Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * auxtrace.c: AUX area trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <sys/types.h>
   9#include <sys/mman.h>
  10#include <stdbool.h>
  11#include <string.h>
  12#include <limits.h>
  13#include <errno.h>
  14
  15#include <linux/kernel.h>
  16#include <linux/perf_event.h>
  17#include <linux/types.h>
  18#include <linux/bitops.h>
  19#include <linux/log2.h>
  20#include <linux/string.h>
  21#include <linux/time64.h>
  22
  23#include <sys/param.h>
  24#include <stdlib.h>
  25#include <stdio.h>
  26#include <linux/list.h>
  27#include <linux/zalloc.h>
  28
 
  29#include "evlist.h"
  30#include "dso.h"
  31#include "map.h"
  32#include "pmu.h"
  33#include "evsel.h"
 
  34#include "symbol.h"
 
  35#include "util/synthetic-events.h"
  36#include "thread_map.h"
  37#include "asm/bug.h"
  38#include "auxtrace.h"
  39
  40#include <linux/hash.h>
  41
  42#include "event.h"
  43#include "record.h"
  44#include "session.h"
  45#include "debug.h"
  46#include <subcmd/parse-options.h>
  47
  48#include "cs-etm.h"
  49#include "intel-pt.h"
  50#include "intel-bts.h"
  51#include "arm-spe.h"
 
  52#include "s390-cpumsf.h"
  53#include "util/mmap.h"
  54
  55#include <linux/ctype.h>
  56#include <linux/kernel.h>
  57#include "symbol/kallsyms.h"
  58#include <internal/lib.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60static bool auxtrace__dont_decode(struct perf_session *session)
  61{
  62	return !session->itrace_synth_opts ||
  63	       session->itrace_synth_opts->dont_decode;
  64}
  65
  66int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
  67			struct auxtrace_mmap_params *mp,
  68			void *userpg, int fd)
  69{
  70	struct perf_event_mmap_page *pc = userpg;
  71
  72	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
  73
  74	mm->userpg = userpg;
  75	mm->mask = mp->mask;
  76	mm->len = mp->len;
  77	mm->prev = 0;
  78	mm->idx = mp->idx;
  79	mm->tid = mp->tid;
  80	mm->cpu = mp->cpu;
  81
  82	if (!mp->len) {
  83		mm->base = NULL;
  84		return 0;
  85	}
  86
  87#if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
  88	pr_err("Cannot use AUX area tracing mmaps\n");
  89	return -1;
  90#endif
  91
  92	pc->aux_offset = mp->offset;
  93	pc->aux_size = mp->len;
  94
  95	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
  96	if (mm->base == MAP_FAILED) {
  97		pr_debug2("failed to mmap AUX area\n");
  98		mm->base = NULL;
  99		return -1;
 100	}
 101
 102	return 0;
 103}
 104
 105void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
 106{
 107	if (mm->base) {
 108		munmap(mm->base, mm->len);
 109		mm->base = NULL;
 110	}
 111}
 112
 113void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
 114				off_t auxtrace_offset,
 115				unsigned int auxtrace_pages,
 116				bool auxtrace_overwrite)
 117{
 118	if (auxtrace_pages) {
 119		mp->offset = auxtrace_offset;
 120		mp->len = auxtrace_pages * (size_t)page_size;
 121		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
 122		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
 123		pr_debug2("AUX area mmap length %zu\n", mp->len);
 124	} else {
 125		mp->len = 0;
 126	}
 127}
 128
 129void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
 130				   struct evlist *evlist, int idx,
 131				   bool per_cpu)
 132{
 
 
 
 
 
 
 
 133	mp->idx = idx;
 134
 135	if (per_cpu) {
 136		mp->cpu = evlist->core.cpus->map[idx];
 137		if (evlist->core.threads)
 138			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
 139		else
 140			mp->tid = -1;
 141	} else {
 142		mp->cpu = -1;
 143		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
 144	}
 145}
 146
 147#define AUXTRACE_INIT_NR_QUEUES	32
 148
 149static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
 150{
 151	struct auxtrace_queue *queue_array;
 152	unsigned int max_nr_queues, i;
 153
 154	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
 155	if (nr_queues > max_nr_queues)
 156		return NULL;
 157
 158	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
 159	if (!queue_array)
 160		return NULL;
 161
 162	for (i = 0; i < nr_queues; i++) {
 163		INIT_LIST_HEAD(&queue_array[i].head);
 164		queue_array[i].priv = NULL;
 165	}
 166
 167	return queue_array;
 168}
 169
 170int auxtrace_queues__init(struct auxtrace_queues *queues)
 171{
 172	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
 173	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
 174	if (!queues->queue_array)
 175		return -ENOMEM;
 176	return 0;
 177}
 178
 
 
 
 
 
 179static int auxtrace_queues__grow(struct auxtrace_queues *queues,
 180				 unsigned int new_nr_queues)
 181{
 182	unsigned int nr_queues = queues->nr_queues;
 183	struct auxtrace_queue *queue_array;
 184	unsigned int i;
 185
 186	if (!nr_queues)
 187		nr_queues = AUXTRACE_INIT_NR_QUEUES;
 188
 189	while (nr_queues && nr_queues < new_nr_queues)
 190		nr_queues <<= 1;
 191
 192	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
 193		return -EINVAL;
 194
 195	queue_array = auxtrace_alloc_queue_array(nr_queues);
 196	if (!queue_array)
 197		return -ENOMEM;
 198
 199	for (i = 0; i < queues->nr_queues; i++) {
 200		list_splice_tail(&queues->queue_array[i].head,
 201				 &queue_array[i].head);
 202		queue_array[i].tid = queues->queue_array[i].tid;
 203		queue_array[i].cpu = queues->queue_array[i].cpu;
 204		queue_array[i].set = queues->queue_array[i].set;
 205		queue_array[i].priv = queues->queue_array[i].priv;
 206	}
 207
 208	queues->nr_queues = nr_queues;
 209	queues->queue_array = queue_array;
 210
 211	return 0;
 212}
 213
 214static void *auxtrace_copy_data(u64 size, struct perf_session *session)
 215{
 216	int fd = perf_data__fd(session->data);
 217	void *p;
 218	ssize_t ret;
 219
 220	if (size > SSIZE_MAX)
 221		return NULL;
 222
 223	p = malloc(size);
 224	if (!p)
 225		return NULL;
 226
 227	ret = readn(fd, p, size);
 228	if (ret != (ssize_t)size) {
 229		free(p);
 230		return NULL;
 231	}
 232
 233	return p;
 234}
 235
 236static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
 237					 unsigned int idx,
 238					 struct auxtrace_buffer *buffer)
 239{
 240	struct auxtrace_queue *queue;
 241	int err;
 242
 243	if (idx >= queues->nr_queues) {
 244		err = auxtrace_queues__grow(queues, idx + 1);
 245		if (err)
 246			return err;
 247	}
 248
 249	queue = &queues->queue_array[idx];
 250
 251	if (!queue->set) {
 252		queue->set = true;
 253		queue->tid = buffer->tid;
 254		queue->cpu = buffer->cpu;
 255	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
 256		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
 257		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
 258		return -EINVAL;
 259	}
 260
 261	buffer->buffer_nr = queues->next_buffer_nr++;
 262
 263	list_add_tail(&buffer->list, &queue->head);
 264
 265	queues->new_data = true;
 266	queues->populated = true;
 267
 268	return 0;
 269}
 270
 271/* Limit buffers to 32MiB on 32-bit */
 272#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
 273
 274static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
 275					 unsigned int idx,
 276					 struct auxtrace_buffer *buffer)
 277{
 278	u64 sz = buffer->size;
 279	bool consecutive = false;
 280	struct auxtrace_buffer *b;
 281	int err;
 282
 283	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
 284		b = memdup(buffer, sizeof(struct auxtrace_buffer));
 285		if (!b)
 286			return -ENOMEM;
 287		b->size = BUFFER_LIMIT_FOR_32_BIT;
 288		b->consecutive = consecutive;
 289		err = auxtrace_queues__queue_buffer(queues, idx, b);
 290		if (err) {
 291			auxtrace_buffer__free(b);
 292			return err;
 293		}
 294		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
 295		sz -= BUFFER_LIMIT_FOR_32_BIT;
 296		consecutive = true;
 297	}
 298
 299	buffer->size = sz;
 300	buffer->consecutive = consecutive;
 301
 302	return 0;
 303}
 304
 305static bool filter_cpu(struct perf_session *session, int cpu)
 306{
 307	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
 308
 309	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
 310}
 311
 312static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
 313				       struct perf_session *session,
 314				       unsigned int idx,
 315				       struct auxtrace_buffer *buffer,
 316				       struct auxtrace_buffer **buffer_ptr)
 317{
 318	int err = -ENOMEM;
 319
 320	if (filter_cpu(session, buffer->cpu))
 321		return 0;
 322
 323	buffer = memdup(buffer, sizeof(*buffer));
 324	if (!buffer)
 325		return -ENOMEM;
 326
 327	if (session->one_mmap) {
 328		buffer->data = buffer->data_offset - session->one_mmap_offset +
 329			       session->one_mmap_addr;
 330	} else if (perf_data__is_pipe(session->data)) {
 331		buffer->data = auxtrace_copy_data(buffer->size, session);
 332		if (!buffer->data)
 333			goto out_free;
 334		buffer->data_needs_freeing = true;
 335	} else if (BITS_PER_LONG == 32 &&
 336		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
 337		err = auxtrace_queues__split_buffer(queues, idx, buffer);
 338		if (err)
 339			goto out_free;
 340	}
 341
 342	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
 343	if (err)
 344		goto out_free;
 345
 346	/* FIXME: Doesn't work for split buffer */
 347	if (buffer_ptr)
 348		*buffer_ptr = buffer;
 349
 350	return 0;
 351
 352out_free:
 353	auxtrace_buffer__free(buffer);
 354	return err;
 355}
 356
 357int auxtrace_queues__add_event(struct auxtrace_queues *queues,
 358			       struct perf_session *session,
 359			       union perf_event *event, off_t data_offset,
 360			       struct auxtrace_buffer **buffer_ptr)
 361{
 362	struct auxtrace_buffer buffer = {
 363		.pid = -1,
 364		.tid = event->auxtrace.tid,
 365		.cpu = event->auxtrace.cpu,
 366		.data_offset = data_offset,
 367		.offset = event->auxtrace.offset,
 368		.reference = event->auxtrace.reference,
 369		.size = event->auxtrace.size,
 370	};
 371	unsigned int idx = event->auxtrace.idx;
 372
 373	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
 374					   buffer_ptr);
 375}
 376
 377static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
 378					      struct perf_session *session,
 379					      off_t file_offset, size_t sz)
 380{
 381	union perf_event *event;
 382	int err;
 383	char buf[PERF_SAMPLE_MAX_SIZE];
 384
 385	err = perf_session__peek_event(session, file_offset, buf,
 386				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
 387	if (err)
 388		return err;
 389
 390	if (event->header.type == PERF_RECORD_AUXTRACE) {
 391		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
 392		    event->header.size != sz) {
 393			err = -EINVAL;
 394			goto out;
 395		}
 396		file_offset += event->header.size;
 397		err = auxtrace_queues__add_event(queues, session, event,
 398						 file_offset, NULL);
 399	}
 400out:
 401	return err;
 402}
 403
 404void auxtrace_queues__free(struct auxtrace_queues *queues)
 405{
 406	unsigned int i;
 407
 408	for (i = 0; i < queues->nr_queues; i++) {
 409		while (!list_empty(&queues->queue_array[i].head)) {
 410			struct auxtrace_buffer *buffer;
 411
 412			buffer = list_entry(queues->queue_array[i].head.next,
 413					    struct auxtrace_buffer, list);
 414			list_del_init(&buffer->list);
 415			auxtrace_buffer__free(buffer);
 416		}
 417	}
 418
 419	zfree(&queues->queue_array);
 420	queues->nr_queues = 0;
 421}
 422
 423static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
 424			     unsigned int pos, unsigned int queue_nr,
 425			     u64 ordinal)
 426{
 427	unsigned int parent;
 428
 429	while (pos) {
 430		parent = (pos - 1) >> 1;
 431		if (heap_array[parent].ordinal <= ordinal)
 432			break;
 433		heap_array[pos] = heap_array[parent];
 434		pos = parent;
 435	}
 436	heap_array[pos].queue_nr = queue_nr;
 437	heap_array[pos].ordinal = ordinal;
 438}
 439
 440int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
 441		       u64 ordinal)
 442{
 443	struct auxtrace_heap_item *heap_array;
 444
 445	if (queue_nr >= heap->heap_sz) {
 446		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
 447
 448		while (heap_sz <= queue_nr)
 449			heap_sz <<= 1;
 450		heap_array = realloc(heap->heap_array,
 451				     heap_sz * sizeof(struct auxtrace_heap_item));
 452		if (!heap_array)
 453			return -ENOMEM;
 454		heap->heap_array = heap_array;
 455		heap->heap_sz = heap_sz;
 456	}
 457
 458	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
 459
 460	return 0;
 461}
 462
 463void auxtrace_heap__free(struct auxtrace_heap *heap)
 464{
 465	zfree(&heap->heap_array);
 466	heap->heap_cnt = 0;
 467	heap->heap_sz = 0;
 468}
 469
 470void auxtrace_heap__pop(struct auxtrace_heap *heap)
 471{
 472	unsigned int pos, last, heap_cnt = heap->heap_cnt;
 473	struct auxtrace_heap_item *heap_array;
 474
 475	if (!heap_cnt)
 476		return;
 477
 478	heap->heap_cnt -= 1;
 479
 480	heap_array = heap->heap_array;
 481
 482	pos = 0;
 483	while (1) {
 484		unsigned int left, right;
 485
 486		left = (pos << 1) + 1;
 487		if (left >= heap_cnt)
 488			break;
 489		right = left + 1;
 490		if (right >= heap_cnt) {
 491			heap_array[pos] = heap_array[left];
 492			return;
 493		}
 494		if (heap_array[left].ordinal < heap_array[right].ordinal) {
 495			heap_array[pos] = heap_array[left];
 496			pos = left;
 497		} else {
 498			heap_array[pos] = heap_array[right];
 499			pos = right;
 500		}
 501	}
 502
 503	last = heap_cnt - 1;
 504	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
 505			 heap_array[last].ordinal);
 506}
 507
 508size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
 509				       struct evlist *evlist)
 510{
 511	if (itr)
 512		return itr->info_priv_size(itr, evlist);
 513	return 0;
 514}
 515
 516static int auxtrace_not_supported(void)
 517{
 518	pr_err("AUX area tracing is not supported on this architecture\n");
 519	return -EINVAL;
 520}
 521
 522int auxtrace_record__info_fill(struct auxtrace_record *itr,
 523			       struct perf_session *session,
 524			       struct perf_record_auxtrace_info *auxtrace_info,
 525			       size_t priv_size)
 526{
 527	if (itr)
 528		return itr->info_fill(itr, session, auxtrace_info, priv_size);
 529	return auxtrace_not_supported();
 530}
 531
 532void auxtrace_record__free(struct auxtrace_record *itr)
 533{
 534	if (itr)
 535		itr->free(itr);
 536}
 537
 538int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
 539{
 540	if (itr && itr->snapshot_start)
 541		return itr->snapshot_start(itr);
 542	return 0;
 543}
 544
 545int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
 546{
 547	if (!on_exit && itr && itr->snapshot_finish)
 548		return itr->snapshot_finish(itr);
 549	return 0;
 550}
 551
 552int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
 553				   struct auxtrace_mmap *mm,
 554				   unsigned char *data, u64 *head, u64 *old)
 555{
 556	if (itr && itr->find_snapshot)
 557		return itr->find_snapshot(itr, idx, mm, data, head, old);
 558	return 0;
 559}
 560
 561int auxtrace_record__options(struct auxtrace_record *itr,
 562			     struct evlist *evlist,
 563			     struct record_opts *opts)
 564{
 565	if (itr)
 
 566		return itr->recording_options(itr, evlist, opts);
 
