Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/* Copyright (c) 2019 Facebook */
  4
  5#include <assert.h>
  6#include <limits.h>
  7#include <unistd.h>
  8#include <sys/file.h>
  9#include <sys/time.h>
 10#include <linux/err.h>
 11#include <linux/zalloc.h>
 12#include <api/fs/fs.h>
 13#include <perf/bpf_perf.h>
 14
 15#include "bpf_counter.h"
 16#include "bpf-utils.h"
 17#include "counts.h"
 18#include "debug.h"
 19#include "evsel.h"
 20#include "evlist.h"
 21#include "target.h"
 22#include "cgroup.h"
 23#include "cpumap.h"
 24#include "thread_map.h"
 25
 26#include "bpf_skel/bpf_prog_profiler.skel.h"
 27#include "bpf_skel/bperf_u.h"
 28#include "bpf_skel/bperf_leader.skel.h"
 29#include "bpf_skel/bperf_follower.skel.h"
 30
 31#define ATTR_MAP_SIZE 16
 32
 33static inline void *u64_to_ptr(__u64 ptr)
 34{
 35	return (void *)(unsigned long)ptr;
 36}
 37
 38static struct bpf_counter *bpf_counter_alloc(void)
 39{
 40	struct bpf_counter *counter;
 41
 42	counter = zalloc(sizeof(*counter));
 43	if (counter)
 44		INIT_LIST_HEAD(&counter->list);
 45	return counter;
 46}
 47
 48static int bpf_program_profiler__destroy(struct evsel *evsel)
 49{
 50	struct bpf_counter *counter, *tmp;
 51
 52	list_for_each_entry_safe(counter, tmp,
 53				 &evsel->bpf_counter_list, list) {
 54		list_del_init(&counter->list);
 55		bpf_prog_profiler_bpf__destroy(counter->skel);
 56		free(counter);
 57	}
 58	assert(list_empty(&evsel->bpf_counter_list));
 59
 60	return 0;
 61}
 62
 63static char *bpf_target_prog_name(int tgt_fd)
 64{
 65	struct bpf_func_info *func_info;
 66	struct perf_bpil *info_linear;
 67	const struct btf_type *t;
 68	struct btf *btf = NULL;
 69	char *name = NULL;
 70
 71	info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
 72	if (IS_ERR_OR_NULL(info_linear)) {
 73		pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
 74		return NULL;
 75	}
 76
 77	if (info_linear->info.btf_id == 0) {
 78		pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
 79		goto out;
 80	}
 81
 82	btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
 83	if (libbpf_get_error(btf)) {
 84		pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
 85		goto out;
 86	}
 87
 88	func_info = u64_to_ptr(info_linear->info.func_info);
 89	t = btf__type_by_id(btf, func_info[0].type_id);
 90	if (!t) {
 91		pr_debug("btf %d doesn't have type %d\n",
 92			 info_linear->info.btf_id, func_info[0].type_id);
 93		goto out;
 94	}
 95	name = strdup(btf__name_by_offset(btf, t->name_off));
 96out:
 97	btf__free(btf);
 98	free(info_linear);
 99	return name;
100}
101
102static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103{
104	struct bpf_prog_profiler_bpf *skel;
105	struct bpf_counter *counter;
106	struct bpf_program *prog;
107	char *prog_name = NULL;
108	int prog_fd;
109	int err;
110
111	prog_fd = bpf_prog_get_fd_by_id(prog_id);
112	if (prog_fd < 0) {
113		pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114		return -1;
115	}
116	counter = bpf_counter_alloc();
117	if (!counter) {
118		close(prog_fd);
119		return -1;
120	}
121
122	skel = bpf_prog_profiler_bpf__open();
123	if (!skel) {
124		pr_err("Failed to open bpf skeleton\n");
125		goto err_out;
126	}
127
128	skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130	bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131	bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132	bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133
134	prog_name = bpf_target_prog_name(prog_fd);
135	if (!prog_name) {
136		pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137		goto err_out;
138	}
139
140	bpf_object__for_each_program(prog, skel->obj) {
141		err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142		if (err) {
143			pr_err("bpf_program__set_attach_target failed.\n"
144			       "Does bpf prog %u have BTF?\n", prog_id);
145			goto err_out;
146		}
147	}
148	set_max_rlimit();
149	err = bpf_prog_profiler_bpf__load(skel);
150	if (err) {
151		pr_err("bpf_prog_profiler_bpf__load failed\n");
152		goto err_out;
153	}
154
155	assert(skel != NULL);
156	counter->skel = skel;
157	list_add(&counter->list, &evsel->bpf_counter_list);
158	free(prog_name);
159	close(prog_fd);
160	return 0;
161err_out:
162	bpf_prog_profiler_bpf__destroy(skel);
163	free(prog_name);
164	free(counter);
