Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * thread-stack.c: Synthesize a thread's stack using call / return events
  4 * Copyright (c) 2014, Intel Corporation.
  5 */
  6
  7#include <linux/rbtree.h>
  8#include <linux/list.h>
  9#include <linux/log2.h>
 10#include <linux/zalloc.h>
 11#include <errno.h>
 12#include <stdlib.h>
 13#include <string.h>
 14#include "thread.h"
 15#include "event.h"
 16#include "machine.h"
 17#include "env.h"
 18#include "debug.h"
 19#include "symbol.h"
 20#include "comm.h"
 21#include "call-path.h"
 22#include "thread-stack.h"
 23
 24#define STACK_GROWTH 2048
 25
 26/*
 27 * State of retpoline detection.
 28 *
 29 * RETPOLINE_NONE: no retpoline detection
 30 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible
 31 * X86_RETPOLINE_DETECTED: x86 retpoline detected
 32 */
 33enum retpoline_state_t {
 34	RETPOLINE_NONE,
 35	X86_RETPOLINE_POSSIBLE,
 36	X86_RETPOLINE_DETECTED,
 37};
 38
 39/**
 40 * struct thread_stack_entry - thread stack entry.
 41 * @ret_addr: return address
 42 * @timestamp: timestamp (if known)
 43 * @ref: external reference (e.g. db_id of sample)
 44 * @branch_count: the branch count when the entry was created
 45 * @insn_count: the instruction count when the entry was created
 46 * @cyc_count the cycle count when the entry was created
 47 * @db_id: id used for db-export
 48 * @cp: call path
 49 * @no_call: a 'call' was not seen
 50 * @trace_end: a 'call' but trace ended
 51 * @non_call: a branch but not a 'call' to the start of a different symbol
 52 */
 53struct thread_stack_entry {
 54	u64 ret_addr;
 55	u64 timestamp;
 56	u64 ref;
 57	u64 branch_count;
 58	u64 insn_count;
 59	u64 cyc_count;
 60	u64 db_id;
 61	struct call_path *cp;
 62	bool no_call;
 63	bool trace_end;
 64	bool non_call;
 65};
 66
 67/**
 68 * struct thread_stack - thread stack constructed from 'call' and 'return'
 69 *                       branch samples.
 70 * @stack: array that holds the stack
 71 * @cnt: number of entries in the stack
 72 * @sz: current maximum stack size
 73 * @trace_nr: current trace number
 74 * @branch_count: running branch count
 75 * @insn_count: running  instruction count
 76 * @cyc_count running  cycle count
 77 * @kernel_start: kernel start address
 78 * @last_time: last timestamp
 79 * @crp: call/return processor
 80 * @comm: current comm
 81 * @arr_sz: size of array if this is the first element of an array
 82 * @rstate: used to detect retpolines
 
 
 
 
 83 */
 84struct thread_stack {
 85	struct thread_stack_entry *stack;
 86	size_t cnt;
 87	size_t sz;
 88	u64 trace_nr;
 89	u64 branch_count;
 90	u64 insn_count;
 91	u64 cyc_count;
 92	u64 kernel_start;
 93	u64 last_time;
 94	struct call_return_processor *crp;
 95	struct comm *comm;
 96	unsigned int arr_sz;
 97	enum retpoline_state_t rstate;
 
 
 
 
 98};
 99
100/*
101 * Assume pid == tid == 0 identifies the idle task as defined by
102 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu,
103 * and therefore requires a stack for each cpu.
104 */
105static inline bool thread_stack__per_cpu(struct thread *thread)
106{
107	return !(thread->tid || thread->pid_);
108}
109
110static int thread_stack__grow(struct thread_stack *ts)
111{
112	struct thread_stack_entry *new_stack;
113	size_t sz, new_sz;
114
115	new_sz = ts->sz + STACK_GROWTH;
116	sz = new_sz * sizeof(struct thread_stack_entry);
117
118	new_stack = realloc(ts->stack, sz);
119	if (!new_stack)
120		return -ENOMEM;
121
122	ts->stack = new_stack;
123	ts->sz = new_sz;
124
125	return 0;
126}
127
128static int thread_stack__init(struct thread_stack *ts, struct thread *thread,
129			      struct call_return_processor *crp)
 
130{
131	int err;
132
133	err = thread_stack__grow(ts);
134	if (err)
135		return err;
 
 
 
 
 
136
137	if (thread->mg && thread->mg->machine) {
138		struct machine *machine = thread->mg->machine;
 
 
 
 
 
 
 
139		const char *arch = perf_env__arch(machine->env);
140
141		ts->kernel_start = machine__kernel_start(machine);
142		if (!strcmp(arch, "x86"))
143			ts->rstate = X86_RETPOLINE_POSSIBLE;
144	} else {
145		ts->kernel_start = 1ULL << 63;
146	}
147	ts->crp = crp;
148
149	return 0;
150}
151
152static struct thread_stack *thread_stack__new(struct thread *thread, int cpu,
153					      struct call_return_processor *crp)
 
 
154{
155	struct thread_stack *ts = thread->ts, *new_ts;
156	unsigned int old_sz = ts ? ts->arr_sz : 0;
157	unsigned int new_sz = 1;
158
159	if (thread_stack__per_cpu(thread) && cpu > 0)
160		new_sz = roundup_pow_of_two(cpu + 1);
161
162	if (!ts || new_sz > old_sz) {
163		new_ts = calloc(new_sz, sizeof(*ts));
164		if (!new_ts)
165			return NULL;
166		if (ts)
167			memcpy(new_ts, ts, old_sz * sizeof(*ts));
168		new_ts->arr_sz = new_sz;
169		zfree(&thread->ts);
170		thread->ts = new_ts;
171		ts = new_ts;
172	}
173
174	if (thread_stack__per_cpu(thread) && cpu > 0 &&
175	    (unsigned int)cpu < ts->arr_sz)
176		ts += cpu;
177
178	if (!ts->stack &&
179	    thread_stack__init(ts, thread, crp))
180		return NULL;
181
182	return ts;
183}
184
185static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu)
186{
187	struct thread_stack *ts = thread->ts;
188
189	if (cpu < 0)
190		cpu = 0;
191
192	if (!ts || (unsigned int)cpu >= ts->arr_sz)
193		return NULL;
194
195	ts += cpu;
196
197	if (!ts->stack)
198		return NULL;
199
200	return ts;
201}
202
203static inline struct thread_stack *thread__stack(struct thread *thread,
204						    int cpu)
205{
206	if (!thread)
207		return NULL;
208
209	if (thread_stack__per_cpu(thread))
210		return thread__cpu_stack(thread, cpu);
211
212	return thread->ts;
213}
214
215static int thread_stack__push(struct thread_stack *ts, u64 ret_addr,
216			      bool trace_end)
217{
218	int err = 0;
219
220	if (ts->cnt == ts->sz) {
221		err = thread_stack__grow(ts);
222		if (err) {
223			pr_warning("Out of memory: discarding thread stack\n");
224			ts->cnt = 0;
225		}
226	}
227
228	ts->stack[ts->cnt].trace_end = trace_end;
229	ts->stack[ts->cnt++].ret_addr = ret_addr;
230
231	return err;
232}
233
234static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
235{
236	size_t i;
237
238	/*
239	 * In some cases there may be functions which are not seen to return.
240	 * For example when setjmp / longjmp has been used.  Or the perf context
241	 * switch in the kernel which doesn't stop and start tracing in exactly
242	 * the same code path.  When that happens the return address will be
243	 * further down the stack.  If the return address is not found at all,
244	 * we assume the opposite (i.e. this is a return for a call that wasn't
245	 * seen for some reason) and leave the stack alone.
246	 */
247	for (i = ts->cnt; i; ) {
248		if (ts->stack[--i].ret_addr == ret_addr) {
249			ts->cnt = i;
250			return;
251		}
252	}
253}
254
255static void thread_stack__pop_trace_end(struct thread_stack *ts)
256{
257	size_t i;
258
259	for (i = ts->cnt; i; ) {
260		if (ts->stack[--i].trace_end)
261			ts->cnt = i;
262		else
263			return;
264	}
265}
266
267static bool thread_stack__in_kernel(struct thread_stack *ts)
268{
269	if (!ts->cnt)
270		return false;
271
272	return ts->stack[ts->cnt - 1].cp->in_kernel;
273}
274
275static int thread_stack__call_return(struct thread *thread,
276				     struct thread_stack *ts, size_t idx,
277				     u64 timestamp, u64 ref, bool no_return)
278{
279	struct call_return_processor *crp = ts->crp;
280	struct thread_stack_entry *tse;
281	struct call_return cr = {
282		.thread = thread,
283		.comm = ts->comm,
284		.db_id = 0,
285	};
286	u64 *parent_db_id;
287
288	tse = &ts->stack[idx];
289	cr.cp = tse->cp;
290	cr.call_time = tse->timestamp;
291	cr.return_time = timestamp;
292	cr.branch_count = ts->branch_count - tse->branch_count;
293	cr.insn_count = ts->insn_count - tse->insn_count;
294	cr.cyc_count = ts->cyc_count - tse->cyc_count;
295	cr.db_id = tse->db_id;
296	cr.call_ref = tse->ref;
297	cr.return_ref = ref;
298	if (tse->no_call)
299		cr.flags |= CALL_RETURN_NO_CALL;
300	if (no_return)
301		cr.flags |= CALL_RETURN_NO_RETURN;
302	if (tse->non_call)
303		cr.flags |= CALL_RETURN_NON_CALL;
304
305	/*
306	 * The parent db_id must be assigned before exporting the child. Note
307	 * it is not possible to export the parent first because its information
308	 * is not yet complete because its 'return' has not yet been processed.
309	 */
310	parent_db_id = idx ? &(tse - 1)->db_id : NULL;
311
312	return crp->process(&cr, parent_db_id, crp->data);
313}
314
315static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
316{
317	struct call_return_processor *crp = ts->crp;
318	int err;
319
320	if (!crp) {
321		ts->cnt = 0;
 