 567	return 0;
 568}
 569
 570u64 auxtrace_record__reference(struct auxtrace_record *itr)
 571{
 572	if (itr)
 573		return itr->reference(itr);
 574	return 0;
 575}
 576
 577int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
 578				    struct record_opts *opts, const char *str)
 579{
 580	if (!str)
 581		return 0;
 582
 583	/* PMU-agnostic options */
 584	switch (*str) {
 585	case 'e':
 586		opts->auxtrace_snapshot_on_exit = true;
 587		str++;
 588		break;
 589	default:
 590		break;
 591	}
 592
 593	if (itr)
 594		return itr->parse_snapshot_options(itr, opts, str);
 595
 596	pr_err("No AUX area tracing to snapshot\n");
 597	return -EINVAL;
 598}
 599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600struct auxtrace_record *__weak
 601auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
 602{
 603	*err = 0;
 604	return NULL;
 605}
 606
 607static int auxtrace_index__alloc(struct list_head *head)
 608{
 609	struct auxtrace_index *auxtrace_index;
 610
 611	auxtrace_index = malloc(sizeof(struct auxtrace_index));
 612	if (!auxtrace_index)
 613		return -ENOMEM;
 614
 615	auxtrace_index->nr = 0;
 616	INIT_LIST_HEAD(&auxtrace_index->list);
 617
 618	list_add_tail(&auxtrace_index->list, head);
 619
 620	return 0;
 621}
 622
 623void auxtrace_index__free(struct list_head *head)
 624{
 625	struct auxtrace_index *auxtrace_index, *n;
 626
 627	list_for_each_entry_safe(auxtrace_index, n, head, list) {
 628		list_del_init(&auxtrace_index->list);
 629		free(auxtrace_index);
 630	}
 631}
 632
 633static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
 634{
 635	struct auxtrace_index *auxtrace_index;
 636	int err;
 637
 638	if (list_empty(head)) {
 639		err = auxtrace_index__alloc(head);
 640		if (err)
 641			return NULL;
 642	}
 643
 644	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
 645
 646	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
 647		err = auxtrace_index__alloc(head);
 648		if (err)
 649			return NULL;
 650		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
 651					    list);
 652	}
 653
 654	return auxtrace_index;
 655}
 656
 657int auxtrace_index__auxtrace_event(struct list_head *head,
 658				   union perf_event *event, off_t file_offset)
 659{
 660	struct auxtrace_index *auxtrace_index;
 661	size_t nr;
 662
 663	auxtrace_index = auxtrace_index__last(head);
 664	if (!auxtrace_index)
 665		return -ENOMEM;
 666
 667	nr = auxtrace_index->nr;
 668	auxtrace_index->entries[nr].file_offset = file_offset;
 669	auxtrace_index->entries[nr].sz = event->header.size;
 670	auxtrace_index->nr += 1;
 671
 672	return 0;
 673}
 674
 675static int auxtrace_index__do_write(int fd,
 676				    struct auxtrace_index *auxtrace_index)
 677{
 678	struct auxtrace_index_entry ent;
 679	size_t i;
 680
 681	for (i = 0; i < auxtrace_index->nr; i++) {
 682		ent.file_offset = auxtrace_index->entries[i].file_offset;
 683		ent.sz = auxtrace_index->entries[i].sz;
 684		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
 685			return -errno;
 686	}
 687	return 0;
 688}
 689
 690int auxtrace_index__write(int fd, struct list_head *head)
 691{
 692	struct auxtrace_index *auxtrace_index;
 693	u64 total = 0;
 694	int err;
 695
 696	list_for_each_entry(auxtrace_index, head, list)
 697		total += auxtrace_index->nr;
 698
 699	if (writen(fd, &total, sizeof(total)) != sizeof(total))
 700		return -errno;
 701
 702	list_for_each_entry(auxtrace_index, head, list) {
 703		err = auxtrace_index__do_write(fd, auxtrace_index);
 704		if (err)
 705			return err;
 706	}
 707
 708	return 0;
 709}
 710
 711static int auxtrace_index__process_entry(int fd, struct list_head *head,
 712					 bool needs_swap)
 713{
 714	struct auxtrace_index *auxtrace_index;
 715	struct auxtrace_index_entry ent;
 716	size_t nr;
 717
 718	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
 719		return -1;
 720
 721	auxtrace_index = auxtrace_index__last(head);
 722	if (!auxtrace_index)
 723		return -1;
 724
 725	nr = auxtrace_index->nr;
 726	if (needs_swap) {
 727		auxtrace_index->entries[nr].file_offset =
 728						bswap_64(ent.file_offset);
 729		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
 730	} else {
 731		auxtrace_index->entries[nr].file_offset = ent.file_offset;
 732		auxtrace_index->entries[nr].sz = ent.sz;
 733	}
 734
 735	auxtrace_index->nr = nr + 1;
 736
 737	return 0;
 738}
 739
 740int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
 741			    bool needs_swap)
 742{
 743	struct list_head *head = &session->auxtrace_index;
 744	u64 nr;
 745
 746	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
 747		return -1;
 748
 749	if (needs_swap)
 750		nr = bswap_64(nr);
 751
 752	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
 753		return -1;
 754
 755	while (nr--) {
 756		int err;
 757
 758		err = auxtrace_index__process_entry(fd, head, needs_swap);
 759		if (err)
 760			return -1;
 761	}
 762
 763	return 0;
 764}
 765
 766static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
 767						struct perf_session *session,
 768						struct auxtrace_index_entry *ent)
 769{
 770	return auxtrace_queues__add_indexed_event(queues, session,
 771						  ent->file_offset, ent->sz);
 772}
 773
 774int auxtrace_queues__process_index(struct auxtrace_queues *queues,
 775				   struct perf_session *session)
 776{
 777	struct auxtrace_index *auxtrace_index;
 778	struct auxtrace_index_entry *ent;
 779	size_t i;
 780	int err;
 781
 782	if (auxtrace__dont_decode(session))
 783		return 0;
 784
 785	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
 786		for (i = 0; i < auxtrace_index->nr; i++) {
 787			ent = &auxtrace_index->entries[i];
 788			err = auxtrace_queues__process_index_entry(queues,
 789								   session,
 790								   ent);
 791			if (err)
 792				return err;
 793		}
 794	}
 795	return 0;
 796}
 797
 798struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
 799					      struct auxtrace_buffer *buffer)
 800{
 801	if (buffer) {
 802		if (list_is_last(&buffer->list, &queue->head))
 803			return NULL;
 804		return list_entry(buffer->list.next, struct auxtrace_buffer,
 805				  list);
 806	} else {
 807		if (list_empty(&queue->head))
 808			return NULL;
 809		return list_entry(queue->head.next, struct auxtrace_buffer,
 810				  list);
 811	}
 812}
 813
 814void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815{
 
 816	size_t adj = buffer->data_offset & (page_size - 1);
 817	size_t size = buffer->size + adj;
 818	off_t file_offset = buffer->data_offset - adj;
 819	void *addr;
 820
 821	if (buffer->data)
 822		return buffer->data;
 823
 824	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
 825	if (addr == MAP_FAILED)
 826		return NULL;
 827
 828	buffer->mmap_addr = addr;
 829	buffer->mmap_size = size;
 830
 831	buffer->data = addr + adj;
 832
 833	return buffer->data;
 834}
 835
 836void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
 837{
 838	if (!buffer->data || !buffer->mmap_addr)
 839		return;
 840	munmap(buffer->mmap_addr, buffer->mmap_size);
 841	buffer->mmap_addr = NULL;
 842	buffer->mmap_size = 0;
 843	buffer->data = NULL;
 844	buffer->use_data = NULL;
 845}
 846
 847void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
 848{
 849	auxtrace_buffer__put_data(buffer);
 850	if (buffer->data_needs_freeing) {
 851		buffer->data_needs_freeing = false;
 852		zfree(&buffer->data);
 853		buffer->use_data = NULL;
 854		buffer->size = 0;
 855	}
 856}
 857
 858void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
 859{
 860	auxtrace_buffer__drop_data(buffer);
 861	free(buffer);
 862}
 863
 864void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
 865			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
 866			  const char *msg, u64 timestamp)
 
 867{
 868	size_t size;
 869
 870	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
 871
 872	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
 873	auxtrace_error->type = type;
 874	auxtrace_error->code = code;
 875	auxtrace_error->cpu = cpu;
 876	auxtrace_error->pid = pid;
 877	auxtrace_error->tid = tid;
 878	auxtrace_error->fmt = 1;
 879	auxtrace_error->ip = ip;
 880	auxtrace_error->time = timestamp;
 881	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
 882
 883	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
 884	       strlen(auxtrace_error->msg) + 1;
 
 
 
 
 
 
 885	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
 886}
 887
 
 
 
 
 
 
 
 
 888int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
 889					 struct perf_tool *tool,
 890					 struct perf_session *session,
 891					 perf_event__handler_t process)
 892{
 893	union perf_event *ev;
 894	size_t priv_size;
 895	int err;
 896
 897	pr_debug2("Synthesizing auxtrace information\n");
 898	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
 899	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
 900	if (!ev)
 901		return -ENOMEM;
 902
 903	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
 904	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
 905					priv_size;
 906	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
 907					 priv_size);
 908	if (err)
 909		goto out_free;
 910
 911	err = process(tool, ev, NULL, NULL);
 912out_free:
 913	free(ev);
 914	return err;
 915}
 916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917int perf_event__process_auxtrace_info(struct perf_session *session,
 918				      union perf_event *event)
 919{
 920	enum auxtrace_type type = event->auxtrace_info.type;
 
 921
 922	if (dump_trace)
 923		fprintf(stdout, " type: %u\n", type);
 924
 925	switch (type) {
 926	case PERF_AUXTRACE_INTEL_PT:
 927		return intel_pt_process_auxtrace_info(event, session);
 
 928	case PERF_AUXTRACE_INTEL_BTS:
 929		return intel_bts_process_auxtrace_info(event, session);
 
 930	case PERF_AUXTRACE_ARM_SPE:
 931		return arm_spe_process_auxtrace_info(event, session);
 
 932	case PERF_AUXTRACE_CS_ETM:
 933		return cs_etm__process_auxtrace_info(event, session);
 
 934	case PERF_AUXTRACE_S390_CPUMSF:
 935		return s390_cpumsf_process_auxtrace_info(event, session);
 
 
 
 
 936	case PERF_AUXTRACE_UNKNOWN:
 937	default:
 938		return -EINVAL;
 939	}
 
 
 
 
 
 
 
 940}
 941
 942s64 perf_event__process_auxtrace(struct perf_session *session,
 943				 union perf_event *event)
 944{
 945	s64 err;
 946
 947	if (dump_trace)
 948		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
 949			event->auxtrace.size, event->auxtrace.offset,
 950			event->auxtrace.reference, event->auxtrace.idx,
 951			event->auxtrace.tid, event->auxtrace.cpu);
 952
 953	if (auxtrace__dont_decode(session))
 954		return event->auxtrace.size;
 955
 956	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
 957		return -EINVAL;
 958
 959	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
 960	if (err < 0)
 961		return err;
 962
 963	return event->auxtrace.size;
 964}
 965
 966#define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
 967#define PERF_ITRACE_DEFAULT_PERIOD		100000
 968#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
 969#define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
 970#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
 971#define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
 972
 973void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
 974				    bool no_sample)
 975{
 976	synth_opts->branches = true;
 977	synth_opts->transactions = true;
 978	synth_opts->ptwrites = true;
 979	synth_opts->pwr_events = true;
 980	synth_opts->other_events = true;
 
 981	synth_opts->errors = true;
 
 
 
 
 
 
 982	if (no_sample) {
 983		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
 984		synth_opts->period = 1;
 985		synth_opts->calls = true;
 986	} else {
 987		synth_opts->instructions = true;
 
 988		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
 989		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
 990	}
 991	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
 992	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
 993	synth_opts->initial_skip = 0;
 994}
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996/*
 997 * Please check tools/perf/Documentation/perf-script.txt for information
 998 * about the options parsed here, which is introduced after this cset,
 999 * when support in 'perf script' for these options is introduced.
1000 */
1001int itrace_parse_synth_opts(const struct option *opt, const char *str,
1002			    int unset)
1003{
1004	struct itrace_synth_opts *synth_opts = opt->value;
1005	const char *p;
1006	char *endptr;
1007	bool period_type_set = false;
1008	bool period_set = false;
 
1009
1010	synth_opts->set = true;
1011
1012	if (unset) {
1013		synth_opts->dont_decode = true;
1014		return 0;
1015	}
1016
1017	if (!str) {
1018		itrace_synth_opts__set_default(synth_opts,
1019					       synth_opts->default_no_sample);
1020		return 0;
1021	}
1022
1023	for (p = str; *p;) {
1024		switch (*p++) {
1025		case 'i':
1026			synth_opts->instructions = true;
 
 
 
 
 
1027			while (*p == ' ' || *p == ',')
1028				p += 1;
1029			if (isdigit(*p)) {
1030				synth_opts->period = strtoull(p, &endptr, 10);
1031				period_set = true;
1032				p = endptr;
1033				while (*p == ' ' || *p == ',')
1034					p += 1;
1035				switch (*p++) {
1036				case 'i':
1037					synth_opts->period_type =
1038						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1039					period_type_set = true;
1040					break;
1041				case 't':
1042					synth_opts->period_type =
1043						PERF_ITRACE_PERIOD_TICKS;
1044					period_type_set = true;
1045					break;
1046				case 'm':
1047					synth_opts->period *= 1000;
1048					/* Fall through */
1049				case 'u':
1050					synth_opts->period *= 1000;
1051					/* Fall through */
1052				case 'n':
1053					if (*p++ != 's')
1054						goto out_err;
1055					synth_opts->period_type =
1056						PERF_ITRACE_PERIOD_NANOSECS;
1057					period_type_set = true;
1058					break;
1059				case '\0':
1060					goto out;
1061				default:
1062					goto out_err;
1063				}
1064			}
1065			break;
1066		case 'b':
1067			synth_opts->branches = true;
1068			break;
1069		case 'x':
1070			synth_opts->transactions = true;
1071			break;
1072		case 'w':
1073			synth_opts->ptwrites = true;
1074			break;
1075		case 'p':
1076			synth_opts->pwr_events = true;
1077			break;
1078		case 'o':
1079			synth_opts->other_events = true;
1080			break;
 
 
 
1081		case 'e':
1082			synth_opts->errors = true;
 
 
 
1083			break;
1084		case 'd':
1085			synth_opts->log = true;
 
 
 
 
 
1086			break;
1087		case 'c':
1088			synth_opts->branches = true;
1089			synth_opts->calls = true;
1090			break;
1091		case 'r':
1092			synth_opts->branches = true;
1093			synth_opts->returns = true;
1094			break;
 
1095		case 'g':
1096			synth_opts->callchain = true;
 
 
 
1097			synth_opts->callchain_sz =
1098					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1099			while (*p == ' ' || *p == ',')
1100				p += 1;
1101			if (isdigit(*p)) {
1102				unsigned int val;
1103
1104				val = strtoul(p, &endptr, 10);
1105				p = endptr;
1106				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1107					goto out_err;
1108				synth_opts->callchain_sz = val;
1109			}
1110			break;
 
1111		case 'l':
1112			synth_opts->last_branch = true;
 
 
 
1113			synth_opts->last_branch_sz =
1114					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1115			while (*p == ' ' || *p == ',')
1116				p += 1;
1117			if (isdigit(*p)) {
1118				unsigned int val;
1119
1120				val = strtoul(p, &endptr, 10);
1121				p = endptr;
1122				if (!val ||
1123				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1124					goto out_err;
1125				synth_opts->last_branch_sz = val;
1126			}
1127			break;
1128		case 's':
1129			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1130			if (p == endptr)
1131				goto out_err;
1132			p = endptr;
1133			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134		case ' ':
1135		case ',':
1136			break;
1137		default:
1138			goto out_err;
1139		}
1140	}
1141out:
1142	if (synth_opts->instructions) {
1143		if (!period_type_set)
1144			synth_opts->period_type =
1145					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1146		if (!period_set)
1147			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1148	}
1149
1150	return 0;
1151
1152out_err:
1153	pr_err("Bad Instruction Tracing options '%s'\n", str);
1154	return -EINVAL;
1155}
1156
 
 
 
 
 
1157static const char * const auxtrace_error_type_name[] = {
1158	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1159};
1160
1161static const char *auxtrace_error_name(int type)
1162{
1163	const char *error_type_name = NULL;
1164
1165	if (type < PERF_AUXTRACE_ERROR_MAX)
1166		error_type_name = auxtrace_error_type_name[type];
1167	if (!error_type_name)
1168		error_type_name = "unknown AUX";
1169	return error_type_name;
1170}
1171
1172size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1173{
1174	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1175	unsigned long long nsecs = e->time;
1176	const char *msg = e->msg;
1177	int ret;
1178
1179	ret = fprintf(fp, " %s error type %u",
1180		      auxtrace_error_name(e->type), e->type);
1181
1182	if (e->fmt && nsecs) {
1183		unsigned long secs = nsecs / NSEC_PER_SEC;
1184
1185		nsecs -= secs * NSEC_PER_SEC;
1186		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1187	} else {
1188		ret += fprintf(fp, " time 0");
1189	}
1190
1191	if (!e->fmt)
1192		msg = (const char *)&e->time;
1193
 
 
 
1194	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1195		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1196	return ret;
1197}
1198
1199void perf_session__auxtrace_error_inc(struct perf_session *session,
1200				      union perf_event *event)
1201{
1202	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1203
1204	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1205		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1206}
1207
1208void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1209{
1210	int i;
1211
1212	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1213		if (!stats->nr_auxtrace_errors[i])
1214			continue;
1215		ui__warning("%u %s errors\n",
1216			    stats->nr_auxtrace_errors[i],
1217			    auxtrace_error_name(i));
1218	}
1219}
1220
1221int perf_event__process_auxtrace_error(struct perf_session *session,
1222				       union perf_event *event)
1223{
1224	if (auxtrace__dont_decode(session))
1225		return 0;
1226
1227	perf_event__fprintf_auxtrace_error(event, stdout);
1228	return 0;
1229}
1230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231static int __auxtrace_mmap__read(struct mmap *map,
1232				 struct auxtrace_record *itr,
1233				 struct perf_tool *tool, process_auxtrace_t fn,
1234				 bool snapshot, size_t snapshot_size)
1235{
1236	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1237	u64 head, old = mm->prev, offset, ref;
1238	unsigned char *data = mm->base;
1239	size_t size, head_off, old_off, len1, len2, padding;
1240	union perf_event ev;
1241	void *data1, *data2;
 
