Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7#include <inttypes.h>
8#include <sys/types.h>
9#include <sys/mman.h>
10#include <stdbool.h>
11#include <string.h>
12#include <limits.h>
13#include <errno.h>
14
15#include <linux/kernel.h>
16#include <linux/perf_event.h>
17#include <linux/types.h>
18#include <linux/bitops.h>
19#include <linux/log2.h>
20#include <linux/string.h>
21#include <linux/time64.h>
22
23#include <sys/param.h>
24#include <stdlib.h>
25#include <stdio.h>
26#include <linux/list.h>
27#include <linux/zalloc.h>
28
29#include "evlist.h"
30#include "dso.h"
31#include "map.h"
32#include "pmu.h"
33#include "evsel.h"
34#include "symbol.h"
35#include "util/synthetic-events.h"
36#include "thread_map.h"
37#include "asm/bug.h"
38#include "auxtrace.h"
39
40#include <linux/hash.h>
41
42#include "event.h"
43#include "record.h"
44#include "session.h"
45#include "debug.h"
46#include <subcmd/parse-options.h>
47
48#include "cs-etm.h"
49#include "intel-pt.h"
50#include "intel-bts.h"
51#include "arm-spe.h"
52#include "s390-cpumsf.h"
53#include "util/mmap.h"
54
55#include <linux/ctype.h>
56#include <linux/kernel.h>
57#include "symbol/kallsyms.h"
58#include <internal/lib.h>
59
60static bool auxtrace__dont_decode(struct perf_session *session)
61{
62 return !session->itrace_synth_opts ||
63 session->itrace_synth_opts->dont_decode;
64}
65
66int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
67 struct auxtrace_mmap_params *mp,
68 void *userpg, int fd)
69{
70 struct perf_event_mmap_page *pc = userpg;
71
72 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
73
74 mm->userpg = userpg;
75 mm->mask = mp->mask;
76 mm->len = mp->len;
77 mm->prev = 0;
78 mm->idx = mp->idx;
79 mm->tid = mp->tid;
80 mm->cpu = mp->cpu;
81
82 if (!mp->len) {
83 mm->base = NULL;
84 return 0;
85 }
86
87#if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
88 pr_err("Cannot use AUX area tracing mmaps\n");
89 return -1;
90#endif
91
92 pc->aux_offset = mp->offset;
93 pc->aux_size = mp->len;
94
95 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
96 if (mm->base == MAP_FAILED) {
97 pr_debug2("failed to mmap AUX area\n");
98 mm->base = NULL;
99 return -1;
100 }
101
102 return 0;
103}
104
105void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
106{
107 if (mm->base) {
108 munmap(mm->base, mm->len);
109 mm->base = NULL;
110 }
111}
112
113void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
114 off_t auxtrace_offset,
115 unsigned int auxtrace_pages,
116 bool auxtrace_overwrite)
117{
118 if (auxtrace_pages) {
119 mp->offset = auxtrace_offset;
120 mp->len = auxtrace_pages * (size_t)page_size;
121 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
122 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
123 pr_debug2("AUX area mmap length %zu\n", mp->len);
124 } else {
125 mp->len = 0;
126 }
127}
128
129void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
130 struct evlist *evlist, int idx,
131 bool per_cpu)
132{
133 mp->idx = idx;
134
135 if (per_cpu) {
136 mp->cpu = evlist->core.cpus->map[idx];
137 if (evlist->core.threads)
138 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
139 else
140 mp->tid = -1;
141 } else {
142 mp->cpu = -1;
143 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
144 }
145}
146
147#define AUXTRACE_INIT_NR_QUEUES 32
148
149static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
150{
151 struct auxtrace_queue *queue_array;
152 unsigned int max_nr_queues, i;
153
154 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
155 if (nr_queues > max_nr_queues)
156 return NULL;
157
158 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
159 if (!queue_array)
160 return NULL;
161
162 for (i = 0; i < nr_queues; i++) {
163 INIT_LIST_HEAD(&queue_array[i].head);
164 queue_array[i].priv = NULL;
165 }
166
167 return queue_array;
168}
169
170int auxtrace_queues__init(struct auxtrace_queues *queues)
171{
172 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
173 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
174 if (!queues->queue_array)
175 return -ENOMEM;
176 return 0;
177}
178
179static int auxtrace_queues__grow(struct auxtrace_queues *queues,
180 unsigned int new_nr_queues)
181{
182 unsigned int nr_queues = queues->nr_queues;
183 struct auxtrace_queue *queue_array;
184 unsigned int i;
185
186 if (!nr_queues)
187 nr_queues = AUXTRACE_INIT_NR_QUEUES;
188
189 while (nr_queues && nr_queues < new_nr_queues)
190 nr_queues <<= 1;
191
192 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
193 return -EINVAL;
194
195 queue_array = auxtrace_alloc_queue_array(nr_queues);
196 if (!queue_array)
197 return -ENOMEM;
198
199 for (i = 0; i < queues->nr_queues; i++) {
200 list_splice_tail(&queues->queue_array[i].head,
201 &queue_array[i].head);
202 queue_array[i].tid = queues->queue_array[i].tid;
203 queue_array[i].cpu = queues->queue_array[i].cpu;
204 queue_array[i].set = queues->queue_array[i].set;
205 queue_array[i].priv = queues->queue_array[i].priv;
206 }
207
208 queues->nr_queues = nr_queues;
209 queues->queue_array = queue_array;
210
211 return 0;
212}
213
214static void *auxtrace_copy_data(u64 size, struct perf_session *session)
215{
216 int fd = perf_data__fd(session->data);
217 void *p;
218 ssize_t ret;
219
220 if (size > SSIZE_MAX)
221 return NULL;
222
223 p = malloc(size);
224 if (!p)
225 return NULL;
226
227 ret = readn(fd, p, size);
228 if (ret != (ssize_t)size) {
229 free(p);
230 return NULL;
231 }
232
233 return p;
234}
235
236static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
237 unsigned int idx,
238 struct auxtrace_buffer *buffer)
239{
240 struct auxtrace_queue *queue;
241 int err;
242
243 if (idx >= queues->nr_queues) {
244 err = auxtrace_queues__grow(queues, idx + 1);
245 if (err)
246 return err;
247 }
248
249 queue = &queues->queue_array[idx];
250
251 if (!queue->set) {
252 queue->set = true;
253 queue->tid = buffer->tid;
254 queue->cpu = buffer->cpu;
255 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
256 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
257 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
258 return -EINVAL;
259 }
260
261 buffer->buffer_nr = queues->next_buffer_nr++;
262
263 list_add_tail(&buffer->list, &queue->head);
264
265 queues->new_data = true;
266 queues->populated = true;
267
268 return 0;
269}
270
271/* Limit buffers to 32MiB on 32-bit */
272#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
273
274static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
275 unsigned int idx,
276 struct auxtrace_buffer *buffer)
277{
278 u64 sz = buffer->size;
279 bool consecutive = false;
280 struct auxtrace_buffer *b;
281 int err;
282
283 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
284 b = memdup(buffer, sizeof(struct auxtrace_buffer));
285 if (!b)
286 return -ENOMEM;
287 b->size = BUFFER_LIMIT_FOR_32_BIT;
288 b->consecutive = consecutive;
289 err = auxtrace_queues__queue_buffer(queues, idx, b);
290 if (err) {
291 auxtrace_buffer__free(b);
292 return err;
293 }
294 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
295 sz -= BUFFER_LIMIT_FOR_32_BIT;
296 consecutive = true;
297 }
298
299 buffer->size = sz;
300 buffer->consecutive = consecutive;
301
302 return 0;
303}
304
305static bool filter_cpu(struct perf_session *session, int cpu)
306{
307 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
308
309 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
310}
311
312static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
313 struct perf_session *session,
314 unsigned int idx,
315 struct auxtrace_buffer *buffer,
316 struct auxtrace_buffer **buffer_ptr)
317{
318 int err = -ENOMEM;
319
320 if (filter_cpu(session, buffer->cpu))
321 return 0;
322
323 buffer = memdup(buffer, sizeof(*buffer));
324 if (!buffer)
325 return -ENOMEM;
326
327 if (session->one_mmap) {
328 buffer->data = buffer->data_offset - session->one_mmap_offset +
329 session->one_mmap_addr;
330 } else if (perf_data__is_pipe(session->data)) {
331 buffer->data = auxtrace_copy_data(buffer->size, session);
332 if (!buffer->data)
333 goto out_free;
334 buffer->data_needs_freeing = true;
335 } else if (BITS_PER_LONG == 32 &&
336 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
337 err = auxtrace_queues__split_buffer(queues, idx, buffer);
338 if (err)
339 goto out_free;
340 }
341
342 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
343 if (err)
344 goto out_free;
345
346 /* FIXME: Doesn't work for split buffer */
347 if (buffer_ptr)
348 *buffer_ptr = buffer;
349
350 return 0;
351
352out_free:
353 auxtrace_buffer__free(buffer);
354 return err;
355}
356
357int auxtrace_queues__add_event(struct auxtrace_queues *queues,
358 struct perf_session *session,
359 union perf_event *event, off_t data_offset,
360 struct auxtrace_buffer **buffer_ptr)
361{
362 struct auxtrace_buffer buffer = {
363 .pid = -1,
364 .tid = event->auxtrace.tid,
365 .cpu = event->auxtrace.cpu,
366 .data_offset = data_offset,
367 .offset = event->auxtrace.offset,
368 .reference = event->auxtrace.reference,
369 .size = event->auxtrace.size,
370 };
371 unsigned int idx = event->auxtrace.idx;
372
373 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
374 buffer_ptr);
375}
376
377static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
378 struct perf_session *session,
379 off_t file_offset, size_t sz)
380{
381 union perf_event *event;
382 int err;
383 char buf[PERF_SAMPLE_MAX_SIZE];
384
385 err = perf_session__peek_event(session, file_offset, buf,
386 PERF_SAMPLE_MAX_SIZE, &event, NULL);
387 if (err)
388 return err;
389
390 if (event->header.type == PERF_RECORD_AUXTRACE) {
391 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
392 event->header.size != sz) {
393 err = -EINVAL;
394 goto out;
395 }
396 file_offset += event->header.size;
397 err = auxtrace_queues__add_event(queues, session, event,
398 file_offset, NULL);
399 }
400out:
401 return err;
402}
403
404void auxtrace_queues__free(struct auxtrace_queues *queues)
405{
406 unsigned int i;
407
408 for (i = 0; i < queues->nr_queues; i++) {
409 while (!list_empty(&queues->queue_array[i].head)) {
410 struct auxtrace_buffer *buffer;
411
412 buffer = list_entry(queues->queue_array[i].head.next,
413 struct auxtrace_buffer, list);
414 list_del_init(&buffer->list);
415 auxtrace_buffer__free(buffer);
416 }
417 }
418
419 zfree(&queues->queue_array);
420 queues->nr_queues = 0;
421}
422
423static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
424 unsigned int pos, unsigned int queue_nr,
425 u64 ordinal)
426{
427 unsigned int parent;
428
429 while (pos) {
430 parent = (pos - 1) >> 1;
431 if (heap_array[parent].ordinal <= ordinal)
432 break;
433 heap_array[pos] = heap_array[parent];
434 pos = parent;
435 }
436 heap_array[pos].queue_nr = queue_nr;
437 heap_array[pos].ordinal = ordinal;
438}
439
440int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
441 u64 ordinal)
442{
443 struct auxtrace_heap_item *heap_array;
444
445 if (queue_nr >= heap->heap_sz) {
446 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
447
448 while (heap_sz <= queue_nr)
449 heap_sz <<= 1;
450 heap_array = realloc(heap->heap_array,
451 heap_sz * sizeof(struct auxtrace_heap_item));
452 if (!heap_array)
453 return -ENOMEM;
454 heap->heap_array = heap_array;
455 heap->heap_sz = heap_sz;
456 }
457
458 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
459
460 return 0;
461}
462
463void auxtrace_heap__free(struct auxtrace_heap *heap)
464{
465 zfree(&heap->heap_array);
466 heap->heap_cnt = 0;
467 heap->heap_sz = 0;
468}
469
470void auxtrace_heap__pop(struct auxtrace_heap *heap)
471{
472 unsigned int pos, last, heap_cnt = heap->heap_cnt;
473 struct auxtrace_heap_item *heap_array;
474
475 if (!heap_cnt)
476 return;
477
478 heap->heap_cnt -= 1;
479
480 heap_array = heap->heap_array;
481
482 pos = 0;
483 while (1) {
484 unsigned int left, right;
485
486 left = (pos << 1) + 1;
487 if (left >= heap_cnt)
488 break;
489 right = left + 1;
490 if (right >= heap_cnt) {
491 heap_array[pos] = heap_array[left];
492 return;
493 }
494 if (heap_array[left].ordinal < heap_array[right].ordinal) {
495 heap_array[pos] = heap_array[left];
496 pos = left;
497 } else {
498 heap_array[pos] = heap_array[right];
499 pos = right;
500 }
501 }
502
503 last = heap_cnt - 1;
504 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
505 heap_array[last].ordinal);
506}
507
508size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
509 struct evlist *evlist)
510{
511 if (itr)
512 return itr->info_priv_size(itr, evlist);
513 return 0;
514}
515
516static int auxtrace_not_supported(void)
517{
518 pr_err("AUX area tracing is not supported on this architecture\n");
519 return -EINVAL;
520}
521
522int auxtrace_record__info_fill(struct auxtrace_record *itr,
523 struct perf_session *session,
524 struct perf_record_auxtrace_info *auxtrace_info,
525 size_t priv_size)
526{
527 if (itr)
528 return itr->info_fill(itr, session, auxtrace_info, priv_size);
529 return auxtrace_not_supported();
530}
531
532void auxtrace_record__free(struct auxtrace_record *itr)
533{
534 if (itr)
535 itr->free(itr);
536}
537
538int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
539{
540 if (itr && itr->snapshot_start)
541 return itr->snapshot_start(itr);
542 return 0;
543}
544
545int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
546{
547 if (!on_exit && itr && itr->snapshot_finish)
548 return itr->snapshot_finish(itr);
549 return 0;
550}
551
552int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
553 struct auxtrace_mmap *mm,
554 unsigned char *data, u64 *head, u64 *old)
555{
556 if (itr && itr->find_snapshot)
557 return itr->find_snapshot(itr, idx, mm, data, head, old);
558 return 0;
559}
560
561int auxtrace_record__options(struct auxtrace_record *itr,
562 struct evlist *evlist,
563 struct record_opts *opts)
564{
565 if (itr)
566 return itr->recording_options(itr, evlist, opts);
567 return 0;
568}
569
570u64 auxtrace_record__reference(struct auxtrace_record *itr)
571{
572 if (itr)
573 return itr->reference(itr);
574 return 0;
575}
576
577int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
578 struct record_opts *opts, const char *str)
579{
580 if (!str)
581 return 0;
582
583 /* PMU-agnostic options */
584 switch (*str) {
585 case 'e':
586 opts->auxtrace_snapshot_on_exit = true;
587 str++;
588 break;
589 default:
590 break;
591 }
592
593 if (itr)
594 return itr->parse_snapshot_options(itr, opts, str);
595
596 pr_err("No AUX area tracing to snapshot\n");
597 return -EINVAL;
598}
599
600struct auxtrace_record *__weak
601auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
602{
603 *err = 0;
604 return NULL;
605}
606
607static int auxtrace_index__alloc(struct list_head *head)
608{
609 struct auxtrace_index *auxtrace_index;
610
611 auxtrace_index = malloc(sizeof(struct auxtrace_index));
612 if (!auxtrace_index)
613 return -ENOMEM;
614
615 auxtrace_index->nr = 0;
616 INIT_LIST_HEAD(&auxtrace_index->list);
617
618 list_add_tail(&auxtrace_index->list, head);
619
620 return 0;
621}
622
623void auxtrace_index__free(struct list_head *head)
624{
625 struct auxtrace_index *auxtrace_index, *n;
626
627 list_for_each_entry_safe(auxtrace_index, n, head, list) {
628 list_del_init(&auxtrace_index->list);
629 free(auxtrace_index);
630 }
631}
632
633static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
634{
635 struct auxtrace_index *auxtrace_index;
636 int err;
637
638 if (list_empty(head)) {
639 err = auxtrace_index__alloc(head);
640 if (err)
641 return NULL;
642 }
643
644 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
645
646 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
647 err = auxtrace_index__alloc(head);
648 if (err)
649 return NULL;
650 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
651 list);
652 }
653
654 return auxtrace_index;
655}
656
657int auxtrace_index__auxtrace_event(struct list_head *head,
658 union perf_event *event, off_t file_offset)
659{
660 struct auxtrace_index *auxtrace_index;
661 size_t nr;
662
663 auxtrace_index = auxtrace_index__last(head);
664 if (!auxtrace_index)
665 return -ENOMEM;
666
667 nr = auxtrace_index->nr;
668 auxtrace_index->entries[nr].file_offset = file_offset;
669 auxtrace_index->entries[nr].sz = event->header.size;