 
 
322		return 0;
323	}
324
325	while (ts->cnt) {
326		err = thread_stack__call_return(thread, ts, --ts->cnt,
327						ts->last_time, 0, true);
328		if (err) {
329			pr_err("Error flushing thread stack!\n");
330			ts->cnt = 0;
331			return err;
332		}
333	}
334
335	return 0;
336}
337
338int thread_stack__flush(struct thread *thread)
339{
340	struct thread_stack *ts = thread->ts;
341	unsigned int pos;
342	int err = 0;
343
344	if (ts) {
345		for (pos = 0; pos < ts->arr_sz; pos++) {
346			int ret = __thread_stack__flush(thread, ts + pos);
347
348			if (ret)
349				err = ret;
350		}
351	}
352
353	return err;
354}
355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip,
357			u64 to_ip, u16 insn_len, u64 trace_nr)
 
358{
359	struct thread_stack *ts = thread__stack(thread, cpu);
360
361	if (!thread)
362		return -EINVAL;
363
364	if (!ts) {
365		ts = thread_stack__new(thread, cpu, NULL);
366		if (!ts) {
367			pr_warning("Out of memory: no thread stack\n");
368			return -ENOMEM;
369		}
370		ts->trace_nr = trace_nr;
 
371	}
372
373	/*
374	 * When the trace is discontinuous, the trace_nr changes.  In that case
375	 * the stack might be completely invalid.  Better to report nothing than
376	 * to report something misleading, so flush the stack.
377	 */
378	if (trace_nr != ts->trace_nr) {
379		if (ts->trace_nr)
380			__thread_stack__flush(thread, ts);
381		ts->trace_nr = trace_nr;
382	}
383
384	/* Stop here if thread_stack__process() is in use */
385	if (ts->crp)
 
 
 
 
 
 
386		return 0;
387
388	if (flags & PERF_IP_FLAG_CALL) {
389		u64 ret_addr;
390
391		if (!to_ip)
392			return 0;
393		ret_addr = from_ip + insn_len;
394		if (ret_addr == to_ip)
395			return 0; /* Zero-length calls are excluded */
396		return thread_stack__push(ts, ret_addr,
397					  flags & PERF_IP_FLAG_TRACE_END);
398	} else if (flags & PERF_IP_FLAG_TRACE_BEGIN) {
399		/*
400		 * If the caller did not change the trace number (which would
401		 * have flushed the stack) then try to make sense of the stack.
402		 * Possibly, tracing began after returning to the current
403		 * address, so try to pop that. Also, do not expect a call made
404		 * when the trace ended, to return, so pop that.
405		 */
406		thread_stack__pop(ts, to_ip);
407		thread_stack__pop_trace_end(ts);
408	} else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) {
409		thread_stack__pop(ts, to_ip);
410	}
411
412	return 0;
413}
414
415void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr)
416{
417	struct thread_stack *ts = thread__stack(thread, cpu);
418
419	if (!ts)
420		return;
421
422	if (trace_nr != ts->trace_nr) {
423		if (ts->trace_nr)
424			__thread_stack__flush(thread, ts);
425		ts->trace_nr = trace_nr;
426	}
427}
428
429static void __thread_stack__free(struct thread *thread, struct thread_stack *ts)
430{
431	__thread_stack__flush(thread, ts);
432	zfree(&ts->stack);
 
433}
434
435static void thread_stack__reset(struct thread *thread, struct thread_stack *ts)
436{
437	unsigned int arr_sz = ts->arr_sz;
438
439	__thread_stack__free(thread, ts);
440	memset(ts, 0, sizeof(*ts));
441	ts->arr_sz = arr_sz;
442}
443
444void thread_stack__free(struct thread *thread)
445{
446	struct thread_stack *ts = thread->ts;
447	unsigned int pos;
448
449	if (ts) {
450		for (pos = 0; pos < ts->arr_sz; pos++)
451			__thread_stack__free(thread, ts + pos);
452		zfree(&thread->ts);
 
