Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * acpi_pad.c ACPI Processor Aggregator Driver
  4 *
  5 * Copyright (c) 2009, Intel Corporation.
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/cpumask.h>
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/types.h>
 13#include <linux/kthread.h>
 14#include <uapi/linux/sched/types.h>
 15#include <linux/freezer.h>
 16#include <linux/cpu.h>
 17#include <linux/tick.h>
 18#include <linux/slab.h>
 19#include <linux/acpi.h>
 
 20#include <asm/mwait.h>
 21#include <xen/xen.h>
 22
 23#define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
 24#define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
 25#define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
 26static DEFINE_MUTEX(isolated_cpus_lock);
 27static DEFINE_MUTEX(round_robin_lock);
 28
 29static unsigned long power_saving_mwait_eax;
 30
 31static unsigned char tsc_detected_unstable;
 32static unsigned char tsc_marked_unstable;
 33
 34static void power_saving_mwait_init(void)
 35{
 36	unsigned int eax, ebx, ecx, edx;
 37	unsigned int highest_cstate = 0;
 38	unsigned int highest_subcstate = 0;
 39	int i;
 40
 41	if (!boot_cpu_has(X86_FEATURE_MWAIT))
 42		return;
 43	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
 44		return;
 45
 46	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 47
 48	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
 49	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
 50		return;
 51
 52	edx >>= MWAIT_SUBSTATE_SIZE;
 53	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
 54		if (edx & MWAIT_SUBSTATE_MASK) {
 55			highest_cstate = i;
 56			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
 57		}
 58	}
 59	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
 60		(highest_subcstate - 1);
 61
 62#if defined(CONFIG_X86)
 63	switch (boot_cpu_data.x86_vendor) {
 64	case X86_VENDOR_HYGON:
 65	case X86_VENDOR_AMD:
 66	case X86_VENDOR_INTEL:
 67	case X86_VENDOR_ZHAOXIN:
 68		/*
 69		 * AMD Fam10h TSC will tick in all
 70		 * C/P/S0/S1 states when this bit is set.
 71		 */
 72		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 73			tsc_detected_unstable = 1;
 74		break;
 75	default:
 76		/* TSC could halt in idle */
 77		tsc_detected_unstable = 1;
 78	}
 79#endif
 80}
 81
 82static unsigned long cpu_weight[NR_CPUS];
 83static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
 84static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
 85static void round_robin_cpu(unsigned int tsk_index)
 86{
 87	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
 88	cpumask_var_t tmp;
 89	int cpu;
 90	unsigned long min_weight = -1;
 91	unsigned long uninitialized_var(preferred_cpu);
 92
 93	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 94		return;
 95
 96	mutex_lock(&round_robin_lock);
 97	cpumask_clear(tmp);
 98	for_each_cpu(cpu, pad_busy_cpus)
 99		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100	cpumask_andnot(tmp, cpu_online_mask, tmp);
101	/* avoid HT sibilings if possible */
102	if (cpumask_empty(tmp))
103		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104	if (cpumask_empty(tmp)) {
105		mutex_unlock(&round_robin_lock);
106		free_cpumask_var(tmp);
107		return;
108	}
109	for_each_cpu(cpu, tmp) {
110		if (cpu_weight[cpu] < min_weight) {
111			min_weight = cpu_weight[cpu];
112			preferred_cpu = cpu;
113		}
114	}
115
116	if (tsk_in_cpu[tsk_index] != -1)
117		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118	tsk_in_cpu[tsk_index] = preferred_cpu;
119	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120	cpu_weight[preferred_cpu]++;
121	mutex_unlock(&round_robin_lock);
122
123	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124
125	free_cpumask_var(tmp);
126}
127
128static void exit_round_robin(unsigned int tsk_index)
129{
130	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
 