670 auxtrace_index->nr += 1;
671
672 return 0;
673}
674
675static int auxtrace_index__do_write(int fd,
676 struct auxtrace_index *auxtrace_index)
677{
678 struct auxtrace_index_entry ent;
679 size_t i;
680
681 for (i = 0; i < auxtrace_index->nr; i++) {
682 ent.file_offset = auxtrace_index->entries[i].file_offset;
683 ent.sz = auxtrace_index->entries[i].sz;
684 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
685 return -errno;
686 }
687 return 0;
688}
689
690int auxtrace_index__write(int fd, struct list_head *head)
691{
692 struct auxtrace_index *auxtrace_index;
693 u64 total = 0;
694 int err;
695
696 list_for_each_entry(auxtrace_index, head, list)
697 total += auxtrace_index->nr;
698
699 if (writen(fd, &total, sizeof(total)) != sizeof(total))
700 return -errno;
701
702 list_for_each_entry(auxtrace_index, head, list) {
703 err = auxtrace_index__do_write(fd, auxtrace_index);
704 if (err)
705 return err;
706 }
707
708 return 0;
709}
710
711static int auxtrace_index__process_entry(int fd, struct list_head *head,
712 bool needs_swap)
713{
714 struct auxtrace_index *auxtrace_index;
715 struct auxtrace_index_entry ent;
716 size_t nr;
717
718 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
719 return -1;
720
721 auxtrace_index = auxtrace_index__last(head);
722 if (!auxtrace_index)
723 return -1;
724
725 nr = auxtrace_index->nr;
726 if (needs_swap) {
727 auxtrace_index->entries[nr].file_offset =
728 bswap_64(ent.file_offset);
729 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
730 } else {
731 auxtrace_index->entries[nr].file_offset = ent.file_offset;
732 auxtrace_index->entries[nr].sz = ent.sz;
733 }
734
735 auxtrace_index->nr = nr + 1;
736
737 return 0;
738}
739
740int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
741 bool needs_swap)
742{
743 struct list_head *head = &session->auxtrace_index;
744 u64 nr;
745
746 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
747 return -1;
748
749 if (needs_swap)
750 nr = bswap_64(nr);
751
752 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
753 return -1;
754
755 while (nr--) {
756 int err;
757
758 err = auxtrace_index__process_entry(fd, head, needs_swap);
759 if (err)
760 return -1;
761 }
762
763 return 0;
764}
765
766static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
767 struct perf_session *session,
768 struct auxtrace_index_entry *ent)
769{
770 return auxtrace_queues__add_indexed_event(queues, session,
771 ent->file_offset, ent->sz);
772}
773
774int auxtrace_queues__process_index(struct auxtrace_queues *queues,
775 struct perf_session *session)
776{
777 struct auxtrace_index *auxtrace_index;
778 struct auxtrace_index_entry *ent;
779 size_t i;
780 int err;
781
782 if (auxtrace__dont_decode(session))
783 return 0;
784
785 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
786 for (i = 0; i < auxtrace_index->nr; i++) {
787 ent = &auxtrace_index->entries[i];
788 err = auxtrace_queues__process_index_entry(queues,
789 session,
790 ent);
791 if (err)
792 return err;
793 }
794 }
795 return 0;
796}
797
798struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
799 struct auxtrace_buffer *buffer)
800{
801 if (buffer) {
802 if (list_is_last(&buffer->list, &queue->head))
803 return NULL;
804 return list_entry(buffer->list.next, struct auxtrace_buffer,
805 list);
806 } else {
807 if (list_empty(&queue->head))
808 return NULL;
809 return list_entry(queue->head.next, struct auxtrace_buffer,
810 list);
811 }
812}
813
814void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
815{
816 size_t adj = buffer->data_offset & (page_size - 1);
817 size_t size = buffer->size + adj;
818 off_t file_offset = buffer->data_offset - adj;
819 void *addr;
820
821 if (buffer->data)
822 return buffer->data;
823
824 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
825 if (addr == MAP_FAILED)
826 return NULL;
827
828 buffer->mmap_addr = addr;
829 buffer->mmap_size = size;
830
831 buffer->data = addr + adj;
832
833 return buffer->data;
834}
835
836void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
837{
838 if (!buffer->data || !buffer->mmap_addr)
839 return;
840 munmap(buffer->mmap_addr, buffer->mmap_size);
841 buffer->mmap_addr = NULL;
842 buffer->mmap_size = 0;
843 buffer->data = NULL;
844 buffer->use_data = NULL;
845}
846
847void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
848{
849 auxtrace_buffer__put_data(buffer);
850 if (buffer->data_needs_freeing) {
851 buffer->data_needs_freeing = false;
852 zfree(&buffer->data);
853 buffer->use_data = NULL;
854 buffer->size = 0;
855 }
856}
857
858void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
859{
860 auxtrace_buffer__drop_data(buffer);
861 free(buffer);
862}
863
864void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
865 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
866 const char *msg, u64 timestamp)
867{
868 size_t size;
869
870 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
871
872 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
873 auxtrace_error->type = type;
874 auxtrace_error->code = code;
875 auxtrace_error->cpu = cpu;
876 auxtrace_error->pid = pid;
877 auxtrace_error->tid = tid;
878 auxtrace_error->fmt = 1;
879 auxtrace_error->ip = ip;
880 auxtrace_error->time = timestamp;
881 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
882
883 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
884 strlen(auxtrace_error->msg) + 1;
885 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
886}
887
888int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
889 struct perf_tool *tool,
890 struct perf_session *session,
891 perf_event__handler_t process)
892{
893 union perf_event *ev;
894 size_t priv_size;
895 int err;
896
897 pr_debug2("Synthesizing auxtrace information\n");
898 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
899 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
900 if (!ev)
901 return -ENOMEM;
902
903 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
904 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
905 priv_size;
906 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
907 priv_size);
908 if (err)
909 goto out_free;
910
911 err = process(tool, ev, NULL, NULL);
912out_free:
913 free(ev);
914 return err;
915}
916
917int perf_event__process_auxtrace_info(struct perf_session *session,
918 union perf_event *event)
919{
920 enum auxtrace_type type = event->auxtrace_info.type;
921
922 if (dump_trace)
923 fprintf(stdout, " type: %u\n", type);
924
925 switch (type) {
926 case PERF_AUXTRACE_INTEL_PT:
927 return intel_pt_process_auxtrace_info(event, session);
928 case PERF_AUXTRACE_INTEL_BTS:
929 return intel_bts_process_auxtrace_info(event, session);
930 case PERF_AUXTRACE_ARM_SPE:
931 return arm_spe_process_auxtrace_info(event, session);
932 case PERF_AUXTRACE_CS_ETM:
933 return cs_etm__process_auxtrace_info(event, session);
934 case PERF_AUXTRACE_S390_CPUMSF:
935 return s390_cpumsf_process_auxtrace_info(event, session);
936 case PERF_AUXTRACE_UNKNOWN:
937 default:
938 return -EINVAL;
939 }
940}
941
942s64 perf_event__process_auxtrace(struct perf_session *session,
943 union perf_event *event)
944{
945 s64 err;
946
947 if (dump_trace)
948 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
949 event->auxtrace.size, event->auxtrace.offset,
950 event->auxtrace.reference, event->auxtrace.idx,
951 event->auxtrace.tid, event->auxtrace.cpu);
952
953 if (auxtrace__dont_decode(session))
954 return event->auxtrace.size;
955
956 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
957 return -EINVAL;
958
959 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
960 if (err < 0)
961 return err;
962
963 return event->auxtrace.size;
964}
965
966#define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
967#define PERF_ITRACE_DEFAULT_PERIOD 100000
968#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
969#define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
970#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
971#define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
972
973void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
974 bool no_sample)
975{
976 synth_opts->branches = true;
977 synth_opts->transactions = true;
978 synth_opts->ptwrites = true;
979 synth_opts->pwr_events = true;
980 synth_opts->other_events = true;
981 synth_opts->errors = true;
982 if (no_sample) {
983 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
984 synth_opts->period = 1;
985 synth_opts->calls = true;
986 } else {
987 synth_opts->instructions = true;
988 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
989 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
990 }
991 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
992 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
993 synth_opts->initial_skip = 0;
994}
995
996/*
997 * Please check tools/perf/Documentation/perf-script.txt for information
998 * about the options parsed here, which is introduced after this cset,
999 * when support in 'perf script' for these options is introduced.
1000 */
1001int itrace_parse_synth_opts(const struct option *opt, const char *str,
1002 int unset)
1003{
1004 struct itrace_synth_opts *synth_opts = opt->value;
1005 const char *p;
1006 char *endptr;
1007 bool period_type_set = false;
1008 bool period_set = false;
1009
1010 synth_opts->set = true;
1011
1012 if (unset) {
1013 synth_opts->dont_decode = true;
1014 return 0;
1015 }
1016
1017 if (!str) {
1018 itrace_synth_opts__set_default(synth_opts,
1019 synth_opts->default_no_sample);
1020 return 0;
1021 }
1022
1023 for (p = str; *p;) {
1024 switch (*p++) {
1025 case 'i':
1026 synth_opts->instructions = true;
1027 while (*p == ' ' || *p == ',')
1028 p += 1;
1029 if (isdigit(*p)) {
1030 synth_opts->period = strtoull(p, &endptr, 10);
1031 period_set = true;
1032 p = endptr;
1033 while (*p == ' ' || *p == ',')
1034 p += 1;
1035 switch (*p++) {
1036 case 'i':
1037 synth_opts->period_type =
1038 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1039 period_type_set = true;
1040 break;
1041 case 't':
1042 synth_opts->period_type =
1043 PERF_ITRACE_PERIOD_TICKS;
1044 period_type_set = true;
1045 break;
1046 case 'm':
1047 synth_opts->period *= 1000;
1048 /* Fall through */
1049 case 'u':
1050 synth_opts->period *= 1000;
1051 /* Fall through */
1052 case 'n':
1053 if (*p++ != 's')
1054 goto out_err;
1055 synth_opts->period_type =
1056 PERF_ITRACE_PERIOD_NANOSECS;
1057 period_type_set = true;
1058 break;
1059 case '\0':
1060 goto out;
1061 default:
1062 goto out_err;
1063 }
1064 }
1065 break;
1066 case 'b':
1067 synth_opts->branches = true;
1068 break;
1069 case 'x':
1070 synth_opts->transactions = true;
1071 break;
1072 case 'w':
1073 synth_opts->ptwrites = true;
1074 break;
1075 case 'p':
1076 synth_opts->pwr_events = true;
1077 break;
1078 case 'o':
1079 synth_opts->other_events = true;
1080 break;
1081 case 'e':
1082 synth_opts->errors = true;
1083 break;
1084 case 'd':
1085 synth_opts->log = true;
1086 break;
1087 case 'c':
1088 synth_opts->branches = true;
1089 synth_opts->calls = true;
1090 break;
1091 case 'r':
1092 synth_opts->branches = true;
1093 synth_opts->returns = true;
1094 break;
1095 case 'g':
1096 synth_opts->callchain = true;
1097 synth_opts->callchain_sz =
1098 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1099 while (*p == ' ' || *p == ',')
1100 p += 1;
1101 if (isdigit(*p)) {
1102 unsigned int val;
1103
1104 val = strtoul(p, &endptr, 10);
1105 p = endptr;
1106 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1107 goto out_err;
1108 synth_opts->callchain_sz = val;
1109 }
1110 break;
1111 case 'l':
1112 synth_opts->last_branch = true;
1113 synth_opts->last_branch_sz =
1114 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1115 while (*p == ' ' || *p == ',')
1116 p += 1;
1117 if (isdigit(*p)) {
1118 unsigned int val;
1119
1120 val = strtoul(p, &endptr, 10);
1121 p = endptr;
1122 if (!val ||
1123 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1124 goto out_err;
1125 synth_opts->last_branch_sz = val;
1126 }
1127 break;
1128 case 's':
1129 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1130 if (p == endptr)
1131 goto out_err;
1132 p = endptr;
1133 break;
1134 case ' ':
1135 case ',':
1136 break;
1137 default:
1138 goto out_err;
1139 }
1140 }
1141out:
1142 if (synth_opts->instructions) {
1143 if (!period_type_set)
1144 synth_opts->period_type =
1145 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1146 if (!period_set)
1147 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1148 }
1149
1150 return 0;
1151
1152out_err:
1153 pr_err("Bad Instruction Tracing options '%s'\n", str);
1154 return -EINVAL;
1155}
1156
1157static const char * const auxtrace_error_type_name[] = {
1158 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1159};
1160
1161static const char *auxtrace_error_name(int type)
1162{
1163 const char *error_type_name = NULL;
1164
1165 if (type < PERF_AUXTRACE_ERROR_MAX)
1166 error_type_name = auxtrace_error_type_name[type];
1167 if (!error_type_name)
1168 error_type_name = "unknown AUX";
1169 return error_type_name;
1170}
1171
1172size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1173{
1174 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1175 unsigned long long nsecs = e->time;
1176 const char *msg = e->msg;
1177 int ret;
1178
1179 ret = fprintf(fp, " %s error type %u",
1180 auxtrace_error_name(e->type), e->type);
1181
1182 if (e->fmt && nsecs) {
1183 unsigned long secs = nsecs / NSEC_PER_SEC;
1184
1185 nsecs -= secs * NSEC_PER_SEC;
1186 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1187 } else {
1188 ret += fprintf(fp, " time 0");
1189 }
1190
1191 if (!e->fmt)
1192 msg = (const char *)&e->time;
1193
1194 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1195 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1196 return ret;
1197}
1198
1199void perf_session__auxtrace_error_inc(struct perf_session *session,
1200 union perf_event *event)
1201{
1202 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1203
1204 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1205 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1206}
1207
1208void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1209{
1210 int i;
1211
1212 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1213 if (!stats->nr_auxtrace_errors[i])
1214 continue;
1215 ui__warning("%u %s errors\n",
1216 stats->nr_auxtrace_errors[i],
1217 auxtrace_error_name(i));
1218 }
1219}
1220
1221int perf_event__process_auxtrace_error(struct perf_session *session,
1222 union perf_event *event)
1223{
1224 if (auxtrace__dont_decode(session))
1225 return 0;
1226
1227 perf_event__fprintf_auxtrace_error(event, stdout);
1228 return 0;
1229}
1230
1231static int __auxtrace_mmap__read(struct mmap *map,
1232 struct auxtrace_record *itr,
1233 struct perf_tool *tool, process_auxtrace_t fn,
1234 bool snapshot, size_t snapshot_size)
1235{
1236 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1237 u64 head, old = mm->prev, offset, ref;
1238 unsigned char *data = mm->base;
1239 size_t size, head_off, old_off, len1, len2, padding;
1240 union perf_event ev;
1241 void *data1, *data2;
1242
1243 if (snapshot) {
1244 head = auxtrace_mmap__read_snapshot_head(mm);
1245 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1246 &head, &old))
1247 return -1;
1248 } else {
1249 head = auxtrace_mmap__read_head(mm);
1250 }
1251
1252 if (old == head)
1253 return 0;
1254
1255 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1256 mm->idx, old, head, head - old);
1257
1258 if (mm->mask) {
1259 head_off = head & mm->mask;
1260 old_off = old & mm->mask;
1261 } else {
1262 head_off = head % mm->len;
1263 old_off = old % mm->len;
1264 }
1265
1266 if (head_off > old_off)
1267 size = head_off - old_off;
1268 else
1269 size = mm->len - (old_off - head_off);
1270
1271 if (snapshot && size > snapshot_size)
1272 size = snapshot_size;
1273
1274 ref = auxtrace_record__reference(itr);
1275
1276 if (head > old || size <= head || mm->mask) {
1277 offset = head - size;
1278 } else {
1279 /*
1280 * When the buffer size is not a power of 2, 'head' wraps at the
1281 * highest multiple of the buffer size, so we have to subtract
1282 * the remainder here.
