Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4 *                   Takashi Iwai <tiwai@suse.de>
  5 * 
  6 *  Generic memory allocators
  7 */
  8
  9#include <linux/slab.h>
 10#include <linux/mm.h>
 11#include <linux/dma-mapping.h>
 
 12#include <linux/genalloc.h>
 
 
 13#ifdef CONFIG_X86
 14#include <asm/set_memory.h>
 15#endif
 16#include <sound/memalloc.h>
 17
 18/*
 19 *
 20 *  Bus-specific memory allocators
 21 *
 22 */
 23
 24#ifdef CONFIG_HAS_DMA
 25/* allocate the coherent DMA pages */
 26static void snd_malloc_dev_pages(struct snd_dma_buffer *dmab, size_t size)
 27{
 28	gfp_t gfp_flags;
 29
 30	gfp_flags = GFP_KERNEL
 31		| __GFP_COMP	/* compound page lets parts be mapped */
 32		| __GFP_NORETRY /* don't trigger OOM-killer */
 33		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
 34	dmab->area = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr,
 35					gfp_flags);
 36#ifdef CONFIG_X86
 37	if (dmab->area && dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
 38		set_memory_wc((unsigned long)dmab->area,
 39			      PAGE_ALIGN(size) >> PAGE_SHIFT);
 40#endif
 41}
 42
 43/* free the coherent DMA pages */
 44static void snd_free_dev_pages(struct snd_dma_buffer *dmab)
 45{
 46#ifdef CONFIG_X86
 47	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
 48		set_memory_wb((unsigned long)dmab->area,
 49			      PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT);
 50#endif
 51	dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
 52}
 53
 54#ifdef CONFIG_GENERIC_ALLOCATOR
 55/**
 56 * snd_malloc_dev_iram - allocate memory from on-chip internal ram
 57 * @dmab: buffer allocation record to store the allocated data
 58 * @size: number of bytes to allocate from the iram
 59 *
 60 * This function requires iram phandle provided via of_node
 61 */
 62static void snd_malloc_dev_iram(struct snd_dma_buffer *dmab, size_t size)
 63{
 64	struct device *dev = dmab->dev.dev;
 65	struct gen_pool *pool = NULL;
 66
 67	dmab->area = NULL;
 68	dmab->addr = 0;
 69
 70	if (dev->of_node)
 71		pool = of_gen_pool_get(dev->of_node, "iram", 0);
 72
 73	if (!pool)
 74		return;
 75
 76	/* Assign the pool into private_data field */
 77	dmab->private_data = pool;
 78
 79	dmab->area = gen_pool_dma_alloc(pool, size, &dmab->addr);
 80}
 81
 82/**
 83 * snd_free_dev_iram - free allocated specific memory from on-chip internal ram
 84 * @dmab: buffer allocation record to store the allocated data
 85 */
 86static void snd_free_dev_iram(struct snd_dma_buffer *dmab)
 87{
 88	struct gen_pool *pool = dmab->private_data;
 89
 90	if (pool && dmab->area)
 91		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
 
 92}
 93#endif /* CONFIG_GENERIC_ALLOCATOR */
 94#endif /* CONFIG_HAS_DMA */
 95
 96/*
 97 *
 98 *  ALSA generic memory management
 99 *
100 */
101
102
103/**
104 * snd_dma_alloc_pages - allocate the buffer area according to the given type
 
105 * @type: the DMA buffer type
106 * @device: the device pointer
 
107 * @size: the buffer size to allocate
108 * @dmab: buffer allocation record to store the allocated data
109 *
110 * Calls the memory-allocator function for the corresponding
111 * buffer type.
112 *
113 * Return: Zero if the buffer with the given size is allocated successfully,
114 * otherwise a negative value on error.
115 */
116int snd_dma_alloc_pages(int type, struct device *device, size_t size,
117			struct snd_dma_buffer *dmab)
 
118{
119	if (WARN_ON(!size))
120		return -ENXIO;
121	if (WARN_ON(!dmab))
122		return -ENXIO;
123	if (WARN_ON(!device))
124		return -EINVAL;
125
 
126	dmab->dev.type = type;
127	dmab->dev.dev = device;
 