131	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132	tsk_in_cpu[tsk_index] = -1;
133}
134
135static unsigned int idle_pct = 5; /* percentage */
136static unsigned int round_robin_time = 1; /* second */
137static int power_saving_thread(void *data)
138{
139	struct sched_param param = {.sched_priority = 1};
140	int do_sleep;
141	unsigned int tsk_index = (unsigned long)data;
142	u64 last_jiffies = 0;
143
144	sched_setscheduler(current, SCHED_RR, &param);
145
146	while (!kthread_should_stop()) {
147		unsigned long expire_time;
148
149		/* round robin to cpus */
150		expire_time = last_jiffies + round_robin_time * HZ;
151		if (time_before(expire_time, jiffies)) {
152			last_jiffies = jiffies;
153			round_robin_cpu(tsk_index);
154		}
155
156		do_sleep = 0;
157
158		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
159
160		while (!need_resched()) {
161			if (tsc_detected_unstable && !tsc_marked_unstable) {
162				/* TSC could halt in idle, so notify users */
163				mark_tsc_unstable("TSC halts in idle");
164				tsc_marked_unstable = 1;
165			}
166			local_irq_disable();
 
 
 
167			tick_broadcast_enable();
168			tick_broadcast_enter();
169			stop_critical_timings();
170
171			mwait_idle_with_hints(power_saving_mwait_eax, 1);
172
173			start_critical_timings();
174			tick_broadcast_exit();
 
 
 
175			local_irq_enable();
176
177			if (time_before(expire_time, jiffies)) {
178				do_sleep = 1;
179				break;
180			}
181		}
182
183		/*
184		 * current sched_rt has threshold for rt task running time.
185		 * When a rt task uses 95% CPU time, the rt thread will be
186		 * scheduled out for 5% CPU time to not starve other tasks. But
187		 * the mechanism only works when all CPUs have RT task running,
188		 * as if one CPU hasn't RT task, RT task from other CPUs will
189		 * borrow CPU time from this CPU and cause RT task use > 95%
190		 * CPU time. To make 'avoid starvation' work, takes a nap here.
191		 */
192		if (unlikely(do_sleep))
193			schedule_timeout_killable(HZ * idle_pct / 100);
194
195		/* If an external event has set the need_resched flag, then
196		 * we need to deal with it, or this loop will continue to
197		 * spin without calling __mwait().
198		 */
199		if (unlikely(need_resched()))
200			schedule();
201	}
202
203	exit_round_robin(tsk_index);
204	return 0;
205}
206
207static struct task_struct *ps_tsks[NR_CPUS];
208static unsigned int ps_tsk_num;
209static int create_power_saving_task(void)
210{
211	int rc;
212
213	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
214		(void *)(unsigned long)ps_tsk_num,
215		"acpi_pad/%d", ps_tsk_num);
216
217	if (IS_ERR(ps_tsks[ps_tsk_num])) {
218		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
219		ps_tsks[ps_tsk_num] = NULL;
220	} else {
221		rc = 0;
222		ps_tsk_num++;
223	}
224
225	return rc;
226}
227
228static void destroy_power_saving_task(void)
229{
230	if (ps_tsk_num > 0) {
231		ps_tsk_num--;
232		kthread_stop(ps_tsks[ps_tsk_num]);
233		ps_tsks[ps_tsk_num] = NULL;
234	}
235}
236
237static void set_power_saving_task_num(unsigned int num)
238{
239	if (num > ps_tsk_num) {
240		while (ps_tsk_num < num) {
241			if (create_power_saving_task())
242				return;
243		}
244	} else if (num < ps_tsk_num) {
245		while (ps_tsk_num > num)
246			destroy_power_saving_task();
247	}
248}
249
250static void acpi_pad_idle_cpus(unsigned int num_cpus)
251{
252	get_online_cpus();
253
254	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
255	set_power_saving_task_num(num_cpus);
256
257	put_online_cpus();
258}
259
260static uint32_t acpi_pad_idle_cpus_num(void)
261{
262	return ps_tsk_num;
263}
264
265static ssize_t acpi_pad_rrtime_store(struct device *dev,
266	struct device_attribute *attr, const char *buf, size_t count)
267{
268	unsigned long num;
 
269	if (kstrtoul(buf, 0, &num))
270		return -EINVAL;
271	if (num < 1 || num >= 100)
272		return -EINVAL;
273	mutex_lock(&isolated_cpus_lock);
274	round_robin_time = num;
275	mutex_unlock(&isolated_cpus_lock);
276	return count;
277}
278
279static ssize_t acpi_pad_rrtime_show(struct device *dev,
280	struct device_attribute *attr, char *buf)
281{
282	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
283}
284static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
285	acpi_pad_rrtime_show,
286	acpi_pad_rrtime_store);
287
288static ssize_t acpi_pad_idlepct_store(struct device *dev,
289	struct device_attribute *attr, const char *buf, size_t count)
290{
291	unsigned long num;
 