165	close(prog_fd);
166	return -1;
167}
168
169static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
170{
171	char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
172	u32 prog_id;
173	int ret;
174
175	bpf_str_ = bpf_str = strdup(target->bpf_str);
176	if (!bpf_str)
177		return -1;
178
179	while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
180		prog_id = strtoul(tok, &p, 10);
181		if (prog_id == 0 || prog_id == UINT_MAX ||
182		    (*p != '\0' && *p != ',')) {
183			pr_err("Failed to parse bpf prog ids %s\n",
184			       target->bpf_str);
185			free(bpf_str_);
186			return -1;
187		}
188
189		ret = bpf_program_profiler_load_one(evsel, prog_id);
190		if (ret) {
191			bpf_program_profiler__destroy(evsel);
192			free(bpf_str_);
193			return -1;
194		}
195		bpf_str = NULL;
196	}
197	free(bpf_str_);
198	return 0;
199}
200
201static int bpf_program_profiler__enable(struct evsel *evsel)
202{
203	struct bpf_counter *counter;
204	int ret;
205
206	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
207		assert(counter->skel != NULL);
208		ret = bpf_prog_profiler_bpf__attach(counter->skel);
209		if (ret) {
210			bpf_program_profiler__destroy(evsel);
211			return ret;
212		}
213	}
214	return 0;
215}
216
217static int bpf_program_profiler__disable(struct evsel *evsel)
218{
219	struct bpf_counter *counter;
220
221	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
222		assert(counter->skel != NULL);
223		bpf_prog_profiler_bpf__detach(counter->skel);
224	}
225	return 0;
226}
227
228static int bpf_program_profiler__read(struct evsel *evsel)
229{
230	// BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
231	// Sometimes possible > online, like on a Ryzen 3900X that has 24
232	// threads but its possible showed 0-31 -acme
233	int num_cpu_bpf = libbpf_num_possible_cpus();
234	struct bpf_perf_event_value values[num_cpu_bpf];
235	struct bpf_counter *counter;
236	struct perf_counts_values *counts;
237	int reading_map_fd;
238	__u32 key = 0;
239	int err, idx, bpf_cpu;
240
241	if (list_empty(&evsel->bpf_counter_list))
242		return -EAGAIN;
243
244	perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
245		counts = perf_counts(evsel->counts, idx, 0);
246		counts->val = 0;
247		counts->ena = 0;
248		counts->run = 0;
249	}
250	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
251		struct bpf_prog_profiler_bpf *skel = counter->skel;
252
253		assert(skel != NULL);
254		reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
255
256		err = bpf_map_lookup_elem(reading_map_fd, &key, values);
257		if (err) {
258			pr_err("failed to read value\n");
259			return err;
260		}
261
262		for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
263			idx = perf_cpu_map__idx(evsel__cpus(evsel),
264						(struct perf_cpu){.cpu = bpf_cpu});
265			if (idx == -1)
266				continue;
267			counts = perf_counts(evsel->counts, idx, 0);
268			counts->val += values[bpf_cpu].counter;
269			counts->ena += values[bpf_cpu].enabled;
270			counts->run += values[bpf_cpu].running;
271		}
272	}
273	return 0;
274}
275
276static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
277					    int fd)
278{
279	struct bpf_prog_profiler_bpf *skel;
280	struct bpf_counter *counter;
281	int ret;
282
283	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
284		skel = counter->skel;
285		assert(skel != NULL);
286
287		ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
288					  &cpu_map_idx, &fd, BPF_ANY);
289		if (ret)
290			return ret;
291	}
292	return 0;
293}
294
295struct bpf_counter_ops bpf_program_profiler_ops = {
296	.load       = bpf_program_profiler__load,
297	.enable	    = bpf_program_profiler__enable,
298	.disable    = bpf_program_profiler__disable,
299	.read       = bpf_program_profiler__read,
300	.destroy    = bpf_program_profiler__destroy,
301	.install_pe = bpf_program_profiler__install_pe,
302};
303
304static bool bperf_attr_map_compatible(int attr_map_fd)
305{
306	struct bpf_map_info map_info = {0};
307	__u32 map_info_len = sizeof(map_info);
308	int err;
309
310	err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
311
312	if (err)
313		return false;
314	return (map_info.key_size == sizeof(struct perf_event_attr)) &&
315		(map_info.value_size == sizeof(struct perf_event_attr_map_entry));
316}
317
