32(used - 8);
2352		mi->dirty = true;
2353		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2354				FILE_ATTRIBUTE_REPARSE_POINT);
2355
2356		mark_inode_dirty(inode);
2357	}
2358
2359	/* Clear cached flag. */
2360	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2361	if (ni->file.offs_page) {
2362		put_page(ni->file.offs_page);
2363		ni->file.offs_page = NULL;
2364	}
2365	mapping->a_ops = &ntfs_aops;
2366
2367out:
2368	kfree(pages);
2369	if (err)
2370		_ntfs_bad_inode(inode);
2371
2372	return err;
2373}
2374
2375/*
2376 * decompress_lzx_xpress - External compression LZX/Xpress.
2377 */
2378static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2379				 size_t cmpr_size, void *unc, size_t unc_size,
2380				 u32 frame_size)
2381{
2382	int err;
2383	void *ctx;
2384
2385	if (cmpr_size == unc_size) {
2386		/* Frame not compressed. */
2387		memcpy(unc, cmpr, unc_size);
2388		return 0;
2389	}
2390
2391	err = 0;
2392	if (frame_size == 0x8000) {
2393		mutex_lock(&sbi->compress.mtx_lzx);
2394		/* LZX: Frame compressed. */
2395		ctx = sbi->compress.lzx;
2396		if (!ctx) {
2397			/* Lazy initialize LZX decompress context. */
2398			ctx = lzx_allocate_decompressor();
2399			if (!ctx) {
2400				err = -ENOMEM;
2401				goto out1;
2402			}
2403
2404			sbi->compress.lzx = ctx;
2405		}
2406
2407		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2408			/* Treat all errors as "invalid argument". */
2409			err = -EINVAL;
2410		}
2411out1:
2412		mutex_unlock(&sbi->compress.mtx_lzx);
2413	} else {
2414		/* XPRESS: Frame compressed. */
2415		mutex_lock(&sbi->compress.mtx_xpress);
2416		ctx = sbi->compress.xpress;
2417		if (!ctx) {
2418			/* Lazy initialize Xpress decompress context. */
2419			ctx = xpress_allocate_decompressor();
2420			if (!ctx) {
2421				err = -ENOMEM;
2422				goto out2;
2423			}
2424
2425			sbi->compress.xpress = ctx;
2426		}
2427
2428		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2429			/* Treat all errors as "invalid argument". */
2430			err = -EINVAL;
2431		}
2432out2:
2433		mutex_unlock(&sbi->compress.mtx_xpress);
2434	}
2435	return err;
2436}
2437#endif
2438
2439/*
2440 * ni_read_frame
2441 *
2442 * Pages - Array of locked pages.
2443 */
2444int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2445		  u32 pages_per_frame)
2446{
2447	int err;
2448	struct ntfs_sb_info *sbi = ni->mi.sbi;
2449	u8 cluster_bits = sbi->cluster_bits;
2450	char *frame_ondisk = NULL;
2451	char *frame_mem = NULL;
2452	struct page **pages_disk = NULL;
2453	struct ATTR_LIST_ENTRY *le = NULL;
2454	struct runs_tree *run = &ni->file.run;
2455	u64 valid_size = ni->i_valid;
2456	u64 vbo_disk;
2457	size_t unc_size;
2458	u32 frame_size, i, npages_disk, ondisk_size;
2459	struct page *pg;
2460	struct ATTRIB *attr;
2461	CLST frame, clst_data;
2462
2463	/*
2464	 * To simplify decompress algorithm do vmap for source
2465	 * and target pages.
