Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/slab.h>
 25#include <linux/sysctl.h>
 26#include <linux/workqueue.h>
 27#include <linux/static_key.h>
 28#include <net/tcp.h>
 29#include <net/inet_common.h>
 30#include <net/xfrm.h>
 31#include <net/busy_poll.h>
 
 32
 33static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 34{
 35	if (seq == s_win)
 36		return true;
 37	if (after(end_seq, s_win) && before(seq, e_win))
 38		return true;
 39	return seq == e_win && seq == end_seq;
 40}
 41
 42static enum tcp_tw_status
 43tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 44				  const struct sk_buff *skb, int mib_idx)
 45{
 46	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 47
 48	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 49				  &tcptw->tw_last_oow_ack_time)) {
 50		/* Send ACK. Note, we do not put the bucket,
 51		 * it will be released by caller.
 52		 */
 53		return TCP_TW_ACK;
 54	}
 55
 56	/* We are rate-limiting, so just release the tw sock and drop skb. */
 57	inet_twsk_put(tw);
 58	return TCP_TW_SUCCESS;
 59}
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 61/*
 62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 64 *   (and, probably, tail of data) and one or more our ACKs are lost.
 65 * * What is TIME-WAIT timeout? It is associated with maximal packet
 66 *   lifetime in the internet, which results in wrong conclusion, that
 67 *   it is set to catch "old duplicate segments" wandering out of their path.
 68 *   It is not quite correct. This timeout is calculated so that it exceeds
 69 *   maximal retransmission timeout enough to allow to lose one (or more)
 70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 71 * * When TIME-WAIT socket receives RST, it means that another end
 72 *   finally closed and we are allowed to kill TIME-WAIT too.
 73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 76 * * If we invented some more clever way to catch duplicates
 77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 78 *
 79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 81 * from the very beginning.
 82 *
 83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 84 * is _not_ stateless. It means, that strictly speaking we must
 85 * spinlock it. I do not want! Well, probability of misbehaviour
 86 * is ridiculously low and, seems, we could use some mb() tricks
 87 * to avoid misread sequence numbers, states etc.  --ANK
 88 *
 89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 90 */
 91enum tcp_tw_status
 92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 93			   const struct tcphdr *th)
 94{
 95	struct tcp_options_received tmp_opt;
 96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 
 
 97	bool paws_reject = false;
 
 98
 99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 
101		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			if (tmp_opt.rcv_tsecr)
105				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109		}
110	}
111
112	if (tw->tw_substate == TCP_FIN_WAIT2) {
113		/* Just repeat all the checks of tcp_rcv_state_process() */
114
115		/* Out of window, send ACK */
116		if (paws_reject ||
117		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118				   tcptw->tw_rcv_nxt,
119				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120			return tcp_timewait_check_oow_rate_limit(
121				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122
123		if (th->rst)
124			goto kill;
125
126		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127			return TCP_TW_RST;
128
129		/* Dup ACK? */
130		if (!th->ack ||
131		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133			inet_twsk_put(tw);
134			return TCP_TW_SUCCESS;
135		}
136
137		/* New data or FIN. If new data arrive after half-duplex close,
138		 * reset.
139		 */
140		if (!th->fin ||
141		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142			return TCP_TW_RST;
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 
 
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
 
 
150		}
151
152		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
153		return TCP_TW_ACK;
154	}
155
156	/*
157	 *	Now real TIME-WAIT state.
158	 *
159	 *	RFC 1122:
160	 *	"When a connection is [...] on TIME-WAIT state [...]
161	 *	[a TCP] MAY accept a new SYN from the remote TCP to
162	 *	reopen the connection directly, if it:
163	 *
164	 *	(1)  assigns its initial sequence number for the new
165	 *	connection to be larger than the largest sequence
166	 *	number it used on the previous connection incarnation,
167	 *	and
168	 *
169	 *	(2)  returns to TIME-WAIT state if the SYN turns out
170	 *	to be an old duplicate".
171	 */
172
173	if (!paws_reject &&
174	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176		/* In window segment, it may be only reset or bare ack. */
177
178		if (th->rst) {
179			/* This is TIME_WAIT assassination, in two flavors.
180			 * Oh well... nobody has a sufficient solution to this
181			 * protocol bug yet.
182			 */
183			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
184kill:
185				inet_twsk_deschedule_put(tw);
186				return TCP_TW_SUCCESS;
187			}
188		} else {
189			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190		}
191
192		if (tmp_opt.saw_tstamp) {
193			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
194			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
 
 
195		}
196
197		inet_twsk_put(tw);
198		return TCP_TW_SUCCESS;
199	}
200
201	/* Out of window segment.
202
203	   All the segments are ACKed immediately.
204
205	   The only exception is new SYN. We accept it, if it is
206	   not old duplicate and we are not in danger to be killed
207	   by delayed old duplicates. RFC check is that it has
208	   newer sequence number works at rates <40Mbit/sec.
209	   However, if paws works, it is reliable AND even more,
210	   we even may relax silly seq space cutoff.
211
212	   RED-PEN: we violate main RFC requirement, if this SYN will appear
213	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
214	   we must return socket to time-wait state. It is not good,
215	   but not fatal yet.
216	 */
217
218	if (th->syn && !th->rst && !th->ack && !paws_reject &&
219	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
220	     (tmp_opt.saw_tstamp &&
221	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
222		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
223		if (isn == 0)
224			isn++;
225		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
226		return TCP_TW_SYN;
227	}
228
229	if (paws_reject)
230		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
231
232	if (!th->rst) {
233		/* In this case we must reset the TIMEWAIT timer.
234		 *
235		 * If it is ACKless SYN it may be both old duplicate
236		 * and new good SYN with random sequence number <rcv_nxt.
237		 * Do not reschedule in the last case.
238		 */
239		if (paws_reject || th->ack)
240			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
241
242		return tcp_timewait_check_oow_rate_limit(
243			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
244	}
245	inet_twsk_put(tw);
246	return TCP_TW_SUCCESS;
247}
248EXPORT_SYMBOL(tcp_timewait_state_process);
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250/*
251 * Move a socket to time-wait or dead fin-wait-2 state.
252 */
253void tcp_time_wait(struct sock *sk, int state, int timeo)
254{
255	const struct inet_connection_sock *icsk = inet_csk(sk);
256	const struct tcp_sock *tp = tcp_sk(sk);
 
257	struct inet_timewait_sock *tw;
258	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
259
260	tw = inet_twsk_alloc(sk, tcp_death_row, state);
261
262	if (tw) {
263		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
264		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
265		struct inet_sock *inet = inet_sk(sk);
266
267		tw->tw_transparent	= inet->transparent;
268		tw->tw_mark		= sk->sk_mark;
269		tw->tw_priority		= sk->sk_priority;
270		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
271		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
272		tcptw->tw_snd_nxt	= tp->snd_nxt;
273		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
274		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
275		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
276		tcptw->tw_ts_offset	= tp->tsoffset;
 
