Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31
32#include <linux/mtd/mtd.h>
33#include <linux/mtd/partitions.h>
34
35#include "mtdcore.h"
36
37struct backing_dev_info *mtd_bdi;
38
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67};
68
69static DEFINE_IDR(mtd_idr);
70
71/* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73DEFINE_MUTEX(mtd_table_mutex);
74EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82static LIST_HEAD(mtd_notifiers);
83
84
85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97}
98
99static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101{
102 struct mtd_info *mtd = dev_get_drvdata(dev);
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135}
136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140{
141 struct mtd_info *mtd = dev_get_drvdata(dev);
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144}
145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149{
150 struct mtd_info *mtd = dev_get_drvdata(dev);
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
154}
155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159{
160 struct mtd_info *mtd = dev_get_drvdata(dev);
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163}
164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168{
169 struct mtd_info *mtd = dev_get_drvdata(dev);
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172}
173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
175static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182}
183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
185static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187{
188 struct mtd_info *mtd = dev_get_drvdata(dev);
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191}
192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
194static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200}
201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
203static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209}
210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219}
220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221
222static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228}
229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238}
239
240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243{
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254}
255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
259static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261{
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266}
267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276}
277static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287}
288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297}
298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302{
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307}
308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
310static struct attribute *mtd_attrs[] = {
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
328 NULL,
329};
330ATTRIBUTE_GROUPS(mtd);
331
332static const struct device_type mtd_devtype = {
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336};
337
338static int mtd_partid_show(struct seq_file *s, void *p)
339{
340 struct mtd_info *mtd = s->private;
341
342 seq_printf(s, "%s\n", mtd->dbg.partid);
343
344 return 0;
345}
346
347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348{
349 return single_open(file, mtd_partid_show, inode->i_private);
350}
351
352static const struct file_operations mtd_partid_debug_fops = {
353 .open = mtd_partid_debugfs_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = single_release,
357};
358
359static int mtd_partname_show(struct seq_file *s, void *p)
360{
361 struct mtd_info *mtd = s->private;
362
363 seq_printf(s, "%s\n", mtd->dbg.partname);
364
365 return 0;
366}
367
368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369{
370 return single_open(file, mtd_partname_show, inode->i_private);
371}
372
373static const struct file_operations mtd_partname_debug_fops = {
374 .open = mtd_partname_debugfs_open,
375 .read = seq_read,
376 .llseek = seq_lseek,
377 .release = single_release,
378};
379
380static struct dentry *dfs_dir_mtd;
381
382static void mtd_debugfs_populate(struct mtd_info *mtd)
383{
384 struct device *dev = &mtd->dev;
385 struct dentry *root, *dent;
386
387 if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 return;
389
390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 if (IS_ERR_OR_NULL(root)) {
392 dev_dbg(dev, "won't show data in debugfs\n");
393 return;
394 }
395
396 mtd->dbg.dfs_dir = root;
397
398 if (mtd->dbg.partid) {
399 dent = debugfs_create_file("partid", 0400, root, mtd,
400 &mtd_partid_debug_fops);
401 if (IS_ERR_OR_NULL(dent))
402 dev_err(dev, "can't create debugfs entry for partid\n");
403 }
404
405 if (mtd->dbg.partname) {
406 dent = debugfs_create_file("partname", 0400, root, mtd,
407 &mtd_partname_debug_fops);
408 if (IS_ERR_OR_NULL(dent))
409 dev_err(dev,
410 "can't create debugfs entry for partname\n");
411 }
412}
413
414#ifndef CONFIG_MMU
415unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
416{
417 switch (mtd->type) {
418 case MTD_RAM:
419 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
420 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
421 case MTD_ROM:
422 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
423 NOMMU_MAP_READ;
424 default:
425 return NOMMU_MAP_COPY;
426 }
427}
428EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
429#endif
430
431static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
432 void *cmd)
433{
434 struct mtd_info *mtd;
435
436 mtd = container_of(n, struct mtd_info, reboot_notifier);
437 mtd->_reboot(mtd);
438
439 return NOTIFY_DONE;
440}
441
442/**
443 * mtd_wunit_to_pairing_info - get pairing information of a wunit
444 * @mtd: pointer to new MTD device info structure
445 * @wunit: write unit we are interested in
446 * @info: returned pairing information
447 *
448 * Retrieve pairing information associated to the wunit.
449 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
450 * paired together, and where programming a page may influence the page it is
451 * paired with.
452 * The notion of page is replaced by the term wunit (write-unit) to stay
453 * consistent with the ->writesize field.
454 *
455 * The @wunit argument can be extracted from an absolute offset using
456 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
457 * to @wunit.
458 *
459 * From the pairing info the MTD user can find all the wunits paired with
460 * @wunit using the following loop:
461 *
462 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
463 * info.pair = i;
464 * mtd_pairing_info_to_wunit(mtd, &info);
465 * ...
466 * }
467 */
468int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
469 struct mtd_pairing_info *info)
470{
471 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
472
473 if (wunit < 0 || wunit >= npairs)
474 return -EINVAL;
475
476 if (mtd->pairing && mtd->pairing->get_info)
477 return mtd->pairing->get_info(mtd, wunit, info);
478
479 info->group = 0;
480 info->pair = wunit;
481
482 return 0;
483}
484EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
485
486/**
487 * mtd_pairing_info_to_wunit - get wunit from pairing information
488 * @mtd: pointer to new MTD device info structure
489 * @info: pairing information struct
490 *
491 * Returns a positive number representing the wunit associated to the info
492 * struct, or a negative error code.
493 *
494 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
495 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
496 * doc).
497 *
498 * It can also be used to only program the first page of each pair (i.e.
499 * page attached to group 0), which allows one to use an MLC NAND in
500 * software-emulated SLC mode:
501 *
502 * info.group = 0;
503 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
504 * for (info.pair = 0; info.pair < npairs; info.pair++) {
505 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
506 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
507 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
508 * }
509 */
510int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
511 const struct mtd_pairing_info *info)
512{
513 int ngroups = mtd_pairing_groups(mtd);
514 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
515
516 if (!info || info->pair < 0 || info->pair >= npairs ||
517 info->group < 0 || info->group >= ngroups)
518 return -EINVAL;
519
520 if (mtd->pairing && mtd->pairing->get_wunit)
521 return mtd->pairing->get_wunit(mtd, info);
522
523 return info->pair;
524}
525EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
526
527/**
528 * mtd_pairing_groups - get the number of pairing groups
529 * @mtd: pointer to new MTD device info structure
530 *
531 * Returns the number of pairing groups.
532 *
533 * This number is usually equal to the number of bits exposed by a single
534 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
535 * to iterate over all pages of a given pair.
536 */
537int mtd_pairing_groups(struct mtd_info *mtd)
538{
539 if (!mtd->pairing || !mtd->pairing->ngroups)
540 return 1;
541
542 return mtd->pairing->ngroups;
543}
544EXPORT_SYMBOL_GPL(mtd_pairing_groups);
545
546static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
547 void *val, size_t bytes)
548{
549 struct mtd_info *mtd = priv;
550 size_t retlen;
551 int err;
552
553 err = mtd_read(mtd, offset, bytes, &retlen, val);
554 if (err && err != -EUCLEAN)
555 return err;
556
557 return retlen == bytes ? 0 : -EIO;
558}
559
560static int mtd_nvmem_add(struct mtd_info *mtd)
561{
562 struct nvmem_config config = {};
563
564 config.id = -1;
565 config.dev = &mtd->dev;
566 config.name = mtd->name;
567 config.owner = THIS_MODULE;
568 config.reg_read = mtd_nvmem_reg_read;
569 config.size = mtd->size;
570 config.word_size = 1;
571 config.stride = 1;
572 config.read_only = true;
573 config.root_only = true;
574 config.no_of_node = true;
575 config.priv = mtd;
576
577 mtd->nvmem = nvmem_register(&config);
578 if (IS_ERR(mtd->nvmem)) {
579 /* Just ignore if there is no NVMEM support in the kernel */
580 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
581 mtd->nvmem = NULL;
582 } else {
583 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
584 return PTR_ERR(mtd->nvmem);
585 }
586 }
587
588 return 0;
589}
590
591/**
592 * add_mtd_device - register an MTD device
593 * @mtd: pointer to new MTD device info structure
594 *
595 * Add a device to the list of MTD devices present in the system, and
596 * notify each currently active MTD 'user' of its arrival. Returns
597 * zero on success or non-zero on failure.
598 */
599
600int add_mtd_device(struct mtd_info *mtd)
601{
602 struct mtd_notifier *not;
603 int i, error;
604
605 /*
606 * May occur, for instance, on buggy drivers which call
607 * mtd_device_parse_register() multiple times on the same master MTD,
608 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
609 */
610 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
611 return -EEXIST;
612
613 BUG_ON(mtd->writesize == 0);
614
615 /*
616 * MTD drivers should implement ->_{write,read}() or
617 * ->_{write,read}_oob(), but not both.
618 */
619 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
620 (mtd->_read && mtd->_read_oob)))
621 return -EINVAL;
622
623 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
624 !(mtd->flags & MTD_NO_ERASE)))
625 return -EINVAL;
626
627 mutex_lock(&mtd_table_mutex);
628
629 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
630 if (i < 0) {
631 error = i;
632 goto fail_locked;
633 }
634
635 mtd->index = i;
636 mtd->usecount = 0;
637
638 /* default value if not set by driver */
639 if (mtd->bitflip_threshold == 0)
640 mtd->bitflip_threshold = mtd->ecc_strength;
641
642 if (is_power_of_2(mtd->erasesize))
643 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
644 else
645 mtd->erasesize_shift = 0;
646
647 if (is_power_of_2(mtd->writesize))
648 mtd->writesize_shift = ffs(mtd->writesize) - 1;
649 else
650 mtd->writesize_shift = 0;
651
652 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
653 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
654
655 /* Some chips always power up locked. Unlock them now */
656 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
657 error = mtd_unlock(mtd, 0, mtd->size);
658 if (error && error != -EOPNOTSUPP)
659 printk(KERN_WARNING
660 "%s: unlock failed, writes may not work\n",
661 mtd->name);
662 /* Ignore unlock failures? */
663 error = 0;
664 }
665
666 /* Caller should have set dev.parent to match the
667 * physical device, if appropriate.
668 */
669 mtd->dev.type = &mtd_devtype;
670 mtd->dev.class = &mtd_class;
671 mtd->dev.devt = MTD_DEVT(i);
672 dev_set_name(&mtd->dev, "mtd%d", i);
673 dev_set_drvdata(&mtd->dev, mtd);
674 of_node_get(mtd_get_of_node(mtd));
675 error = device_register(&mtd->dev);
676 if (error)
677 goto fail_added;
678
679 /* Add the nvmem provider */
680 error = mtd_nvmem_add(mtd);
681 if (error)
682 goto fail_nvmem_add;
683
684 mtd_debugfs_populate(mtd);
685
686 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
687 "mtd%dro", i);
688
689 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
690 /* No need to get a refcount on the module containing
691 the notifier, since we hold the mtd_table_mutex */
692 list_for_each_entry(not, &mtd_notifiers, list)
693 not->add(mtd);
694
695 mutex_unlock(&mtd_table_mutex);
696 /* We _know_ we aren't being removed, because
697 our caller is still holding us here. So none
698 of this try_ nonsense, and no bitching about it
699 either. :) */
700 __module_get(THIS_MODULE);
701 return 0;
702
703fail_nvmem_add:
704 device_unregister(&mtd->dev);
705fail_added:
706 of_node_put(mtd_get_of_node(mtd));
707 idr_remove(&mtd_idr, i);
708fail_locked:
709 mutex_unlock(&mtd_table_mutex);
710 return error;
711}
712
713/**
714 * del_mtd_device - unregister an MTD device
715 * @mtd: pointer to MTD device info structure
716 *
717 * Remove a device from the list of MTD devices present in the system,
718 * and notify each currently active MTD 'user' of its departure.
719 * Returns zero on success or 1 on failure, which currently will happen
720 * if the requested device does not appear to be present in the list.
721 */
722
723int del_mtd_device(struct mtd_info *mtd)
724{
725 int ret;
726 struct mtd_notifier *not;
727
728 mutex_lock(&mtd_table_mutex);
729
730 debugfs_remove_recursive(mtd->dbg.dfs_dir);
731
732 if (idr_find(&mtd_idr, mtd->index) != mtd) {
733 ret = -ENODEV;
734 goto out_error;
735 }
736
737 /* No need to get a refcount on the module containing
738 the notifier, since we hold the mtd_table_mutex */
739 list_for_each_entry(not, &mtd_notifiers, list)
740 not->remove(mtd);
741
742 if (mtd->usecount) {
743 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
744 mtd->index, mtd->name, mtd->usecount);
745 ret = -EBUSY;
746 } else {
747 /* Try to remove the NVMEM provider */
748 if (mtd->nvmem)
749 nvmem_unregister(mtd->nvmem);
750
751 device_unregister(&mtd->dev);
752
753 idr_remove(&mtd_idr, mtd->index);
754 of_node_put(mtd_get_of_node(mtd));
755
756 module_put(THIS_MODULE);
757 ret = 0;
758 }
759
760out_error:
761 mutex_unlock(&mtd_table_mutex);
762 return ret;
763}
764
765/*
766 * Set a few defaults based on the parent devices, if not provided by the
767 * driver
768 */
769static void mtd_set_dev_defaults(struct mtd_info *mtd)
770{
771 if (mtd->dev.parent) {
772 if (!mtd->owner && mtd->dev.parent->driver)
773 mtd->owner = mtd->dev.parent->driver->owner;
774 if (!mtd->name)
775 mtd->name = dev_name(mtd->dev.parent);
776 } else {
777 pr_debug("mtd device won't show a device symlink in sysfs\n");
778 }
779
780 mtd->orig_flags = mtd->flags;
781}
782
783/**
784 * mtd_device_parse_register - parse partitions and register an MTD device.
785 *
786 * @mtd: the MTD device to register
787 * @types: the list of MTD partition probes to try, see
788 * 'parse_mtd_partitions()' for more information
789 * @parser_data: MTD partition parser-specific data
790 * @parts: fallback partition information to register, if parsing fails;
791 * only valid if %nr_parts > %0
792 * @nr_parts: the number of partitions in parts, if zero then the full
793 * MTD device is registered if no partition info is found
794 *
795 * This function aggregates MTD partitions parsing (done by
796 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
797 * basically follows the most common pattern found in many MTD drivers:
798 *
799 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
800 * registered first.
801 * * Then It tries to probe partitions on MTD device @mtd using parsers
802 * specified in @types (if @types is %NULL, then the default list of parsers
803 * is used, see 'parse_mtd_partitions()' for more information). If none are
804 * found this functions tries to fallback to information specified in
805 * @parts/@nr_parts.