1283 */
1284 u64 rem = (0ULL - mm->len) % mm->len;
1285
1286 offset = head - size - rem;
1287 }
1288
1289 if (size > head_off) {
1290 len1 = size - head_off;
1291 data1 = &data[mm->len - len1];
1292 len2 = head_off;
1293 data2 = &data[0];
1294 } else {
1295 len1 = size;
1296 data1 = &data[head_off - len1];
1297 len2 = 0;
1298 data2 = NULL;
1299 }
1300
1301 if (itr->alignment) {
1302 unsigned int unwanted = len1 % itr->alignment;
1303
1304 len1 -= unwanted;
1305 size -= unwanted;
1306 }
1307
1308 /* padding must be written by fn() e.g. record__process_auxtrace() */
1309 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1310 if (padding)
1311 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1312
1313 memset(&ev, 0, sizeof(ev));
1314 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1315 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1316 ev.auxtrace.size = size + padding;
1317 ev.auxtrace.offset = offset;
1318 ev.auxtrace.reference = ref;
1319 ev.auxtrace.idx = mm->idx;
1320 ev.auxtrace.tid = mm->tid;
1321 ev.auxtrace.cpu = mm->cpu;
1322
1323 if (fn(tool, map, &ev, data1, len1, data2, len2))
1324 return -1;
1325
1326 mm->prev = head;
1327
1328 if (!snapshot) {
1329 auxtrace_mmap__write_tail(mm, head);
1330 if (itr->read_finish) {
1331 int err;
1332
1333 err = itr->read_finish(itr, mm->idx);
1334 if (err < 0)
1335 return err;
1336 }
1337 }
1338
1339 return 1;
1340}
1341
1342int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1343 struct perf_tool *tool, process_auxtrace_t fn)
1344{
1345 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1346}
1347
1348int auxtrace_mmap__read_snapshot(struct mmap *map,
1349 struct auxtrace_record *itr,
1350 struct perf_tool *tool, process_auxtrace_t fn,
1351 size_t snapshot_size)
1352{
1353 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1354}
1355
1356/**
1357 * struct auxtrace_cache - hash table to implement a cache
1358 * @hashtable: the hashtable
1359 * @sz: hashtable size (number of hlists)
1360 * @entry_size: size of an entry
1361 * @limit: limit the number of entries to this maximum, when reached the cache
1362 * is dropped and caching begins again with an empty cache
1363 * @cnt: current number of entries
1364 * @bits: hashtable size (@sz = 2^@bits)
1365 */
1366struct auxtrace_cache {
1367 struct hlist_head *hashtable;
1368 size_t sz;
1369 size_t entry_size;
1370 size_t limit;
1371 size_t cnt;
1372 unsigned int bits;
1373};
1374
1375struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1376 unsigned int limit_percent)
1377{
1378 struct auxtrace_cache *c;
1379 struct hlist_head *ht;
1380 size_t sz, i;
1381
1382 c = zalloc(sizeof(struct auxtrace_cache));
1383 if (!c)
1384 return NULL;
1385
1386 sz = 1UL << bits;
1387
1388 ht = calloc(sz, sizeof(struct hlist_head));
1389 if (!ht)
1390 goto out_free;
1391
1392 for (i = 0; i < sz; i++)
1393 INIT_HLIST_HEAD(&ht[i]);
1394
1395 c->hashtable = ht;
1396 c->sz = sz;
1397 c->entry_size = entry_size;
1398 c->limit = (c->sz * limit_percent) / 100;
1399 c->bits = bits;
1400
1401 return c;
1402
1403out_free:
1404 free(c);
1405 return NULL;
1406}
1407
1408static void auxtrace_cache__drop(struct auxtrace_cache *c)
1409{
1410 struct auxtrace_cache_entry *entry;
1411 struct hlist_node *tmp;
1412 size_t i;
1413
1414 if (!c)
1415 return;
1416
1417 for (i = 0; i < c->sz; i++) {
1418 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1419 hlist_del(&entry->hash);
1420 auxtrace_cache__free_entry(c, entry);
1421 }
1422 }
1423
1424 c->cnt = 0;
1425}
1426
1427void auxtrace_cache__free(struct auxtrace_cache *c)
1428{
1429 if (!c)
1430 return;
1431
1432 auxtrace_cache__drop(c);
1433 zfree(&c->hashtable);
1434 free(c);
1435}
1436
1437void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1438{
1439 return malloc(c->entry_size);
1440}
1441
1442void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1443 void *entry)
1444{
1445 free(entry);
1446}
1447
1448int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1449 struct auxtrace_cache_entry *entry)
1450{
1451 if (c->limit && ++c->cnt > c->limit)
1452 auxtrace_cache__drop(c);
1453
1454 entry->key = key;
1455 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1456
1457 return 0;
1458}
1459
1460void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1461{
1462 struct auxtrace_cache_entry *entry;
1463 struct hlist_head *hlist;
1464
1465 if (!c)
1466 return NULL;
1467
1468 hlist = &c->hashtable[hash_32(key, c->bits)];
1469 hlist_for_each_entry(entry, hlist, hash) {
1470 if (entry->key == key)
1471 return entry;
1472 }
1473
1474 return NULL;
1475}
1476
1477static void addr_filter__free_str(struct addr_filter *filt)
1478{
1479 zfree(&filt->str);
1480 filt->action = NULL;
1481 filt->sym_from = NULL;
1482 filt->sym_to = NULL;
1483 filt->filename = NULL;
1484}
1485
1486static struct addr_filter *addr_filter__new(void)
1487{
1488 struct addr_filter *filt = zalloc(sizeof(*filt));
1489
1490 if (filt)
1491 INIT_LIST_HEAD(&filt->list);
1492
1493 return filt;
1494}
1495
1496static void addr_filter__free(struct addr_filter *filt)
1497{
1498 if (filt)
1499 addr_filter__free_str(filt);
1500 free(filt);
1501}
1502
1503static void addr_filters__add(struct addr_filters *filts,
1504 struct addr_filter *filt)
1505{
1506 list_add_tail(&filt->list, &filts->head);
1507 filts->cnt += 1;
1508}
1509
1510static void addr_filters__del(struct addr_filters *filts,
1511 struct addr_filter *filt)
1512{
1513 list_del_init(&filt->list);
1514 filts->cnt -= 1;
1515}
1516
1517void addr_filters__init(struct addr_filters *filts)
1518{
1519 INIT_LIST_HEAD(&filts->head);
1520 filts->cnt = 0;
1521}
1522
1523void addr_filters__exit(struct addr_filters *filts)
1524{
1525 struct addr_filter *filt, *n;
1526
1527 list_for_each_entry_safe(filt, n, &filts->head, list) {
1528 addr_filters__del(filts, filt);
1529 addr_filter__free(filt);
1530 }
1531}
1532
1533static int parse_num_or_str(char **inp, u64 *num, const char **str,
1534 const char *str_delim)
1535{
1536 *inp += strspn(*inp, " ");
1537
1538 if (isdigit(**inp)) {
1539 char *endptr;
1540
1541 if (!num)
1542 return -EINVAL;
1543 errno = 0;
1544 *num = strtoull(*inp, &endptr, 0);
1545 if (errno)
1546 return -errno;
1547 if (endptr == *inp)
1548 return -EINVAL;
1549 *inp = endptr;
1550 } else {
1551 size_t n;
1552
1553 if (!str)
1554 return -EINVAL;
1555 *inp += strspn(*inp, " ");
1556 *str = *inp;
1557 n = strcspn(*inp, str_delim);
1558 if (!n)
1559 return -EINVAL;
1560 *inp += n;
1561 if (**inp) {
1562 **inp = '\0';
1563 *inp += 1;
1564 }
1565 }
1566 return 0;
1567}
1568
1569static int parse_action(struct addr_filter *filt)
1570{
1571 if (!strcmp(filt->action, "filter")) {
1572 filt->start = true;
1573 filt->range = true;
1574 } else if (!strcmp(filt->action, "start")) {
1575 filt->start = true;
1576 } else if (!strcmp(filt->action, "stop")) {
1577 filt->start = false;
1578 } else if (!strcmp(filt->action, "tracestop")) {
1579 filt->start = false;
1580 filt->range = true;
1581 filt->action += 5; /* Change 'tracestop' to 'stop' */
1582 } else {
1583 return -EINVAL;
1584 }
1585 return 0;
1586}
1587
1588static int parse_sym_idx(char **inp, int *idx)
1589{
1590 *idx = -1;
1591
1592 *inp += strspn(*inp, " ");
1593
1594 if (**inp != '#')
1595 return 0;
1596
1597 *inp += 1;
1598
1599 if (**inp == 'g' || **inp == 'G') {
1600 *inp += 1;
1601 *idx = 0;
1602 } else {
1603 unsigned long num;
1604 char *endptr;
1605
1606 errno = 0;
1607 num = strtoul(*inp, &endptr, 0);
1608 if (errno)
1609 return -errno;
1610 if (endptr == *inp || num > INT_MAX)
1611 return -EINVAL;
1612 *inp = endptr;
1613 *idx = num;
1614 }
1615
1616 return 0;
1617}
1618
1619static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1620{
1621 int err = parse_num_or_str(inp, num, str, " ");
1622
1623 if (!err && *str)
1624 err = parse_sym_idx(inp, idx);
1625
1626 return err;
1627}
1628
1629static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1630{
1631 char *fstr;
1632 int err;
1633
1634 filt->str = fstr = strdup(*filter_inp);
1635 if (!fstr)
1636 return -ENOMEM;
1637
1638 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1639 if (err)
1640 goto out_err;
1641
1642 err = parse_action(filt);
1643 if (err)
1644 goto out_err;
1645
1646 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1647 &filt->sym_from_idx);
1648 if (err)
1649 goto out_err;
1650
1651 fstr += strspn(fstr, " ");
1652
1653 if (*fstr == '/') {
1654 fstr += 1;
1655 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1656 &filt->sym_to_idx);
1657 if (err)
1658 goto out_err;
1659 filt->range = true;
1660 }
1661
1662 fstr += strspn(fstr, " ");
1663
1664 if (*fstr == '@') {
1665 fstr += 1;
1666 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1667 if (err)
1668 goto out_err;
1669 }
1670
1671 fstr += strspn(fstr, " ,");
1672
1673 *filter_inp += fstr - filt->str;
1674
1675 return 0;
1676
1677out_err:
1678 addr_filter__free_str(filt);
1679
1680 return err;
1681}
1682
1683int addr_filters__parse_bare_filter(struct addr_filters *filts,
1684 const char *filter)
1685{
1686 struct addr_filter *filt;
1687 const char *fstr = filter;
1688 int err;
1689
1690 while (*fstr) {
1691 filt = addr_filter__new();
1692 err = parse_one_filter(filt, &fstr);
1693 if (err) {
1694 addr_filter__free(filt);
1695 addr_filters__exit(filts);
1696 return err;
1697 }
1698 addr_filters__add(filts, filt);
1699 }
1700
1701 return 0;
1702}
1703
1704struct sym_args {
1705 const char *name;
1706 u64 start;
1707 u64 size;
1708 int idx;
1709 int cnt;
1710 bool started;
1711 bool global;
1712 bool selected;
1713 bool duplicate;
1714 bool near;
1715};
1716
1717static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1718{
1719 /* A function with the same name, and global or the n'th found or any */
1720 return kallsyms__is_function(type) &&
1721 !strcmp(name, args->name) &&
1722 ((args->global && isupper(type)) ||
1723 (args->selected && ++(args->cnt) == args->idx) ||
1724 (!args->global && !args->selected));
1725}
1726
1727static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1728{
1729 struct sym_args *args = arg;
1730
1731 if (args->started) {
1732 if (!args->size)
1733 args->size = start - args->start;
1734 if (args->selected) {
1735 if (args->size)
1736 return 1;
1737 } else if (kern_sym_match(args, name, type)) {
1738 args->duplicate = true;
1739 return 1;
1740 }
1741 } else if (kern_sym_match(args, name, type)) {
1742 args->started = true;
1743 args->start = start;
1744 }
1745
1746 return 0;
1747}
1748
1749static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1750{
1751 struct sym_args *args = arg;
1752
1753 if (kern_sym_match(args, name, type)) {
1754 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1755 ++args->cnt, start, type, name);
1756 args->near = true;
1757 } else if (args->near) {
1758 args->near = false;
1759 pr_err("\t\twhich is near\t\t%s\n", name);
1760 }
1761
1762 return 0;
1763}
1764
1765static int sym_not_found_error(const char *sym_name, int idx)
1766{
1767 if (idx > 0) {
1768 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1769 idx, sym_name);
1770 } else if (!idx) {
1771 pr_err("Global symbol '%s' not found.\n", sym_name);
1772 } else {
1773 pr_err("Symbol '%s' not found.\n", sym_name);
1774 }
1775 pr_err("Note that symbols must be functions.\n");
1776
1777 return -EINVAL;
1778}
1779
1780static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1781{
1782 struct sym_args args = {
1783 .name = sym_name,
1784 .idx = idx,
1785 .global = !idx,
1786 .selected = idx > 0,
1787 };
1788 int err;
1789
1790 *start = 0;
1791 *size = 0;
1792
1793 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1794 if (err < 0) {
1795 pr_err("Failed to parse /proc/kallsyms\n");
1796 return err;
1797 }
1798
1799 if (args.duplicate) {
1800 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1801 args.cnt = 0;
1802 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1803 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1804 sym_name);
1805 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1806 return -EINVAL;
1807 }
1808
1809 if (!args.started) {
1810 pr_err("Kernel symbol lookup: ");
1811 return sym_not_found_error(sym_name, idx);
1812 }
1813
1814 *start = args.start;
1815 *size = args.size;
1816
1817 return 0;
1818}
1819
1820static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1821 char type, u64 start)
1822{
1823 struct sym_args *args = arg;
1824
1825 if (!kallsyms__is_function(type))
1826 return 0;
1827
1828 if (!args->started) {
1829 args->started = true;
1830 args->start = start;
1831 }
1832 /* Don't know exactly where the kernel ends, so we add a page */
1833 args->size = round_up(start, page_size) + page_size - args->start;
1834
1835 return 0;
1836}
1837
1838static int addr_filter__entire_kernel(struct addr_filter *filt)
1839{
1840 struct sym_args args = { .started = false };
1841 int err;
1842
1843 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1844 if (err < 0 || !args.started) {
1845 pr_err("Failed to parse /proc/kallsyms\n");
1846 return err;
1847 }
1848
1849 filt->addr = args.start;
1850 filt->size = args.size;
1851
1852 return 0;
1853}
1854
1855static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1856{
1857 if (start + size >= filt->addr)
1858 return 0;
1859
1860 if (filt->sym_from) {
1861 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1862 filt->sym_to, start, filt->sym_from, filt->addr);
1863 } else {
1864 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1865 filt->sym_to, start, filt->addr);
1866 }
1867
1868 return -EINVAL;
1869}
1870
1871static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1872{
1873 bool no_size = false;
1874 u64 start, size;
1875 int err;
1876
1877 if (symbol_conf.kptr_restrict) {
1878 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1879 return -EINVAL;
1880 }
1881
1882 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1883 return addr_filter__entire_kernel(filt);
1884
1885 if (filt->sym_from) {
1886 err = find_kern_sym(filt->sym_from, &start, &size,
1887 filt->sym_from_idx);
1888 if (err)
1889 return err;
1890 filt->addr = start;
1891 if (filt->range && !filt->size && !filt->sym_to) {
1892 filt->size = size;
1893 no_size = !size;
1894 }
1895 }
1896
1897 if (filt->sym_to) {
1898 err = find_kern_sym(filt->sym_to, &start, &size,
1899 filt->sym_to_idx);
1900 if (err)
1901 return err;
1902
1903 err = check_end_after_start(filt, start, size);
1904 if (err)
1905 return err;
1906 filt->size = start + size - filt->addr;
1907 no_size = !size;
1908 }
1909
1910 /* The very last symbol in kallsyms does not imply a particular size */
1911 if (no_size) {
1912 pr_err("Cannot determine size of symbol '%s'\n",
1913 filt->sym_to ? filt->sym_to : filt->sym_from);
1914 return -EINVAL;
1915 }
1916
1917 return 0;
1918}
1919