2466	 */
2467	for (i = 0; i < pages_per_frame; i++)
2468		kmap(pages[i]);
2469
2470	frame_size = pages_per_frame << PAGE_SHIFT;
2471	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2472	if (!frame_mem) {
2473		err = -ENOMEM;
2474		goto out;
2475	}
2476
2477	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2478	if (!attr) {
2479		err = -ENOENT;
2480		goto out1;
2481	}
2482
2483	if (!attr->non_res) {
2484		u32 data_size = le32_to_cpu(attr->res.data_size);
2485
2486		memset(frame_mem, 0, frame_size);
2487		if (frame_vbo < data_size) {
2488			ondisk_size = data_size - frame_vbo;
2489			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2490			       min(ondisk_size, frame_size));
2491		}
2492		err = 0;
2493		goto out1;
2494	}
2495
2496	if (frame_vbo >= valid_size) {
2497		memset(frame_mem, 0, frame_size);
2498		err = 0;
2499		goto out1;
2500	}
2501
2502	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2503#ifndef CONFIG_NTFS3_LZX_XPRESS
2504		err = -EOPNOTSUPP;
2505		goto out1;
2506#else
2507		u32 frame_bits = ni_ext_compress_bits(ni);
2508		u64 frame64 = frame_vbo >> frame_bits;
2509		u64 frames, vbo_data;
2510
2511		if (frame_size != (1u << frame_bits)) {
2512			err = -EINVAL;
2513			goto out1;
2514		}
2515		switch (frame_size) {
2516		case 0x1000:
2517		case 0x2000:
2518		case 0x4000:
2519		case 0x8000:
2520			break;
2521		default:
2522			/* Unknown compression. */
2523			err = -EOPNOTSUPP;
2524			goto out1;
2525		}
2526
2527		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2528				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2529		if (!attr) {
2530			ntfs_inode_err(
2531				&ni->vfs_inode,
2532				"external compressed file should contains data attribute \"WofCompressedData\"");
2533			err = -EINVAL;
2534			goto out1;
2535		}
2536
2537		if (!attr->non_res) {
2538			run = NULL;
2539		} else {
2540			run = run_alloc();
2541			if (!run) {
2542				err = -ENOMEM;
2543				goto out1;
2544			}
2545		}
2546
2547		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2548
2549		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2550					  frame_bits, &ondisk_size, &vbo_data);
2551		if (err)
2552			goto out2;
2553
2554		if (frame64 == frames) {
2555			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2556					(frame_size - 1));
2557			ondisk_size = attr_size(attr) - vbo_data;
2558		} else {
2559			unc_size = frame_size;
2560		}
2561
2562		if (ondisk_size > frame_size) {
2563			err = -EINVAL;
2564			goto out2;
2565		}
2566
2567		if (!attr->non_res) {
2568			if (vbo_data + ondisk_size >
2569			    le32_to_cpu(attr->res.data_size)) {
2570				err = -EINVAL;
2571				goto out1;
2572			}
2573
2574			err = decompress_lzx_xpress(
2575				sbi, Add2Ptr(resident_data(attr), vbo_data),
2576				ondisk_size, frame_mem, unc_size, frame_size);
2577			goto out1;
2578		}
2579		vbo_disk = vbo_data;
2580		/* Load all runs to read [vbo_disk-vbo_to). */
2581		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2582					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2583					   vbo_data + ondisk_size);
2584		if (err)
2585			goto out2;
2586		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2587			       PAGE_SIZE - 1) >>
2588			      PAGE_SHIFT;
2589#endif
2590	} else if (is_attr_compressed(attr)) {
2591		/* LZNT compression. */
2592		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2593			err = -EOPNOTSUPP;
2594			goto out1;
2595		}
2596
2597		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2598			err = -EOPNOTSUPP;
2599			goto out1;
2600		}
2601
2602		down_write(&ni->file.run_lock);
2603		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2604		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2605		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2606		up_write(&ni->file.run_lock);
2607		if (err)
2608			goto out1;
2609
2610		if (!clst_data) {
2611			memset(frame_mem, 0, frame_size);
2612			goto out1;
2613		}
2614
2615		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2616		ondisk_size = clst_data << cluster_bits;
2617
2618		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2619			/* Frame is not compressed. */
2620			down_read(&ni->file.run_lock);
2621			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2622					     frame_vbo, ondisk_size,
2623					     REQ_OP_READ);
2624			up_read(&ni->file.run_lock);
2625			goto out1;
2626		}
2627		vbo_disk = frame_vbo;
2628		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2629	} else {
2630		__builtin_unreachable();
2631		err = -EINVAL;
2632		goto out1;
2633	}
2634
2635	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2636	if (!pages_disk) {
2637		err = -ENOMEM;
2638		goto out2;
2639	}
2640
2641	for (i = 0; i < npages_disk; i++) {
2642		pg = alloc_page(GFP_KERNEL);
2643		if (!pg) {
2644			err = -ENOMEM;
2645			goto out3;
2646		}
2647		pages_disk[i] = pg;
2648		lock_page(pg);
2649		kmap(pg);
2650	}
2651
2652	/* Read 'ondisk_size' bytes from disk. */
2653	down_read(&ni->file.run_lock);
2654	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2655			     ondisk_size, REQ_OP_READ);
2656	up_read(&ni->file.run_lock);
2657	if (err)
2658		goto out3;
2659
2660	/*
2661	 * To simplify decompress algorithm do vmap for source and target pages.