453	}
454}
455
456static inline u64 callchain_context(u64 ip, u64 kernel_start)
457{
458	return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL;
459}
460
461void thread_stack__sample(struct thread *thread, int cpu,
462			  struct ip_callchain *chain,
463			  size_t sz, u64 ip, u64 kernel_start)
464{
465	struct thread_stack *ts = thread__stack(thread, cpu);
466	u64 context = callchain_context(ip, kernel_start);
467	u64 last_context;
468	size_t i, j;
469
470	if (sz < 2) {
471		chain->nr = 0;
472		return;
473	}
474
475	chain->ips[0] = context;
476	chain->ips[1] = ip;
477
478	if (!ts) {
479		chain->nr = 2;
480		return;
481	}
482
483	last_context = context;
484
485	for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) {
486		ip = ts->stack[ts->cnt - j].ret_addr;
487		context = callchain_context(ip, kernel_start);
488		if (context != last_context) {
489			if (i >= sz - 1)
490				break;
491			chain->ips[i++] = context;
492			last_context = context;
493		}
494		chain->ips[i] = ip;
495	}
496
497	chain->nr = i;
498}
499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500struct call_return_processor *
501call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data),
502			   void *data)
503{
504	struct call_return_processor *crp;
505
506	crp = zalloc(sizeof(struct call_return_processor));
507	if (!crp)
508		return NULL;
509	crp->cpr = call_path_root__new();
510	if (!crp->cpr)
511		goto out_free;
512	crp->process = process;
513	crp->data = data;
514	return crp;
515
516out_free:
517	free(crp);
518	return NULL;
519}
520
521void call_return_processor__free(struct call_return_processor *crp)
522{
523	if (crp) {
524		call_path_root__free(crp->cpr);
525		free(crp);
526	}
527}
528
529static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
530				 u64 timestamp, u64 ref, struct call_path *cp,
531				 bool no_call, bool trace_end)
532{
533	struct thread_stack_entry *tse;
534	int err;
535
536	if (!cp)
537		return -ENOMEM;
538
539	if (ts->cnt == ts->sz) {
540		err = thread_stack__grow(ts);
541		if (err)
542			return err;
543	}
544
545	tse = &ts->stack[ts->cnt++];
546	tse->ret_addr = ret_addr;
547	tse->timestamp = timestamp;
548	tse->ref = ref;
549	tse->branch_count = ts->branch_count;
550	tse->insn_count = ts->insn_count;
551	tse->cyc_count = ts->cyc_count;
552	tse->cp = cp;
553	tse->no_call = no_call;
554	tse->trace_end = trace_end;
555	tse->non_call = false;
556	tse->db_id = 0;
557
558	return 0;
559}
560
561static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
562				u64 ret_addr, u64 timestamp, u64 ref,
563				struct symbol *sym)
564{
565	int err;
566
567	if (!ts->cnt)
568		return 1;
569
570	if (ts->cnt == 1) {
571		struct thread_stack_entry *tse = &ts->stack[0];
572
573		if (tse->cp->sym == sym)
574			return thread_stack__call_return(thread, ts, --ts->cnt,
575							 timestamp, ref, false);
576	}
577
578	if (ts->stack[ts->cnt - 1].ret_addr == ret_addr &&
579	    !ts->stack[ts->cnt - 1].non_call) {
580		return thread_stack__call_return(thread, ts, --ts->cnt,
581						 timestamp, ref, false);
582	} else {
583		size_t i = ts->cnt - 1;
584
585		while (i--) {
586			if (ts->stack[i].ret_addr != ret_addr ||
587			    ts->stack[i].non_call)
588				continue;
589			i += 1;
590			while (ts->cnt > i) {
591				err = thread_stack__call_return(thread, ts,
592								--ts->cnt,
593								timestamp, ref,
594								true);
595				if (err)
596					return err;
597			}
598			return thread_stack__call_return(thread, ts, --ts->cnt,
599							 timestamp, ref, false);
600		}
601	}
602
603	return 1;
604}
605
606static int thread_stack__bottom(struct thread_stack *ts,
607				struct perf_sample *sample,
608				struct addr_location *from_al,
609				struct addr_location *to_al, u64 ref)
610{
611	struct call_path_root *cpr = ts->crp->cpr;
612	struct call_path *cp;
613	struct symbol *sym;
614	u64 ip;
615
616	if (sample->ip) {
617		ip = sample->ip;
618		sym = from_al->sym;
619	} else if (sample->addr) {
620		ip = sample->addr;
621		sym = to_al->sym;
622	} else {
623		return 0;
624	}
625
626	cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
627				ts->kernel_start);
628
629	return thread_stack__push_cp(ts, ip, sample->time, ref, cp,
630				     true, false);
631}
632
633static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts,
634				struct perf_sample *sample, u64 ref)
635{
636	u64 tm = sample->time;
637	int err;
638
639	/* Return to userspace, so pop all kernel addresses */
640	while (thread_stack__in_kernel(ts)) {
641		err = thread_stack__call_return(thread, ts, --ts->cnt,
642						tm, ref, true);
643		if (err)
644			return err;
645	}
646
647	return 0;
648}
649
650static int thread_stack__no_call_return(struct thread *thread,
651					struct thread_stack *ts,
652					struct perf_sample *sample,
653					struct addr_location *from_al,
654					struct addr_location *to_al, u64 ref)
655{
656	struct call_path_root *cpr = ts->crp->cpr;
657	struct call_path *root = &cpr->call_path;
658	struct symbol *fsym = from_al->sym;
659	struct symbol *tsym = to_al->sym;
660	struct call_path *cp, *parent;
661	u64 ks = ts->kernel_start;
662	u64 addr = sample->addr;
663	u64 tm = sample->time;
664	u64 ip = sample->ip;
665	int err;
666
667	if (ip >= ks && addr < ks) {
668		/* Return to userspace, so pop all kernel addresses */
669		err = thread_stack__pop_ks(thread, ts, sample, ref);
670		if (err)
671			return err;
672
673		/* If the stack is empty, push the userspace address */
674		if (!ts->cnt) {
675			cp = call_path__findnew(cpr, root, tsym, addr, ks);
676			return thread_stack__push_cp(ts, 0, tm, ref, cp, true,
677						     false);
678		}
679	} else if (thread_stack__in_kernel(ts) && ip < ks) {
680		/* Return to userspace, so pop all kernel addresses */
681		err = thread_stack__pop_ks(thread, ts, sample, ref);
682		if (err)
683			return err;
684	}
685
686	if (ts->cnt)
687		parent = ts->stack[ts->cnt - 1].cp;
688	else
689		parent = root;
690
691	if (parent->sym == from_al->sym) {
692		/*
693		 * At the bottom of the stack, assume the missing 'call' was
694		 * before the trace started. So, pop the current symbol and push
695		 * the 'to' symbol.
696		 */
697		if (ts->cnt == 1) {
698			err = thread_stack__call_return(thread, ts, --ts->cnt,
699							tm, ref, false);
700			if (err)
701				return err;
702		}
703
704		if (!ts->cnt) {
705			cp = call_path__findnew(cpr, root, tsym, addr, ks);
706
707			return thread_stack__push_cp(ts, addr, tm, ref, cp,
708						     true, false);
709		}
710
711		/*
712		 * Otherwise assume the 'return' is being used as a jump (e.g.
713		 * retpoline) and just push the 'to' symbol.
714		 */
715		cp = call_path__findnew(cpr, parent, tsym, addr, ks);
716
717		err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false);
718		if (!err)
719			ts->stack[ts->cnt - 1].non_call = true;
720
721		return err;
722	}
723
724	/*
725	 * Assume 'parent' has not yet returned, so push 'to', and then push and
726	 * pop 'from'.
727	 */
728
729	cp = call_path__findnew(cpr, parent, tsym, addr, ks);
730
731	err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false);
732	if (err)
733		return err;
734
735	cp = call_path__findnew(cpr, cp, fsym, ip, ks);
736
737	err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false);
738	if (err)
739		return err;
740
741	return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false);
742}
743
744static int thread_stack__trace_begin(struct thread *thread,
745				     struct thread_stack *ts, u64 timestamp,
746				     u64 ref)
747{
748	struct thread_stack_entry *tse;
749	int err;
750
751	if (!ts->cnt)
752		return 0;
753
754	/* Pop trace end */
755	tse = &ts->stack[ts->cnt - 1];
756	if (tse->trace_end) {
757		err = thread_stack__call_return(thread, ts, --ts->cnt,
758						timestamp, ref, false);
759		if (err)
760			return err;
761	}
762
763	return 0;
764}
765
766static int thread_stack__trace_end(struct thread_stack *ts,
767				   struct perf_sample *sample, u64 ref)
768{
769	struct call_path_root *cpr = ts->crp->cpr;
770	struct call_path *cp;
771	u64 ret_addr;
772
773	/* No point having 'trace end' on the bottom of the stack */
774	if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
775		return 0;
776
777	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
778				ts->kernel_start);
779
780	ret_addr = sample->ip + sample->insn_len;
781
782	return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
783				     false, true);
784}
785
786static bool is_x86_retpoline(const char *name)
787{
788	const char *p = strstr(name, "__x86_indirect_thunk_");
789
790	return p == name || !strcmp(name, "__indirect_thunk_start");
791}
792
793/*
794 * x86 retpoline functions pollute the call graph. This function removes them.