318static int bperf_lock_attr_map(struct target *target)
319{
320	char path[PATH_MAX];
321	int map_fd, err;
322
323	if (target->attr_map) {
324		scnprintf(path, PATH_MAX, "%s", target->attr_map);
325	} else {
326		scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
327			  BPF_PERF_DEFAULT_ATTR_MAP_PATH);
328	}
329
330	if (access(path, F_OK)) {
331		map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
332					sizeof(struct perf_event_attr),
333					sizeof(struct perf_event_attr_map_entry),
334					ATTR_MAP_SIZE, NULL);
335		if (map_fd < 0)
336			return -1;
337
338		err = bpf_obj_pin(map_fd, path);
339		if (err) {
340			/* someone pinned the map in parallel? */
341			close(map_fd);
342			map_fd = bpf_obj_get(path);
343			if (map_fd < 0)
344				return -1;
345		}
346	} else {
347		map_fd = bpf_obj_get(path);
348		if (map_fd < 0)
349			return -1;
350	}
351
352	if (!bperf_attr_map_compatible(map_fd)) {
353		close(map_fd);
354		return -1;
355
356	}
357	err = flock(map_fd, LOCK_EX);
358	if (err) {
359		close(map_fd);
360		return -1;
361	}
362	return map_fd;
363}
364
365static int bperf_check_target(struct evsel *evsel,
366			      struct target *target,
367			      enum bperf_filter_type *filter_type,
368			      __u32 *filter_entry_cnt)
369{
370	if (evsel->core.leader->nr_members > 1) {
371		pr_err("bpf managed perf events do not yet support groups.\n");
372		return -1;
373	}
374
375	/* determine filter type based on target */
376	if (target->system_wide) {
377		*filter_type = BPERF_FILTER_GLOBAL;
378		*filter_entry_cnt = 1;
379	} else if (target->cpu_list) {
380		*filter_type = BPERF_FILTER_CPU;
381		*filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
382	} else if (target->tid) {
383		*filter_type = BPERF_FILTER_PID;
384		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
385	} else if (target->pid || evsel->evlist->workload.pid != -1) {
386		*filter_type = BPERF_FILTER_TGID;
387		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
388	} else {
389		pr_err("bpf managed perf events do not yet support these targets.\n");
390		return -1;
391	}
392
393	return 0;
394}
395
396static	struct perf_cpu_map *all_cpu_map;
397static __u32 filter_entry_cnt;
398
399static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
400				       struct perf_event_attr_map_entry *entry)
401{
402	struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
403	int link_fd, diff_map_fd, err;
404	struct bpf_link *link = NULL;
405
406	if (!skel) {
407		pr_err("Failed to open leader skeleton\n");
408		return -1;
409	}
410
411	bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
412	err = bperf_leader_bpf__load(skel);
413	if (err) {
414		pr_err("Failed to load leader skeleton\n");
415		goto out;
416	}
417
418	link = bpf_program__attach(skel->progs.on_switch);
419	if (IS_ERR(link)) {
420		pr_err("Failed to attach leader program\n");
421		err = PTR_ERR(link);
422		goto out;
423	}
424
425	link_fd = bpf_link__fd(link);
426	diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
427	entry->link_id = bpf_link_get_id(link_fd);
428	entry->diff_map_id = bpf_map_get_id(diff_map_fd);
429	err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
430	assert(err == 0);
431
432	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
433	assert(evsel->bperf_leader_link_fd >= 0);
434
435	/*
436	 * save leader_skel for install_pe, which is called within
437	 * following evsel__open_per_cpu call
438	 */
439	evsel->leader_skel = skel;
440	evsel__open_per_cpu(evsel, all_cpu_map, -1);
441
442out:
443	bperf_leader_bpf__destroy(skel);
444	bpf_link__destroy(link);
445	return err;
446}
447
448static int bperf_attach_follower_program(struct bperf_follower_bpf *skel,
449					 enum bperf_filter_type filter_type,
450					 bool inherit)
451{
452	struct bpf_link *link;
453	int err = 0;
454
455	if ((filter_type == BPERF_FILTER_PID ||
456	    filter_type == BPERF_FILTER_TGID) && inherit)
457		/* attach all follower bpf progs to enable event inheritance */
458		err = bperf_follower_bpf__attach(skel);
459	else {
460		link = bpf_program__attach(skel->progs.fexit_XXX);
461		if (IS_ERR(link))
462			err = PTR_ERR(link);
463	}
464
465	return err;
466}
467
468static int bperf__load(struct evsel *evsel, struct target *target)
469{
470	struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