2662	 */
2663	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2664	if (!frame_ondisk) {
2665		err = -ENOMEM;
2666		goto out3;
2667	}
2668
2669	/* Decompress: Frame_ondisk -> frame_mem. */
2670#ifdef CONFIG_NTFS3_LZX_XPRESS
2671	if (run != &ni->file.run) {
2672		/* LZX or XPRESS */
2673		err = decompress_lzx_xpress(
2674			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2675			ondisk_size, frame_mem, unc_size, frame_size);
2676	} else
2677#endif
2678	{
2679		/* LZNT - Native NTFS compression. */
2680		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2681					   frame_size);
2682		if ((ssize_t)unc_size < 0)
2683			err = unc_size;
2684		else if (!unc_size || unc_size > frame_size)
2685			err = -EINVAL;
2686	}
2687	if (!err && valid_size < frame_vbo + frame_size) {
2688		size_t ok = valid_size - frame_vbo;
2689
2690		memset(frame_mem + ok, 0, frame_size - ok);
2691	}
2692
2693	vunmap(frame_ondisk);
2694
2695out3:
2696	for (i = 0; i < npages_disk; i++) {
2697		pg = pages_disk[i];
2698		if (pg) {
2699			kunmap(pg);
2700			unlock_page(pg);
2701			put_page(pg);
2702		}
2703	}
2704	kfree(pages_disk);
2705
2706out2:
2707#ifdef CONFIG_NTFS3_LZX_XPRESS
2708	if (run != &ni->file.run)
2709		run_free(run);
2710#endif
2711out1:
2712	vunmap(frame_mem);
2713out:
2714	for (i = 0; i < pages_per_frame; i++) {
2715		pg = pages[i];
2716		kunmap(pg);
2717		ClearPageError(pg);
2718		SetPageUptodate(pg);
2719	}
2720
2721	return err;
2722}
2723
2724/*
2725 * ni_write_frame
2726 *
2727 * Pages - Array of locked pages.
2728 */
2729int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2730		   u32 pages_per_frame)
2731{
2732	int err;
2733	struct ntfs_sb_info *sbi = ni->mi.sbi;
2734	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2735	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2736	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2737	CLST frame = frame_vbo >> frame_bits;
2738	char *frame_ondisk = NULL;
2739	struct page **pages_disk = NULL;
2740	struct ATTR_LIST_ENTRY *le = NULL;
2741	char *frame_mem;
2742	struct ATTRIB *attr;
2743	struct mft_inode *mi;
2744	u32 i;
2745	struct page *pg;
2746	size_t compr_size, ondisk_size;
2747	struct lznt *lznt;
2748
2749	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2750	if (!attr) {
2751		err = -ENOENT;
2752		goto out;
2753	}
2754
2755	if (WARN_ON(!is_attr_compressed(attr))) {
2756		err = -EINVAL;
2757		goto out;
2758	}
2759
2760	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2761		err = -EOPNOTSUPP;
2762		goto out;
2763	}
2764
2765	if (!attr->non_res) {
2766		down_write(&ni->file.run_lock);
2767		err = attr_make_nonresident(ni, attr, le, mi,
2768					    le32_to_cpu(attr->res.data_size),
2769					    &ni->file.run, &attr, pages[0]);
2770		up_write(&ni->file.run_lock);
2771		if (err)
2772			goto out;
2773	}
2774
2775	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2776		err = -EOPNOTSUPP;
2777		goto out;
2778	}
2779
2780	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2781	if (!pages_disk) {
2782		err = -ENOMEM;
2783		goto out;
2784	}
2785
2786	for (i = 0; i < pages_per_frame; i++) {
2787		pg = alloc_page(GFP_KERNEL);
2788		if (!pg) {
2789			err = -ENOMEM;
2790			goto out1;
2791		}
2792		pages_disk[i] = pg;
2793		lock_page(pg);
2794		kmap(pg);
2795	}
2796
2797	/* To simplify compress algorithm do vmap for source and target pages. */
2798	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2799	if (!frame_ondisk) {
2800		err = -ENOMEM;
2801		goto out1;
2802	}
2803
2804	for (i = 0; i < pages_per_frame; i++)
2805		kmap(pages[i]);
2806
2807	/* Map in-memory frame for read-only. */
2808	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2809	if (!frame_mem) {
2810		err = -ENOMEM;
2811		goto out2;
2812	}
2813
2814	mutex_lock(&sbi->compress.mtx_lznt);
2815	lznt = NULL;
2816	if (!sbi->compress.lznt) {
2817		/*
2818		 * LZNT implements two levels of compression:
2819		 * 0 - Standard compression
2820		 * 1 - Best compression, requires a lot of cpu
2821		 * use mount option?