806 * * If no partitions were found this function just registers the MTD device
807 * @mtd and exits.
808 *
809 * Returns zero in case of success and a negative error code in case of failure.
810 */
811int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
812 struct mtd_part_parser_data *parser_data,
813 const struct mtd_partition *parts,
814 int nr_parts)
815{
816 int ret;
817
818 mtd_set_dev_defaults(mtd);
819
820 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
821 ret = add_mtd_device(mtd);
822 if (ret)
823 return ret;
824 }
825
826 /* Prefer parsed partitions over driver-provided fallback */
827 ret = parse_mtd_partitions(mtd, types, parser_data);
828 if (ret > 0)
829 ret = 0;
830 else if (nr_parts)
831 ret = add_mtd_partitions(mtd, parts, nr_parts);
832 else if (!device_is_registered(&mtd->dev))
833 ret = add_mtd_device(mtd);
834 else
835 ret = 0;
836
837 if (ret)
838 goto out;
839
840 /*
841 * FIXME: some drivers unfortunately call this function more than once.
842 * So we have to check if we've already assigned the reboot notifier.
843 *
844 * Generally, we can make multiple calls work for most cases, but it
845 * does cause problems with parse_mtd_partitions() above (e.g.,
846 * cmdlineparts will register partitions more than once).
847 */
848 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
849 "MTD already registered\n");
850 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
851 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
852 register_reboot_notifier(&mtd->reboot_notifier);
853 }
854
855out:
856 if (ret && device_is_registered(&mtd->dev))
857 del_mtd_device(mtd);
858
859 return ret;
860}
861EXPORT_SYMBOL_GPL(mtd_device_parse_register);
862
863/**
864 * mtd_device_unregister - unregister an existing MTD device.
865 *
866 * @master: the MTD device to unregister. This will unregister both the master
867 * and any partitions if registered.
868 */
869int mtd_device_unregister(struct mtd_info *master)
870{
871 int err;
872
873 if (master->_reboot)
874 unregister_reboot_notifier(&master->reboot_notifier);
875
876 err = del_mtd_partitions(master);
877 if (err)
878 return err;
879
880 if (!device_is_registered(&master->dev))
881 return 0;
882
883 return del_mtd_device(master);
884}
885EXPORT_SYMBOL_GPL(mtd_device_unregister);
886
887/**
888 * register_mtd_user - register a 'user' of MTD devices.
889 * @new: pointer to notifier info structure
890 *
891 * Registers a pair of callbacks function to be called upon addition
892 * or removal of MTD devices. Causes the 'add' callback to be immediately
893 * invoked for each MTD device currently present in the system.
894 */
895void register_mtd_user (struct mtd_notifier *new)
896{
897 struct mtd_info *mtd;
898
899 mutex_lock(&mtd_table_mutex);
900
901 list_add(&new->list, &mtd_notifiers);
902
903 __module_get(THIS_MODULE);
904
905 mtd_for_each_device(mtd)
906 new->add(mtd);
907
908 mutex_unlock(&mtd_table_mutex);
909}
910EXPORT_SYMBOL_GPL(register_mtd_user);
911
912/**
913 * unregister_mtd_user - unregister a 'user' of MTD devices.
914 * @old: pointer to notifier info structure
915 *
916 * Removes a callback function pair from the list of 'users' to be
917 * notified upon addition or removal of MTD devices. Causes the
918 * 'remove' callback to be immediately invoked for each MTD device
919 * currently present in the system.
920 */
921int unregister_mtd_user (struct mtd_notifier *old)
922{
923 struct mtd_info *mtd;
924
925 mutex_lock(&mtd_table_mutex);
926
927 module_put(THIS_MODULE);
928
929 mtd_for_each_device(mtd)
930 old->remove(mtd);
931
932 list_del(&old->list);
933 mutex_unlock(&mtd_table_mutex);
934 return 0;
935}
936EXPORT_SYMBOL_GPL(unregister_mtd_user);
937
938/**
939 * get_mtd_device - obtain a validated handle for an MTD device
940 * @mtd: last known address of the required MTD device
941 * @num: internal device number of the required MTD device
942 *
943 * Given a number and NULL address, return the num'th entry in the device
944 * table, if any. Given an address and num == -1, search the device table
945 * for a device with that address and return if it's still present. Given
946 * both, return the num'th driver only if its address matches. Return
947 * error code if not.
948 */
949struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
950{
951 struct mtd_info *ret = NULL, *other;
952 int err = -ENODEV;
953
954 mutex_lock(&mtd_table_mutex);
955
956 if (num == -1) {
957 mtd_for_each_device(other) {
958 if (other == mtd) {
959 ret = mtd;
960 break;
961 }
962 }
963 } else if (num >= 0) {
964 ret = idr_find(&mtd_idr, num);
965 if (mtd && mtd != ret)
966 ret = NULL;
967 }
968
969 if (!ret) {
970 ret = ERR_PTR(err);
971 goto out;
972 }
973
974 err = __get_mtd_device(ret);
975 if (err)
976 ret = ERR_PTR(err);
977out:
978 mutex_unlock(&mtd_table_mutex);
979 return ret;
980}
981EXPORT_SYMBOL_GPL(get_mtd_device);
982
983
984int __get_mtd_device(struct mtd_info *mtd)
985{
986 int err;
987
988 if (!try_module_get(mtd->owner))
989 return -ENODEV;
990
991 if (mtd->_get_device) {
992 err = mtd->_get_device(mtd);
993
994 if (err) {
995 module_put(mtd->owner);
996 return err;
997 }
998 }
999 mtd->usecount++;
1000 return 0;
1001}
1002EXPORT_SYMBOL_GPL(__get_mtd_device);
1003
1004/**
1005 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1006 * device name
1007 * @name: MTD device name to open
1008 *
1009 * This function returns MTD device description structure in case of
1010 * success and an error code in case of failure.
1011 */
1012struct mtd_info *get_mtd_device_nm(const char *name)
1013{
1014 int err = -ENODEV;
1015 struct mtd_info *mtd = NULL, *other;
1016
1017 mutex_lock(&mtd_table_mutex);
1018
1019 mtd_for_each_device(other) {
1020 if (!strcmp(name, other->name)) {
1021 mtd = other;
1022 break;
1023 }
1024 }
1025
1026 if (!mtd)
1027 goto out_unlock;
1028
1029 err = __get_mtd_device(mtd);
1030 if (err)
1031 goto out_unlock;
1032
1033 mutex_unlock(&mtd_table_mutex);
1034 return mtd;
1035
1036out_unlock:
1037 mutex_unlock(&mtd_table_mutex);
1038 return ERR_PTR(err);
1039}
1040EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1041
1042void put_mtd_device(struct mtd_info *mtd)
1043{
1044 mutex_lock(&mtd_table_mutex);
1045 __put_mtd_device(mtd);
1046 mutex_unlock(&mtd_table_mutex);
1047
1048}
1049EXPORT_SYMBOL_GPL(put_mtd_device);
1050
1051void __put_mtd_device(struct mtd_info *mtd)
1052{
1053 --mtd->usecount;
1054 BUG_ON(mtd->usecount < 0);
1055
1056 if (mtd->_put_device)
1057 mtd->_put_device(mtd);
1058
1059 module_put(mtd->owner);
1060}
1061EXPORT_SYMBOL_GPL(__put_mtd_device);
1062
1063/*
1064 * Erase is an synchronous operation. Device drivers are epected to return a
1065 * negative error code if the operation failed and update instr->fail_addr
1066 * to point the portion that was not properly erased.
1067 */
1068int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1069{
1070 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1071
1072 if (!mtd->erasesize || !mtd->_erase)
1073 return -ENOTSUPP;
1074
1075 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1076 return -EINVAL;
1077 if (!(mtd->flags & MTD_WRITEABLE))
1078 return -EROFS;
1079
1080 if (!instr->len)
1081 return 0;
1082
1083 ledtrig_mtd_activity();
1084 return mtd->_erase(mtd, instr);
1085}
1086EXPORT_SYMBOL_GPL(mtd_erase);
1087
1088/*
1089 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1090 */
1091int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1092 void **virt, resource_size_t *phys)
1093{
1094 *retlen = 0;
1095 *virt = NULL;
1096 if (phys)
1097 *phys = 0;
1098 if (!mtd->_point)
1099 return -EOPNOTSUPP;
1100 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1101 return -EINVAL;
1102 if (!len)
1103 return 0;
1104 return mtd->_point(mtd, from, len, retlen, virt, phys);
1105}
1106EXPORT_SYMBOL_GPL(mtd_point);
1107
1108/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1109int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1110{
1111 if (!mtd->_unpoint)
1112 return -EOPNOTSUPP;
1113 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1114 return -EINVAL;
1115 if (!len)
1116 return 0;
1117 return mtd->_unpoint(mtd, from, len);
1118}
1119EXPORT_SYMBOL_GPL(mtd_unpoint);
1120
1121/*
1122 * Allow NOMMU mmap() to directly map the device (if not NULL)
1123 * - return the address to which the offset maps
1124 * - return -ENOSYS to indicate refusal to do the mapping
1125 */
1126unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1127 unsigned long offset, unsigned long flags)
1128{
1129 size_t retlen;
1130 void *virt;
1131 int ret;
1132
1133 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1134 if (ret)
1135 return ret;
1136 if (retlen != len) {
1137 mtd_unpoint(mtd, offset, retlen);
1138 return -ENOSYS;
1139 }
1140 return (unsigned long)virt;
1141}
1142EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1143
1144int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1145 u_char *buf)
1146{
1147 struct mtd_oob_ops ops = {
1148 .len = len,
1149 .datbuf = buf,
1150 };
1151 int ret;
1152
1153 ret = mtd_read_oob(mtd, from, &ops);
1154 *retlen = ops.retlen;
1155
1156 return ret;
1157}
1158EXPORT_SYMBOL_GPL(mtd_read);
1159
1160int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1161 const u_char *buf)
1162{
1163 struct mtd_oob_ops ops = {
1164 .len = len,
1165 .datbuf = (u8 *)buf,
1166 };
1167 int ret;
1168
1169 ret = mtd_write_oob(mtd, to, &ops);
1170 *retlen = ops.retlen;
1171
1172 return ret;
1173}
1174EXPORT_SYMBOL_GPL(mtd_write);
1175
1176/*
1177 * In blackbox flight recorder like scenarios we want to make successful writes
1178 * in interrupt context. panic_write() is only intended to be called when its
1179 * known the kernel is about to panic and we need the write to succeed. Since
1180 * the kernel is not going to be running for much longer, this function can
1181 * break locks and delay to ensure the write succeeds (but not sleep).
1182 */
1183int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1184 const u_char *buf)
1185{
1186 *retlen = 0;
1187 if (!mtd->_panic_write)
1188 return -EOPNOTSUPP;
1189 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1190 return -EINVAL;
1191 if (!(mtd->flags & MTD_WRITEABLE))
1192 return -EROFS;
1193 if (!len)
1194 return 0;
1195 if (!mtd->oops_panic_write)
1196 mtd->oops_panic_write = true;
1197
1198 return mtd->_panic_write(mtd, to, len, retlen, buf);
1199}
1200EXPORT_SYMBOL_GPL(mtd_panic_write);
1201
1202static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1203 struct mtd_oob_ops *ops)
1204{
1205 /*
1206 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1207 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1208 * this case.
1209 */
1210 if (!ops->datbuf)
1211 ops->len = 0;
1212
1213 if (!ops->oobbuf)
1214 ops->ooblen = 0;
1215
1216 if (offs < 0 || offs + ops->len > mtd->size)
1217 return -EINVAL;
1218
1219 if (ops->ooblen) {
1220 size_t maxooblen;
1221
1222 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1223 return -EINVAL;
1224
1225 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1226 mtd_div_by_ws(offs, mtd)) *
1227 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1228 if (ops->ooblen > maxooblen)
1229 return -EINVAL;
1230 }
1231
1232 return 0;
1233}
1234
1235int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1236{
1237 int ret_code;
1238 ops->retlen = ops->oobretlen = 0;
1239
1240 ret_code = mtd_check_oob_ops(mtd, from, ops);
1241 if (ret_code)
1242 return ret_code;
1243
1244 ledtrig_mtd_activity();
1245
1246 /* Check the validity of a potential fallback on mtd->_read */
1247 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1248 return -EOPNOTSUPP;
1249
1250 if (mtd->_read_oob)
1251 ret_code = mtd->_read_oob(mtd, from, ops);
1252 else
1253 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1254 ops->datbuf);
1255
1256 /*
1257 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1258 * similar to mtd->_read(), returning a non-negative integer
1259 * representing max bitflips. In other cases, mtd->_read_oob() may
1260 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1261 */
1262 if (unlikely(ret_code < 0))
1263 return ret_code;
1264 if (mtd->ecc_strength == 0)
1265 return 0; /* device lacks ecc */
1266 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1267}
1268EXPORT_SYMBOL_GPL(mtd_read_oob);
1269
1270int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1271 struct mtd_oob_ops *ops)
1272{
1273 int ret;
1274
1275 ops->retlen = ops->oobretlen = 0;
1276
1277 if (!(mtd->flags & MTD_WRITEABLE))
1278 return -EROFS;
1279
1280 ret = mtd_check_oob_ops(mtd, to, ops);
1281 if (ret)
1282 return ret;
1283
1284 ledtrig_mtd_activity();
1285
1286 /* Check the validity of a potential fallback on mtd->_write */
1287 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1288 return -EOPNOTSUPP;
1289
1290 if (mtd->_write_oob)
1291 return mtd->_write_oob(mtd, to, ops);
1292 else
1293 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1294 ops->datbuf);
1295}
1296EXPORT_SYMBOL_GPL(mtd_write_oob);
1297
1298/**
1299 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1300 * @mtd: MTD device structure
1301 * @section: ECC section. Depending on the layout you may have all the ECC
1302 * bytes stored in a single contiguous section, or one section
1303 * per ECC chunk (and sometime several sections for a single ECC
1304 * ECC chunk)
1305 * @oobecc: OOB region struct filled with the appropriate ECC position
1306 * information
1307 *
1308 * This function returns ECC section information in the OOB area. If you want
1309 * to get all the ECC bytes information, then you should call
1310 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1311 *
1312 * Returns zero on success, a negative error code otherwise.