1920static struct dso *load_dso(const char *name)
1921{
1922 struct map *map;
1923 struct dso *dso;
1924
1925 map = dso__new_map(name);
1926 if (!map)
1927 return NULL;
1928
1929 if (map__load(map) < 0)
1930 pr_err("File '%s' not found or has no symbols.\n", name);
1931
1932 dso = dso__get(map->dso);
1933
1934 map__put(map);
1935
1936 return dso;
1937}
1938
1939static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1940 int idx)
1941{
1942 /* Same name, and global or the n'th found or any */
1943 return !arch__compare_symbol_names(name, sym->name) &&
1944 ((!idx && sym->binding == STB_GLOBAL) ||
1945 (idx > 0 && ++*cnt == idx) ||
1946 idx < 0);
1947}
1948
1949static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1950{
1951 struct symbol *sym;
1952 bool near = false;
1953 int cnt = 0;
1954
1955 pr_err("Multiple symbols with name '%s'\n", sym_name);
1956
1957 sym = dso__first_symbol(dso);
1958 while (sym) {
1959 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1960 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1961 ++cnt, sym->start,
1962 sym->binding == STB_GLOBAL ? 'g' :
1963 sym->binding == STB_LOCAL ? 'l' : 'w',
1964 sym->name);
1965 near = true;
1966 } else if (near) {
1967 near = false;
1968 pr_err("\t\twhich is near\t\t%s\n", sym->name);
1969 }
1970 sym = dso__next_symbol(sym);
1971 }
1972
1973 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1974 sym_name);
1975 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1976}
1977
1978static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1979 u64 *size, int idx)
1980{
1981 struct symbol *sym;
1982 int cnt = 0;
1983
1984 *start = 0;
1985 *size = 0;
1986
1987 sym = dso__first_symbol(dso);
1988 while (sym) {
1989 if (*start) {
1990 if (!*size)
1991 *size = sym->start - *start;
1992 if (idx > 0) {
1993 if (*size)
1994 return 1;
1995 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1996 print_duplicate_syms(dso, sym_name);
1997 return -EINVAL;
1998 }
1999 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2000 *start = sym->start;
2001 *size = sym->end - sym->start;
2002 }
2003 sym = dso__next_symbol(sym);
2004 }
2005
2006 if (!*start)
2007 return sym_not_found_error(sym_name, idx);
2008
2009 return 0;
2010}
2011
2012static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2013{
2014 if (dso__data_file_size(dso, NULL)) {
2015 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2016 filt->filename);
2017 return -EINVAL;
2018 }
2019
2020 filt->addr = 0;
2021 filt->size = dso->data.file_size;
2022
2023 return 0;
2024}
2025
2026static int addr_filter__resolve_syms(struct addr_filter *filt)
2027{
2028 u64 start, size;
2029 struct dso *dso;
2030 int err = 0;
2031
2032 if (!filt->sym_from && !filt->sym_to)
2033 return 0;
2034
2035 if (!filt->filename)
2036 return addr_filter__resolve_kernel_syms(filt);
2037
2038 dso = load_dso(filt->filename);
2039 if (!dso) {
2040 pr_err("Failed to load symbols from: %s\n", filt->filename);
2041 return -EINVAL;
2042 }
2043
2044 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2045 err = addr_filter__entire_dso(filt, dso);
2046 goto put_dso;
2047 }
2048
2049 if (filt->sym_from) {
2050 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2051 filt->sym_from_idx);
2052 if (err)
2053 goto put_dso;
2054 filt->addr = start;
2055 if (filt->range && !filt->size && !filt->sym_to)
2056 filt->size = size;
2057 }
2058
2059 if (filt->sym_to) {
2060 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2061 filt->sym_to_idx);
2062 if (err)
2063 goto put_dso;
2064
2065 err = check_end_after_start(filt, start, size);
2066 if (err)
2067 return err;
2068
2069 filt->size = start + size - filt->addr;
2070 }
2071
2072put_dso:
2073 dso__put(dso);
2074
2075 return err;
2076}
2077
2078static char *addr_filter__to_str(struct addr_filter *filt)
2079{
2080 char filename_buf[PATH_MAX];
2081 const char *at = "";
2082 const char *fn = "";
2083 char *filter;
2084 int err;
2085
2086 if (filt->filename) {
2087 at = "@";
2088 fn = realpath(filt->filename, filename_buf);
2089 if (!fn)
2090 return NULL;
2091 }
2092
2093 if (filt->range) {
2094 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2095 filt->action, filt->addr, filt->size, at, fn);
2096 } else {
2097 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2098 filt->action, filt->addr, at, fn);
2099 }
2100
2101 return err < 0 ? NULL : filter;
2102}
2103
2104static int parse_addr_filter(struct evsel *evsel, const char *filter,
2105 int max_nr)
2106{
2107 struct addr_filters filts;
2108 struct addr_filter *filt;
2109 int err;
2110
2111 addr_filters__init(&filts);
2112
2113 err = addr_filters__parse_bare_filter(&filts, filter);
2114 if (err)
2115 goto out_exit;
2116
2117 if (filts.cnt > max_nr) {
2118 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2119 filts.cnt, max_nr);
2120 err = -EINVAL;
2121 goto out_exit;
2122 }
2123
2124 list_for_each_entry(filt, &filts.head, list) {
2125 char *new_filter;
2126
2127 err = addr_filter__resolve_syms(filt);
2128 if (err)
2129 goto out_exit;
2130
2131 new_filter = addr_filter__to_str(filt);
2132 if (!new_filter) {
2133 err = -ENOMEM;
2134 goto out_exit;
2135 }
2136
2137 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2138 err = -ENOMEM;
2139 goto out_exit;
2140 }
2141 }
2142
2143out_exit:
2144 addr_filters__exit(&filts);
2145
2146 if (err) {
2147 pr_err("Failed to parse address filter: '%s'\n", filter);
2148 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2149 pr_err("Where multiple filters are separated by space or comma.\n");
2150 }
2151
2152 return err;
2153}
2154
2155static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
2156{
2157 struct perf_pmu *pmu = NULL;
2158
2159 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2160 if (pmu->type == evsel->core.attr.type)
2161 break;
2162 }
2163
2164 return pmu;
2165}
2166
2167static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2168{
2169 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2170 int nr_addr_filters = 0;
2171
2172 if (!pmu)
2173 return 0;
2174
2175 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2176
2177 return nr_addr_filters;
2178}
2179
2180int auxtrace_parse_filters(struct evlist *evlist)
2181{
2182 struct evsel *evsel;
2183 char *filter;
2184 int err, max_nr;
2185
2186 evlist__for_each_entry(evlist, evsel) {
2187 filter = evsel->filter;
2188 max_nr = perf_evsel__nr_addr_filter(evsel);
2189 if (!filter || !max_nr)
2190 continue;
2191 evsel->filter = NULL;
2192 err = parse_addr_filter(evsel, filter, max_nr);
2193 free(filter);
2194 if (err)
2195 return err;
2196 pr_debug("Address filter: %s\n", evsel->filter);
2197 }
2198
2199 return 0;
2200}
2201
2202int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2203 struct perf_sample *sample, struct perf_tool *tool)
2204{
2205 if (!session->auxtrace)
2206 return 0;
2207
2208 return session->auxtrace->process_event(session, event, sample, tool);
2209}
2210
2211int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2212{
2213 if (!session->auxtrace)
2214 return 0;
2215
2216 return session->auxtrace->flush_events(session, tool);
2217}
2218
2219void auxtrace__free_events(struct perf_session *session)
2220{
2221 if (!session->auxtrace)
2222 return;
2223
2224 return session->auxtrace->free_events(session);
2225}
2226
2227void auxtrace__free(struct perf_session *session)
2228{
2229 if (!session->auxtrace)
2230 return;
2231
2232 return session->auxtrace->free(session);
2233}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7#include <inttypes.h>
8#include <sys/types.h>
9#include <sys/mman.h>
10#include <stdbool.h>
11#include <string.h>
12#include <limits.h>
13#include <errno.h>
14
15#include <linux/kernel.h>
16#include <linux/perf_event.h>
17#include <linux/types.h>
18#include <linux/bitops.h>
19#include <linux/log2.h>
20#include <linux/string.h>
21#include <linux/time64.h>
22
23#include <sys/param.h>
24#include <stdlib.h>
25#include <stdio.h>
26#include <linux/list.h>
27#include <linux/zalloc.h>
28
29#include "config.h"
30#include "evlist.h"
31#include "dso.h"
32#include "map.h"
33#include "pmu.h"
34#include "evsel.h"
35#include "evsel_config.h"
36#include "symbol.h"
37#include "util/perf_api_probe.h"
38#include "util/synthetic-events.h"
39#include "thread_map.h"
40#include "asm/bug.h"
41#include "auxtrace.h"
42
43#include <linux/hash.h>
44
45#include "event.h"
46#include "record.h"
47#include "session.h"
48#include "debug.h"
49#include <subcmd/parse-options.h>
50
51#include "cs-etm.h"
52#include "intel-pt.h"
53#include "intel-bts.h"
54#include "arm-spe.h"
55#include "hisi-ptt.h"
56#include "s390-cpumsf.h"
57#include "util/mmap.h"
58
59#include <linux/ctype.h>
60#include "symbol/kallsyms.h"
61#include <internal/lib.h>
62#include "util/sample.h"
63
64/*
65 * Make a group from 'leader' to 'last', requiring that the events were not
66 * already grouped to a different leader.
67 */
68static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69{
70 struct evsel *evsel;
71 bool grp;
72
73 if (!evsel__is_group_leader(leader))
74 return -EINVAL;
75
76 grp = false;
77 evlist__for_each_entry(evlist, evsel) {
78 if (grp) {
79 if (!(evsel__leader(evsel) == leader ||
80 (evsel__leader(evsel) == evsel &&
81 evsel->core.nr_members <= 1)))
82 return -EINVAL;
83 } else if (evsel == leader) {
84 grp = true;
85 }
86 if (evsel == last)
87 break;
88 }
89
90 grp = false;
91 evlist__for_each_entry(evlist, evsel) {
92 if (grp) {
93 if (!evsel__has_leader(evsel, leader)) {
94 evsel__set_leader(evsel, leader);
95 if (leader->core.nr_members < 1)
96 leader->core.nr_members = 1;
97 leader->core.nr_members += 1;
98 }
99 } else if (evsel == leader) {
100 grp = true;
101 }
102 if (evsel == last)
103 break;
104 }
105
106 return 0;
107}
108
109static bool auxtrace__dont_decode(struct perf_session *session)
110{
111 return !session->itrace_synth_opts ||
112 session->itrace_synth_opts->dont_decode;
113}
114
115int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 struct auxtrace_mmap_params *mp,
117 void *userpg, int fd)
118{
119 struct perf_event_mmap_page *pc = userpg;
120
121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122
123 mm->userpg = userpg;
124 mm->mask = mp->mask;
125 mm->len = mp->len;
126 mm->prev = 0;
127 mm->idx = mp->idx;
128 mm->tid = mp->tid;
129 mm->cpu = mp->cpu.cpu;
130
131 if (!mp->len || !mp->mmap_needed) {
132 mm->base = NULL;
133 return 0;
134 }
135
136 pc->aux_offset = mp->offset;
137 pc->aux_size = mp->len;
138
139 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140 if (mm->base == MAP_FAILED) {
141 pr_debug2("failed to mmap AUX area\n");
142 mm->base = NULL;
143 return -1;
144 }
145
146 return 0;
147}
148
149void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150{
151 if (mm->base) {
152 munmap(mm->base, mm->len);
153 mm->base = NULL;
154 }
155}
156
157void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158 off_t auxtrace_offset,
159 unsigned int auxtrace_pages,
160 bool auxtrace_overwrite)
161{
162 if (auxtrace_pages) {
163 mp->offset = auxtrace_offset;
164 mp->len = auxtrace_pages * (size_t)page_size;
165 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167 pr_debug2("AUX area mmap length %zu\n", mp->len);
168 } else {
169 mp->len = 0;
170 }
171}
172
173void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174 struct evlist *evlist,
175 struct evsel *evsel, int idx)
176{
177 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
178
179 mp->mmap_needed = evsel->needs_auxtrace_mmap;
180
181 if (!mp->mmap_needed)
182 return;
183
184 mp->idx = idx;
185
186 if (per_cpu) {
187 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188 if (evlist->core.threads)
189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 else
191 mp->tid = -1;
192 } else {
193 mp->cpu.cpu = -1;
194 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195 }
196}
197
198#define AUXTRACE_INIT_NR_QUEUES 32
199
200static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201{
202 struct auxtrace_queue *queue_array;
203 unsigned int max_nr_queues, i;
204
205 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206 if (nr_queues > max_nr_queues)
207 return NULL;
208
209 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210 if (!queue_array)
211 return NULL;
212
213 for (i = 0; i < nr_queues; i++) {
214 INIT_LIST_HEAD(&queue_array[i].head);
215 queue_array[i].priv = NULL;
216 }
217
218 return queue_array;
219}
220
221int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
222{
223 queues->nr_queues = nr_queues;
224 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225 if (!queues->queue_array)
226 return -ENOMEM;
227 return 0;
228}
229
230int auxtrace_queues__init(struct auxtrace_queues *queues)
231{
232 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
233}
234
235static int auxtrace_queues__grow(struct auxtrace_queues *queues,
236 unsigned int new_nr_queues)
237{
238 unsigned int nr_queues = queues->nr_queues;
239 struct auxtrace_queue *queue_array;
240 unsigned int i;
241
242 if (!nr_queues)
243 nr_queues = AUXTRACE_INIT_NR_QUEUES;
244
245 while (nr_queues && nr_queues < new_nr_queues)
246 nr_queues <<= 1;
247
248 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
249 return -EINVAL;
250
251 queue_array = auxtrace_alloc_queue_array(nr_queues);
252 if (!queue_array)
253 return -ENOMEM;
254
255 for (i = 0; i < queues->nr_queues; i++) {
256 list_splice_tail(&queues->queue_array[i].head,
257 &queue_array[i].head);
258 queue_array[i].tid = queues->queue_array[i].tid;
259 queue_array[i].cpu = queues->queue_array[i].cpu;
260 queue_array[i].set = queues->queue_array[i].set;
261 queue_array[i].priv = queues->queue_array[i].priv;
262 }
263
264 queues->nr_queues = nr_queues;
265 queues->queue_array = queue_array;
266
267 return 0;
268}
269
270static void *auxtrace_copy_data(u64 size, struct perf_session *session)
271{
272 int fd = perf_data__fd(session->data);
273 void *p;
274 ssize_t ret;
275
276 if (size > SSIZE_MAX)
277 return NULL;
278
279 p = malloc(size);
280 if (!p)
281 return NULL;
282
283 ret = readn(fd, p, size);
284 if (ret != (ssize_t)size) {
285 free(p);
286 return NULL;
287 }
288
289 return p;
290}
291
292static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
293 unsigned int idx,
294 struct auxtrace_buffer *buffer)
295{
296 struct auxtrace_queue *queue;
297 int err;
298
299 if (idx >= queues->nr_queues) {
300 err = auxtrace_queues__grow(queues, idx + 1);
301 if (err)
302 return err;
303 }
304
305 queue = &queues->queue_array[idx];
306
307 if (!queue->set) {
308 queue->set = true;
309 queue->tid = buffer->tid;
310 queue->cpu = buffer->cpu.cpu;
311 }
312
313 buffer->buffer_nr = queues->next_buffer_nr++;
314
315 list_add_tail(&buffer->list, &queue->head);
316
317 queues->new_data = true;
318 queues->populated = true;
319
320 return 0;
321}
322