1242
1243	if (snapshot) {
1244		head = auxtrace_mmap__read_snapshot_head(mm);
1245		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1246						   &head, &old))
1247			return -1;
1248	} else {
1249		head = auxtrace_mmap__read_head(mm);
1250	}
1251
1252	if (old == head)
1253		return 0;
1254
1255	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1256		  mm->idx, old, head, head - old);
1257
1258	if (mm->mask) {
1259		head_off = head & mm->mask;
1260		old_off = old & mm->mask;
1261	} else {
1262		head_off = head % mm->len;
1263		old_off = old % mm->len;
1264	}
1265
1266	if (head_off > old_off)
1267		size = head_off - old_off;
1268	else
1269		size = mm->len - (old_off - head_off);
1270
1271	if (snapshot && size > snapshot_size)
1272		size = snapshot_size;
1273
1274	ref = auxtrace_record__reference(itr);
1275
1276	if (head > old || size <= head || mm->mask) {
1277		offset = head - size;
1278	} else {
1279		/*
1280		 * When the buffer size is not a power of 2, 'head' wraps at the
1281		 * highest multiple of the buffer size, so we have to subtract
1282		 * the remainder here.
1283		 */
1284		u64 rem = (0ULL - mm->len) % mm->len;
1285
1286		offset = head - size - rem;
1287	}
1288
1289	if (size > head_off) {
1290		len1 = size - head_off;
1291		data1 = &data[mm->len - len1];
1292		len2 = head_off;
1293		data2 = &data[0];
1294	} else {
1295		len1 = size;
1296		data1 = &data[head_off - len1];
1297		len2 = 0;
1298		data2 = NULL;
1299	}
1300
1301	if (itr->alignment) {
1302		unsigned int unwanted = len1 % itr->alignment;
1303
1304		len1 -= unwanted;
1305		size -= unwanted;
1306	}
1307
1308	/* padding must be written by fn() e.g. record__process_auxtrace() */
1309	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1310	if (padding)
1311		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1312
1313	memset(&ev, 0, sizeof(ev));
1314	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1315	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1316	ev.auxtrace.size = size + padding;
1317	ev.auxtrace.offset = offset;
1318	ev.auxtrace.reference = ref;
1319	ev.auxtrace.idx = mm->idx;
1320	ev.auxtrace.tid = mm->tid;
1321	ev.auxtrace.cpu = mm->cpu;
1322
1323	if (fn(tool, map, &ev, data1, len1, data2, len2))
1324		return -1;
1325
1326	mm->prev = head;
1327
1328	if (!snapshot) {
1329		auxtrace_mmap__write_tail(mm, head);
1330		if (itr->read_finish) {
1331			int err;
 
 
1332
 
1333			err = itr->read_finish(itr, mm->idx);
1334			if (err < 0)
1335				return err;
1336		}
1337	}
1338
1339	return 1;
1340}
1341
1342int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1343			struct perf_tool *tool, process_auxtrace_t fn)
1344{
1345	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1346}
1347
1348int auxtrace_mmap__read_snapshot(struct mmap *map,
1349				 struct auxtrace_record *itr,
1350				 struct perf_tool *tool, process_auxtrace_t fn,
1351				 size_t snapshot_size)
1352{
1353	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1354}
1355
1356/**
1357 * struct auxtrace_cache - hash table to implement a cache
1358 * @hashtable: the hashtable
1359 * @sz: hashtable size (number of hlists)
1360 * @entry_size: size of an entry
1361 * @limit: limit the number of entries to this maximum, when reached the cache
1362 *         is dropped and caching begins again with an empty cache
1363 * @cnt: current number of entries
1364 * @bits: hashtable size (@sz = 2^@bits)
1365 */
1366struct auxtrace_cache {
1367	struct hlist_head *hashtable;
1368	size_t sz;
1369	size_t entry_size;
1370	size_t limit;
1371	size_t cnt;
1372	unsigned int bits;
1373};
1374
1375struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1376					   unsigned int limit_percent)
1377{
1378	struct auxtrace_cache *c;
1379	struct hlist_head *ht;
1380	size_t sz, i;
1381
1382	c = zalloc(sizeof(struct auxtrace_cache));
1383	if (!c)
1384		return NULL;
1385
1386	sz = 1UL << bits;
1387
1388	ht = calloc(sz, sizeof(struct hlist_head));
1389	if (!ht)
1390		goto out_free;
1391
1392	for (i = 0; i < sz; i++)
1393		INIT_HLIST_HEAD(&ht[i]);
1394
1395	c->hashtable = ht;
1396	c->sz = sz;
1397	c->entry_size = entry_size;
1398	c->limit = (c->sz * limit_percent) / 100;
1399	c->bits = bits;
1400
1401	return c;
1402
1403out_free:
1404	free(c);
1405	return NULL;
1406}
1407
1408static void auxtrace_cache__drop(struct auxtrace_cache *c)
1409{
1410	struct auxtrace_cache_entry *entry;
1411	struct hlist_node *tmp;
1412	size_t i;
1413
1414	if (!c)
1415		return;
1416
1417	for (i = 0; i < c->sz; i++) {
1418		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1419			hlist_del(&entry->hash);
1420			auxtrace_cache__free_entry(c, entry);
1421		}
1422	}
1423
1424	c->cnt = 0;
1425}
1426
1427void auxtrace_cache__free(struct auxtrace_cache *c)
1428{
1429	if (!c)
1430		return;
1431
1432	auxtrace_cache__drop(c);
1433	zfree(&c->hashtable);
1434	free(c);
1435}
1436
1437void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1438{
1439	return malloc(c->entry_size);
1440}
1441
1442void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1443				void *entry)
1444{
1445	free(entry);
1446}
1447
1448int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1449			struct auxtrace_cache_entry *entry)
1450{
1451	if (c->limit && ++c->cnt > c->limit)
1452		auxtrace_cache__drop(c);
1453
1454	entry->key = key;
1455	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1456
1457	return 0;
1458}
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1461{
1462	struct auxtrace_cache_entry *entry;
1463	struct hlist_head *hlist;
1464
1465	if (!c)
1466		return NULL;
1467
1468	hlist = &c->hashtable[hash_32(key, c->bits)];
1469	hlist_for_each_entry(entry, hlist, hash) {
1470		if (entry->key == key)
1471			return entry;
1472	}
1473
1474	return NULL;
1475}
1476
1477static void addr_filter__free_str(struct addr_filter *filt)
1478{
1479	zfree(&filt->str);
1480	filt->action   = NULL;
1481	filt->sym_from = NULL;
1482	filt->sym_to   = NULL;
1483	filt->filename = NULL;
1484}
1485
1486static struct addr_filter *addr_filter__new(void)
1487{
1488	struct addr_filter *filt = zalloc(sizeof(*filt));
1489
1490	if (filt)
1491		INIT_LIST_HEAD(&filt->list);
1492
1493	return filt;
1494}
1495
1496static void addr_filter__free(struct addr_filter *filt)
1497{
1498	if (filt)
1499		addr_filter__free_str(filt);
1500	free(filt);
1501}
1502
1503static void addr_filters__add(struct addr_filters *filts,
1504			      struct addr_filter *filt)
1505{
1506	list_add_tail(&filt->list, &filts->head);
1507	filts->cnt += 1;
1508}
1509
1510static void addr_filters__del(struct addr_filters *filts,
1511			      struct addr_filter *filt)
1512{
1513	list_del_init(&filt->list);
1514	filts->cnt -= 1;
1515}
1516
1517void addr_filters__init(struct addr_filters *filts)
1518{
1519	INIT_LIST_HEAD(&filts->head);
1520	filts->cnt = 0;
1521}
1522
1523void addr_filters__exit(struct addr_filters *filts)
1524{
1525	struct addr_filter *filt, *n;
1526
1527	list_for_each_entry_safe(filt, n, &filts->head, list) {
1528		addr_filters__del(filts, filt);
1529		addr_filter__free(filt);
1530	}
1531}
1532
1533static int parse_num_or_str(char **inp, u64 *num, const char **str,
1534			    const char *str_delim)
1535{
1536	*inp += strspn(*inp, " ");
1537
1538	if (isdigit(**inp)) {
1539		char *endptr;
1540
1541		if (!num)
1542			return -EINVAL;
1543		errno = 0;
1544		*num = strtoull(*inp, &endptr, 0);
1545		if (errno)
1546			return -errno;
1547		if (endptr == *inp)
1548			return -EINVAL;
1549		*inp = endptr;
1550	} else {
1551		size_t n;
1552
1553		if (!str)
1554			return -EINVAL;
1555		*inp += strspn(*inp, " ");
1556		*str = *inp;
1557		n = strcspn(*inp, str_delim);
1558		if (!n)
1559			return -EINVAL;
1560		*inp += n;
1561		if (**inp) {
1562			**inp = '\0';
1563			*inp += 1;
1564		}
1565	}
1566	return 0;
1567}
1568
1569static int parse_action(struct addr_filter *filt)
1570{
1571	if (!strcmp(filt->action, "filter")) {
1572		filt->start = true;
1573		filt->range = true;
1574	} else if (!strcmp(filt->action, "start")) {
1575		filt->start = true;
1576	} else if (!strcmp(filt->action, "stop")) {
1577		filt->start = false;
1578	} else if (!strcmp(filt->action, "tracestop")) {
1579		filt->start = false;
1580		filt->range = true;
1581		filt->action += 5; /* Change 'tracestop' to 'stop' */
1582	} else {
1583		return -EINVAL;
1584	}
1585	return 0;
1586}
1587
1588static int parse_sym_idx(char **inp, int *idx)
1589{
1590	*idx = -1;
1591
1592	*inp += strspn(*inp, " ");
1593
1594	if (**inp != '#')
1595		return 0;
1596
1597	*inp += 1;
1598
1599	if (**inp == 'g' || **inp == 'G') {
1600		*inp += 1;
1601		*idx = 0;
1602	} else {
1603		unsigned long num;
1604		char *endptr;
1605
1606		errno = 0;
1607		num = strtoul(*inp, &endptr, 0);
1608		if (errno)
1609			return -errno;
1610		if (endptr == *inp || num > INT_MAX)
1611			return -EINVAL;
1612		*inp = endptr;
1613		*idx = num;
1614	}
1615
1616	return 0;
1617}
1618
1619static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1620{
1621	int err = parse_num_or_str(inp, num, str, " ");
1622
1623	if (!err && *str)
1624		err = parse_sym_idx(inp, idx);
1625
1626	return err;
1627}
1628
1629static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1630{
1631	char *fstr;
1632	int err;
1633
1634	filt->str = fstr = strdup(*filter_inp);
1635	if (!fstr)
1636		return -ENOMEM;
1637
1638	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1639	if (err)
1640		goto out_err;
1641
1642	err = parse_action(filt);
1643	if (err)
1644		goto out_err;
1645
1646	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1647			      &filt->sym_from_idx);
1648	if (err)
1649		goto out_err;
1650
1651	fstr += strspn(fstr, " ");
1652
1653	if (*fstr == '/') {
1654		fstr += 1;
1655		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1656				      &filt->sym_to_idx);
1657		if (err)
1658			goto out_err;
1659		filt->range = true;
1660	}
1661
1662	fstr += strspn(fstr, " ");
1663
1664	if (*fstr == '@') {
1665		fstr += 1;
1666		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1667		if (err)
1668			goto out_err;
1669	}
1670
1671	fstr += strspn(fstr, " ,");
1672
1673	*filter_inp += fstr - filt->str;
1674
1675	return 0;
1676
1677out_err:
1678	addr_filter__free_str(filt);
1679
1680	return err;
1681}
1682
1683int addr_filters__parse_bare_filter(struct addr_filters *filts,
1684				    const char *filter)
1685{
1686	struct addr_filter *filt;
1687	const char *fstr = filter;
1688	int err;
1689
1690	while (*fstr) {
1691		filt = addr_filter__new();
1692		err = parse_one_filter(filt, &fstr);
1693		if (err) {
1694			addr_filter__free(filt);
1695			addr_filters__exit(filts);
1696			return err;
1697		}
1698		addr_filters__add(filts, filt);
1699	}
1700
1701	return 0;
1702}
1703
1704struct sym_args {
1705	const char	*name;
1706	u64		start;
1707	u64		size;
1708	int		idx;
1709	int		cnt;
1710	bool		started;
1711	bool		global;
1712	bool		selected;
1713	bool		duplicate;
1714	bool		near;
1715};
1716
 
 
 
 
 
 
 
 
1717static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1718{
1719	/* A function with the same name, and global or the n'th found or any */
1720	return kallsyms__is_function(type) &&
1721	       !strcmp(name, args->name) &&
1722	       ((args->global && isupper(type)) ||
1723		(args->selected && ++(args->cnt) == args->idx) ||
1724		(!args->global && !args->selected));
1725}
1726
1727static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1728{
1729	struct sym_args *args = arg;
1730
1731	if (args->started) {
1732		if (!args->size)
1733			args->size = start - args->start;
1734		if (args->selected) {
1735			if (args->size)
1736				return 1;
1737		} else if (kern_sym_match(args, name, type)) {
1738			args->duplicate = true;
1739			return 1;
1740		}
1741	} else if (kern_sym_match(args, name, type)) {
1742		args->started = true;
1743		args->start = start;
1744	}
1745
1746	return 0;
1747}
1748
1749static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1750{
1751	struct sym_args *args = arg;
1752
1753	if (kern_sym_match(args, name, type)) {
1754		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1755		       ++args->cnt, start, type, name);
1756		args->near = true;
1757	} else if (args->near) {
1758		args->near = false;
1759		pr_err("\t\twhich is near\t\t%s\n", name);
1760	}
1761
1762	return 0;
1763}
1764
1765static int sym_not_found_error(const char *sym_name, int idx)
1766{
1767	if (idx > 0) {
1768		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1769		       idx, sym_name);
1770	} else if (!idx) {
1771		pr_err("Global symbol '%s' not found.\n", sym_name);
1772	} else {
1773		pr_err("Symbol '%s' not found.\n", sym_name);
1774	}
1775	pr_err("Note that symbols must be functions.\n");
1776
1777	return -EINVAL;
1778}
1779
1780static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1781{
1782	struct sym_args args = {
1783		.name = sym_name,
1784		.idx = idx,
1785		.global = !idx,
1786		.selected = idx > 0,
1787	};
1788	int err;
1789
1790	*start = 0;
1791	*size = 0;
1792
1793	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1794	if (err < 0) {
1795		pr_err("Failed to parse /proc/kallsyms\n");
1796		return err;
1797	}
1798
1799	if (args.duplicate) {
1800		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1801		args.cnt = 0;
1802		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1803		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1804		       sym_name);
1805		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1806		return -EINVAL;
1807	}
1808
1809	if (!args.started) {
1810		pr_err("Kernel symbol lookup: ");
1811		return sym_not_found_error(sym_name, idx);
1812	}
1813
1814	*start = args.start;
1815	*size = args.size;
1816
1817	return 0;
1818}
1819
1820static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1821			       char type, u64 start)
1822{
1823	struct sym_args *args = arg;
 
1824
1825	if (!kallsyms__is_function(type))
1826		return 0;
1827
1828	if (!args->started) {
1829		args->started = true;
1830		args->start = start;
1831	}
1832	/* Don't know exactly where the kernel ends, so we add a page */
1833	args->size = round_up(start, page_size) + page_size - args->start;
 