277		tcptw->tw_last_oow_ack_time = 0;
278		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
 
 
 
 
 
279#if IS_ENABLED(CONFIG_IPV6)
280		if (tw->tw_family == PF_INET6) {
281			struct ipv6_pinfo *np = inet6_sk(sk);
282
283			tw->tw_v6_daddr = sk->sk_v6_daddr;
284			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
285			tw->tw_tclass = np->tclass;
286			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
287			tw->tw_txhash = sk->sk_txhash;
288			tw->tw_ipv6only = sk->sk_ipv6only;
289		}
290#endif
291
292#ifdef CONFIG_TCP_MD5SIG
293		/*
294		 * The timewait bucket does not have the key DB from the
295		 * sock structure. We just make a quick copy of the
296		 * md5 key being used (if indeed we are using one)
297		 * so the timewait ack generating code has the key.
298		 */
299		do {
300			tcptw->tw_md5_key = NULL;
301			if (static_branch_unlikely(&tcp_md5_needed)) {
302				struct tcp_md5sig_key *key;
303
304				key = tp->af_specific->md5_lookup(sk, sk);
305				if (key) {
306					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
307					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
308				}
309			}
310		} while (0);
311#endif
312
313		/* Get the TIME_WAIT timeout firing. */
314		if (timeo < rto)
315			timeo = rto;
316
317		if (state == TCP_TIME_WAIT)
318			timeo = TCP_TIMEWAIT_LEN;
319
320		/* tw_timer is pinned, so we need to make sure BH are disabled
321		 * in following section, otherwise timer handler could run before
322		 * we complete the initialization.
323		 */
324		local_bh_disable();
325		inet_twsk_schedule(tw, timeo);
326		/* Linkage updates.
327		 * Note that access to tw after this point is illegal.
328		 */
329		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
330		local_bh_enable();
331	} else {
332		/* Sorry, if we're out of memory, just CLOSE this
333		 * socket up.  We've got bigger problems than
334		 * non-graceful socket closings.
335		 */
336		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
337	}
338
339	tcp_update_metrics(sk);
340	tcp_done(sk);
341}
342EXPORT_SYMBOL(tcp_time_wait);
343
 
 
 
 
 
 
 
 
 
 
 
 
344void tcp_twsk_destructor(struct sock *sk)
345{
346#ifdef CONFIG_TCP_MD5SIG
347	if (static_branch_unlikely(&tcp_md5_needed)) {
348		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
349
350		if (twsk->tw_md5_key)
351			kfree_rcu(twsk->tw_md5_key, rcu);
352	}
353#endif
 
354}
355EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357/* Warning : This function is called without sk_listener being locked.
358 * Be sure to read socket fields once, as their value could change under us.
359 */
360void tcp_openreq_init_rwin(struct request_sock *req,
361			   const struct sock *sk_listener,
362			   const struct dst_entry *dst)
363{
364	struct inet_request_sock *ireq = inet_rsk(req);
365	const struct tcp_sock *tp = tcp_sk(sk_listener);
366	int full_space = tcp_full_space(sk_listener);
367	u32 window_clamp;
368	__u8 rcv_wscale;
369	u32 rcv_wnd;
370	int mss;
371
372	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
373	window_clamp = READ_ONCE(tp->window_clamp);
374	/* Set this up on the first call only */
375	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
376
377	/* limit the window selection if the user enforce a smaller rx buffer */
378	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
379	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
380		req->rsk_window_clamp = full_space;
381
382	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
383	if (rcv_wnd == 0)
384		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
385	else if (full_space < rcv_wnd * mss)
386		full_space = rcv_wnd * mss;
387
388	/* tcp_full_space because it is guaranteed to be the first packet */
389	tcp_select_initial_window(sk_listener, full_space,
390		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
391		&req->rsk_rcv_wnd,
392		&req->rsk_window_clamp,
393		ireq->wscale_ok,
394		&rcv_wscale,
395		rcv_wnd);
396	ireq->rcv_wscale = rcv_wscale;
397}
398EXPORT_SYMBOL(tcp_openreq_init_rwin);
399
400static void tcp_ecn_openreq_child(struct tcp_sock *tp,
401				  const struct request_sock *req)
402{
403	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
404}
405
406void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
407{
408	struct inet_connection_sock *icsk = inet_csk(sk);
409	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
410	bool ca_got_dst = false;
411
412	if (ca_key != TCP_CA_UNSPEC) {
413		const struct tcp_congestion_ops *ca;
414
415		rcu_read_lock();
416		ca = tcp_ca_find_key(ca_key);
417		if (likely(ca && try_module_get(ca->owner))) {
418			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
419			icsk->icsk_ca_ops = ca;
420			ca_got_dst = true;
421		}
422		rcu_read_unlock();
423	}
424
425	/* If no valid choice made yet, assign current system default ca. */
426	if (!ca_got_dst &&
427	    (!icsk->icsk_ca_setsockopt ||
428	     !try_module_get(icsk->icsk_ca_ops->owner)))
429		tcp_assign_congestion_control(sk);
430
431	tcp_set_ca_state(sk, TCP_CA_Open);
432}
433EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
434
435static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
436				    struct request_sock *req,
437				    struct tcp_sock *newtp)
438{
439#if IS_ENABLED(CONFIG_SMC)
440	struct inet_request_sock *ireq;
441
442	if (static_branch_unlikely(&tcp_have_smc)) {
443		ireq = inet_rsk(req);
444		if (oldtp->syn_smc && !ireq->smc_ok)
445			newtp->syn_smc = 0;
446	}
447#endif
448}
449
450/* This is not only more efficient than what we used to do, it eliminates
451 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
452 *
453 * Actually, we could lots of memory writes here. tp of listening
454 * socket contains all necessary default parameters.
455 */
456struct sock *tcp_create_openreq_child(const struct sock *sk,
457				      struct request_sock *req,
458				      struct sk_buff *skb)
459{
460	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
461	const struct inet_request_sock *ireq = inet_rsk(req);
462	struct tcp_request_sock *treq = tcp_rsk(req);
463	struct inet_connection_sock *newicsk;
464	struct tcp_sock *oldtp, *newtp;
 