471	int attr_map_fd, diff_map_fd = -1, err;
472	enum bperf_filter_type filter_type;
473	__u32 i;
474
475	if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
476		return -1;
477
478	if (!all_cpu_map) {
479		all_cpu_map = perf_cpu_map__new_online_cpus();
480		if (!all_cpu_map)
481			return -1;
482	}
483
484	evsel->bperf_leader_prog_fd = -1;
485	evsel->bperf_leader_link_fd = -1;
486
487	/*
488	 * Step 1: hold a fd on the leader program and the bpf_link, if
489	 * the program is not already gone, reload the program.
490	 * Use flock() to ensure exclusive access to the perf_event_attr
491	 * map.
492	 */
493	attr_map_fd = bperf_lock_attr_map(target);
494	if (attr_map_fd < 0) {
495		pr_err("Failed to lock perf_event_attr map\n");
496		return -1;
497	}
498
499	err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
500	if (err) {
501		err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
502		if (err)
503			goto out;
504	}
505
506	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
507	if (evsel->bperf_leader_link_fd < 0 &&
508	    bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
509		err = -1;
510		goto out;
511	}
512	/*
513	 * The bpf_link holds reference to the leader program, and the
514	 * leader program holds reference to the maps. Therefore, if
515	 * link_id is valid, diff_map_id should also be valid.
516	 */
517	evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
518		bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
519	assert(evsel->bperf_leader_prog_fd >= 0);
520
521	diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
522	assert(diff_map_fd >= 0);
523
524	/*
525	 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
526	 * whether the kernel support it
527	 */
528	err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
529	if (err) {
530		pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
531		       "Therefore, --use-bpf might show inaccurate readings\n");
532		goto out;
533	}
534
535	/* Step 2: load the follower skeleton */
536	evsel->follower_skel = bperf_follower_bpf__open();
537	if (!evsel->follower_skel) {
538		err = -1;
539		pr_err("Failed to open follower skeleton\n");
540		goto out;
541	}
542
543	/* attach fexit program to the leader program */
544	bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
545				       evsel->bperf_leader_prog_fd, "on_switch");
546
547	/* connect to leader diff_reading map */
548	bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
549
550	/* set up reading map */
551	bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
552				 filter_entry_cnt);
553	err = bperf_follower_bpf__load(evsel->follower_skel);
554	if (err) {
555		pr_err("Failed to load follower skeleton\n");
556		bperf_follower_bpf__destroy(evsel->follower_skel);
557		evsel->follower_skel = NULL;
558		goto out;
559	}
560
561	for (i = 0; i < filter_entry_cnt; i++) {
562		int filter_map_fd;
563		__u32 key;
564		struct bperf_filter_value fval = { i, 0 };
565
566		if (filter_type == BPERF_FILTER_PID ||
567		    filter_type == BPERF_FILTER_TGID)
568			key = perf_thread_map__pid(evsel->core.threads, i);
569		else if (filter_type == BPERF_FILTER_CPU)
570			key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
571		else
572			break;
573
574		filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
575		bpf_map_update_elem(filter_map_fd, &key, &fval, BPF_ANY);
576	}
577
578	evsel->follower_skel->bss->type = filter_type;
579	evsel->follower_skel->bss->inherit = target->inherit;
580
581	err = bperf_attach_follower_program(evsel->follower_skel, filter_type,
582					    target->inherit);
583
584out:
585	if (err && evsel->bperf_leader_link_fd >= 0)
586		close(evsel->bperf_leader_link_fd);
587	if (err && evsel->bperf_leader_prog_fd >= 0)
588		close(evsel->bperf_leader_prog_fd);
589	if (diff_map_fd >= 0)
590		close(diff_map_fd);
591
592	flock(attr_map_fd, LOCK_UN);
593	close(attr_map_fd);
594
595	return err;
596}
597
598static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
599{
600	struct bperf_leader_bpf *skel = evsel->leader_skel;
601
602	return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
603				   &cpu_map_idx, &fd, BPF_ANY);
604}
605
606/*
607 * trigger the leader prog on each cpu, so the accum_reading map could get
608 * the latest readings.