 
1834
1835	return 0;
1836}
1837
1838static int addr_filter__entire_kernel(struct addr_filter *filt)
1839{
1840	struct sym_args args = { .started = false };
1841	int err;
1842
1843	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1844	if (err < 0 || !args.started) {
1845		pr_err("Failed to parse /proc/kallsyms\n");
1846		return err;
1847	}
1848
1849	filt->addr = args.start;
1850	filt->size = args.size;
1851
1852	return 0;
1853}
1854
1855static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1856{
1857	if (start + size >= filt->addr)
1858		return 0;
1859
1860	if (filt->sym_from) {
1861		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1862		       filt->sym_to, start, filt->sym_from, filt->addr);
1863	} else {
1864		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1865		       filt->sym_to, start, filt->addr);
1866	}
1867
1868	return -EINVAL;
1869}
1870
1871static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1872{
1873	bool no_size = false;
1874	u64 start, size;
1875	int err;
1876
1877	if (symbol_conf.kptr_restrict) {
1878		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1879		return -EINVAL;
1880	}
1881
1882	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1883		return addr_filter__entire_kernel(filt);
1884
1885	if (filt->sym_from) {
1886		err = find_kern_sym(filt->sym_from, &start, &size,
1887				    filt->sym_from_idx);
1888		if (err)
1889			return err;
1890		filt->addr = start;
1891		if (filt->range && !filt->size && !filt->sym_to) {
1892			filt->size = size;
1893			no_size = !size;
1894		}
1895	}
1896
1897	if (filt->sym_to) {
1898		err = find_kern_sym(filt->sym_to, &start, &size,
1899				    filt->sym_to_idx);
1900		if (err)
1901			return err;
1902
1903		err = check_end_after_start(filt, start, size);
1904		if (err)
1905			return err;
1906		filt->size = start + size - filt->addr;
1907		no_size = !size;
1908	}
1909
1910	/* The very last symbol in kallsyms does not imply a particular size */
1911	if (no_size) {
1912		pr_err("Cannot determine size of symbol '%s'\n",
1913		       filt->sym_to ? filt->sym_to : filt->sym_from);
1914		return -EINVAL;
1915	}
1916
1917	return 0;
1918}
1919
1920static struct dso *load_dso(const char *name)
1921{
1922	struct map *map;
1923	struct dso *dso;
1924
1925	map = dso__new_map(name);
1926	if (!map)
1927		return NULL;
1928
1929	if (map__load(map) < 0)
1930		pr_err("File '%s' not found or has no symbols.\n", name);
1931
1932	dso = dso__get(map->dso);
1933
1934	map__put(map);
1935
1936	return dso;
1937}
1938
1939static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1940			  int idx)
1941{
1942	/* Same name, and global or the n'th found or any */
1943	return !arch__compare_symbol_names(name, sym->name) &&
1944	       ((!idx && sym->binding == STB_GLOBAL) ||
1945		(idx > 0 && ++*cnt == idx) ||
1946		idx < 0);
1947}
1948
1949static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1950{
1951	struct symbol *sym;
1952	bool near = false;
1953	int cnt = 0;
1954
1955	pr_err("Multiple symbols with name '%s'\n", sym_name);
1956
1957	sym = dso__first_symbol(dso);
1958	while (sym) {
1959		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1960			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1961			       ++cnt, sym->start,
1962			       sym->binding == STB_GLOBAL ? 'g' :
1963			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1964			       sym->name);
1965			near = true;
1966		} else if (near) {
1967			near = false;
1968			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1969		}
1970		sym = dso__next_symbol(sym);
1971	}
1972
1973	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1974	       sym_name);
1975	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1976}
1977
1978static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1979			u64 *size, int idx)
1980{
1981	struct symbol *sym;
1982	int cnt = 0;
1983
1984	*start = 0;
1985	*size = 0;
1986
1987	sym = dso__first_symbol(dso);
1988	while (sym) {
1989		if (*start) {
1990			if (!*size)
1991				*size = sym->start - *start;
1992			if (idx > 0) {
1993				if (*size)
1994					return 1;
1995			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1996				print_duplicate_syms(dso, sym_name);
1997				return -EINVAL;
1998			}
1999		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2000			*start = sym->start;
2001			*size = sym->end - sym->start;
2002		}
2003		sym = dso__next_symbol(sym);
2004	}
2005
2006	if (!*start)
2007		return sym_not_found_error(sym_name, idx);
2008
2009	return 0;
2010}
2011
2012static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2013{
2014	if (dso__data_file_size(dso, NULL)) {
2015		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2016		       filt->filename);
2017		return -EINVAL;
2018	}
2019
2020	filt->addr = 0;
2021	filt->size = dso->data.file_size;
2022
2023	return 0;
2024}
2025
2026static int addr_filter__resolve_syms(struct addr_filter *filt)
2027{
2028	u64 start, size;
2029	struct dso *dso;
2030	int err = 0;
2031
2032	if (!filt->sym_from && !filt->sym_to)
2033		return 0;
2034
2035	if (!filt->filename)
2036		return addr_filter__resolve_kernel_syms(filt);
2037
2038	dso = load_dso(filt->filename);
2039	if (!dso) {
2040		pr_err("Failed to load symbols from: %s\n", filt->filename);
2041		return -EINVAL;
2042	}
2043
2044	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2045		err = addr_filter__entire_dso(filt, dso);
2046		goto put_dso;
2047	}
2048
2049	if (filt->sym_from) {
2050		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2051				   filt->sym_from_idx);
2052		if (err)
2053			goto put_dso;
2054		filt->addr = start;
2055		if (filt->range && !filt->size && !filt->sym_to)
2056			filt->size = size;
2057	}
2058
2059	if (filt->sym_to) {
2060		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2061				   filt->sym_to_idx);
2062		if (err)
2063			goto put_dso;
2064
2065		err = check_end_after_start(filt, start, size);
2066		if (err)
2067			return err;
2068
2069		filt->size = start + size - filt->addr;
2070	}
2071
2072put_dso:
2073	dso__put(dso);
2074
2075	return err;
2076}
2077
2078static char *addr_filter__to_str(struct addr_filter *filt)
2079{
2080	char filename_buf[PATH_MAX];
2081	const char *at = "";
2082	const char *fn = "";
2083	char *filter;
2084	int err;
2085
2086	if (filt->filename) {
2087		at = "@";
2088		fn = realpath(filt->filename, filename_buf);
2089		if (!fn)
2090			return NULL;
2091	}
2092
2093	if (filt->range) {
2094		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2095			       filt->action, filt->addr, filt->size, at, fn);
2096	} else {
2097		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2098			       filt->action, filt->addr, at, fn);
2099	}
2100
2101	return err < 0 ? NULL : filter;
2102}
2103
2104static int parse_addr_filter(struct evsel *evsel, const char *filter,
2105			     int max_nr)
2106{
2107	struct addr_filters filts;
2108	struct addr_filter *filt;
2109	int err;
2110
2111	addr_filters__init(&filts);
2112
2113	err = addr_filters__parse_bare_filter(&filts, filter);
2114	if (err)
2115		goto out_exit;
2116
2117	if (filts.cnt > max_nr) {
2118		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2119		       filts.cnt, max_nr);
2120		err = -EINVAL;
2121		goto out_exit;
2122	}
2123
2124	list_for_each_entry(filt, &filts.head, list) {
2125		char *new_filter;
2126
2127		err = addr_filter__resolve_syms(filt);
2128		if (err)
2129			goto out_exit;
2130
2131		new_filter = addr_filter__to_str(filt);
2132		if (!new_filter) {
2133			err = -ENOMEM;
2134			goto out_exit;
2135		}
2136
2137		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2138			err = -ENOMEM;
2139			goto out_exit;
2140		}
2141	}
2142
2143out_exit:
2144	addr_filters__exit(&filts);
2145
2146	if (err) {
2147		pr_err("Failed to parse address filter: '%s'\n", filter);
2148		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2149		pr_err("Where multiple filters are separated by space or comma.\n");
2150	}
2151
2152	return err;
2153}
2154
2155static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
2156{
2157	struct perf_pmu *pmu = NULL;
2158
2159	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2160		if (pmu->type == evsel->core.attr.type)
2161			break;
2162	}
2163
2164	return pmu;
2165}
2166
2167static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2168{
2169	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2170	int nr_addr_filters = 0;
2171
2172	if (!pmu)
2173		return 0;
2174
2175	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2176
2177	return nr_addr_filters;
2178}
2179
2180int auxtrace_parse_filters(struct evlist *evlist)
2181{
2182	struct evsel *evsel;
2183	char *filter;
2184	int err, max_nr;
2185
2186	evlist__for_each_entry(evlist, evsel) {
2187		filter = evsel->filter;
2188		max_nr = perf_evsel__nr_addr_filter(evsel);
2189		if (!filter || !max_nr)
2190			continue;
2191		evsel->filter = NULL;
2192		err = parse_addr_filter(evsel, filter, max_nr);
2193		free(filter);
2194		if (err)
2195			return err;
2196		pr_debug("Address filter: %s\n", evsel->filter);
2197	}
2198
2199	return 0;
2200}
2201
2202int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2203			    struct perf_sample *sample, struct perf_tool *tool)
2204{
2205	if (!session->auxtrace)
2206		return 0;
2207
2208	return session->auxtrace->process_event(session, event, sample, tool);
2209}
2210
2211int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
 
 
 
 
 
 
 
 
 
 
2212{
2213	if (!session->auxtrace)
2214		return 0;
2215
2216	return session->auxtrace->flush_events(session, tool);
2217}
2218
2219void auxtrace__free_events(struct perf_session *session)
2220{
2221	if (!session->auxtrace)
2222		return;
2223
2224	return session->auxtrace->free_events(session);
2225}
2226
2227void auxtrace__free(struct perf_session *session)
2228{
2229	if (!session->auxtrace)
2230		return;
2231
2232	return session->auxtrace->free(session);
 
 
 
 
 
 
 
 
 
2233}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * auxtrace.c: AUX area trace support
   4 * Copyright (c) 2013-2015, Intel Corporation.
   5 */
   6
   7#include <inttypes.h>
   8#include <sys/types.h>
   9#include <sys/mman.h>
  10#include <stdbool.h>
  11#include <string.h>
  12#include <limits.h>
  13#include <errno.h>
  14
  15#include <linux/kernel.h>
  16#include <linux/perf_event.h>
  17#include <linux/types.h>
  18#include <linux/bitops.h>
  19#include <linux/log2.h>
  20#include <linux/string.h>
  21#include <linux/time64.h>
  22
  23#include <sys/param.h>
  24#include <stdlib.h>
  25#include <stdio.h>
  26#include <linux/list.h>
  27#include <linux/zalloc.h>
  28
  29#include "config.h"
  30#include "evlist.h"
  31#include "dso.h"
  32#include "map.h"
  33#include "pmu.h"
  34#include "evsel.h"
  35#include "evsel_config.h"
  36#include "symbol.h"
  37#include "util/perf_api_probe.h"
  38#include "util/synthetic-events.h"
  39#include "thread_map.h"
  40#include "asm/bug.h"
  41#include "auxtrace.h"
  42
  43#include <linux/hash.h>
  44
  45#include "event.h"
  46#include "record.h"
  47#include "session.h"
  48#include "debug.h"
  49#include <subcmd/parse-options.h>
  50
  51#include "cs-etm.h"
  52#include "intel-pt.h"
  53#include "intel-bts.h"
  54#include "arm-spe.h"
  55#include "hisi-ptt.h"
  56#include "s390-cpumsf.h"
  57#include "util/mmap.h"
  58
  59#include <linux/ctype.h>
 
  60#include "symbol/kallsyms.h"
  61#include <internal/lib.h>
  62#include "util/sample.h"
  63
  64/*
  65 * Make a group from 'leader' to 'last', requiring that the events were not
  66 * already grouped to a different leader.
  67 */
  68static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
  69{
  70	struct evsel *evsel;
  71	bool grp;
  72
  73	if (!evsel__is_group_leader(leader))
  74		return -EINVAL;
  75
  76	grp = false;
  77	evlist__for_each_entry(evlist, evsel) {
  78		if (grp) {
  79			if (!(evsel__leader(evsel) == leader ||
  80			     (evsel__leader(evsel) == evsel &&
  81			      evsel->core.nr_members <= 1)))
  82				return -EINVAL;
  83		} else if (evsel == leader) {
  84			grp = true;
  85		}
  86		if (evsel == last)
  87			break;
  88	}
  89
  90	grp = false;
  91	evlist__for_each_entry(evlist, evsel) {
  92		if (grp) {
  93			if (!evsel__has_leader(evsel, leader)) {
  94				evsel__set_leader(evsel, leader);
  95				if (leader->core.nr_members < 1)
  96					leader->core.nr_members = 1;
  97				leader->core.nr_members += 1;
  98			}
  99		} else if (evsel == leader) {
 100			grp = true;
 101		}
 102		if (evsel == last)
 103			break;
 104	}
 105
 106	return 0;
 107}
 108
 109static bool auxtrace__dont_decode(struct perf_session *session)
 110{
 111	return !session->itrace_synth_opts ||
 112	       session->itrace_synth_opts->dont_decode;
 113}
 114
 115int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
 116			struct auxtrace_mmap_params *mp,
 117			void *userpg, int fd)
 118{
 119	struct perf_event_mmap_page *pc = userpg;
 120
 121	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
 122
 123	mm->userpg = userpg;
 124	mm->mask = mp->mask;
 125	mm->len = mp->len;
 126	mm->prev = 0;
 127	mm->idx = mp->idx;
 128	mm->tid = mp->tid;
 129	mm->cpu = mp->cpu.cpu;
 130
 131	if (!mp->len || !mp->mmap_needed) {
 132		mm->base = NULL;
 133		return 0;
 134	}
 135
 
 
 
 
 
 136	pc->aux_offset = mp->offset;
 137	pc->aux_size = mp->len;
 138
 139	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
 140	if (mm->base == MAP_FAILED) {
 141		pr_debug2("failed to mmap AUX area\n");
 142		mm->base = NULL;
 143		return -1;
 144	}
 145
 146	return 0;
 147}
 148
 149void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
 150{
 151	if (mm->base) {
 152		munmap(mm->base, mm->len);
 153		mm->base = NULL;
 154	}
 155}
 156
 157void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
 158				off_t auxtrace_offset,
 159				unsigned int auxtrace_pages,
 160				bool auxtrace_overwrite)
 161{
 162	if (auxtrace_pages) {
 163		mp->offset = auxtrace_offset;
 164		mp->len = auxtrace_pages * (size_t)page_size;
 165		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
 166		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
 167		pr_debug2("AUX area mmap length %zu\n", mp->len);
 168	} else {
 169		mp->len = 0;
 170	}
 171}
 172
 173void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
 174				   struct evlist *evlist,
 175				   struct evsel *evsel, int idx)
 176{
 177	bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
 178
 179	mp->mmap_needed = evsel->needs_auxtrace_mmap;
 180
 181	if (!mp->mmap_needed)
 182		return;
 183
 184	mp->idx = idx;
 185
 186	if (per_cpu) {
 187		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
 188		if (evlist->core.threads)
 189			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
 190		else
 191			mp->tid = -1;
 192	} else {
 193		mp->cpu.cpu = -1;
 194		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
 195	}
 196}
 197
 198#define AUXTRACE_INIT_NR_QUEUES	32
 199
 200static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
 201{
 202	struct auxtrace_queue *queue_array;
 203	unsigned int max_nr_queues, i;
 204
 205	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
 206	if (nr_queues > max_nr_queues)
 207		return NULL;
 208
 209	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
 210	if (!queue_array)
 211		return NULL;
 212
 213	for (i = 0; i < nr_queues; i++) {
 214		INIT_LIST_HEAD(&queue_array[i].head);
 215		queue_array[i].priv = NULL;
 216	}
 217
 218	return queue_array;
 219}
 220
 221int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
 222{
 223	queues->nr_queues = nr_queues;
 224	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
 225	if (!queues->queue_array)
 226		return -ENOMEM;
 227	return 0;
 228}
 229
 230int auxtrace_queues__init(struct auxtrace_queues *queues)
 231{
 232	return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
 233}
 234
 235static int auxtrace_queues__grow(struct auxtrace_queues *queues,
 236				 unsigned int new_nr_queues)
 237{
 238	unsigned int nr_queues = queues->nr_queues;
 239	struct auxtrace_queue *queue_array;
 240	unsigned int i;
 241
 242	if (!nr_queues)
 243		nr_queues = AUXTRACE_INIT_NR_QUEUES;
 244
 245	while (nr_queues && nr_queues < new_nr_queues)
 246		nr_queues <<= 1;
 247
 248	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
 249		return -EINVAL;
 250
 251	queue_array = auxtrace_alloc_queue_array(nr_queues);
 252	if (!queue_array)
 253		return -ENOMEM;
 254
 255	for (i = 0; i < queues->nr_queues; i++) {
 256		list_splice_tail(&queues->queue_array[i].head,
 257				 &queue_array[i].head);
 258		queue_array[i].tid = queues->queue_array[i].tid;
 259		queue_array[i].cpu = queues->queue_array[i].cpu;
 260		queue_array[i].set = queues->queue_array[i].set;
 261		queue_array[i].priv = queues->queue_array[i].priv;
 262	}
 263
 264	queues->nr_queues = nr_queues;
 265	queues->queue_array = queue_array;
 266
 267	return 0;
 268}
 269
 270static void *auxtrace_copy_data(u64 size, struct perf_session *session)
 271{
 272	int fd = perf_data__fd(session->data);
 273	void *p;
 274	ssize_t ret;
 275
 276	if (size > SSIZE_MAX)
 277		return NULL;
 278
 279	p = malloc(size);
 280	if (!p)
 281		return NULL;
 282
 283	ret = readn(fd, p, size);
 284	if (ret != (ssize_t)size) {
 285		free(p);
 286		return NULL;
 287	}
 288
 289	return p;
 290}
 291
 292static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
 293					 unsigned int idx,
 294					 struct auxtrace_buffer *buffer)
 295{
 296	struct auxtrace_queue *queue;
 297	int err;
 298
 299	if (idx >= queues->nr_queues) {
 300		err = auxtrace_queues__grow(queues, idx + 1);
 301		if (err)
 302			return err;
 303	}
 304
 305	queue = &queues->queue_array[idx];
 306
 307	if (!queue->set) {
 308		queue->set = true;
 309		queue->tid = buffer->tid;
 310		queue->cpu = buffer->cpu.cpu;
 
 
 