2822		 */
2823		lznt = get_lznt_ctx(0);
2824		if (!lznt) {
2825			mutex_unlock(&sbi->compress.mtx_lznt);
2826			err = -ENOMEM;
2827			goto out3;
2828		}
2829
2830		sbi->compress.lznt = lznt;
2831		lznt = NULL;
2832	}
2833
2834	/* Compress: frame_mem -> frame_ondisk */
2835	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2836				   frame_size, sbi->compress.lznt);
2837	mutex_unlock(&sbi->compress.mtx_lznt);
2838	kfree(lznt);
2839
2840	if (compr_size + sbi->cluster_size > frame_size) {
2841		/* Frame is not compressed. */
2842		compr_size = frame_size;
2843		ondisk_size = frame_size;
2844	} else if (compr_size) {
2845		/* Frame is compressed. */
2846		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2847		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2848	} else {
2849		/* Frame is sparsed. */
2850		ondisk_size = 0;
2851	}
2852
2853	down_write(&ni->file.run_lock);
2854	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2855	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2856	up_write(&ni->file.run_lock);
2857	if (err)
2858		goto out2;
2859
2860	if (!ondisk_size)
2861		goto out2;
2862
2863	down_read(&ni->file.run_lock);
2864	err = ntfs_bio_pages(sbi, &ni->file.run,
2865			     ondisk_size < frame_size ? pages_disk : pages,
2866			     pages_per_frame, frame_vbo, ondisk_size,
2867			     REQ_OP_WRITE);
2868	up_read(&ni->file.run_lock);
2869
2870out3:
2871	vunmap(frame_mem);
2872
2873out2:
2874	for (i = 0; i < pages_per_frame; i++)
2875		kunmap(pages[i]);
2876
2877	vunmap(frame_ondisk);
2878out1:
2879	for (i = 0; i < pages_per_frame; i++) {
2880		pg = pages_disk[i];
2881		if (pg) {
2882			kunmap(pg);
2883			unlock_page(pg);
2884			put_page(pg);
2885		}
2886	}
2887	kfree(pages_disk);
2888out:
2889	return err;
2890}
2891
2892/*
2893 * ni_remove_name - Removes name 'de' from MFT and from directory.