128	dmab->bytes = 0;
129	switch (type) {
130	case SNDRV_DMA_TYPE_CONTINUOUS:
131		dmab->area = alloc_pages_exact(size,
132					       (__force gfp_t)(unsigned long)device);
133		dmab->addr = 0;
134		break;
135#ifdef CONFIG_HAS_DMA
136#ifdef CONFIG_GENERIC_ALLOCATOR
137	case SNDRV_DMA_TYPE_DEV_IRAM:
138		snd_malloc_dev_iram(dmab, size);
139		if (dmab->area)
140			break;
141		/* Internal memory might have limited size and no enough space,
142		 * so if we fail to malloc, try to fetch memory traditionally.
143		 */
144		dmab->dev.type = SNDRV_DMA_TYPE_DEV;
145#endif /* CONFIG_GENERIC_ALLOCATOR */
146		/* fall through */
147	case SNDRV_DMA_TYPE_DEV:
148	case SNDRV_DMA_TYPE_DEV_UC:
149		snd_malloc_dev_pages(dmab, size);
150		break;
151#endif
152#ifdef CONFIG_SND_DMA_SGBUF
153	case SNDRV_DMA_TYPE_DEV_SG:
154	case SNDRV_DMA_TYPE_DEV_UC_SG:
155		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
156		break;
157#endif
158	default:
159		pr_err("snd-malloc: invalid device type %d\n", type);
160		dmab->area = NULL;
161		dmab->addr = 0;
162		return -ENXIO;
163	}
164	if (! dmab->area)
165		return -ENOMEM;
166	dmab->bytes = size;
167	return 0;
168}
169EXPORT_SYMBOL(snd_dma_alloc_pages);
170
171/**
172 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
173 * @type: the DMA buffer type
174 * @device: the device pointer
175 * @size: the buffer size to allocate
176 * @dmab: buffer allocation record to store the allocated data
177 *
178 * Calls the memory-allocator function for the corresponding
179 * buffer type.  When no space is left, this function reduces the size and
180 * tries to allocate again.  The size actually allocated is stored in
181 * res_size argument.
182 *
183 * Return: Zero if the buffer with the given size is allocated successfully,
184 * otherwise a negative value on error.
185 */
186int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
187				 struct snd_dma_buffer *dmab)
188{
189	int err;
190
191	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
192		if (err != -ENOMEM)
193			return err;
194		if (size <= PAGE_SIZE)
195			return -ENOMEM;
196		size >>= 1;
197		size = PAGE_SIZE << get_order(size);
198	}
199	if (! dmab->area)
200		return -ENOMEM;
201	return 0;
202}
203EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
204
205
206/**
207 * snd_dma_free_pages - release the allocated buffer
208 * @dmab: the buffer allocation record to release
209 *
210 * Releases the allocated buffer via snd_dma_alloc_pages().
211 */
212void snd_dma_free_pages(struct snd_dma_buffer *dmab)
213{
214	switch (dmab->dev.type) {
215	case SNDRV_DMA_TYPE_CONTINUOUS:
216		free_pages_exact(dmab->area, dmab->bytes);
217		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218#ifdef CONFIG_HAS_DMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219#ifdef CONFIG_GENERIC_ALLOCATOR
220	case SNDRV_DMA_TYPE_DEV_IRAM:
221		snd_free_dev_iram(dmab);
222		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223#endif /* CONFIG_GENERIC_ALLOCATOR */
224	case SNDRV_DMA_TYPE_DEV:
225	case SNDRV_DMA_TYPE_DEV_UC:
226		snd_free_dev_pages(dmab);
227		break;
228#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229#ifdef CONFIG_SND_DMA_SGBUF
230	case SNDRV_DMA_TYPE_DEV_SG:
231	case SNDRV_DMA_TYPE_DEV_UC_SG:
232		snd_free_sgbuf_pages(dmab);
233		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234#endif
235	default:
236		pr_err("snd-malloc: invalid device type %d\n", dmab->dev.type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238}
239EXPORT_SYMBOL(snd_dma_free_pages);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4 *                   Takashi Iwai <tiwai@suse.de>
  5 * 
  6 *  Generic memory allocators
  7 */
  8
  9#include <linux/slab.h>
 10#include <linux/mm.h>
 11#include <linux/dma-mapping.h>
 12#include <linux/dma-map-ops.h>
 13#include <linux/genalloc.h>
 14#include <linux/highmem.h>
 15#include <linux/vmalloc.h>
 16#ifdef CONFIG_X86
 17#include <asm/set_memory.h>
 18#endif
 19#include <sound/memalloc.h>
 20
 21struct snd_malloc_ops {
 22	void *(*alloc)(struct snd_dma_buffer *dmab, size_t size);
 23	void (*free)(struct snd_dma_buffer *dmab);
 24	dma_addr_t (*get_addr)(struct snd_dma_buffer *dmab, size_t offset);
 25	struct page *(*get_page)(struct snd_dma_buffer *dmab, size_t offset);
 26	unsigned int (*get_chunk_size)(struct snd_dma_buffer *dmab,
 27				       unsigned int ofs, unsigned int size);
 28	int (*mmap)(struct snd_dma_buffer *dmab, struct vm_area_struct *area);
 29	void (*sync)(struct snd_dma_buffer *dmab, enum snd_dma_sync_mode mode);
 30};
 31
 32#define DEFAULT_GFP \
 33	(GFP_KERNEL | \
 34	 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
 35	 __GFP_NOWARN)   /* no stack trace print - this call is non-critical */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
 