465	u32 seq;
466
467	if (!newsk)
468		return NULL;
469
470	newicsk = inet_csk(newsk);
471	newtp = tcp_sk(newsk);
472	oldtp = tcp_sk(sk);
473
474	smc_check_reset_syn_req(oldtp, req, newtp);
475
476	/* Now setup tcp_sock */
477	newtp->pred_flags = 0;
478
479	seq = treq->rcv_isn + 1;
480	newtp->rcv_wup = seq;
481	WRITE_ONCE(newtp->copied_seq, seq);
482	WRITE_ONCE(newtp->rcv_nxt, seq);
483	newtp->segs_in = 1;
484
485	seq = treq->snt_isn + 1;
486	newtp->snd_sml = newtp->snd_una = seq;
487	WRITE_ONCE(newtp->snd_nxt, seq);
488	newtp->snd_up = seq;
489
490	INIT_LIST_HEAD(&newtp->tsq_node);
491	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
492
493	tcp_init_wl(newtp, treq->rcv_isn);
494
495	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
496	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
497
498	newtp->lsndtime = tcp_jiffies32;
499	newsk->sk_txhash = treq->txhash;
500	newtp->total_retrans = req->num_retrans;
501
502	tcp_init_xmit_timers(newsk);
503	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
504
505	if (sock_flag(newsk, SOCK_KEEPOPEN))
506		inet_csk_reset_keepalive_timer(newsk,
507					       keepalive_time_when(newtp));
508
509	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
510	newtp->rx_opt.sack_ok = ireq->sack_ok;
511	newtp->window_clamp = req->rsk_window_clamp;
512	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
513	newtp->rcv_wnd = req->rsk_rcv_wnd;
514	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
515	if (newtp->rx_opt.wscale_ok) {
516		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
517		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
518	} else {
519		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
520		newtp->window_clamp = min(newtp->window_clamp, 65535U);
521	}
522	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
523	newtp->max_window = newtp->snd_wnd;
524
525	if (newtp->rx_opt.tstamp_ok) {
526		newtp->rx_opt.ts_recent = req->ts_recent;
 
527		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
528		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529	} else {
 
530		newtp->rx_opt.ts_recent_stamp = 0;
531		newtp->tcp_header_len = sizeof(struct tcphdr);
532	}
533	if (req->num_timeout) {
 
534		newtp->undo_marker = treq->snt_isn;
535		newtp->retrans_stamp = div_u64(treq->snt_synack,
536					       USEC_PER_SEC / TCP_TS_HZ);
 
 
 
 
 
 
 
 
 
537	}
538	newtp->tsoffset = treq->ts_off;
539#ifdef CONFIG_TCP_MD5SIG
540	newtp->md5sig_info = NULL;	/*XXX*/
541	if (newtp->af_specific->md5_lookup(sk, newsk))
542		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
543#endif
 
 
 
 
 
 
 
 
 
 
 
544	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
545		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
546	newtp->rx_opt.mss_clamp = req->mss;
547	tcp_ecn_openreq_child(newtp, req);
548	newtp->fastopen_req = NULL;
549	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
550
 
 
 
551	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
552
 
 
553	return newsk;
554}
555EXPORT_SYMBOL(tcp_create_openreq_child);
556
557/*
558 * Process an incoming packet for SYN_RECV sockets represented as a
559 * request_sock. Normally sk is the listener socket but for TFO it
560 * points to the child socket.
561 *
562 * XXX (TFO) - The current impl contains a special check for ack
563 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
564 *
565 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
 
 
 
566 */
567
568struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
569			   struct request_sock *req,
570			   bool fastopen, bool *req_stolen)
571{
572	struct tcp_options_received tmp_opt;
573	struct sock *child;
574	const struct tcphdr *th = tcp_hdr(skb);
575	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
576	bool paws_reject = false;
577	bool own_req;
578
579	tmp_opt.saw_tstamp = 0;
580	if (th->doff > (sizeof(struct tcphdr)>>2)) {
581		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
582
583		if (tmp_opt.saw_tstamp) {
584			tmp_opt.ts_recent = req->ts_recent;
585			if (tmp_opt.rcv_tsecr)
586				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
587			/* We do not store true stamp, but it is not required,
588			 * it can be estimated (approximately)
589			 * from another data.
590			 */
591			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
592			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
593		}
594	}
595
596	/* Check for pure retransmitted SYN. */
597	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
598	    flg == TCP_FLAG_SYN &&
599	    !paws_reject) {
600		/*
601		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
602		 * this case on figure 6 and figure 8, but formal
603		 * protocol description says NOTHING.
604		 * To be more exact, it says that we should send ACK,
605		 * because this segment (at least, if it has no data)
606		 * is out of window.
607		 *
608		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
609		 *  describe SYN-RECV state. All the description
610		 *  is wrong, we cannot believe to it and should
611		 *  rely only on common sense and implementation
612		 *  experience.
613		 *
614		 * Enforce "SYN-ACK" according to figure 8, figure 6
615		 * of RFC793, fixed by RFC1122.
616		 *
617		 * Note that even if there is new data in the SYN packet
618		 * they will be thrown away too.
619		 *
620		 * Reset timer after retransmitting SYNACK, similar to
621		 * the idea of fast retransmit in recovery.
622		 */
623		if (!tcp_oow_rate_limited(sock_net(sk), skb,
624					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
625					  &tcp_rsk(req)->last_oow_ack_time) &&
626
627		    !inet_rtx_syn_ack(sk, req)) {
628			unsigned long expires = jiffies;
629
630			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
631				       TCP_RTO_MAX);
632			if (!fastopen)
633				mod_timer_pending(&req->rsk_timer, expires);
634			else
635				req->rsk_timer.expires = expires;
636		}
637		return NULL;
638	}
639
640	/* Further reproduces section "SEGMENT ARRIVES"
641	   for state SYN-RECEIVED of RFC793.
642	   It is broken, however, it does not work only
643	   when SYNs are crossed.
644
645	   You would think that SYN crossing is impossible here, since
646	   we should have a SYN_SENT socket (from connect()) on our end,
647	   but this is not true if the crossed SYNs were sent to both
648	   ends by a malicious third party.  We must defend against this,
649	   and to do that we first verify the ACK (as per RFC793, page
650	   36) and reset if it is invalid.  Is this a true full defense?
651	   To convince ourselves, let us consider a way in which the ACK
652	   test can still pass in this 'malicious crossed SYNs' case.
653	   Malicious sender sends identical SYNs (and thus identical sequence
654	   numbers) to both A and B:
655
656		A: gets SYN, seq=7
657		B: gets SYN, seq=7
658
659	   By our good fortune, both A and B select the same initial
660	   send sequence number of seven :-)
661
662		A: sends SYN|ACK, seq=7, ack_seq=8
663		B: sends SYN|ACK, seq=7, ack_seq=8
664
665	   So we are now A eating this SYN|ACK, ACK test passes.  So
666	   does sequence test, SYN is truncated, and thus we consider
667	   it a bare ACK.
668
669	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
670	   bare ACK.  Otherwise, we create an established connection.  Both
671	   ends (listening sockets) accept the new incoming connection and try
672	   to talk to each other. 8-)
673
674	   Note: This case is both harmless, and rare.  Possibility is about the
675	   same as us discovering intelligent life on another plant tomorrow.
676
677	   But generally, we should (RFC lies!) to accept ACK
678	   from SYNACK both here and in tcp_rcv_state_process().
679	   tcp_rcv_state_process() does not, hence, we do not too.
680
681	   Note that the case is absolutely generic:
682	   we cannot optimize anything here without
683	   violating protocol. All the checks must be made
684	   before attempt to create socket.
685	 */
686
687	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
688	 *                  and the incoming segment acknowledges something not yet
689	 *                  sent (the segment carries an unacceptable ACK) ...
690	 *                  a reset is sent."
691	 *
692	 * Invalid ACK: reset will be sent by listening socket.
693	 * Note that the ACK validity check for a Fast Open socket is done
694	 * elsewhere and is checked directly against the child socket rather
695	 * than req because user data may have been sent out.
696	 */
697	if ((flg & TCP_FLAG_ACK) && !fastopen &&
698	    (TCP_SKB_CB(skb)->ack_seq !=
699	     tcp_rsk(req)->snt_isn + 1))
700		return sk;
701
702	/* Also, it would be not so bad idea to check rcv_tsecr, which
703	 * is essentially ACK extension and too early or too late values
704	 * should cause reset in unsynchronized states.
705	 */
706
707	/* RFC793: "first check sequence number". */
708
709	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
710					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
 