2894 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2895 */
2896int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2897		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2898{
2899	int err;
2900	struct ntfs_sb_info *sbi = ni->mi.sbi;
2901	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2902	struct ATTR_FILE_NAME *fname;
2903	struct ATTR_LIST_ENTRY *le;
2904	struct mft_inode *mi;
2905	u16 de_key_size = le16_to_cpu(de->key_size);
2906	u8 name_type;
2907
2908	*undo_step = 0;
2909
2910	/* Find name in record. */
2911	mi_get_ref(&dir_ni->mi, &de_name->home);
2912
2913	fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2914			      &de_name->home, &mi, &le);
2915	if (!fname)
2916		return -ENOENT;
2917
2918	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2919	name_type = paired_name(fname->type);
2920
2921	/* Mark ntfs as dirty. It will be cleared at umount. */
2922	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2923
2924	/* Step 1: Remove name from directory. */
2925	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2926	if (err)
2927		return err;
2928
2929	/* Step 2: Remove name from MFT. */
2930	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2931
2932	*undo_step = 2;
2933
2934	/* Get paired name. */
2935	fname = ni_fname_type(ni, name_type, &mi, &le);
2936	if (fname) {
2937		u16 de2_key_size = fname_full_size(fname);
2938
2939		*de2 = Add2Ptr(de, 1024);
2940		(*de2)->key_size = cpu_to_le16(de2_key_size);
2941
2942		memcpy(*de2 + 1, fname, de2_key_size);
2943
2944		/* Step 3: Remove paired name from directory. */
2945		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2946					de2_key_size, sbi);
2947		if (err)
2948			return err;
2949
2950		/* Step 4: Remove paired name from MFT. */
2951		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2952
2953		*undo_step = 4;
2954	}
2955	return 0;
2956}
2957
2958/*
2959 * ni_remove_name_undo - Paired function for ni_remove_name.
2960 *
2961 * Return: True if ok
2962 */
2963bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2964			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2965{
2966	struct ntfs_sb_info *sbi = ni->mi.sbi;
2967	struct ATTRIB *attr;
2968	u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2969
2970	switch (undo_step) {
2971	case 4:
2972		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2973				       &attr, NULL, NULL)) {
2974			return false;
2975		}
2976		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2977
2978		mi_get_ref(&ni->mi, &de2->ref);
2979		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2980					sizeof(struct NTFS_DE));
2981		de2->flags = 0;
2982		de2->res = 0;
2983
2984		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2985				      1)) {
2986			return false;
2987		}
2988		fallthrough;
2989
2990	case 2:
2991		de_key_size = le16_to_cpu(de->key_size);
2992
2993		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2994				       &attr, NULL, NULL)) {
2995			return false;
2996		}
2997
2998		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2999		mi_get_ref(&ni->mi, &de->ref);
3000
3001		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3002			return false;
3003	}
3004
3005	return true;
3006}
3007
3008/*
3009 * ni_add_name - Add new name into MFT and into directory.
3010 */
3011int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3012		struct NTFS_DE *de)
3013{
3014	int err;
3015	struct ntfs_sb_info *sbi = ni->mi.sbi;
3016	struct ATTRIB *attr;
3017	struct ATTR_LIST_ENTRY *le;
3018	struct mft_inode *mi;
3019	struct ATTR_FILE_NAME *fname;
3020	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3021	u16 de_key_size = le16_to_cpu(de->key_size);
3022
3023	if (sbi->options->windows_names &&
3024	    !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3025		return -EINVAL;
3026
3027	/* If option "hide_dot_files" then set hidden attribute for dot files. */
3028	if (ni->mi.sbi->options->hide_dot_files) {
3029		if (de_name->name_len > 0 &&
3030		    le16_to_cpu(de_name->name[0]) == '.')
3031			ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3032		else
3033			ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3034	}
3035
3036	mi_get_ref(&ni->mi, &de->ref);
3037	mi_get_ref(&dir_ni->mi, &de_name->home);
3038
3039	/* Fill duplicate from any ATTR_NAME. */
3040	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3041	if (fname)
3042		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3043	de_name->dup.fa = ni->std_fa;
3044
3045	/* Insert new name into MFT. */
3046	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3047				 &mi, &le);
3048	if (err)
3049		return err;
3050
3051	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3052
3053	/* Insert new name into directory. */
3054	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3055	if (err)
3056		ni_remove_attr_le(ni, attr, mi, le);
3057
3058	return err;
3059}
3060
3061/*
3062 * ni_rename - Remove one name and insert new name.
3063 */
3064int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3065	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3066	      bool *is_bad)
3067{
3068	int err;
3069	struct NTFS_DE *de2 = NULL;
3070	int undo = 0;
3071
3072	/*
3073	 * There are two possible ways to rename:
3074	 * 1) Add new name and remove old name.
3075	 * 2) Remove old name and add new name.
3076	 *
3077	 * In most cases (not all!) adding new name into MFT and into directory can
3078	 * allocate additional cluster(s).