292	if (kstrtoul(buf, 0, &num))
293		return -EINVAL;
294	if (num < 1 || num >= 100)
295		return -EINVAL;
296	mutex_lock(&isolated_cpus_lock);
297	idle_pct = num;
298	mutex_unlock(&isolated_cpus_lock);
299	return count;
300}
301
302static ssize_t acpi_pad_idlepct_show(struct device *dev,
303	struct device_attribute *attr, char *buf)
304{
305	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
306}
307static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
308	acpi_pad_idlepct_show,
309	acpi_pad_idlepct_store);
310
311static ssize_t acpi_pad_idlecpus_store(struct device *dev,
312	struct device_attribute *attr, const char *buf, size_t count)
313{
314	unsigned long num;
 
315	if (kstrtoul(buf, 0, &num))
316		return -EINVAL;
317	mutex_lock(&isolated_cpus_lock);
318	acpi_pad_idle_cpus(num);
319	mutex_unlock(&isolated_cpus_lock);
320	return count;
321}
322
323static ssize_t acpi_pad_idlecpus_show(struct device *dev,
324	struct device_attribute *attr, char *buf)
325{
326	return cpumap_print_to_pagebuf(false, buf,
327				       to_cpumask(pad_busy_cpus_bits));
328}
329
330static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
331	acpi_pad_idlecpus_show,
332	acpi_pad_idlecpus_store);
333
334static int acpi_pad_add_sysfs(struct acpi_device *device)
335{
336	int result;
337
338	result = device_create_file(&device->dev, &dev_attr_idlecpus);
339	if (result)
340		return -ENODEV;
341	result = device_create_file(&device->dev, &dev_attr_idlepct);
342	if (result) {
343		device_remove_file(&device->dev, &dev_attr_idlecpus);
344		return -ENODEV;
345	}
346	result = device_create_file(&device->dev, &dev_attr_rrtime);
347	if (result) {
348		device_remove_file(&device->dev, &dev_attr_idlecpus);
349		device_remove_file(&device->dev, &dev_attr_idlepct);
350		return -ENODEV;
351	}
352	return 0;
353}
354
355static void acpi_pad_remove_sysfs(struct acpi_device *device)
356{
357	device_remove_file(&device->dev, &dev_attr_idlecpus);
358	device_remove_file(&device->dev, &dev_attr_idlepct);
359	device_remove_file(&device->dev, &dev_attr_rrtime);
360}
361
362/*
363 * Query firmware how many CPUs should be idle
364 * return -1 on failure
365 */
366static int acpi_pad_pur(acpi_handle handle)
367{
368	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369	union acpi_object *package;
370	int num = -1;
371
372	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
373		return num;
374
375	if (!buffer.length || !buffer.pointer)
376		return num;
377
378	package = buffer.pointer;
379
380	if (package->type == ACPI_TYPE_PACKAGE &&
381		package->package.count == 2 &&
382		package->package.elements[0].integer.value == 1) /* rev 1 */
383
384		num = package->package.elements[1].integer.value;
385
386	kfree(buffer.pointer);
387	return num;
388}
389
390static void acpi_pad_handle_notify(acpi_handle handle)
391{
392	int num_cpus;
393	uint32_t idle_cpus;
394	struct acpi_buffer param = {
395		.length = 4,
396		.pointer = (void *)&idle_cpus,
397	};
398
399	mutex_lock(&isolated_cpus_lock);
400	num_cpus = acpi_pad_pur(handle);
401	if (num_cpus < 0) {
402		mutex_unlock(&isolated_cpus_lock);
403		return;
404	}
405	acpi_pad_idle_cpus(num_cpus);
406	idle_cpus = acpi_pad_idle_cpus_num();
407	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
408	mutex_unlock(&isolated_cpus_lock);
409}
410
411static void acpi_pad_notify(acpi_handle handle, u32 event,
412	void *data)
413{
414	struct acpi_device *device = data;
415
416	switch (event) {
417	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
418		acpi_pad_handle_notify(handle);
419		acpi_bus_generate_netlink_event(device->pnp.device_class,
420			dev_name(&device->dev), event, 0);
421		break;
422	default:
423		pr_warn("Unsupported event [0x%x]\n", event);
424		break;
425	}
426}
427
428static int acpi_pad_add(struct acpi_device *device)
429{
430	acpi_status status;
431
432	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
433	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
434
435	if (acpi_pad_add_sysfs(device))
436		return -ENODEV;
437
438	status = acpi_install_notify_handler(device->handle,
439		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
440	if (ACPI_FAILURE(status)) {
441		acpi_pad_remove_sysfs(device);
442		return -ENODEV;
443	}
444
445	return 0;
446}
447
448static int acpi_pad_remove(struct acpi_device *device)
449{
450	mutex_lock(&isolated_cpus_lock);
451	acpi_pad_idle_cpus(0);
452	mutex_unlock(&isolated_cpus_lock);
453
454	acpi_remove_notify_handler(device->handle,
455		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
456	acpi_pad_remove_sysfs(device);
457	return 0;
458}
459
460static const struct acpi_device_id pad_device_ids[] = {
461	{"ACPI000C", 0},
462	{"", 0},
463};
464MODULE_DEVICE_TABLE(acpi, pad_device_ids);
465
466static struct acpi_driver acpi_pad_driver = {
467	.name = "processor_aggregator",
468	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