 38
 39static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
 
 
 
 
 40{
 41	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
 42
 43	if (WARN_ON_ONCE(!ops || !ops->alloc))
 44		return NULL;
 45	return ops->alloc(dmab, size);
 46}
 
 
 
 
 
 
 
 
 
 47
 48/**
 49 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
 50 *	type and direction
 51 * @type: the DMA buffer type
 52 * @device: the device pointer
 53 * @dir: DMA direction
 54 * @size: the buffer size to allocate
 55 * @dmab: buffer allocation record to store the allocated data
 56 *
 57 * Calls the memory-allocator function for the corresponding
 58 * buffer type.
 59 *
 60 * Return: Zero if the buffer with the given size is allocated successfully,
 61 * otherwise a negative value on error.
 62 */
 63int snd_dma_alloc_dir_pages(int type, struct device *device,
 64			    enum dma_data_direction dir, size_t size,
 65			    struct snd_dma_buffer *dmab)
 66{
 67	if (WARN_ON(!size))
 68		return -ENXIO;
 69	if (WARN_ON(!dmab))
 70		return -ENXIO;
 
 
 71
 72	size = PAGE_ALIGN(size);
 73	dmab->dev.type = type;
 74	dmab->dev.dev = device;
 75	dmab->dev.dir = dir;
 76	dmab->bytes = 0;
 77	dmab->addr = 0;
 78	dmab->private_data = NULL;
 79	dmab->area = __snd_dma_alloc_pages(dmab, size);
 80	if (!dmab->area)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81		return -ENOMEM;
 82	dmab->bytes = size;
 83	return 0;
 84}
 85EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
 86
 87/**
 88 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
 89 * @type: the DMA buffer type
 90 * @device: the device pointer
 91 * @size: the buffer size to allocate
 92 * @dmab: buffer allocation record to store the allocated data
 93 *
 94 * Calls the memory-allocator function for the corresponding
 95 * buffer type.  When no space is left, this function reduces the size and
 96 * tries to allocate again.  The size actually allocated is stored in
 97 * res_size argument.
 98 *
 99 * Return: Zero if the buffer with the given size is allocated successfully,
100 * otherwise a negative value on error.
101 */
102int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
103				 struct snd_dma_buffer *dmab)
104{
105	int err;
106
107	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
108		if (err != -ENOMEM)
109			return err;
110		if (size <= PAGE_SIZE)
111			return -ENOMEM;
112		size >>= 1;
113		size = PAGE_SIZE << get_order(size);
114	}
115	if (! dmab->area)
116		return -ENOMEM;
117	return 0;
118}
119EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
120
 