323/* Limit buffers to 32MiB on 32-bit */
324#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
325
326static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
327 unsigned int idx,
328 struct auxtrace_buffer *buffer)
329{
330 u64 sz = buffer->size;
331 bool consecutive = false;
332 struct auxtrace_buffer *b;
333 int err;
334
335 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
336 b = memdup(buffer, sizeof(struct auxtrace_buffer));
337 if (!b)
338 return -ENOMEM;
339 b->size = BUFFER_LIMIT_FOR_32_BIT;
340 b->consecutive = consecutive;
341 err = auxtrace_queues__queue_buffer(queues, idx, b);
342 if (err) {
343 auxtrace_buffer__free(b);
344 return err;
345 }
346 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
347 sz -= BUFFER_LIMIT_FOR_32_BIT;
348 consecutive = true;
349 }
350
351 buffer->size = sz;
352 buffer->consecutive = consecutive;
353
354 return 0;
355}
356
357static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
358{
359 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
360
361 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
362}
363
364static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
365 struct perf_session *session,
366 unsigned int idx,
367 struct auxtrace_buffer *buffer,
368 struct auxtrace_buffer **buffer_ptr)
369{
370 int err = -ENOMEM;
371
372 if (filter_cpu(session, buffer->cpu))
373 return 0;
374
375 buffer = memdup(buffer, sizeof(*buffer));
376 if (!buffer)
377 return -ENOMEM;
378
379 if (session->one_mmap) {
380 buffer->data = buffer->data_offset - session->one_mmap_offset +
381 session->one_mmap_addr;
382 } else if (perf_data__is_pipe(session->data)) {
383 buffer->data = auxtrace_copy_data(buffer->size, session);
384 if (!buffer->data)
385 goto out_free;
386 buffer->data_needs_freeing = true;
387 } else if (BITS_PER_LONG == 32 &&
388 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
389 err = auxtrace_queues__split_buffer(queues, idx, buffer);
390 if (err)
391 goto out_free;
392 }
393
394 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
395 if (err)
396 goto out_free;
397
398 /* FIXME: Doesn't work for split buffer */
399 if (buffer_ptr)
400 *buffer_ptr = buffer;
401
402 return 0;
403
404out_free:
405 auxtrace_buffer__free(buffer);
406 return err;
407}
408
409int auxtrace_queues__add_event(struct auxtrace_queues *queues,
410 struct perf_session *session,
411 union perf_event *event, off_t data_offset,
412 struct auxtrace_buffer **buffer_ptr)
413{
414 struct auxtrace_buffer buffer = {
415 .pid = -1,
416 .tid = event->auxtrace.tid,
417 .cpu = { event->auxtrace.cpu },
418 .data_offset = data_offset,
419 .offset = event->auxtrace.offset,
420 .reference = event->auxtrace.reference,
421 .size = event->auxtrace.size,
422 };
423 unsigned int idx = event->auxtrace.idx;
424
425 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
426 buffer_ptr);
427}
428
429static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
430 struct perf_session *session,
431 off_t file_offset, size_t sz)
432{
433 union perf_event *event;
434 int err;
435 char buf[PERF_SAMPLE_MAX_SIZE];
436
437 err = perf_session__peek_event(session, file_offset, buf,
438 PERF_SAMPLE_MAX_SIZE, &event, NULL);
439 if (err)
440 return err;
441
442 if (event->header.type == PERF_RECORD_AUXTRACE) {
443 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
444 event->header.size != sz) {
445 err = -EINVAL;
446 goto out;
447 }
448 file_offset += event->header.size;
449 err = auxtrace_queues__add_event(queues, session, event,
450 file_offset, NULL);
451 }
452out:
453 return err;
454}
455
456void auxtrace_queues__free(struct auxtrace_queues *queues)
457{
458 unsigned int i;
459
460 for (i = 0; i < queues->nr_queues; i++) {
461 while (!list_empty(&queues->queue_array[i].head)) {
462 struct auxtrace_buffer *buffer;
463
464 buffer = list_entry(queues->queue_array[i].head.next,
465 struct auxtrace_buffer, list);
466 list_del_init(&buffer->list);
467 auxtrace_buffer__free(buffer);
468 }
469 }
470
471 zfree(&queues->queue_array);
472 queues->nr_queues = 0;
473}
474
475static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
476 unsigned int pos, unsigned int queue_nr,
477 u64 ordinal)
478{
479 unsigned int parent;
480
481 while (pos) {
482 parent = (pos - 1) >> 1;
483 if (heap_array[parent].ordinal <= ordinal)
484 break;
485 heap_array[pos] = heap_array[parent];
486 pos = parent;
487 }
488 heap_array[pos].queue_nr = queue_nr;
489 heap_array[pos].ordinal = ordinal;
490}
491
492int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
493 u64 ordinal)
494{
495 struct auxtrace_heap_item *heap_array;
496
497 if (queue_nr >= heap->heap_sz) {
498 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
499
500 while (heap_sz <= queue_nr)
501 heap_sz <<= 1;
502 heap_array = realloc(heap->heap_array,
503 heap_sz * sizeof(struct auxtrace_heap_item));
504 if (!heap_array)
505 return -ENOMEM;
506 heap->heap_array = heap_array;
507 heap->heap_sz = heap_sz;
508 }
509
510 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
511
512 return 0;
513}
514
515void auxtrace_heap__free(struct auxtrace_heap *heap)
516{
517 zfree(&heap->heap_array);
518 heap->heap_cnt = 0;
519 heap->heap_sz = 0;
520}
521
522void auxtrace_heap__pop(struct auxtrace_heap *heap)
523{
524 unsigned int pos, last, heap_cnt = heap->heap_cnt;
525 struct auxtrace_heap_item *heap_array;
526
527 if (!heap_cnt)
528 return;
529
530 heap->heap_cnt -= 1;
531
532 heap_array = heap->heap_array;
533
534 pos = 0;
535 while (1) {
536 unsigned int left, right;
537
538 left = (pos << 1) + 1;
539 if (left >= heap_cnt)
540 break;
541 right = left + 1;
542 if (right >= heap_cnt) {
543 heap_array[pos] = heap_array[left];
544 return;
545 }
546 if (heap_array[left].ordinal < heap_array[right].ordinal) {
547 heap_array[pos] = heap_array[left];
548 pos = left;
549 } else {
550 heap_array[pos] = heap_array[right];
551 pos = right;
552 }
553 }
554
555 last = heap_cnt - 1;
556 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
557 heap_array[last].ordinal);
558}
559
560size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
561 struct evlist *evlist)
562{
563 if (itr)
564 return itr->info_priv_size(itr, evlist);
565 return 0;
566}
567
568static int auxtrace_not_supported(void)
569{
570 pr_err("AUX area tracing is not supported on this architecture\n");
571 return -EINVAL;
572}
573
574int auxtrace_record__info_fill(struct auxtrace_record *itr,
575 struct perf_session *session,
576 struct perf_record_auxtrace_info *auxtrace_info,
577 size_t priv_size)
578{
579 if (itr)
580 return itr->info_fill(itr, session, auxtrace_info, priv_size);
581 return auxtrace_not_supported();
582}
583
584void auxtrace_record__free(struct auxtrace_record *itr)
585{
586 if (itr)
587 itr->free(itr);
588}
589
590int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
591{
592 if (itr && itr->snapshot_start)
593 return itr->snapshot_start(itr);
594 return 0;
595}
596
597int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
598{
599 if (!on_exit && itr && itr->snapshot_finish)
600 return itr->snapshot_finish(itr);
601 return 0;
602}
603
604int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
605 struct auxtrace_mmap *mm,
606 unsigned char *data, u64 *head, u64 *old)
607{
608 if (itr && itr->find_snapshot)
609 return itr->find_snapshot(itr, idx, mm, data, head, old);
610 return 0;
611}
612
613int auxtrace_record__options(struct auxtrace_record *itr,
614 struct evlist *evlist,
615 struct record_opts *opts)
616{
617 if (itr) {
618 itr->evlist = evlist;
619 return itr->recording_options(itr, evlist, opts);
620 }
621 return 0;
622}
623
624u64 auxtrace_record__reference(struct auxtrace_record *itr)
625{
626 if (itr)
627 return itr->reference(itr);
628 return 0;
629}
630
631int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
632 struct record_opts *opts, const char *str)
633{
634 if (!str)
635 return 0;
636
637 /* PMU-agnostic options */
638 switch (*str) {
639 case 'e':
640 opts->auxtrace_snapshot_on_exit = true;
641 str++;
642 break;
643 default:
644 break;
645 }
646
647 if (itr && itr->parse_snapshot_options)
648 return itr->parse_snapshot_options(itr, opts, str);
649
650 pr_err("No AUX area tracing to snapshot\n");
651 return -EINVAL;
652}
653
654static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
655{
656 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
657
658 if (per_cpu_mmaps) {
659 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
660 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
661
662 if (cpu_map_idx == -1)
663 return -EINVAL;
664 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
665 }
666
667 return perf_evsel__enable_thread(&evsel->core, idx);
668}
669
670int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
671{
672 struct evsel *evsel;
673
674 if (!itr->evlist)
675 return -EINVAL;
676
677 evlist__for_each_entry(itr->evlist, evsel) {
678 if (evsel__is_aux_event(evsel)) {
679 if (evsel->disabled)
680 return 0;
681 return evlist__enable_event_idx(itr->evlist, evsel, idx);
682 }
683 }
684 return -EINVAL;
685}
686
687/*
688 * Event record size is 16-bit which results in a maximum size of about 64KiB.
689 * Allow about 4KiB for the rest of the sample record, to give a maximum
690 * AUX area sample size of 60KiB.
691 */
692#define MAX_AUX_SAMPLE_SIZE (60 * 1024)
693
694/* Arbitrary default size if no other default provided */
695#define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
696
697static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
698 struct record_opts *opts)
699{
700 struct evsel *evsel;
701 bool has_aux_leader = false;
702 u32 sz;
703
704 evlist__for_each_entry(evlist, evsel) {
705 sz = evsel->core.attr.aux_sample_size;
706 if (evsel__is_group_leader(evsel)) {
707 has_aux_leader = evsel__is_aux_event(evsel);
708 if (sz) {
709 if (has_aux_leader)
710 pr_err("Cannot add AUX area sampling to an AUX area event\n");
711 else
712 pr_err("Cannot add AUX area sampling to a group leader\n");
713 return -EINVAL;
714 }
715 }
716 if (sz > MAX_AUX_SAMPLE_SIZE) {
717 pr_err("AUX area sample size %u too big, max. %d\n",
718 sz, MAX_AUX_SAMPLE_SIZE);
719 return -EINVAL;
720 }
721 if (sz) {
722 if (!has_aux_leader) {
723 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
724 return -EINVAL;
725 }
726 evsel__set_sample_bit(evsel, AUX);
727 opts->auxtrace_sample_mode = true;
728 } else {
729 evsel__reset_sample_bit(evsel, AUX);
730 }
731 }
732
733 if (!opts->auxtrace_sample_mode) {
734 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
735 return -EINVAL;
736 }
737
738 if (!perf_can_aux_sample()) {
739 pr_err("AUX area sampling is not supported by kernel\n");
740 return -EINVAL;
741 }
742
743 return 0;
744}
745
746int auxtrace_parse_sample_options(struct auxtrace_record *itr,
747 struct evlist *evlist,
748 struct record_opts *opts, const char *str)
749{
750 struct evsel_config_term *term;
751 struct evsel *aux_evsel;
752 bool has_aux_sample_size = false;
753 bool has_aux_leader = false;
754 struct evsel *evsel;
755 char *endptr;
756 unsigned long sz;
757
758 if (!str)
759 goto no_opt;
760
761 if (!itr) {
762 pr_err("No AUX area event to sample\n");
763 return -EINVAL;
764 }
765
766 sz = strtoul(str, &endptr, 0);
767 if (*endptr || sz > UINT_MAX) {
768 pr_err("Bad AUX area sampling option: '%s'\n", str);
769 return -EINVAL;
770 }
771
772 if (!sz)
773 sz = itr->default_aux_sample_size;
774
775 if (!sz)
776 sz = DEFAULT_AUX_SAMPLE_SIZE;
777
778 /* Set aux_sample_size based on --aux-sample option */
779 evlist__for_each_entry(evlist, evsel) {
780 if (evsel__is_group_leader(evsel)) {
781 has_aux_leader = evsel__is_aux_event(evsel);
782 } else if (has_aux_leader) {
783 evsel->core.attr.aux_sample_size = sz;
784 }
785 }
786no_opt:
787 aux_evsel = NULL;
788 /* Override with aux_sample_size from config term */
789 evlist__for_each_entry(evlist, evsel) {
790 if (evsel__is_aux_event(evsel))
791 aux_evsel = evsel;
792 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
793 if (term) {
794 has_aux_sample_size = true;
795 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
796 /* If possible, group with the AUX event */
797 if (aux_evsel && evsel->core.attr.aux_sample_size)
798 evlist__regroup(evlist, aux_evsel, evsel);
799 }
800 }
801
802 if (!str && !has_aux_sample_size)
803 return 0;
804
805 if (!itr) {
806 pr_err("No AUX area event to sample\n");
807 return -EINVAL;
808 }
809
810 return auxtrace_validate_aux_sample_size(evlist, opts);
811}
812
813void auxtrace_regroup_aux_output(struct evlist *evlist)
814{
815 struct evsel *evsel, *aux_evsel = NULL;
816 struct evsel_config_term *term;
817
818 evlist__for_each_entry(evlist, evsel) {
819 if (evsel__is_aux_event(evsel))
820 aux_evsel = evsel;
821 term = evsel__get_config_term(evsel, AUX_OUTPUT);
822 /* If possible, group with the AUX event */
823 if (term && aux_evsel)
824 evlist__regroup(evlist, aux_evsel, evsel);
825 }
826}
827
828struct auxtrace_record *__weak
829auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
830{
831 *err = 0;
832 return NULL;
833}
834
835static int auxtrace_index__alloc(struct list_head *head)
836{
837 struct auxtrace_index *auxtrace_index;
838
839 auxtrace_index = malloc(sizeof(struct auxtrace_index));
840 if (!auxtrace_index)
841 return -ENOMEM;
842
843 auxtrace_index->nr = 0;
844 INIT_LIST_HEAD(&auxtrace_index->list);
845
846 list_add_tail(&auxtrace_index->list, head);
847
848 return 0;
849}
850
851void auxtrace_index__free(struct list_head *head)
852{
853 struct auxtrace_index *auxtrace_index, *n;
854
855 list_for_each_entry_safe(auxtrace_index, n, head, list) {
856 list_del_init(&auxtrace_index->list);
857 free(auxtrace_index);
858 }
859}
860
861static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
862{
863 struct auxtrace_index *auxtrace_index;
864 int err;
865
866 if (list_empty(head)) {
867 err = auxtrace_index__alloc(head);
868 if (err)
869 return NULL;
870 }
871
872 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
873
874 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
875 err = auxtrace_index__alloc(head);
876 if (err)
877 return NULL;
878 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
879 list);
880 }
881
882 return auxtrace_index;
883}
884
885int auxtrace_index__auxtrace_event(struct list_head *head,
886 union perf_event *event, off_t file_offset)
887{
888 struct auxtrace_index *auxtrace_index;
889 size_t nr;
890
891 auxtrace_index = auxtrace_index__last(head);
892 if (!auxtrace_index)
893 return -ENOMEM;
894
895 nr = auxtrace_index->nr;
896 auxtrace_index->entries[nr].file_offset = file_offset;
897 auxtrace_index->entries[nr].sz = event->header.size;
898 auxtrace_index->nr += 1;
899
900 return 0;
901}
902
903static int auxtrace_index__do_write(int fd,
904 struct auxtrace_index *auxtrace_index)