 
 311	}
 312
 313	buffer->buffer_nr = queues->next_buffer_nr++;
 314
 315	list_add_tail(&buffer->list, &queue->head);
 316
 317	queues->new_data = true;
 318	queues->populated = true;
 319
 320	return 0;
 321}
 322
 323/* Limit buffers to 32MiB on 32-bit */
 324#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
 325
 326static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
 327					 unsigned int idx,
 328					 struct auxtrace_buffer *buffer)
 329{
 330	u64 sz = buffer->size;
 331	bool consecutive = false;
 332	struct auxtrace_buffer *b;
 333	int err;
 334
 335	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
 336		b = memdup(buffer, sizeof(struct auxtrace_buffer));
 337		if (!b)
 338			return -ENOMEM;
 339		b->size = BUFFER_LIMIT_FOR_32_BIT;
 340		b->consecutive = consecutive;
 341		err = auxtrace_queues__queue_buffer(queues, idx, b);
 342		if (err) {
 343			auxtrace_buffer__free(b);
 344			return err;
 345		}
 346		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
 347		sz -= BUFFER_LIMIT_FOR_32_BIT;
 348		consecutive = true;
 349	}
 350
 351	buffer->size = sz;
 352	buffer->consecutive = consecutive;
 353
 354	return 0;
 355}
 356
 357static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
 358{
 359	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
 360
 361	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
 362}
 363
 364static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
 365				       struct perf_session *session,
 366				       unsigned int idx,
 367				       struct auxtrace_buffer *buffer,
 368				       struct auxtrace_buffer **buffer_ptr)
 369{
 370	int err = -ENOMEM;
 371
 372	if (filter_cpu(session, buffer->cpu))
 373		return 0;
 374
 375	buffer = memdup(buffer, sizeof(*buffer));
 376	if (!buffer)
 377		return -ENOMEM;
 378
 379	if (session->one_mmap) {
 380		buffer->data = buffer->data_offset - session->one_mmap_offset +
 381			       session->one_mmap_addr;
 382	} else if (perf_data__is_pipe(session->data)) {
 383		buffer->data = auxtrace_copy_data(buffer->size, session);
 384		if (!buffer->data)
 385			goto out_free;
 386		buffer->data_needs_freeing = true;
 387	} else if (BITS_PER_LONG == 32 &&
 388		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
 389		err = auxtrace_queues__split_buffer(queues, idx, buffer);
 390		if (err)
 391			goto out_free;
 392	}
 393
 394	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
 395	if (err)
 396		goto out_free;
 397
 398	/* FIXME: Doesn't work for split buffer */
 399	if (buffer_ptr)
 400		*buffer_ptr = buffer;
 401
 402	return 0;
 403
 404out_free:
 405	auxtrace_buffer__free(buffer);
 406	return err;
 407}
 408
 409int auxtrace_queues__add_event(struct auxtrace_queues *queues,
 410			       struct perf_session *session,
 411			       union perf_event *event, off_t data_offset,
 412			       struct auxtrace_buffer **buffer_ptr)
 413{
 414	struct auxtrace_buffer buffer = {
 415		.pid = -1,
 416		.tid = event->auxtrace.tid,
 417		.cpu = { event->auxtrace.cpu },
 418		.data_offset = data_offset,
 419		.offset = event->auxtrace.offset,
 420		.reference = event->auxtrace.reference,
 421		.size = event->auxtrace.size,
 422	};
 423	unsigned int idx = event->auxtrace.idx;
 424
 425	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
 426					   buffer_ptr);
 427}
 428
 429static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
 430					      struct perf_session *session,
 431					      off_t file_offset, size_t sz)
 432{
 433	union perf_event *event;
 434	int err;
 435	char buf[PERF_SAMPLE_MAX_SIZE];
 436
 437	err = perf_session__peek_event(session, file_offset, buf,
 438				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
 439	if (err)
 440		return err;
 441
 442	if (event->header.type == PERF_RECORD_AUXTRACE) {
 443		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
 444		    event->header.size != sz) {
 445			err = -EINVAL;
 446			goto out;
 447		}
 448		file_offset += event->header.size;
 449		err = auxtrace_queues__add_event(queues, session, event,
 450						 file_offset, NULL);
 451	}
 452out:
 453	return err;
 454}
 455
 456void auxtrace_queues__free(struct auxtrace_queues *queues)
 457{
 458	unsigned int i;
 459
 460	for (i = 0; i < queues->nr_queues; i++) {
 461		while (!list_empty(&queues->queue_array[i].head)) {
 462			struct auxtrace_buffer *buffer;
 463
 464			buffer = list_entry(queues->queue_array[i].head.next,
 465					    struct auxtrace_buffer, list);
 466			list_del_init(&buffer->list);
 467			auxtrace_buffer__free(buffer);
 468		}
 469	}
 470
 471	zfree(&queues->queue_array);
 472	queues->nr_queues = 0;
 473}
 474
 475static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
 476			     unsigned int pos, unsigned int queue_nr,
 477			     u64 ordinal)
 478{
 479	unsigned int parent;
 480
 481	while (pos) {
 482		parent = (pos - 1) >> 1;
 483		if (heap_array[parent].ordinal <= ordinal)
 484			break;
 485		heap_array[pos] = heap_array[parent];
 486		pos = parent;
 487	}
 488	heap_array[pos].queue_nr = queue_nr;
 489	heap_array[pos].ordinal = ordinal;
 490}
 491
 492int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
 493		       u64 ordinal)
 494{
 495	struct auxtrace_heap_item *heap_array;
 496
 497	if (queue_nr >= heap->heap_sz) {
 498		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
 499
 500		while (heap_sz <= queue_nr)
 501			heap_sz <<= 1;
 502		heap_array = realloc(heap->heap_array,
 503				     heap_sz * sizeof(struct auxtrace_heap_item));
 504		if (!heap_array)
 505			return -ENOMEM;
 506		heap->heap_array = heap_array;
 507		heap->heap_sz = heap_sz;
 508	}
 509
 510	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
 511
 512	return 0;
 513}
 514
 515void auxtrace_heap__free(struct auxtrace_heap *heap)
 516{
 517	zfree(&heap->heap_array);
 518	heap->heap_cnt = 0;
 519	heap->heap_sz = 0;
 520}
 521
 522void auxtrace_heap__pop(struct auxtrace_heap *heap)
 523{
 524	unsigned int pos, last, heap_cnt = heap->heap_cnt;
 525	struct auxtrace_heap_item *heap_array;
 526
 527	if (!heap_cnt)
 528		return;
 529
 530	heap->heap_cnt -= 1;
 531
 532	heap_array = heap->heap_array;
 533
 534	pos = 0;
 535	while (1) {
 536		unsigned int left, right;
 537
 538		left = (pos << 1) + 1;
 539		if (left >= heap_cnt)
 540			break;
 541		right = left + 1;
 542		if (right >= heap_cnt) {
 543			heap_array[pos] = heap_array[left];
 544			return;
 545		}
 546		if (heap_array[left].ordinal < heap_array[right].ordinal) {
 547			heap_array[pos] = heap_array[left];
 548			pos = left;
 549		} else {
 550			heap_array[pos] = heap_array[right];
 551			pos = right;
 552		}
 553	}
 554
 555	last = heap_cnt - 1;
 556	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
 557			 heap_array[last].ordinal);
 558}
 559
 560size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
 561				       struct evlist *evlist)
 562{
 563	if (itr)
 564		return itr->info_priv_size(itr, evlist);
 565	return 0;
 566}
 567
 568static int auxtrace_not_supported(void)
 569{
 570	pr_err("AUX area tracing is not supported on this architecture\n");
 571	return -EINVAL;
 572}
 573
 574int auxtrace_record__info_fill(struct auxtrace_record *itr,
 575			       struct perf_session *session,
 576			       struct perf_record_auxtrace_info *auxtrace_info,
 577			       size_t priv_size)
 578{
 579	if (itr)
 580		return itr->info_fill(itr, session, auxtrace_info, priv_size);
 581	return auxtrace_not_supported();
 582}
 583
 584void auxtrace_record__free(struct auxtrace_record *itr)
 585{
 586	if (itr)
 587		itr->free(itr);
 588}
 589
 590int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
 591{
 592	if (itr && itr->snapshot_start)
 593		return itr->snapshot_start(itr);
 594	return 0;
 595}
 596
 597int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
 598{
 599	if (!on_exit && itr && itr->snapshot_finish)
 600		return itr->snapshot_finish(itr);
 601	return 0;
 602}
 603
 604int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
 605				   struct auxtrace_mmap *mm,
 606				   unsigned char *data, u64 *head, u64 *old)
 607{
 608	if (itr && itr->find_snapshot)
 609		return itr->find_snapshot(itr, idx, mm, data, head, old);
 610	return 0;
 611}
 612
 613int auxtrace_record__options(struct auxtrace_record *itr,
 614			     struct evlist *evlist,
 615			     struct record_opts *opts)
 616{
 617	if (itr) {
 618		itr->evlist = evlist;
 619		return itr->recording_options(itr, evlist, opts);
 620	}
 621	return 0;
 622}
 623
 624u64 auxtrace_record__reference(struct auxtrace_record *itr)
 625{
 626	if (itr)
 627		return itr->reference(itr);
 628	return 0;
 629}
 630
 631int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
 632				    struct record_opts *opts, const char *str)
 633{
 634	if (!str)
 635		return 0;
 636
 637	/* PMU-agnostic options */
 638	switch (*str) {
 639	case 'e':
 640		opts->auxtrace_snapshot_on_exit = true;
 641		str++;
 642		break;
 643	default:
 644		break;
 645	}
 646
 647	if (itr && itr->parse_snapshot_options)
 648		return itr->parse_snapshot_options(itr, opts, str);
 649
 650	pr_err("No AUX area tracing to snapshot\n");
 651	return -EINVAL;
 652}
 653
 654static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
 655{
 656	bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
 657
 658	if (per_cpu_mmaps) {
 659		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
 660		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
 661
 662		if (cpu_map_idx == -1)
 663			return -EINVAL;
 664		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
 665	}
 666
 667	return perf_evsel__enable_thread(&evsel->core, idx);
 668}
 669
 670int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
 671{
 672	struct evsel *evsel;
 673
 674	if (!itr->evlist)
 675		return -EINVAL;
 676
 677	evlist__for_each_entry(itr->evlist, evsel) {
 678		if (evsel__is_aux_event(evsel)) {
 679			if (evsel->disabled)
 680				return 0;
 681			return evlist__enable_event_idx(itr->evlist, evsel, idx);
 682		}
 683	}
 684	return -EINVAL;
 685}
 686
 687/*
 688 * Event record size is 16-bit which results in a maximum size of about 64KiB.
 689 * Allow about 4KiB for the rest of the sample record, to give a maximum
 690 * AUX area sample size of 60KiB.
 691 */
 692#define MAX_AUX_SAMPLE_SIZE (60 * 1024)
 693
 694/* Arbitrary default size if no other default provided */
 695#define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
 696
 697static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
 698					     struct record_opts *opts)
 699{
 700	struct evsel *evsel;
 701	bool has_aux_leader = false;
 702	u32 sz;
 703
 704	evlist__for_each_entry(evlist, evsel) {
 705		sz = evsel->core.attr.aux_sample_size;
 706		if (evsel__is_group_leader(evsel)) {
 707			has_aux_leader = evsel__is_aux_event(evsel);
 708			if (sz) {
 709				if (has_aux_leader)
 710					pr_err("Cannot add AUX area sampling to an AUX area event\n");
 711				else
 712					pr_err("Cannot add AUX area sampling to a group leader\n");
 713				return -EINVAL;
 714			}
 715		}
 716		if (sz > MAX_AUX_SAMPLE_SIZE) {
 717			pr_err("AUX area sample size %u too big, max. %d\n",
 718			       sz, MAX_AUX_SAMPLE_SIZE);
 719			return -EINVAL;
 720		}
 721		if (sz) {
 722			if (!has_aux_leader) {
 723				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
 724				return -EINVAL;
 725			}
 726			evsel__set_sample_bit(evsel, AUX);
 727			opts->auxtrace_sample_mode = true;
 728		} else {
 729			evsel__reset_sample_bit(evsel, AUX);
 730		}
 731	}
 732
 733	if (!opts->auxtrace_sample_mode) {
 734		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
 735		return -EINVAL;
 736	}
 737
 738	if (!perf_can_aux_sample()) {
 739		pr_err("AUX area sampling is not supported by kernel\n");
 740		return -EINVAL;
 741	}
 742
 743	return 0;
 744}
 745
 746int auxtrace_parse_sample_options(struct auxtrace_record *itr,
 747				  struct evlist *evlist,
 748				  struct record_opts *opts, const char *str)
 749{
 750	struct evsel_config_term *term;
 751	struct evsel *aux_evsel;
 752	bool has_aux_sample_size = false;
 753	bool has_aux_leader = false;
 754	struct evsel *evsel;
 755	char *endptr;
 756	unsigned long sz;
 757
 758	if (!str)
 759		goto no_opt;
 760
 761	if (!itr) {
 762		pr_err("No AUX area event to sample\n");
 763		return -EINVAL;
 764	}
 765
 766	sz = strtoul(str, &endptr, 0);
 767	if (*endptr || sz > UINT_MAX) {
 768		pr_err("Bad AUX area sampling option: '%s'\n", str);
 769		return -EINVAL;
 770	}
 771
 772	if (!sz)
 773		sz = itr->default_aux_sample_size;
 774
 775	if (!sz)
 776		sz = DEFAULT_AUX_SAMPLE_SIZE;
 777
 778	/* Set aux_sample_size based on --aux-sample option */
 779	evlist__for_each_entry(evlist, evsel) {
 780		if (evsel__is_group_leader(evsel)) {
 781			has_aux_leader = evsel__is_aux_event(evsel);
 782		} else if (has_aux_leader) {
 783			evsel->core.attr.aux_sample_size = sz;
 784		}
 785	}
 786no_opt:
 787	aux_evsel = NULL;
 788	/* Override with aux_sample_size from config term */
 789	evlist__for_each_entry(evlist, evsel) {
 790		if (evsel__is_aux_event(evsel))
 791			aux_evsel = evsel;
 792		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
 793		if (term) {
 794			has_aux_sample_size = true;
 795			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
 796			/* If possible, group with the AUX event */
 797			if (aux_evsel && evsel->core.attr.aux_sample_size)
 798				evlist__regroup(evlist, aux_evsel, evsel);
 799		}
 800	}
 801
 802	if (!str && !has_aux_sample_size)
 803		return 0;
 804
 805	if (!itr) {
 806		pr_err("No AUX area event to sample\n");
 807		return -EINVAL;
 808	}
 809
 810	return auxtrace_validate_aux_sample_size(evlist, opts);
 811}
 812
 813void auxtrace_regroup_aux_output(struct evlist *evlist)
 814{
 815	struct evsel *evsel, *aux_evsel = NULL;
 816	struct evsel_config_term *term;
 817
 818	evlist__for_each_entry(evlist, evsel) {
 819		if (evsel__is_aux_event(evsel))
 820			aux_evsel = evsel;
 821		term = evsel__get_config_term(evsel, AUX_OUTPUT);
 822		/* If possible, group with the AUX event */
 823		if (term && aux_evsel)
 824			evlist__regroup(evlist, aux_evsel, evsel);
 825	}
 826}
 827
 828struct auxtrace_record *__weak
 829auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
 830{
 831	*err = 0;
 832	return NULL;
 833}
 834
 835static int auxtrace_index__alloc(struct list_head *head)
 836{
 837	struct auxtrace_index *auxtrace_index;
 838
 839	auxtrace_index = malloc(sizeof(struct auxtrace_index));
 840	if (!auxtrace_index)
 841		return -ENOMEM;
 842
 843	auxtrace_index->nr = 0;
 844	INIT_LIST_HEAD(&auxtrace_index->list);
 845
 846	list_add_tail(&auxtrace_index->list, head);
 847
 848	return 0;
 849}
 850
 851void auxtrace_index__free(struct list_head *head)
 852{
 853	struct auxtrace_index *auxtrace_index, *n;
 854
 855	list_for_each_entry_safe(auxtrace_index, n, head, list) {
 856		list_del_init(&auxtrace_index->list);
 857		free(auxtrace_index);
 858	}
 859}
 860
 861static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
 862{
 863	struct auxtrace_index *auxtrace_index;
 864	int err;
 865
 866	if (list_empty(head)) {
 867		err = auxtrace_index__alloc(head);
 868		if (err)
 869			return NULL;
 870	}
 871
 872	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
 873
 874	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
 875		err = auxtrace_index__alloc(head);
 876		if (err)
 877			return NULL;
 878		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
 879					    list);
 880	}
 881
 882	return auxtrace_index;
 883}
 884
 885int auxtrace_index__auxtrace_event(struct list_head *head,
 886				   union perf_event *event, off_t file_offset)
 887{
 888	struct auxtrace_index *auxtrace_index;
 889	size_t nr;
 890
 891	auxtrace_index = auxtrace_index__last(head);