609 */
610static int bperf_sync_counters(struct evsel *evsel)
611{
612	int num_cpu, i, cpu;
613
614	num_cpu = perf_cpu_map__nr(all_cpu_map);
615	for (i = 0; i < num_cpu; i++) {
616		cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu;
617		bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
618	}
619	return 0;
620}
621
622static int bperf__enable(struct evsel *evsel)
623{
624	evsel->follower_skel->bss->enabled = 1;
625	return 0;
626}
627
628static int bperf__disable(struct evsel *evsel)
629{
630	evsel->follower_skel->bss->enabled = 0;
631	return 0;
632}
633
634static int bperf__read(struct evsel *evsel)
635{
636	struct bperf_follower_bpf *skel = evsel->follower_skel;
637	__u32 num_cpu_bpf = cpu__max_cpu().cpu;
638	struct bpf_perf_event_value values[num_cpu_bpf];
639	struct perf_counts_values *counts;
640	int reading_map_fd, err = 0;
641	__u32 i;
642	int j;
643
644	bperf_sync_counters(evsel);
645	reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
646
647	for (i = 0; i < filter_entry_cnt; i++) {
648		struct perf_cpu entry;
649		__u32 cpu;
650
651		err = bpf_map_lookup_elem(reading_map_fd, &i, values);
652		if (err)
653			goto out;
654		switch (evsel->follower_skel->bss->type) {
655		case BPERF_FILTER_GLOBAL:
656			assert(i == 0);
657
658			perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
659				counts = perf_counts(evsel->counts, j, 0);
660				counts->val = values[entry.cpu].counter;
661				counts->ena = values[entry.cpu].enabled;
662				counts->run = values[entry.cpu].running;
663			}
664			break;
665		case BPERF_FILTER_CPU:
666			cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
667			assert(cpu >= 0);
668			counts = perf_counts(evsel->counts, i, 0);
669			counts->val = values[cpu].counter;
670			counts->ena = values[cpu].enabled;
671			counts->run = values[cpu].running;
672			break;
673		case BPERF_FILTER_PID:
674		case BPERF_FILTER_TGID:
675			counts = perf_counts(evsel->counts, 0, i);
676			counts->val = 0;
677			counts->ena = 0;
678			counts->run = 0;
679
680			for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
681				counts->val += values[cpu].counter;
682				counts->ena += values[cpu].enabled;
683				counts->run += values[cpu].running;
684			}
685			break;
686		default:
687			break;
688		}
689	}
690out:
691	return err;
692}
693
694static int bperf__destroy(struct evsel *evsel)
695{
696	bperf_follower_bpf__destroy(evsel->follower_skel);
697	close(evsel->bperf_leader_prog_fd);
698	close(evsel->bperf_leader_link_fd);
699	return 0;
700}
701
702/*
703 * bperf: share hardware PMCs with BPF
704 *
705 * perf uses performance monitoring counters (PMC) to monitor system
706 * performance. The PMCs are limited hardware resources. For example,
707 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
708 *
709 * Modern data center systems use these PMCs in many different ways:
710 * system level monitoring, (maybe nested) container level monitoring, per
711 * process monitoring, profiling (in sample mode), etc. In some cases,
712 * there are more active perf_events than available hardware PMCs. To allow
713 * all perf_events to have a chance to run, it is necessary to do expensive
714 * time multiplexing of events.
715 *
716 * On the other hand, many monitoring tools count the common metrics
717 * (cycles, instructions). It is a waste to have multiple tools create
718 * multiple perf_events of "cycles" and occupy multiple PMCs.
719 *
720 * bperf tries to reduce such wastes by allowing multiple perf_events of
721 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
722 * of having each perf-stat session to read its own perf_events, bperf uses
723 * BPF programs to read the perf_events and aggregate readings to BPF maps.