 
 
711		/* Out of window: send ACK and drop. */
712		if (!(flg & TCP_FLAG_RST) &&
713		    !tcp_oow_rate_limited(sock_net(sk), skb,
714					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
715					  &tcp_rsk(req)->last_oow_ack_time))
716			req->rsk_ops->send_ack(sk, skb, req);
717		if (paws_reject)
718			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
719		return NULL;
720	}
721
722	/* In sequence, PAWS is OK. */
723
724	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
725		req->ts_recent = tmp_opt.rcv_tsval;
726
727	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
728		/* Truncate SYN, it is out of window starting
729		   at tcp_rsk(req)->rcv_isn + 1. */
730		flg &= ~TCP_FLAG_SYN;
731	}
732
733	/* RFC793: "second check the RST bit" and
734	 *	   "fourth, check the SYN bit"
735	 */
736	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
737		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
738		goto embryonic_reset;
739	}
740
741	/* ACK sequence verified above, just make sure ACK is
742	 * set.  If ACK not set, just silently drop the packet.
743	 *
744	 * XXX (TFO) - if we ever allow "data after SYN", the
745	 * following check needs to be removed.
746	 */
747	if (!(flg & TCP_FLAG_ACK))
748		return NULL;
749
750	/* For Fast Open no more processing is needed (sk is the
751	 * child socket).
752	 */
753	if (fastopen)
754		return sk;
755
756	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
757	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
758	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
759		inet_rsk(req)->acked = 1;
760		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
761		return NULL;
762	}
763
764	/* OK, ACK is valid, create big socket and
765	 * feed this segment to it. It will repeat all
766	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
767	 * ESTABLISHED STATE. If it will be dropped after
768	 * socket is created, wait for troubles.
769	 */
770	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
771							 req, &own_req);
772	if (!child)
773		goto listen_overflow;
774
 
 
 
 
 
 
 
 
 
 
775	sock_rps_save_rxhash(child, skb);
776	tcp_synack_rtt_meas(child, req);
777	*req_stolen = !own_req;
778	return inet_csk_complete_hashdance(sk, child, req, own_req);
779
780listen_overflow:
781	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
 
 
 
782		inet_rsk(req)->acked = 1;
783		return NULL;
784	}
785
786embryonic_reset:
787	if (!(flg & TCP_FLAG_RST)) {
788		/* Received a bad SYN pkt - for TFO We try not to reset
789		 * the local connection unless it's really necessary to
790		 * avoid becoming vulnerable to outside attack aiming at
791		 * resetting legit local connections.
792		 */
793		req->rsk_ops->send_reset(sk, skb);
794	} else if (fastopen) { /* received a valid RST pkt */
795		reqsk_fastopen_remove(sk, req, true);
796		tcp_reset(sk);
797	}
798	if (!fastopen) {
799		inet_csk_reqsk_queue_drop(sk, req);
800		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 
 
 
801	}
802	return NULL;
803}
804EXPORT_SYMBOL(tcp_check_req);
805
806/*
807 * Queue segment on the new socket if the new socket is active,
808 * otherwise we just shortcircuit this and continue with
809 * the new socket.
810 *
811 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
812 * when entering. But other states are possible due to a race condition
813 * where after __inet_lookup_established() fails but before the listener
814 * locked is obtained, other packets cause the same connection to
815 * be created.
816 */
817
818int tcp_child_process(struct sock *parent, struct sock *child,
819		      struct sk_buff *skb)
 
820{
821	int ret = 0;
822	int state = child->sk_state;
823
824	/* record NAPI ID of child */
825	sk_mark_napi_id(child, skb);
826
827	tcp_segs_in(tcp_sk(child), skb);
828	if (!sock_owned_by_user(child)) {
829		ret = tcp_rcv_state_process(child, skb);
830		/* Wakeup parent, send SIGIO */
831		if (state == TCP_SYN_RECV && child->sk_state != state)
832			parent->sk_data_ready(parent);
833	} else {
834		/* Alas, it is possible again, because we do lookup
835		 * in main socket hash table and lock on listening
836		 * socket does not protect us more.
837		 */
838		__sk_add_backlog(child, skb);
839	}
840
841	bh_unlock_sock(child);
842	sock_put(child);
843	return ret;
844}
845EXPORT_SYMBOL(tcp_child_process);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 25#include <net/rstreason.h>
 26
 27static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 28{
 29	if (seq == s_win)
 30		return true;
 31	if (after(end_seq, s_win) && before(seq, e_win))
 32		return true;
 33	return seq == e_win && seq == end_seq;
 34}
 35
 36static enum tcp_tw_status
 37tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 38				  const struct sk_buff *skb, int mib_idx)
 39{
 40	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 41
 42	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 43				  &tcptw->tw_last_oow_ack_time)) {
 44		/* Send ACK. Note, we do not put the bucket,
 45		 * it will be released by caller.
 46		 */
 47		return TCP_TW_ACK;
 48	}
 49
 50	/* We are rate-limiting, so just release the tw sock and drop skb. */
 51	inet_twsk_put(tw);
 52	return TCP_TW_SUCCESS;
 53}
 54
 55static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
 56				u32 rcv_nxt)
 57{
 58#ifdef CONFIG_TCP_AO
 59	struct tcp_ao_info *ao;
 60
 61	ao = rcu_dereference(tcptw->ao_info);
 62	if (unlikely(ao && seq < rcv_nxt))
 63		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 64#endif
 65	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
 66}
 67
 68/*
 69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 70 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 71 *   (and, probably, tail of data) and one or more our ACKs are lost.
 72 * * What is TIME-WAIT timeout? It is associated with maximal packet
 73 *   lifetime in the internet, which results in wrong conclusion, that
 74 *   it is set to catch "old duplicate segments" wandering out of their path.
 75 *   It is not quite correct. This timeout is calculated so that it exceeds
 76 *   maximal retransmission timeout enough to allow to lose one (or more)
 77 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 78 * * When TIME-WAIT socket receives RST, it means that another end
 79 *   finally closed and we are allowed to kill TIME-WAIT too.
 80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 81 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 82 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 83 * * If we invented some more clever way to catch duplicates
 84 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 85 *
 86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 88 * from the very beginning.
 89 *
 90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 91 * is _not_ stateless. It means, that strictly speaking we must
 92 * spinlock it. I do not want! Well, probability of misbehaviour
 93 * is ridiculously low and, seems, we could use some mb() tricks
 94 * to avoid misread sequence numbers, states etc.  --ANK
 95 *
 96 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 97 */
 98enum tcp_tw_status
 99tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100			   const struct tcphdr *th, u32 *tw_isn)
101{
 