3079	 * Second way may result to bad inode if we can't add new name
3080	 * and then can't restore (add) old name.
3081	 */
3082
3083	/*
3084	 * Way 1 - Add new + remove old.
3085	 */
3086	err = ni_add_name(new_dir_ni, ni, new_de);
3087	if (!err) {
3088		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3089		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3090			*is_bad = true;
3091	}
3092
3093	/*
3094	 * Way 2 - Remove old + add new.
3095	 */
3096	/*
3097	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3098	 *	if (!err) {
3099	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3100	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3101	 *			*is_bad = true;
3102	 *	}
3103	 */
3104
3105	return err;
3106}
3107
3108/*
3109 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3110 */
3111bool ni_is_dirty(struct inode *inode)
3112{
3113	struct ntfs_inode *ni = ntfs_i(inode);
3114	struct rb_node *node;
3115
3116	if (ni->mi.dirty || ni->attr_list.dirty ||
3117	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3118		return true;
3119
3120	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3121		if (rb_entry(node, struct mft_inode, node)->dirty)
3122			return true;
3123	}
3124
3125	return false;
3126}
3127
3128/*
3129 * ni_update_parent
3130 *
3131 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3132 */
3133static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3134			     int sync)
3135{
3136	struct ATTRIB *attr;
3137	struct mft_inode *mi;
3138	struct ATTR_LIST_ENTRY *le = NULL;
3139	struct ntfs_sb_info *sbi = ni->mi.sbi;
3140	struct super_block *sb = sbi->sb;
3141	bool re_dirty = false;
3142
3143	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3144		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3145		attr = NULL;
3146		dup->alloc_size = 0;
3147		dup->data_size = 0;
3148	} else {
3149		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3150
3151		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3152				    &mi);
3153		if (!attr) {
3154			dup->alloc_size = dup->data_size = 0;
3155		} else if (!attr->non_res) {
3156			u32 data_size = le32_to_cpu(attr->res.data_size);
3157
3158			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3159			dup->data_size = cpu_to_le64(data_size);
3160		} else {
3161			u64 new_valid = ni->i_valid;
3162			u64 data_size = le64_to_cpu(attr->nres.data_size);
3163			__le64 valid_le;
3164
3165			dup->alloc_size = is_attr_ext(attr)
3166						  ? attr->nres.total_size
3167						  : attr->nres.alloc_size;
3168			dup->data_size = attr->nres.data_size;
3169
3170			if (new_valid > data_size)
3171				new_valid = data_size;
3172
3173			valid_le = cpu_to_le64(new_valid);
3174			if (valid_le != attr->nres.valid_size) {
3175				attr->nres.valid_size = valid_le;
3176				mi->dirty = true;
3177			}
3178		}
3179	}
3180
3181	/* TODO: Fill reparse info. */
3182	dup->reparse = 0;
3183	dup->ea_size = 0;
3184
3185	if (ni->ni_flags & NI_FLAG_EA) {
3186		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3187				    NULL);
3188		if (attr) {
3189			const struct EA_INFO *info;
3190
3191			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3192			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3193			if (info)
3194				dup->ea_size = info->size_pack;
3195		}
3196	}
3197
3198	attr = NULL;
3199	le = NULL;
3200
3201	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3202				    &mi))) {
3203		struct inode *dir;
3204		struct ATTR_FILE_NAME *fname;
3205
3206		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3207		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3208			continue;
3209
3210		/* ntfs_iget5 may sleep. */
3211		dir = ntfs_iget5(sb, &fname->home, NULL);
3212		if (IS_ERR(dir)) {
3213			ntfs_inode_warn(
3214				&ni->vfs_inode,
3215				"failed to open parent directory r=%lx to update",
3216				(long)ino_get(&fname->home));
3217			continue;
3218		}
3219
3220		if (!is_bad_inode(dir)) {
3221			struct ntfs_inode *dir_ni = ntfs_i(dir);
3222
3223			if (!ni_trylock(dir_ni)) {
3224				re_dirty = true;
3225			} else {
3226				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3227				ni_unlock(dir_ni);
3228				memcpy(&fname->dup, dup, sizeof(fname->dup));
3229				mi->dirty = true;
3230			}
3231		}
3232		iput(dir);
3233	}
3234
3235	return re_dirty;
3236}
3237
3238/*
3239 * ni_write_inode - Write MFT base record and all subrecords to disk.