905{
906 struct auxtrace_index_entry ent;
907 size_t i;
908
909 for (i = 0; i < auxtrace_index->nr; i++) {
910 ent.file_offset = auxtrace_index->entries[i].file_offset;
911 ent.sz = auxtrace_index->entries[i].sz;
912 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
913 return -errno;
914 }
915 return 0;
916}
917
918int auxtrace_index__write(int fd, struct list_head *head)
919{
920 struct auxtrace_index *auxtrace_index;
921 u64 total = 0;
922 int err;
923
924 list_for_each_entry(auxtrace_index, head, list)
925 total += auxtrace_index->nr;
926
927 if (writen(fd, &total, sizeof(total)) != sizeof(total))
928 return -errno;
929
930 list_for_each_entry(auxtrace_index, head, list) {
931 err = auxtrace_index__do_write(fd, auxtrace_index);
932 if (err)
933 return err;
934 }
935
936 return 0;
937}
938
939static int auxtrace_index__process_entry(int fd, struct list_head *head,
940 bool needs_swap)
941{
942 struct auxtrace_index *auxtrace_index;
943 struct auxtrace_index_entry ent;
944 size_t nr;
945
946 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
947 return -1;
948
949 auxtrace_index = auxtrace_index__last(head);
950 if (!auxtrace_index)
951 return -1;
952
953 nr = auxtrace_index->nr;
954 if (needs_swap) {
955 auxtrace_index->entries[nr].file_offset =
956 bswap_64(ent.file_offset);
957 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
958 } else {
959 auxtrace_index->entries[nr].file_offset = ent.file_offset;
960 auxtrace_index->entries[nr].sz = ent.sz;
961 }
962
963 auxtrace_index->nr = nr + 1;
964
965 return 0;
966}
967
968int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
969 bool needs_swap)
970{
971 struct list_head *head = &session->auxtrace_index;
972 u64 nr;
973
974 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
975 return -1;
976
977 if (needs_swap)
978 nr = bswap_64(nr);
979
980 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
981 return -1;
982
983 while (nr--) {
984 int err;
985
986 err = auxtrace_index__process_entry(fd, head, needs_swap);
987 if (err)
988 return -1;
989 }
990
991 return 0;
992}
993
994static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
995 struct perf_session *session,
996 struct auxtrace_index_entry *ent)
997{
998 return auxtrace_queues__add_indexed_event(queues, session,
999 ent->file_offset, ent->sz);
1000}
1001
1002int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1003 struct perf_session *session)
1004{
1005 struct auxtrace_index *auxtrace_index;
1006 struct auxtrace_index_entry *ent;
1007 size_t i;
1008 int err;
1009
1010 if (auxtrace__dont_decode(session))
1011 return 0;
1012
1013 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1014 for (i = 0; i < auxtrace_index->nr; i++) {
1015 ent = &auxtrace_index->entries[i];
1016 err = auxtrace_queues__process_index_entry(queues,
1017 session,
1018 ent);
1019 if (err)
1020 return err;
1021 }
1022 }
1023 return 0;
1024}
1025
1026struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1027 struct auxtrace_buffer *buffer)
1028{
1029 if (buffer) {
1030 if (list_is_last(&buffer->list, &queue->head))
1031 return NULL;
1032 return list_entry(buffer->list.next, struct auxtrace_buffer,
1033 list);
1034 } else {
1035 if (list_empty(&queue->head))
1036 return NULL;
1037 return list_entry(queue->head.next, struct auxtrace_buffer,
1038 list);
1039 }
1040}
1041
1042struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1043 struct perf_sample *sample,
1044 struct perf_session *session)
1045{
1046 struct perf_sample_id *sid;
1047 unsigned int idx;
1048 u64 id;
1049
1050 id = sample->id;
1051 if (!id)
1052 return NULL;
1053
1054 sid = evlist__id2sid(session->evlist, id);
1055 if (!sid)
1056 return NULL;
1057
1058 idx = sid->idx;
1059
1060 if (idx >= queues->nr_queues)
1061 return NULL;
1062
1063 return &queues->queue_array[idx];
1064}
1065
1066int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1067 struct perf_session *session,
1068 struct perf_sample *sample, u64 data_offset,
1069 u64 reference)
1070{
1071 struct auxtrace_buffer buffer = {
1072 .pid = -1,
1073 .data_offset = data_offset,
1074 .reference = reference,
1075 .size = sample->aux_sample.size,
1076 };
1077 struct perf_sample_id *sid;
1078 u64 id = sample->id;
1079 unsigned int idx;
1080
1081 if (!id)
1082 return -EINVAL;
1083
1084 sid = evlist__id2sid(session->evlist, id);
1085 if (!sid)
1086 return -ENOENT;
1087
1088 idx = sid->idx;
1089 buffer.tid = sid->tid;
1090 buffer.cpu = sid->cpu;
1091
1092 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1093}
1094
1095struct queue_data {
1096 bool samples;
1097 bool events;
1098};
1099
1100static int auxtrace_queue_data_cb(struct perf_session *session,
1101 union perf_event *event, u64 offset,
1102 void *data)
1103{
1104 struct queue_data *qd = data;
1105 struct perf_sample sample;
1106 int err;
1107
1108 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1109 if (event->header.size < sizeof(struct perf_record_auxtrace))
1110 return -EINVAL;
1111 offset += event->header.size;
1112 return session->auxtrace->queue_data(session, NULL, event,
1113 offset);
1114 }
1115
1116 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1117 return 0;
1118
1119 err = evlist__parse_sample(session->evlist, event, &sample);
1120 if (err)
1121 return err;
1122
1123 if (!sample.aux_sample.size)
1124 return 0;
1125
1126 offset += sample.aux_sample.data - (void *)event;
1127
1128 return session->auxtrace->queue_data(session, &sample, NULL, offset);
1129}
1130
1131int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1132{
1133 struct queue_data qd = {
1134 .samples = samples,
1135 .events = events,
1136 };
1137
1138 if (auxtrace__dont_decode(session))
1139 return 0;
1140
1141 if (perf_data__is_pipe(session->data))
1142 return 0;
1143
1144 if (!session->auxtrace || !session->auxtrace->queue_data)
1145 return -EINVAL;
1146
1147 return perf_session__peek_events(session, session->header.data_offset,
1148 session->header.data_size,
1149 auxtrace_queue_data_cb, &qd);
1150}
1151
1152void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1153{
1154 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1155 size_t adj = buffer->data_offset & (page_size - 1);
1156 size_t size = buffer->size + adj;
1157 off_t file_offset = buffer->data_offset - adj;
1158 void *addr;
1159
1160 if (buffer->data)
1161 return buffer->data;
1162
1163 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1164 if (addr == MAP_FAILED)
1165 return NULL;
1166
1167 buffer->mmap_addr = addr;
1168 buffer->mmap_size = size;
1169
1170 buffer->data = addr + adj;
1171
1172 return buffer->data;
1173}
1174
1175void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1176{
1177 if (!buffer->data || !buffer->mmap_addr)
1178 return;
1179 munmap(buffer->mmap_addr, buffer->mmap_size);
1180 buffer->mmap_addr = NULL;
1181 buffer->mmap_size = 0;
1182 buffer->data = NULL;
1183 buffer->use_data = NULL;
1184}
1185
1186void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1187{
1188 auxtrace_buffer__put_data(buffer);
1189 if (buffer->data_needs_freeing) {
1190 buffer->data_needs_freeing = false;
1191 zfree(&buffer->data);
1192 buffer->use_data = NULL;
1193 buffer->size = 0;
1194 }
1195}
1196
1197void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1198{
1199 auxtrace_buffer__drop_data(buffer);
1200 free(buffer);
1201}
1202
1203void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1204 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1205 const char *msg, u64 timestamp,
1206 pid_t machine_pid, int vcpu)
1207{
1208 size_t size;
1209
1210 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1211
1212 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1213 auxtrace_error->type = type;
1214 auxtrace_error->code = code;
1215 auxtrace_error->cpu = cpu;
1216 auxtrace_error->pid = pid;
1217 auxtrace_error->tid = tid;
1218 auxtrace_error->fmt = 1;
1219 auxtrace_error->ip = ip;
1220 auxtrace_error->time = timestamp;
1221 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1222 if (machine_pid) {
1223 auxtrace_error->fmt = 2;
1224 auxtrace_error->machine_pid = machine_pid;
1225 auxtrace_error->vcpu = vcpu;
1226 size = sizeof(*auxtrace_error);
1227 } else {
1228 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1229 strlen(auxtrace_error->msg) + 1;
1230 }
1231 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1232}
1233
1234void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1235 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1236 const char *msg, u64 timestamp)
1237{
1238 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1239 ip, msg, timestamp, 0, -1);
1240}
1241
1242int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1243 const struct perf_tool *tool,
1244 struct perf_session *session,
1245 perf_event__handler_t process)
1246{
1247 union perf_event *ev;
1248 size_t priv_size;
1249 int err;
1250
1251 pr_debug2("Synthesizing auxtrace information\n");
1252 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1253 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1254 if (!ev)
1255 return -ENOMEM;
1256
1257 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1258 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1259 priv_size;
1260 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1261 priv_size);
1262 if (err)
1263 goto out_free;
1264
1265 err = process(tool, ev, NULL, NULL);
1266out_free:
1267 free(ev);
1268 return err;
1269}
1270
1271static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1272{
1273 struct evsel *new_leader = NULL;
1274 struct evsel *evsel;
1275
1276 /* Find new leader for the group */
1277 evlist__for_each_entry(evlist, evsel) {
1278 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1279 continue;
1280 if (!new_leader)
1281 new_leader = evsel;
1282 evsel__set_leader(evsel, new_leader);
1283 }
1284
1285 /* Update group information */
1286 if (new_leader) {
1287 zfree(&new_leader->group_name);
1288 new_leader->group_name = leader->group_name;
1289 leader->group_name = NULL;
1290
1291 new_leader->core.nr_members = leader->core.nr_members - 1;
1292 leader->core.nr_members = 1;
1293 }
1294}
1295
1296static void unleader_auxtrace(struct perf_session *session)
1297{
1298 struct evsel *evsel;
1299
1300 evlist__for_each_entry(session->evlist, evsel) {
1301 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1302 evsel__is_group_leader(evsel)) {
1303 unleader_evsel(session->evlist, evsel);
1304 }
1305 }
1306}
1307
1308int perf_event__process_auxtrace_info(struct perf_session *session,
1309 union perf_event *event)
1310{
1311 enum auxtrace_type type = event->auxtrace_info.type;
1312 int err;
1313
1314 if (dump_trace)
1315 fprintf(stdout, " type: %u\n", type);
1316
1317 switch (type) {
1318 case PERF_AUXTRACE_INTEL_PT:
1319 err = intel_pt_process_auxtrace_info(event, session);
1320 break;
1321 case PERF_AUXTRACE_INTEL_BTS:
1322 err = intel_bts_process_auxtrace_info(event, session);
1323 break;
1324 case PERF_AUXTRACE_ARM_SPE:
1325 err = arm_spe_process_auxtrace_info(event, session);
1326 break;
1327 case PERF_AUXTRACE_CS_ETM:
1328 err = cs_etm__process_auxtrace_info(event, session);
1329 break;
1330 case PERF_AUXTRACE_S390_CPUMSF:
1331 err = s390_cpumsf_process_auxtrace_info(event, session);
1332 break;
1333 case PERF_AUXTRACE_HISI_PTT:
1334 err = hisi_ptt_process_auxtrace_info(event, session);
1335 break;
1336 case PERF_AUXTRACE_UNKNOWN:
1337 default:
1338 return -EINVAL;
1339 }
1340
1341 if (err)
1342 return err;
1343
1344 unleader_auxtrace(session);
1345
1346 return 0;
1347}
1348
1349s64 perf_event__process_auxtrace(struct perf_session *session,
1350 union perf_event *event)
1351{
1352 s64 err;
1353
1354 if (dump_trace)
1355 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1356 event->auxtrace.size, event->auxtrace.offset,
1357 event->auxtrace.reference, event->auxtrace.idx,
1358 event->auxtrace.tid, event->auxtrace.cpu);
1359
1360 if (auxtrace__dont_decode(session))
1361 return event->auxtrace.size;
1362
1363 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1364 return -EINVAL;
1365
1366 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1367 if (err < 0)
1368 return err;
1369
1370 return event->auxtrace.size;
1371}
1372
1373#define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1374#define PERF_ITRACE_DEFAULT_PERIOD 100000
1375#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1376#define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1377#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1378#define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1379
1380void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1381 bool no_sample)
1382{
1383 synth_opts->branches = true;
1384 synth_opts->transactions = true;
1385 synth_opts->ptwrites = true;
1386 synth_opts->pwr_events = true;
1387 synth_opts->other_events = true;
1388 synth_opts->intr_events = true;
1389 synth_opts->errors = true;
1390 synth_opts->flc = true;
1391 synth_opts->llc = true;
1392 synth_opts->tlb = true;
1393 synth_opts->mem = true;
1394 synth_opts->remote_access = true;
1395
1396 if (no_sample) {
1397 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1398 synth_opts->period = 1;
1399 synth_opts->calls = true;
1400 } else {
1401 synth_opts->instructions = true;
1402 synth_opts->cycles = true;
1403 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1404 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1405 }
1406 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1407 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1408 synth_opts->initial_skip = 0;
1409}
1410
1411static int get_flag(const char **ptr, unsigned int *flags)
1412{
1413 while (1) {
1414 char c = **ptr;
1415
1416 if (c >= 'a' && c <= 'z') {
1417 *flags |= 1 << (c - 'a');
1418 ++*ptr;
1419 return 0;
1420 } else if (c == ' ') {
1421 ++*ptr;
1422 continue;
1423 } else {
1424 return -1;
1425 }
1426 }
1427}
1428
1429static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1430{
1431 while (1) {
1432 switch (**ptr) {
1433 case '+':
1434 ++*ptr;
1435 if (get_flag(ptr, plus_flags))
1436 return -1;
1437 break;
1438 case '-':
1439 ++*ptr;
1440 if (get_flag(ptr, minus_flags))
1441 return -1;
1442 break;
1443 case ' ':
1444 ++*ptr;
1445 break;
1446 default:
1447 return 0;
1448 }
1449 }
1450}
1451
1452#define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1453
1454static unsigned int itrace_log_on_error_size(void)
1455{
1456 unsigned int sz = 0;
1457
1458 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1459 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1460}
1461
1462/*
1463 * Please check tools/perf/Documentation/perf-script.txt for information
1464 * about the options parsed here, which is introduced after this cset,
1465 * when support in 'perf script' for these options is introduced.