795 * This does not handle function return thunks, nor is there any improvement
796 * for the handling of inline thunks or extern thunks.
797 */
798static int thread_stack__x86_retpoline(struct thread_stack *ts,
799				       struct perf_sample *sample,
800				       struct addr_location *to_al)
801{
802	struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1];
803	struct call_path_root *cpr = ts->crp->cpr;
804	struct symbol *sym = tse->cp->sym;
805	struct symbol *tsym = to_al->sym;
806	struct call_path *cp;
807
808	if (sym && is_x86_retpoline(sym->name)) {
809		/*
810		 * This is a x86 retpoline fn. It pollutes the call graph by
811		 * showing up everywhere there is an indirect branch, but does
812		 * not itself mean anything. Here the top-of-stack is removed,
813		 * by decrementing the stack count, and then further down, the
814		 * resulting top-of-stack is replaced with the actual target.
815		 * The result is that the retpoline functions will no longer
816		 * appear in the call graph. Note this only affects the call
817		 * graph, since all the original branches are left unchanged.
818		 */
819		ts->cnt -= 1;
820		sym = ts->stack[ts->cnt - 2].cp->sym;
821		if (sym && sym == tsym && to_al->addr != tsym->start) {
822			/*
823			 * Target is back to the middle of the symbol we came
824			 * from so assume it is an indirect jmp and forget it
825			 * altogether.
826			 */
827			ts->cnt -= 1;
828			return 0;
829		}
830	} else if (sym && sym == tsym) {
831		/*
832		 * Target is back to the symbol we came from so assume it is an
833		 * indirect jmp and forget it altogether.
834		 */
835		ts->cnt -= 1;
836		return 0;
837	}
838
839	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym,
840				sample->addr, ts->kernel_start);
841	if (!cp)
842		return -ENOMEM;
843
844	/* Replace the top-of-stack with the actual target */
845	ts->stack[ts->cnt - 1].cp = cp;
846
847	return 0;
848}
849
850int thread_stack__process(struct thread *thread, struct comm *comm,
851			  struct perf_sample *sample,
852			  struct addr_location *from_al,
853			  struct addr_location *to_al, u64 ref,
854			  struct call_return_processor *crp)
855{
856	struct thread_stack *ts = thread__stack(thread, sample->cpu);
857	enum retpoline_state_t rstate;
858	int err = 0;
859
860	if (ts && !ts->crp) {
861		/* Supersede thread_stack__event() */
862		thread_stack__reset(thread, ts);
863		ts = NULL;
864	}
865
866	if (!ts) {
867		ts = thread_stack__new(thread, sample->cpu, crp);
868		if (!ts)
869			return -ENOMEM;
870		ts->comm = comm;
871	}
872
873	rstate = ts->rstate;
874	if (rstate == X86_RETPOLINE_DETECTED)
875		ts->rstate = X86_RETPOLINE_POSSIBLE;
876
877	/* Flush stack on exec */
878	if (ts->comm != comm && thread->pid_ == thread->tid) {
879		err = __thread_stack__flush(thread, ts);
880		if (err)
881			return err;
882		ts->comm = comm;
883	}
884
885	/* If the stack is empty, put the current symbol on the stack */
886	if (!ts->cnt) {
887		err = thread_stack__bottom(ts, sample, from_al, to_al, ref);
888		if (err)
889			return err;
890	}
891
892	ts->branch_count += 1;
893	ts->insn_count += sample->insn_cnt;
894	ts->cyc_count += sample->cyc_cnt;
895	ts->last_time = sample->time;
896
897	if (sample->flags & PERF_IP_FLAG_CALL) {
898		bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END;
899		struct call_path_root *cpr = ts->crp->cpr;
900		struct call_path *cp;
901		u64 ret_addr;
902
903		if (!sample->ip || !sample->addr)
904			return 0;
905
906		ret_addr = sample->ip + sample->insn_len;
907		if (ret_addr == sample->addr)
908			return 0; /* Zero-length calls are excluded */
909
910		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
911					to_al->sym, sample->addr,
912					ts->kernel_start);
913		err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
914					    cp, false, trace_end);
915
916		/*
917		 * A call to the same symbol but not the start of the symbol,
918		 * may be the start of a x86 retpoline.
919		 */
920		if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym &&
921		    from_al->sym == to_al->sym &&
922		    to_al->addr != to_al->sym->start)
923			ts->rstate = X86_RETPOLINE_DETECTED;
924
925	} else if (sample->flags & PERF_IP_FLAG_RETURN) {
926		if (!sample->addr) {
927			u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET |
928						 PERF_IP_FLAG_INTERRUPT;
929
930			if (!(sample->flags & return_from_kernel))
931				return 0;
932
933			/* Pop kernel stack */
934			return thread_stack__pop_ks(thread, ts, sample, ref);
935		}
936
937		if (!sample->ip)
938			return 0;
939
940		/* x86 retpoline 'return' doesn't match the stack */
941		if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 &&
942		    ts->stack[ts->cnt - 1].ret_addr != sample->addr)
943			return thread_stack__x86_retpoline(ts, sample, to_al);
944
945		err = thread_stack__pop_cp(thread, ts, sample->addr,
946					   sample->time, ref, from_al->sym);
947		if (err) {
948			if (err < 0)
949				return err;
950			err = thread_stack__no_call_return(thread, ts, sample,
951							   from_al, to_al, ref);
952		}
953	} else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
954		err = thread_stack__trace_begin(thread, ts, sample->time, ref);
955	} else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
956		err = thread_stack__trace_end(ts, sample, ref);
957	} else if (sample->flags & PERF_IP_FLAG_BRANCH &&
958		   from_al->sym != to_al->sym && to_al->sym &&
959		   to_al->addr == to_al->sym->start) {
960		struct call_path_root *cpr = ts->crp->cpr;
961		struct call_path *cp;
962
963		/*
964		 * The compiler might optimize a call/ret combination by making
965		 * it a jmp. Make that visible by recording on the stack a
966		 * branch to the start of a different symbol. Note, that means
967		 * when a ret pops the stack, all jmps must be popped off first.
968		 */
969		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
970					to_al->sym, sample->addr,
971					ts->kernel_start);
972		err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false,
973					    false);
974		if (!err)
975			ts->stack[ts->cnt - 1].non_call = true;
976	}
977
978	return err;
979}
980
981size_t thread_stack__depth(struct thread *thread, int cpu)
982{
983	struct thread_stack *ts = thread__stack(thread, cpu);
984
985	if (!ts)
986		return 0;
987	return ts->cnt;
988}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * thread-stack.c: Synthesize a thread's stack using call / return events
   4 * Copyright (c) 2014, Intel Corporation.
   5 */
   6
   7#include <linux/rbtree.h>
   8#include <linux/list.h>
   9#include <linux/log2.h>
  10#include <linux/zalloc.h>
  11#include <errno.h>
  12#include <stdlib.h>
  13#include <string.h>
  14#include "thread.h"
  15#include "event.h"
  16#include "machine.h"
  17#include "env.h"
  18#include "debug.h"
  19#include "symbol.h"
  20#include "comm.h"
  21#include "call-path.h"
  22#include "thread-stack.h"
  23
  24#define STACK_GROWTH 2048
  25
  26/*
  27 * State of retpoline detection.
  28 *
  29 * RETPOLINE_NONE: no retpoline detection
  30 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible
  31 * X86_RETPOLINE_DETECTED: x86 retpoline detected
  32 */
  33enum retpoline_state_t {
  34	RETPOLINE_NONE,
  35	X86_RETPOLINE_POSSIBLE,
  36	X86_RETPOLINE_DETECTED,
  37};
  38
  39/**
  40 * struct thread_stack_entry - thread stack entry.
  41 * @ret_addr: return address
  42 * @timestamp: timestamp (if known)
  43 * @ref: external reference (e.g. db_id of sample)
  44 * @branch_count: the branch count when the entry was created
  45 * @insn_count: the instruction count when the entry was created
  46 * @cyc_count the cycle count when the entry was created
  47 * @db_id: id used for db-export
  48 * @cp: call path
  49 * @no_call: a 'call' was not seen
  50 * @trace_end: a 'call' but trace ended
  51 * @non_call: a branch but not a 'call' to the start of a different symbol
  52 */
  53struct thread_stack_entry {
  54	u64 ret_addr;
  55	u64 timestamp;
  56	u64 ref;
  57	u64 branch_count;
  58	u64 insn_count;
  59	u64 cyc_count;
  60	u64 db_id;
  61	struct call_path *cp;
  62	bool no_call;
  63	bool trace_end;
  64	bool non_call;
  65};
  66
  67/**
  68 * struct thread_stack - thread stack constructed from 'call' and 'return'
  69 *                       branch samples.
  70 * @stack: array that holds the stack
  71 * @cnt: number of entries in the stack
  72 * @sz: current maximum stack size
  73 * @trace_nr: current trace number
  74 * @branch_count: running branch count
  75 * @insn_count: running  instruction count
  76 * @cyc_count running  cycle count
  77 * @kernel_start: kernel start address
  78 * @last_time: last timestamp
  79 * @crp: call/return processor