102	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104	struct tcp_options_received tmp_opt;
105	bool paws_reject = false;
106	int ts_recent_stamp;
107
108	tmp_opt.saw_tstamp = 0;
109	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112
113		if (tmp_opt.saw_tstamp) {
114			if (tmp_opt.rcv_tsecr)
115				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119		}
120	}
121
122	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123		/* Just repeat all the checks of tcp_rcv_state_process() */
124
125		/* Out of window, send ACK */
126		if (paws_reject ||
127		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128				   rcv_nxt,
129				   rcv_nxt + tcptw->tw_rcv_wnd))
130			return tcp_timewait_check_oow_rate_limit(
131				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132
133		if (th->rst)
134			goto kill;
135
136		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137			return TCP_TW_RST;
138
139		/* Dup ACK? */
140		if (!th->ack ||
141		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143			inet_twsk_put(tw);
144			return TCP_TW_SUCCESS;
145		}
146
147		/* New data or FIN. If new data arrive after half-duplex close,
148		 * reset.
149		 */
150		if (!th->fin ||
151		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152			return TCP_TW_RST;
153
154		/* FIN arrived, enter true time-wait state. */
155		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157				    rcv_nxt);
158
159		if (tmp_opt.saw_tstamp) {
160			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
161				  ktime_get_seconds());
162			WRITE_ONCE(tcptw->tw_ts_recent,
163				   tmp_opt.rcv_tsval);
164		}
165
166		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
167		return TCP_TW_ACK;
168	}
169
170	/*
171	 *	Now real TIME-WAIT state.
172	 *
173	 *	RFC 1122:
174	 *	"When a connection is [...] on TIME-WAIT state [...]
175	 *	[a TCP] MAY accept a new SYN from the remote TCP to
176	 *	reopen the connection directly, if it:
177	 *
178	 *	(1)  assigns its initial sequence number for the new
179	 *	connection to be larger than the largest sequence
180	 *	number it used on the previous connection incarnation,
181	 *	and
182	 *
183	 *	(2)  returns to TIME-WAIT state if the SYN turns out
184	 *	to be an old duplicate".
185	 */
186
187	if (!paws_reject &&
188	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
189	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
190		/* In window segment, it may be only reset or bare ack. */
191
192		if (th->rst) {
193			/* This is TIME_WAIT assassination, in two flavors.
194			 * Oh well... nobody has a sufficient solution to this
195			 * protocol bug yet.
196			 */
197			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
198kill:
199				inet_twsk_deschedule_put(tw);
200				return TCP_TW_SUCCESS;
201			}
202		} else {
203			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
204		}
205
206		if (tmp_opt.saw_tstamp) {
207			WRITE_ONCE(tcptw->tw_ts_recent,
208				   tmp_opt.rcv_tsval);
209			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
210				   ktime_get_seconds());
211		}
212
213		inet_twsk_put(tw);
214		return TCP_TW_SUCCESS;
215	}
216
217	/* Out of window segment.
218
219	   All the segments are ACKed immediately.
220
221	   The only exception is new SYN. We accept it, if it is
222	   not old duplicate and we are not in danger to be killed
223	   by delayed old duplicates. RFC check is that it has
224	   newer sequence number works at rates <40Mbit/sec.
225	   However, if paws works, it is reliable AND even more,
226	   we even may relax silly seq space cutoff.
227
228	   RED-PEN: we violate main RFC requirement, if this SYN will appear
229	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
230	   we must return socket to time-wait state. It is not good,
231	   but not fatal yet.
232	 */
233
234	if (th->syn && !th->rst && !th->ack && !paws_reject &&
235	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
236	     (tmp_opt.saw_tstamp &&
237	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
238		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239		if (isn == 0)
240			isn++;
241		*tw_isn = isn;
242		return TCP_TW_SYN;
243	}
244
245	if (paws_reject)
246		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247
248	if (!th->rst) {
249		/* In this case we must reset the TIMEWAIT timer.
250		 *
251		 * If it is ACKless SYN it may be both old duplicate
252		 * and new good SYN with random sequence number <rcv_nxt.
253		 * Do not reschedule in the last case.
254		 */
255		if (paws_reject || th->ack)
256			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
257
258		return tcp_timewait_check_oow_rate_limit(
259			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
260	}
261	inet_twsk_put(tw);
262	return TCP_TW_SUCCESS;
263}
264EXPORT_SYMBOL(tcp_timewait_state_process);
265
266static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
267{
268#ifdef CONFIG_TCP_MD5SIG
269	const struct tcp_sock *tp = tcp_sk(sk);
270	struct tcp_md5sig_key *key;
271
272	/*
273	 * The timewait bucket does not have the key DB from the
274	 * sock structure. We just make a quick copy of the
275	 * md5 key being used (if indeed we are using one)
276	 * so the timewait ack generating code has the key.
277	 */
278	tcptw->tw_md5_key = NULL;
279	if (!static_branch_unlikely(&tcp_md5_needed.key))
280		return;
281
282	key = tp->af_specific->md5_lookup(sk, sk);
283	if (key) {
284		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
285		if (!tcptw->tw_md5_key)
286			return;
287		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
288			goto out_free;
289		tcp_md5_add_sigpool();
290	}
291	return;
292out_free:
293	WARN_ON_ONCE(1);
294	kfree(tcptw->tw_md5_key);
295	tcptw->tw_md5_key = NULL;
296#endif
297}
298
299/*
300 * Move a socket to time-wait or dead fin-wait-2 state.
301 */
302void tcp_time_wait(struct sock *sk, int state, int timeo)
303{
304	const struct inet_connection_sock *icsk = inet_csk(sk);
305	struct tcp_sock *tp = tcp_sk(sk);
306	struct net *net = sock_net(sk);
307	struct inet_timewait_sock *tw;
 