1466 */
1467int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1468 const char *str, int unset)
1469{
1470 const char *p;
1471 char *endptr;
1472 bool period_type_set = false;
1473 bool period_set = false;
1474 bool iy = false;
1475
1476 synth_opts->set = true;
1477
1478 if (unset) {
1479 synth_opts->dont_decode = true;
1480 return 0;
1481 }
1482
1483 if (!str) {
1484 itrace_synth_opts__set_default(synth_opts,
1485 synth_opts->default_no_sample);
1486 return 0;
1487 }
1488
1489 for (p = str; *p;) {
1490 switch (*p++) {
1491 case 'i':
1492 case 'y':
1493 iy = true;
1494 if (p[-1] == 'y')
1495 synth_opts->cycles = true;
1496 else
1497 synth_opts->instructions = true;
1498 while (*p == ' ' || *p == ',')
1499 p += 1;
1500 if (isdigit(*p)) {
1501 synth_opts->period = strtoull(p, &endptr, 10);
1502 period_set = true;
1503 p = endptr;
1504 while (*p == ' ' || *p == ',')
1505 p += 1;
1506 switch (*p++) {
1507 case 'i':
1508 synth_opts->period_type =
1509 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1510 period_type_set = true;
1511 break;
1512 case 't':
1513 synth_opts->period_type =
1514 PERF_ITRACE_PERIOD_TICKS;
1515 period_type_set = true;
1516 break;
1517 case 'm':
1518 synth_opts->period *= 1000;
1519 /* Fall through */
1520 case 'u':
1521 synth_opts->period *= 1000;
1522 /* Fall through */
1523 case 'n':
1524 if (*p++ != 's')
1525 goto out_err;
1526 synth_opts->period_type =
1527 PERF_ITRACE_PERIOD_NANOSECS;
1528 period_type_set = true;
1529 break;
1530 case '\0':
1531 goto out;
1532 default:
1533 goto out_err;
1534 }
1535 }
1536 break;
1537 case 'b':
1538 synth_opts->branches = true;
1539 break;
1540 case 'x':
1541 synth_opts->transactions = true;
1542 break;
1543 case 'w':
1544 synth_opts->ptwrites = true;
1545 break;
1546 case 'p':
1547 synth_opts->pwr_events = true;
1548 break;
1549 case 'o':
1550 synth_opts->other_events = true;
1551 break;
1552 case 'I':
1553 synth_opts->intr_events = true;
1554 break;
1555 case 'e':
1556 synth_opts->errors = true;
1557 if (get_flags(&p, &synth_opts->error_plus_flags,
1558 &synth_opts->error_minus_flags))
1559 goto out_err;
1560 break;
1561 case 'd':
1562 synth_opts->log = true;
1563 if (get_flags(&p, &synth_opts->log_plus_flags,
1564 &synth_opts->log_minus_flags))
1565 goto out_err;
1566 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1567 synth_opts->log_on_error_size = itrace_log_on_error_size();
1568 break;
1569 case 'c':
1570 synth_opts->branches = true;
1571 synth_opts->calls = true;
1572 break;
1573 case 'r':
1574 synth_opts->branches = true;
1575 synth_opts->returns = true;
1576 break;
1577 case 'G':
1578 case 'g':
1579 if (p[-1] == 'G')
1580 synth_opts->add_callchain = true;
1581 else
1582 synth_opts->callchain = true;
1583 synth_opts->callchain_sz =
1584 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1585 while (*p == ' ' || *p == ',')
1586 p += 1;
1587 if (isdigit(*p)) {
1588 unsigned int val;
1589
1590 val = strtoul(p, &endptr, 10);
1591 p = endptr;
1592 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1593 goto out_err;
1594 synth_opts->callchain_sz = val;
1595 }
1596 break;
1597 case 'L':
1598 case 'l':
1599 if (p[-1] == 'L')
1600 synth_opts->add_last_branch = true;
1601 else
1602 synth_opts->last_branch = true;
1603 synth_opts->last_branch_sz =
1604 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1605 while (*p == ' ' || *p == ',')
1606 p += 1;
1607 if (isdigit(*p)) {
1608 unsigned int val;
1609
1610 val = strtoul(p, &endptr, 10);
1611 p = endptr;
1612 if (!val ||
1613 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1614 goto out_err;
1615 synth_opts->last_branch_sz = val;
1616 }
1617 break;
1618 case 's':
1619 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1620 if (p == endptr)
1621 goto out_err;
1622 p = endptr;
1623 break;
1624 case 'f':
1625 synth_opts->flc = true;
1626 break;
1627 case 'm':
1628 synth_opts->llc = true;
1629 break;
1630 case 't':
1631 synth_opts->tlb = true;
1632 break;
1633 case 'a':
1634 synth_opts->remote_access = true;
1635 break;
1636 case 'M':
1637 synth_opts->mem = true;
1638 break;
1639 case 'q':
1640 synth_opts->quick += 1;
1641 break;
1642 case 'A':
1643 synth_opts->approx_ipc = true;
1644 break;
1645 case 'Z':
1646 synth_opts->timeless_decoding = true;
1647 break;
1648 case 'T':
1649 synth_opts->use_timestamp = true;
1650 break;
1651 case ' ':
1652 case ',':
1653 break;
1654 default:
1655 goto out_err;
1656 }
1657 }
1658out:
1659 if (iy) {
1660 if (!period_type_set)
1661 synth_opts->period_type =
1662 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1663 if (!period_set)
1664 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1665 }
1666
1667 return 0;
1668
1669out_err:
1670 pr_err("Bad Instruction Tracing options '%s'\n", str);
1671 return -EINVAL;
1672}
1673
1674int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1675{
1676 return itrace_do_parse_synth_opts(opt->value, str, unset);
1677}
1678
1679static const char * const auxtrace_error_type_name[] = {
1680 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1681};
1682
1683static const char *auxtrace_error_name(int type)
1684{
1685 const char *error_type_name = NULL;
1686
1687 if (type < PERF_AUXTRACE_ERROR_MAX)
1688 error_type_name = auxtrace_error_type_name[type];
1689 if (!error_type_name)
1690 error_type_name = "unknown AUX";
1691 return error_type_name;
1692}
1693
1694size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1695{
1696 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1697 unsigned long long nsecs = e->time;
1698 const char *msg = e->msg;
1699 int ret;
1700
1701 ret = fprintf(fp, " %s error type %u",
1702 auxtrace_error_name(e->type), e->type);
1703
1704 if (e->fmt && nsecs) {
1705 unsigned long secs = nsecs / NSEC_PER_SEC;
1706
1707 nsecs -= secs * NSEC_PER_SEC;
1708 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1709 } else {
1710 ret += fprintf(fp, " time 0");
1711 }
1712
1713 if (!e->fmt)
1714 msg = (const char *)&e->time;
1715
1716 if (e->fmt >= 2 && e->machine_pid)
1717 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1718
1719 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1720 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1721 return ret;
1722}
1723
1724void perf_session__auxtrace_error_inc(struct perf_session *session,
1725 union perf_event *event)
1726{
1727 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1728
1729 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1730 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1731}
1732
1733void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1734{
1735 int i;
1736
1737 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1738 if (!stats->nr_auxtrace_errors[i])
1739 continue;
1740 ui__warning("%u %s errors\n",
1741 stats->nr_auxtrace_errors[i],
1742 auxtrace_error_name(i));
1743 }
1744}
1745
1746int perf_event__process_auxtrace_error(struct perf_session *session,
1747 union perf_event *event)
1748{
1749 if (auxtrace__dont_decode(session))
1750 return 0;
1751
1752 perf_event__fprintf_auxtrace_error(event, stdout);
1753 return 0;
1754}
1755
1756/*
1757 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1758 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1759 * the issues caused by the below sequence on multiple CPUs: when perf tool
1760 * accesses either the load operation or the store operation for 64-bit value,
1761 * on some architectures the operation is divided into two instructions, one
1762 * is for accessing the low 32-bit value and another is for the high 32-bit;
1763 * thus these two user operations can give the kernel chances to access the
1764 * 64-bit value, and thus leads to the unexpected load values.
1765 *
1766 * kernel (64-bit) user (32-bit)
1767 *
1768 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo
1769 * STORE $aux_data | ,--->
1770 * FLUSH $aux_data | | LOAD ->aux_head_hi
1771 * STORE ->aux_head --|-------` smp_rmb()
1772 * } | LOAD $data
1773 * | smp_mb()
1774 * | STORE ->aux_tail_lo
1775 * `----------->
1776 * STORE ->aux_tail_hi
1777 *
1778 * For this reason, it's impossible for the perf tool to work correctly when
1779 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1780 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1781 * the pointers can be increased monotonically, whatever the buffer size it is,
1782 * at the end the head and tail can be bigger than 4GB and carry out to the
1783 * high 32-bit.
1784 *
1785 * To mitigate the issues and improve the user experience, we can allow the
1786 * perf tool working in certain conditions and bail out with error if detect
1787 * any overflow cannot be handled.
1788 *
1789 * For reading the AUX head, it reads out the values for three times, and
1790 * compares the high 4 bytes of the values between the first time and the last
1791 * time, if there has no change for high 4 bytes injected by the kernel during
1792 * the user reading sequence, it's safe for use the second value.
1793 *
1794 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1795 * 32 bits, it means there have two store operations in user space and it cannot
1796 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1797 * the caller an overflow error has happened.
1798 */
1799u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1800{
1801 struct perf_event_mmap_page *pc = mm->userpg;
1802 u64 first, second, last;
1803 u64 mask = (u64)(UINT32_MAX) << 32;
1804
1805 do {
1806 first = READ_ONCE(pc->aux_head);
1807 /* Ensure all reads are done after we read the head */
1808 smp_rmb();
1809 second = READ_ONCE(pc->aux_head);
1810 /* Ensure all reads are done after we read the head */
1811 smp_rmb();
1812 last = READ_ONCE(pc->aux_head);
1813 } while ((first & mask) != (last & mask));
1814
1815 return second;
1816}
1817
1818int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1819{
1820 struct perf_event_mmap_page *pc = mm->userpg;
1821 u64 mask = (u64)(UINT32_MAX) << 32;
1822
1823 if (tail & mask)
1824 return -1;
1825
1826 /* Ensure all reads are done before we write the tail out */
1827 smp_mb();
1828 WRITE_ONCE(pc->aux_tail, tail);
1829 return 0;
1830}
1831
1832static int __auxtrace_mmap__read(struct mmap *map,
1833 struct auxtrace_record *itr,
1834 const struct perf_tool *tool, process_auxtrace_t fn,
1835 bool snapshot, size_t snapshot_size)
1836{
1837 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1838 u64 head, old = mm->prev, offset, ref;
1839 unsigned char *data = mm->base;
1840 size_t size, head_off, old_off, len1, len2, padding;
1841 union perf_event ev;
1842 void *data1, *data2;
1843 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1844
1845 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1846
1847 if (snapshot &&
1848 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1849 return -1;
1850
1851 if (old == head)
1852 return 0;
1853
1854 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1855 mm->idx, old, head, head - old);
1856
1857 if (mm->mask) {
1858 head_off = head & mm->mask;
1859 old_off = old & mm->mask;
1860 } else {
1861 head_off = head % mm->len;
1862 old_off = old % mm->len;
1863 }
1864
1865 if (head_off > old_off)
1866 size = head_off - old_off;
1867 else
1868 size = mm->len - (old_off - head_off);
1869
1870 if (snapshot && size > snapshot_size)
1871 size = snapshot_size;
1872
1873 ref = auxtrace_record__reference(itr);
1874
1875 if (head > old || size <= head || mm->mask) {
1876 offset = head - size;
1877 } else {
1878 /*
1879 * When the buffer size is not a power of 2, 'head' wraps at the
1880 * highest multiple of the buffer size, so we have to subtract
1881 * the remainder here.
1882 */
1883 u64 rem = (0ULL - mm->len) % mm->len;
1884
1885 offset = head - size - rem;
1886 }
1887
1888 if (size > head_off) {
1889 len1 = size - head_off;
1890 data1 = &data[mm->len - len1];
1891 len2 = head_off;
1892 data2 = &data[0];
1893 } else {
1894 len1 = size;
1895 data1 = &data[head_off - len1];
1896 len2 = 0;
1897 data2 = NULL;
1898 }
1899
1900 if (itr->alignment) {
1901 unsigned int unwanted = len1 % itr->alignment;
1902
1903 len1 -= unwanted;
1904 size -= unwanted;
1905 }
1906
1907 /* padding must be written by fn() e.g. record__process_auxtrace() */
1908 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1909 if (padding)
1910 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1911
1912 memset(&ev, 0, sizeof(ev));
1913 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1914 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1915 ev.auxtrace.size = size + padding;
1916 ev.auxtrace.offset = offset;
1917 ev.auxtrace.reference = ref;
1918 ev.auxtrace.idx = mm->idx;
1919 ev.auxtrace.tid = mm->tid;
1920 ev.auxtrace.cpu = mm->cpu;
1921
1922 if (fn(tool, map, &ev, data1, len1, data2, len2))
1923 return -1;
1924
1925 mm->prev = head;
1926
1927 if (!snapshot) {
1928 int err;
1929
1930 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1931 if (err < 0)
1932 return err;
1933
1934 if (itr->read_finish) {
1935 err = itr->read_finish(itr, mm->idx);
1936 if (err < 0)
1937 return err;
1938 }
1939 }
1940
1941 return 1;
1942}
1943
1944int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1945 const struct perf_tool *tool, process_auxtrace_t fn)
1946{
1947 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1948}
1949
1950int auxtrace_mmap__read_snapshot(struct mmap *map,
1951 struct auxtrace_record *itr,
1952 const struct perf_tool *tool, process_auxtrace_t fn,
1953 size_t snapshot_size)
1954{
1955 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1956}
1957
1958/**
1959 * struct auxtrace_cache - hash table to implement a cache
1960 * @hashtable: the hashtable
1961 * @sz: hashtable size (number of hlists)
1962 * @entry_size: size of an entry
1963 * @limit: limit the number of entries to this maximum, when reached the cache
1964 * is dropped and caching begins again with an empty cache
1965 * @cnt: current number of entries
1966 * @bits: hashtable size (@sz = 2^@bits)
1967 */
1968struct auxtrace_cache {
1969 struct hlist_head *hashtable;
1970 size_t sz;
1971 size_t entry_size;
1972 size_t limit;
1973 size_t cnt;
1974 unsigned int bits;
1975};
1976
1977struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1978 unsigned int limit_percent)
1979{
1980 struct auxtrace_cache *c;
1981 struct hlist_head *ht;
1982 size_t sz, i;
1983
1984 c = zalloc(sizeof(struct auxtrace_cache));
1985 if (!c)
1986 return NULL;
1987
1988 sz = 1UL << bits;
1989
1990 ht = calloc(sz, sizeof(struct hlist_head));
1991 if (!ht)
1992 goto out_free;
1993
1994 for (i = 0; i < sz; i++)
1995 INIT_HLIST_HEAD(&ht[i]);
1996
1997 c->hashtable = ht;
1998 c->sz = sz;
1999 c->entry_size = entry_size;
2000 c->limit = (c->sz * limit_percent) / 100;
2001 c->bits = bits;
2002
2003 return c;
2004
2005out_free:
2006 free(c);
2007 return NULL;
2008}
2009
2010static void auxtrace_cache__drop(struct auxtrace_cache *c)
2011{
2012 struct auxtrace_cache_entry *entry;
2013 struct hlist_node *tmp;
2014 size_t i;
2015
2016 if (!c)
2017 return;
2018
2019 for (i = 0; i < c->sz; i++) {
2020 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2021 hlist_del(&entry->hash);
2022 auxtrace_cache__free_entry(c, entry);
2023 }
2024 }
2025
2026 c->cnt = 0;
2027}
2028
2029void auxtrace_cache__free(struct auxtrace_cache *c)
2030{
2031 if (!c)
2032 return;
2033
2034 auxtrace_cache__drop(c);
2035 zfree(&c->hashtable);
2036 free(c);
2037}
2038
2039void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2040{
2041 return malloc(c->entry_size);
2042}
2043
2044void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2045 void *entry)
2046{
2047 free(entry);
2048}
2049
2050int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2051 struct auxtrace_cache_entry *entry)
2052{
2053 if (c->limit && ++c->cnt > c->limit)
2054 auxtrace_cache__drop(c);
2055
2056 entry->key = key;
2057 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2058
2059 return 0;
2060}
2061
2062static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2063 u32 key)
2064{
2065 struct auxtrace_cache_entry *entry;
2066 struct hlist_head *hlist;
2067 struct hlist_node *n;
2068
2069 if (!c)
2070 return NULL;
2071
2072 hlist = &c->hashtable[hash_32(key, c->bits)];
2073 hlist_for_each_entry_safe(entry, n, hlist, hash) {
2074 if (entry->key == key) {
2075 hlist_del(&entry->hash);
2076 return entry;
2077 }
2078 }
2079
2080 return NULL;
2081}
2082
2083void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2084{
2085 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2086
2087 auxtrace_cache__free_entry(c, entry);
2088}
2089
2090void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2091{
2092 struct auxtrace_cache_entry *entry;
2093 struct hlist_head *hlist;
2094
2095 if (!c)
2096 return NULL;
2097
2098 hlist = &c->hashtable[hash_32(key, c->bits)];
2099 hlist_for_each_entry(entry, hlist, hash) {
2100 if (entry->key == key)
2101 return entry;
2102 }
2103
2104 return NULL;
2105}
2106
2107static void addr_filter__free_str(struct addr_filter *filt)
2108{
2109 zfree(&filt->str);
2110 filt->action = NULL;
2111 filt->sym_from = NULL;
2112 filt->sym_to = NULL;
2113 filt->filename = NULL;
2114}
2115
2116static struct addr_filter *addr_filter__new(void)
2117{
2118 struct addr_filter *filt = zalloc(sizeof(*filt));
2119
2120 if (filt)
2121 INIT_LIST_HEAD(&filt->list);
2122
2123 return filt;
2124}
2125
2126static void addr_filter__free(struct addr_filter *filt)
2127{
2128 if (filt)
2129 addr_filter__free_str(filt);
2130 free(filt);
2131}
2132
2133static void addr_filters__add(struct addr_filters *filts,