469	.ids = pad_device_ids,
470	.ops = {
471		.add = acpi_pad_add,
472		.remove = acpi_pad_remove,
473	},
474};
475
476static int __init acpi_pad_init(void)
477{
478	/* Xen ACPI PAD is used when running as Xen Dom0. */
479	if (xen_initial_domain())
480		return -ENODEV;
481
482	power_saving_mwait_init();
483	if (power_saving_mwait_eax == 0)
484		return -EINVAL;
485
486	return acpi_bus_register_driver(&acpi_pad_driver);
487}
488
489static void __exit acpi_pad_exit(void)
490{
491	acpi_bus_unregister_driver(&acpi_pad_driver);
492}
493
494module_init(acpi_pad_init);
495module_exit(acpi_pad_exit);
496MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
497MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
498MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * acpi_pad.c ACPI Processor Aggregator Driver
  4 *
  5 * Copyright (c) 2009, Intel Corporation.
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/cpumask.h>
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/types.h>
 13#include <linux/kthread.h>
 14#include <uapi/linux/sched/types.h>
 15#include <linux/freezer.h>
 16#include <linux/cpu.h>
 17#include <linux/tick.h>
 18#include <linux/slab.h>
 19#include <linux/acpi.h>
 20#include <linux/perf_event.h>
 21#include <asm/mwait.h>
 22#include <xen/xen.h>
 23
 24#define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
 25#define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
 26#define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
 27static DEFINE_MUTEX(isolated_cpus_lock);
 28static DEFINE_MUTEX(round_robin_lock);
 29
 30static unsigned long power_saving_mwait_eax;
 31
 32static unsigned char tsc_detected_unstable;
 33static unsigned char tsc_marked_unstable;
 34
 35static void power_saving_mwait_init(void)
 36{
 37	unsigned int eax, ebx, ecx, edx;
 38	unsigned int highest_cstate = 0;
 39	unsigned int highest_subcstate = 0;
 40	int i;
 41
 42	if (!boot_cpu_has(X86_FEATURE_MWAIT))
 43		return;
 44	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
 45		return;
 46
 47	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 48
 49	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
 50	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
 51		return;
 52
 53	edx >>= MWAIT_SUBSTATE_SIZE;
 54	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
 55		if (edx & MWAIT_SUBSTATE_MASK) {
 56			highest_cstate = i;
 57			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
 58		}
 59	}
 60	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
 61		(highest_subcstate - 1);
 62
 63#if defined(CONFIG_X86)
 64	switch (boot_cpu_data.x86_vendor) {
 65	case X86_VENDOR_HYGON:
 66	case X86_VENDOR_AMD:
 67	case X86_VENDOR_INTEL:
 68	case X86_VENDOR_ZHAOXIN:
 69		/*
 70		 * AMD Fam10h TSC will tick in all
 71		 * C/P/S0/S1 states when this bit is set.
 72		 */
 73		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 74			tsc_detected_unstable = 1;
 75		break;
 76	default:
 77		/* TSC could halt in idle */
 78		tsc_detected_unstable = 1;
 79	}
 80#endif
 81}
 82
 83static unsigned long cpu_weight[NR_CPUS];
 84static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
 85static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
 86static void round_robin_cpu(unsigned int tsk_index)
 87{
 88	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
 89	cpumask_var_t tmp;
 90	int cpu;
 91	unsigned long min_weight = -1;
 92	unsigned long preferred_cpu;
 93
 94	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 95		return;
 96
 97	mutex_lock(&round_robin_lock);
 98	cpumask_clear(tmp);
 99	for_each_cpu(cpu, pad_busy_cpus)
100		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
101	cpumask_andnot(tmp, cpu_online_mask, tmp);
102	/* avoid HT sibilings if possible */
103	if (cpumask_empty(tmp))
104		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
105	if (cpumask_empty(tmp)) {
106		mutex_unlock(&round_robin_lock);
107		free_cpumask_var(tmp);
108		return;
109	}
110	for_each_cpu(cpu, tmp) {
111		if (cpu_weight[cpu] < min_weight) {
112			min_weight = cpu_weight[cpu];
113			preferred_cpu = cpu;
114		}
115	}
116
117	if (tsk_in_cpu[tsk_index] != -1)
118		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
119	tsk_in_cpu[tsk_index] = preferred_cpu;
120	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
121	cpu_weight[preferred_cpu]++;
122	mutex_unlock(&round_robin_lock);
123
124	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
125
126	free_cpumask_var(tmp);
127}
128
129static void exit_round_robin(unsigned int tsk_index)
130{
131	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
132
133	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
134	tsk_in_cpu[tsk_index] = -1;
135}
136
137static unsigned int idle_pct = 5; /* percentage */
138static unsigned int round_robin_time = 1; /* second */
139static int power_saving_thread(void *data)
140{
 