 892	if (!auxtrace_index)
 893		return -ENOMEM;
 894
 895	nr = auxtrace_index->nr;
 896	auxtrace_index->entries[nr].file_offset = file_offset;
 897	auxtrace_index->entries[nr].sz = event->header.size;
 898	auxtrace_index->nr += 1;
 899
 900	return 0;
 901}
 902
 903static int auxtrace_index__do_write(int fd,
 904				    struct auxtrace_index *auxtrace_index)
 905{
 906	struct auxtrace_index_entry ent;
 907	size_t i;
 908
 909	for (i = 0; i < auxtrace_index->nr; i++) {
 910		ent.file_offset = auxtrace_index->entries[i].file_offset;
 911		ent.sz = auxtrace_index->entries[i].sz;
 912		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
 913			return -errno;
 914	}
 915	return 0;
 916}
 917
 918int auxtrace_index__write(int fd, struct list_head *head)
 919{
 920	struct auxtrace_index *auxtrace_index;
 921	u64 total = 0;
 922	int err;
 923
 924	list_for_each_entry(auxtrace_index, head, list)
 925		total += auxtrace_index->nr;
 926
 927	if (writen(fd, &total, sizeof(total)) != sizeof(total))
 928		return -errno;
 929
 930	list_for_each_entry(auxtrace_index, head, list) {
 931		err = auxtrace_index__do_write(fd, auxtrace_index);
 932		if (err)
 933			return err;
 934	}
 935
 936	return 0;
 937}
 938
 939static int auxtrace_index__process_entry(int fd, struct list_head *head,
 940					 bool needs_swap)
 941{
 942	struct auxtrace_index *auxtrace_index;
 943	struct auxtrace_index_entry ent;
 944	size_t nr;
 945
 946	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
 947		return -1;
 948
 949	auxtrace_index = auxtrace_index__last(head);
 950	if (!auxtrace_index)
 951		return -1;
 952
 953	nr = auxtrace_index->nr;
 954	if (needs_swap) {
 955		auxtrace_index->entries[nr].file_offset =
 956						bswap_64(ent.file_offset);
 957		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
 958	} else {
 959		auxtrace_index->entries[nr].file_offset = ent.file_offset;
 960		auxtrace_index->entries[nr].sz = ent.sz;
 961	}
 962
 963	auxtrace_index->nr = nr + 1;
 964
 965	return 0;
 966}
 967
 968int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
 969			    bool needs_swap)
 970{
 971	struct list_head *head = &session->auxtrace_index;
 972	u64 nr;
 973
 974	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
 975		return -1;
 976
 977	if (needs_swap)
 978		nr = bswap_64(nr);
 979
 980	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
 981		return -1;
 982
 983	while (nr--) {
 984		int err;
 985
 986		err = auxtrace_index__process_entry(fd, head, needs_swap);
 987		if (err)
 988			return -1;
 989	}
 990
 991	return 0;
 992}
 993
 994static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
 995						struct perf_session *session,
 996						struct auxtrace_index_entry *ent)
 997{
 998	return auxtrace_queues__add_indexed_event(queues, session,
 999						  ent->file_offset, ent->sz);
1000}
1001
1002int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1003				   struct perf_session *session)
1004{
1005	struct auxtrace_index *auxtrace_index;
1006	struct auxtrace_index_entry *ent;
1007	size_t i;
1008	int err;
1009
1010	if (auxtrace__dont_decode(session))
1011		return 0;
1012
1013	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1014		for (i = 0; i < auxtrace_index->nr; i++) {
1015			ent = &auxtrace_index->entries[i];
1016			err = auxtrace_queues__process_index_entry(queues,
1017								   session,
1018								   ent);
1019			if (err)
1020				return err;
1021		}
1022	}
1023	return 0;
1024}
1025
1026struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1027					      struct auxtrace_buffer *buffer)
1028{
1029	if (buffer) {
1030		if (list_is_last(&buffer->list, &queue->head))
1031			return NULL;
1032		return list_entry(buffer->list.next, struct auxtrace_buffer,
1033				  list);
1034	} else {
1035		if (list_empty(&queue->head))
1036			return NULL;
1037		return list_entry(queue->head.next, struct auxtrace_buffer,
1038				  list);
1039	}
1040}
1041
1042struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1043						     struct perf_sample *sample,
1044						     struct perf_session *session)
1045{
1046	struct perf_sample_id *sid;
1047	unsigned int idx;
1048	u64 id;
1049
1050	id = sample->id;
1051	if (!id)
1052		return NULL;
1053
1054	sid = evlist__id2sid(session->evlist, id);
1055	if (!sid)
1056		return NULL;
1057
1058	idx = sid->idx;
1059
1060	if (idx >= queues->nr_queues)
1061		return NULL;
1062
1063	return &queues->queue_array[idx];
1064}
1065
1066int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1067				struct perf_session *session,
1068				struct perf_sample *sample, u64 data_offset,
1069				u64 reference)
1070{
1071	struct auxtrace_buffer buffer = {
1072		.pid = -1,
1073		.data_offset = data_offset,
1074		.reference = reference,
1075		.size = sample->aux_sample.size,
1076	};
1077	struct perf_sample_id *sid;
1078	u64 id = sample->id;
1079	unsigned int idx;
1080
1081	if (!id)
1082		return -EINVAL;
1083
1084	sid = evlist__id2sid(session->evlist, id);
1085	if (!sid)
1086		return -ENOENT;
1087
1088	idx = sid->idx;
1089	buffer.tid = sid->tid;
1090	buffer.cpu = sid->cpu;
1091
1092	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1093}
1094
1095struct queue_data {
1096	bool samples;
1097	bool events;
1098};
1099
1100static int auxtrace_queue_data_cb(struct perf_session *session,
1101				  union perf_event *event, u64 offset,
1102				  void *data)
1103{
1104	struct queue_data *qd = data;
1105	struct perf_sample sample;
1106	int err;
1107
1108	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1109		if (event->header.size < sizeof(struct perf_record_auxtrace))
1110			return -EINVAL;
1111		offset += event->header.size;
1112		return session->auxtrace->queue_data(session, NULL, event,
1113						     offset);
1114	}
1115
1116	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1117		return 0;
1118
1119	err = evlist__parse_sample(session->evlist, event, &sample);
1120	if (err)
1121		return err;
1122
1123	if (!sample.aux_sample.size)
1124		return 0;
1125
1126	offset += sample.aux_sample.data - (void *)event;
1127
1128	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1129}
1130
1131int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1132{
1133	struct queue_data qd = {
1134		.samples = samples,
1135		.events = events,
1136	};
1137
1138	if (auxtrace__dont_decode(session))
1139		return 0;
1140
1141	if (perf_data__is_pipe(session->data))
1142		return 0;
1143
1144	if (!session->auxtrace || !session->auxtrace->queue_data)
1145		return -EINVAL;
1146
1147	return perf_session__peek_events(session, session->header.data_offset,
1148					 session->header.data_size,
1149					 auxtrace_queue_data_cb, &qd);
1150}
1151
1152void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1153{
1154	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1155	size_t adj = buffer->data_offset & (page_size - 1);
1156	size_t size = buffer->size + adj;
1157	off_t file_offset = buffer->data_offset - adj;
1158	void *addr;
1159
1160	if (buffer->data)
1161		return buffer->data;
1162
1163	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1164	if (addr == MAP_FAILED)
1165		return NULL;
1166
1167	buffer->mmap_addr = addr;
1168	buffer->mmap_size = size;
1169
1170	buffer->data = addr + adj;
1171
1172	return buffer->data;
1173}
1174
1175void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1176{
1177	if (!buffer->data || !buffer->mmap_addr)
1178		return;
1179	munmap(buffer->mmap_addr, buffer->mmap_size);
1180	buffer->mmap_addr = NULL;
1181	buffer->mmap_size = 0;
1182	buffer->data = NULL;
1183	buffer->use_data = NULL;
1184}
1185
1186void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1187{
1188	auxtrace_buffer__put_data(buffer);
1189	if (buffer->data_needs_freeing) {
1190		buffer->data_needs_freeing = false;
1191		zfree(&buffer->data);
1192		buffer->use_data = NULL;
1193		buffer->size = 0;
1194	}
1195}
1196
1197void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1198{
1199	auxtrace_buffer__drop_data(buffer);
1200	free(buffer);
1201}
1202
1203void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1204				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1205				const char *msg, u64 timestamp,
1206				pid_t machine_pid, int vcpu)
1207{
1208	size_t size;
1209
1210	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1211
1212	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1213	auxtrace_error->type = type;
1214	auxtrace_error->code = code;
1215	auxtrace_error->cpu = cpu;
1216	auxtrace_error->pid = pid;
1217	auxtrace_error->tid = tid;
1218	auxtrace_error->fmt = 1;
1219	auxtrace_error->ip = ip;
1220	auxtrace_error->time = timestamp;
1221	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1222	if (machine_pid) {
1223		auxtrace_error->fmt = 2;
1224		auxtrace_error->machine_pid = machine_pid;
1225		auxtrace_error->vcpu = vcpu;
1226		size = sizeof(*auxtrace_error);
1227	} else {
1228		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1229		       strlen(auxtrace_error->msg) + 1;
1230	}
1231	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1232}
1233
1234void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1235			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1236			  const char *msg, u64 timestamp)
1237{
1238	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1239				   ip, msg, timestamp, 0, -1);
1240}
1241
1242int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1243					 const struct perf_tool *tool,
1244					 struct perf_session *session,
1245					 perf_event__handler_t process)
1246{
1247	union perf_event *ev;
1248	size_t priv_size;
1249	int err;
1250
1251	pr_debug2("Synthesizing auxtrace information\n");
1252	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1253	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1254	if (!ev)
1255		return -ENOMEM;
1256
1257	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1258	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1259					priv_size;
1260	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1261					 priv_size);
1262	if (err)
1263		goto out_free;
1264
1265	err = process(tool, ev, NULL, NULL);
1266out_free:
1267	free(ev);
1268	return err;
1269}
1270
1271static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1272{
1273	struct evsel *new_leader = NULL;
1274	struct evsel *evsel;
1275
1276	/* Find new leader for the group */
1277	evlist__for_each_entry(evlist, evsel) {
1278		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1279			continue;
1280		if (!new_leader)
1281			new_leader = evsel;
1282		evsel__set_leader(evsel, new_leader);
1283	}
1284
1285	/* Update group information */
1286	if (new_leader) {
1287		zfree(&new_leader->group_name);
1288		new_leader->group_name = leader->group_name;
1289		leader->group_name = NULL;
1290
1291		new_leader->core.nr_members = leader->core.nr_members - 1;
1292		leader->core.nr_members = 1;
1293	}
1294}
1295
1296static void unleader_auxtrace(struct perf_session *session)
1297{
1298	struct evsel *evsel;
1299
1300	evlist__for_each_entry(session->evlist, evsel) {
1301		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1302		    evsel__is_group_leader(evsel)) {
1303			unleader_evsel(session->evlist, evsel);
1304		}
1305	}
1306}
1307
1308int perf_event__process_auxtrace_info(struct perf_session *session,
1309				      union perf_event *event)
1310{
1311	enum auxtrace_type type = event->auxtrace_info.type;
1312	int err;
1313
1314	if (dump_trace)
1315		fprintf(stdout, " type: %u\n", type);
1316
1317	switch (type) {
1318	case PERF_AUXTRACE_INTEL_PT:
1319		err = intel_pt_process_auxtrace_info(event, session);
1320		break;
1321	case PERF_AUXTRACE_INTEL_BTS:
1322		err = intel_bts_process_auxtrace_info(event, session);
1323		break;
1324	case PERF_AUXTRACE_ARM_SPE:
1325		err = arm_spe_process_auxtrace_info(event, session);
1326		break;
1327	case PERF_AUXTRACE_CS_ETM:
1328		err = cs_etm__process_auxtrace_info(event, session);
1329		break;
1330	case PERF_AUXTRACE_S390_CPUMSF:
1331		err = s390_cpumsf_process_auxtrace_info(event, session);
1332		break;
1333	case PERF_AUXTRACE_HISI_PTT:
1334		err = hisi_ptt_process_auxtrace_info(event, session);
1335		break;
1336	case PERF_AUXTRACE_UNKNOWN:
1337	default:
1338		return -EINVAL;
1339	}
1340
1341	if (err)
1342		return err;
1343
1344	unleader_auxtrace(session);
1345
1346	return 0;
1347}
1348
1349s64 perf_event__process_auxtrace(struct perf_session *session,
1350				 union perf_event *event)
1351{
1352	s64 err;
1353
1354	if (dump_trace)
1355		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1356			event->auxtrace.size, event->auxtrace.offset,
1357			event->auxtrace.reference, event->auxtrace.idx,
1358			event->auxtrace.tid, event->auxtrace.cpu);
1359
1360	if (auxtrace__dont_decode(session))
1361		return event->auxtrace.size;
1362
1363	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1364		return -EINVAL;
1365
1366	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1367	if (err < 0)
1368		return err;
1369
1370	return event->auxtrace.size;
1371}
1372
1373#define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1374#define PERF_ITRACE_DEFAULT_PERIOD		100000
1375#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1376#define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1377#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1378#define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1379
1380void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1381				    bool no_sample)
1382{
1383	synth_opts->branches = true;
1384	synth_opts->transactions = true;
1385	synth_opts->ptwrites = true;
1386	synth_opts->pwr_events = true;
1387	synth_opts->other_events = true;
1388	synth_opts->intr_events = true;
1389	synth_opts->errors = true;
1390	synth_opts->flc = true;
1391	synth_opts->llc = true;
1392	synth_opts->tlb = true;
1393	synth_opts->mem = true;
1394	synth_opts->remote_access = true;
1395
1396	if (no_sample) {
1397		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1398		synth_opts->period = 1;
1399		synth_opts->calls = true;
1400	} else {
1401		synth_opts->instructions = true;
1402		synth_opts->cycles = true;
1403		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1404		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1405	}
1406	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1407	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1408	synth_opts->initial_skip = 0;
1409}
1410
1411static int get_flag(const char **ptr, unsigned int *flags)
1412{
1413	while (1) {
1414		char c = **ptr;
1415
1416		if (c >= 'a' && c <= 'z') {
1417			*flags |= 1 << (c - 'a');
1418			++*ptr;
1419			return 0;
1420		} else if (c == ' ') {
1421			++*ptr;
1422			continue;
1423		} else {
1424			return -1;
1425		}
1426	}
1427}
1428
1429static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1430{
1431	while (1) {
1432		switch (**ptr) {
1433		case '+':
1434			++*ptr;
1435			if (get_flag(ptr, plus_flags))
1436				return -1;
1437			break;
1438		case '-':
1439			++*ptr;
1440			if (get_flag(ptr, minus_flags))
1441				return -1;
1442			break;
1443		case ' ':
1444			++*ptr;
1445			break;
1446		default:
1447			return 0;
1448		}
1449	}
1450}
1451
1452#define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1453
1454static unsigned int itrace_log_on_error_size(void)
1455{
1456	unsigned int sz = 0;
1457
1458	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1459	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1460}
1461
1462/*
1463 * Please check tools/perf/Documentation/perf-script.txt for information
1464 * about the options parsed here, which is introduced after this cset,
1465 * when support in 'perf script' for these options is introduced.
1466 */
1467int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1468			       const char *str, int unset)
1469{
 