308
309	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
310
311	if (tw) {
312		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
313		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
314
315		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
316		tw->tw_mark		= sk->sk_mark;
317		tw->tw_priority		= READ_ONCE(sk->sk_priority);
318		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
319		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
320		tcptw->tw_snd_nxt	= tp->snd_nxt;
321		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
322		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
323		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
324		tcptw->tw_ts_offset	= tp->tsoffset;
325		tw->tw_usec_ts		= tp->tcp_usec_ts;
326		tcptw->tw_last_oow_ack_time = 0;
327		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
328		tw->tw_txhash		= sk->sk_txhash;
329		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
330#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
331		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
332#endif
333#if IS_ENABLED(CONFIG_IPV6)
334		if (tw->tw_family == PF_INET6) {
335			struct ipv6_pinfo *np = inet6_sk(sk);
336
337			tw->tw_v6_daddr = sk->sk_v6_daddr;
338			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
339			tw->tw_tclass = np->tclass;
340			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
 
341			tw->tw_ipv6only = sk->sk_ipv6only;
342		}
343#endif
344
345		tcp_time_wait_init(sk, tcptw);
346		tcp_ao_time_wait(tcptw, tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347
348		/* Get the TIME_WAIT timeout firing. */
349		if (timeo < rto)
350			timeo = rto;
351
352		if (state == TCP_TIME_WAIT)
353			timeo = TCP_TIMEWAIT_LEN;
354
 
 
 
 
 
 
355		/* Linkage updates.
356		 * Note that access to tw after this point is illegal.
357		 */
358		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
 
359	} else {
360		/* Sorry, if we're out of memory, just CLOSE this
361		 * socket up.  We've got bigger problems than
362		 * non-graceful socket closings.
363		 */
364		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
365	}
366
367	tcp_update_metrics(sk);
368	tcp_done(sk);
369}
370EXPORT_SYMBOL(tcp_time_wait);
371
372#ifdef CONFIG_TCP_MD5SIG
373static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
374{
375	struct tcp_md5sig_key *key;
376
377	key = container_of(head, struct tcp_md5sig_key, rcu);
378	kfree(key);
379	static_branch_slow_dec_deferred(&tcp_md5_needed);
380	tcp_md5_release_sigpool();
381}
382#endif
383
384void tcp_twsk_destructor(struct sock *sk)
385{
386#ifdef CONFIG_TCP_MD5SIG
387	if (static_branch_unlikely(&tcp_md5_needed.key)) {
388		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
389
390		if (twsk->tw_md5_key)
391			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
392	}
393#endif
394	tcp_ao_destroy_sock(sk, true);
395}
396EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
397
398void tcp_twsk_purge(struct list_head *net_exit_list)
399{
400	bool purged_once = false;
401	struct net *net;
402
403	list_for_each_entry(net, net_exit_list, exit_list) {
404		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
405			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
406			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
407		} else if (!purged_once) {
408			inet_twsk_purge(&tcp_hashinfo);
409			purged_once = true;
410		}
411	}
412}
413
414/* Warning : This function is called without sk_listener being locked.
415 * Be sure to read socket fields once, as their value could change under us.
416 */
417void tcp_openreq_init_rwin(struct request_sock *req,
418			   const struct sock *sk_listener,
419			   const struct dst_entry *dst)
420{
421	struct inet_request_sock *ireq = inet_rsk(req);
422	const struct tcp_sock *tp = tcp_sk(sk_listener);
423	int full_space = tcp_full_space(sk_listener);
424	u32 window_clamp;
425	__u8 rcv_wscale;
426	u32 rcv_wnd;
427	int mss;
428
429	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
430	window_clamp = READ_ONCE(tp->window_clamp);
431	/* Set this up on the first call only */
432	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
433
434	/* limit the window selection if the user enforce a smaller rx buffer */
435	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
436	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
437		req->rsk_window_clamp = full_space;
438
439	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
440	if (rcv_wnd == 0)
441		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
442	else if (full_space < rcv_wnd * mss)
443		full_space = rcv_wnd * mss;
444
445	/* tcp_full_space because it is guaranteed to be the first packet */
446	tcp_select_initial_window(sk_listener, full_space,
447		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
448		&req->rsk_rcv_wnd,
449		&req->rsk_window_clamp,
450		ireq->wscale_ok,
451		&rcv_wscale,
452		rcv_wnd);
453	ireq->rcv_wscale = rcv_wscale;
454}
455EXPORT_SYMBOL(tcp_openreq_init_rwin);
456
457static void tcp_ecn_openreq_child(struct tcp_sock *tp,
458				  const struct request_sock *req)
459{
460	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
461}
462
463void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
464{
465	struct inet_connection_sock *icsk = inet_csk(sk);
466	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
467	bool ca_got_dst = false;
468
469	if (ca_key != TCP_CA_UNSPEC) {
470		const struct tcp_congestion_ops *ca;
471
472		rcu_read_lock();
473		ca = tcp_ca_find_key(ca_key);
474		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
475			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
476			icsk->icsk_ca_ops = ca;
477			ca_got_dst = true;
478		}
479		rcu_read_unlock();
480	}
481
482	/* If no valid choice made yet, assign current system default ca. */
483	if (!ca_got_dst &&
484	    (!icsk->icsk_ca_setsockopt ||
485	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
486		tcp_assign_congestion_control(sk);
487
488	tcp_set_ca_state(sk, TCP_CA_Open);
489}
490EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
491
492static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
493				    struct request_sock *req,
494				    struct tcp_sock *newtp)
495{
496#if IS_ENABLED(CONFIG_SMC)
497	struct inet_request_sock *ireq;
498
499	if (static_branch_unlikely(&tcp_have_smc)) {
500		ireq = inet_rsk(req);
501		if (oldtp->syn_smc && !ireq->smc_ok)
502			newtp->syn_smc = 0;
503	}
504#endif
505}
506
507/* This is not only more efficient than what we used to do, it eliminates
508 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
509 *
510 * Actually, we could lots of memory writes here. tp of listening
511 * socket contains all necessary default parameters.
512 */
513struct sock *tcp_create_openreq_child(const struct sock *sk,
514				      struct request_sock *req,
515				      struct sk_buff *skb)
516{
517	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
518	const struct inet_request_sock *ireq = inet_rsk(req);
519	struct tcp_request_sock *treq = tcp_rsk(req);
520	struct inet_connection_sock *newicsk;
521	const struct tcp_sock *oldtp;
522	struct tcp_sock *newtp;
523	u32 seq;
524
525	if (!newsk)
526		return NULL;
527
528	newicsk = inet_csk(newsk);
529	newtp = tcp_sk(newsk);
530	oldtp = tcp_sk(sk);
531
532	smc_check_reset_syn_req(oldtp, req, newtp);
533
534	/* Now setup tcp_sock */
535	newtp->pred_flags = 0;
536
537	seq = treq->rcv_isn + 1;
538	newtp->rcv_wup = seq;
539	WRITE_ONCE(newtp->copied_seq, seq);
540	WRITE_ONCE(newtp->rcv_nxt, seq);
541	newtp->segs_in = 1;
542
543	seq = treq->snt_isn + 1;
544	newtp->snd_sml = newtp->snd_una = seq;
545	WRITE_ONCE(newtp->snd_nxt, seq);
546	newtp->snd_up = seq;
547
548	INIT_LIST_HEAD(&newtp->tsq_node);
549	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
550
551	tcp_init_wl(newtp, treq->rcv_isn);
552
553	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
554	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
555
556	newtp->lsndtime = tcp_jiffies32;
557	newsk->sk_txhash = READ_ONCE(treq->txhash);
558	newtp->total_retrans = req->num_retrans;
559
560	tcp_init_xmit_timers(newsk);
561	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
562
563	if (sock_flag(newsk, SOCK_KEEPOPEN))
564		inet_csk_reset_keepalive_timer(newsk,
565					       keepalive_time_when(newtp));
566
567	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
568	newtp->rx_opt.sack_ok = ireq->sack_ok;
569	newtp->window_clamp = req->rsk_window_clamp;
570	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
571	newtp->rcv_wnd = req->rsk_rcv_wnd;
572	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
573	if (newtp->rx_opt.wscale_ok) {
574		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
575		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
576	} else {
577		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
578		newtp->window_clamp = min(newtp->window_clamp, 65535U);
579	}
580	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
581	newtp->max_window = newtp->snd_wnd;
582
583	if (newtp->rx_opt.tstamp_ok) {
584		newtp->tcp_usec_ts = treq->req_usec_ts;
585		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
586		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
587		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
588	} else {
589		newtp->tcp_usec_ts = 0;
590		newtp->rx_opt.ts_recent_stamp = 0;
591		newtp->tcp_header_len = sizeof(struct tcphdr);
592	}
593	if (req->num_timeout) {
594		newtp->total_rto = req->num_timeout;
595		newtp->undo_marker = treq->snt_isn;
596		if (newtp->tcp_usec_ts) {
597			newtp->retrans_stamp = treq->snt_synack;
598			newtp->total_rto_time = (u32)(tcp_clock_us() -
599						      newtp->retrans_stamp) / USEC_PER_MSEC;
600		} else {
601			newtp->retrans_stamp = div_u64(treq->snt_synack,
602						       USEC_PER_SEC / TCP_TS_HZ);
603			newtp->total_rto_time = tcp_clock_ms() -
604						newtp->retrans_stamp;
605		}
606		newtp->total_rto_recoveries = 1;
607	}
608	newtp->tsoffset = treq->ts_off;
609#ifdef CONFIG_TCP_MD5SIG
610	newtp->md5sig_info = NULL;	/*XXX*/
 