121/**
122 * snd_dma_free_pages - release the allocated buffer
123 * @dmab: the buffer allocation record to release
124 *
125 * Releases the allocated buffer via snd_dma_alloc_pages().
126 */
127void snd_dma_free_pages(struct snd_dma_buffer *dmab)
128{
129	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
130
131	if (ops && ops->free)
132		ops->free(dmab);
133}
134EXPORT_SYMBOL(snd_dma_free_pages);
135
136/* called by devres */
137static void __snd_release_pages(struct device *dev, void *res)
138{
139	snd_dma_free_pages(res);
140}
141
142/**
143 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
144 * @dev: the device pointer
145 * @type: the DMA buffer type
146 * @dir: DMA direction
147 * @size: the buffer size to allocate
148 *
149 * Allocate buffer pages depending on the given type and manage using devres.
150 * The pages will be released automatically at the device removal.
151 *
152 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
153 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
154 * SNDRV_DMA_TYPE_VMALLOC type.
155 *
156 * Return: the snd_dma_buffer object at success, or NULL if failed
157 */
158struct snd_dma_buffer *
159snd_devm_alloc_dir_pages(struct device *dev, int type,
160			 enum dma_data_direction dir, size_t size)
161{
162	struct snd_dma_buffer *dmab;
163	int err;
164
165	if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
166		    type == SNDRV_DMA_TYPE_VMALLOC))
167		return NULL;
168
169	dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
170	if (!dmab)
171		return NULL;
172
173	err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
174	if (err < 0) {
175		devres_free(dmab);
176		return NULL;
177	}
178
179	devres_add(dev, dmab);
180	return dmab;
181}
182EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
183
184/**
185 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
186 * @dmab: buffer allocation information
187 * @area: VM area information
188 *
189 * Return: zero if successful, or a negative error code
190 */
191int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
192			struct vm_area_struct *area)
193{
194	const struct snd_malloc_ops *ops;
195
196	if (!dmab)
197		return -ENOENT;
198	ops = snd_dma_get_ops(dmab);
199	if (ops && ops->mmap)
200		return ops->mmap(dmab, area);
201	else
202		return -ENOENT;
203}
204EXPORT_SYMBOL(snd_dma_buffer_mmap);
205
206#ifdef CONFIG_HAS_DMA
207/**
208 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
209 * @dmab: buffer allocation information
210 * @mode: sync mode
211 */
212void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
213			 enum snd_dma_sync_mode mode)
214{
215	const struct snd_malloc_ops *ops;
216
217	if (!dmab || !dmab->dev.need_sync)
218		return;
219	ops = snd_dma_get_ops(dmab);
220	if (ops && ops->sync)
221		ops->sync(dmab, mode);
222}
223EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
224#endif /* CONFIG_HAS_DMA */
225
226/**
227 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
228 * @dmab: buffer allocation information
229 * @offset: offset in the ring buffer
230 *
231 * Return: the physical address
232 */
233dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
234{
235	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
236
237	if (ops && ops->get_addr)
238		return ops->get_addr(dmab, offset);
239	else
240		return dmab->addr + offset;
241}
242EXPORT_SYMBOL(snd_sgbuf_get_addr);
243
244/**
245 * snd_sgbuf_get_page - return the physical page at the corresponding offset
246 * @dmab: buffer allocation information
247 * @offset: offset in the ring buffer
248 *
249 * Return: the page pointer
250 */
251struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
252{
253	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
254
255	if (ops && ops->get_page)
256		return ops->get_page(dmab, offset);
257	else
258		return virt_to_page(dmab->area + offset);
259}
260EXPORT_SYMBOL(snd_sgbuf_get_page);
261
262/**
263 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
264 *	on sg-buffer
265 * @dmab: buffer allocation information
266 * @ofs: offset in the ring buffer
267 * @size: the requested size
268 *
269 * Return: the chunk size
270 */
271unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
272				      unsigned int ofs, unsigned int size)
273{
274	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
275
276	if (ops && ops->get_chunk_size)
277		return ops->get_chunk_size(dmab, ofs, size);
278	else
279		return size;
280}
281EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
282
283/*
284 * Continuous pages allocator