  80 * @comm: current comm
  81 * @arr_sz: size of array if this is the first element of an array
  82 * @rstate: used to detect retpolines
  83 * @br_stack_rb: branch stack (ring buffer)
  84 * @br_stack_sz: maximum branch stack size
  85 * @br_stack_pos: current position in @br_stack_rb
  86 * @mispred_all: mark all branches as mispredicted
  87 */
  88struct thread_stack {
  89	struct thread_stack_entry *stack;
  90	size_t cnt;
  91	size_t sz;
  92	u64 trace_nr;
  93	u64 branch_count;
  94	u64 insn_count;
  95	u64 cyc_count;
  96	u64 kernel_start;
  97	u64 last_time;
  98	struct call_return_processor *crp;
  99	struct comm *comm;
 100	unsigned int arr_sz;
 101	enum retpoline_state_t rstate;
 102	struct branch_stack *br_stack_rb;
 103	unsigned int br_stack_sz;
 104	unsigned int br_stack_pos;
 105	bool mispred_all;
 106};
 107
 108/*
 109 * Assume pid == tid == 0 identifies the idle task as defined by
 110 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu,
 111 * and therefore requires a stack for each cpu.
 112 */
 113static inline bool thread_stack__per_cpu(struct thread *thread)
 114{
 115	return !(thread__tid(thread) || thread__pid(thread));
 116}
 117
 118static int thread_stack__grow(struct thread_stack *ts)
 119{
 120	struct thread_stack_entry *new_stack;
 121	size_t sz, new_sz;
 122
 123	new_sz = ts->sz + STACK_GROWTH;
 124	sz = new_sz * sizeof(struct thread_stack_entry);
 125
 126	new_stack = realloc(ts->stack, sz);
 127	if (!new_stack)
 128		return -ENOMEM;
 129
 130	ts->stack = new_stack;
 131	ts->sz = new_sz;
 132
 133	return 0;
 134}
 135
 136static int thread_stack__init(struct thread_stack *ts, struct thread *thread,
 137			      struct call_return_processor *crp,
 138			      bool callstack, unsigned int br_stack_sz)
 139{
 140	int err;
 141
 142	if (callstack) {
 143		err = thread_stack__grow(ts);
 144		if (err)
 145			return err;
 146	}
 147
 148	if (br_stack_sz) {
 149		size_t sz = sizeof(struct branch_stack);
 150
 151		sz += br_stack_sz * sizeof(struct branch_entry);
 152		ts->br_stack_rb = zalloc(sz);
 153		if (!ts->br_stack_rb)
 154			return -ENOMEM;
 155		ts->br_stack_sz = br_stack_sz;
 156	}
 157
 158	if (thread__maps(thread) && maps__machine(thread__maps(thread))) {
 159		struct machine *machine = maps__machine(thread__maps(thread));
 160		const char *arch = perf_env__arch(machine->env);
 161
 162		ts->kernel_start = machine__kernel_start(machine);
 163		if (!strcmp(arch, "x86"))
 164			ts->rstate = X86_RETPOLINE_POSSIBLE;
 165	} else {
 166		ts->kernel_start = 1ULL << 63;
 167	}
 168	ts->crp = crp;
 169
 170	return 0;
 171}
 172
 173static struct thread_stack *thread_stack__new(struct thread *thread, int cpu,
 174					      struct call_return_processor *crp,
 175					      bool callstack,
 176					      unsigned int br_stack_sz)
 177{
 178	struct thread_stack *ts = thread__ts(thread), *new_ts;
 179	unsigned int old_sz = ts ? ts->arr_sz : 0;
 180	unsigned int new_sz = 1;
 181
 182	if (thread_stack__per_cpu(thread) && cpu > 0)
 183		new_sz = roundup_pow_of_two(cpu + 1);
 184
 185	if (!ts || new_sz > old_sz) {
 186		new_ts = calloc(new_sz, sizeof(*ts));
 187		if (!new_ts)
 188			return NULL;
 189		if (ts)
 190			memcpy(new_ts, ts, old_sz * sizeof(*ts));
 191		new_ts->arr_sz = new_sz;
 192		free(thread__ts(thread));
 193		thread__set_ts(thread, new_ts);
 194		ts = new_ts;
 195	}
 196
 197	if (thread_stack__per_cpu(thread) && cpu > 0 &&
 198	    (unsigned int)cpu < ts->arr_sz)
 199		ts += cpu;
 200
 201	if (!ts->stack &&
 202	    thread_stack__init(ts, thread, crp, callstack, br_stack_sz))
 203		return NULL;
 204
 205	return ts;
 206}
 207
 208static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu)
 209{
 210	struct thread_stack *ts = thread__ts(thread);
 211
 212	if (cpu < 0)
 213		cpu = 0;
 214
 215	if (!ts || (unsigned int)cpu >= ts->arr_sz)
 216		return NULL;
 217
 218	ts += cpu;
 219
 220	if (!ts->stack)
 221		return NULL;
 222
 223	return ts;
 224}
 225
 226static inline struct thread_stack *thread__stack(struct thread *thread,
 227						    int cpu)
 228{
 229	if (!thread)
 230		return NULL;
 231
 232	if (thread_stack__per_cpu(thread))
 233		return thread__cpu_stack(thread, cpu);
 234
 235	return thread__ts(thread);
 236}
 237
 238static int thread_stack__push(struct thread_stack *ts, u64 ret_addr,
 239			      bool trace_end)
 240{
 241	int err = 0;
 242
 243	if (ts->cnt == ts->sz) {
 244		err = thread_stack__grow(ts);
 245		if (err) {
 246			pr_warning("Out of memory: discarding thread stack\n");
 247			ts->cnt = 0;
 248		}
 249	}
 250
 251	ts->stack[ts->cnt].trace_end = trace_end;
 252	ts->stack[ts->cnt++].ret_addr = ret_addr;
 253
 254	return err;
 255}
 256
 257static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
 258{
 259	size_t i;
 260
 261	/*
 262	 * In some cases there may be functions which are not seen to return.
 263	 * For example when setjmp / longjmp has been used.  Or the perf context
 264	 * switch in the kernel which doesn't stop and start tracing in exactly
 265	 * the same code path.  When that happens the return address will be
 266	 * further down the stack.  If the return address is not found at all,
 267	 * we assume the opposite (i.e. this is a return for a call that wasn't
 268	 * seen for some reason) and leave the stack alone.
 269	 */
 270	for (i = ts->cnt; i; ) {
 271		if (ts->stack[--i].ret_addr == ret_addr) {
 272			ts->cnt = i;
 273			return;
 274		}
 275	}
 276}
 277
 278static void thread_stack__pop_trace_end(struct thread_stack *ts)
 279{
 280	size_t i;
 281
 282	for (i = ts->cnt; i; ) {
 283		if (ts->stack[--i].trace_end)
 284			ts->cnt = i;
 285		else
 286			return;
 287	}
 288}
 289
 290static bool thread_stack__in_kernel(struct thread_stack *ts)
 291{
 292	if (!ts->cnt)
 293		return false;
 294
 295	return ts->stack[ts->cnt - 1].cp->in_kernel;
 296}
 297
 298static int thread_stack__call_return(struct thread *thread,
 299				     struct thread_stack *ts, size_t idx,
 300				     u64 timestamp, u64 ref, bool no_return)
 301{
 302	struct call_return_processor *crp = ts->crp;
 303	struct thread_stack_entry *tse;
 304	struct call_return cr = {
 305		.thread = thread,
 306		.comm = ts->comm,
 307		.db_id = 0,
 308	};
 309	u64 *parent_db_id;
 310
 311	tse = &ts->stack[idx];
 312	cr.cp = tse->cp;
 313	cr.call_time = tse->timestamp;
 314	cr.return_time = timestamp;
 315	cr.branch_count = ts->branch_count - tse->branch_count;
 316	cr.insn_count = ts->insn_count - tse->insn_count;
 317	cr.cyc_count = ts->cyc_count - tse->cyc_count;
 318	cr.db_id = tse->db_id;
 319	cr.call_ref = tse->ref;
 320	cr.return_ref = ref;
 321	if (tse->no_call)
 322		cr.flags |= CALL_RETURN_NO_CALL;
 323	if (no_return)
 324		cr.flags |= CALL_RETURN_NO_RETURN;
 325	if (tse->non_call)
 326		cr.flags |= CALL_RETURN_NON_CALL;
 327
 328	/*
 329	 * The parent db_id must be assigned before exporting the child. Note
 330	 * it is not possible to export the parent first because its information
 331	 * is not yet complete because its 'return' has not yet been processed.
 332	 */
 333	parent_db_id = idx ? &(tse - 1)->db_id : NULL;
 334
 335	return crp->process(&cr, parent_db_id, crp->data);
 336}
 337
 338static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
 339{
 340	struct call_return_processor *crp = ts->crp;
 341	int err;
 342
 343	if (!crp) {
 344		ts->cnt = 0;
 345		ts->br_stack_pos = 0;
 346		if (ts->br_stack_rb)
 347			ts->br_stack_rb->nr = 0;
 348		return 0;
 349	}
 350
 351	while (ts->cnt) {
 352		err = thread_stack__call_return(thread, ts, --ts->cnt,
 353						ts->last_time, 0, true);
 354		if (err) {
 355			pr_err("Error flushing thread stack!\n");
 356			ts->cnt = 0;
 357			return err;
 358		}
 359	}
 360
 361	return 0;
 362}
 363
 364int thread_stack__flush(struct thread *thread)
 365{
 366	struct thread_stack *ts = thread__ts(thread);
 367	unsigned int pos;
 368	int err = 0;
 369
 370	if (ts) {
 371		for (pos = 0; pos < ts->arr_sz; pos++) {
 372			int ret = __thread_stack__flush(thread, ts + pos);
 373
 374			if (ret)
 375				err = ret;
 376		}
 377	}
 378
 379	return err;
 380}
 381
 382static void thread_stack__update_br_stack(struct thread_stack *ts, u32 flags,
 383					  u64 from_ip, u64 to_ip)
 384{
 385	struct branch_stack *bs = ts->br_stack_rb;
 386	struct branch_entry *be;
 387
 388	if (!ts->br_stack_pos)
 389		ts->br_stack_pos = ts->br_stack_sz;
 390
 391	ts->br_stack_pos -= 1;
 392
 393	be              = &bs->entries[ts->br_stack_pos];
 394	be->from        = from_ip;
 395	be->to          = to_ip;
 396	be->flags.value = 0;
 397	be->flags.abort = !!(flags & PERF_IP_FLAG_TX_ABORT);
 398	be->flags.in_tx = !!(flags & PERF_IP_FLAG_IN_TX);
 399	/* No support for mispredict */