 
611#endif
612#ifdef CONFIG_TCP_AO
613	newtp->ao_info = NULL;
614
615	if (tcp_rsk_used_ao(req)) {
616		struct tcp_ao_key *ao_key;
617
618		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
619		if (ao_key)
620			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
621	}
622 #endif
623	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
624		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
625	newtp->rx_opt.mss_clamp = req->mss;
626	tcp_ecn_openreq_child(newtp, req);
627	newtp->fastopen_req = NULL;
628	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
629
630	newtp->bpf_chg_cc_inprogress = 0;
631	tcp_bpf_clone(sk, newsk);
632
633	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
634
635	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
636
637	return newsk;
638}
639EXPORT_SYMBOL(tcp_create_openreq_child);
640
641/*
642 * Process an incoming packet for SYN_RECV sockets represented as a
643 * request_sock. Normally sk is the listener socket but for TFO it
644 * points to the child socket.
645 *
646 * XXX (TFO) - The current impl contains a special check for ack
647 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
648 *
649 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
650 *
651 * Note: If @fastopen is true, this can be called from process context.
652 *       Otherwise, this is from BH context.
653 */
654
655struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
656			   struct request_sock *req,
657			   bool fastopen, bool *req_stolen)
658{
659	struct tcp_options_received tmp_opt;
660	struct sock *child;
661	const struct tcphdr *th = tcp_hdr(skb);
662	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
663	bool paws_reject = false;
664	bool own_req;
665
666	tmp_opt.saw_tstamp = 0;
667	if (th->doff > (sizeof(struct tcphdr)>>2)) {
668		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
669
670		if (tmp_opt.saw_tstamp) {
671			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
672			if (tmp_opt.rcv_tsecr)
673				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
674			/* We do not store true stamp, but it is not required,
675			 * it can be estimated (approximately)
676			 * from another data.
677			 */
678			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
679			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
680		}
681	}
682
683	/* Check for pure retransmitted SYN. */
684	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
685	    flg == TCP_FLAG_SYN &&
686	    !paws_reject) {
687		/*
688		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
689		 * this case on figure 6 and figure 8, but formal
690		 * protocol description says NOTHING.
691		 * To be more exact, it says that we should send ACK,
692		 * because this segment (at least, if it has no data)
693		 * is out of window.
694		 *
695		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
696		 *  describe SYN-RECV state. All the description
697		 *  is wrong, we cannot believe to it and should
698		 *  rely only on common sense and implementation
699		 *  experience.
700		 *
701		 * Enforce "SYN-ACK" according to figure 8, figure 6
702		 * of RFC793, fixed by RFC1122.
703		 *
704		 * Note that even if there is new data in the SYN packet
705		 * they will be thrown away too.
706		 *
707		 * Reset timer after retransmitting SYNACK, similar to
708		 * the idea of fast retransmit in recovery.
709		 */
710		if (!tcp_oow_rate_limited(sock_net(sk), skb,
711					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
712					  &tcp_rsk(req)->last_oow_ack_time) &&
713
714		    !inet_rtx_syn_ack(sk, req)) {
715			unsigned long expires = jiffies;
716
717			expires += reqsk_timeout(req, TCP_RTO_MAX);
 