1470	const char *p;
1471	char *endptr;
1472	bool period_type_set = false;
1473	bool period_set = false;
1474	bool iy = false;
1475
1476	synth_opts->set = true;
1477
1478	if (unset) {
1479		synth_opts->dont_decode = true;
1480		return 0;
1481	}
1482
1483	if (!str) {
1484		itrace_synth_opts__set_default(synth_opts,
1485					       synth_opts->default_no_sample);
1486		return 0;
1487	}
1488
1489	for (p = str; *p;) {
1490		switch (*p++) {
1491		case 'i':
1492		case 'y':
1493			iy = true;
1494			if (p[-1] == 'y')
1495				synth_opts->cycles = true;
1496			else
1497				synth_opts->instructions = true;
1498			while (*p == ' ' || *p == ',')
1499				p += 1;
1500			if (isdigit(*p)) {
1501				synth_opts->period = strtoull(p, &endptr, 10);
1502				period_set = true;
1503				p = endptr;
1504				while (*p == ' ' || *p == ',')
1505					p += 1;
1506				switch (*p++) {
1507				case 'i':
1508					synth_opts->period_type =
1509						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1510					period_type_set = true;
1511					break;
1512				case 't':
1513					synth_opts->period_type =
1514						PERF_ITRACE_PERIOD_TICKS;
1515					period_type_set = true;
1516					break;
1517				case 'm':
1518					synth_opts->period *= 1000;
1519					/* Fall through */
1520				case 'u':
1521					synth_opts->period *= 1000;
1522					/* Fall through */
1523				case 'n':
1524					if (*p++ != 's')
1525						goto out_err;
1526					synth_opts->period_type =
1527						PERF_ITRACE_PERIOD_NANOSECS;
1528					period_type_set = true;
1529					break;
1530				case '\0':
1531					goto out;
1532				default:
1533					goto out_err;
1534				}
1535			}
1536			break;
1537		case 'b':
1538			synth_opts->branches = true;
1539			break;
1540		case 'x':
1541			synth_opts->transactions = true;
1542			break;
1543		case 'w':
1544			synth_opts->ptwrites = true;
1545			break;
1546		case 'p':
1547			synth_opts->pwr_events = true;
1548			break;
1549		case 'o':
1550			synth_opts->other_events = true;
1551			break;
1552		case 'I':
1553			synth_opts->intr_events = true;
1554			break;
1555		case 'e':
1556			synth_opts->errors = true;
1557			if (get_flags(&p, &synth_opts->error_plus_flags,
1558				      &synth_opts->error_minus_flags))
1559				goto out_err;
1560			break;
1561		case 'd':
1562			synth_opts->log = true;
1563			if (get_flags(&p, &synth_opts->log_plus_flags,
1564				      &synth_opts->log_minus_flags))
1565				goto out_err;
1566			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1567				synth_opts->log_on_error_size = itrace_log_on_error_size();
1568			break;
1569		case 'c':
1570			synth_opts->branches = true;
1571			synth_opts->calls = true;
1572			break;
1573		case 'r':
1574			synth_opts->branches = true;
1575			synth_opts->returns = true;
1576			break;
1577		case 'G':
1578		case 'g':
1579			if (p[-1] == 'G')
1580				synth_opts->add_callchain = true;
1581			else
1582				synth_opts->callchain = true;
1583			synth_opts->callchain_sz =
1584					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1585			while (*p == ' ' || *p == ',')
1586				p += 1;
1587			if (isdigit(*p)) {
1588				unsigned int val;
1589
1590				val = strtoul(p, &endptr, 10);
1591				p = endptr;
1592				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1593					goto out_err;
1594				synth_opts->callchain_sz = val;
1595			}
1596			break;
1597		case 'L':
1598		case 'l':
1599			if (p[-1] == 'L')
1600				synth_opts->add_last_branch = true;
1601			else
1602				synth_opts->last_branch = true;
1603			synth_opts->last_branch_sz =
1604					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1605			while (*p == ' ' || *p == ',')
1606				p += 1;
1607			if (isdigit(*p)) {
1608				unsigned int val;
1609
1610				val = strtoul(p, &endptr, 10);
1611				p = endptr;
1612				if (!val ||
1613				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1614					goto out_err;
1615				synth_opts->last_branch_sz = val;
1616			}
1617			break;
1618		case 's':
1619			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1620			if (p == endptr)
1621				goto out_err;
1622			p = endptr;
1623			break;
1624		case 'f':
1625			synth_opts->flc = true;
1626			break;
1627		case 'm':
1628			synth_opts->llc = true;
1629			break;
1630		case 't':
1631			synth_opts->tlb = true;
1632			break;
1633		case 'a':
1634			synth_opts->remote_access = true;
1635			break;
1636		case 'M':
1637			synth_opts->mem = true;
1638			break;
1639		case 'q':
1640			synth_opts->quick += 1;
1641			break;
1642		case 'A':
1643			synth_opts->approx_ipc = true;
1644			break;
1645		case 'Z':
1646			synth_opts->timeless_decoding = true;
1647			break;
1648		case 'T':
1649			synth_opts->use_timestamp = true;
1650			break;
1651		case ' ':
1652		case ',':
1653			break;
1654		default:
1655			goto out_err;
1656		}
1657	}
1658out:
1659	if (iy) {
1660		if (!period_type_set)
1661			synth_opts->period_type =
1662					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1663		if (!period_set)
1664			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1665	}
1666
1667	return 0;
1668
1669out_err:
1670	pr_err("Bad Instruction Tracing options '%s'\n", str);
1671	return -EINVAL;
1672}
1673
1674int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1675{
1676	return itrace_do_parse_synth_opts(opt->value, str, unset);
1677}
1678
1679static const char * const auxtrace_error_type_name[] = {
1680	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1681};
1682
1683static const char *auxtrace_error_name(int type)
1684{
1685	const char *error_type_name = NULL;
1686
1687	if (type < PERF_AUXTRACE_ERROR_MAX)
1688		error_type_name = auxtrace_error_type_name[type];
1689	if (!error_type_name)
1690		error_type_name = "unknown AUX";
1691	return error_type_name;
1692}
1693
1694size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1695{
1696	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1697	unsigned long long nsecs = e->time;
1698	const char *msg = e->msg;
1699	int ret;
1700
1701	ret = fprintf(fp, " %s error type %u",
1702		      auxtrace_error_name(e->type), e->type);
1703
1704	if (e->fmt && nsecs) {
1705		unsigned long secs = nsecs / NSEC_PER_SEC;
1706
1707		nsecs -= secs * NSEC_PER_SEC;
1708		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1709	} else {
1710		ret += fprintf(fp, " time 0");
1711	}
1712
1713	if (!e->fmt)
1714		msg = (const char *)&e->time;
1715
1716	if (e->fmt >= 2 && e->machine_pid)
1717		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1718
1719	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1720		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1721	return ret;
1722}
1723
1724void perf_session__auxtrace_error_inc(struct perf_session *session,
1725				      union perf_event *event)
1726{
1727	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1728
1729	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1730		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1731}
1732
1733void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1734{
1735	int i;
1736
1737	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1738		if (!stats->nr_auxtrace_errors[i])
1739			continue;
1740		ui__warning("%u %s errors\n",
1741			    stats->nr_auxtrace_errors[i],
1742			    auxtrace_error_name(i));
1743	}
1744}
1745
1746int perf_event__process_auxtrace_error(struct perf_session *session,
1747				       union perf_event *event)
1748{
1749	if (auxtrace__dont_decode(session))
1750		return 0;
1751
1752	perf_event__fprintf_auxtrace_error(event, stdout);
1753	return 0;
1754}
1755
1756/*
1757 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1758 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1759 * the issues caused by the below sequence on multiple CPUs: when perf tool
1760 * accesses either the load operation or the store operation for 64-bit value,
1761 * on some architectures the operation is divided into two instructions, one
1762 * is for accessing the low 32-bit value and another is for the high 32-bit;
1763 * thus these two user operations can give the kernel chances to access the
1764 * 64-bit value, and thus leads to the unexpected load values.
1765 *
1766 *   kernel (64-bit)                        user (32-bit)
1767 *
1768 *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1769 *       STORE $aux_data      |       ,--->
1770 *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1771 *       STORE ->aux_head   --|-------`     smp_rmb()
1772 *   }                        |             LOAD $data
1773 *                            |             smp_mb()
1774 *                            |             STORE ->aux_tail_lo
1775 *                            `----------->
1776 *                                          STORE ->aux_tail_hi
1777 *
1778 * For this reason, it's impossible for the perf tool to work correctly when
1779 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1780 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1781 * the pointers can be increased monotonically, whatever the buffer size it is,
1782 * at the end the head and tail can be bigger than 4GB and carry out to the
1783 * high 32-bit.
1784 *
1785 * To mitigate the issues and improve the user experience, we can allow the
1786 * perf tool working in certain conditions and bail out with error if detect
1787 * any overflow cannot be handled.
1788 *
1789 * For reading the AUX head, it reads out the values for three times, and
1790 * compares the high 4 bytes of the values between the first time and the last
1791 * time, if there has no change for high 4 bytes injected by the kernel during
1792 * the user reading sequence, it's safe for use the second value.
1793 *
1794 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1795 * 32 bits, it means there have two store operations in user space and it cannot
1796 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1797 * the caller an overflow error has happened.
1798 */
1799u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1800{
1801	struct perf_event_mmap_page *pc = mm->userpg;
1802	u64 first, second, last;
1803	u64 mask = (u64)(UINT32_MAX) << 32;
1804
1805	do {
1806		first = READ_ONCE(pc->aux_head);
1807		/* Ensure all reads are done after we read the head */
1808		smp_rmb();
1809		second = READ_ONCE(pc->aux_head);
1810		/* Ensure all reads are done after we read the head */
1811		smp_rmb();
1812		last = READ_ONCE(pc->aux_head);
1813	} while ((first & mask) != (last & mask));
1814
1815	return second;
1816}
1817
1818int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1819{
1820	struct perf_event_mmap_page *pc = mm->userpg;
1821	u64 mask = (u64)(UINT32_MAX) << 32;
1822
1823	if (tail & mask)
1824		return -1;
1825
1826	/* Ensure all reads are done before we write the tail out */
1827	smp_mb();
1828	WRITE_ONCE(pc->aux_tail, tail);
1829	return 0;
1830}
1831
1832static int __auxtrace_mmap__read(struct mmap *map,
1833				 struct auxtrace_record *itr,
1834				 const struct perf_tool *tool, process_auxtrace_t fn,
1835				 bool snapshot, size_t snapshot_size)
1836{
1837	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1838	u64 head, old = mm->prev, offset, ref;
1839	unsigned char *data = mm->base;
1840	size_t size, head_off, old_off, len1, len2, padding;
1841	union perf_event ev;
1842	void *data1, *data2;
1843	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1844
1845	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1846
1847	if (snapshot &&
1848	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1849		return -1;
 