141	int do_sleep;
142	unsigned int tsk_index = (unsigned long)data;
143	u64 last_jiffies = 0;
144
145	sched_set_fifo_low(current);
146
147	while (!kthread_should_stop()) {
148		unsigned long expire_time;
149
150		/* round robin to cpus */
151		expire_time = last_jiffies + round_robin_time * HZ;
152		if (time_before(expire_time, jiffies)) {
153			last_jiffies = jiffies;
154			round_robin_cpu(tsk_index);
155		}
156
157		do_sleep = 0;
158
159		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
160
161		while (!need_resched()) {
162			if (tsc_detected_unstable && !tsc_marked_unstable) {
163				/* TSC could halt in idle, so notify users */
164				mark_tsc_unstable("TSC halts in idle");
165				tsc_marked_unstable = 1;
166			}
167			local_irq_disable();
168
169			perf_lopwr_cb(true);
170
171			tick_broadcast_enable();
172			tick_broadcast_enter();
173			stop_critical_timings();
174
175			mwait_idle_with_hints(power_saving_mwait_eax, 1);
176
177			start_critical_timings();
178			tick_broadcast_exit();
179
180			perf_lopwr_cb(false);
181
182			local_irq_enable();
183
184			if (time_before(expire_time, jiffies)) {
185				do_sleep = 1;
186				break;
187			}
188		}
189
190		/*
191		 * current sched_rt has threshold for rt task running time.
192		 * When a rt task uses 95% CPU time, the rt thread will be
193		 * scheduled out for 5% CPU time to not starve other tasks. But
194		 * the mechanism only works when all CPUs have RT task running,
195		 * as if one CPU hasn't RT task, RT task from other CPUs will
196		 * borrow CPU time from this CPU and cause RT task use > 95%
197		 * CPU time. To make 'avoid starvation' work, takes a nap here.
198		 */
199		if (unlikely(do_sleep))
200			schedule_timeout_killable(HZ * idle_pct / 100);
201
202		/* If an external event has set the need_resched flag, then
203		 * we need to deal with it, or this loop will continue to
204		 * spin without calling __mwait().
205		 */
206		if (unlikely(need_resched()))
207			schedule();
208	}
209
210	exit_round_robin(tsk_index);
211	return 0;
212}
213
214static struct task_struct *ps_tsks[NR_CPUS];
215static unsigned int ps_tsk_num;
216static int create_power_saving_task(void)
217{
218	int rc;
219
220	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
221		(void *)(unsigned long)ps_tsk_num,
222		"acpi_pad/%d", ps_tsk_num);
223
224	if (IS_ERR(ps_tsks[ps_tsk_num])) {
225		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
226		ps_tsks[ps_tsk_num] = NULL;
227	} else {
228		rc = 0;
229		ps_tsk_num++;
230	}
231
232	return rc;
233}
234
235static void destroy_power_saving_task(void)
236{
237	if (ps_tsk_num > 0) {
238		ps_tsk_num--;
239		kthread_stop(ps_tsks[ps_tsk_num]);
240		ps_tsks[ps_tsk_num] = NULL;
241	}
242}
243
244static void set_power_saving_task_num(unsigned int num)
245{
246	if (num > ps_tsk_num) {
247		while (ps_tsk_num < num) {
248			if (create_power_saving_task())
249				return;
250		}
251	} else if (num < ps_tsk_num) {
252		while (ps_tsk_num > num)
253			destroy_power_saving_task();
254	}
255}
256
257static void acpi_pad_idle_cpus(unsigned int num_cpus)
258{
259	cpus_read_lock();
260
261	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
262	set_power_saving_task_num(num_cpus);
263
264	cpus_read_unlock();
265}
266
267static uint32_t acpi_pad_idle_cpus_num(void)
268{
269	return ps_tsk_num;
270}
271
272static ssize_t rrtime_store(struct device *dev,
273	struct device_attribute *attr, const char *buf, size_t count)
274{
275	unsigned long num;
276
277	if (kstrtoul(buf, 0, &num))
278		return -EINVAL;
279	if (num < 1 || num >= 100)
280		return -EINVAL;
281	mutex_lock(&isolated_cpus_lock);
282	round_robin_time = num;
283	mutex_unlock(&isolated_cpus_lock);
284	return count;
285}
286
287static ssize_t rrtime_show(struct device *dev,
288	struct device_attribute *attr, char *buf)
289{
290	return sysfs_emit(buf, "%d\n", round_robin_time);
291}
292static DEVICE_ATTR_RW(rrtime);
 