718			if (!fastopen)
719				mod_timer_pending(&req->rsk_timer, expires);
720			else
721				req->rsk_timer.expires = expires;
722		}
723		return NULL;
724	}
725
726	/* Further reproduces section "SEGMENT ARRIVES"
727	   for state SYN-RECEIVED of RFC793.
728	   It is broken, however, it does not work only
729	   when SYNs are crossed.
730
731	   You would think that SYN crossing is impossible here, since
732	   we should have a SYN_SENT socket (from connect()) on our end,
733	   but this is not true if the crossed SYNs were sent to both
734	   ends by a malicious third party.  We must defend against this,
735	   and to do that we first verify the ACK (as per RFC793, page
736	   36) and reset if it is invalid.  Is this a true full defense?
737	   To convince ourselves, let us consider a way in which the ACK
738	   test can still pass in this 'malicious crossed SYNs' case.
739	   Malicious sender sends identical SYNs (and thus identical sequence
740	   numbers) to both A and B:
741
742		A: gets SYN, seq=7
743		B: gets SYN, seq=7
744
745	   By our good fortune, both A and B select the same initial
746	   send sequence number of seven :-)
747
748		A: sends SYN|ACK, seq=7, ack_seq=8
749		B: sends SYN|ACK, seq=7, ack_seq=8
750
751	   So we are now A eating this SYN|ACK, ACK test passes.  So
752	   does sequence test, SYN is truncated, and thus we consider
753	   it a bare ACK.
754
755	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
756	   bare ACK.  Otherwise, we create an established connection.  Both
757	   ends (listening sockets) accept the new incoming connection and try
758	   to talk to each other. 8-)
759
760	   Note: This case is both harmless, and rare.  Possibility is about the
761	   same as us discovering intelligent life on another plant tomorrow.
762
763	   But generally, we should (RFC lies!) to accept ACK
764	   from SYNACK both here and in tcp_rcv_state_process().
765	   tcp_rcv_state_process() does not, hence, we do not too.
766
767	   Note that the case is absolutely generic:
768	   we cannot optimize anything here without
769	   violating protocol. All the checks must be made
770	   before attempt to create socket.
771	 */
772
773	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
774	 *                  and the incoming segment acknowledges something not yet
775	 *                  sent (the segment carries an unacceptable ACK) ...
776	 *                  a reset is sent."
777	 *
778	 * Invalid ACK: reset will be sent by listening socket.
779	 * Note that the ACK validity check for a Fast Open socket is done
780	 * elsewhere and is checked directly against the child socket rather
781	 * than req because user data may have been sent out.
782	 */
783	if ((flg & TCP_FLAG_ACK) && !fastopen &&
784	    (TCP_SKB_CB(skb)->ack_seq !=
785	     tcp_rsk(req)->snt_isn + 1))
786		return sk;
787
788	/* Also, it would be not so bad idea to check rcv_tsecr, which
789	 * is essentially ACK extension and too early or too late values
790	 * should cause reset in unsynchronized states.
791	 */
792
793	/* RFC793: "first check sequence number". */
794
795	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
796					  TCP_SKB_CB(skb)->end_seq,
797					  tcp_rsk(req)->rcv_nxt,
798					  tcp_rsk(req)->rcv_nxt +
799					  tcp_synack_window(req))) {
800		/* Out of window: send ACK and drop. */
801		if (!(flg & TCP_FLAG_RST) &&
802		    !tcp_oow_rate_limited(sock_net(sk), skb,
803					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
804					  &tcp_rsk(req)->last_oow_ack_time))
805			req->rsk_ops->send_ack(sk, skb, req);
806		if (paws_reject)
807			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
808		return NULL;
809	}
810
811	/* In sequence, PAWS is OK. */
812
 
 
 
813	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
814		/* Truncate SYN, it is out of window starting
815		   at tcp_rsk(req)->rcv_isn + 1. */
816		flg &= ~TCP_FLAG_SYN;
817	}
818
819	/* RFC793: "second check the RST bit" and
820	 *	   "fourth, check the SYN bit"
821	 */
822	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
823		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
824		goto embryonic_reset;
825	}
826
827	/* ACK sequence verified above, just make sure ACK is
828	 * set.  If ACK not set, just silently drop the packet.
829	 *
830	 * XXX (TFO) - if we ever allow "data after SYN", the
831	 * following check needs to be removed.
832	 */
833	if (!(flg & TCP_FLAG_ACK))
834		return NULL;
835
836	/* For Fast Open no more processing is needed (sk is the
837	 * child socket).
838	 */
839	if (fastopen)
840		return sk;
841
842	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
843	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
844	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
845		inet_rsk(req)->acked = 1;
846		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
847		return NULL;
848	}
849
850	/* OK, ACK is valid, create big socket and
851	 * feed this segment to it. It will repeat all
852	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
853	 * ESTABLISHED STATE. If it will be dropped after
854	 * socket is created, wait for troubles.
855	 */
856	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
857							 req, &own_req);
858	if (!child)
859		goto listen_overflow;
860
861	if (own_req && tmp_opt.saw_tstamp &&
862	    !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
863		tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
864
865	if (own_req && rsk_drop_req(req)) {
866		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
867		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
868		return child;
869	}
870
871	sock_rps_save_rxhash(child, skb);
872	tcp_synack_rtt_meas(child, req);
873	*req_stolen = !own_req;
874	return inet_csk_complete_hashdance(sk, child, req, own_req);
875
876listen_overflow:
877	if (sk != req->rsk_listener)
878		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
879
880	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
881		inet_rsk(req)->acked = 1;
882		return NULL;
883	}
884
885embryonic_reset:
886	if (!(flg & TCP_FLAG_RST)) {
887		/* Received a bad SYN pkt - for TFO We try not to reset
888		 * the local connection unless it's really necessary to
889		 * avoid becoming vulnerable to outside attack aiming at
890		 * resetting legit local connections.
891		 */
892		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
893	} else if (fastopen) { /* received a valid RST pkt */
894		reqsk_fastopen_remove(sk, req, true);
895		tcp_reset(sk, skb);
896	}
897	if (!fastopen) {
898		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
899
900		if (unlinked)
901			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
902		*req_stolen = !unlinked;
903	}
904	return NULL;
905}
906EXPORT_SYMBOL(tcp_check_req);
907
908/*
909 * Queue segment on the new socket if the new socket is active,
910 * otherwise we just shortcircuit this and continue with
911 * the new socket.
912 *
913 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
914 * when entering. But other states are possible due to a race condition
915 * where after __inet_lookup_established() fails but before the listener
916 * locked is obtained, other packets cause the same connection to
917 * be created.
918 */
919
920enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
921				       struct sk_buff *skb)
922	__releases(&((child)->sk_lock.slock))
923{
924	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
925	int state = child->sk_state;
926
927	/* record sk_napi_id and sk_rx_queue_mapping of child. */
928	sk_mark_napi_id_set(child, skb);
929
930	tcp_segs_in(tcp_sk(child), skb);
931	if (!sock_owned_by_user(child)) {
932		reason = tcp_rcv_state_process(child, skb);
933		/* Wakeup parent, send SIGIO */
934		if (state == TCP_SYN_RECV && child->sk_state != state)
935			parent->sk_data_ready(parent);
936	} else {
937		/* Alas, it is possible again, because we do lookup
938		 * in main socket hash table and lock on listening
939		 * socket does not protect us more.
940		 */
941		__sk_add_backlog(child, skb);
942	}
943
944	bh_unlock_sock(child);
945	sock_put(child);
946	return reason;
947}
948EXPORT_SYMBOL(tcp_child_process);