 400	be->flags.mispred = ts->mispred_all;
 401
 402	if (bs->nr < ts->br_stack_sz)
 403		bs->nr += 1;
 404}
 405
 406int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip,
 407			u64 to_ip, u16 insn_len, u64 trace_nr, bool callstack,
 408			unsigned int br_stack_sz, bool mispred_all)
 409{
 410	struct thread_stack *ts = thread__stack(thread, cpu);
 411
 412	if (!thread)
 413		return -EINVAL;
 414
 415	if (!ts) {
 416		ts = thread_stack__new(thread, cpu, NULL, callstack, br_stack_sz);
 417		if (!ts) {
 418			pr_warning("Out of memory: no thread stack\n");
 419			return -ENOMEM;
 420		}
 421		ts->trace_nr = trace_nr;
 422		ts->mispred_all = mispred_all;
 423	}
 424
 425	/*
 426	 * When the trace is discontinuous, the trace_nr changes.  In that case
 427	 * the stack might be completely invalid.  Better to report nothing than
 428	 * to report something misleading, so flush the stack.
 429	 */
 430	if (trace_nr != ts->trace_nr) {
 431		if (ts->trace_nr)
 432			__thread_stack__flush(thread, ts);
 433		ts->trace_nr = trace_nr;
 434	}
 435
 436	if (br_stack_sz)
 437		thread_stack__update_br_stack(ts, flags, from_ip, to_ip);
 438
 439	/*
 440	 * Stop here if thread_stack__process() is in use, or not recording call
 441	 * stack.
 442	 */
 443	if (ts->crp || !callstack)
 444		return 0;
 445
 446	if (flags & PERF_IP_FLAG_CALL) {
 447		u64 ret_addr;
 448
 449		if (!to_ip)
 450			return 0;
 451		ret_addr = from_ip + insn_len;
 452		if (ret_addr == to_ip)
 453			return 0; /* Zero-length calls are excluded */
 454		return thread_stack__push(ts, ret_addr,
 455					  flags & PERF_IP_FLAG_TRACE_END);
 456	} else if (flags & PERF_IP_FLAG_TRACE_BEGIN) {
 457		/*
 458		 * If the caller did not change the trace number (which would
 459		 * have flushed the stack) then try to make sense of the stack.
 460		 * Possibly, tracing began after returning to the current
 461		 * address, so try to pop that. Also, do not expect a call made
 462		 * when the trace ended, to return, so pop that.
 463		 */
 464		thread_stack__pop(ts, to_ip);
 465		thread_stack__pop_trace_end(ts);
 466	} else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) {
 467		thread_stack__pop(ts, to_ip);
 468	}
 469
 470	return 0;
 471}
 472
 473void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr)
 474{
 475	struct thread_stack *ts = thread__stack(thread, cpu);
 476
 477	if (!ts)
 478		return;
 479
 480	if (trace_nr != ts->trace_nr) {
 481		if (ts->trace_nr)
 482			__thread_stack__flush(thread, ts);
 483		ts->trace_nr = trace_nr;
 484	}
 485}
 486
 487static void __thread_stack__free(struct thread *thread, struct thread_stack *ts)
 488{
 489	__thread_stack__flush(thread, ts);
 490	zfree(&ts->stack);
 491	zfree(&ts->br_stack_rb);
 492}
 493
 494static void thread_stack__reset(struct thread *thread, struct thread_stack *ts)
 495{
 496	unsigned int arr_sz = ts->arr_sz;
 497
 498	__thread_stack__free(thread, ts);
 499	memset(ts, 0, sizeof(*ts));
 500	ts->arr_sz = arr_sz;
 501}
 502
 503void thread_stack__free(struct thread *thread)
 504{
 505	struct thread_stack *ts = thread__ts(thread);
 506	unsigned int pos;
 507
 508	if (ts) {
 509		for (pos = 0; pos < ts->arr_sz; pos++)
 510			__thread_stack__free(thread, ts + pos);
 511		free(thread__ts(thread));
 512		thread__set_ts(thread, NULL);
 513	}
 514}
 515
 516static inline u64 callchain_context(u64 ip, u64 kernel_start)
 517{
 518	return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL;
 519}
 520
 521void thread_stack__sample(struct thread *thread, int cpu,
 522			  struct ip_callchain *chain,
 523			  size_t sz, u64 ip, u64 kernel_start)
 524{
 525	struct thread_stack *ts = thread__stack(thread, cpu);
 526	u64 context = callchain_context(ip, kernel_start);
 527	u64 last_context;
 528	size_t i, j;
 529
 530	if (sz < 2) {
 531		chain->nr = 0;
 532		return;
 533	}
 534
 535	chain->ips[0] = context;
 536	chain->ips[1] = ip;
 537
 538	if (!ts) {
 539		chain->nr = 2;
 540		return;
 541	}
 542
 543	last_context = context;
 544
 545	for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) {
 546		ip = ts->stack[ts->cnt - j].ret_addr;
 547		context = callchain_context(ip, kernel_start);
 548		if (context != last_context) {
 549			if (i >= sz - 1)
 550				break;
 551			chain->ips[i++] = context;
 552			last_context = context;
 553		}
 554		chain->ips[i] = ip;
 555	}
 556
 557	chain->nr = i;
 558}
 559
 560/*
 561 * Hardware sample records, created some time after the event occurred, need to
 562 * have subsequent addresses removed from the call chain.
 563 */
 564void thread_stack__sample_late(struct thread *thread, int cpu,
 565			       struct ip_callchain *chain, size_t sz,
 566			       u64 sample_ip, u64 kernel_start)
 567{
 568	struct thread_stack *ts = thread__stack(thread, cpu);
 569	u64 sample_context = callchain_context(sample_ip, kernel_start);
 570	u64 last_context, context, ip;
 571	size_t nr = 0, j;
 572
 573	if (sz < 2) {
 574		chain->nr = 0;
 575		return;
 576	}
 577
 578	if (!ts)
 579		goto out;
 580
 581	/*
 582	 * When tracing kernel space, kernel addresses occur at the top of the
 583	 * call chain after the event occurred but before tracing stopped.
 584	 * Skip them.
 585	 */
 586	for (j = 1; j <= ts->cnt; j++) {
 587		ip = ts->stack[ts->cnt - j].ret_addr;
 588		context = callchain_context(ip, kernel_start);
 589		if (context == PERF_CONTEXT_USER ||
 590		    (context == sample_context && ip == sample_ip))
 591			break;
 592	}
 593
 594	last_context = sample_ip; /* Use sample_ip as an invalid context */
 595
 596	for (; nr < sz && j <= ts->cnt; nr++, j++) {
 597		ip = ts->stack[ts->cnt - j].ret_addr;
 598		context = callchain_context(ip, kernel_start);
 599		if (context != last_context) {
 600			if (nr >= sz - 1)
 601				break;
 602			chain->ips[nr++] = context;
 603			last_context = context;
 604		}
 605		chain->ips[nr] = ip;
 606	}
 607out:
 608	if (nr) {
 609		chain->nr = nr;
 610	} else {
 611		chain->ips[0] = sample_context;
 612		chain->ips[1] = sample_ip;
 613		chain->nr = 2;
 614	}
 615}
 616
 617void thread_stack__br_sample(struct thread *thread, int cpu,
 618			     struct branch_stack *dst, unsigned int sz)
 619{
 620	struct thread_stack *ts = thread__stack(thread, cpu);
 621	const size_t bsz = sizeof(struct branch_entry);
 622	struct branch_stack *src;
 623	struct branch_entry *be;
 624	unsigned int nr;
 625
 626	dst->nr = 0;
 627
 628	if (!ts)
 629		return;
 630
 631	src = ts->br_stack_rb;
 632	if (!src->nr)
 633		return;
 634
 635	dst->nr = min((unsigned int)src->nr, sz);
 636
 637	be = &dst->entries[0];
 638	nr = min(ts->br_stack_sz - ts->br_stack_pos, (unsigned int)dst->nr);
 639	memcpy(be, &src->entries[ts->br_stack_pos], bsz * nr);
 640
 641	if (src->nr >= ts->br_stack_sz) {
 642		sz -= nr;
 643		be = &dst->entries[nr];
 644		nr = min(ts->br_stack_pos, sz);
 645		memcpy(be, &src->entries[0], bsz * ts->br_stack_pos);
 646	}
 647}
 648
 649/* Start of user space branch entries */
 650static bool us_start(struct branch_entry *be, u64 kernel_start, bool *start)
 651{
 652	if (!*start)
 653		*start = be->to && be->to < kernel_start;
 654
 655	return *start;
 656}
 657
 658/*
 659 * Start of branch entries after the ip fell in between 2 branches, or user
 660 * space branch entries.
 661 */
 662static bool ks_start(struct branch_entry *be, u64 sample_ip, u64 kernel_start,
 663		     bool *start, struct branch_entry *nb)
 664{
 665	if (!*start) {
 666		*start = (nb && sample_ip >= be->to && sample_ip <= nb->from) ||
 667			 be->from < kernel_start ||
 668			 (be->to && be->to < kernel_start);
 669	}
 670
 671	return *start;
 672}
 673
 674/*
 675 * Hardware sample records, created some time after the event occurred, need to
 676 * have subsequent addresses removed from the branch stack.
 677 */
 678void thread_stack__br_sample_late(struct thread *thread, int cpu,
 679				  struct branch_stack *dst, unsigned int sz,
 680				  u64 ip, u64 kernel_start)
 681{
 682	struct thread_stack *ts = thread__stack(thread, cpu);
 683	struct branch_entry *d, *s, *spos, *ssz;
 684	struct branch_stack *src;
 685	unsigned int nr = 0;
 686	bool start = false;
 687
 688	dst->nr = 0;
 689
 690	if (!ts)
 691		return;
 692
 693	src = ts->br_stack_rb;
 694	if (!src->nr)
 695		return;
 696
 697	spos = &src->entries[ts->br_stack_pos];
 698	ssz  = &src->entries[ts->br_stack_sz];
 699
 700	d = &dst->entries[0];
 701	s = spos;
 702
 703	if (ip < kernel_start) {
 704		/*
 705		 * User space sample: start copying branch entries when the
 706		 * branch is in user space.
 707		 */
 708		for (s = spos; s < ssz && nr < sz; s++) {
 709			if (us_start(s, kernel_start, &start)) {
 710				*d++ = *s;
 711				nr += 1;
 712			}