1313 */
1314int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1315 struct mtd_oob_region *oobecc)
1316{
1317 memset(oobecc, 0, sizeof(*oobecc));
1318
1319 if (!mtd || section < 0)
1320 return -EINVAL;
1321
1322 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1323 return -ENOTSUPP;
1324
1325 return mtd->ooblayout->ecc(mtd, section, oobecc);
1326}
1327EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1328
1329/**
1330 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1331 * section
1332 * @mtd: MTD device structure
1333 * @section: Free section you are interested in. Depending on the layout
1334 * you may have all the free bytes stored in a single contiguous
1335 * section, or one section per ECC chunk plus an extra section
1336 * for the remaining bytes (or other funky layout).
1337 * @oobfree: OOB region struct filled with the appropriate free position
1338 * information
1339 *
1340 * This function returns free bytes position in the OOB area. If you want
1341 * to get all the free bytes information, then you should call
1342 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1343 *
1344 * Returns zero on success, a negative error code otherwise.
1345 */
1346int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1347 struct mtd_oob_region *oobfree)
1348{
1349 memset(oobfree, 0, sizeof(*oobfree));
1350
1351 if (!mtd || section < 0)
1352 return -EINVAL;
1353
1354 if (!mtd->ooblayout || !mtd->ooblayout->free)
1355 return -ENOTSUPP;
1356
1357 return mtd->ooblayout->free(mtd, section, oobfree);
1358}
1359EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1360
1361/**
1362 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1363 * @mtd: mtd info structure
1364 * @byte: the byte we are searching for
1365 * @sectionp: pointer where the section id will be stored
1366 * @oobregion: used to retrieve the ECC position
1367 * @iter: iterator function. Should be either mtd_ooblayout_free or
1368 * mtd_ooblayout_ecc depending on the region type you're searching for
1369 *
1370 * This function returns the section id and oobregion information of a
1371 * specific byte. For example, say you want to know where the 4th ECC byte is
1372 * stored, you'll use:
1373 *
1374 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1375 *
1376 * Returns zero on success, a negative error code otherwise.
1377 */
1378static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1379 int *sectionp, struct mtd_oob_region *oobregion,
1380 int (*iter)(struct mtd_info *,
1381 int section,
1382 struct mtd_oob_region *oobregion))
1383{
1384 int pos = 0, ret, section = 0;
1385
1386 memset(oobregion, 0, sizeof(*oobregion));
1387
1388 while (1) {
1389 ret = iter(mtd, section, oobregion);
1390 if (ret)
1391 return ret;
1392
1393 if (pos + oobregion->length > byte)
1394 break;
1395
1396 pos += oobregion->length;
1397 section++;
1398 }
1399
1400 /*
1401 * Adjust region info to make it start at the beginning at the
1402 * 'start' ECC byte.
1403 */
1404 oobregion->offset += byte - pos;
1405 oobregion->length -= byte - pos;
1406 *sectionp = section;
1407
1408 return 0;
1409}
1410
1411/**
1412 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1413 * ECC byte
1414 * @mtd: mtd info structure
1415 * @eccbyte: the byte we are searching for
1416 * @sectionp: pointer where the section id will be stored
1417 * @oobregion: OOB region information
1418 *
1419 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1420 * byte.
1421 *
1422 * Returns zero on success, a negative error code otherwise.
1423 */
1424int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1425 int *section,
1426 struct mtd_oob_region *oobregion)
1427{
1428 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1429 mtd_ooblayout_ecc);
1430}
1431EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1432
1433/**
1434 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1435 * @mtd: mtd info structure
1436 * @buf: destination buffer to store OOB bytes
1437 * @oobbuf: OOB buffer
1438 * @start: first byte to retrieve
1439 * @nbytes: number of bytes to retrieve
1440 * @iter: section iterator
1441 *
1442 * Extract bytes attached to a specific category (ECC or free)
1443 * from the OOB buffer and copy them into buf.
1444 *
1445 * Returns zero on success, a negative error code otherwise.
1446 */
1447static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1448 const u8 *oobbuf, int start, int nbytes,
1449 int (*iter)(struct mtd_info *,
1450 int section,
1451 struct mtd_oob_region *oobregion))
1452{
1453 struct mtd_oob_region oobregion;
1454 int section, ret;
1455
1456 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1457 &oobregion, iter);
1458
1459 while (!ret) {
1460 int cnt;
1461
1462 cnt = min_t(int, nbytes, oobregion.length);
1463 memcpy(buf, oobbuf + oobregion.offset, cnt);
1464 buf += cnt;
1465 nbytes -= cnt;
1466
1467 if (!nbytes)
1468 break;
1469
1470 ret = iter(mtd, ++section, &oobregion);
1471 }
1472
1473 return ret;
1474}
1475
1476/**
1477 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1478 * @mtd: mtd info structure
1479 * @buf: source buffer to get OOB bytes from
1480 * @oobbuf: OOB buffer
1481 * @start: first OOB byte to set
1482 * @nbytes: number of OOB bytes to set
1483 * @iter: section iterator
1484 *
1485 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1486 * is selected by passing the appropriate iterator.
1487 *
1488 * Returns zero on success, a negative error code otherwise.
1489 */
1490static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1491 u8 *oobbuf, int start, int nbytes,
1492 int (*iter)(struct mtd_info *,
1493 int section,
1494 struct mtd_oob_region *oobregion))
1495{
1496 struct mtd_oob_region oobregion;
1497 int section, ret;
1498
1499 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1500 &oobregion, iter);
1501
1502 while (!ret) {
1503 int cnt;
1504
1505 cnt = min_t(int, nbytes, oobregion.length);
1506 memcpy(oobbuf + oobregion.offset, buf, cnt);
1507 buf += cnt;
1508 nbytes -= cnt;
1509
1510 if (!nbytes)
1511 break;
1512
1513 ret = iter(mtd, ++section, &oobregion);
1514 }
1515
1516 return ret;
1517}
1518
1519/**
1520 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1521 * @mtd: mtd info structure
1522 * @iter: category iterator
1523 *
1524 * Count the number of bytes in a given category.
1525 *
1526 * Returns a positive value on success, a negative error code otherwise.
1527 */
1528static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1529 int (*iter)(struct mtd_info *,
1530 int section,
1531 struct mtd_oob_region *oobregion))
1532{
1533 struct mtd_oob_region oobregion;
1534 int section = 0, ret, nbytes = 0;
1535
1536 while (1) {
1537 ret = iter(mtd, section++, &oobregion);
1538 if (ret) {
1539 if (ret == -ERANGE)
1540 ret = nbytes;
1541 break;
1542 }
1543
1544 nbytes += oobregion.length;
1545 }
1546
1547 return ret;
1548}
1549
1550/**
1551 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1552 * @mtd: mtd info structure
1553 * @eccbuf: destination buffer to store ECC bytes
1554 * @oobbuf: OOB buffer
1555 * @start: first ECC byte to retrieve
1556 * @nbytes: number of ECC bytes to retrieve
1557 *
1558 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1559 *
1560 * Returns zero on success, a negative error code otherwise.
1561 */
1562int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1563 const u8 *oobbuf, int start, int nbytes)
1564{
1565 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1566 mtd_ooblayout_ecc);
1567}
1568EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1569
1570/**
1571 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1572 * @mtd: mtd info structure
1573 * @eccbuf: source buffer to get ECC bytes from
1574 * @oobbuf: OOB buffer
1575 * @start: first ECC byte to set
1576 * @nbytes: number of ECC bytes to set
1577 *
1578 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1579 *
1580 * Returns zero on success, a negative error code otherwise.
1581 */
1582int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1583 u8 *oobbuf, int start, int nbytes)
1584{
1585 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1586 mtd_ooblayout_ecc);
1587}
1588EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1589
1590/**
1591 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1592 * @mtd: mtd info structure
1593 * @databuf: destination buffer to store ECC bytes
1594 * @oobbuf: OOB buffer
1595 * @start: first ECC byte to retrieve
1596 * @nbytes: number of ECC bytes to retrieve
1597 *
1598 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1599 *
1600 * Returns zero on success, a negative error code otherwise.
1601 */
1602int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1603 const u8 *oobbuf, int start, int nbytes)
1604{
1605 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1606 mtd_ooblayout_free);
1607}
1608EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1609
1610/**
1611 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1612 * @mtd: mtd info structure
1613 * @databuf: source buffer to get data bytes from
1614 * @oobbuf: OOB buffer
1615 * @start: first ECC byte to set
1616 * @nbytes: number of ECC bytes to set
1617 *
1618 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1619 *
1620 * Returns zero on success, a negative error code otherwise.
1621 */
1622int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1623 u8 *oobbuf, int start, int nbytes)
1624{
1625 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1626 mtd_ooblayout_free);
1627}
1628EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1629
1630/**
1631 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1632 * @mtd: mtd info structure
1633 *
1634 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1635 *
1636 * Returns zero on success, a negative error code otherwise.
1637 */
1638int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1639{
1640 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1641}
1642EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1643
1644/**
1645 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1646 * @mtd: mtd info structure
1647 *
1648 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1649 *
1650 * Returns zero on success, a negative error code otherwise.
1651 */
1652int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1653{
1654 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1655}
1656EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1657
1658/*
1659 * Method to access the protection register area, present in some flash
1660 * devices. The user data is one time programmable but the factory data is read
1661 * only.
1662 */
1663int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1664 struct otp_info *buf)
1665{
1666 if (!mtd->_get_fact_prot_info)
1667 return -EOPNOTSUPP;
1668 if (!len)
1669 return 0;
1670 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1671}
1672EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1673
1674int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1675 size_t *retlen, u_char *buf)
1676{
1677 *retlen = 0;
1678 if (!mtd->_read_fact_prot_reg)
1679 return -EOPNOTSUPP;
1680 if (!len)
1681 return 0;
1682 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1683}
1684EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1685
1686int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1687 struct otp_info *buf)
1688{
1689 if (!mtd->_get_user_prot_info)
1690 return -EOPNOTSUPP;
1691 if (!len)
1692 return 0;
1693 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1694}
1695EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1696
1697int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1698 size_t *retlen, u_char *buf)
1699{
1700 *retlen = 0;
1701 if (!mtd->_read_user_prot_reg)
1702 return -EOPNOTSUPP;
1703 if (!len)
1704 return 0;
1705 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1706}
1707EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1708
1709int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1710 size_t *retlen, u_char *buf)
1711{
1712 int ret;
1713
1714 *retlen = 0;
1715 if (!mtd->_write_user_prot_reg)
1716 return -EOPNOTSUPP;
1717 if (!len)
1718 return 0;
1719 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1720 if (ret)
1721 return ret;
1722
1723 /*
1724 * If no data could be written at all, we are out of memory and
1725 * must return -ENOSPC.
1726 */
1727 return (*retlen) ? 0 : -ENOSPC;
1728}
1729EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1730
1731int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1732{
1733 if (!mtd->_lock_user_prot_reg)
1734 return -EOPNOTSUPP;
1735 if (!len)
1736 return 0;
1737 return mtd->_lock_user_prot_reg(mtd, from, len);
1738}
1739EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1740
1741/* Chip-supported device locking */
1742int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1743{
1744 if (!mtd->_lock)
1745 return -EOPNOTSUPP;
1746 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1747 return -EINVAL;
1748 if (!len)
1749 return 0;
1750 return mtd->_lock(mtd, ofs, len);
1751}
1752EXPORT_SYMBOL_GPL(mtd_lock);
1753
1754int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1755{
1756 if (!mtd->_unlock)
1757 return -EOPNOTSUPP;
1758 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1759 return -EINVAL;
1760 if (!len)
1761 return 0;
1762 return mtd->_unlock(mtd, ofs, len);
1763}
1764EXPORT_SYMBOL_GPL(mtd_unlock);
1765
1766int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1767{
1768 if (!mtd->_is_locked)
1769 return -EOPNOTSUPP;
1770 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1771 return -EINVAL;
1772 if (!len)
1773 return 0;
1774 return mtd->_is_locked(mtd, ofs, len);
1775}
1776EXPORT_SYMBOL_GPL(mtd_is_locked);
1777
1778int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1779{
1780 if (ofs < 0 || ofs >= mtd->size)
1781 return -EINVAL;
1782 if (!mtd->_block_isreserved)
1783 return 0;
1784 return mtd->_block_isreserved(mtd, ofs);
1785}
1786EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1787
1788int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1789{
1790 if (ofs < 0 || ofs >= mtd->size)
1791 return -EINVAL;
1792 if (!mtd->_block_isbad)
1793 return 0;
1794 return mtd->_block_isbad(mtd, ofs);
1795}
1796EXPORT_SYMBOL_GPL(mtd_block_isbad);
1797
1798int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1799{
1800 if (!mtd->_block_markbad)
1801 return -EOPNOTSUPP;
1802 if (ofs < 0 || ofs >= mtd->size)
1803 return -EINVAL;
1804 if (!(mtd->flags & MTD_WRITEABLE))
1805 return -EROFS;
1806 return mtd->_block_markbad(mtd, ofs);
1807}
1808EXPORT_SYMBOL_GPL(mtd_block_markbad);
1809
1810/*
1811 * default_mtd_writev - the default writev method
1812 * @mtd: mtd device description object pointer
1813 * @vecs: the vectors to write
1814 * @count: count of vectors in @vecs
1815 * @to: the MTD device offset to write to
1816 * @retlen: on exit contains the count of bytes written to the MTD device.
1817 *
1818 * This function returns zero in case of success and a negative error code in
1819 * case of failure.
1820 */
1821static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1822 unsigned long count, loff_t to, size_t *retlen)
1823{
1824 unsigned long i;
1825 size_t totlen = 0, thislen;
1826 int ret = 0;
1827
1828 for (i = 0; i < count; i++) {
1829 if (!vecs[i].iov_len)
1830 continue;
1831 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1832 vecs[i].iov_base);
1833 totlen += thislen;
1834 if (ret || thislen != vecs[i].iov_len)
1835 break;
1836 to += vecs[i].iov_len;
1837 }
1838 *retlen = totlen;
1839 return ret;
1840}
1841
1842/*
1843 * mtd_writev - the vector-based MTD write method
1844 * @mtd: mtd device description object pointer
1845 * @vecs: the vectors to write
1846 * @count: count of vectors in @vecs
1847 * @to: the MTD device offset to write to
1848 * @retlen: on exit contains the count of bytes written to the MTD device.
1849 *
1850 * This function returns zero in case of success and a negative error code in
1851 * case of failure.
1852 */
1853int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1854 unsigned long count, loff_t to, size_t *retlen)
1855{
1856 *retlen = 0;
1857 if (!(mtd->flags & MTD_WRITEABLE))
1858 return -EROFS;
1859 if (!mtd->_writev)
1860 return default_mtd_writev(mtd, vecs, count, to, retlen);
1861 return mtd->_writev(mtd, vecs, count, to, retlen);
1862}
1863EXPORT_SYMBOL_GPL(mtd_writev);
1864
1865/**
1866 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1867 * @mtd: mtd device description object pointer
1868 * @size: a pointer to the ideal or maximum size of the allocation, points
1869 * to the actual allocation size on success.