2134 struct addr_filter *filt)
2135{
2136 list_add_tail(&filt->list, &filts->head);
2137 filts->cnt += 1;
2138}
2139
2140static void addr_filters__del(struct addr_filters *filts,
2141 struct addr_filter *filt)
2142{
2143 list_del_init(&filt->list);
2144 filts->cnt -= 1;
2145}
2146
2147void addr_filters__init(struct addr_filters *filts)
2148{
2149 INIT_LIST_HEAD(&filts->head);
2150 filts->cnt = 0;
2151}
2152
2153void addr_filters__exit(struct addr_filters *filts)
2154{
2155 struct addr_filter *filt, *n;
2156
2157 list_for_each_entry_safe(filt, n, &filts->head, list) {
2158 addr_filters__del(filts, filt);
2159 addr_filter__free(filt);
2160 }
2161}
2162
2163static int parse_num_or_str(char **inp, u64 *num, const char **str,
2164 const char *str_delim)
2165{
2166 *inp += strspn(*inp, " ");
2167
2168 if (isdigit(**inp)) {
2169 char *endptr;
2170
2171 if (!num)
2172 return -EINVAL;
2173 errno = 0;
2174 *num = strtoull(*inp, &endptr, 0);
2175 if (errno)
2176 return -errno;
2177 if (endptr == *inp)
2178 return -EINVAL;
2179 *inp = endptr;
2180 } else {
2181 size_t n;
2182
2183 if (!str)
2184 return -EINVAL;
2185 *inp += strspn(*inp, " ");
2186 *str = *inp;
2187 n = strcspn(*inp, str_delim);
2188 if (!n)
2189 return -EINVAL;
2190 *inp += n;
2191 if (**inp) {
2192 **inp = '\0';
2193 *inp += 1;
2194 }
2195 }
2196 return 0;
2197}
2198
2199static int parse_action(struct addr_filter *filt)
2200{
2201 if (!strcmp(filt->action, "filter")) {
2202 filt->start = true;
2203 filt->range = true;
2204 } else if (!strcmp(filt->action, "start")) {
2205 filt->start = true;
2206 } else if (!strcmp(filt->action, "stop")) {
2207 filt->start = false;
2208 } else if (!strcmp(filt->action, "tracestop")) {
2209 filt->start = false;
2210 filt->range = true;
2211 filt->action += 5; /* Change 'tracestop' to 'stop' */
2212 } else {
2213 return -EINVAL;
2214 }
2215 return 0;
2216}
2217
2218static int parse_sym_idx(char **inp, int *idx)
2219{
2220 *idx = -1;
2221
2222 *inp += strspn(*inp, " ");
2223
2224 if (**inp != '#')
2225 return 0;
2226
2227 *inp += 1;
2228
2229 if (**inp == 'g' || **inp == 'G') {
2230 *inp += 1;
2231 *idx = 0;
2232 } else {
2233 unsigned long num;
2234 char *endptr;
2235
2236 errno = 0;
2237 num = strtoul(*inp, &endptr, 0);
2238 if (errno)
2239 return -errno;
2240 if (endptr == *inp || num > INT_MAX)
2241 return -EINVAL;
2242 *inp = endptr;
2243 *idx = num;
2244 }
2245
2246 return 0;
2247}
2248
2249static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2250{
2251 int err = parse_num_or_str(inp, num, str, " ");
2252
2253 if (!err && *str)
2254 err = parse_sym_idx(inp, idx);
2255
2256 return err;
2257}
2258
2259static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2260{
2261 char *fstr;
2262 int err;
2263
2264 filt->str = fstr = strdup(*filter_inp);
2265 if (!fstr)
2266 return -ENOMEM;
2267
2268 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2269 if (err)
2270 goto out_err;
2271
2272 err = parse_action(filt);
2273 if (err)
2274 goto out_err;
2275
2276 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2277 &filt->sym_from_idx);
2278 if (err)
2279 goto out_err;
2280
2281 fstr += strspn(fstr, " ");
2282
2283 if (*fstr == '/') {
2284 fstr += 1;
2285 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2286 &filt->sym_to_idx);
2287 if (err)
2288 goto out_err;
2289 filt->range = true;
2290 }
2291
2292 fstr += strspn(fstr, " ");
2293
2294 if (*fstr == '@') {
2295 fstr += 1;
2296 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2297 if (err)
2298 goto out_err;
2299 }
2300
2301 fstr += strspn(fstr, " ,");
2302
2303 *filter_inp += fstr - filt->str;
2304
2305 return 0;
2306
2307out_err:
2308 addr_filter__free_str(filt);
2309
2310 return err;
2311}
2312
2313int addr_filters__parse_bare_filter(struct addr_filters *filts,
2314 const char *filter)
2315{
2316 struct addr_filter *filt;
2317 const char *fstr = filter;
2318 int err;
2319
2320 while (*fstr) {
2321 filt = addr_filter__new();
2322 err = parse_one_filter(filt, &fstr);
2323 if (err) {
2324 addr_filter__free(filt);
2325 addr_filters__exit(filts);
2326 return err;
2327 }
2328 addr_filters__add(filts, filt);
2329 }
2330
2331 return 0;
2332}
2333
2334struct sym_args {
2335 const char *name;
2336 u64 start;
2337 u64 size;
2338 int idx;
2339 int cnt;
2340 bool started;
2341 bool global;
2342 bool selected;
2343 bool duplicate;
2344 bool near;
2345};
2346
2347static bool kern_sym_name_match(const char *kname, const char *name)
2348{
2349 size_t n = strlen(name);
2350
2351 return !strcmp(kname, name) ||
2352 (!strncmp(kname, name, n) && kname[n] == '\t');
2353}
2354
2355static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2356{
2357 /* A function with the same name, and global or the n'th found or any */
2358 return kallsyms__is_function(type) &&
2359 kern_sym_name_match(name, args->name) &&
2360 ((args->global && isupper(type)) ||
2361 (args->selected && ++(args->cnt) == args->idx) ||
2362 (!args->global && !args->selected));
2363}
2364
2365static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2366{
2367 struct sym_args *args = arg;
2368
2369 if (args->started) {
2370 if (!args->size)
2371 args->size = start - args->start;
2372 if (args->selected) {
2373 if (args->size)
2374 return 1;
2375 } else if (kern_sym_match(args, name, type)) {
2376 args->duplicate = true;
2377 return 1;
2378 }
2379 } else if (kern_sym_match(args, name, type)) {
2380 args->started = true;
2381 args->start = start;
2382 }
2383
2384 return 0;
2385}
2386
2387static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2388{
2389 struct sym_args *args = arg;
2390
2391 if (kern_sym_match(args, name, type)) {
2392 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2393 ++args->cnt, start, type, name);
2394 args->near = true;
2395 } else if (args->near) {
2396 args->near = false;
2397 pr_err("\t\twhich is near\t\t%s\n", name);
2398 }
2399
2400 return 0;
2401}
2402
2403static int sym_not_found_error(const char *sym_name, int idx)
2404{
2405 if (idx > 0) {
2406 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2407 idx, sym_name);
2408 } else if (!idx) {
2409 pr_err("Global symbol '%s' not found.\n", sym_name);
2410 } else {
2411 pr_err("Symbol '%s' not found.\n", sym_name);
2412 }
2413 pr_err("Note that symbols must be functions.\n");
2414
2415 return -EINVAL;
2416}
2417
2418static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2419{
2420 struct sym_args args = {
2421 .name = sym_name,
2422 .idx = idx,
2423 .global = !idx,
2424 .selected = idx > 0,
2425 };
2426 int err;
2427
2428 *start = 0;
2429 *size = 0;
2430
2431 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2432 if (err < 0) {
2433 pr_err("Failed to parse /proc/kallsyms\n");
2434 return err;
2435 }
2436
2437 if (args.duplicate) {
2438 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2439 args.cnt = 0;
2440 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2441 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2442 sym_name);
2443 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2444 return -EINVAL;
2445 }
2446
2447 if (!args.started) {
2448 pr_err("Kernel symbol lookup: ");
2449 return sym_not_found_error(sym_name, idx);
2450 }
2451
2452 *start = args.start;
2453 *size = args.size;
2454
2455 return 0;
2456}
2457
2458static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2459 char type, u64 start)
2460{
2461 struct sym_args *args = arg;
2462 u64 size;
2463
2464 if (!kallsyms__is_function(type))
2465 return 0;
2466
2467 if (!args->started) {
2468 args->started = true;
2469 args->start = start;
2470 }
2471 /* Don't know exactly where the kernel ends, so we add a page */
2472 size = round_up(start, page_size) + page_size - args->start;
2473 if (size > args->size)
2474 args->size = size;
2475
2476 return 0;
2477}
2478
2479static int addr_filter__entire_kernel(struct addr_filter *filt)
2480{
2481 struct sym_args args = { .started = false };
2482 int err;
2483
2484 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2485 if (err < 0 || !args.started) {
2486 pr_err("Failed to parse /proc/kallsyms\n");
2487 return err;
2488 }
2489
2490 filt->addr = args.start;
2491 filt->size = args.size;
2492
2493 return 0;
2494}
2495
2496static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2497{
2498 if (start + size >= filt->addr)
2499 return 0;
2500
2501 if (filt->sym_from) {
2502 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2503 filt->sym_to, start, filt->sym_from, filt->addr);
2504 } else {
2505 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2506 filt->sym_to, start, filt->addr);
2507 }
2508
2509 return -EINVAL;
2510}
2511
2512static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2513{
2514 bool no_size = false;
2515 u64 start, size;
2516 int err;
2517
2518 if (symbol_conf.kptr_restrict) {
2519 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2520 return -EINVAL;
2521 }
2522
2523 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2524 return addr_filter__entire_kernel(filt);
2525
2526 if (filt->sym_from) {
2527 err = find_kern_sym(filt->sym_from, &start, &size,
2528 filt->sym_from_idx);
2529 if (err)
2530 return err;
2531 filt->addr = start;
2532 if (filt->range && !filt->size && !filt->sym_to) {
2533 filt->size = size;
2534 no_size = !size;
2535 }
2536 }
2537
2538 if (filt->sym_to) {
2539 err = find_kern_sym(filt->sym_to, &start, &size,
2540 filt->sym_to_idx);
2541 if (err)
2542 return err;
2543
2544 err = check_end_after_start(filt, start, size);
2545 if (err)
2546 return err;
2547 filt->size = start + size - filt->addr;
2548 no_size = !size;
2549 }
2550
2551 /* The very last symbol in kallsyms does not imply a particular size */
2552 if (no_size) {
2553 pr_err("Cannot determine size of symbol '%s'\n",
2554 filt->sym_to ? filt->sym_to : filt->sym_from);
2555 return -EINVAL;
2556 }
2557
2558 return 0;
2559}
2560
2561static struct dso *load_dso(const char *name)
2562{
2563 struct map *map;
2564 struct dso *dso;
2565
2566 map = dso__new_map(name);
2567 if (!map)
2568 return NULL;
2569
2570 if (map__load(map) < 0)
2571 pr_err("File '%s' not found or has no symbols.\n", name);
2572
2573 dso = dso__get(map__dso(map));
2574
2575 map__put(map);
2576
2577 return dso;
2578}
2579
2580static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2581 int idx)
2582{
2583 /* Same name, and global or the n'th found or any */
2584 return !arch__compare_symbol_names(name, sym->name) &&
2585 ((!idx && sym->binding == STB_GLOBAL) ||
2586 (idx > 0 && ++*cnt == idx) ||
2587 idx < 0);
2588}
2589
2590static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2591{
2592 struct symbol *sym;
2593 bool near = false;
2594 int cnt = 0;
2595
2596 pr_err("Multiple symbols with name '%s'\n", sym_name);
2597
2598 sym = dso__first_symbol(dso);
2599 while (sym) {
2600 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2601 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2602 ++cnt, sym->start,
2603 sym->binding == STB_GLOBAL ? 'g' :
2604 sym->binding == STB_LOCAL ? 'l' : 'w',
2605 sym->name);
2606 near = true;
2607 } else if (near) {
2608 near = false;
2609 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2610 }
2611 sym = dso__next_symbol(sym);
2612 }
2613
2614 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2615 sym_name);
2616 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2617}
2618
2619static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2620 u64 *size, int idx)
2621{
2622 struct symbol *sym;
2623 int cnt = 0;
2624
2625 *start = 0;
2626 *size = 0;
2627
2628 sym = dso__first_symbol(dso);
2629 while (sym) {
2630 if (*start) {
2631 if (!*size)
2632 *size = sym->start - *start;
2633 if (idx > 0) {
2634 if (*size)
2635 return 0;
2636 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2637 print_duplicate_syms(dso, sym_name);
2638 return -EINVAL;
2639 }
2640 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2641 *start = sym->start;
2642 *size = sym->end - sym->start;
2643 }
2644 sym = dso__next_symbol(sym);
2645 }
2646
2647 if (!*start)
2648 return sym_not_found_error(sym_name, idx);
2649
2650 return 0;
2651}
2652
2653static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2654{
2655 if (dso__data_file_size(dso, NULL)) {
2656 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2657 filt->filename);
2658 return -EINVAL;
2659 }
2660
2661 filt->addr = 0;
2662 filt->size = dso__data(dso)->file_size;
2663
2664 return 0;
2665}
2666
2667static int addr_filter__resolve_syms(struct addr_filter *filt)
2668{
2669 u64 start, size;
2670 struct dso *dso;
2671 int err = 0;
2672
2673 if (!filt->sym_from && !filt->sym_to)
2674 return 0;
2675
2676 if (!filt->filename)
2677 return addr_filter__resolve_kernel_syms(filt);
2678
2679 dso = load_dso(filt->filename);
2680 if (!dso) {
2681 pr_err("Failed to load symbols from: %s\n", filt->filename);
2682 return -EINVAL;
2683 }
2684
2685 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2686 err = addr_filter__entire_dso(filt, dso);
2687 goto put_dso;
2688 }
2689
2690 if (filt->sym_from) {
2691 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2692 filt->sym_from_idx);
2693 if (err)
2694 goto put_dso;
2695 filt->addr = start;
2696 if (filt->range && !filt->size && !filt->sym_to)
2697 filt->size = size;
2698 }
2699
2700 if (filt->sym_to) {
2701 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2702 filt->sym_to_idx);
2703 if (err)
2704 goto put_dso;
2705
2706 err = check_end_after_start(filt, start, size);
2707 if (err)
2708 return err;
2709
2710 filt->size = start + size - filt->addr;
2711 }
2712
2713put_dso:
2714 dso__put(dso);
2715
2716 return err;
2717}
2718
2719static char *addr_filter__to_str(struct addr_filter *filt)
2720{
2721 char filename_buf[PATH_MAX];
2722 const char *at = "";
2723 const char *fn = "";
2724 char *filter;
2725 int err;
2726
2727 if (filt->filename) {
2728 at = "@";
2729 fn = realpath(filt->filename, filename_buf);
2730 if (!fn)
2731 return NULL;
2732 }
2733
2734 if (filt->range) {
2735 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2736 filt->action, filt->addr, filt->size, at, fn);
2737 } else {
2738 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2739 filt->action, filt->addr, at, fn);
2740 }
2741
2742 return err < 0 ? NULL : filter;
2743}
2744
2745static int parse_addr_filter(struct evsel *evsel, const char *filter,
2746 int max_nr)
2747{
2748 struct addr_filters filts;
2749 struct addr_filter *filt;
2750 int err;
2751
2752 addr_filters__init(&filts);
2753
2754 err = addr_filters__parse_bare_filter(&filts, filter);
2755 if (err)
2756 goto out_exit;
2757
2758 if (filts.cnt > max_nr) {
2759 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2760 filts.cnt, max_nr);
2761 err = -EINVAL;
2762 goto out_exit;
2763 }
2764
2765 list_for_each_entry(filt, &filts.head, list) {
2766 char *new_filter;
2767
2768 err = addr_filter__resolve_syms(filt);
2769 if (err)
2770 goto out_exit;
2771
2772 new_filter = addr_filter__to_str(filt);
2773 if (!new_filter) {
2774 err = -ENOMEM;
2775 goto out_exit;
2776 }
2777
2778 if (evsel__append_addr_filter(evsel, new_filter)) {
2779 err = -ENOMEM;
2780 goto out_exit;
2781 }
2782 }
2783
2784out_exit:
2785 addr_filters__exit(&filts);
2786
2787 if (err) {
2788 pr_err("Failed to parse address filter: '%s'\n", filter);
2789 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2790 pr_err("Where multiple filters are separated by space or comma.\n");
2791 }
2792
2793 return err;
2794}
2795
2796static int evsel__nr_addr_filter(struct evsel *evsel)
2797{
2798 struct perf_pmu *pmu = evsel__find_pmu(evsel);
2799 int nr_addr_filters = 0;
2800
2801 if (!pmu)
2802 return 0;
2803
2804 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2805
2806 return nr_addr_filters;
2807}
2808
2809int auxtrace_parse_filters(struct evlist *evlist)
2810{
2811 struct evsel *evsel;
2812 char *filter;
2813 int err, max_nr;
2814
2815 evlist__for_each_entry(evlist, evsel) {
2816 filter = evsel->filter;
2817 max_nr = evsel__nr_addr_filter(evsel);
2818 if (!filter || !max_nr)
2819 continue;
2820 evsel->filter = NULL;
2821 err = parse_addr_filter(evsel, filter, max_nr);
2822 free(filter);
2823 if (err)
2824 return err;
2825 pr_debug("Address filter: %s\n", evsel->filter);
2826 }
2827
2828 return 0;
2829}
2830
2831int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2832 struct perf_sample *sample, const struct perf_tool *tool)
2833{
2834 if (!session->auxtrace)
2835 return 0;
2836
2837 return session->auxtrace->process_event(session, event, sample, tool);
2838}
2839
2840void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2841 struct perf_sample *sample)
2842{
2843 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2844 auxtrace__dont_decode(session))
2845 return;
2846
2847 session->auxtrace->dump_auxtrace_sample(session, sample);
2848}
2849
2850int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2851{
2852 if (!session->auxtrace)
2853 return 0;
2854
2855 return session->auxtrace->flush_events(session, tool);
2856}
2857
2858void auxtrace__free_events(struct perf_session *session)
2859{
2860 if (!session->auxtrace)
2861 return;
2862
2863 return session->auxtrace->free_events(session);
2864}
2865
2866void auxtrace__free(struct perf_session *session)
2867{
2868 if (!session->auxtrace)
2869 return;
2870
2871 return session->auxtrace->free(session);
2872}
2873
2874bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2875 struct evsel *evsel)
2876{
2877 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2878 return false;
2879
2880 return session->auxtrace->evsel_is_auxtrace(session, evsel);
2881}