285 */
286static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
287			    bool wc)
288{
289	void *p;
290	gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
291
292 again:
293	p = alloc_pages_exact(size, gfp);
294	if (!p)
295		return NULL;
296	*addr = page_to_phys(virt_to_page(p));
297	if (!dev)
298		return p;
299	if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
300		if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
301			gfp |= GFP_DMA32;
302			goto again;
303		}
304		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
305			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
306			goto again;
307		}
308	}
309#ifdef CONFIG_X86
310	if (wc)
311		set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
312#endif
313	return p;
314}
315
316static void do_free_pages(void *p, size_t size, bool wc)
317{
318#ifdef CONFIG_X86
319	if (wc)
320		set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
321#endif
322	free_pages_exact(p, size);
323}
324
325
326static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
327{
328	return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
329}
330
331static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
332{
333	do_free_pages(dmab->area, dmab->bytes, false);
334}
335
336static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
337				   struct vm_area_struct *area)
338{
339	return remap_pfn_range(area, area->vm_start,
340			       dmab->addr >> PAGE_SHIFT,
341			       area->vm_end - area->vm_start,
342			       area->vm_page_prot);
343}
344
345static const struct snd_malloc_ops snd_dma_continuous_ops = {
346	.alloc = snd_dma_continuous_alloc,
347	.free = snd_dma_continuous_free,
348	.mmap = snd_dma_continuous_mmap,
349};
350
351/*
352 * VMALLOC allocator
353 */
354static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
355{
356	return vmalloc(size);
357}
358
359static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
360{
361	vfree(dmab->area);
362}
363
364static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
365				struct vm_area_struct *area)
366{
367	return remap_vmalloc_range(area, dmab->area, 0);
368}
369
370#define get_vmalloc_page_addr(dmab, offset) \
371	page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
372
373static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
374					   size_t offset)
375{
376	return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
377}
378
379static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
380					     size_t offset)
381{
382	return vmalloc_to_page(dmab->area + offset);
383}
384
385static unsigned int
386snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
387			       unsigned int ofs, unsigned int size)
388{
389	unsigned int start, end;
390	unsigned long addr;
391
392	start = ALIGN_DOWN(ofs, PAGE_SIZE);
393	end = ofs + size - 1; /* the last byte address */
394	/* check page continuity */
395	addr = get_vmalloc_page_addr(dmab, start);
396	for (;;) {
397		start += PAGE_SIZE;
398		if (start > end)
399			break;
400		addr += PAGE_SIZE;
401		if (get_vmalloc_page_addr(dmab, start) != addr)
402			return start - ofs;
403	}
404	/* ok, all on continuous pages */
405	return size;
406}
407
408static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
409	.alloc = snd_dma_vmalloc_alloc,
410	.free = snd_dma_vmalloc_free,
411	.mmap = snd_dma_vmalloc_mmap,
412	.get_addr = snd_dma_vmalloc_get_addr,
413	.get_page = snd_dma_vmalloc_get_page,
414	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
415};
416
417#ifdef CONFIG_HAS_DMA
418/*
419 * IRAM allocator
420 */
421#ifdef CONFIG_GENERIC_ALLOCATOR
422static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
423{
424	struct device *dev = dmab->dev.dev;
425	struct gen_pool *pool;
426	void *p;
427
428	if (dev->of_node) {
429		pool = of_gen_pool_get(dev->of_node, "iram", 0);
430		/* Assign the pool into private_data field */
431		dmab->private_data = pool;
432
433		p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
434		if (p)
435			return p;
436	}
437
438	/* Internal memory might have limited size and no enough space,
439	 * so if we fail to malloc, try to fetch memory traditionally.
440	 */
441	dmab->dev.type = SNDRV_DMA_TYPE_DEV;
442	return __snd_dma_alloc_pages(dmab, size);
443}
444
445static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
446{
447	struct gen_pool *pool = dmab->private_data;
448
449	if (pool && dmab->area)
450		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
451}
452
453static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