1870 *
1871 * This routine attempts to allocate a contiguous kernel buffer up to
1872 * the specified size, backing off the size of the request exponentially
1873 * until the request succeeds or until the allocation size falls below
1874 * the system page size. This attempts to make sure it does not adversely
1875 * impact system performance, so when allocating more than one page, we
1876 * ask the memory allocator to avoid re-trying, swapping, writing back
1877 * or performing I/O.
1878 *
1879 * Note, this function also makes sure that the allocated buffer is aligned to
1880 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1881 *
1882 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1883 * to handle smaller (i.e. degraded) buffer allocations under low- or
1884 * fragmented-memory situations where such reduced allocations, from a
1885 * requested ideal, are allowed.
1886 *
1887 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1888 */
1889void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1890{
1891 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1892 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1893 void *kbuf;
1894
1895 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1896
1897 while (*size > min_alloc) {
1898 kbuf = kmalloc(*size, flags);
1899 if (kbuf)
1900 return kbuf;
1901
1902 *size >>= 1;
1903 *size = ALIGN(*size, mtd->writesize);
1904 }
1905
1906 /*
1907 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1908 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1909 */
1910 return kmalloc(*size, GFP_KERNEL);
1911}
1912EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1913
1914#ifdef CONFIG_PROC_FS
1915
1916/*====================================================================*/
1917/* Support for /proc/mtd */
1918
1919static int mtd_proc_show(struct seq_file *m, void *v)
1920{
1921 struct mtd_info *mtd;
1922
1923 seq_puts(m, "dev: size erasesize name\n");
1924 mutex_lock(&mtd_table_mutex);
1925 mtd_for_each_device(mtd) {
1926 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1927 mtd->index, (unsigned long long)mtd->size,
1928 mtd->erasesize, mtd->name);
1929 }
1930 mutex_unlock(&mtd_table_mutex);
1931 return 0;
1932}
1933#endif /* CONFIG_PROC_FS */
1934
1935/*====================================================================*/
1936/* Init code */
1937
1938static struct backing_dev_info * __init mtd_bdi_init(char *name)
1939{
1940 struct backing_dev_info *bdi;
1941 int ret;
1942
1943 bdi = bdi_alloc(GFP_KERNEL);
1944 if (!bdi)
1945 return ERR_PTR(-ENOMEM);
1946
1947 bdi->name = name;
1948 /*
1949 * We put '-0' suffix to the name to get the same name format as we
1950 * used to get. Since this is called only once, we get a unique name.
1951 */
1952 ret = bdi_register(bdi, "%.28s-0", name);
1953 if (ret)
1954 bdi_put(bdi);
1955
1956 return ret ? ERR_PTR(ret) : bdi;
1957}
1958
1959static struct proc_dir_entry *proc_mtd;
1960
1961static int __init init_mtd(void)
1962{
1963 int ret;
1964
1965 ret = class_register(&mtd_class);
1966 if (ret)
1967 goto err_reg;
1968
1969 mtd_bdi = mtd_bdi_init("mtd");
1970 if (IS_ERR(mtd_bdi)) {
1971 ret = PTR_ERR(mtd_bdi);
1972 goto err_bdi;
1973 }
1974
1975 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1976
1977 ret = init_mtdchar();
1978 if (ret)
1979 goto out_procfs;
1980
1981 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1982
1983 return 0;
1984
1985out_procfs:
1986 if (proc_mtd)
1987 remove_proc_entry("mtd", NULL);
1988 bdi_put(mtd_bdi);
1989err_bdi:
1990 class_unregister(&mtd_class);
1991err_reg:
1992 pr_err("Error registering mtd class or bdi: %d\n", ret);
1993 return ret;
1994}
1995
1996static void __exit cleanup_mtd(void)
1997{
1998 debugfs_remove_recursive(dfs_dir_mtd);
1999 cleanup_mtdchar();
2000 if (proc_mtd)
2001 remove_proc_entry("mtd", NULL);
2002 class_unregister(&mtd_class);
2003 bdi_put(mtd_bdi);
2004 idr_destroy(&mtd_idr);
2005}
2006
2007module_init(init_mtd);
2008module_exit(cleanup_mtd);
2009
2010MODULE_LICENSE("GPL");
2011MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2012MODULE_DESCRIPTION("Core MTD registration and access routines");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31#include <linux/root_dev.h>
32
33#include <linux/mtd/mtd.h>
34#include <linux/mtd/partitions.h>
35
36#include "mtdcore.h"
37
38struct backing_dev_info *mtd_bdi;
39
40#ifdef CONFIG_PM_SLEEP
41
42static int mtd_cls_suspend(struct device *dev)
43{
44 struct mtd_info *mtd = dev_get_drvdata(dev);
45
46 return mtd ? mtd_suspend(mtd) : 0;
47}
48
49static int mtd_cls_resume(struct device *dev)
50{
51 struct mtd_info *mtd = dev_get_drvdata(dev);
52
53 if (mtd)
54 mtd_resume(mtd);
55 return 0;
56}
57
58static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
59#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60#else
61#define MTD_CLS_PM_OPS NULL
62#endif
63
64static struct class mtd_class = {
65 .name = "mtd",
66 .owner = THIS_MODULE,
67 .pm = MTD_CLS_PM_OPS,
68};
69
70static DEFINE_IDR(mtd_idr);
71
72/* These are exported solely for the purpose of mtd_blkdevs.c. You
73 should not use them for _anything_ else */
74DEFINE_MUTEX(mtd_table_mutex);
75EXPORT_SYMBOL_GPL(mtd_table_mutex);
76
77struct mtd_info *__mtd_next_device(int i)
78{
79 return idr_get_next(&mtd_idr, &i);
80}
81EXPORT_SYMBOL_GPL(__mtd_next_device);
82
83static LIST_HEAD(mtd_notifiers);
84
85
86#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87
88/* REVISIT once MTD uses the driver model better, whoever allocates
89 * the mtd_info will probably want to use the release() hook...
90 */
91static void mtd_release(struct device *dev)
92{
93 struct mtd_info *mtd = dev_get_drvdata(dev);
94 dev_t index = MTD_DEVT(mtd->index);
95
96 /* remove /dev/mtdXro node */
97 device_destroy(&mtd_class, index + 1);
98}
99
100#define MTD_DEVICE_ATTR_RO(name) \
101static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
102
103#define MTD_DEVICE_ATTR_RW(name) \
104static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
105
106static ssize_t mtd_type_show(struct device *dev,
107 struct device_attribute *attr, char *buf)
108{
109 struct mtd_info *mtd = dev_get_drvdata(dev);
110 char *type;
111
112 switch (mtd->type) {
113 case MTD_ABSENT:
114 type = "absent";
115 break;
116 case MTD_RAM:
117 type = "ram";
118 break;
119 case MTD_ROM:
120 type = "rom";
121 break;
122 case MTD_NORFLASH:
123 type = "nor";
124 break;
125 case MTD_NANDFLASH:
126 type = "nand";
127 break;
128 case MTD_DATAFLASH:
129 type = "dataflash";
130 break;
131 case MTD_UBIVOLUME:
132 type = "ubi";
133 break;
134 case MTD_MLCNANDFLASH:
135 type = "mlc-nand";
136 break;
137 default:
138 type = "unknown";
139 }
140
141 return sysfs_emit(buf, "%s\n", type);
142}
143MTD_DEVICE_ATTR_RO(type);
144
145static ssize_t mtd_flags_show(struct device *dev,
146 struct device_attribute *attr, char *buf)
147{
148 struct mtd_info *mtd = dev_get_drvdata(dev);
149
150 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
151}
152MTD_DEVICE_ATTR_RO(flags);
153
154static ssize_t mtd_size_show(struct device *dev,
155 struct device_attribute *attr, char *buf)
156{
157 struct mtd_info *mtd = dev_get_drvdata(dev);
158
159 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
160}
161MTD_DEVICE_ATTR_RO(size);
162
163static ssize_t mtd_erasesize_show(struct device *dev,
164 struct device_attribute *attr, char *buf)
165{
166 struct mtd_info *mtd = dev_get_drvdata(dev);
167
168 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
169}
170MTD_DEVICE_ATTR_RO(erasesize);
171
172static ssize_t mtd_writesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174{
175 struct mtd_info *mtd = dev_get_drvdata(dev);
176
177 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
178}
179MTD_DEVICE_ATTR_RO(writesize);
180
181static ssize_t mtd_subpagesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183{
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
186
187 return sysfs_emit(buf, "%u\n", subpagesize);
188}
189MTD_DEVICE_ATTR_RO(subpagesize);
190
191static ssize_t mtd_oobsize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195
196 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
197}
198MTD_DEVICE_ATTR_RO(oobsize);
199
200static ssize_t mtd_oobavail_show(struct device *dev,
201 struct device_attribute *attr, char *buf)
202{
203 struct mtd_info *mtd = dev_get_drvdata(dev);
204
205 return sysfs_emit(buf, "%u\n", mtd->oobavail);
206}
207MTD_DEVICE_ATTR_RO(oobavail);
208
209static ssize_t mtd_numeraseregions_show(struct device *dev,
210 struct device_attribute *attr, char *buf)
211{
212 struct mtd_info *mtd = dev_get_drvdata(dev);
213
214 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
215}
216MTD_DEVICE_ATTR_RO(numeraseregions);
217
218static ssize_t mtd_name_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220{
221 struct mtd_info *mtd = dev_get_drvdata(dev);
222
223 return sysfs_emit(buf, "%s\n", mtd->name);
224}
225MTD_DEVICE_ATTR_RO(name);
226
227static ssize_t mtd_ecc_strength_show(struct device *dev,
228 struct device_attribute *attr, char *buf)
229{
230 struct mtd_info *mtd = dev_get_drvdata(dev);
231
232 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
233}
234MTD_DEVICE_ATTR_RO(ecc_strength);
235
236static ssize_t mtd_bitflip_threshold_show(struct device *dev,
237 struct device_attribute *attr,
238 char *buf)
239{
240 struct mtd_info *mtd = dev_get_drvdata(dev);
241
242 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
243}
244
245static ssize_t mtd_bitflip_threshold_store(struct device *dev,
246 struct device_attribute *attr,
247 const char *buf, size_t count)
248{
249 struct mtd_info *mtd = dev_get_drvdata(dev);
250 unsigned int bitflip_threshold;
251 int retval;
252
253 retval = kstrtouint(buf, 0, &bitflip_threshold);
254 if (retval)
255 return retval;
256
257 mtd->bitflip_threshold = bitflip_threshold;
258 return count;
259}
260MTD_DEVICE_ATTR_RW(bitflip_threshold);
261
262static ssize_t mtd_ecc_step_size_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
264{
265 struct mtd_info *mtd = dev_get_drvdata(dev);
266
267 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
268
269}
270MTD_DEVICE_ATTR_RO(ecc_step_size);
271
272static ssize_t mtd_corrected_bits_show(struct device *dev,
273 struct device_attribute *attr, char *buf)
274{
275 struct mtd_info *mtd = dev_get_drvdata(dev);
276 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
277
278 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
279}
280MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
281
282static ssize_t mtd_ecc_failures_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
284{
285 struct mtd_info *mtd = dev_get_drvdata(dev);
286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287
288 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
289}
290MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
291
292static ssize_t mtd_bad_blocks_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297
298 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
299}
300MTD_DEVICE_ATTR_RO(bad_blocks);
301
302static ssize_t mtd_bbt_blocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304{
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
309}
310MTD_DEVICE_ATTR_RO(bbt_blocks);
311
312static struct attribute *mtd_attrs[] = {
313 &dev_attr_type.attr,
314 &dev_attr_flags.attr,
315 &dev_attr_size.attr,
316 &dev_attr_erasesize.attr,
317 &dev_attr_writesize.attr,
318 &dev_attr_subpagesize.attr,
319 &dev_attr_oobsize.attr,
320 &dev_attr_oobavail.attr,
321 &dev_attr_numeraseregions.attr,
322 &dev_attr_name.attr,
323 &dev_attr_ecc_strength.attr,
324 &dev_attr_ecc_step_size.attr,
325 &dev_attr_corrected_bits.attr,
326 &dev_attr_ecc_failures.attr,
327 &dev_attr_bad_blocks.attr,
328 &dev_attr_bbt_blocks.attr,
329 &dev_attr_bitflip_threshold.attr,
330 NULL,
331};
332ATTRIBUTE_GROUPS(mtd);
333
334static const struct device_type mtd_devtype = {
335 .name = "mtd",
336 .groups = mtd_groups,
337 .release = mtd_release,
338};
339
340static bool mtd_expert_analysis_mode;
341
342#ifdef CONFIG_DEBUG_FS
343bool mtd_check_expert_analysis_mode(void)
344{
345 const char *mtd_expert_analysis_warning =
346 "Bad block checks have been entirely disabled.\n"
347 "This is only reserved for post-mortem forensics and debug purposes.\n"
348 "Never enable this mode if you do not know what you are doing!\n";
349
350 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
351}
352EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
353#endif
354
355static struct dentry *dfs_dir_mtd;
356
357static void mtd_debugfs_populate(struct mtd_info *mtd)
358{
359 struct device *dev = &mtd->dev;
360
361 if (IS_ERR_OR_NULL(dfs_dir_mtd))
362 return;
363
364 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
365}
366
367#ifndef CONFIG_MMU
368unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
369{
370 switch (mtd->type) {
371 case MTD_RAM:
372 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
373 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
374 case MTD_ROM:
375 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
376 NOMMU_MAP_READ;
377 default:
378 return NOMMU_MAP_COPY;
379 }
380}
381EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
382#endif
383
384static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
385 void *cmd)
386{
387 struct mtd_info *mtd;
388
389 mtd = container_of(n, struct mtd_info, reboot_notifier);
390 mtd->_reboot(mtd);
391
392 return NOTIFY_DONE;
393}
394
395/**
396 * mtd_wunit_to_pairing_info - get pairing information of a wunit
397 * @mtd: pointer to new MTD device info structure
398 * @wunit: write unit we are interested in
399 * @info: returned pairing information
400 *
401 * Retrieve pairing information associated to the wunit.
402 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
403 * paired together, and where programming a page may influence the page it is
404 * paired with.
405 * The notion of page is replaced by the term wunit (write-unit) to stay
406 * consistent with the ->writesize field.
407 *
408 * The @wunit argument can be extracted from an absolute offset using
409 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
410 * to @wunit.