 713		}
 714
 715		if (src->nr >= ts->br_stack_sz) {
 716			for (s = &src->entries[0]; s < spos && nr < sz; s++) {
 717				if (us_start(s, kernel_start, &start)) {
 718					*d++ = *s;
 719					nr += 1;
 720				}
 721			}
 722		}
 723	} else {
 724		struct branch_entry *nb = NULL;
 725
 726		/*
 727		 * Kernel space sample: start copying branch entries when the ip
 728		 * falls in between 2 branches (or the branch is in user space
 729		 * because then the start must have been missed).
 730		 */
 731		for (s = spos; s < ssz && nr < sz; s++) {
 732			if (ks_start(s, ip, kernel_start, &start, nb)) {
 733				*d++ = *s;
 734				nr += 1;
 735			}
 736			nb = s;
 737		}
 738
 739		if (src->nr >= ts->br_stack_sz) {
 740			for (s = &src->entries[0]; s < spos && nr < sz; s++) {
 741				if (ks_start(s, ip, kernel_start, &start, nb)) {
 742					*d++ = *s;
 743					nr += 1;
 744				}
 745				nb = s;
 746			}
 747		}
 748	}
 749
 750	dst->nr = nr;
 751}
 752
 753struct call_return_processor *
 754call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data),
 755			   void *data)
 756{
 757	struct call_return_processor *crp;
 758
 759	crp = zalloc(sizeof(struct call_return_processor));
 760	if (!crp)
 761		return NULL;
 762	crp->cpr = call_path_root__new();
 763	if (!crp->cpr)
 764		goto out_free;
 765	crp->process = process;
 766	crp->data = data;
 767	return crp;
 768
 769out_free:
 770	free(crp);
 771	return NULL;
 772}
 773
 774void call_return_processor__free(struct call_return_processor *crp)
 775{
 776	if (crp) {
 777		call_path_root__free(crp->cpr);
 778		free(crp);
 779	}
 780}
 781
 782static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
 783				 u64 timestamp, u64 ref, struct call_path *cp,
 784				 bool no_call, bool trace_end)
 785{
 786	struct thread_stack_entry *tse;
 787	int err;
 788
 789	if (!cp)
 790		return -ENOMEM;
 791
 792	if (ts->cnt == ts->sz) {
 793		err = thread_stack__grow(ts);
 794		if (err)
 795			return err;
 796	}
 797
 798	tse = &ts->stack[ts->cnt++];
 799	tse->ret_addr = ret_addr;
 800	tse->timestamp = timestamp;
 801	tse->ref = ref;
 802	tse->branch_count = ts->branch_count;
 803	tse->insn_count = ts->insn_count;
 804	tse->cyc_count = ts->cyc_count;
 805	tse->cp = cp;
 806	tse->no_call = no_call;
 807	tse->trace_end = trace_end;
 808	tse->non_call = false;
 809	tse->db_id = 0;
 810
 811	return 0;
 812}
 813
 814static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
 815				u64 ret_addr, u64 timestamp, u64 ref,
 816				struct symbol *sym)
 817{
 818	int err;
 819
 820	if (!ts->cnt)
 821		return 1;
 822
 823	if (ts->cnt == 1) {
 824		struct thread_stack_entry *tse = &ts->stack[0];
 825
 826		if (tse->cp->sym == sym)
 827			return thread_stack__call_return(thread, ts, --ts->cnt,
 828							 timestamp, ref, false);
 829	}
 830
 831	if (ts->stack[ts->cnt - 1].ret_addr == ret_addr &&
 832	    !ts->stack[ts->cnt - 1].non_call) {
 833		return thread_stack__call_return(thread, ts, --ts->cnt,
 834						 timestamp, ref, false);
 835	} else {
 836		size_t i = ts->cnt - 1;
 837
 838		while (i--) {
 839			if (ts->stack[i].ret_addr != ret_addr ||
 840			    ts->stack[i].non_call)
 841				continue;
 842			i += 1;
 843			while (ts->cnt > i) {
 844				err = thread_stack__call_return(thread, ts,
 845								--ts->cnt,
 846								timestamp, ref,
 847								true);
 848				if (err)
 849					return err;
 850			}
 851			return thread_stack__call_return(thread, ts, --ts->cnt,
 852							 timestamp, ref, false);
 853		}
 854	}
 855
 856	return 1;
 857}
 858
 859static int thread_stack__bottom(struct thread_stack *ts,
 860				struct perf_sample *sample,
 861				struct addr_location *from_al,
 862				struct addr_location *to_al, u64 ref)
 863{
 864	struct call_path_root *cpr = ts->crp->cpr;
 865	struct call_path *cp;
 866	struct symbol *sym;
 867	u64 ip;
 868
 869	if (sample->ip) {
 870		ip = sample->ip;
 871		sym = from_al->sym;
 872	} else if (sample->addr) {
 873		ip = sample->addr;
 874		sym = to_al->sym;
 875	} else {
 876		return 0;
 877	}
 878
 879	cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
 880				ts->kernel_start);
 881
 882	return thread_stack__push_cp(ts, ip, sample->time, ref, cp,
 883				     true, false);
 884}
 885
 886static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts,
 887				struct perf_sample *sample, u64 ref)
 888{
 889	u64 tm = sample->time;
 890	int err;
 891
 892	/* Return to userspace, so pop all kernel addresses */
 893	while (thread_stack__in_kernel(ts)) {
 894		err = thread_stack__call_return(thread, ts, --ts->cnt,
 895						tm, ref, true);
 896		if (err)
 897			return err;
 898	}
 899
 900	return 0;
 901}
 902
 903static int thread_stack__no_call_return(struct thread *thread,
 904					struct thread_stack *ts,
 905					struct perf_sample *sample,
 906					struct addr_location *from_al,
 907					struct addr_location *to_al, u64 ref)
 908{
 909	struct call_path_root *cpr = ts->crp->cpr;
 910	struct call_path *root = &cpr->call_path;
 911	struct symbol *fsym = from_al->sym;
 912	struct symbol *tsym = to_al->sym;
 913	struct call_path *cp, *parent;
 914	u64 ks = ts->kernel_start;
 915	u64 addr = sample->addr;
 916	u64 tm = sample->time;
 917	u64 ip = sample->ip;
 918	int err;
 919
 920	if (ip >= ks && addr < ks) {
 921		/* Return to userspace, so pop all kernel addresses */
 922		err = thread_stack__pop_ks(thread, ts, sample, ref);
 923		if (err)
 924			return err;
 925
 926		/* If the stack is empty, push the userspace address */
 927		if (!ts->cnt) {
 928			cp = call_path__findnew(cpr, root, tsym, addr, ks);
 929			return thread_stack__push_cp(ts, 0, tm, ref, cp, true,
 930						     false);
 931		}
 932	} else if (thread_stack__in_kernel(ts) && ip < ks) {
 933		/* Return to userspace, so pop all kernel addresses */
 934		err = thread_stack__pop_ks(thread, ts, sample, ref);
 935		if (err)
 936			return err;
 937	}
 938
 939	if (ts->cnt)
 940		parent = ts->stack[ts->cnt - 1].cp;
 941	else
 942		parent = root;
 943
 944	if (parent->sym == from_al->sym) {
 945		/*
 946		 * At the bottom of the stack, assume the missing 'call' was
 947		 * before the trace started. So, pop the current symbol and push
 948		 * the 'to' symbol.
 949		 */
 950		if (ts->cnt == 1) {
 951			err = thread_stack__call_return(thread, ts, --ts->cnt,
 952							tm, ref, false);
 953			if (err)
 954				return err;
 955		}
 956
 957		if (!ts->cnt) {
 958			cp = call_path__findnew(cpr, root, tsym, addr, ks);
 959
 960			return thread_stack__push_cp(ts, addr, tm, ref, cp,
 961						     true, false);
 962		}
 963
 964		/*
 965		 * Otherwise assume the 'return' is being used as a jump (e.g.
 966		 * retpoline) and just push the 'to' symbol.
 967		 */
 968		cp = call_path__findnew(cpr, parent, tsym, addr, ks);
 969
 970		err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false);
 971		if (!err)
 972			ts->stack[ts->cnt - 1].non_call = true;
 973
 974		return err;
 975	}
 976
 977	/*
 978	 * Assume 'parent' has not yet returned, so push 'to', and then push and
 979	 * pop 'from'.
 980	 */
 981
 982	cp = call_path__findnew(cpr, parent, tsym, addr, ks);
 983
 984	err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false);
 985	if (err)
 986		return err;
 987
 988	cp = call_path__findnew(cpr, cp, fsym, ip, ks);
 989
 990	err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false);
 991	if (err)
 992		return err;
 993
 994	return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false);
 995}
 996
 997static int thread_stack__trace_begin(struct thread *thread,
 998				     struct thread_stack *ts, u64 timestamp,
 999				     u64 ref)
1000{
1001	struct thread_stack_entry *tse;
1002	int err;
1003
1004	if (!ts->cnt)
1005		return 0;
1006
1007	/* Pop trace end */
1008	tse = &ts->stack[ts->cnt - 1];
1009	if (tse->trace_end) {
1010		err = thread_stack__call_return(thread, ts, --ts->cnt,
1011						timestamp, ref, false);
1012		if (err)
1013			return err;
1014	}
1015
1016	return 0;
1017}
1018
1019static int thread_stack__trace_end(struct thread_stack *ts,
1020				   struct perf_sample *sample, u64 ref)
1021{
1022	struct call_path_root *cpr = ts->crp->cpr;
1023	struct call_path *cp;
1024	u64 ret_addr;
1025
1026	/* No point having 'trace end' on the bottom of the stack */
1027	if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
1028		return 0;
1029
1030	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
1031				ts->kernel_start);
1032
1033	ret_addr = sample->ip + sample->insn_len;
1034
1035	return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
1036				     false, true);
1037}
1038
1039static bool is_x86_retpoline(const char *name)
1040{
1041	return strstr(name, "__x86_indirect_thunk_") == name;
 