 
 
1850
1851	if (old == head)
1852		return 0;
1853
1854	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1855		  mm->idx, old, head, head - old);
1856
1857	if (mm->mask) {
1858		head_off = head & mm->mask;
1859		old_off = old & mm->mask;
1860	} else {
1861		head_off = head % mm->len;
1862		old_off = old % mm->len;
1863	}
1864
1865	if (head_off > old_off)
1866		size = head_off - old_off;
1867	else
1868		size = mm->len - (old_off - head_off);
1869
1870	if (snapshot && size > snapshot_size)
1871		size = snapshot_size;
1872
1873	ref = auxtrace_record__reference(itr);
1874
1875	if (head > old || size <= head || mm->mask) {
1876		offset = head - size;
1877	} else {
1878		/*
1879		 * When the buffer size is not a power of 2, 'head' wraps at the
1880		 * highest multiple of the buffer size, so we have to subtract
1881		 * the remainder here.
1882		 */
1883		u64 rem = (0ULL - mm->len) % mm->len;
1884
1885		offset = head - size - rem;
1886	}
1887
1888	if (size > head_off) {
1889		len1 = size - head_off;
1890		data1 = &data[mm->len - len1];
1891		len2 = head_off;
1892		data2 = &data[0];
1893	} else {
1894		len1 = size;
1895		data1 = &data[head_off - len1];
1896		len2 = 0;
1897		data2 = NULL;
1898	}
1899
1900	if (itr->alignment) {
1901		unsigned int unwanted = len1 % itr->alignment;
1902
1903		len1 -= unwanted;
1904		size -= unwanted;
1905	}
1906
1907	/* padding must be written by fn() e.g. record__process_auxtrace() */
1908	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1909	if (padding)
1910		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1911
1912	memset(&ev, 0, sizeof(ev));
1913	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1914	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1915	ev.auxtrace.size = size + padding;
1916	ev.auxtrace.offset = offset;
1917	ev.auxtrace.reference = ref;
1918	ev.auxtrace.idx = mm->idx;
1919	ev.auxtrace.tid = mm->tid;
1920	ev.auxtrace.cpu = mm->cpu;
1921
1922	if (fn(tool, map, &ev, data1, len1, data2, len2))
1923		return -1;
1924
1925	mm->prev = head;
1926
1927	if (!snapshot) {
1928		int err;
1929
1930		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1931		if (err < 0)
1932			return err;
1933
1934		if (itr->read_finish) {
1935			err = itr->read_finish(itr, mm->idx);
1936			if (err < 0)
1937				return err;
1938		}
1939	}
1940
1941	return 1;
1942}
1943
1944int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1945			const struct perf_tool *tool, process_auxtrace_t fn)
1946{
1947	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1948}
1949
1950int auxtrace_mmap__read_snapshot(struct mmap *map,
1951				 struct auxtrace_record *itr,
1952				 const struct perf_tool *tool, process_auxtrace_t fn,
1953				 size_t snapshot_size)
1954{
1955	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1956}
1957
1958/**
1959 * struct auxtrace_cache - hash table to implement a cache
1960 * @hashtable: the hashtable
1961 * @sz: hashtable size (number of hlists)
1962 * @entry_size: size of an entry
1963 * @limit: limit the number of entries to this maximum, when reached the cache
1964 *         is dropped and caching begins again with an empty cache
1965 * @cnt: current number of entries
1966 * @bits: hashtable size (@sz = 2^@bits)
1967 */
1968struct auxtrace_cache {
1969	struct hlist_head *hashtable;
1970	size_t sz;
1971	size_t entry_size;
1972	size_t limit;
1973	size_t cnt;
1974	unsigned int bits;
1975};
1976
1977struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1978					   unsigned int limit_percent)
1979{
1980	struct auxtrace_cache *c;
1981	struct hlist_head *ht;
1982	size_t sz, i;
1983
1984	c = zalloc(sizeof(struct auxtrace_cache));
1985	if (!c)
1986		return NULL;
1987
1988	sz = 1UL << bits;
1989
1990	ht = calloc(sz, sizeof(struct hlist_head));
1991	if (!ht)
1992		goto out_free;
1993
1994	for (i = 0; i < sz; i++)
1995		INIT_HLIST_HEAD(&ht[i]);
1996
1997	c->hashtable = ht;
1998	c->sz = sz;
1999	c->entry_size = entry_size;
2000	c->limit = (c->sz * limit_percent) / 100;
2001	c->bits = bits;
2002
2003	return c;
2004
2005out_free:
2006	free(c);
2007	return NULL;
2008}
2009
2010static void auxtrace_cache__drop(struct auxtrace_cache *c)
2011{
2012	struct auxtrace_cache_entry *entry;
2013	struct hlist_node *tmp;
2014	size_t i;
2015
2016	if (!c)
2017		return;
2018
2019	for (i = 0; i < c->sz; i++) {
2020		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2021			hlist_del(&entry->hash);
2022			auxtrace_cache__free_entry(c, entry);
2023		}
2024	}
2025
2026	c->cnt = 0;
2027}
2028
2029void auxtrace_cache__free(struct auxtrace_cache *c)
2030{
2031	if (!c)
2032		return;
2033
2034	auxtrace_cache__drop(c);
2035	zfree(&c->hashtable);
2036	free(c);
2037}
2038
2039void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2040{
2041	return malloc(c->entry_size);
2042}
2043
2044void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2045				void *entry)
2046{
2047	free(entry);
2048}
2049
2050int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2051			struct auxtrace_cache_entry *entry)
2052{
2053	if (c->limit && ++c->cnt > c->limit)
2054		auxtrace_cache__drop(c);
2055
2056	entry->key = key;
2057	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2058
2059	return 0;
2060}
2061
2062static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2063						       u32 key)
2064{
2065	struct auxtrace_cache_entry *entry;
2066	struct hlist_head *hlist;
2067	struct hlist_node *n;
2068
2069	if (!c)
2070		return NULL;
2071
2072	hlist = &c->hashtable[hash_32(key, c->bits)];
2073	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2074		if (entry->key == key) {
2075			hlist_del(&entry->hash);
2076			return entry;
2077		}
2078	}
2079
2080	return NULL;
2081}
2082
2083void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2084{
2085	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2086
2087	auxtrace_cache__free_entry(c, entry);
2088}
2089
2090void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2091{
2092	struct auxtrace_cache_entry *entry;
2093	struct hlist_head *hlist;
2094
2095	if (!c)
2096		return NULL;
2097
2098	hlist = &c->hashtable[hash_32(key, c->bits)];
2099	hlist_for_each_entry(entry, hlist, hash) {
2100		if (entry->key == key)
2101			return entry;
2102	}
2103
2104	return NULL;
2105}
2106
2107static void addr_filter__free_str(struct addr_filter *filt)
2108{
2109	zfree(&filt->str);
2110	filt->action   = NULL;
2111	filt->sym_from = NULL;
2112	filt->sym_to   = NULL;
2113	filt->filename = NULL;
2114}
2115
2116static struct addr_filter *addr_filter__new(void)
2117{
2118	struct addr_filter *filt = zalloc(sizeof(*filt));
2119
2120	if (filt)
2121		INIT_LIST_HEAD(&filt->list);
2122
2123	return filt;
2124}
2125
2126static void addr_filter__free(struct addr_filter *filt)
2127{
2128	if (filt)
2129		addr_filter__free_str(filt);
2130	free(filt);
2131}
2132
2133static void addr_filters__add(struct addr_filters *filts,
2134			      struct addr_filter *filt)
2135{
2136	list_add_tail(&filt->list, &filts->head);
2137	filts->cnt += 1;
2138}
2139
2140static void addr_filters__del(struct addr_filters *filts,
2141			      struct addr_filter *filt)
2142{
2143	list_del_init(&filt->list);
2144	filts->cnt -= 1;
2145}
2146
2147void addr_filters__init(struct addr_filters *filts)
2148{
2149	INIT_LIST_HEAD(&filts->head);
2150	filts->cnt = 0;
2151}
2152
2153void addr_filters__exit(struct addr_filters *filts)
2154{
2155	struct addr_filter *filt, *n;
2156
2157	list_for_each_entry_safe(filt, n, &filts->head, list) {
2158		addr_filters__del(filts, filt);
2159		addr_filter__free(filt);
2160	}
2161}
2162
2163static int parse_num_or_str(char **inp, u64 *num, const char **str,
2164			    const char *str_delim)
2165{
2166	*inp += strspn(*inp, " ");
2167
2168	if (isdigit(**inp)) {
2169		char *endptr;
2170
2171		if (!num)
2172			return -EINVAL;
2173		errno = 0;
2174		*num = strtoull(*inp, &endptr, 0);
2175		if (errno)
2176			return -errno;
2177		if (endptr == *inp)
2178			return -EINVAL;
2179		*inp = endptr;
2180	} else {
2181		size_t n;
2182
2183		if (!str)
2184			return -EINVAL;
2185		*inp += strspn(*inp, " ");
2186		*str = *inp;
2187		n = strcspn(*inp, str_delim);
2188		if (!n)
2189			return -EINVAL;
2190		*inp += n;
2191		if (**inp) {
2192			**inp = '\0';
2193			*inp += 1;
2194		}
2195	}
2196	return 0;
2197}
2198
2199static int parse_action(struct addr_filter *filt)
2200{
2201	if (!strcmp(filt->action, "filter")) {
2202		filt->start = true;
2203		filt->range = true;
2204	} else if (!strcmp(filt->action, "start")) {
2205		filt->start = true;
2206	} else if (!strcmp(filt->action, "stop")) {
2207		filt->start = false;
2208	} else if (!strcmp(filt->action, "tracestop")) {
2209		filt->start = false;
2210		filt->range = true;
2211		filt->action += 5; /* Change 'tracestop' to 'stop' */
2212	} else {
2213		return -EINVAL;
2214	}
2215	return 0;
2216}
2217
2218static int parse_sym_idx(char **inp, int *idx)
2219{
2220	*idx = -1;
2221
2222	*inp += strspn(*inp, " ");
2223
2224	if (**inp != '#')
2225		return 0;
2226
2227	*inp += 1;
2228
2229	if (**inp == 'g' || **inp == 'G') {
2230		*inp += 1;
2231		*idx = 0;
2232	} else {
2233		unsigned long num;
2234		char *endptr;
2235
2236		errno = 0;
2237		num = strtoul(*inp, &endptr, 0);
2238		if (errno)
2239			return -errno;
2240		if (endptr == *inp || num > INT_MAX)
2241			return -EINVAL;
2242		*inp = endptr;
2243		*idx = num;
2244	}
2245
2246	return 0;
2247}
2248
2249static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2250{
2251	int err = parse_num_or_str(inp, num, str, " ");
2252
2253	if (!err && *str)
2254		err = parse_sym_idx(inp, idx);
2255
2256	return err;
2257}
2258
2259static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2260{
2261	char *fstr;
2262	int err;
2263
2264	filt->str = fstr = strdup(*filter_inp);
2265	if (!fstr)
2266		return -ENOMEM;
2267
2268	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2269	if (err)
2270		goto out_err;
2271
2272	err = parse_action(filt);
2273	if (err)
2274		goto out_err;
2275
2276	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2277			      &filt->sym_from_idx);
2278	if (err)
2279		goto out_err;
2280
2281	fstr += strspn(fstr, " ");
2282
2283	if (*fstr == '/') {
2284		fstr += 1;
2285		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2286				      &filt->sym_to_idx);
2287		if (err)
2288			goto out_err;
2289		filt->range = true;
2290	}
2291
2292	fstr += strspn(fstr, " ");
2293
2294	if (*fstr == '@') {
2295		fstr += 1;
2296		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2297		if (err)
2298			goto out_err;
2299	}
2300
2301	fstr += strspn(fstr, " ,");
2302
2303	*filter_inp += fstr - filt->str;
2304
2305	return 0;
2306
2307out_err:
2308	addr_filter__free_str(filt);
2309
2310	return err;
2311}
2312
2313int addr_filters__parse_bare_filter(struct addr_filters *filts,
2314				    const char *filter)
2315{
2316	struct addr_filter *filt;
2317	const char *fstr = filter;
2318	int err;
2319
2320	while (*fstr) {
2321		filt = addr_filter__new();
2322		err = parse_one_filter(filt, &fstr);
2323		if (err) {
2324			addr_filter__free(filt);
2325			addr_filters__exit(filts);
2326			return err;
2327		}
2328		addr_filters__add(filts, filt);
2329	}
2330
2331	return 0;
2332}
2333
2334struct sym_args {
2335	const char	*name;
2336	u64		start;
2337	u64		size;
2338	int		idx;
2339	int		cnt;
2340	bool		started;
2341	bool		global;
2342	bool		selected;
2343	bool		duplicate;
2344	bool		near;
2345};
2346
2347static bool kern_sym_name_match(const char *kname, const char *name)
2348{
2349	size_t n = strlen(name);
2350
2351	return !strcmp(kname, name) ||
2352	       (!strncmp(kname, name, n) && kname[n] == '\t');
2353}
2354
2355static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2356{
2357	/* A function with the same name, and global or the n'th found or any */
2358	return kallsyms__is_function(type) &&
2359	       kern_sym_name_match(name, args->name) &&
2360	       ((args->global && isupper(type)) ||
2361		(args->selected && ++(args->cnt) == args->idx) ||
2362		(!args->global && !args->selected));
2363}
2364
2365static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2366{
2367	struct sym_args *args = arg;
2368
2369	if (args->started) {
2370		if (!args->size)
2371			args->size = start - args->start;
2372		if (args->selected) {
2373			if (args->size)
2374				return 1;
2375		} else if (kern_sym_match(args, name, type)) {
2376			args->duplicate = true;
2377			return 1;
2378		}
2379	} else if (kern_sym_match(args, name, type)) {
2380		args->started = true;
2381		args->start = start;
2382	}
2383
2384	return 0;
2385}
2386
2387static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2388{
2389	struct sym_args *args = arg;
2390
2391	if (kern_sym_match(args, name, type)) {
2392		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2393		       ++args->cnt, start, type, name);
2394		args->near = true;
2395	} else if (args->near) {
2396		args->near = false;
2397		pr_err("\t\twhich is near\t\t%s\n", name);
2398	}
2399
2400	return 0;
2401}
2402
2403static int sym_not_found_error(const char *sym_name, int idx)
2404{
2405	if (idx > 0) {
2406		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2407		       idx, sym_name);
2408	} else if (!idx) {
2409		pr_err("Global symbol '%s' not found.\n", sym_name);
2410	} else {
2411		pr_err("Symbol '%s' not found.\n", sym_name);
2412	}
2413	pr_err("Note that symbols must be functions.\n");
2414
2415	return -EINVAL;
2416}
2417
2418static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2419{
2420	struct sym_args args = {
2421		.name = sym_name,
2422		.idx = idx,
2423		.global = !idx,
2424		.selected = idx > 0,
2425	};
2426	int err;
2427
2428	*start = 0;
2429	*size = 0;
2430
2431	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2432	if (err < 0) {
2433		pr_err("Failed to parse /proc/kallsyms\n");
2434		return err;
2435	}
2436
2437	if (args.duplicate) {
2438		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2439		args.cnt = 0;
2440		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2441		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2442		       sym_name);
2443		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2444		return -EINVAL;
2445	}
2446
2447	if (!args.started) {
2448		pr_err("Kernel symbol lookup: ");
2449		return sym_not_found_error(sym_name, idx);
2450	}
2451
2452	*start = args.start;
2453	*size = args.size;
2454
2455	return 0;
2456}
2457
2458static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2459			       char type, u64 start)
2460{
2461	struct sym_args *args = arg;
2462	u64 size;
2463
2464	if (!kallsyms__is_function(type))
2465		return 0;
2466
2467	if (!args->started) {
2468		args->started = true;
2469		args->start = start;
2470	}
2471	/* Don't know exactly where the kernel ends, so we add a page */
2472	size = round_up(start, page_size) + page_size - args->start;
2473	if (size > args->size)
2474		args->size = size;
2475
2476	return 0;
2477}
2478
2479static int addr_filter__entire_kernel(struct addr_filter *filt)
2480{
2481	struct sym_args args = { .started = false };
2482	int err;
2483
2484	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2485	if (err < 0 || !args.started) {
2486		pr_err("Failed to parse /proc/kallsyms\n");
2487		return err;
2488	}
2489
2490	filt->addr = args.start;
2491	filt->size = args.size;
2492
2493	return 0;
2494}
2495
2496static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2497{
2498	if (start + size >= filt->addr)
2499		return 0;
2500
2501	if (filt->sym_from) {
2502		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2503		       filt->sym_to, start, filt->sym_from, filt->addr);
2504	} else {
2505		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2506		       filt->sym_to, start, filt->addr);
2507	}
2508
2509	return -EINVAL;
2510}
2511
2512static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2513{
2514	bool no_size = false;
2515	u64 start, size;
2516	int err;
2517
2518	if (symbol_conf.kptr_restrict) {
2519		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2520		return -EINVAL;
2521	}
2522
2523	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2524		return addr_filter__entire_kernel(filt);
2525
2526	if (filt->sym_from) {
2527		err = find_kern_sym(filt->sym_from, &start, &size,
2528				    filt->sym_from_idx);
2529		if (err)
2530			return err;
2531		filt->addr = start;
2532		if (filt->range && !filt->size && !filt->sym_to) {
2533			filt->size = size;
2534			no_size = !size;
2535		}
2536	}
2537
2538	if (filt->sym_to) {
2539		err = find_kern_sym(filt->sym_to, &start, &size,
2540				    filt->sym_to_idx);
2541		if (err)
2542			return err;
2543
2544		err = check_end_after_start(filt, start, size);
2545		if (err)
2546			return err;
2547		filt->size = start + size - filt->addr;
2548		no_size = !size;
2549	}
2550
2551	/* The very last symbol in kallsyms does not imply a particular size */
2552	if (no_size) {
2553		pr_err("Cannot determine size of symbol '%s'\n",
2554		       filt->sym_to ? filt->sym_to : filt->sym_from);
2555		return -EINVAL;
2556	}
2557
2558	return 0;
2559}
2560
2561static struct dso *load_dso(const char *name)
2562{
2563	struct map *map;
2564	struct dso *dso;
2565
2566	map = dso__new_map(name);
2567	if (!map)
2568		return NULL;
2569
2570	if (map__load(map) < 0)
2571		pr_err("File '%s' not found or has no symbols.\n", name);
2572
2573	dso = dso__get(map__dso(map));
2574
2575	map__put(map);
2576
2577	return dso;
2578}
2579
2580static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2581			  int idx)
2582{
2583	/* Same name, and global or the n'th found or any */
2584	return !arch__compare_symbol_names(name, sym->name) &&
2585	       ((!idx && sym->binding == STB_GLOBAL) ||
2586		(idx > 0 && ++*cnt == idx) ||
2587		idx < 0);
2588}
2589
2590static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2591{
2592	struct symbol *sym;
2593	bool near = false;
2594	int cnt = 0;
2595
2596	pr_err("Multiple symbols with name '%s'\n", sym_name);
2597
2598	sym = dso__first_symbol(dso);
2599	while (sym) {
2600		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2601			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2602			       ++cnt, sym->start,
2603			       sym->binding == STB_GLOBAL ? 'g' :
2604			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2605			       sym->name);
2606			near = true;
2607		} else if (near) {
2608			near = false;
2609			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2610		}
2611		sym = dso__next_symbol(sym);
2612	}
2613
2614	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2615	       sym_name);
2616	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2617}
2618
2619static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2620			u64 *size, int idx)
2621{
2622	struct symbol *sym;
2623	int cnt = 0;
2624
2625	*start = 0;
2626	*size = 0;
2627
2628	sym = dso__first_symbol(dso);
2629	while (sym) {
2630		if (*start) {
2631			if (!*size)
2632				*size = sym->start - *start;
2633			if (idx > 0) {
2634				if (*size)
2635					return 0;
2636			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2637				print_duplicate_syms(dso, sym_name);
2638				return -EINVAL;
2639			}
2640		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2641			*start = sym->start;
2642			*size = sym->end - sym->start;
2643		}
2644		sym = dso__next_symbol(sym);
2645	}
2646
2647	if (!*start)
2648		return sym_not_found_error(sym_name, idx);
2649
2650	return 0;
2651}
2652
2653static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2654{
2655	if (dso__data_file_size(dso, NULL)) {
2656		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2657		       filt->filename);
2658		return -EINVAL;
2659	}
2660
2661	filt->addr = 0;
2662	filt->size = dso__data(dso)->file_size;
2663
2664	return 0;
2665}
2666
2667static int addr_filter__resolve_syms(struct addr_filter *filt)
2668{
2669	u64 start, size;
2670	struct dso *dso;
2671	int err = 0;
2672
2673	if (!filt->sym_from && !filt->sym_to)
2674		return 0;
2675
2676	if (!filt->filename)
2677		return addr_filter__resolve_kernel_syms(filt);
2678
2679	dso = load_dso(filt->filename);
2680	if (!dso) {
2681		pr_err("Failed to load symbols from: %s\n", filt->filename);
2682		return -EINVAL;
2683	}
2684
2685	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2686		err = addr_filter__entire_dso(filt, dso);
2687		goto put_dso;
2688	}
2689
2690	if (filt->sym_from) {
2691		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2692				   filt->sym_from_idx);
2693		if (err)
2694			goto put_dso;
2695		filt->addr = start;
2696		if (filt->range && !filt->size && !filt->sym_to)
2697			filt->size = size;
2698	}
2699
2700	if (filt->sym_to) {
2701		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2702				   filt->sym_to_idx);
2703		if (err)
2704			goto put_dso;
2705
2706		err = check_end_after_start(filt, start, size);
2707		if (err)
2708			return err;
2709
2710		filt->size = start + size - filt->addr;
2711	}
2712
2713put_dso:
2714	dso__put(dso);
2715
2716	return err;
2717}
2718
2719static char *addr_filter__to_str(struct addr_filter *filt)
2720{
2721	char filename_buf[PATH_MAX];
2722	const char *at = "";
2723	const char *fn = "";
2724	char *filter;
2725	int err;
2726
2727	if (filt->filename) {
2728		at = "@";
2729		fn = realpath(filt->filename, filename_buf);
2730		if (!fn)
2731			return NULL;
2732	}
2733
2734	if (filt->range) {
2735		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2736			       filt->action, filt->addr, filt->size, at, fn);
2737	} else {
2738		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2739			       filt->action, filt->addr, at, fn);
2740	}
2741
2742	return err < 0 ? NULL : filter;
2743}
2744
2745static int parse_addr_filter(struct evsel *evsel, const char *filter,
2746			     int max_nr)
2747{
2748	struct addr_filters filts;
2749	struct addr_filter *filt;
2750	int err;
2751
2752	addr_filters__init(&filts);
2753
2754	err = addr_filters__parse_bare_filter(&filts, filter);
2755	if (err)
2756		goto out_exit;
2757
2758	if (filts.cnt > max_nr) {
2759		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2760		       filts.cnt, max_nr);
2761		err = -EINVAL;
2762		goto out_exit;
2763	}
2764
2765	list_for_each_entry(filt, &filts.head, list) {
2766		char *new_filter;
2767
2768		err = addr_filter__resolve_syms(filt);
2769		if (err)
2770			goto out_exit;
2771
2772		new_filter = addr_filter__to_str(filt);
2773		if (!new_filter) {
2774			err = -ENOMEM;
2775			goto out_exit;
2776		}
2777
2778		if (evsel__append_addr_filter(evsel, new_filter)) {
2779			err = -ENOMEM;
2780			goto out_exit;
2781		}
2782	}
2783
2784out_exit:
2785	addr_filters__exit(&filts);
2786
2787	if (err) {
2788		pr_err("Failed to parse address filter: '%s'\n", filter);
2789		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2790		pr_err("Where multiple filters are separated by space or comma.\n");
2791	}
2792
2793	return err;
2794}
2795
2796static int evsel__nr_addr_filter(struct evsel *evsel)
 
 
 
 
 
 
 
 
 
 
 
 
2797{
2798	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2799	int nr_addr_filters = 0;
2800
2801	if (!pmu)
2802		return 0;
2803
2804	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2805
2806	return nr_addr_filters;
2807}
2808
2809int auxtrace_parse_filters(struct evlist *evlist)
2810{
2811	struct evsel *evsel;
2812	char *filter;
2813	int err, max_nr;
2814
2815	evlist__for_each_entry(evlist, evsel) {
2816		filter = evsel->filter;
2817		max_nr = evsel__nr_addr_filter(evsel);
2818		if (!filter || !max_nr)
2819			continue;
2820		evsel->filter = NULL;
2821		err = parse_addr_filter(evsel, filter, max_nr);
2822		free(filter);
2823		if (err)
2824			return err;
2825		pr_debug("Address filter: %s\n", evsel->filter);
2826	}
2827
2828	return 0;
2829}
2830
2831int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2832			    struct perf_sample *sample, const struct perf_tool *tool)
2833{
2834	if (!session->auxtrace)
2835		return 0;
2836
2837	return session->auxtrace->process_event(session, event, sample, tool);
2838}
2839
2840void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2841				    struct perf_sample *sample)
2842{
2843	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2844	    auxtrace__dont_decode(session))
2845		return;
2846
2847	session->auxtrace->dump_auxtrace_sample(session, sample);
2848}
2849
2850int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2851{
2852	if (!session->auxtrace)
2853		return 0;
2854
2855	return session->auxtrace->flush_events(session, tool);
2856}
2857
2858void auxtrace__free_events(struct perf_session *session)
2859{
2860	if (!session->auxtrace)
2861		return;
2862
2863	return session->auxtrace->free_events(session);
2864}
2865
2866void auxtrace__free(struct perf_session *session)
2867{
2868	if (!session->auxtrace)
2869		return;
2870
2871	return session->auxtrace->free(session);
2872}
2873
2874bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2875				 struct evsel *evsel)
2876{
2877	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2878		return false;
2879
2880	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2881}