454			     struct vm_area_struct *area)
455{
456	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
457	return remap_pfn_range(area, area->vm_start,
458			       dmab->addr >> PAGE_SHIFT,
459			       area->vm_end - area->vm_start,
460			       area->vm_page_prot);
461}
462
463static const struct snd_malloc_ops snd_dma_iram_ops = {
464	.alloc = snd_dma_iram_alloc,
465	.free = snd_dma_iram_free,
466	.mmap = snd_dma_iram_mmap,
467};
468#endif /* CONFIG_GENERIC_ALLOCATOR */
469
470/*
471 * Coherent device pages allocator
472 */
473static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
474{
475	return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
476}
477
478static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
479{
480	dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
481}
482
483static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
484			    struct vm_area_struct *area)
485{
486	return dma_mmap_coherent(dmab->dev.dev, area,
487				 dmab->area, dmab->addr, dmab->bytes);
488}
489
490static const struct snd_malloc_ops snd_dma_dev_ops = {
491	.alloc = snd_dma_dev_alloc,
492	.free = snd_dma_dev_free,
493	.mmap = snd_dma_dev_mmap,
494};
495
496/*
497 * Write-combined pages
498 */
499#ifdef CONFIG_SND_DMA_SGBUF
500/* x86-specific allocations */
501static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
502{
503	void *p = do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
504
505	if (!p)
506		return NULL;
507	dmab->addr = dma_map_single(dmab->dev.dev, p, size, DMA_BIDIRECTIONAL);
508	if (dma_mapping_error(dmab->dev.dev, dmab->addr)) {
509		do_free_pages(dmab->area, size, true);
510		return NULL;
511	}
512	return p;
513}
514
515static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
516{
517	dma_unmap_single(dmab->dev.dev, dmab->addr, dmab->bytes,
518			 DMA_BIDIRECTIONAL);
519	do_free_pages(dmab->area, dmab->bytes, true);
520}
521
522static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523			   struct vm_area_struct *area)
524{
525	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
526	return dma_mmap_coherent(dmab->dev.dev, area,
527				 dmab->area, dmab->addr, dmab->bytes);
528}
529#else
530static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
531{
532	return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
533}
534
535static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
536{
537	dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
538}
539
540static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
541			   struct vm_area_struct *area)
542{
543	return dma_mmap_wc(dmab->dev.dev, area,
544			   dmab->area, dmab->addr, dmab->bytes);
545}
546#endif
547
548static const struct snd_malloc_ops snd_dma_wc_ops = {
549	.alloc = snd_dma_wc_alloc,
550	.free = snd_dma_wc_free,
551	.mmap = snd_dma_wc_mmap,
552};
553
554/*
555 * Non-contiguous pages allocator
556 */
557static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
558{
559	struct sg_table *sgt;
560	void *p;
561
562	sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
563				      DEFAULT_GFP, 0);
564	if (!sgt)
565		return NULL;
566
567	dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
568					    sg_dma_address(sgt->sgl));
569	p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
570	if (p) {
571		dmab->private_data = sgt;
572		/* store the first page address for convenience */
573		dmab->addr = snd_sgbuf_get_addr(dmab, 0);
574	} else {
575		dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
576	}
577	return p;
578}
579
580static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
581{
582	dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
583	dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
584			       dmab->dev.dir);
585}
586
587static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
588				  struct vm_area_struct *area)
589{
590	return dma_mmap_noncontiguous(dmab->dev.dev, area,
591				      dmab->bytes, dmab->private_data);
592}
593
594static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
595				   enum snd_dma_sync_mode mode)
596{
597	if (mode == SNDRV_DMA_SYNC_CPU) {
598		if (dmab->dev.dir == DMA_TO_DEVICE)
599			return;
600		invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
601		dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
602					 dmab->dev.dir);
603	} else {
604		if (dmab->dev.dir == DMA_FROM_DEVICE)
605			return;
606		flush_kernel_vmap_range(dmab->area, dmab->bytes);
607		dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
608					    dmab->dev.dir);
609	}
610}
611