3240 */
3241int ni_write_inode(struct inode *inode, int sync, const char *hint)
3242{
3243	int err = 0, err2;
3244	struct ntfs_inode *ni = ntfs_i(inode);
3245	struct super_block *sb = inode->i_sb;
3246	struct ntfs_sb_info *sbi = sb->s_fs_info;
3247	bool re_dirty = false;
3248	struct ATTR_STD_INFO *std;
3249	struct rb_node *node, *next;
3250	struct NTFS_DUP_INFO dup;
3251
3252	if (is_bad_inode(inode) || sb_rdonly(sb))
3253		return 0;
3254
3255	if (!ni_trylock(ni)) {
3256		/* 'ni' is under modification, skip for now. */
3257		mark_inode_dirty_sync(inode);
3258		return 0;
3259	}
3260
3261	if (is_rec_inuse(ni->mi.mrec) &&
3262	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3263		bool modified = false;
3264
3265		/* Update times in standard attribute. */
3266		std = ni_std(ni);
3267		if (!std) {
3268			err = -EINVAL;
3269			goto out;
3270		}
3271
3272		/* Update the access times if they have changed. */
3273		dup.m_time = kernel2nt(&inode->i_mtime);
3274		if (std->m_time != dup.m_time) {
3275			std->m_time = dup.m_time;
3276			modified = true;
3277		}
3278
3279		dup.c_time = kernel2nt(&inode->i_ctime);
3280		if (std->c_time != dup.c_time) {
3281			std->c_time = dup.c_time;
3282			modified = true;
3283		}
3284
3285		dup.a_time = kernel2nt(&inode->i_atime);
3286		if (std->a_time != dup.a_time) {
3287			std->a_time = dup.a_time;
3288			modified = true;
3289		}
3290
3291		dup.fa = ni->std_fa;
3292		if (std->fa != dup.fa) {
3293			std->fa = dup.fa;
3294			modified = true;
3295		}
3296
3297		/* std attribute is always in primary MFT record. */
3298		if (modified)
3299			ni->mi.dirty = true;
3300
3301		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3302		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3303		    /* Avoid __wait_on_freeing_inode(inode). */
3304		    && (sb->s_flags & SB_ACTIVE)) {
3305			dup.cr_time = std->cr_time;
3306			/* Not critical if this function fail. */
3307			re_dirty = ni_update_parent(ni, &dup, sync);
3308
3309			if (re_dirty)
3310				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3311			else
3312				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3313		}
3314
3315		/* Update attribute list. */
3316		if (ni->attr_list.size && ni->attr_list.dirty) {
3317			if (inode->i_ino != MFT_REC_MFT || sync) {
3318				err = ni_try_remove_attr_list(ni);
3319				if (err)
3320					goto out;
3321			}
3322
3323			err = al_update(ni, sync);
3324			if (err)
3325				goto out;
3326		}
3327	}
3328
3329	for (node = rb_first(&ni->mi_tree); node; node = next) {
3330		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3331		bool is_empty;
3332
3333		next = rb_next(node);
3334
3335		if (!mi->dirty)
3336			continue;
3337
3338		is_empty = !mi_enum_attr(mi, NULL);
3339
3340		if (is_empty)
3341			clear_rec_inuse(mi->mrec);
3342
3343		err2 = mi_write(mi, sync);
3344		if (!err && err2)
3345			err = err2;
3346
3347		if (is_empty) {
3348			ntfs_mark_rec_free(sbi, mi->rno, false);
3349			rb_erase(node, &ni->mi_tree);
3350			mi_put(mi);
3351		}
3352	}
3353
3354	if (ni->mi.dirty) {
3355		err2 = mi_write(&ni->mi, sync);
3356		if (!err && err2)
3357			err = err2;
3358	}
3359out:
3360	ni_unlock(ni);
3361
3362	if (err) {
3363		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3364		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3365		return err;
3366	}
3367
3368	if (re_dirty)
3369		mark_inode_dirty_sync(inode);
3370
3371	return 0;
3372}