411 *
412 * From the pairing info the MTD user can find all the wunits paired with
413 * @wunit using the following loop:
414 *
415 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
416 * info.pair = i;
417 * mtd_pairing_info_to_wunit(mtd, &info);
418 * ...
419 * }
420 */
421int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
422 struct mtd_pairing_info *info)
423{
424 struct mtd_info *master = mtd_get_master(mtd);
425 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
426
427 if (wunit < 0 || wunit >= npairs)
428 return -EINVAL;
429
430 if (master->pairing && master->pairing->get_info)
431 return master->pairing->get_info(master, wunit, info);
432
433 info->group = 0;
434 info->pair = wunit;
435
436 return 0;
437}
438EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
439
440/**
441 * mtd_pairing_info_to_wunit - get wunit from pairing information
442 * @mtd: pointer to new MTD device info structure
443 * @info: pairing information struct
444 *
445 * Returns a positive number representing the wunit associated to the info
446 * struct, or a negative error code.
447 *
448 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
449 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
450 * doc).
451 *
452 * It can also be used to only program the first page of each pair (i.e.
453 * page attached to group 0), which allows one to use an MLC NAND in
454 * software-emulated SLC mode:
455 *
456 * info.group = 0;
457 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
458 * for (info.pair = 0; info.pair < npairs; info.pair++) {
459 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
460 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
461 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
462 * }
463 */
464int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
465 const struct mtd_pairing_info *info)
466{
467 struct mtd_info *master = mtd_get_master(mtd);
468 int ngroups = mtd_pairing_groups(master);
469 int npairs = mtd_wunit_per_eb(master) / ngroups;
470
471 if (!info || info->pair < 0 || info->pair >= npairs ||
472 info->group < 0 || info->group >= ngroups)
473 return -EINVAL;
474
475 if (master->pairing && master->pairing->get_wunit)
476 return mtd->pairing->get_wunit(master, info);
477
478 return info->pair;
479}
480EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
481
482/**
483 * mtd_pairing_groups - get the number of pairing groups
484 * @mtd: pointer to new MTD device info structure
485 *
486 * Returns the number of pairing groups.
487 *
488 * This number is usually equal to the number of bits exposed by a single
489 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
490 * to iterate over all pages of a given pair.
491 */
492int mtd_pairing_groups(struct mtd_info *mtd)
493{
494 struct mtd_info *master = mtd_get_master(mtd);
495
496 if (!master->pairing || !master->pairing->ngroups)
497 return 1;
498
499 return master->pairing->ngroups;
500}
501EXPORT_SYMBOL_GPL(mtd_pairing_groups);
502
503static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
504 void *val, size_t bytes)
505{
506 struct mtd_info *mtd = priv;
507 size_t retlen;
508 int err;
509
510 err = mtd_read(mtd, offset, bytes, &retlen, val);
511 if (err && err != -EUCLEAN)
512 return err;
513
514 return retlen == bytes ? 0 : -EIO;
515}
516
517static int mtd_nvmem_add(struct mtd_info *mtd)
518{
519 struct device_node *node = mtd_get_of_node(mtd);
520 struct nvmem_config config = {};
521
522 config.id = -1;
523 config.dev = &mtd->dev;
524 config.name = dev_name(&mtd->dev);
525 config.owner = THIS_MODULE;
526 config.reg_read = mtd_nvmem_reg_read;
527 config.size = mtd->size;
528 config.word_size = 1;
529 config.stride = 1;
530 config.read_only = true;
531 config.root_only = true;
532 config.ignore_wp = true;
533 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
534 config.priv = mtd;
535
536 mtd->nvmem = nvmem_register(&config);
537 if (IS_ERR(mtd->nvmem)) {
538 /* Just ignore if there is no NVMEM support in the kernel */
539 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
540 mtd->nvmem = NULL;
541 } else {
542 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
543 return PTR_ERR(mtd->nvmem);
544 }
545 }
546
547 return 0;
548}
549
550static void mtd_check_of_node(struct mtd_info *mtd)
551{
552 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
553 const char *pname, *prefix = "partition-";
554 int plen, mtd_name_len, offset, prefix_len;
555
556 /* Check if MTD already has a device node */
557 if (mtd_get_of_node(mtd))
558 return;
559
560 if (!mtd_is_partition(mtd))
561 return;
562
563 parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
564 if (!parent_dn)
565 return;
566
567 if (mtd_is_partition(mtd->parent))
568 partitions = of_node_get(parent_dn);
569 else
570 partitions = of_get_child_by_name(parent_dn, "partitions");
571 if (!partitions)
572 goto exit_parent;
573
574 prefix_len = strlen(prefix);
575 mtd_name_len = strlen(mtd->name);
576
577 /* Search if a partition is defined with the same name */
578 for_each_child_of_node(partitions, mtd_dn) {
579 /* Skip partition with no/wrong prefix */
580 if (!of_node_name_prefix(mtd_dn, prefix))
581 continue;
582
583 /* Label have priority. Check that first */
584 if (!of_property_read_string(mtd_dn, "label", &pname)) {
585 offset = 0;
586 } else {
587 pname = mtd_dn->name;
588 offset = prefix_len;
589 }
590
591 plen = strlen(pname) - offset;
592 if (plen == mtd_name_len &&
593 !strncmp(mtd->name, pname + offset, plen)) {
594 mtd_set_of_node(mtd, mtd_dn);
595 break;
596 }
597 }
598
599 of_node_put(partitions);
600exit_parent:
601 of_node_put(parent_dn);
602}
603
604/**
605 * add_mtd_device - register an MTD device
606 * @mtd: pointer to new MTD device info structure
607 *
608 * Add a device to the list of MTD devices present in the system, and
609 * notify each currently active MTD 'user' of its arrival. Returns
610 * zero on success or non-zero on failure.
611 */
612
613int add_mtd_device(struct mtd_info *mtd)
614{
615 struct device_node *np = mtd_get_of_node(mtd);
616 struct mtd_info *master = mtd_get_master(mtd);
617 struct mtd_notifier *not;
618 int i, error, ofidx;
619
620 /*
621 * May occur, for instance, on buggy drivers which call
622 * mtd_device_parse_register() multiple times on the same master MTD,
623 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
624 */
625 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
626 return -EEXIST;
627
628 BUG_ON(mtd->writesize == 0);
629
630 /*
631 * MTD drivers should implement ->_{write,read}() or
632 * ->_{write,read}_oob(), but not both.
633 */
634 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
635 (mtd->_read && mtd->_read_oob)))
636 return -EINVAL;
637
638 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
639 !(mtd->flags & MTD_NO_ERASE)))
640 return -EINVAL;
641
642 /*
643 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
644 * master is an MLC NAND and has a proper pairing scheme defined.
645 * We also reject masters that implement ->_writev() for now, because
646 * NAND controller drivers don't implement this hook, and adding the
647 * SLC -> MLC address/length conversion to this path is useless if we
648 * don't have a user.
649 */
650 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
651 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
652 !master->pairing || master->_writev))
653 return -EINVAL;
654
655 mutex_lock(&mtd_table_mutex);
656
657 ofidx = -1;
658 if (np)
659 ofidx = of_alias_get_id(np, "mtd");
660 if (ofidx >= 0)
661 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
662 else
663 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
664 if (i < 0) {
665 error = i;
666 goto fail_locked;
667 }
668
669 mtd->index = i;
670 mtd->usecount = 0;
671
672 /* default value if not set by driver */
673 if (mtd->bitflip_threshold == 0)
674 mtd->bitflip_threshold = mtd->ecc_strength;
675
676 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
677 int ngroups = mtd_pairing_groups(master);
678
679 mtd->erasesize /= ngroups;
680 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
681 mtd->erasesize;
682 }
683
684 if (is_power_of_2(mtd->erasesize))
685 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
686 else
687 mtd->erasesize_shift = 0;
688
689 if (is_power_of_2(mtd->writesize))
690 mtd->writesize_shift = ffs(mtd->writesize) - 1;
691 else
692 mtd->writesize_shift = 0;
693
694 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
695 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
696
697 /* Some chips always power up locked. Unlock them now */
698 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
699 error = mtd_unlock(mtd, 0, mtd->size);
700 if (error && error != -EOPNOTSUPP)
701 printk(KERN_WARNING
702 "%s: unlock failed, writes may not work\n",
703 mtd->name);
704 /* Ignore unlock failures? */
705 error = 0;
706 }
707
708 /* Caller should have set dev.parent to match the
709 * physical device, if appropriate.
710 */
711 mtd->dev.type = &mtd_devtype;
712 mtd->dev.class = &mtd_class;
713 mtd->dev.devt = MTD_DEVT(i);
714 dev_set_name(&mtd->dev, "mtd%d", i);
715 dev_set_drvdata(&mtd->dev, mtd);
716 mtd_check_of_node(mtd);
717 of_node_get(mtd_get_of_node(mtd));
718 error = device_register(&mtd->dev);
719 if (error) {
720 put_device(&mtd->dev);
721 goto fail_added;
722 }
723
724 /* Add the nvmem provider */
725 error = mtd_nvmem_add(mtd);
726 if (error)
727 goto fail_nvmem_add;
728
729 mtd_debugfs_populate(mtd);
730
731 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
732 "mtd%dro", i);
733
734 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
735 /* No need to get a refcount on the module containing
736 the notifier, since we hold the mtd_table_mutex */
737 list_for_each_entry(not, &mtd_notifiers, list)
738 not->add(mtd);
739
740 mutex_unlock(&mtd_table_mutex);
741
742 if (of_find_property(mtd_get_of_node(mtd), "linux,rootfs", NULL)) {
743 if (IS_BUILTIN(CONFIG_MTD)) {
744 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
745 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
746 } else {
747 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
748 mtd->index, mtd->name);
749 }
750 }
751
752 /* We _know_ we aren't being removed, because
753 our caller is still holding us here. So none
754 of this try_ nonsense, and no bitching about it
755 either. :) */
756 __module_get(THIS_MODULE);
757 return 0;
758
759fail_nvmem_add:
760 device_unregister(&mtd->dev);
761fail_added:
762 of_node_put(mtd_get_of_node(mtd));
763 idr_remove(&mtd_idr, i);
764fail_locked:
765 mutex_unlock(&mtd_table_mutex);
766 return error;
767}
768
769/**
770 * del_mtd_device - unregister an MTD device
771 * @mtd: pointer to MTD device info structure
772 *
773 * Remove a device from the list of MTD devices present in the system,
774 * and notify each currently active MTD 'user' of its departure.
775 * Returns zero on success or 1 on failure, which currently will happen
776 * if the requested device does not appear to be present in the list.
777 */
778
779int del_mtd_device(struct mtd_info *mtd)
780{
781 int ret;
782 struct mtd_notifier *not;
783 struct device_node *mtd_of_node;
784
785 mutex_lock(&mtd_table_mutex);
786
787 if (idr_find(&mtd_idr, mtd->index) != mtd) {
788 ret = -ENODEV;
789 goto out_error;
790 }
791
792 /* No need to get a refcount on the module containing
793 the notifier, since we hold the mtd_table_mutex */
794 list_for_each_entry(not, &mtd_notifiers, list)
795 not->remove(mtd);
796
797 if (mtd->usecount) {
798 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
799 mtd->index, mtd->name, mtd->usecount);
800 ret = -EBUSY;
801 } else {
802 mtd_of_node = mtd_get_of_node(mtd);
803 debugfs_remove_recursive(mtd->dbg.dfs_dir);
804
805 /* Try to remove the NVMEM provider */
806 nvmem_unregister(mtd->nvmem);
807
808 device_unregister(&mtd->dev);
809
810 /* Clear dev so mtd can be safely re-registered later if desired */
811 memset(&mtd->dev, 0, sizeof(mtd->dev));
812
813 idr_remove(&mtd_idr, mtd->index);
814 of_node_put(mtd_of_node);
815
816 module_put(THIS_MODULE);
817 ret = 0;
818 }
819
820out_error:
821 mutex_unlock(&mtd_table_mutex);
822 return ret;
823}
824
825/*
826 * Set a few defaults based on the parent devices, if not provided by the
827 * driver
828 */
829static void mtd_set_dev_defaults(struct mtd_info *mtd)
830{
831 if (mtd->dev.parent) {
832 if (!mtd->owner && mtd->dev.parent->driver)
833 mtd->owner = mtd->dev.parent->driver->owner;
834 if (!mtd->name)
835 mtd->name = dev_name(mtd->dev.parent);
836 } else {
837 pr_debug("mtd device won't show a device symlink in sysfs\n");
838 }
839
840 INIT_LIST_HEAD(&mtd->partitions);
841 mutex_init(&mtd->master.partitions_lock);
842 mutex_init(&mtd->master.chrdev_lock);
843}
844
845static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
846{
847 struct otp_info *info;
848 ssize_t size = 0;
849 unsigned int i;
850 size_t retlen;
851 int ret;
852
853 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
854 if (!info)
855 return -ENOMEM;
856
857 if (is_user)
858 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
859 else
860 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
861 if (ret)
862 goto err;
863
864 for (i = 0; i < retlen / sizeof(*info); i++)
865 size += info[i].length;
866
867 kfree(info);
868 return size;
869
870err:
871 kfree(info);
872
873 /* ENODATA means there is no OTP region. */
874 return ret == -ENODATA ? 0 : ret;
875}
876
877static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
878 const char *compatible,
879 int size,
880 nvmem_reg_read_t reg_read)
881{
882 struct nvmem_device *nvmem = NULL;
883 struct nvmem_config config = {};
884 struct device_node *np;
885
886 /* DT binding is optional */
887 np = of_get_compatible_child(mtd->dev.of_node, compatible);
888
889 /* OTP nvmem will be registered on the physical device */
890 config.dev = mtd->dev.parent;
891 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
892 config.id = NVMEM_DEVID_NONE;
893 config.owner = THIS_MODULE;
894 config.type = NVMEM_TYPE_OTP;
895 config.root_only = true;
896 config.ignore_wp = true;
897 config.reg_read = reg_read;
898 config.size = size;
899 config.of_node = np;
900 config.priv = mtd;
901
902 nvmem = nvmem_register(&config);
903 /* Just ignore if there is no NVMEM support in the kernel */
904 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
905 nvmem = NULL;
906
907 of_node_put(np);
908 kfree(config.name);
909
910 return nvmem;
911}
912
913static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
914 void *val, size_t bytes)
915{
916 struct mtd_info *mtd = priv;
917 size_t retlen;
918 int ret;
919
920 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
921 if (ret)
922 return ret;
923
924 return retlen == bytes ? 0 : -EIO;
925}
926
927static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
928 void *val, size_t bytes)
929{
930 struct mtd_info *mtd = priv;
931 size_t retlen;
932 int ret;
933
934 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
935 if (ret)
936 return ret;
937
938 return retlen == bytes ? 0 : -EIO;
939}
940
941static int mtd_otp_nvmem_add(struct mtd_info *mtd)
942{
943 struct nvmem_device *nvmem;
944 ssize_t size;
945 int err;
946
947 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
948 size = mtd_otp_size(mtd, true);
949 if (size < 0)
950 return size;
951
952 if (size > 0) {
953 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
954 mtd_nvmem_user_otp_reg_read);
955 if (IS_ERR(nvmem)) {
956 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
957 return PTR_ERR(nvmem);
958 }
959 mtd->otp_user_nvmem = nvmem;
960 }
961 }
962
963 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
964 size = mtd_otp_size(mtd, false);
965 if (size < 0) {
966 err = size;
967 goto err;
968 }
969
970 if (size > 0) {
971 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
972 mtd_nvmem_fact_otp_reg_read);
973 if (IS_ERR(nvmem)) {
974 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
975 err = PTR_ERR(nvmem);
976 goto err;
977 }
978 mtd->otp_factory_nvmem = nvmem;
979 }
980 }
981
982 return 0;
983
984err:
985 nvmem_unregister(mtd->otp_user_nvmem);
986 return err;
987}
988
989/**
990 * mtd_device_parse_register - parse partitions and register an MTD device.