 
1042}
1043
1044/*
1045 * x86 retpoline functions pollute the call graph. This function removes them.
1046 * This does not handle function return thunks, nor is there any improvement
1047 * for the handling of inline thunks or extern thunks.
1048 */
1049static int thread_stack__x86_retpoline(struct thread_stack *ts,
1050				       struct perf_sample *sample,
1051				       struct addr_location *to_al)
1052{
1053	struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1];
1054	struct call_path_root *cpr = ts->crp->cpr;
1055	struct symbol *sym = tse->cp->sym;
1056	struct symbol *tsym = to_al->sym;
1057	struct call_path *cp;
1058
1059	if (sym && is_x86_retpoline(sym->name)) {
1060		/*
1061		 * This is a x86 retpoline fn. It pollutes the call graph by
1062		 * showing up everywhere there is an indirect branch, but does
1063		 * not itself mean anything. Here the top-of-stack is removed,
1064		 * by decrementing the stack count, and then further down, the
1065		 * resulting top-of-stack is replaced with the actual target.
1066		 * The result is that the retpoline functions will no longer
1067		 * appear in the call graph. Note this only affects the call
1068		 * graph, since all the original branches are left unchanged.
1069		 */
1070		ts->cnt -= 1;
1071		sym = ts->stack[ts->cnt - 2].cp->sym;
1072		if (sym && sym == tsym && to_al->addr != tsym->start) {
1073			/*
1074			 * Target is back to the middle of the symbol we came
1075			 * from so assume it is an indirect jmp and forget it
1076			 * altogether.
1077			 */
1078			ts->cnt -= 1;
1079			return 0;
1080		}
1081	} else if (sym && sym == tsym) {
1082		/*
1083		 * Target is back to the symbol we came from so assume it is an
1084		 * indirect jmp and forget it altogether.
1085		 */
1086		ts->cnt -= 1;
1087		return 0;
1088	}
1089
1090	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym,
1091				sample->addr, ts->kernel_start);
1092	if (!cp)
1093		return -ENOMEM;
1094
1095	/* Replace the top-of-stack with the actual target */
1096	ts->stack[ts->cnt - 1].cp = cp;
1097
1098	return 0;
1099}
1100
1101int thread_stack__process(struct thread *thread, struct comm *comm,
1102			  struct perf_sample *sample,
1103			  struct addr_location *from_al,
1104			  struct addr_location *to_al, u64 ref,
1105			  struct call_return_processor *crp)
1106{
1107	struct thread_stack *ts = thread__stack(thread, sample->cpu);
1108	enum retpoline_state_t rstate;
1109	int err = 0;
1110
1111	if (ts && !ts->crp) {
1112		/* Supersede thread_stack__event() */
1113		thread_stack__reset(thread, ts);
1114		ts = NULL;
1115	}
1116
1117	if (!ts) {
1118		ts = thread_stack__new(thread, sample->cpu, crp, true, 0);
1119		if (!ts)
1120			return -ENOMEM;
1121		ts->comm = comm;
1122	}
1123
1124	rstate = ts->rstate;
1125	if (rstate == X86_RETPOLINE_DETECTED)
1126		ts->rstate = X86_RETPOLINE_POSSIBLE;
1127
1128	/* Flush stack on exec */
1129	if (ts->comm != comm && thread__pid(thread) == thread__tid(thread)) {
1130		err = __thread_stack__flush(thread, ts);
1131		if (err)
1132			return err;
1133		ts->comm = comm;
1134	}
1135
1136	/* If the stack is empty, put the current symbol on the stack */
1137	if (!ts->cnt) {
1138		err = thread_stack__bottom(ts, sample, from_al, to_al, ref);
1139		if (err)
1140			return err;
1141	}
1142
1143	ts->branch_count += 1;
1144	ts->insn_count += sample->insn_cnt;
1145	ts->cyc_count += sample->cyc_cnt;
1146	ts->last_time = sample->time;
1147
1148	if (sample->flags & PERF_IP_FLAG_CALL) {
1149		bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END;
1150		struct call_path_root *cpr = ts->crp->cpr;
1151		struct call_path *cp;
1152		u64 ret_addr;
1153
1154		if (!sample->ip || !sample->addr)
1155			return 0;
1156
1157		ret_addr = sample->ip + sample->insn_len;
1158		if (ret_addr == sample->addr)
1159			return 0; /* Zero-length calls are excluded */
1160
1161		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
1162					to_al->sym, sample->addr,
1163					ts->kernel_start);
1164		err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
1165					    cp, false, trace_end);
1166
1167		/*
1168		 * A call to the same symbol but not the start of the symbol,
1169		 * may be the start of a x86 retpoline.
1170		 */
1171		if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym &&
1172		    from_al->sym == to_al->sym &&
1173		    to_al->addr != to_al->sym->start)
1174			ts->rstate = X86_RETPOLINE_DETECTED;
1175
1176	} else if (sample->flags & PERF_IP_FLAG_RETURN) {
1177		if (!sample->addr) {
1178			u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET |
1179						 PERF_IP_FLAG_INTERRUPT;
1180
1181			if (!(sample->flags & return_from_kernel))
1182				return 0;
1183
1184			/* Pop kernel stack */
1185			return thread_stack__pop_ks(thread, ts, sample, ref);
1186		}
1187
1188		if (!sample->ip)
1189			return 0;
1190
1191		/* x86 retpoline 'return' doesn't match the stack */
1192		if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 &&
1193		    ts->stack[ts->cnt - 1].ret_addr != sample->addr)
1194			return thread_stack__x86_retpoline(ts, sample, to_al);
1195
1196		err = thread_stack__pop_cp(thread, ts, sample->addr,
1197					   sample->time, ref, from_al->sym);
1198		if (err) {
1199			if (err < 0)
1200				return err;
1201			err = thread_stack__no_call_return(thread, ts, sample,
1202							   from_al, to_al, ref);
1203		}
1204	} else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
1205		err = thread_stack__trace_begin(thread, ts, sample->time, ref);
1206	} else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
1207		err = thread_stack__trace_end(ts, sample, ref);
1208	} else if (sample->flags & PERF_IP_FLAG_BRANCH &&
1209		   from_al->sym != to_al->sym && to_al->sym &&
1210		   to_al->addr == to_al->sym->start) {
1211		struct call_path_root *cpr = ts->crp->cpr;
1212		struct call_path *cp;
1213
1214		/*
1215		 * The compiler might optimize a call/ret combination by making
1216		 * it a jmp. Make that visible by recording on the stack a
1217		 * branch to the start of a different symbol. Note, that means
1218		 * when a ret pops the stack, all jmps must be popped off first.
1219		 */
1220		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
1221					to_al->sym, sample->addr,
1222					ts->kernel_start);
1223		err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false,
1224					    false);
1225		if (!err)
1226			ts->stack[ts->cnt - 1].non_call = true;
1227	}
1228
1229	return err;
1230}
1231
1232size_t thread_stack__depth(struct thread *thread, int cpu)
1233{
1234	struct thread_stack *ts = thread__stack(thread, cpu);
1235
1236	if (!ts)
1237		return 0;
1238	return ts->cnt;
1239}