612static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
613					      struct sg_page_iter *piter,
614					      size_t offset)
615{
616	struct sg_table *sgt = dmab->private_data;
617
618	__sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
619			     offset >> PAGE_SHIFT);
620}
621
622static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
623					     size_t offset)
624{
625	struct sg_dma_page_iter iter;
626
627	snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
628	__sg_page_iter_dma_next(&iter);
629	return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
630}
631
632static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
633					       size_t offset)
634{
635	struct sg_page_iter iter;
636
637	snd_dma_noncontig_iter_set(dmab, &iter, offset);
638	__sg_page_iter_next(&iter);
639	return sg_page_iter_page(&iter);
640}
641
642static unsigned int
643snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
644				 unsigned int ofs, unsigned int size)
645{
646	struct sg_dma_page_iter iter;
647	unsigned int start, end;
648	unsigned long addr;
649
650	start = ALIGN_DOWN(ofs, PAGE_SIZE);
651	end = ofs + size - 1; /* the last byte address */
652	snd_dma_noncontig_iter_set(dmab, &iter.base, start);
653	if (!__sg_page_iter_dma_next(&iter))
654		return 0;
655	/* check page continuity */
656	addr = sg_page_iter_dma_address(&iter);
657	for (;;) {
658		start += PAGE_SIZE;
659		if (start > end)
660			break;
661		addr += PAGE_SIZE;
662		if (!__sg_page_iter_dma_next(&iter) ||
663		    sg_page_iter_dma_address(&iter) != addr)
664			return start - ofs;
665	}
666	/* ok, all on continuous pages */
667	return size;
668}
669
670static const struct snd_malloc_ops snd_dma_noncontig_ops = {
671	.alloc = snd_dma_noncontig_alloc,
672	.free = snd_dma_noncontig_free,
673	.mmap = snd_dma_noncontig_mmap,
674	.sync = snd_dma_noncontig_sync,
675	.get_addr = snd_dma_noncontig_get_addr,
676	.get_page = snd_dma_noncontig_get_page,
677	.get_chunk_size = snd_dma_noncontig_get_chunk_size,
678};
679
680#ifdef CONFIG_SND_DMA_SGBUF
681/* Fallback SG-buffer allocations for x86 */
682struct snd_dma_sg_fallback {
683	struct sg_table sgt; /* used by get_addr - must be the first item */
684	size_t count;
685	struct page **pages;
686	unsigned int *npages;
687};
688
689static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
690				       struct snd_dma_sg_fallback *sgbuf)
691{
692	bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG;
693	size_t i, size;
694
695	if (sgbuf->pages && sgbuf->npages) {
696		i = 0;
697		while (i < sgbuf->count) {
698			size = sgbuf->npages[i];
699			if (!size)
700				break;
701			do_free_pages(page_address(sgbuf->pages[i]),
702				      size << PAGE_SHIFT, wc);
703			i += size;
704		}
705	}
706	kvfree(sgbuf->pages);
707	kvfree(sgbuf->npages);
708	kfree(sgbuf);
709}
710
711/* fallback manual S/G buffer allocations */
712static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
713{
714	bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG;
715	struct snd_dma_sg_fallback *sgbuf;
716	struct page **pagep, *curp;
717	size_t chunk;
718	dma_addr_t addr;
719	unsigned int idx, npages;
720	void *p;
721
722	sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
723	if (!sgbuf)
724		return NULL;
725	size = PAGE_ALIGN(size);
726	sgbuf->count = size >> PAGE_SHIFT;
727	sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
728	sgbuf->npages = kvcalloc(sgbuf->count, sizeof(*sgbuf->npages), GFP_KERNEL);
729	if (!sgbuf->pages || !sgbuf->npages)
730		goto error;
731
732	pagep = sgbuf->pages;
733	chunk = size;
734	idx = 0;
735	while (size > 0) {
736		chunk = min(size, chunk);
737		p = do_alloc_pages(dmab->dev.dev, chunk, &addr, wc);
738		if (!p) {
739			if (chunk <= PAGE_SIZE)
740				goto error;
741			chunk >>= 1;
742			chunk = PAGE_SIZE << get_order(chunk);
743			continue;
744		}
745
746		size -= chunk;
747		/* fill pages */
748		npages = chunk >> PAGE_SHIFT;
749		sgbuf->npages[idx] = npages;
750		idx += npages;
751		curp = virt_to_page(p);
752		while (npages--)
753			*pagep++ = curp++;
754	}
755
756	if (sg_alloc_table_from_pages(&sgbuf->sgt, sgbuf->pages, sgbuf->count,
757				      0, sgbuf->count << PAGE_SHIFT, GFP_KERNEL))
758		goto error;
759
760	if (dma_map_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0))
761		goto error_dma_map;
762
763	p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
764	if (!p)
765		goto error_vmap;
766
767	dmab->private_data = sgbuf;
768	/* store the first page address for convenience */