991 *
992 * @mtd: the MTD device to register
993 * @types: the list of MTD partition probes to try, see
994 * 'parse_mtd_partitions()' for more information
995 * @parser_data: MTD partition parser-specific data
996 * @parts: fallback partition information to register, if parsing fails;
997 * only valid if %nr_parts > %0
998 * @nr_parts: the number of partitions in parts, if zero then the full
999 * MTD device is registered if no partition info is found
1000 *
1001 * This function aggregates MTD partitions parsing (done by
1002 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1003 * basically follows the most common pattern found in many MTD drivers:
1004 *
1005 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1006 * registered first.
1007 * * Then It tries to probe partitions on MTD device @mtd using parsers
1008 * specified in @types (if @types is %NULL, then the default list of parsers
1009 * is used, see 'parse_mtd_partitions()' for more information). If none are
1010 * found this functions tries to fallback to information specified in
1011 * @parts/@nr_parts.
1012 * * If no partitions were found this function just registers the MTD device
1013 * @mtd and exits.
1014 *
1015 * Returns zero in case of success and a negative error code in case of failure.
1016 */
1017int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1018 struct mtd_part_parser_data *parser_data,
1019 const struct mtd_partition *parts,
1020 int nr_parts)
1021{
1022 int ret;
1023
1024 mtd_set_dev_defaults(mtd);
1025
1026 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1027 ret = add_mtd_device(mtd);
1028 if (ret)
1029 return ret;
1030 }
1031
1032 /* Prefer parsed partitions over driver-provided fallback */
1033 ret = parse_mtd_partitions(mtd, types, parser_data);
1034 if (ret == -EPROBE_DEFER)
1035 goto out;
1036
1037 if (ret > 0)
1038 ret = 0;
1039 else if (nr_parts)
1040 ret = add_mtd_partitions(mtd, parts, nr_parts);
1041 else if (!device_is_registered(&mtd->dev))
1042 ret = add_mtd_device(mtd);
1043 else
1044 ret = 0;
1045
1046 if (ret)
1047 goto out;
1048
1049 /*
1050 * FIXME: some drivers unfortunately call this function more than once.
1051 * So we have to check if we've already assigned the reboot notifier.
1052 *
1053 * Generally, we can make multiple calls work for most cases, but it
1054 * does cause problems with parse_mtd_partitions() above (e.g.,
1055 * cmdlineparts will register partitions more than once).
1056 */
1057 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1058 "MTD already registered\n");
1059 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1060 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1061 register_reboot_notifier(&mtd->reboot_notifier);
1062 }
1063
1064 ret = mtd_otp_nvmem_add(mtd);
1065
1066out:
1067 if (ret && device_is_registered(&mtd->dev))
1068 del_mtd_device(mtd);
1069
1070 return ret;
1071}
1072EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1073
1074/**
1075 * mtd_device_unregister - unregister an existing MTD device.
1076 *
1077 * @master: the MTD device to unregister. This will unregister both the master
1078 * and any partitions if registered.
1079 */
1080int mtd_device_unregister(struct mtd_info *master)
1081{
1082 int err;
1083
1084 if (master->_reboot) {
1085 unregister_reboot_notifier(&master->reboot_notifier);
1086 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1087 }
1088
1089 nvmem_unregister(master->otp_user_nvmem);
1090 nvmem_unregister(master->otp_factory_nvmem);
1091
1092 err = del_mtd_partitions(master);
1093 if (err)
1094 return err;
1095
1096 if (!device_is_registered(&master->dev))
1097 return 0;
1098
1099 return del_mtd_device(master);
1100}
1101EXPORT_SYMBOL_GPL(mtd_device_unregister);
1102
1103/**
1104 * register_mtd_user - register a 'user' of MTD devices.
1105 * @new: pointer to notifier info structure
1106 *
1107 * Registers a pair of callbacks function to be called upon addition
1108 * or removal of MTD devices. Causes the 'add' callback to be immediately
1109 * invoked for each MTD device currently present in the system.
1110 */
1111void register_mtd_user (struct mtd_notifier *new)
1112{
1113 struct mtd_info *mtd;
1114
1115 mutex_lock(&mtd_table_mutex);
1116
1117 list_add(&new->list, &mtd_notifiers);
1118
1119 __module_get(THIS_MODULE);
1120
1121 mtd_for_each_device(mtd)
1122 new->add(mtd);
1123
1124 mutex_unlock(&mtd_table_mutex);
1125}
1126EXPORT_SYMBOL_GPL(register_mtd_user);
1127
1128/**
1129 * unregister_mtd_user - unregister a 'user' of MTD devices.
1130 * @old: pointer to notifier info structure
1131 *
1132 * Removes a callback function pair from the list of 'users' to be
1133 * notified upon addition or removal of MTD devices. Causes the
1134 * 'remove' callback to be immediately invoked for each MTD device
1135 * currently present in the system.
1136 */
1137int unregister_mtd_user (struct mtd_notifier *old)
1138{
1139 struct mtd_info *mtd;
1140
1141 mutex_lock(&mtd_table_mutex);
1142
1143 module_put(THIS_MODULE);
1144
1145 mtd_for_each_device(mtd)
1146 old->remove(mtd);
1147
1148 list_del(&old->list);
1149 mutex_unlock(&mtd_table_mutex);
1150 return 0;
1151}
1152EXPORT_SYMBOL_GPL(unregister_mtd_user);
1153
1154/**
1155 * get_mtd_device - obtain a validated handle for an MTD device
1156 * @mtd: last known address of the required MTD device
1157 * @num: internal device number of the required MTD device
1158 *
1159 * Given a number and NULL address, return the num'th entry in the device
1160 * table, if any. Given an address and num == -1, search the device table
1161 * for a device with that address and return if it's still present. Given
1162 * both, return the num'th driver only if its address matches. Return
1163 * error code if not.
1164 */
1165struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1166{
1167 struct mtd_info *ret = NULL, *other;
1168 int err = -ENODEV;
1169
1170 mutex_lock(&mtd_table_mutex);
1171
1172 if (num == -1) {
1173 mtd_for_each_device(other) {
1174 if (other == mtd) {
1175 ret = mtd;
1176 break;
1177 }
1178 }
1179 } else if (num >= 0) {
1180 ret = idr_find(&mtd_idr, num);
1181 if (mtd && mtd != ret)
1182 ret = NULL;
1183 }
1184
1185 if (!ret) {
1186 ret = ERR_PTR(err);
1187 goto out;
1188 }
1189
1190 err = __get_mtd_device(ret);
1191 if (err)
1192 ret = ERR_PTR(err);
1193out:
1194 mutex_unlock(&mtd_table_mutex);
1195 return ret;
1196}
1197EXPORT_SYMBOL_GPL(get_mtd_device);
1198
1199
1200int __get_mtd_device(struct mtd_info *mtd)
1201{
1202 struct mtd_info *master = mtd_get_master(mtd);
1203 int err;
1204
1205 if (!try_module_get(master->owner))
1206 return -ENODEV;
1207
1208 if (master->_get_device) {
1209 err = master->_get_device(mtd);
1210
1211 if (err) {
1212 module_put(master->owner);
1213 return err;
1214 }
1215 }
1216
1217 master->usecount++;
1218
1219 while (mtd->parent) {
1220 mtd->usecount++;
1221 mtd = mtd->parent;
1222 }
1223
1224 return 0;
1225}
1226EXPORT_SYMBOL_GPL(__get_mtd_device);
1227
1228/**
1229 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1230 *
1231 * @np: device tree node
1232 */
1233struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1234{
1235 struct mtd_info *mtd = NULL;
1236 struct mtd_info *tmp;
1237 int err;
1238
1239 mutex_lock(&mtd_table_mutex);
1240
1241 err = -EPROBE_DEFER;
1242 mtd_for_each_device(tmp) {
1243 if (mtd_get_of_node(tmp) == np) {
1244 mtd = tmp;
1245 err = __get_mtd_device(mtd);
1246 break;
1247 }
1248 }
1249
1250 mutex_unlock(&mtd_table_mutex);
1251
1252 return err ? ERR_PTR(err) : mtd;
1253}
1254EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1255
1256/**
1257 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1258 * device name
1259 * @name: MTD device name to open
1260 *
1261 * This function returns MTD device description structure in case of
1262 * success and an error code in case of failure.
1263 */
1264struct mtd_info *get_mtd_device_nm(const char *name)
1265{
1266 int err = -ENODEV;
1267 struct mtd_info *mtd = NULL, *other;
1268
1269 mutex_lock(&mtd_table_mutex);
1270
1271 mtd_for_each_device(other) {
1272 if (!strcmp(name, other->name)) {
1273 mtd = other;
1274 break;
1275 }
1276 }
1277
1278 if (!mtd)
1279 goto out_unlock;
1280
1281 err = __get_mtd_device(mtd);
1282 if (err)
1283 goto out_unlock;
1284
1285 mutex_unlock(&mtd_table_mutex);
1286 return mtd;
1287
1288out_unlock:
1289 mutex_unlock(&mtd_table_mutex);
1290 return ERR_PTR(err);
1291}
1292EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1293
1294void put_mtd_device(struct mtd_info *mtd)
1295{
1296 mutex_lock(&mtd_table_mutex);
1297 __put_mtd_device(mtd);
1298 mutex_unlock(&mtd_table_mutex);
1299
1300}
1301EXPORT_SYMBOL_GPL(put_mtd_device);
1302
1303void __put_mtd_device(struct mtd_info *mtd)
1304{
1305 struct mtd_info *master = mtd_get_master(mtd);
1306
1307 while (mtd->parent) {
1308 --mtd->usecount;
1309 BUG_ON(mtd->usecount < 0);
1310 mtd = mtd->parent;
1311 }
1312
1313 master->usecount--;
1314
1315 if (master->_put_device)
1316 master->_put_device(master);
1317
1318 module_put(master->owner);
1319}
1320EXPORT_SYMBOL_GPL(__put_mtd_device);
1321
1322/*
1323 * Erase is an synchronous operation. Device drivers are epected to return a
1324 * negative error code if the operation failed and update instr->fail_addr
1325 * to point the portion that was not properly erased.
1326 */
1327int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1328{
1329 struct mtd_info *master = mtd_get_master(mtd);
1330 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1331 struct erase_info adjinstr;
1332 int ret;
1333
1334 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1335 adjinstr = *instr;
1336
1337 if (!mtd->erasesize || !master->_erase)
1338 return -ENOTSUPP;
1339
1340 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1341 return -EINVAL;
1342 if (!(mtd->flags & MTD_WRITEABLE))
1343 return -EROFS;
1344
1345 if (!instr->len)
1346 return 0;
1347
1348 ledtrig_mtd_activity();
1349
1350 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1351 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1352 master->erasesize;
1353 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1354 master->erasesize) -
1355 adjinstr.addr;
1356 }
1357
1358 adjinstr.addr += mst_ofs;
1359
1360 ret = master->_erase(master, &adjinstr);
1361
1362 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1363 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1364 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1365 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1366 master);
1367 instr->fail_addr *= mtd->erasesize;
1368 }
1369 }
1370
1371 return ret;
1372}
1373EXPORT_SYMBOL_GPL(mtd_erase);
1374
1375/*
1376 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1377 */
1378int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1379 void **virt, resource_size_t *phys)
1380{
1381 struct mtd_info *master = mtd_get_master(mtd);
1382
1383 *retlen = 0;
1384 *virt = NULL;
1385 if (phys)
1386 *phys = 0;
1387 if (!master->_point)
1388 return -EOPNOTSUPP;
1389 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1390 return -EINVAL;
1391 if (!len)
1392 return 0;
1393
1394 from = mtd_get_master_ofs(mtd, from);
1395 return master->_point(master, from, len, retlen, virt, phys);
1396}
1397EXPORT_SYMBOL_GPL(mtd_point);
1398
1399/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1400int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1401{
1402 struct mtd_info *master = mtd_get_master(mtd);
1403
1404 if (!master->_unpoint)
1405 return -EOPNOTSUPP;
1406 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1407 return -EINVAL;
1408 if (!len)
1409 return 0;
1410 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1411}
1412EXPORT_SYMBOL_GPL(mtd_unpoint);
1413
1414/*
1415 * Allow NOMMU mmap() to directly map the device (if not NULL)
1416 * - return the address to which the offset maps
1417 * - return -ENOSYS to indicate refusal to do the mapping
1418 */
1419unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1420 unsigned long offset, unsigned long flags)
1421{
1422 size_t retlen;
1423 void *virt;
1424 int ret;
1425
1426 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1427 if (ret)
1428 return ret;
1429 if (retlen != len) {
1430 mtd_unpoint(mtd, offset, retlen);
1431 return -ENOSYS;
1432 }
1433 return (unsigned long)virt;
1434}
1435EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1436
1437static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1438 const struct mtd_ecc_stats *old_stats)
1439{
1440 struct mtd_ecc_stats diff;
1441
1442 if (master == mtd)
1443 return;
1444
1445 diff = master->ecc_stats;
1446 diff.failed -= old_stats->failed;
1447 diff.corrected -= old_stats->corrected;
1448
1449 while (mtd->parent) {
1450 mtd->ecc_stats.failed += diff.failed;
1451 mtd->ecc_stats.corrected += diff.corrected;
1452 mtd = mtd->parent;
1453 }
1454}
1455
1456int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1457 u_char *buf)
1458{
1459 struct mtd_oob_ops ops = {
1460 .len = len,
1461 .datbuf = buf,
1462 };
1463 int ret;
1464
1465 ret = mtd_read_oob(mtd, from, &ops);
1466 *retlen = ops.retlen;
1467
1468 return ret;
1469}
1470EXPORT_SYMBOL_GPL(mtd_read);
1471
1472int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1473 const u_char *buf)
1474{
1475 struct mtd_oob_ops ops = {
1476 .len = len,
1477 .datbuf = (u8 *)buf,
1478 };
1479 int ret;
1480
1481 ret = mtd_write_oob(mtd, to, &ops);
1482 *retlen = ops.retlen;
1483
1484 return ret;
1485}
1486EXPORT_SYMBOL_GPL(mtd_write);
1487
1488/*
1489 * In blackbox flight recorder like scenarios we want to make successful writes
1490 * in interrupt context. panic_write() is only intended to be called when its
1491 * known the kernel is about to panic and we need the write to succeed. Since
1492 * the kernel is not going to be running for much longer, this function can
1493 * break locks and delay to ensure the write succeeds (but not sleep).