 
293
294static ssize_t idlepct_store(struct device *dev,
295	struct device_attribute *attr, const char *buf, size_t count)
296{
297	unsigned long num;
298
299	if (kstrtoul(buf, 0, &num))
300		return -EINVAL;
301	if (num < 1 || num >= 100)
302		return -EINVAL;
303	mutex_lock(&isolated_cpus_lock);
304	idle_pct = num;
305	mutex_unlock(&isolated_cpus_lock);
306	return count;
307}
308
309static ssize_t idlepct_show(struct device *dev,
310	struct device_attribute *attr, char *buf)
311{
312	return sysfs_emit(buf, "%d\n", idle_pct);
313}
314static DEVICE_ATTR_RW(idlepct);
 
 
315
316static ssize_t idlecpus_store(struct device *dev,
317	struct device_attribute *attr, const char *buf, size_t count)
318{
319	unsigned long num;
320
321	if (kstrtoul(buf, 0, &num))
322		return -EINVAL;
323	mutex_lock(&isolated_cpus_lock);
324	acpi_pad_idle_cpus(num);
325	mutex_unlock(&isolated_cpus_lock);
326	return count;
327}
328
329static ssize_t idlecpus_show(struct device *dev,
330	struct device_attribute *attr, char *buf)
331{
332	return cpumap_print_to_pagebuf(false, buf,
333				       to_cpumask(pad_busy_cpus_bits));
334}
335
336static DEVICE_ATTR_RW(idlecpus);
 