724 * Then, the perf-stat session(s) reads the values from these BPF maps.
725 *
726 *                                ||
727 *       shared progs and maps <- || -> per session progs and maps
728 *                                ||
729 *   ---------------              ||
730 *   | perf_events |              ||
731 *   ---------------       fexit  ||      -----------------
732 *          |             --------||----> | follower prog |
733 *       --------------- /        || ---  -----------------
734 * cs -> | leader prog |/         ||/        |         |
735 *   --> ---------------         /||  --------------  ------------------
736 *  /       |         |         / ||  | filter map |  | accum_readings |
737 * /  ------------  ------------  ||  --------------  ------------------
738 * |  | prev map |  | diff map |  ||                        |
739 * |  ------------  ------------  ||                        |
740 *  \                             ||                        |
741 * = \ ==================================================== | ============
742 *    \                                                    /   user space
743 *     \                                                  /
744 *      \                                                /
745 *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
746 *        \                                            /
747 *         \                                          /
748 *          \------  perf-stat ----------------------/
749 *
750 * The figure above shows the architecture of bperf. Note that the figure
751 * is divided into 3 regions: shared progs and maps (top left), per session
752 * progs and maps (top right), and user space (bottom).
753 *
754 * The leader prog is triggered on each context switch (cs). The leader
755 * prog reads perf_events and stores the difference (current_reading -
756 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
757 * multiple perf-stat sessions share the same leader prog.
758 *
759 * Each perf-stat session creates a follower prog as fexit program to the
760 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
761 * follower progs to the same leader prog. The follower prog checks current
762 * task and processor ID to decide whether to add the value from the diff
763 * map to its accumulated reading map (accum_readings).
764 *
765 * Finally, perf-stat user space reads the value from accum_reading map.
766 *
767 * Besides context switch, it is also necessary to trigger the leader prog
768 * before perf-stat reads the value. Otherwise, the accum_reading map may
769 * not have the latest reading from the perf_events. This is achieved by
770 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
771 *
772 * Comment before the definition of struct perf_event_attr_map_entry
773 * describes how different sessions of perf-stat share information about
774 * the leader prog.
775 */
776
777struct bpf_counter_ops bperf_ops = {
778	.load       = bperf__load,
779	.enable     = bperf__enable,
780	.disable    = bperf__disable,
781	.read       = bperf__read,
782	.install_pe = bperf__install_pe,
783	.destroy    = bperf__destroy,
784};
785
786extern struct bpf_counter_ops bperf_cgrp_ops;
787
788static inline bool bpf_counter_skip(struct evsel *evsel)
789{
790	return evsel->bpf_counter_ops == NULL;
791}
792
793int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
794{
795	if (bpf_counter_skip(evsel))
796		return 0;
797	return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
798}
799
800int bpf_counter__load(struct evsel *evsel, struct target *target)
801{
802	if (target->bpf_str)
803		evsel->bpf_counter_ops = &bpf_program_profiler_ops;
804	else if (cgrp_event_expanded && target->use_bpf)
805		evsel->bpf_counter_ops = &bperf_cgrp_ops;
806	else if (target->use_bpf || evsel->bpf_counter ||
807		 evsel__match_bpf_counter_events(evsel->name))
808		evsel->bpf_counter_ops = &bperf_ops;
809
810	if (evsel->bpf_counter_ops)
811		return evsel->bpf_counter_ops->load(evsel, target);
812	return 0;
813}
814
815int bpf_counter__enable(struct evsel *evsel)
816{
817	if (bpf_counter_skip(evsel))
818		return 0;
819	return evsel->bpf_counter_ops->enable(evsel);
820}
821
822int bpf_counter__disable(struct evsel *evsel)
823{
824	if (bpf_counter_skip(evsel))
825		return 0;
826	return evsel->bpf_counter_ops->disable(evsel);
827}
828
829int bpf_counter__read(struct evsel *evsel)
830{
831	if (bpf_counter_skip(evsel))
832		return -EAGAIN;
833	return evsel->bpf_counter_ops->read(evsel);
834}
835
836void bpf_counter__destroy(struct evsel *evsel)
837{
838	if (bpf_counter_skip(evsel))
839		return;
840	evsel->bpf_counter_ops->destroy(evsel);
841	evsel->bpf_counter_ops = NULL;
842	evsel->bpf_skel = NULL;
843}