1494 */
1495int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1496 const u_char *buf)
1497{
1498 struct mtd_info *master = mtd_get_master(mtd);
1499
1500 *retlen = 0;
1501 if (!master->_panic_write)
1502 return -EOPNOTSUPP;
1503 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1504 return -EINVAL;
1505 if (!(mtd->flags & MTD_WRITEABLE))
1506 return -EROFS;
1507 if (!len)
1508 return 0;
1509 if (!master->oops_panic_write)
1510 master->oops_panic_write = true;
1511
1512 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1513 retlen, buf);
1514}
1515EXPORT_SYMBOL_GPL(mtd_panic_write);
1516
1517static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1518 struct mtd_oob_ops *ops)
1519{
1520 /*
1521 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1522 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1523 * this case.
1524 */
1525 if (!ops->datbuf)
1526 ops->len = 0;
1527
1528 if (!ops->oobbuf)
1529 ops->ooblen = 0;
1530
1531 if (offs < 0 || offs + ops->len > mtd->size)
1532 return -EINVAL;
1533
1534 if (ops->ooblen) {
1535 size_t maxooblen;
1536
1537 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1538 return -EINVAL;
1539
1540 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1541 mtd_div_by_ws(offs, mtd)) *
1542 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1543 if (ops->ooblen > maxooblen)
1544 return -EINVAL;
1545 }
1546
1547 return 0;
1548}
1549
1550static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1551 struct mtd_oob_ops *ops)
1552{
1553 struct mtd_info *master = mtd_get_master(mtd);
1554 int ret;
1555
1556 from = mtd_get_master_ofs(mtd, from);
1557 if (master->_read_oob)
1558 ret = master->_read_oob(master, from, ops);
1559 else
1560 ret = master->_read(master, from, ops->len, &ops->retlen,
1561 ops->datbuf);
1562
1563 return ret;
1564}
1565
1566static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1567 struct mtd_oob_ops *ops)
1568{
1569 struct mtd_info *master = mtd_get_master(mtd);
1570 int ret;
1571
1572 to = mtd_get_master_ofs(mtd, to);
1573 if (master->_write_oob)
1574 ret = master->_write_oob(master, to, ops);
1575 else
1576 ret = master->_write(master, to, ops->len, &ops->retlen,
1577 ops->datbuf);
1578
1579 return ret;
1580}
1581
1582static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1583 struct mtd_oob_ops *ops)
1584{
1585 struct mtd_info *master = mtd_get_master(mtd);
1586 int ngroups = mtd_pairing_groups(master);
1587 int npairs = mtd_wunit_per_eb(master) / ngroups;
1588 struct mtd_oob_ops adjops = *ops;
1589 unsigned int wunit, oobavail;
1590 struct mtd_pairing_info info;
1591 int max_bitflips = 0;
1592 u32 ebofs, pageofs;
1593 loff_t base, pos;
1594
1595 ebofs = mtd_mod_by_eb(start, mtd);
1596 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1597 info.group = 0;
1598 info.pair = mtd_div_by_ws(ebofs, mtd);
1599 pageofs = mtd_mod_by_ws(ebofs, mtd);
1600 oobavail = mtd_oobavail(mtd, ops);
1601
1602 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1603 int ret;
1604
1605 if (info.pair >= npairs) {
1606 info.pair = 0;
1607 base += master->erasesize;
1608 }
1609
1610 wunit = mtd_pairing_info_to_wunit(master, &info);
1611 pos = mtd_wunit_to_offset(mtd, base, wunit);
1612
1613 adjops.len = ops->len - ops->retlen;
1614 if (adjops.len > mtd->writesize - pageofs)
1615 adjops.len = mtd->writesize - pageofs;
1616
1617 adjops.ooblen = ops->ooblen - ops->oobretlen;
1618 if (adjops.ooblen > oobavail - adjops.ooboffs)
1619 adjops.ooblen = oobavail - adjops.ooboffs;
1620
1621 if (read) {
1622 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1623 if (ret > 0)
1624 max_bitflips = max(max_bitflips, ret);
1625 } else {
1626 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1627 }
1628
1629 if (ret < 0)
1630 return ret;
1631
1632 max_bitflips = max(max_bitflips, ret);
1633 ops->retlen += adjops.retlen;
1634 ops->oobretlen += adjops.oobretlen;
1635 adjops.datbuf += adjops.retlen;
1636 adjops.oobbuf += adjops.oobretlen;
1637 adjops.ooboffs = 0;
1638 pageofs = 0;
1639 info.pair++;
1640 }
1641
1642 return max_bitflips;
1643}
1644
1645int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1646{
1647 struct mtd_info *master = mtd_get_master(mtd);
1648 struct mtd_ecc_stats old_stats = master->ecc_stats;
1649 int ret_code;
1650
1651 ops->retlen = ops->oobretlen = 0;
1652
1653 ret_code = mtd_check_oob_ops(mtd, from, ops);
1654 if (ret_code)
1655 return ret_code;
1656
1657 ledtrig_mtd_activity();
1658
1659 /* Check the validity of a potential fallback on mtd->_read */
1660 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1661 return -EOPNOTSUPP;
1662
1663 if (ops->stats)
1664 memset(ops->stats, 0, sizeof(*ops->stats));
1665
1666 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1667 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1668 else
1669 ret_code = mtd_read_oob_std(mtd, from, ops);
1670
1671 mtd_update_ecc_stats(mtd, master, &old_stats);
1672
1673 /*
1674 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1675 * similar to mtd->_read(), returning a non-negative integer
1676 * representing max bitflips. In other cases, mtd->_read_oob() may
1677 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1678 */
1679 if (unlikely(ret_code < 0))
1680 return ret_code;
1681 if (mtd->ecc_strength == 0)
1682 return 0; /* device lacks ecc */
1683 if (ops->stats)
1684 ops->stats->max_bitflips = ret_code;
1685 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1686}
1687EXPORT_SYMBOL_GPL(mtd_read_oob);
1688
1689int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1690 struct mtd_oob_ops *ops)
1691{
1692 struct mtd_info *master = mtd_get_master(mtd);
1693 int ret;
1694
1695 ops->retlen = ops->oobretlen = 0;
1696
1697 if (!(mtd->flags & MTD_WRITEABLE))
1698 return -EROFS;
1699
1700 ret = mtd_check_oob_ops(mtd, to, ops);
1701 if (ret)
1702 return ret;
1703
1704 ledtrig_mtd_activity();
1705
1706 /* Check the validity of a potential fallback on mtd->_write */
1707 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1708 return -EOPNOTSUPP;
1709
1710 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1711 return mtd_io_emulated_slc(mtd, to, false, ops);
1712
1713 return mtd_write_oob_std(mtd, to, ops);
1714}
1715EXPORT_SYMBOL_GPL(mtd_write_oob);
1716
1717/**
1718 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1719 * @mtd: MTD device structure
1720 * @section: ECC section. Depending on the layout you may have all the ECC
1721 * bytes stored in a single contiguous section, or one section
1722 * per ECC chunk (and sometime several sections for a single ECC
1723 * ECC chunk)
1724 * @oobecc: OOB region struct filled with the appropriate ECC position
1725 * information
1726 *
1727 * This function returns ECC section information in the OOB area. If you want
1728 * to get all the ECC bytes information, then you should call
1729 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1730 *
1731 * Returns zero on success, a negative error code otherwise.
1732 */
1733int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1734 struct mtd_oob_region *oobecc)
1735{
1736 struct mtd_info *master = mtd_get_master(mtd);
1737
1738 memset(oobecc, 0, sizeof(*oobecc));
1739
1740 if (!master || section < 0)
1741 return -EINVAL;
1742
1743 if (!master->ooblayout || !master->ooblayout->ecc)
1744 return -ENOTSUPP;
1745
1746 return master->ooblayout->ecc(master, section, oobecc);
1747}
1748EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1749
1750/**
1751 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1752 * section
1753 * @mtd: MTD device structure
1754 * @section: Free section you are interested in. Depending on the layout
1755 * you may have all the free bytes stored in a single contiguous
1756 * section, or one section per ECC chunk plus an extra section
1757 * for the remaining bytes (or other funky layout).
1758 * @oobfree: OOB region struct filled with the appropriate free position
1759 * information
1760 *
1761 * This function returns free bytes position in the OOB area. If you want
1762 * to get all the free bytes information, then you should call
1763 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1768 struct mtd_oob_region *oobfree)
1769{
1770 struct mtd_info *master = mtd_get_master(mtd);
1771
1772 memset(oobfree, 0, sizeof(*oobfree));
1773
1774 if (!master || section < 0)
1775 return -EINVAL;
1776
1777 if (!master->ooblayout || !master->ooblayout->free)
1778 return -ENOTSUPP;
1779
1780 return master->ooblayout->free(master, section, oobfree);
1781}
1782EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1783
1784/**
1785 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1786 * @mtd: mtd info structure
1787 * @byte: the byte we are searching for
1788 * @sectionp: pointer where the section id will be stored
1789 * @oobregion: used to retrieve the ECC position
1790 * @iter: iterator function. Should be either mtd_ooblayout_free or
1791 * mtd_ooblayout_ecc depending on the region type you're searching for
1792 *
1793 * This function returns the section id and oobregion information of a
1794 * specific byte. For example, say you want to know where the 4th ECC byte is
1795 * stored, you'll use:
1796 *
1797 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1798 *
1799 * Returns zero on success, a negative error code otherwise.
1800 */
1801static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1802 int *sectionp, struct mtd_oob_region *oobregion,
1803 int (*iter)(struct mtd_info *,
1804 int section,
1805 struct mtd_oob_region *oobregion))
1806{
1807 int pos = 0, ret, section = 0;
1808
1809 memset(oobregion, 0, sizeof(*oobregion));
1810
1811 while (1) {
1812 ret = iter(mtd, section, oobregion);
1813 if (ret)
1814 return ret;
1815
1816 if (pos + oobregion->length > byte)
1817 break;
1818
1819 pos += oobregion->length;
1820 section++;
1821 }
1822
1823 /*
1824 * Adjust region info to make it start at the beginning at the
1825 * 'start' ECC byte.
1826 */
1827 oobregion->offset += byte - pos;
1828 oobregion->length -= byte - pos;
1829 *sectionp = section;
1830
1831 return 0;
1832}
1833
1834/**
1835 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1836 * ECC byte
1837 * @mtd: mtd info structure
1838 * @eccbyte: the byte we are searching for
1839 * @section: pointer where the section id will be stored
1840 * @oobregion: OOB region information
1841 *
1842 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1843 * byte.
1844 *
1845 * Returns zero on success, a negative error code otherwise.
1846 */
1847int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1848 int *section,
1849 struct mtd_oob_region *oobregion)
1850{
1851 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1852 mtd_ooblayout_ecc);
1853}
1854EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1855
1856/**
1857 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1858 * @mtd: mtd info structure
1859 * @buf: destination buffer to store OOB bytes
1860 * @oobbuf: OOB buffer
1861 * @start: first byte to retrieve
1862 * @nbytes: number of bytes to retrieve
1863 * @iter: section iterator
1864 *
1865 * Extract bytes attached to a specific category (ECC or free)
1866 * from the OOB buffer and copy them into buf.
1867 *
1868 * Returns zero on success, a negative error code otherwise.
1869 */
1870static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1871 const u8 *oobbuf, int start, int nbytes,
1872 int (*iter)(struct mtd_info *,
1873 int section,
1874 struct mtd_oob_region *oobregion))
1875{
1876 struct mtd_oob_region oobregion;
1877 int section, ret;
1878
1879 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1880 &oobregion, iter);
1881
1882 while (!ret) {
1883 int cnt;
1884
1885 cnt = min_t(int, nbytes, oobregion.length);
1886 memcpy(buf, oobbuf + oobregion.offset, cnt);
1887 buf += cnt;
1888 nbytes -= cnt;
1889
1890 if (!nbytes)
1891 break;
1892
1893 ret = iter(mtd, ++section, &oobregion);
1894 }
1895
1896 return ret;
1897}
1898
1899/**
1900 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1901 * @mtd: mtd info structure
1902 * @buf: source buffer to get OOB bytes from
1903 * @oobbuf: OOB buffer
1904 * @start: first OOB byte to set
1905 * @nbytes: number of OOB bytes to set
1906 * @iter: section iterator
1907 *
1908 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1909 * is selected by passing the appropriate iterator.
1910 *
1911 * Returns zero on success, a negative error code otherwise.
1912 */
1913static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1914 u8 *oobbuf, int start, int nbytes,
1915 int (*iter)(struct mtd_info *,
1916 int section,
1917 struct mtd_oob_region *oobregion))
1918{
1919 struct mtd_oob_region oobregion;
1920 int section, ret;
1921
1922 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1923 &oobregion, iter);
1924
1925 while (!ret) {
1926 int cnt;
1927
1928 cnt = min_t(int, nbytes, oobregion.length);
1929 memcpy(oobbuf + oobregion.offset, buf, cnt);
1930 buf += cnt;
1931 nbytes -= cnt;
1932
1933 if (!nbytes)
1934 break;
1935
1936 ret = iter(mtd, ++section, &oobregion);
1937 }
1938
1939 return ret;
1940}
1941
1942/**
1943 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1944 * @mtd: mtd info structure
1945 * @iter: category iterator
1946 *
1947 * Count the number of bytes in a given category.
1948 *
1949 * Returns a positive value on success, a negative error code otherwise.