 
337
338static int acpi_pad_add_sysfs(struct acpi_device *device)
339{
340	int result;
341
342	result = device_create_file(&device->dev, &dev_attr_idlecpus);
343	if (result)
344		return -ENODEV;
345	result = device_create_file(&device->dev, &dev_attr_idlepct);
346	if (result) {
347		device_remove_file(&device->dev, &dev_attr_idlecpus);
348		return -ENODEV;
349	}
350	result = device_create_file(&device->dev, &dev_attr_rrtime);
351	if (result) {
352		device_remove_file(&device->dev, &dev_attr_idlecpus);
353		device_remove_file(&device->dev, &dev_attr_idlepct);
354		return -ENODEV;
355	}
356	return 0;
357}
358
359static void acpi_pad_remove_sysfs(struct acpi_device *device)
360{
361	device_remove_file(&device->dev, &dev_attr_idlecpus);
362	device_remove_file(&device->dev, &dev_attr_idlepct);
363	device_remove_file(&device->dev, &dev_attr_rrtime);
364}
365
366/*
367 * Query firmware how many CPUs should be idle
368 * return -1 on failure
369 */
370static int acpi_pad_pur(acpi_handle handle)
371{
372	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
373	union acpi_object *package;
374	int num = -1;
375
376	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
377		return num;
378
379	if (!buffer.length || !buffer.pointer)
380		return num;
381
382	package = buffer.pointer;
383
384	if (package->type == ACPI_TYPE_PACKAGE &&
385		package->package.count == 2 &&
386		package->package.elements[0].integer.value == 1) /* rev 1 */
387
388		num = package->package.elements[1].integer.value;
389
390	kfree(buffer.pointer);
391	return num;
392}
393
394static void acpi_pad_handle_notify(acpi_handle handle)
395{
396	int num_cpus;
397	uint32_t idle_cpus;
398	struct acpi_buffer param = {
399		.length = 4,
400		.pointer = (void *)&idle_cpus,
401	};
402
403	mutex_lock(&isolated_cpus_lock);
404	num_cpus = acpi_pad_pur(handle);
405	if (num_cpus < 0) {
406		mutex_unlock(&isolated_cpus_lock);
407		return;
408	}
409	acpi_pad_idle_cpus(num_cpus);
410	idle_cpus = acpi_pad_idle_cpus_num();
411	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
412	mutex_unlock(&isolated_cpus_lock);
413}
414
415static void acpi_pad_notify(acpi_handle handle, u32 event,
416	void *data)
417{
418	struct acpi_device *device = data;
419
420	switch (event) {
421	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
422		acpi_pad_handle_notify(handle);
423		acpi_bus_generate_netlink_event(device->pnp.device_class,
424			dev_name(&device->dev), event, 0);
425		break;
426	default:
427		pr_warn("Unsupported event [0x%x]\n", event);
428		break;
429	}
430}
431
432static int acpi_pad_add(struct acpi_device *device)
433{
434	acpi_status status;
435
436	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
437	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
438
439	if (acpi_pad_add_sysfs(device))
440		return -ENODEV;
441
442	status = acpi_install_notify_handler(device->handle,
443		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
444	if (ACPI_FAILURE(status)) {
445		acpi_pad_remove_sysfs(device);
446		return -ENODEV;
447	}
448
449	return 0;
450}
451
452static void acpi_pad_remove(struct acpi_device *device)
453{
454	mutex_lock(&isolated_cpus_lock);
455	acpi_pad_idle_cpus(0);
456	mutex_unlock(&isolated_cpus_lock);
457
458	acpi_remove_notify_handler(device->handle,
459		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
460	acpi_pad_remove_sysfs(device);
 
461}
462
463static const struct acpi_device_id pad_device_ids[] = {
464	{"ACPI000C", 0},
465	{"", 0},
466};
467MODULE_DEVICE_TABLE(acpi, pad_device_ids);
468
469static struct acpi_driver acpi_pad_driver = {
470	.name = "processor_aggregator",
471	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
472	.ids = pad_device_ids,
473	.ops = {
474		.add = acpi_pad_add,
475		.remove = acpi_pad_remove,
476	},
477};
478
479static int __init acpi_pad_init(void)
480{
481	/* Xen ACPI PAD is used when running as Xen Dom0. */
482	if (xen_initial_domain())
483		return -ENODEV;
484
485	power_saving_mwait_init();
486	if (power_saving_mwait_eax == 0)
487		return -EINVAL;
488
489	return acpi_bus_register_driver(&acpi_pad_driver);
490}
491
492static void __exit acpi_pad_exit(void)
493{
494	acpi_bus_unregister_driver(&acpi_pad_driver);
495}
496
497module_init(acpi_pad_init);
498module_exit(acpi_pad_exit);
499MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
500MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
501MODULE_LICENSE("GPL");