769	dmab->addr = snd_sgbuf_get_addr(dmab, 0);
770	return p;
771
772 error_vmap:
773	dma_unmap_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0);
774 error_dma_map:
775	sg_free_table(&sgbuf->sgt);
776 error:
777	__snd_dma_sg_fallback_free(dmab, sgbuf);
778	return NULL;
779}
780
781static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
782{
783	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
784
785	vunmap(dmab->area);
786	dma_unmap_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0);
787	sg_free_table(&sgbuf->sgt);
788	__snd_dma_sg_fallback_free(dmab, dmab->private_data);
789}
790
791static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
792				    struct vm_area_struct *area)
793{
794	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
795
796	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
797		area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
798	return vm_map_pages(area, sgbuf->pages, sgbuf->count);
799}
800
801static void *snd_dma_sg_alloc(struct snd_dma_buffer *dmab, size_t size)
802{
803	int type = dmab->dev.type;
804	void *p;
805
806	/* try the standard DMA API allocation at first */
807	if (type == SNDRV_DMA_TYPE_DEV_WC_SG)
808		dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC;
809	else
810		dmab->dev.type = SNDRV_DMA_TYPE_DEV;
811	p = __snd_dma_alloc_pages(dmab, size);
812	if (p)
813		return p;
814
815	dmab->dev.type = type; /* restore the type */
816	return snd_dma_sg_fallback_alloc(dmab, size);
817}
818
819static const struct snd_malloc_ops snd_dma_sg_ops = {
820	.alloc = snd_dma_sg_alloc,
821	.free = snd_dma_sg_fallback_free,
822	.mmap = snd_dma_sg_fallback_mmap,
823	/* reuse noncontig helper */
824	.get_addr = snd_dma_noncontig_get_addr,
825	/* reuse vmalloc helpers */
826	.get_page = snd_dma_vmalloc_get_page,
827	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
828};
829#endif /* CONFIG_SND_DMA_SGBUF */
830
831/*
832 * Non-coherent pages allocator
833 */
834static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
835{
836	void *p;
837
838	p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
839				  dmab->dev.dir, DEFAULT_GFP);
840	if (p)
841		dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
842	return p;
843}
844
845static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
846{
847	dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
848			     dmab->addr, dmab->dev.dir);
849}
850
851static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
852				    struct vm_area_struct *area)
853{
854	area->vm_page_prot = vm_get_page_prot(area->vm_flags);
855	return dma_mmap_pages(dmab->dev.dev, area,
856			      area->vm_end - area->vm_start,
857			      virt_to_page(dmab->area));
858}
859
860static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
861				     enum snd_dma_sync_mode mode)
862{
863	if (mode == SNDRV_DMA_SYNC_CPU) {
864		if (dmab->dev.dir != DMA_TO_DEVICE)
865			dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
866						dmab->bytes, dmab->dev.dir);
867	} else {
868		if (dmab->dev.dir != DMA_FROM_DEVICE)
869			dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
870						   dmab->bytes, dmab->dev.dir);
871	}
872}
873
874static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
875	.alloc = snd_dma_noncoherent_alloc,
876	.free = snd_dma_noncoherent_free,
877	.mmap = snd_dma_noncoherent_mmap,
878	.sync = snd_dma_noncoherent_sync,
879};
880
881#endif /* CONFIG_HAS_DMA */
882
883/*
884 * Entry points
885 */
886static const struct snd_malloc_ops *snd_dma_ops[] = {
887	[SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
888	[SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
889#ifdef CONFIG_HAS_DMA
890	[SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
891	[SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
892	[SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
893	[SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
894#ifdef CONFIG_SND_DMA_SGBUF
895	[SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
896	[SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops,
897#endif
898#ifdef CONFIG_GENERIC_ALLOCATOR
899	[SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
900#endif /* CONFIG_GENERIC_ALLOCATOR */
901#endif /* CONFIG_HAS_DMA */
902};
903
904static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
905{
906	if (WARN_ON_ONCE(!dmab))
907		return NULL;
908	if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
909			 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
910		return NULL;
911	return snd_dma_ops[dmab->dev.type];
912}