1950 */
1951static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1952 int (*iter)(struct mtd_info *,
1953 int section,
1954 struct mtd_oob_region *oobregion))
1955{
1956 struct mtd_oob_region oobregion;
1957 int section = 0, ret, nbytes = 0;
1958
1959 while (1) {
1960 ret = iter(mtd, section++, &oobregion);
1961 if (ret) {
1962 if (ret == -ERANGE)
1963 ret = nbytes;
1964 break;
1965 }
1966
1967 nbytes += oobregion.length;
1968 }
1969
1970 return ret;
1971}
1972
1973/**
1974 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1975 * @mtd: mtd info structure
1976 * @eccbuf: destination buffer to store ECC bytes
1977 * @oobbuf: OOB buffer
1978 * @start: first ECC byte to retrieve
1979 * @nbytes: number of ECC bytes to retrieve
1980 *
1981 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1982 *
1983 * Returns zero on success, a negative error code otherwise.
1984 */
1985int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1986 const u8 *oobbuf, int start, int nbytes)
1987{
1988 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1989 mtd_ooblayout_ecc);
1990}
1991EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1992
1993/**
1994 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1995 * @mtd: mtd info structure
1996 * @eccbuf: source buffer to get ECC bytes from
1997 * @oobbuf: OOB buffer
1998 * @start: first ECC byte to set
1999 * @nbytes: number of ECC bytes to set
2000 *
2001 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2002 *
2003 * Returns zero on success, a negative error code otherwise.
2004 */
2005int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2006 u8 *oobbuf, int start, int nbytes)
2007{
2008 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2009 mtd_ooblayout_ecc);
2010}
2011EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2012
2013/**
2014 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2015 * @mtd: mtd info structure
2016 * @databuf: destination buffer to store ECC bytes
2017 * @oobbuf: OOB buffer
2018 * @start: first ECC byte to retrieve
2019 * @nbytes: number of ECC bytes to retrieve
2020 *
2021 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2022 *
2023 * Returns zero on success, a negative error code otherwise.
2024 */
2025int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2026 const u8 *oobbuf, int start, int nbytes)
2027{
2028 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2029 mtd_ooblayout_free);
2030}
2031EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2032
2033/**
2034 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2035 * @mtd: mtd info structure
2036 * @databuf: source buffer to get data bytes from
2037 * @oobbuf: OOB buffer
2038 * @start: first ECC byte to set
2039 * @nbytes: number of ECC bytes to set
2040 *
2041 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2042 *
2043 * Returns zero on success, a negative error code otherwise.
2044 */
2045int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2046 u8 *oobbuf, int start, int nbytes)
2047{
2048 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2049 mtd_ooblayout_free);
2050}
2051EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2052
2053/**
2054 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2055 * @mtd: mtd info structure
2056 *
2057 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2058 *
2059 * Returns zero on success, a negative error code otherwise.
2060 */
2061int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2062{
2063 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2064}
2065EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2066
2067/**
2068 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2069 * @mtd: mtd info structure
2070 *
2071 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2072 *
2073 * Returns zero on success, a negative error code otherwise.
2074 */
2075int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2076{
2077 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2078}
2079EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2080
2081/*
2082 * Method to access the protection register area, present in some flash
2083 * devices. The user data is one time programmable but the factory data is read
2084 * only.
2085 */
2086int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2087 struct otp_info *buf)
2088{
2089 struct mtd_info *master = mtd_get_master(mtd);
2090
2091 if (!master->_get_fact_prot_info)
2092 return -EOPNOTSUPP;
2093 if (!len)
2094 return 0;
2095 return master->_get_fact_prot_info(master, len, retlen, buf);
2096}
2097EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2098
2099int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2100 size_t *retlen, u_char *buf)
2101{
2102 struct mtd_info *master = mtd_get_master(mtd);
2103
2104 *retlen = 0;
2105 if (!master->_read_fact_prot_reg)
2106 return -EOPNOTSUPP;
2107 if (!len)
2108 return 0;
2109 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2110}
2111EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2112
2113int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2114 struct otp_info *buf)
2115{
2116 struct mtd_info *master = mtd_get_master(mtd);
2117
2118 if (!master->_get_user_prot_info)
2119 return -EOPNOTSUPP;
2120 if (!len)
2121 return 0;
2122 return master->_get_user_prot_info(master, len, retlen, buf);
2123}
2124EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2125
2126int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2127 size_t *retlen, u_char *buf)
2128{
2129 struct mtd_info *master = mtd_get_master(mtd);
2130
2131 *retlen = 0;
2132 if (!master->_read_user_prot_reg)
2133 return -EOPNOTSUPP;
2134 if (!len)
2135 return 0;
2136 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2137}
2138EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2139
2140int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2141 size_t *retlen, const u_char *buf)
2142{
2143 struct mtd_info *master = mtd_get_master(mtd);
2144 int ret;
2145
2146 *retlen = 0;
2147 if (!master->_write_user_prot_reg)
2148 return -EOPNOTSUPP;
2149 if (!len)
2150 return 0;
2151 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2152 if (ret)
2153 return ret;
2154
2155 /*
2156 * If no data could be written at all, we are out of memory and
2157 * must return -ENOSPC.
2158 */
2159 return (*retlen) ? 0 : -ENOSPC;
2160}
2161EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2162
2163int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2164{
2165 struct mtd_info *master = mtd_get_master(mtd);
2166
2167 if (!master->_lock_user_prot_reg)
2168 return -EOPNOTSUPP;
2169 if (!len)
2170 return 0;
2171 return master->_lock_user_prot_reg(master, from, len);
2172}
2173EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2174
2175int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2176{
2177 struct mtd_info *master = mtd_get_master(mtd);
2178
2179 if (!master->_erase_user_prot_reg)
2180 return -EOPNOTSUPP;
2181 if (!len)
2182 return 0;
2183 return master->_erase_user_prot_reg(master, from, len);
2184}
2185EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2186
2187/* Chip-supported device locking */
2188int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2189{
2190 struct mtd_info *master = mtd_get_master(mtd);
2191
2192 if (!master->_lock)
2193 return -EOPNOTSUPP;
2194 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2195 return -EINVAL;
2196 if (!len)
2197 return 0;
2198
2199 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2200 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2201 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2202 }
2203
2204 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2205}
2206EXPORT_SYMBOL_GPL(mtd_lock);
2207
2208int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2209{
2210 struct mtd_info *master = mtd_get_master(mtd);
2211
2212 if (!master->_unlock)
2213 return -EOPNOTSUPP;
2214 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2215 return -EINVAL;
2216 if (!len)
2217 return 0;
2218
2219 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2220 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2221 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2222 }
2223
2224 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2225}
2226EXPORT_SYMBOL_GPL(mtd_unlock);
2227
2228int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2229{
2230 struct mtd_info *master = mtd_get_master(mtd);
2231
2232 if (!master->_is_locked)
2233 return -EOPNOTSUPP;
2234 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2235 return -EINVAL;
2236 if (!len)
2237 return 0;
2238
2239 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2240 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2241 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2242 }
2243
2244 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2245}
2246EXPORT_SYMBOL_GPL(mtd_is_locked);
2247
2248int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2249{
2250 struct mtd_info *master = mtd_get_master(mtd);
2251
2252 if (ofs < 0 || ofs >= mtd->size)
2253 return -EINVAL;
2254 if (!master->_block_isreserved)
2255 return 0;
2256
2257 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2258 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2259
2260 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2261}
2262EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2263
2264int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2265{
2266 struct mtd_info *master = mtd_get_master(mtd);
2267
2268 if (ofs < 0 || ofs >= mtd->size)
2269 return -EINVAL;
2270 if (!master->_block_isbad)
2271 return 0;
2272
2273 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2274 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2275
2276 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2277}
2278EXPORT_SYMBOL_GPL(mtd_block_isbad);
2279
2280int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2281{
2282 struct mtd_info *master = mtd_get_master(mtd);
2283 int ret;
2284
2285 if (!master->_block_markbad)
2286 return -EOPNOTSUPP;
2287 if (ofs < 0 || ofs >= mtd->size)
2288 return -EINVAL;
2289 if (!(mtd->flags & MTD_WRITEABLE))
2290 return -EROFS;
2291
2292 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2293 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2294
2295 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2296 if (ret)
2297 return ret;
2298
2299 while (mtd->parent) {
2300 mtd->ecc_stats.badblocks++;
2301 mtd = mtd->parent;
2302 }
2303
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(mtd_block_markbad);
2307
2308/*
2309 * default_mtd_writev - the default writev method
2310 * @mtd: mtd device description object pointer
2311 * @vecs: the vectors to write
2312 * @count: count of vectors in @vecs
2313 * @to: the MTD device offset to write to
2314 * @retlen: on exit contains the count of bytes written to the MTD device.
2315 *
2316 * This function returns zero in case of success and a negative error code in
2317 * case of failure.
2318 */
2319static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2320 unsigned long count, loff_t to, size_t *retlen)
2321{
2322 unsigned long i;
2323 size_t totlen = 0, thislen;
2324 int ret = 0;
2325
2326 for (i = 0; i < count; i++) {
2327 if (!vecs[i].iov_len)
2328 continue;
2329 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2330 vecs[i].iov_base);
2331 totlen += thislen;
2332 if (ret || thislen != vecs[i].iov_len)
2333 break;
2334 to += vecs[i].iov_len;
2335 }
2336 *retlen = totlen;
2337 return ret;
2338}
2339
2340/*
2341 * mtd_writev - the vector-based MTD write method
2342 * @mtd: mtd device description object pointer
2343 * @vecs: the vectors to write
2344 * @count: count of vectors in @vecs
2345 * @to: the MTD device offset to write to
2346 * @retlen: on exit contains the count of bytes written to the MTD device.
2347 *
2348 * This function returns zero in case of success and a negative error code in
2349 * case of failure.
2350 */
2351int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2352 unsigned long count, loff_t to, size_t *retlen)
2353{
2354 struct mtd_info *master = mtd_get_master(mtd);
2355
2356 *retlen = 0;
2357 if (!(mtd->flags & MTD_WRITEABLE))
2358 return -EROFS;
2359
2360 if (!master->_writev)
2361 return default_mtd_writev(mtd, vecs, count, to, retlen);
2362
2363 return master->_writev(master, vecs, count,
2364 mtd_get_master_ofs(mtd, to), retlen);
2365}
2366EXPORT_SYMBOL_GPL(mtd_writev);
2367
2368/**
2369 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2370 * @mtd: mtd device description object pointer
2371 * @size: a pointer to the ideal or maximum size of the allocation, points
2372 * to the actual allocation size on success.
2373 *
2374 * This routine attempts to allocate a contiguous kernel buffer up to
2375 * the specified size, backing off the size of the request exponentially
2376 * until the request succeeds or until the allocation size falls below
2377 * the system page size. This attempts to make sure it does not adversely
2378 * impact system performance, so when allocating more than one page, we
2379 * ask the memory allocator to avoid re-trying, swapping, writing back
2380 * or performing I/O.
2381 *
2382 * Note, this function also makes sure that the allocated buffer is aligned to
2383 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2384 *
2385 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2386 * to handle smaller (i.e. degraded) buffer allocations under low- or
2387 * fragmented-memory situations where such reduced allocations, from a
2388 * requested ideal, are allowed.
2389 *
2390 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2391 */
2392void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2393{
2394 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2395 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2396 void *kbuf;
2397
2398 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2399
2400 while (*size > min_alloc) {
2401 kbuf = kmalloc(*size, flags);
2402 if (kbuf)
2403 return kbuf;
2404
2405 *size >>= 1;
2406 *size = ALIGN(*size, mtd->writesize);
2407 }
2408
2409 /*
2410 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2411 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2412 */
2413 return kmalloc(*size, GFP_KERNEL);
2414}
2415EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2416
2417#ifdef CONFIG_PROC_FS
2418
2419/*====================================================================*/
2420/* Support for /proc/mtd */
2421
2422static int mtd_proc_show(struct seq_file *m, void *v)
2423{
2424 struct mtd_info *mtd;
2425
2426 seq_puts(m, "dev: size erasesize name\n");
2427 mutex_lock(&mtd_table_mutex);
2428 mtd_for_each_device(mtd) {
2429 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2430 mtd->index, (unsigned long long)mtd->size,
2431 mtd->erasesize, mtd->name);
2432 }
2433 mutex_unlock(&mtd_table_mutex);
2434 return 0;
2435}
2436#endif /* CONFIG_PROC_FS */
2437
2438/*====================================================================*/
2439/* Init code */
2440
2441static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2442{
2443 struct backing_dev_info *bdi;
2444 int ret;
2445
2446 bdi = bdi_alloc(NUMA_NO_NODE);
2447 if (!bdi)
2448 return ERR_PTR(-ENOMEM);
2449 bdi->ra_pages = 0;
2450 bdi->io_pages = 0;
2451
2452 /*
2453 * We put '-0' suffix to the name to get the same name format as we
2454 * used to get. Since this is called only once, we get a unique name.
2455 */
2456 ret = bdi_register(bdi, "%.28s-0", name);
2457 if (ret)
2458 bdi_put(bdi);
2459
2460 return ret ? ERR_PTR(ret) : bdi;
2461}
2462
2463static struct proc_dir_entry *proc_mtd;
2464
2465static int __init init_mtd(void)
2466{
2467 int ret;
2468
2469 ret = class_register(&mtd_class);
2470 if (ret)
2471 goto err_reg;
2472
2473 mtd_bdi = mtd_bdi_init("mtd");
2474 if (IS_ERR(mtd_bdi)) {
2475 ret = PTR_ERR(mtd_bdi);
2476 goto err_bdi;
2477 }
2478
2479 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2480
2481 ret = init_mtdchar();
2482 if (ret)
2483 goto out_procfs;
2484
2485 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2486 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2487 &mtd_expert_analysis_mode);
2488
2489 return 0;
2490
2491out_procfs:
2492 if (proc_mtd)
2493 remove_proc_entry("mtd", NULL);
2494 bdi_unregister(mtd_bdi);
2495 bdi_put(mtd_bdi);
2496err_bdi:
2497 class_unregister(&mtd_class);
2498err_reg:
2499 pr_err("Error registering mtd class or bdi: %d\n", ret);
2500 return ret;
2501}
2502
2503static void __exit cleanup_mtd(void)
2504{
2505 debugfs_remove_recursive(dfs_dir_mtd);
2506 cleanup_mtdchar();
2507 if (proc_mtd)
2508 remove_proc_entry("mtd", NULL);
2509 class_unregister(&mtd_class);
2510 bdi_unregister(mtd_bdi);
2511 bdi_put(mtd_bdi);
2512 idr_destroy(&mtd_idr);
2513}
2514
2515module_init(init_mtd);
2516module_exit(cleanup_mtd);
2517
2518MODULE_LICENSE("GPL");
2519MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2520MODULE_DESCRIPTION("Core MTD registration and access routines");